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Summary. This article proposes a relaxed strategy for the calibration of the Abaqus Concrete Damaged
Plasticity (CDP) model in order to avoid the use of computationally expensive optimization techniques.

Key words: Concrete Damaged Plasticity (CDP), model calibration, Abaqus

Introduction

The Concrete Damaged Plasticity (CDP) built-in material model available in the Abaqus com-
mercial finite element software, [1], is widely used for beyond design criteria analyses of rein-
forced concrete structures within the Abaqus users community. In particular, the CDP model
has proven to be versatile enough to be used in beyond design basis earthquake analyses, [2, 3, 4],
as well as in benchmark impact test analyses, [5, 6, 7], and full scale airplane crash simulations,
[8].

Originally developed on top of the “Barcelona” yield surface, [9], and later on the isotropic
hardening laws proposed by Lee and Fenves, [10, 11], that separate the internal plastic variables
into a tensile and a compressive parts, the CDP model in Abaqus enables also field variable
dependent customized approaches. For example, a user enhanced Abaqus CDP model with
confinement stress dependent compressive hardening evolution and strain rate dependent tensile
softening evolution was proposed in [12]. Such custom material models are, indeed, necessary
in special applications, in case of the previous example, in hard missile impact simulations.

Material model calibration as an optimization problem

Formally, the material model calibration is an optimization problem: “For a given material
defined by its physical properties, Xexp, find material model input data, Xsim, such that the
distance between the experimental test output data, Yexp = T (Xexp), and the simulated test
output data, Ysim = S(Xsim), is minimum.” Figure 1 shows the mapping diagram relative to
material model calibration. One can, therefore, consider the formal (constrained) minimization
problem of with the following objective function: F (Xsim) = dist

(
T (Xexp) , S(Xsim)

)
.

The fundamental difficulty which arises in the context of concrete modeling, is that the
physical properties of a given material, such as cement chemical composition and aggregate size
distribution, are totally unrelated to the material model input data. In case of the Abaqus
CDP model the material input data is a collection of elasto-damage-plasticity parameters that
define the elastic properties, the initial shape of the yield surface and its evolution with the
increase of the internal hardening variables. On the other hand, the mechanical properties of
concrete defined in the Eurocode and the FIB model code, [13, 14], are values that depend on
the experimental setup such as sample size, boundary conditions and loading speed. Typically,
the concrete material experiment set includes uniaxial monotonic or cyclic compression tests to
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Figure 1. The basic structure of material model calibration.

determine elastic and compressive behavior and three point bending tests on notched specimen
as well as split tensile tests to determine tensile behavior. In addition, the experiment set may
include triaxial and/or biaxial tests to determine the failure surface shape and confinement
dependency, as well as tensile and compressive split Hopkinson pressure bar tests to determine
loading rate sensitivity.

Table 1. Mechanical material parameters for concrete defined in Eurocode

Denomination Symbol Unit

Compressive peak strength fcm (MPa)
Total strain at compressive peak strength εc1 (%)
Tensile peak strength fctm (MPa)
Fracture energy Gf (N/m)
Secant modulus of elasticity Ecm (MPa)
Poisson ratio νcm (-)
Confinement increase factor for compressive stress CIF (-)
Dynamic increase factor for tensile stress DIFf (-)
Dynamic increase factor for tensile fracture energy DIFg (-)
equibiaxial to uniaxial initial yield ratio σb0/σc0 (-)
tensile to compressive meridians slope ratio Kc (-)

Therefore, it would be a mistake to consider the Eurocode mechanical concrete properties as
intrinsic material parameters that can be mapped one-to-one to the material model parameters.
Nevertheless, by comparing the contents of Table 2 and Table 1, one can conclude that at least

some of the Eurocode mechanical concrete properties can be used as an initial guess, X
(0)
sim for

the minimization problem defined by the objective function F . On the other hand, it is clear
that carrying out all the experiments cited above is a tough requirement. Therefore, one has to
figure out a relaxed strategy to calibrate the material model with fewer experimental results.

Relaxed strategy for material model calibration

The proposed relaxed strategy for the CDP material model calibration relies on the assumption
that not all of the material model parameters mentioned in Table 2 are equally important. To
define the most important material parameters, the sensitivity of the model to the material
parameters was studied first. Based on observations of the model behavior, an iteration order
for material test simulations is proposed as per Table 3. For each simulation, model parameters
to be determined by iteration as well as fixed parameters are prescribed. The value for a given
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Table 2. CDP model input parameters

Denomination Symbol Expression

Elastic stiffness modulus E ≈ Ecm

Elastic Poisson ratio ν ≈ νcm
Yield surface shape parameter α =

(
σb0/σc0 − 1

)
/
(
2σb0/σc0 − 1

)
Yield surface shape parameter γ =

(
3(1−Kc)

)
/
(
2Kc − 1

)
Uniaxial compressive hardening function σc(ε

p
c ) = σc0

(
(1 + ac) e

−bc εpc − ac e−(1+k)bc ε
p
c
)

Uniaxial tensile hardening function σt(ε
p
t ) = σt0 e

−bt εpt

Uniaxial initial compressive yield stress σc0 ≈ 0.4 CIF fcm
Uniaxial initial tensile yield stress σt0 ≈ DIFf fctm
Characteristic length lch ≈ average element dimension

Characteristic fracture energy gF = DIFgGF/lch
Ratio µ = max σc/σc0
Compressive hardening parameter ac s.t. kk (1 + ac)

1+k − (1 + k)1+k µk ac = 0
Compressive hardening parameter bc = − 1

k argmaxσc
ln 1+ac

(1+k)ac

Compressive hardening parameter k ∈ {1, 2, 3, . . .}
Tensile hardening parameter bt = σt0/

(
gF + 1

2 (σt0)2/E
)

Dilation angle φ
Eccentricity of Drucker-Prager hyperboloid e

fixed parameter is obtained from an appropriate simulation result on the previous iteration
round. If there is no appropriate simulation result available, then an Eurocode value is applied
as suggested by Table 2.

Table 3. Material test simulation iteration order

Order Simulation Parameter to be iterated Fixed parameters

1. Uniaxial compression E, ν, σc(ε
p
c ) σt(ε

p
t ), γ, α, φ, e

2. Triaxial compression γ, α,CIF σt(ε
p
t ), φ, e, E, ν, σc(ε

p
c )

3. Notched 3 point bending σt(ε
p
t ) σc(ε

p
c ), γ, α, φ, e, E, ν

4. Direct shear φ, e σc(ε
p
c ), σt(ε

p
t ), γ, α,E, ν

5. Split tensile max σt σc(ε
p
c ), γ, α, φ, e, E, ν

Further studies

In order to understand the wider context of this specific study, it is necessary to consider
the experimental reinforced concrete slab impact testing, [15, 16] and concrete material model
development, calibration and validation work, [12, 7] that has been going on in the Technical
Research Centre of Finland (VTT). The primary objective of this research work is to provide
a scientifically validated computational analysis tool that enables large scale airplane crash on
concrete buildings to be performed. The calibration of the concrete material model parameters is
therefore done as suggested in this study using concrete test results from the VTT experimental
impact testing program. The validation of the simulation model is then carried out against
selected benchmark impact experiments from the same experimental program.
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[16] A. Vepsä, K. Calonius, A. Fedoroff, L. Fülöp, V. Jussila, A. Saarenheimo, P. Varis, B. Fälth,
B. Lund, and M. Tuomala. Experimental and numerical methods for external event as-
sessment improving safety (ernest). In SAFIR2018 The Finnish Research Programme on
Nuclear Power Plant Safety 2015-2018: interim report. VTT, Technical Research Centre
of Finland, 2016.

4


