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Abstract 

A software defined radio based phase meter for frequency metrology is presented. By 

using dual channel digitization, common mode non-idealities of the instrument are 

minimized. Baseline phase instability of the instrument was measured by using a hydrogen 

maser 100 MHz output as a reference. Downsampling the phase data from 1 MS/s to 1 S/s 

reduces the measured noise floor to an Allan deviation of 2·10-14 at an averaging time of 1 

s in a bandwidth of 0.5 Hz. 

1 Introduction 

Traditional high-resolution phase or frequency measurement devices are commonly based on 

the Dual Mixer Time Difference (DMTD) method [1]. In the DMTD method two frequencies to 

be compared, f1 ≈ f2, are down-mixed with a slightly frequency offset local-oscillator at 

frequency fLO. = f1-Δf. The resulting low-frequency (commonly 1-100 Hz) IF signals IF1/IF2 are 

then amplified/filtered, and the time interval between zero-crossings are measured. Time 

intervals between zero-crossings of IF1/IF2 are multiplied by the heterodyne gain f1/Δf, for 

example 107 for a measurement of 10 MHz signals with Δf = 1 Hz. 

However, the analog DMTD method suffers from several drawbacks. First, a frequency 

offset LO source is required, with similar short-term stability as the signals being measured. 

Second, the DMTD is inflexible in that it is built for measuring only one reference frequency 

(e.g. 10 MHz) and cannot measure other frequencies. Third, it suffers from instabilities in the 

analog components used, such as mixers, amplifiers, filters, and zero-crossing detectors. 

For these reasons, the direct digital phase meter technique has recently gained popularity [2-

4]. Here the measured signals are digitized at a high sample rate (compared to the signal 

frequency) and the signal-processing steps of the DMTD are performed numerically. The digital 

approach generates the LO-signal for down-mixing numerically and thus allows a flexible 

input-frequency. Signal processing steps after digitalization do not suffer from temperature or 

voltage related instabilities, as do analog components. 

We show how a COTS software defined radio platform and custom GNURadio software 

can be used for frequency metrology of 100 MHz reference signals from active hydrogen maser 

clocks. 

2 Experimental setup 

A schematic of the direct digital phase meter approach is shown in Figure 1. We use an Ettus 

B210 software defined radio featuring an Analog Devices AD9361 RF front end and a Xilinx 

Spartan6 FPGA for high speed digital downconversion (DDC), finite impulse response filtering 

(FIR) and decimation (DEC). We use the stock firmware on the B210, which uses CORDIC for 

DDC. Further low-pass filtering and decimation is performed on a host PC running GNURadio.  



 
Fig 1: Software defined radio hardware and software for frequency metrology using the 

digital direct phase meter approach. The top frequencies indicate the signal baseband frequency 

at each stage of signal processing chain. 

 

3 Results 

We characterized the baseline performance of the phase meter by splitting a 100 MHz maser 

output to both inputs and measuring the phase difference between the channels. The measured 

phase was anti-alias filtered and decimated to 100 S/s, 10 S/s and 1 S/s. Overlapping Allan 

deviation (OADEV) of the decimated data is shown in Fig. 2. OADEV for the 1 S/s decimated 

data at one second, in a bandwidth of 0.5 Hz, gives a measurement instability of 2·10-14, an 

improvement over 7·10-14 reported for a digital DMTD [3] or 5.6·10-14 for an analog DMTD [1]. 

 

 
 

Fig. 2: Overlapping Allan deviation of the dual channel measurement of the 100 MHz maser 

output 



Hydrogen masers exhibit very predictable linear aging of frequency. A frequency 

synthesizer is commonly used to steer the frequency output of the maser to correct for the linear 

drift. We measured the phase difference between an active hydrogen maser 100 MHz output and 

the output of a custom-designed frequency synthesizer [5] used to correct for the frequency 

drift. Fig. 3 shows the measured phase. A linear trend corresponding to a constant frequency 

offset has been removed from the data. The parabolic shape is caused by the linear frequency 

correction being applied by the synthesizer. A parabolic fit to the data in Fig. 6 gives a 

fractional frequency drift of 2.02·10-15 1/day, which agrees well with the frequency synthesizer 

setting. Note that conventional counters (e.g. Keysight 53230A) have random instabilities at the 

level of 10 ps or more, and would not resolve the maser/synthesizer frequency drift in a similar 

measurement. 

 
Fig. 3: Linear residual of the time error given by the phase difference between active 

hydrogen maser 100 MHz output and a frequency synthesizer used to correct the linear 

frequency drift of the maser. Note instability of phase-data at 100 S/s is << 1 ps. 

4 Outlook 

The noise floor of the instrument is limited by common-mode phase flicker noise of the 

instrument. Future plans to improve the instrument are to 1) use an auxiliary phase calibration 

signal, as described in [6], and 2) to measure closure-error of three phase-meters in a triangular 

configuration as suggested in [3].  
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