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Abstract12

Chemical, physical and biological technologies for removal of sulphate from mine tailings pond13

water (8 g SO4
2-/L) were investigated. Sulphate concentrations of approximately 1400, 700, 350 and14

20 mg/L were obtained using gypsum precipitation, and ettringite precipitation, biological sulphate15

reduction or reverse osmosis after gypsum pretreatment, respectively. Gypsum precipitation can be16

widely utilized as a pretreatment method, as was shown in this study. Clearly the lowest sulphate17

concentrations were obtained using reverse osmosis. However, reverse osmosis cannot be the only18

water purification technology, because the concentrate needs to be treated. There would be19

advantages using biological sulphate reduction, when elemental sulphur could be produced as a20

sellable end product. Reagent and energy costs for 200 m3/h tailings pond water feed based on21

laboratory studies and process modelling were 1.1, 3.1, 1.2 and 2.7 MEur/year for gypsum22
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precipitation, ettringite precipitation, reverse osmosis and biological treatment after gypsum23

precipitation, respectively. The most appropriate technology or combination of technologies should24

be selected for every industrial site case-by-case.25

Keywords: sulphate, gypsum, ettringite, membrane, biological sulphate reduction26

27
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Introduction28

Sulphate (SO4
2-) has been traditionally considered as a relatively harmless substance in the29

environment. Sulphates are discharged into the aquatic environment from industrial operations such30

as mining and smelting, steel manufacturing, kraft pulp and paper mills and flue gas31

desulphurization circuits. In addition, sulphate is released to waters from natural sources through32

mineral weathering, volcanoes, decomposition, combustion of organic matter, and sea salt.33

(International Mining 2013; Meays and Nordin 2013)34

Most metals are won from ore bodies containing sulphidic minerals that oxidize to sulphate during35

the metal extraction process. Therefore, sulphate is a common impurity in mining waters and36

wastewaters of hydrometallurgical processing. Same oxidation of sulphide occurs naturally in mines37

through the activity of sulphur and iron oxidizing bacteria producing acid mine drainage (AMD)38

(Johnson & Hallberg 2005). Furthermore, sulphur-containing reagents are common in39

hydrometallurgy and a huge amount of sulphuric acid is used to dissolve metals from metal40

concentrates (Bar & Barkat 2016).41

The focus on the treatment of AMD and mine effluents has been on acidity and dissolved metals,42

whereas less attention has been paid to sulphate. Nowadays concerns against sulphate discharge43

have increased and resulted in guidelines and regulations that limit the discharge into the receiving44

waters. Global sulphate limits range from 2000 mg/L for surface water discharge in Chile to 1045

mg/L in the US state of Minnesota (International Mining 2013; Minnesota Pollution Control46

Agency 2014) and typically vary between 250 and 1000 mg/L (Liang 2014).47

The fundamental requirement of all sulphate removal technologies in industrial processes is the48

capability to meet the regulatory limits. Sulphate removal may also be necessary for reuse of water49

in mine operations. The suitable water treatment technology needs to be evaluated case by case,50

since site-specific conditions will control the most suitable option for a particular mining operation.51
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Alternative treatment processes for the removal of sulphate from mining effluents are chemical52

treatment, membrane filtration, ion exchange and biological sulphate removal. Chemical53

precipitation of sulphate with lime or limestone to gypsum (Eq.1) is the most common way for54

sulphate removal from mine water, which can reduce sulphate concentrations to generally 1500–55

2000 mg/L, and even to below 1200 mg/L depending on the composition and ionic strength of the56

solution (INAP 2003; Liang 2014).57

2Ca(OH)2(s) + 2MeSO4(aq) + 4H2O(l)à 2Me(OH)2(s) + 2[CaSO4·2H2O](s) (Eq.1)58

When more advanced technologies are required for lower sulphate limits, gypsum precipitation can59

be used as a pre-treatment step. Ettringite precipitation (Eq.2) has been shown to be an effective60

method for sulphate removal, as it can reduce sulphate concentration to 200 mg/L (Madzivire et al.61

2010). Ettringite is also considered to be stable waste for long term disposal. The main disadvantage62

of the process is high aluminium consumption and thus high operational cost.63

3CaO + 3Ca2+ + 3SO4
2- + 2Al(OH)3(s) + 28H2Oà [3CaO·3CaSO4·Al2O3(s)·31H2O] (Eq.2)64

In biological sulphate reduction micro-organisms use sulphate as an electron acceptor and reduce it65

to hydrogen sulphide (Eq.3), which can be further oxidized to elemental sulphur (Eq.4).66

SO4
2- + 2CH2Oà H2S + 2HCO3

- (CH2O=electron donor) (Eq.3)67

H2S + 2O2à S + H2O (Eq.4)68

The best known possible membrane technologies for metals and sulphate rejection are conventional69

nanofiltration (NF) and reverse osmosis (RO). When multivalent ions dominate in the water, NF70

membrane is sufficient. If good rejection of monovalents needs to be achieved, RO membrane is71

required. Sulphate rejections have varied from 93% to 98% for mine waters using different NF72

membranes, as high as 99% for RO membrane. Depending on the feed water quality, sulphate73

content 10 mg/L is achievable by membrane technology, either by single or two stage filtration.74
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(Laskowska et al. 2014; Banerjee 2015). Despite its potential to produce pure water, certain75

limitations can hinder membrane processes from large-scale operation. When aiming to low76

concentrate volumes and subsequently high water recoveries, dissolved salts are concentrated at the77

membrane surface causing precipitation when exceeding the solubility. Since cleaning sulphate78

scale is relatively difficult for alkaline scales in water treatment plants, the best practice for79

managing calcium sulphate scale can be to operate the RO system below the saturation level80

(Antony et al. 2011). Concentrate treatment is an essential issue when considering the feasibility of81

membrane filtration, since water recoveries in mine water treatment can remain as low as  60%82

(Banerjee 2015) leaving 40% to concentrate stream.83

In this study i) Sulphate precipitation as gypsum, ii) ettringite precipitation after gypsum84

precipitation, iii) biological sulphate reduction after gypsum precipitation and iv) membrane85

treatment after gypsum precipitation were studied as alternatives for sulphate removal from mine86

waters from both technological as well as from economical points of view.87

88

Materials and methods89

Tailings pond solution from the Agnico Eagle gold mine in Finland with long-term average90

sulphate concentration of 8 g/L was utilized in the experiments. The temperature of the water varies91

between 4-20°C depending on the season.92

All sulphate removal experiments were conducted at the room temperature (20-25ºC) with the upper93

pH limit of 10 based on typical environmental permit limits. In the gypsum precipitation tests in94

batch reactors, 3 L of mine water (Batch 1) was maintained at the pH of approximately 10.5 or 1295

with ~10% lime solution. Samples (150 mL) were filtered (0.45 µm) and purged with CO2 to lower96

the pH <10 before refiltering and analysis.97
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In ettringite precipitation tests, the lime treated mine water (1700 mg/L SO4
2-, pH 12.3) without98

CO2 bubbling was further processed by reactive aluminium. AlNaO2 (26-30% Al technical grade99

powder) was used (Janneck et al. 2012). To optimize the dose of AlNaO2, 200 mL of lime-treated100

mine water was mixed with AlNaO2 for two hours at the Al/SO4
2- molar ratios of 1, 1.5, 3, 7.5 and101

15 at pH 11.5–12. Based on the preliminary ettringite precipitation tests a larger scale test was102

performed in a 3 L reactor. AlNaO2 was added as one time dosage in the beginning of the 6-hour103

test and pH was maintained at 11.5–12. Samples (150 mL) were filtered (0.45 µm) and purged with104

CO2 to lower the pH <10 before refiltering and analysis.105

Biological sulphate removal after gypsum precipitation was studied in two 700 mL reactors with106

reactor 1 operated first as a fluidized-bed reactor (FBR) and later as an upflow anaerobic sludge107

blanket reactor (UASB), and reactor 2 as a FBR throughout the study with the aim to further108

decrease the sulphate concentration. The FBRs contained 385 mL of biobased granular activated109

carbon as carrier material. They were inoculated with anaerobic granular sludge from an operating110

wastewater treatment plant in Finland and with sulphate reducing bacteria (SRB) enrichment111

cultures from that same sludge. Ethanol was used as electron donor (1.5x stoichiometric112

concentration), since ethanol is utilized in commercial scale applications and the microbial culture113

utilized as inoculum was originally treating wastewaters from the ethanol plant. The feed solution114

contained also added nutrients, 56 mg/L KH2PO4, 137 mg/L (NH4)2HPO4, 11 mg/L ascorbic acid115

and 11 mg/L yeast extract. Both reactors 1 and 2 were started batch wise for the first 17 days to116

ensure microbial growth on carrier material after inoculation. Thereafter, the reactors were operated117

in the continuous mode with the hydraulic retention time of 24–96 hours. Ethanol was added in118

double concentration after 33 and 43 days to reactors 1 and 2, respectively, to verify that the119

operation was not limited by the availability of electron donor. After 50 days, reactor 1 was120

switched to operate as UASB. Tailings pond water from batch 1 was used in the experiments during121

the first 26 days, and from batch 2 day 27 onwards.122
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Membrane experiments were conducted in a plate-and-frame laboratory filtration unit. The feed123

solution was pumped from the feed tank to the cross-flow membrane cell, SEPA CF with a124

membrane area of 140 cm2. Nanofiltration NF270 (Filmtec, USA) membrane (NF) and reverse125

osmosis BW30LE (Filmtec, USA) membrane (RO) were used in the tests. The membrane flat sheets126

were rinsed before filtrations with de-ionized water and stored overnight at 5°C in a glass bottle127

filled with de-ionized water. Salt rejections at 2000 ppm were determined based on conductivity128

measurements of permeate at pH 8 and with 15% recovery using magnesium sulphate (MgSO4) and129

5 bar pressure for the NF membrane, and sodium chloride (NaCl) and 10 bar pressure for the RO130

membrane. All filtrations were carried out at 25±1°C and feed flow of 6.5±0.1 L/min, which131

generated a cross flow velocity of 0.6 m/s. Feed solution (Batch 3) was filtered as such or after pre-132

treatment using microfiltration (MF) or chemical gypsum precipitation continued by MF. MF was133

carried out using 0.2 µm filter element (Sofi Filtration, Finland) using the normalized pressure of134

1.0 bar and the feed flow of 1.5±0.1 L/s.135

The pH was measured with the Radiometer PHM240 analyser equipped with a Radiometer136

pHC2011-8 electrode in chemical and biological experiments, and with VWR 1000H equipped with137

pHenomena111 in membrane filtration tests. Oxidation-reduction-potential (ORP) was analysed138

with SCHOTT CG840 analyser equipped with the SCHOTT Blue Line 31 RX electrode (Ag/AgCl139

3M KCl). Conductivity was measured using VWR CO3000H equipped with the CO11 sensor. Total140

dissolved solids (TDS) was determined using a standard method SFS-EN 15216. SO4
2- and Cl-141

concentrations were analysed with a spectrophotometrical method at Metropolilab Oy for chemical142

and biological experiments, and with a liquid chromatography standard SFS-EN ISO 10304-1 at143

Labtium Oy for membrane experiments. For process control purposes, SO4
2- and S2- were144

determined with Hach Lange DR3900 spectrophotometer and LCK 353 and LCK 653 kits,145

respectively. Ca, Na, K, Mg and Mn were analysed by ICP-OES using a standard SFS-EN ISO146

11885 and Thermo Scientific iCAP 7600 Duo at Labtium Oy. In addition, Sb, As and Ni were147
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analyzed either by ICP-MS at Metropolilab Oy or by ICP-OES at Labtium Oy. Bromide, fluoride148

and nitrate were analysed using a standard SFS-EN ISO 10304-1and Dionex ICS-3000 at Labtium149

Oy. Determination of ammonium was carried out by distillation and titration method ISO 5664 and150

Büchi Distillation Unit B-324 at Labtium Oy. NO2-N, NO3-N and NH4-N were analysed during151

membrane experiments with Hach Lange DR3900 spectrophotometer and LCK 339, LCK 341 and152

LCK 363 analyse kits, respectively, or alternatively with AQUAKEM photometric analyser at153

Metropolilab Oy.154

Process models were made using the HSC-Sim process modelling software based on the test results155

for 200 m3/h tailings pond water feed. Reagent and energy consumptions of each process were156

calculated using information from the process models. Energy consumption was calculated from the157

energy need of main equipments such as reactors and pumps. Investment cost and some minor158

operational costs like RO washing reagent or flocculant costs have not been included into the159

calculations. Long-term pilot tests would be needed for more accurate cost calculations.160

161

Results and Discussion162

Characteristics of mine water163

Chemical characteristics of the mine water were as shown in Table 1. Together with sulphate, some164

major components of the mine water are presented, and also components that may be critical for165

environmental reasons. Water batches 1 to 3 were received for the studies in different batches, as166

different unit operations were studied at different times and partly also in different locations.167

Generally the concentrations in studied components were on quite steady level from batch to batch168

with some variations observed for sulphate, which was most likely due to both variations in mine169

processes and storage time before analysis.170
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Table 1. Chemical characteristics of different mine water batches used in the experiments. n.a. = not171

analysed.172

Component Batch 1 Batch 1 Batch 2 Batch 3 long term
average

(analysed
7/2014)

(analysed
9/2014)

(analysed
9/2014)

(analysed
8/2014)

 (for
modelling)

pH 7.8 8.0 8.0 7.9 8.2
Sulphate, mg/L 8 900 7 600 9 400 9 790 8 140
Calcium, mg/L 430 480 n.a. 460 430
Sodium, mg/L 165 170 n.a. 170 143
Potassium, mg/L 132 120 n.a. 130 132
Chloride, mg/L 26 25 21 27 23
Magnesium, mg/L 1 890 2 000 n.a. 1 930 1 610
Manganese, mg/L 0.924 0.860 n.a. 1 n.a.
Arsenic, mg/L 0.15 0.14 0.16 0.16 n.a.
Nickel, mg/L 0.015 0.016 0.035 <100 n.a.
Antimony, mg/L 0.058 0.067 0.082 0.07 n.a.

173

174

Removal of sulphate by chemical precipitation175

Most precipitation of sulphate took place during the first 10–20 minutes in gypsum precipitation176

(Figure 1a). Sulphate removal kinetics were similar at pH of 10.5 and 12, but the treatment at pH of177

12 resulted in slightly lower residual sulphate concentrations quite similar to the solubility of178

gypsum. In ettringite precipitation the selected aluminium to sulphate molar ratio was 1.5 showing179

lowest residual sulphate concentrations. Most precipitation of sulphate occurred during the first 10180

minutes of mixing after the aluminium addition (Figure 1b).181

Sulphate concentration of approximately 1400 mg/L was achieved using gypsum precipitation182

(Table 2). In addition, arsenic, antimony and nickel concentrations were reduced to very low levels183

complying clearly with the mine’s environmental limit values 0.5 mg/L, 0.5 mg/L and 0.3 mg/L184

respectively, and even with drinking water guidelines (WHO 2011). Chloride concentrations in185

mine water were not affected by gypsum precipitation. Sodium and potassium sulphates do not186

precipitate with lime and the increase in these elements can lead to exceeding of the often imposed187
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2000 mg/L sulphate discharge limits. With ettringite precipitation, sulphate concentration of 700188

mg/L was achieved.189

190

191

Figure 1. Sulphate removal in a) gypsum precipitation and b) ettringite precipitation.192

193

Table 2. Mine water characteristics after chemical precipitation.194

Gypsum precipitation
tests

Ettringite precipitation tests

Component 120 min
lime,
pH12

120 min
lime,

pH10.5

60 min lime,
pH12 (feed to

ettringite
precipitation)

60 min lime,
pH12 +

360 min AlNaO2,
pH 11.5-12

pH 7.1* 7.4* 12.1 7.5*
Sulphate (mg/L) 1 400 2 200 1 800 650
Calcium (mg/L) n.a. n.a. 910 20
Arsenic (mg/L) 0.0038 0.0021 0.0022 0.0019
Nickel (mg/L) 0.0012 0.0021 0.001 0.0017
Antimony (mg/L) 0.005 0.006 0.008 <0.001

* pH after filtration (0.45 µm), subsequent purging with CO2 and second filtration (0.45 µm)195

196

Gypsum precipitation (pH 12) consumed approximately 7.3 g of >96% Ca(OH)2 and produced 17 g197

dry sludge (105oC) per litre of mine water. Same parameters at the pH of 10.5 were 5.3 g of198

Ca(OH)2 and 14 g of dry sludge per litre. Sodium aluminate consumption in the ettringite199
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precipitation was 0.97 g per litre of lime treated water producing 3.9 g of dry sludge per litre of200

water. In the filtrations following CO2 bubbling, the amounts of sludge were negligible.201

202

Removal of sulphate by biological sulphate reduction203

After the start-up operated batch wise after inoculation, the ORP gradually decreased to the level of204

-300 mV (Ag/AgCl, 3M KCl) in both reactors 1 and 2 (Figure 2). Also the pH decreased and was205

mainly at the level of 6<pH<7. Biological sulphate reduction rates of maximum 1250 gm-3d-1 and206

1450 gm-3d-1 were obtained in reactors 1 and 2, respectively. The obtained rates were at the similar207

level as in several previous biological sulphate reduction studies, but also higher sulphate reduction208

rates have been obtained in longer experiments and at higher temperatures (Kaksonen 2004;209

Liamleam & Annachhatre 2007). It would likely be possible to enrich more SRB into the reactors210

with simultaneous increase in the sulphate reduction rate during a longer operation time. The lowest211

sulphate concentration obtained was approximately 350 mg/L.212

213
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214

Figure 2. Feed water sulphate concentration and pH, and effluent sulphate concentration, pH, ORP215

and dissolved sulphide concentration after the biological sulphate reduction in a) reactor 1 operated216

for 70 days and in b) reactor 2 operated for 47 days. The vertical line shows the start of the double217

ethanol dosage until the end of the experiment.218

Excess ethanol addition did not have a significant effect on reactor performance. Although ethanol219

is considered as an attractive electron donor for SRB applications also in commercial applications,220

the drawback is a rather low growth rate of SRB on ethanol. The main consumable in the SRB221

operation is electron donor, such as ethanol, lactate, acetate and hydrogen gas, and the cost of222

electron donor has a significant effect on total operational costs.223
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When there are no metals present in the waste-water to precipitate as sulphides, as in this study,224

sulphide can accumulate and result in severe inhibition of the biological sulphate reduction process.225

Most of hydrogen sulphide is in the form of molecular H2S at the pH of 6, whereas at the pH of 8226

most of the total sulphide is in the less toxic HS- form. Studies have shown sulphate reduction227

inhibition by sulphide concentrations above 500 mg/L at the pH of 6.5-7, and tolerance to higher228

sulphide concentrations of 700–1400 mg/L at the pH of 7.5 (Greben et al. 2004). In this study, the229

pH in the reactors was most of the time between 6–7 and thus in the range that could have H2S230

toxicity effect on biological operations. However, no or very limited amount of dissolved sulphide231

was detected in the effluent of anaerobic reactors. No H2S gas was collected into the gas collection232

bags and no H2S leakages were detected neither. Despite the fact that activated carbon has been233

successfully utilized as a biomass carrier material in the fluidized bed reactors treating sulphate234

containing wastewaters with SRB (Sahinkaya et al. 2011), activated carbon can also adsorb formed235

H2S to a certain extent before saturation. Therefore, the carrier material was removed from the236

reactor and the reactor was started again in the UASB mode without any added carrier material to237

confirm the fate of sulphur. Even with no carrier material, the dissolved sulphide level remained at a238

very low level and sulphur oxidation experiments for the production of elemental sulphur were not239

possible. There would be significant advantages of the SRB operation, if elemental sulphur could be240

produced by oxidizing the H2S biologically (e.g. Maree et al. 2004) or chemically (e.g. Chen &241

Morris 1972) to S0. The elemental sulphur product could be sold and waste amount would be lower242

compared to chemical precipitation and physical sulphate removal. Further investigation on possible243

reaction conditions for elemental sulphur production would be needed.244

Removal of sulphate by membrane filtration245

The membranes used in this study had water fluxes similar to those reported by the membrane246

manufacturer during salt filtration and salt rejections (results not shown). The pH, conductivity and247

TDS values for permeates and concentrates were logical compared to the values of feed mine water248
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(Tables 1 and 3). Suspended solids concentration of mine water was 7.1 mg/L and of MF pre-249

treated water <1 mg/L. The concentrates started to precipitate due to high ion concentrations. TDS250

determined by drying gave similar, slightly larger, values than calculated as a sum from elementary251

analysis (Table 3). Therefore, the main compounds in mine water were those analysed, i.e. metal252

sulphates, halogens, and inorganic nitrogen. Nickel, iron, copper and aluminium were <0.1 mg/L in253

all measured samples. Also zinc concentration was <0.1 mg/L for feeds and permeates. MF254

membrane did not remove much dissolved solids. Rejections of metals and sulphates were good for255

both NF membrane and RO membrane (Figure 3a). Sulphate concentration in the permeate after NF256

membrane was at the maximum 690 mg/L and only at the highest 23 mg/L after RO membrane.257

Rejections of sodium and potassium were ≥65% for NF membrane and 97% for RO membrane.258

Chloride was not removed by NF membrane, whereas RO membrane removed chloride (Figure 3a).259

260

Table 3. Membrane filtration efficiency with or without pre-treatment for Batch 3 mine water.261

pH l
mS/cm

TDS
g/L

Feed NF/RO 7.9 9.5 13.5
NF-permeate 8.3 1.4 1.0
RO-permeate 8.1 0.1 0.0
Feed MF+NF/RO 8.1 8.8 12.3
MF+NF -permeate 8.3 1.0 0.7
MF+RO -permeate 8.4 0.1 0.0
Feed PREC.+MF+NF/RO 9.8 3.2 3.2
PREC.+MF+NF -permeate 9.4 0.3 0.2
PREC.+MF+RO -permeate 9.1 0.1 0.0

262

263
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264

Figure 3. a) Rejections and b) Flux versus water recovery achieved in nanofiltration (NF) and265

reverse osmosis (RO) with no pre-treatment and with pre-treatment.266

The NF fluxes for original mine water and MF pre-treated water were lower than RO fluxes (Figure267

3b). NF membrane with no chemical pre-treatment for the feed fouled by elements of mine water.268

The best RO flux was obtained for Ca(OH)2 precipitated and MF pre-treated mine water, although269

the fluxes with no chemical pre-treatment were also good. Attainable water recovery just before the270

flux dramatically decreases due to scaling remained lower for lime precipitated feed than for feeds271

with no chemical pre-treatment, due to added Ca in lime precipitation. RO fluxes were close to the272

flux obtained during salt rejection characterisation (33-41 Lm-2h-1 compared to 45 Lm-2h-1 at the273

water recovery of 15%). The best water recovery of all the filtrations, 63%, was obtained for the274

MF pre-treated mine water. Although the best flux of all the filtrations were obtained using NF275

membrane for Ca(OH)2 precipitated and MF pre-treated mine water, water recovery remained lower276

(55%)  than in RO membrane filtration using only MF pre-treatment. In this best flux case, the flux277

was close to the flux obtained with salt rejection test (68 Lm-2h-1). On the other hand, chlorides278

were not removed by nanofiltration which makes the reuse of permeate for the leaching process279

more difficult.280

Water recovery of the RO process was approximately 60% and flux approximately 30 Lm-2h-1,281

which are relatively good values for RO operations. Very pure solution of 20 mg/L sulphate282

concentration in the permeate was produced using RO membrane after the gypsum precipitation283
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pre-treatment. In addition, the chloride concentration was around 2 mg/L and concentrations of284

other halides and nitrogen were also very low in the permeate. This kind of solution is suitable for285

water discharge, but it can also be recycled back to the processes in the plant. The disadvantage of286

the RO treatment is the production of concentrate containing high levels of sulphate, chloride,287

sodium, magnesium and nitrogen in addition to the very pure permeate. RO cannot be the only288

water purification technology, because the concentrate needs to be treated. The concentrate, which289

has high calcium sulphate content, could be potentially lead to the gypsum or ettringite290

precipitation, recycled back to the existing neutralization process or used in the pasta cementation.291

It should be notified that temperature has a high impact on various sulphate treatment technologies292

and all experiments in this study were done at room temperature. The temperature limitations of293

technologies should be taken into account, when sulphate removal technologies will be operated in294

arctic conditions, such as in the mine in Finland where the mine water originated from. In the295

studies of Isaksen and Jorgensen (1996), the biological sulphate reduction activities were 4-10% of296

maximal activity at 0°C, and 10-29% of maximal activity at 5°C. Temperature has also an effect on297

the membrane operation, because increasing temperature decreases viscosity of the feed solution.298

Thus, the increase of temperature increases reverse osmosis efficiency and decreases pumping299

costs. Temperature affects also gypsum solubility, which increases until 40°C and decreases300

thereafter.301

Conceptual study302

Gypsum precipitation (Figure 4a) is carried out at the pH of 11 using milk of lime. The main303

reaction is the precipitation of magnesium sulphate as gypsum and magnesium hydroxide. All304

magnesium is removed and sulphate concentration will be 1.8 g/L after the precipitation with 2305

hours retention time. Part of the slurry is circulated back to the process in order to increase reaction306
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kinetics and to improve thickening properties of the slurry. The pH is adjusted using carbon dioxide307

from 12 to 8.5 in the neutralization reactor for discharge.308

If sulphate concentration of feed solution is high, as in this study, gypsum precipitation should be309

carried out before ettringite precipitation in order to decrease operational costs of the process. The310

first step of the ettringite precipitation process (Figure 4b) is gypsum precipitation. Solution311

containing 1.8 g/L sulphate is further precipitated using lime and sodium alunate at pH 12 as312

ettringite. Sulphate concentration after the ettringite precipitation is 0.8 g/L. The pH of the solution313

is too high for discharge and pH is adjusted using carbon dioxide from 12 to 8.5.314

In membrane filtration process (Figure 4c), filtration of fine particles is needed before reverse315

osmosis to prevent membrane fouling. Filtrate from the filter is pumped with high pressure pump316

(10 bar) to RO system. It was approximated that 60% of water goes to permeate and 40% to317

concentrate. Flux through the membrane was 30 Lm-2h-1. Almost all anions and cations end to the318

concentrate. Sulphate concentration of the permeate is only 20 mg/L. Concentrate from the RO319

system and part of the tailings pond solution goes to gypsum precipitation process. Sodium and320

potassium concentrations increase in RO and because of these elements, sulphate concentration321

achieved in gypsum precipitation is around 1900 mg/L.322

The first step of the biological sulphate removal process (Figure 4d) is gypsum precipitation323

resulting in sulphate concentration of 1.8 g/L and further to 800 mg/L using the biological process.324

Retention time in the test work was 24 hours. Ethanol is used as an electron donor. Hydrogen325

sulphide gas produced in the reactions is oxidized to elemental sulphur using oxygen. The326

efficiency of the oxygen usage is estimated to be 90%. Elemental sulphur is filtrated out from the327

process.328
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Figure 4. Process model for a) gypsum precipitation process, b) ettringite precipitation process, c)330

reverse osmosis process and d) biological sulphate reducing process. Process streams are presented331

as tons/h with the total tailings pond water feed of 202 tons/h for all processes.332

333

Preliminary costs related to reagent and energy consumptions of process options were calculated334

based on process calculations (Table 4). The direct gypsum precipitation of sulphate was the most335

inexpesive process option. However, after gypsum precipitation the sulphate concentration is still336

around 1.8 g/L. The increase of sodium and potassium also increase the solubility of sulphate in the337

gypsum precipitation process.338

Reverse osmosis system was slightly more expensive than gypsum precipitation. The advantage of339

reverse osmosis is the production of very pure permeate, which is suitable for water discharge or340

recycling back to the process. The disadvantage of the RO is the production of concentrate with341

high levels of sulphate, chloride, sodium, magnesium, nitrogen and other metals. Further treatment342

of the concentrate should be carefully designed or otherwise the concentrate might cause problems343

with discharge limits.344

The costs calculated for the biological sulphate reduction process were significantly higher than the345

costs of gypsum precipitation and RO. The SRB process would show significant advantages, if346

elemental sulphur could be produced as an end sulphur product, which was not taken into347

calculations in this study. Elemental sulphur could be sold and waste amount would be lower than348

in other process options. Ethanol was used as the electron donor in process calculations and there349

could be cheaper alternatives, such as manure. The main concern of the SRB is the reliability of the350

process in colder climates. Re-start of the operation might be very slow, if there are problems in the351

process feed or in the SRB process leading to the inhibition of microorganisms. The retention time352
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of SRB process based on laboratory tests was long and around 5000 m3 reactor volume would be353

needed. Cost of the reactors was not calculated in this study.354

Low sulphate concentration can be achieved using ettringite precipitation, but calculated operational355

energy and chemical costs were very high. The annual costs for the decrease of sulphate356

concentration from 8 to 1.8 g/L for 200 m3/h feed using gypsum precipitation were around 1357

MEUR/a. Further decrease of sulphate concentration from 1.8 to 0.8 g/L in ettringite precipitation358

would cost around 2 MEUR/a.  The costs of ettringite precipitation depend significantly on the costs359

of aluminium source. If aluminium waste would be available, the ettringite process could be360

economically much more feasible.361

362

Table 4. The consumption of reagents and energy in selected process alternatives for 200 m3/h feed.363

consumption consumption cost/year
t/year MW/year MEUR

Gypsum precipitation
CaO 6255 0.94
Energy 2400 0.156
Total 1.09
Ettringite precipitation
CaO 7024 1.054
NaAlO2 3680 1.840
CO2 640 0.005
Energy 3600 0.234
Total 3.133
Membrane filtration
CaO 6255 0.94
Energy 6896 0.45
Total 1.18
SRB
CaO 6255 0.94
O2 321 0.02
Ethanol 2848 1.60
Energy 2624 0.17
Total 2.73

364

The main equipment lists of the process options have been presented in the Table 5.365
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Table 5. The main equipment lists of the process options.366

Gypsum precipitation Feed retention time total volume units Size of reactor Power
m3/h h m3 m3 kW

Precipitation reactors 200 2 400 3 133 300
Other equipment
Ca(OH)2 preparation tank
Ca(OH)2 feed tank
Thickener
Ettringite precipitation Feed retention time total volume units Size of reactor Power

m3/h h m3 m3 kW
Precipitation reactors 200 3 600 3 200 450
Other equipment
Thickener/Filter
Ca(OH)2 preparation tank
Ca(OH)2 feed tank
NaAlO2 feed tank
CO2 neutralization
reactor
CO2 feed
Biolocical sulfate
removal Feed retention time total volume units Size of reactor Power

m3/h h m3 m3 kW
Precipitation reactors 200 2 400 3 133 300
UASB reactor 200 4 800 1 800 5
Other equipment
Oxidizing reactors
Thickener/Filter
Ca(OH)2 preparation tank
Ca(OH)2 feed tank
Ethanol feeding tank
Sulphur filter

Membrane filtration Feed Flux Permeate flow
Area of

membrane Mebrane units Power
m3/h Lm-2h-1 m3 m2 pcs kW

RO equipment 200 30 60 2000 49 151
Precip. feed retention time total volume units Size of reactor Power

m3/h h m3 m3 kW
Precipitation reactors 140 3 420 3 140 315
Other equipment
Fine filter
Ca(OH)2 preparation tank
Ca(OH)2 feed tank
Thickener

367

368
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Conclusions369

Chemical, physical and biological processes can be successfully utilized for sulphate removal from370

mine wastewaters. Sulphate concentrations of approximately 1400 mg/L, 700 mg/L, 350 mg/L and371

20 mg/L were obtained using gypsum precipitation, and ettringite precipitation, biological sulphate372

treatment and reverse osmosis after gypsum pretreatment for the treatment of sulphate rich (8 g/L373

SO4
2-) mine wastewater, respectively.374

Chemical, physical and biological sulphate removal technologies have different advantages,375

challenges and limitations related to e.g. the obtained sulphate concentrations and removal376

efficiencies, halide removal, retention time, operating costs and generated waste. Chloride or other377

halides were not removed from the water during the gypsum precipitation, ettringite precipitation378

nor biological sulphate reduction meaning that purified water from these treatment processes is not379

suitable for recycling back to the hydrometallurgical processes at the mine site. The selection of the380

most appropriate technology or combination of technologies should be selected for every industrial381

site case-by-case. The capability to meet the regulatory limits is the first priority. Since the global382

sulphate limits range between 10 mg/L and 2000 mg/L, the technology requirements vary.  The383

lowest sulphate levels, 20 mg/L in this study, were achieved using reverse osmosis membranes.384

Lower limits of 10 mg/L used in Minnesota could likely be achieved by the two stage filtration.385

However, two stage filtration was not tested in this study, since the mine site is located in Finland386

and has 2000 mg/L sulphate limits for the effluent. All tested technologies achieved sulphate levels387

below the 2000 mg/L limits. In the areas of 1000 mg/L sulphate limits, gypsum precipitation does388

not suffice as the sole treatment method. Sometimes the mine sites have also total mass limits in389

addition to the sulphate concentration limits, which can influence the technology selection.390

Calculated reagent and energy costs were in the order from the lowest to the highest: gypsum391

precipitation, reverse osmosis, biological sulphate reduction and ettringite precipitation. Investment392
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costs were not included into the calculations. Gypsum precipitation can be used as the pretreatment393

method in combination with other sulphate removal technologies. The possibility to utilize cheaper394

electron donors in biological processes and aluminium from secondary sources in ettringite395

precipitation would significantly affect the costs for these technologies. In addition, the waste396

disposal costs or alternatively the possibility to produce a sellable end product have a significant397

effect on the total costs of the selected process.398
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