
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

A study on user-friendly formal specification languages for requirements
formalization
Pang, Cheng; Pakonen, Antti; Buzhinsky, Igor; Vyatkin, Valeriy

Published in:
Proceedings - 2016 IEEE 14th International Conference on Industrial Informatics, INDIN 2016

DOI:
10.1109/INDIN.2016.7819246

Published: 01/01/2016

Document Version
Peer reviewed version

Link to publication

Please cite the original version:
Pang, C., Pakonen, A., Buzhinsky, I., & Vyatkin, V. (2016). A study on user-friendly formal specification
languages for requirements formalization. In Proceedings - 2016 IEEE 14th International Conference on
Industrial Informatics, INDIN 2016 (pp. 676-682). [7819246] IEEE Institute of Electrical and Electronic Engineers.
https://doi.org/10.1109/INDIN.2016.7819246

Download date: 19. Dec. 2021

https://doi.org/10.1109/INDIN.2016.7819246
https://cris.vtt.fi/en/publications/7bd441e1-61de-430d-80a2-7d5858acf893
https://doi.org/10.1109/INDIN.2016.7819246

A Study on User-Friendly Formal Specification
Languages for Requirements Formalization

Cheng Pang1, Antti Pakonen2, Igor Buzhinsky1, 3, and Valeriy Vyatkin1, 4 1Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland 2VTT Technical Research Centre of Finland, Espoo, Finland 3ITMO University, Saint-Petersburg, Russia 4Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Sweden

cheng.pang.phd@ieee.org, antti.pakonen@vtt.fi, igor.buzhinskii@aalto.fi, and vyatkin@ieee.org

Abstract-Formal methods and languages are used to prove the correctness of various industrial systems, especially mission-critical ones. They can also be viewed as a means to provide safety and correctness demonstration to the stakeholders of such systems. In domains such as nuclear power plant engineering, the benefits from structured safety evidences would seem obvious. However, most stakeholders in nuclear power industry are not even familiar with formal notations. As a result, to promote the applications of formal methods in practice, the first step is to make formal specification languages (FSLs) more accessible. With user-friendly FSLs, users can focus on safety requirements rather than on their sophisticated formalization. This paper, as a preliminary work towards an integrated framework supporting transparent safety demonstration, reviews existing approaches applied to facilitate requirements formalization and formal specifications. Moreover, the common features of user-friendly languages and their tool supports are also summarized.
Keywords — formal methods; formal specification languages; model checking; visual formalisms; requirements engineering

I. INTRODUCTION

Studies on formal methods and their applications in various
safety-critical domains have been conducted for decades.
However, routine applications of formal methods in practice
are still not very pervasive and limited to certain
professionals. In nuclear power plant engineering, formal
methods have been applied in several stages. For example,
formal specification languages (FSLs) can be used to specify
the design requirements of instrumentation and control
systems in a nuclear power plant. Requirements specified in
FSLs are more precise and unambiguous. This helps
practitioners to ensure that they have captured and accurately
reflected all the required functions and constraints. Thanks to
the rigorous mathematical logic, formal requirements can be
automatically validated to reveal conflicts and allow
consistent communication among stakeholders during the
entire system lifecycle. However, formalization of design
requirements or system properties into abstract formal logic
and the correct understandings of complex mathematical
expressions require substantial expertise and practices [1, 2].
Typical industry practitioners and their customers often lack
such knowledge and training. Also, due to the subtleties of
formalisms and symbolic expressions, even experienced users

can easily make mistakes especially when composing
complex formal specifications. More dangerously, incorrect
formal specifications invalidate the verification results, which
is unknown to the users [3].

Moreover, one fundamental challenge in nuclear power
industry is to demonstrate the safety of the designed systems.
To be effective and efficient, formal requirements and their
verification results together with other evidences must be
presented in a comprehensive but understandable form for the
authority to intuitively assess the safety claims. This requires
more user-friendly approaches for writing and reading formal
specifications so that people can concentrate on the safety
requirements rather than on their formalization. This paper, as
a preliminary work towards an integrated framework for
safety assessment and transparent safety demonstration in
nuclear power industry, investigates existing ways to make
FSLs, especially for model checking [4] in our context, more
user-friendly. As different FSLs are more appropriate for
formalizing specific types of requirements, this paper studies
the common techniques to facilitate requirements
formalization and formal specification composition, and to
improve their overall comprehensibility.

This paper is organized as follows. Section II first
summarizes the existing approaches for requirements
formalization. Then, Section III focuses on visual formalisms
and related graphical methods to facilitate the composition of
formal specifications. Section IV discusses the features that
must be considered when designing a user-friendly FSL and
tools for its support. Finally, Section V concludes this paper
and outlooks further research.

II. REQUIREMENTS FORMALIZATION
One important application of FSLs is to formalize design

requirements written in natural languages. This allows the
requirements to be processed by computers for validation,
communication, and management unambiguously and
consistently. One common approach to assist requirements
formalization is to use predefined templates and patterns. In
general, templates [5] or boilerplates [6] are pre-formatted
textual representations of semi-formal requirements. Each
template or boilerplate consists of two parts: fixed keywords
and attribute placeholders. When a template or boilerplate is
instantiated, its placeholders are substituted by concrete

values. For example, the following C-BP16 boilerplate [7] is
used to specify a system behavior that shall occur:

C-BP16: <system> shall <action>,
where <system> and <action> are placeholders. Moreover,
simpler templates and boilerplates can be further combined to
specify more complex requirements, which improves their
reusability.

The usefulness of templates or boilerplates alone is quite
limited. As their number increases, their selection and
instantiation become difficult and unmanageable, especially
when there are multiple templates or boilerplates that can be
used to express the same requirement. Therefore, tools must
be developed to guide or automate their selection,
combination, and instantiation. For example, the CNL editor
[8] provides auto-completion and prompt functions to assist
the editing of requirements based on templates. The DODT
tool [9] uses boilerplates to partially automate the translation
of English requirements into semi-formal requirements. With
tools, templates and boilerplates are proved to improve
requirements formalization while still maintaining their
readability.

Requirements composed using templates and boilerplates
are semi-formal and hence cannot be directly processed and
analyzed using formal methods. Templates and boilerplates
are rather a means to make the structure of requirements more
consistent. On the other hand, patterns, in our context, are
proven formal textual representations used to specify
recurring requirements in a domain. Each pattern has rigorous
semantics, which explicitly prescribes its applicability and
ensures its consistent interpretation. Similarly, each pattern
consists of fixed keywords and attribute placeholders. In the
functional pattern exemplified in Fig. 1, keywords are in bold,
placeholders are in italic, and square brackets indicate
optional phrases. The descriptions instruct the pattern’s usage.

Fig. 1. Functional pattern example. [7]

Patterns were first used by Dwyer et al. in [10] to facilitate
the composition of generic formal specifications for model
checking. In [11], Dwyer et al. further refined and evaluated
their proposed patterns over a sample of 500 property
specifications, which demonstrated the practicality of formal
specification patterns. In subsequent research, more specific
patterns have been proposed and empirically studied in

various domains. For example, in [12] Bitsch first
summarized the characteristics of generic safety requirements
for industrial automation systems. He then classified the
safety requirements into a checklist, which guides users to
select the appropriate formal patterns. Similarly, Campos et al.
[13, 14] surveyed and proposed formal patterns for automated
production systems based on existing literature. Campos et al.
also realized that once the number of patterns increases, it is
difficult to detect the errors occurred during the process of
manual selection and application of patterns. As a result, they
have developed the Properties Editor tool, similar to the CNL
editor [8], to assist and automate the generation of formal
requirements based on formal patterns. It can be concluded
that formal patterns have become one useful vehicle for
capturing and transmitting knowledge of formal methods.
However, to fully leverage formal patterns to simplify the
process of requirements formalization, corresponding tools
must be developed to organize patterns and guide their
selection and instantiation.

Another important technology frequently used to facilitate
requirements formalization is domain ontology. A domain
ontology is a collection of pre-agreed concepts, terms,
relations, and axioms for a specific domain. The combination
of a domain ontology and a set of requirements templates
forms a simple controlled natural language (CNL), whose
vocabulary and grammar are restricted [8]. A well-designed
CNL has the right equilibrium between the language’s
expressiveness and its ability to be processed by computers.
Grover et al. [15] exemplified an interactive approach based
on CNL to compose formal specifications for model checking.
If the requirements are written using a CNL whose
vocabulary comes from a domain ontology, the requirements
can be reasoned, to certain degree, to check their consistency.

In contrast to manually formalized informal requirements,
there are attempts to automate the formalization of informal
requirements directly from natural language descriptions. For
instance, Miriyala and Harandi have invented an interactive
system, called SPECIFIER [16], which takes informal
descriptions written in CNL as input to derive formal
specifications by using schemas, analogy, and difference-
based reasoning. Soeken and Drechsler [17] utilized natural
language processing technologies to extract formal models
during the specification of informal textual requirements.
Both approaches still require human intervention to refine or
correct the captured formal specifications.

III. VISUAL FORMALISMS
To apply formal verification, system properties must be

expressed as formal specifications such as temporal logic [18]
before they can be verified. Ideally, these properties can be
extracted directly from the formal requirements. However, in
reality the requirements are usually written in natural
languages. Also, in many cases existing informal
requirements adapted from, for example, standards and
previous project documents must be reused. For general
practitioners, the composition of formal specifications is

difficult due to the unfamiliar syntaxes and subtleties in
semantics [19]. One common approach to facilitate the
composition is to use visual formalisms or other graphical
notations that are close to the users’ knowledge domains.

It is known that pictorial information is much easier
processed and understood by human brains compared to pure
texts [20]. Therefore, it is believed that appropriate visual
representations can facilitate the comprehension of complex
data, information, and notions, such as formal specifications.
However, graphical notations alone are not sufficient to
illustrate all system properties. In [21], Razal conducted an
empirical assessment to evaluate the efficacy of graphical
formal methods (GFMs). GFMs unify textual formal symbols
with intuitive graphical notations to compose formal
specifications. Theoretically, GFMs leverage graphical
notations to hide the complexity of mathematical logic and
therefore improve the readability of formal specifications.
However, arbitrary combination of textual and graphical
notations is meaningless. To be useful, the two notations must
be complementary and fundamentally compatible. Otherwise,
they cannot be used jointly to represent the same information
from different perspectives. Fig. 2 illustrates the UML-B
GFM proposed in [22] where UML diagrams are integrated
with B notations [23]. Due to the formal semantics, GFMs
can be transformed directly into formal models as the input
for verification tools. If supported by integrated tools, the
aforementioned process can be fully automated and hence
enhance GFM’s accessibility. To evaluate the suitability of
GFMs, Razal suggested to use theories such as ontological
evaluation [24] to quantify whether the designed notations
can effectively convey the users’ intentions.

Fig. 2. UML-B graphical formal model. [21]

For GFMs to be effective and user-friendly, comprehensive
tool support is compulsory. Amálio and Glodt have further
confirmed this in [25], where the UML-like Visual Contract
Language (VCL) specifies the visual primitives for graphical
modelling of predicates and system dynamics. The Visual
Contract Builder (VCB) tool provides comprehensive
supports for the editing and consistency checking of VCL
diagrams. VCB also automates the transformation of VCL
models to Z specifications. The importance of [25] lies in the
first empirical evaluation of tool support for GFMs. In
particular, a rigorous survey based on statistical hypothesis

testing has been designed and conducted. This work provides
guidance for quantifying the accessibility and usability of
tools for GFMs.

Apart from UML-like visual notations, other graphical
documentation languages can also be extended to incorporate
formal semantics. For example, in [26], France elaborated an
approach to supplement elements of Data Flow Diagram
(DFD) with rigorous formal semantics. The extended DFD
thus has two aspects: the pictorial representation based on
existing DFD notations and the new behavioral semantics
defined in algebraic specifications. Lee and Sokolsky [27]
proposed a flexible two-level approach to improve the
accessibility of the temporal logic LR. At the first level,
experts of formal methods define a set of LR constructs and
related patterns to express properties for a particular domain.
Then, at the second level, domain users follow the given
patterns to specify concrete system properties as directed
acyclic graphs. As illustrated in Fig. 3, nodes of a directed
acyclic graph can represent predicates, logical connectives,
quantified temporal operators, and modal operators.

Fig. 3. An example property in LR. [27]

On the other hand, timing diagrams and alike are frequently
adopted to facilitate the property specifications for model
checking. This is largely because timing diagrams and
temporal logics, especially linear-time ones, are semantically
coherent. More importantly, timing diagrams are familiar to
engineers. Dietz [28] proposed the Constraint Diagrams for
specifying assumption and commitment requirements. As
indicated in Fig. 4, it is assumed that if process P has been
idle for ten seconds, then within one second alarm A will be
triggered. Constraint Diagrams can be directly compiled into
the Duration Calculus interval temporal logic.

Fig. 4. A watchdog Constraint Diagram. [28]

In the Real-Time Graphical Interval Logic (RTGIL) [29],
similar timeline constructs have also been used to depict
interleaving events and their duration constraints for
concurrent real-time systems. The semantics of RTGIL is

based on propositional interval temporal logic. Therefore,
with the provided theorem prover and counterexample
generator, RTGIL specifications can be formally verified.
Fisler [30] proposed a diagrammatic logic, called Timing
Diagram Logic (TDL), which has customizable semantics and
supports timing constraints with variables. TDL
specifications can be converted to Büchi automata for
verification. Smith et al. [31] developed the TimeLine Editor
to visualize the specifications of event sequences and their
causal relations on a timeline. The timeline is also converted
to a Büchi automaton and verified in the Spin model checker.
In the manufacturing and industrial automation domains,
Symbolic Timing Diagrams (STDs) [32] have been applied in
several research works to simplify the specification process.
For instance, Preusse [33] adapted the standard semantics of
STDs to simplify the specifications of production
requirements and operation sequences of manufacturing
plants. The STD specifications can then be automatically
translated into the Computational Temporal Logic (CTL) [34].
In [35] Vyatkin and Bouzon developed a visual specification
language, which resembles STDs, to specify partially ordered
events in the input and output signals of industrial automation
controllers. The graphical specifications can also be translated
into CTL for model checking.

The above works are all related to the visual
representations of formal specifications. Özcan et al. [36], on
the other hand, investigated the possibility of visualizing
executable formal specifications via animation. The intention
was to promote the use of formal specifications in software
prototyping stage to capture and formalize design
requirements. Özcan et al. demonstrated their idea using a
Water Level Monitoring System (WLMS). Initially, the
functional requirements of WLMS were informally described
in English. Then, as shown in Fig. 5, the TranZit editor was
used to manually formalize the informal requirements using
the Z notation [37]. The formal specifications in Z were then
translated into an extended LISP format, which can be
animated in the ZAL environment. Developers can interact
with ZAL to validate properties of the original formal
specifications by observing the animation.

Fig. 5. Validation of requirements in the ZAL system. [36]

The approach of Özcan et al. also revealed some issues.
First of all, the validation process starts with visualizing the
target system. A visual prototype of the system is built mainly
based on terms in the formal specifications. If the terms
cannot be easily visualized, i.e. directly mapped to concrete
events or objects, the benefits of visualization are limited.
Moreover, additional information must also be visualized in
order to provide contextual details for the developers to
comprehend the animated scenarios and to validate the formal
specifications. These contextual details are added according
to developers’ experiences and understandings about the
target system. However, inappropriate contexts may affect the
judgements on the validity of the visualized formal
specifications. Also, each formal specification only defines a
particular application scenario of the target system. The
composition of valid fragment scenarios may not result in a
valid overall behavior. As a result, Özcan’s approach can help
developers comprehend individual system requirements in
early development stages. The proposed framework is also
useful to formally verify the system requirements in late
stages with a full formal model of the target system.

Table 1 summarizes the formalisms mentioned in this
section with a particular focus on supporting tools. As visible
from the table, the majority of formalisms have been
supported with tools at least during the time of their
development, but currently their availability is doubtful, with
several exceptions (e.g. UML-B and VCL).

IV. USABILITY OF USER-FRIENDLY FORMAL SPECIFICATION LANGUAGES AND TOOLS
Designing a user-friendly FSL is difficult as a number of

technical and philosophical factors must be taken into account.
This section summarizes some essential factors affecting the
usability of FSLs according to the literature.
Leveson et al. shared their experiences in the design and
development of FSLs for commercial process control systems
in [38]. Their work was closely collaborated with industry
authorities and domain experts, which makes their lessons
very valuable. Leveson et al. have summarized five issues
that must be tackled when designing an FSL. The first issue is
how to bridge the semantic gap between the users’, e.g.
industry practitioners, mental model and the model composed
using the FSL. It was concluded that the smaller the gap, the
better the readability and reviewability of the FSL. A general
solution is to make the FSL design user-centered by using
syntaxes, notations, design principles, etc. based on the users’
domain knowledge. This is demonstrated by the work of
Ljungkrantz et al. elaborated later in this section. The second
issue is to assist the users to construct black-box requirement
models, which only describe the externally visible behavior
of a system. This means that details of system implementation
and internal design should not be included in the requirement
specifications. Therefore, mechanisms and features must be
introduced in the FSL to enforce black-box specifications. Fig.
6 indicates how user-centered FSLs and black-box
specifications can help reduce the semantic gaps. It can be

seen that the semantic gap d4 between a user’s mental model
and the design specification is much bigger than the semantic
gap d1.

Fig. 6. Schematic semantic gaps.[38]

The third issue regards the prevention of using error-prone
features, such as internal broadcast events, in FSLs. A
feasible solution is to provide comprehensive guidance when
such features are being used. The fourth issue is to increase
the reusability of existing formal specifications. To achieve
this, means such as macros and functions should be supported
by the FSL. Finally, the FSL must facilitate the inspection of
incorrect and incomplete requirement specifications. Potential
solutions are checklists of formal criteria and the use of
language syntax to enforce such constraints. As a subsequent
work, a readability assessment of state-based FSLs has been
conducted in [40]. In particular, the overall representation of
state machine structure, the expression of state transition
conditions, and the usage of internal broadcast events, macros,

and state hierarchies are empirically evaluated. It is revealed
that state machines are most intuitive if presented in graphical
or tabular forms, while complex transition conditions are
better tabulated. Moreover, macros are helpful for composing
specifications but they also exacerbate the difficulty when
reading large specifications, especially ones with nested
macros. Thus, the use of macros must be facilitated by tools.
Finally, hierarchical abstractions are compulsory to enhance
scalability of FSLs. Again, tool support must be provided to
avoid interpretation errors of hierarchical specifications.

Another way to simplify the writing of formal
specifications is to extend existing FSLs with syntaxes and
semantics that are close to the users’ domain languages.
Ljungkrantz et al. [41] proposed an extended linear temporal
logic (LTL [18]) called ST-LTL to promote the use of formal
methods in the industrial automation domain. ST-LTL is
specifically tailored to formally specify control logics of IEC
61131-3 [42] programmable logic controllers (PLCs) written
in structured text (ST). Based on the syntax of ST, additional
functions, operators, and suffixes are introduced to express
LTL properties. This similarity facilitates control engineers to
formally specify PLC control logics. Moreover, due to the
execution model of PLCs, some semantic extensions to
existing LTL have been incorporated in ST-LTL. These
extensions allow ST-LTL to specify complex properties
involving timer behavior, sequences, and rising/falling edges

TABLE 1. VISUAL FORMALISMS AND TOOLS FOR THEIR SUPPORT
Visual formalism Basis Tools
UML-B [22] UML, B UML-B plugin for Rodin (Event-B IDE). Available:

http://wiki.event-b.org/index.php/UML-B
Visual Contract Language (VCL) [25] UML Visual Contract Builder (VCB) [25] – plugin for

Eclipse. Available:
https://vcl.gforge.uni.lu/download.html

Semantically Extended DFD [26] Data Flow Diagram
(DFD)

A tool is mentioned in [26]; no evidence of current
maintenance / availability found

GFL for LR [27] LR temporal logic Supported in the PARAGON toolset, as mentioned in
[27]; no evidence of current maintenance / availability
found

Constraint Diagrams [28] Duration Calculus
interval temporal logic

A tool is described in [39]; no evidence of current
maintenance / availability found

Real-Time Graphical Interval Logic
(RTGIL) [29]

Propositional interval
temporal logics

A tool is mentioned in [29]; no evidence of current
maintenance / availability found

Timing Diagram Logic (TDL) [30] Timing diagrams –
TimeLine Editor [31] Timing diagrams The TimeLine Editor tool is described in [31]; no

evidence of current maintenance / availability found
Symbolic Timing Diagrams (STDs)
[32]

Timing diagrams Two tools are mentioned in [32], section 2.4; no
evidence of current maintenance / availability found

Visual specification language [35] Timing diagrams, Net
condition/event
systems (NCES)

Timing Diagram Editor tool is mentioned in [35]; no
evidence of current maintenance / availability found

Visualizing executable formal
specifications via animation [36]

Z notation TranZit and ZAL tools are mentioned in [36]; no
evidence of current maintenance / availability found

of variables. It has been formally proved that ST-LTL has the
full expressiveness of LTL.

Later, Ljungkrantz et al. conducted an empirical study on
the practicality of ST-LTL in [19]. Specifically, 105
input/output related properties of ten IEC 61131-3 function
blocks used in manufacturing industry were investigated. The
study revealed that logical implications are the specification
type most frequently used by control engineers in practice.

In order to be user-friendly, FSLs and patterns must be
tailored specifically for the target users to match their
knowledge and application domains. On the other hand, tools
can significantly improve the user experiences of FSLs.
Based on the Cognitive Dimensions of Notations framework
[43] and related ISO criteria, Razali and Garratt [44] have
conducted a survey to assess the usability of two formal
verification tools for the B method. This provides some
insights and guidelines for designing tools to further improve
the accessibility of FSLs. The tools are evaluated according to
three categories of feature properties: interface, utility, and
resource management. Regarding tool interface, menus, panes,
and dialogues must be well structured and organized so that
they can effectively and promptly provide comprehensive
information to users. For the formal modelling utilities, apart
from routine functions like graphical editing, syntax checking,
and verification, features such as model visualization and
code generation are also helpful. The resource management
facilities are used to support tool execution.

V. CONCLUSION
To promote the applications of formal methods as part of

industrial practitioners’ daily works, a user-friendly approach
for specifying formal requirements is compulsory. Previous
studies on formal specification languages (FSLs) have
revealed several features and factors that can enhance the
usability of FSLs. For requirement formalization, templates
and patterns based on domain ontologies can greatly simplify
the composition of FSL formulae. FSLs with syntaxes and
notations close to the domain languages used by industry
practitioners will facilitate the property formalization process.
Moreover, tool support and graphical representations are also
compulsory elements to make FSLs more accessible.

In future works, the industrial practices of requirements
engineering in the nuclear power plant engineering domain
will be investigated. Based on these results, a visual FSL will
be proposed that would potentially bridge the gap between
specification practices in the nuclear industry and in the
formal method research domain.

ACKNOWLEDGMENT
This work was supported, in part, by the Integrated Safety

Assessment and Justification of Nuclear Power Plant
Automation (SAUNA) project of the Finnish Research
Programme on Nuclear Power Plant Safety 2015–2018
(SAFIR 2018) [45] funded by the Nuclear Waste
Management Fund (VYR) [46], and by the Government of
Russian Federation, Grant 074-U01.

REFERENCES
[1] K. Finney, "Mathematical Notation in Formal Specification: Too

Difficult for the Masses?," IEEE Transactions on Software
Engineering, vol. 22, pp. 158-159, 1996.

[2] R. Schlör, B. Josko, and D. Werth, "Using a Visual Formalism for
Design Verification in Industrial Environments," in Services and
Visualization Towards User-Friendly Design. vol. 1385, T.
Margaria, B. Steffen, R. Rückert, and J. Posegga, Eds., ed:
Springer Berlin Heidelberg, 1998, pp. 208-221.

[3] G. J. Holzmann, "The Logic of Bugs," presented at the 10th ACM
SIGSOFT symposium on foundations of software engineering,
Charleston, SC, US, 2002.

[4] E. M. Clarke, O. Grumberg, and D. Peled, Model Checking.
Cambridge, Massachusetts, US: The MIT Press, 1999.

[5] T. Tommila and A. Pakonen, "Controlled natural language
requirements in the design and analysis of safety critical I&C
systems," VTT Technical Research Centre, Finland, Research
Report VTT-R-01067-14, 2014.

[6] CESAR - Cost-efficient Methods and Processes for Safety-
relevant Embedded Systems: Springer Vienna, 2013.

[7] CESAR. (2011). Improved Definition of RSL and RMM (1.0 ed.)
[Online]. Available:
http://www.cesarproject.eu/fileadmin/user_upload/CESAR_D_SP
2_R2.3_M3_v1.000_PU.pdf

[8] T. Tommila, A. Pakonen, and J. Valkonen, "Ontology-Driven
Natural Language Requirement Templates for Model Checking
I&C Functions," in Enlarged Halden programme group meeting
(EHPG 2013), Storefjell, Norway, 2013.

[9] S. Farfeleder, T. Moser, A. Krall, T. Stålhane, H. Zojer, and C.
Panis, "DODT: Increasing Requirements Formalism using
Domain Ontologies for Improved Embedded Systems
Development," in 14th IEEE International Symposium on Design
and Diagnostics of Electronic Circuits & Systems (DDECS 2011),
Cottbus, Germany, 2011, pp. 271-274.

[10] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, "Property
Specification Patterns for Finite-State Verification," in 2nd
Workshop on Formal Methods in Software Practice, Clearwater
Beach, FL, US, 1998, pp. 7-15.

[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, "Patterns in
Property Specifications for Finite-State Verification," in 21st
International Conference on Software Engineering (ICSE 1999),
Los Angeles, CA, US, 1999, pp. 411-420.

[12] F. Bitsch, "Safety Patterns — The Key to Formal Specification of
Safety Requirements," in Computer Safety, Reliability and
Security. vol. 2187, U. Voges, Ed., ed: Springer Berlin Heidelberg,
2001, pp. 176-189.

[13] J. C. Campos, J. Machado, and E. Seabra, "Property Patterns for
the Formal Verification of Automated Production Systems," in
17th IFAC World Congress, Seoul, Korea, 2008, pp. 5107-5112.

[14] J. C. Campos and J. Machado, "A Specification Patterns System
for Discrete Event Systems Analysis," International Journal of
Advanced Robotic Systems, vol. 10, 315, pp. 1-13, 2013.

[15] C. Grover, A. Holt, E. Klein, and M. Moens, "Designing a
Controlled Language for Interactive Model Checking," presented
at the 3rd International Workshop on Controlled Language
Applications, Seattle, WA, US, 2000.

[16] K. Miriyala and M. T. Harandi, "Automatic Derivation of Formal
Software Specifications From Informal Descriptions," IEEE
Transactions on Software Engineering, vol. 17, pp. 1126-1142,
1991.

[17] M. Soeken and R. Drechsler, Formal Specification Level:
Concepts, Methods, and Algorithms: Springer International
Publishing, 2015.

[18] A. Pnueli, "The temporal logic of programs," in 18th Annual
Symposium on Foundations of Computer Science, Providence, RI,
US, 1977, pp. 46-57.

[19] O. Ljungkrantz, K. Åkesson, M. Fabian, and A. Ebrahimi, "An
empirical study of control logic specifications for programmable
logic controllers," Empirical Software Engineering, vol. 19, pp.
655-677, 2014.

[20] B. A. Myers, R. Chandhok, and A. Sareen, "Automatic Data
Visualization for Novice Pascal Programmers," in IEEE

Workshop on Visual Languages, Pittsburgh, PA, US, 1988, pp.
192-198.

[21] R. Razal, "Understanding the Efficacy of Graphical Formal
Methods-Empirical Assessment," World Applied Sciences Journal,
vol. 31, pp. 889-903, 2014.

[22] C. Snook and M. Butler, "UML-B: Formal modeling and design
aided by UML," ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 15, pp. 92-122, 2006.

[23] J.-R. Abrial, The B-Book: Assigning Programs to Meanings:
Cambridge University Press, 2005.

[24] R. Weber, "Conceptual Modelling and Ontology: Possibilities and
Pitfalls," Journal of Database Management, vol. 14, pp. 1-20,
2003.

[25] N. Amálio and C. Glodt, "A tool for visual and formal modelling
of software designs," Science of Computer Programming, vol. 98,
Part 1, pp. 52-79, 2015.

[26] R. B. France, "Semantically Extended Data Flow Diagrams: A
Formal Specification Tool," IEEE Transactions on Software
Engineering, vol. 18, pp. 329-346, 1992.

[27] I. Lee and O. Sokolsky, "A Graphical Property Specification
Language," in High-Assurance Systems Engineering Workshop,
Washington, DC, US, 1997, pp. 42-47.

[28] C. Dietz, "Graphical Formalization of Real-Time Requirements,"
in Formal Techniques in Real-Time and Fault-Tolerant Systems.
vol. 1135, B. Jonsson and J. Parrow, Eds., ed: Springer Berlin
Heidelberg, 1996, pp. 366-384.

[29] L. E. Moser, Y. S. Ramakrishna, G. Kutty, P. M. Melliar-Smith,
and L. K. Dillon, "A Graphical Environment for the Design of
Concurrent Real-Time Systems," ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 6, pp. 31-79, 1997.

[30] K. Fisler, "Timing Diagrams: Formalization and Algorithmic
Verification," Journal of Logic, Language and Information, vol. 8,
pp. 323-361, 1999.

[31] M. H. Smith, G. J. Holzmann, and K. Etessami, "Events and
Constraints: A Graphical Editor for Capturing Logic
Requirements of Programs," in 5th IEEE International
Symposium on Requirements Engineering, Toronto, Canada, 2001,
pp. 14-22.

[32] R. C. Schlör, "Symbolic Timing Diagrams: A Visual Formalism
for Model Verification," Doctoral thesis, Fachbereich Informatik,
Carl-vonOssietzky Universitat Oldenburg, Germany, 2001.

[33] S. Preusse, Technologies for Engineering Manufacturing Systems
Control in Closed Loop: Logos Verlag Berlin, 2013.

[34] E. A. Emerson and E. Clarke, "Characterizing correctness
properties of parallel programs using fixpoints," in Automata,
Languages and Programming. vol. 85, J. Bakker and J. Leeuwen,
Eds., ed: Springer Berlin Heidelberg, 1980, pp. 169-181.

[35] V. Vyatkin and G. Bouzon, "Using Visual Specifications in
Verification of Industrial Automation Controllers," EURASIP
Journal on Embedded Systems, vol. 2008, pp. 1-9, 2008.

[36] M. B. Özcan, P. W. Parry, I. C. Morrey, and J. I. Siddiqi,
"Visualisation of Executable Formal Specifications for User
Validation," in Services and Visualization Towards User-Friendly
Design. vol. 1385, T. Margaria, B. Steffen, R. Rückert, and J.
Posegga, Eds., ed: Springer Berlin Heidelberg, 1998, pp. 142-157.

[37] ISO/IEC Standard 13568, "Information Technology — Z Formal
Specification Notation — Syntax, Type System and Semantics,"
ed, 2002.

[38] N. G. Leveson, M. P. E. Heimdahl, and J. D. Reese, "Designing
Specification Languages for Process Control Systems: Lessons
Learned and Steps to the Future?," in Software Engineering —
ESEC/FSE ’99. vol. 1687, O. Nierstrasz and M. Lemoine, Eds., ed:
Springer Berlin Heidelberg, 1999, pp. 127-146.

[39] E.-R. Olderog and H. Dierks, "Moby/RT: A tool for specification
and verification of real-time systems," J. UCS, vol. 9, pp. 88-105,
2003.

[40] M. K. Zimmerman, "Investigating the Readability of Formal
Specification Languages," Master thesis, Department of
Aeronautics and Astronautics, Massachusetts Institute of
Technology, Massachusetts, US, 2002.

[41] O. Ljungkrantz, K. Akesson, M. Fabian, and Y. Chengyin, "A
Formal Specification Language for PLC-based Control Logic," in

8th IEEE International Conference on Industrial Informatics
(INDIN 2010), Osaka, Japan, 2010, pp. 1067-1072.

[42] IEC Standard 61131-3, "Programmable controllers — Part 3:
Programming languages," ed, 2013.

[43] T. R. G. Green, "Cognitive Dimensions of Notations," in People
and Computers V, A. Sutcliffe and L. Macaulay, Eds., ed
Cambridge, UK: Cambridge University Press, 1989, pp. 443-460.

[44] R. Razali and P. Garratt, "Usability Requirements of Formal
Verification Tools: A Survey " Journal of Computer Science, vol.
6, pp. 1189-1198, 2010.

[45] The Finnish Research Programme on Nuclear Power Plant Safety
2015 - 2018 (SAFIR2018) [Online]. Available:
http://safir2018.vtt.fi/

[46] Nuclear Waste Management Fund [Online]. Available:
https://www.tem.fi/en/energy/nuclear_energy/nuclear_energy_ad
ministration/nuclear_waste_management_fund

