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ABSTRACT  
The virtual mass and damping coefficients of an open and 
ducted propeller are determined using URANS 
computations. Time-accurate simulations are carried out for 
an open propeller forced to harmonic motion in two 
separate directions, translational x1- and rotational x4-
directions. The analysis produces the diagonal coefficients 
of  the  virtual  mass  m11,  m44 together with the diagonal 
damping terms c11, c44. The cross-terms m14, m41 and c14, c41 
are also evaluated. A range of advance numbers is 
considered in the simulations. Several excitation 
frequencies and amplitudes are applied in order to 
determine the impact of viscosity on the vibrational 
coefficients. Oblique flow cases are also considered and the 
related virtual mass and damping coefficients are analyzed. 
The computed cases are compared to potential flow 
simulations and to published semi-empirical results. The 
average magnitudes of the coefficients correspond quite 
reasonably to those computed by the CFD method. 
However, the viscous effects are found to have a certain 
impact on some coefficients. 
Keywords 
URANS, added mass, propeller, CFD, damping 
coefficients, vibration  
 
1 INTRODUCTION 
The evaluation of the vibrational properties of a marine 
propeller is important for a successful design. It is well 
known that the presence of water around a propeller 
vibrating as a part of a shafting system changes the dynamic 
characteristics of the propeller. Generally, the 
hydrodynamic forces acting on a propeller include terms 
proportional to the acceleration (mass/inertia forces), to the 
velocity (damping force) and to the displacement 
(hydrostatic force). 
Concerning the first term of the vibrational analysis, the so-
called effective or virtual mass/inertia of a propeller in 
water consists of not only the actual mass of the submerged 
propeller but also the mass of fluid accelerated with the 
propeller which is termed added mass/inertia. The second 
term needs special consideration depending on whether the 
propeller is locked or rotating. In the former case due to 

flow separation caused by off-design inflow excitations a 
velocity-dependent drag term should be included in the 
problem and in the latter case according to potential flow 
theory, circulatory forces proportional to the square of the 
velocity will be present affecting significantly the 
vibrational analysis of some particular motions. The third 
term, the hydrostatic force, is time-independent for fully 
submerged propellers and consequently does not contribute 
to vibrations except for partially submerged propellers. A 
description of the added mass, inertia and damping matrices 
in the classical vibrational analysis can be found for 
example in Carlton (2007).  
Usually, the vibrating characteristics of a propeller have 
been calculated within potential-flow theory either in the 
form of two-dimensional thin foil theory, lifting line theory, 
lifting surface theory or panel methods (see, for example, 
Parsons and Vorus, 1981; Vassilopoulos and Triantafyllou, 
1981; Parsons et al. 1983; Takeuchi et al. 1983; Matusiak, 
1986; Ghassemi, 2011; Gaschler and Abdel-Maksoud, 
2014) or with semi-empirical formulae (Schwanecke, 1963; 
MacPherson et al., 2007).  
The use of potential flow theory for non-lifting fully-
submerged bodies leads to added mass terms constant in 
time and with no damping. The introduction of the Kutta 
condition is responsible for the presence of velocity-
dependent terms. Recently, Hutchison et al. (2013) 
investigated the effect of a duct on a non-rotating propeller 
by comparing the propeller and duct individually with the 
bodies combined in a multi-body simulation. The numerical 
analysis was based on panel methods and conducted with 
the commercial DNV software HydroD, using its WADAM 
program.  
In the context of RANS methods, the introduction of 
viscosity in the simulation results in time-dependent added 
mass and damping coefficients especially for separated and 
cavitating flows (Uhlman et al. 2001; Lie et al. 2010). 
Recently, a method for calculating the translational added 
mass of axisymmetric bodies using a RANS solver has been 
presented by Mishra et al. (2011). The method removes the 
effect of the computed drag forces in the calculation of 
added mass coefficient. However, in our opinion if we stick 
to the definition of added mass in the second paragraph of 



this section, the presence of viscosity would modify the 
mass of fluid accelerated with the body and consequently 
methods like that will be valid to estimate a potential-flow 
added mass using a viscous solver, but not a viscous added 
mass. 
Much attention has been paid in the literature to the 
computation of the added mass coefficients for circular 
cylinders in various regimes of viscous flow and oscillating 
wings. However, to our knowledge there is a gap 
concerning the computations of such coefficients by RANS 
methods for rotating propellers. The present paper shows 
computations of added mass and damping coefficients for 
coupled torsional-axial motion and illustrates their variation 
as a function of the excitation frequency and advance 
number of the propeller. 
Recently, some results of viscous added mass and damping 
coefficients for an open propeller were anticipated in Martio 
et al. (2015). The results are analyzed in detail in this paper 
and compared with semi-empirical formulae by Parsons 
(1981) and Schwanecke (1963) using the exact propeller 
geometry. Comparisons are made also with potential flow 
computations by Hutchison et al. (2013). The virtual mass 
and damping of a propeller are evaluated in viscous flow 
using URANS solver FINFLO (Sánchez-Caja et al., 1999; 
Miettinen and Siikonen, 2015). The coefficients are 
determined for a range of advance numbers J = [0.2,…,1.2]. 
The exciting frequency is varied between 0.25 and 1.6 times 
the blade passing frequency. Two configurations are 
analyzed in the computations: a propeller working in 
straight and oblique open flow and the same propeller 
working inside the 19A duct of MARIN (Wageningen). The 
computations are made at model scale.  
 
2 NUMERICAL METHOD 
2.1 Governing equations 
The Navier-Stokes momentum equation for incompressible 
flow can be written for a control volume  delimited by a 
boundary  as follows, 
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where  is the density,  is the flow velocity vector,  is the 
velocity vector on the boundaries, p is  the  pressure  in  the  
flow field ,   is the vector normal to the boundary, dS the 
surface element and  is the viscosity. The boundary ( ) 
consists of a moving boundary attached to the surfaces of an 
oscillating body and an external and stationary boundary 
which may extend to infinity.  

From Eq. (1) the virtual mass and damping coefficients can 
be derived as follows. If a propeller is moving in 
unidirectional motion and is simultaneously in harmonic 
motion, the instantaneous state vector is [ , + , ]. 
The harmonic velocity t term  and the harmonic 
acceleration  are defined as 
 

= sin( ) ; = cos( ) (2) 

where ´  is the velocity amplitude of the harmonic motion 
to a given direction xi, i=1…6. 
If the control volume  is large enough so that it includes 
the particles at the location when the propeller started 
rotating, the convection term at the left side of Eq. (1) 
vanishes in a global sense. Using the propeller’s 
instantaneous velocity +  Eq.  (1)  can  be  made  non-
dimensional as follows, 
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where  is the non-dimensiolized fluid velocity and t0 a 
time made non-dimensional with the inverse of the 
propeller rotational speed n. A non-dimensional volume is 
defined as =  while the non-dimensional area can be 
expressed as = . Notice that since the term used for 
non-dimensionalization is time-dependent but not space-
dependent, it can be transferred outside the integral.  
Furthermore, the fluid velocity vector can be separated into 
three components by applying the Helmholtz 
decomposition: 
 

= + +  (4) 

where  is the uniform inflow velocity at infinity 
upstream,  is the velocity component of the perturbation 
potential and  is the velocity component due to viscous 
effects.  The  last  term  will  be  responsible  for  the  viscous  
component of the added mass and the damping term.  
The velocity  consists of the speed of advance  into the 
given direction xi, where i=1…3 and of the harmonic 
velocity . Eq. (4) states that the viscous term 

contributes both to virtual mass and damping terms, 
whereas the potential flow term  has impact to the virtual 
mass component only. 
The force components of Eq. (3) can be expressed as 
 + + = ( )  

+ + = ( ) (5) 

 is the acceleration-related added mass term,  is  the  
damping term associated to the harmonic velocity 



component and  is the force component generated by the 
propeller average thrust related to the steady velocity VA. 
All terms correspond to motions in the i-direction. ,  
and are the corresponding terms for the torque. 
Eq. (3) can be approximated by the following linear semi-
empirical fitting for translational oscillations in direction x1, 

 + + = ( ) (6) 

The corresponding formulation for the rotational 
oscillations in direction x4 is 
 + + = ( ) (7) 

The thrust and torque coefficients, the diagonal elements of 
the virtual mass matrix and the diagonal damping terms are 
defined as follows, 
 = ;   =  

= ;   =  

= ;   =  

(8) 

The cross-terms related to rotational motion are evaluated 
as follows, 
 + + = ( ) (9) 

where, 
 = ;   =  

= ;   =  
(10) 

The coefficients are expressed by a set of selected 
dimensionless parameters describing the flow conditions. 
For example, in the direction x1 the dimensionless 
parameters obtained from Eq. (3) are as follows, 
 = ;      =  

=                                        
(11) 

 
where n is the propeller rotational speed (rps). The advance 
number J is related to the average loading on the propeller, 
whereas the frequency parameter KCp and the Reynolds 
number Rep are associated to the harmonic flow 
components. In this paper, the evaluated force coefficients 
are parametrized by J and KCp. 
 
2.2 URANS solver FINFLO 
The flow solution in FINFLO is based on the RANS 
equations solved by a pressure correction approach. The 

spatial discretization is carried out by a finite volume 
method. Second- and third-order upwind-biased (MUSCL) 
schemes are used for the discretization of the convection 
terms and a second-order central-difference scheme is 
utilized for the diffusion. The pressure gradient is centrally 
differenced and a Rhie-Chow type dissipation is applied to 
prevent a checkerboard pressure field (Miettinen and 
Siikonen, 2015). 

A multigrid method is applied for the acceleration of 
convergence. Solutions on coarse grid levels are used as a 
starting point for the calculation in order to accelerate 
convergence. A detailed description of the numerical 
method including discretization of the governing equations, 
solution algorithm, boundary conditions, etc. are described 
by Sánchez-Caja et al. (1999) and by Miettinen and 
Siikonen (2015). Several turbulence models are 
implemented in FINFLO. In these calculations Chien’s low 
Reynolds number k- turbulence model is used. Time-
accurate calculations are started by using a quasi-steady 
solution as the initial guess. In the time-accurate 
calculations part of the grid is rotating at the propeller 
rotational speed and part of the grid is stationary. The 
sliding mesh technique is used to treat the interface between 
the rotating and the stationary part of the grid. The variables 
are interpolated on the sliding boundary using the solution 
in the neighboring blocks. FINFLO computational approach 
includes also the possibility to use the overlapping 
(Chimera) grid technique. 
 
Table I. Geometrical data of the P1374 model propeller. 

Propeller diameter  250.0 mm 
Number of blades Z  4  
Pitch/Diameter at r/R=0.7 1.1  
Hub diameter  60.0 mm 
Expanded area ratio 0.602  
Expanded skew angle 23 deg 

 
 

 
Figure 1a: RANS grid on the blades of propeller P1374. 



3 STUDY CASES 
3.1 The P1374 propeller 
The P1374 propeller and related experimental data used in 
this research were provided by MARINTEK (Koushan, 
2006). The main parameters of the propeller are shown in 
Table I. A perspective view of the propeller geometry with 
the grid on the blades is presented in Figure 1a, and the 
propeller-duct configuration is shown in Figure 1b. As it 
can be seen from the figures, the grid is very dense on the 
blades. It consists of 27 blocks with a total of 5.3 million 
cells for a blade passage.  

 
Figure 1b: View of propeller P1374 inside nozzle 19A.  
 
3.2 Boundary conditions for harmonic oscillations 
The computational grid covers a single-blade passage so 
that cyclic boundary conditions can be applied on the 
appropriate boundaries. On the blade surface, a non-slip 
boundary condition was used on the rotating blades (ROT), 
whereas on the nozzle surface a stationary non-slip 
boundary condition was utilized. In the external boundaries 
inlet and outlet boundary conditions on velocity and 
pressure, respectively were applied. The ROT-condition 
was modified to enforce oscillating motions in the x1 and x4-
directions. The additional harmonic component on the grid 
and solid surfaces (ALE method) was: 
 = ( ) (12) 

which resulted in an instantaneous acceleration  
 = ( ) (13) 

with  equal to  for the  term and  for the 
 term.  

The parameters used in rotational oscillations are presented 
in Table II. They have been chosen to be meaningful from 
the standpoint of test measurements, even though some 
extreme cases have been also included. The case with 

excitation frequency fe=9.0 Hz and amplitude x4a=5.0 deg 
was evaluated for three advance numbers J=0.40, 0.60 and 
0.80. The blade passing frequency was f=36.0 Hz in all 
cases corresponding the propeller rotational speed n=9.0 
Hz. The physical time step applied in computations 
corresponds the rotational angle of one degree. The 
parameters used in the translational oscillations are shown 
in Table III. 
 
Table II. Parameters for the rotational oscillations. 
Case Excitation 

frequency fe 

[1/s] 

Angle 
amplitude 

 [deg] 

Velocity 
amplitude 

 [deg/s] 

Advance 
number 

 

1.1 9.0 5.0 282.7 0.40 

1.2 9.0 5.0 282.7 0.60 

1.3 9.0 1.0 56.5 0.80 

1.4 22.5 1.0 141.4 0.80 

1.5 40.5 1.0 254.5 0.80 

1.6 9.0 5.0 282.7 0.80 

1.7 22.5 5.0 706.9 0.80 

 

Table III. Parameters for the translational oscillations. 

Case 
Excitation 
frequency 

fe 

[1/s] 

Displacement 
amplitude 

 
[m] 

Velocity 
amplitude 

 
[m/s] 

Advance 
number 

J 

2.1 22.5 0.00043 0.0601 0.2 

2.2 49.5 0.00009 0.0283 0.2 

2.3 31.5 0.00032 0.0641 0.2 

2.4 31.5 0.00046 0.0913 0.2 

2.5 57.9 0.00016 0.0568 0.2 

2.6 40.5 0.00037 0.0938 0.2 

2.7 40.5 0.00041 0.1037 0.2 

2.8 22.5 0.00032 0.0451 0.8 

2.9 22.5 0.00043 0.0601 0.8 

2.10 49.5 0.00009 0.0283 0.8 

2.11 31.5 0.00046 0.0913 0.8 

2.12 57.9 0.00016 0.0568 0.8 

2.13 40.5 0.00037 0.0938 0.8 

2.14 40.5 0.00041 0.1037 0.8 

2.15 40.5 0.00049 0.1241 0.8 

2.16 49.5 0.00009 0.0283 1.2 

2.17 31.5 0.00046 0.0913 1.2 



2.18 49.5 0.00026 0.0816 1.2 

2.19 40.5 0.00049 0.1241 1.2 

 
The computations of the ducted propeller were carried out 
for two rotational and for two translational harmonic 
motions. The oscillation parameters were x4a=1.0 deg and 
5.0 deg using fe=22.5 Hz and x1a=6.37 m/s with fe=22.5 Hz 
and 23.9 m/s using fe=40.5 Hz applied to the rotational 
motion x4 and the translational motion x1, respectively. 
 
4 RESULTS 
4.1 Open water characteristics 
Figure 2 and Table IV show the open water performance 
coefficients (thrust coefficient, torque coefficient and 
efficiency) evaluated by FINFLO compared to the 
experimental values. The agreement is satisfactory except 
for large advance number, which is expected due to the 
larger uncertainty related to small thrust coefficients. 
 

4.2 Open Propeller: Added inertia and damping 

Rotational motion 
In Figure 3, the total thrust T, the fluctuating pressure force 
component TP and the harmonic viscous force term TV are 
presented for case 1.7. The phase angle between the viscous 
force term and the other force components is approximately 

. The magnitude of viscous component is small compared 
to the pressure term. 
Computations of vibrational coefficients for cases 1.3 and 
1.7 are presented in Figure 4. The forces of case 1.3 include 
minor non-linear elements, whereas those of case 1.7 
present almost purely linear oscillations. Case 1.7 can be 
considered as an extreme situation, as the thrust and the 
torque both change sign during the simulations. 
 
 

Table IV. Open water characteristics of P1374-propeller, open propeller case 

 

 

 

 
 
 
 
 
 

Figure 2. Propeller P1374 open water performance. The 
experimental values (sub-index e) are shown together 

with the computed (sub-index c) ones. 

 
 
 
 

 

 
 
Figure 3. Computed force as a function of time for case 
1.7. Total thrust force T, pressure component Tp and the 
viscous component Tv.   
 

J Computed KT Exp KT KT diff.  to exp. % Computed KQ Exp  KQ KQ diff.  to exp. % 

0.2 0.519 0.528 1.7 % 0.817 0.798 -2.4 % 

0.4 0.423 0.431 1.9 % 0.703 0.687 -2.3 % 

0.6 0.329 0.335 1.8 % 0.574 0.572 -0.3 % 

0.8 0.229 0.241 5.0 % 0.439 0.452 2.9 % 

1.0 0.131 0.140 6.4 % 0.319 0.311 -2.6 % 



          
Figure 4. Computed forces as a function of time [s] for case 1.3 (left) and 1.7 (right). The red line represents the fitted 
function and the blue dots are the computed forces. 
 

 
Figure 5a: Added mass coefficient m44 as a function of KCp and of the advance number J. ‘P’ corresponds the method by 
Parsons (1981), ‘PC’ includes the lift surface correction by Parsons (1981),  ‘S’ denotes the semi-empirical method by 
Schwanecke (1963) and ‘H’ stands for the potential flow computations by Hutchison (2013). 

 
Figure 5b: Damping coefficient c44 as a function of KCp and of the advance number J. ‘P’ corresponds the method by 
Parsons (1981), ‘PC’ includes the lift surface correction by Parsons (1981) and ‘S’ denotes the semi-empirical method by 
Schwanecke (1963). 



 
Figure 6a: Added mass coefficient m14 as a function of KCp and of the advance number J. ‘P’ corresponds the method by 
Parsons (1981), ‘PC’ includes the lift surface correction by Parsons (1981), ‘S’ denotes the semi-empirical method by 
Schwanecke (1963) and ‘H’ stands for the potential flow computations by Hutchison (2013). 

 
Figure 6b: Damping coefficient c14 as a function of KCp and of the advance number J.  ‘P’ corresponds the method by 
Parsons (1981), ‘PC’ includes the lift surface correction by Parsons (1981) and ‘S’ denotes the semi-empirical method by 
Schwanecke (1963). 
 



 

 
Figure 7. Thrust coefficients KTi as a function of amplitude 

. The advance numbers are presented in different colors. 
 
The force coefficients m44 and c44 together with the cross-
terms m14 and  c14 are presented in Figures 5 and 6 as a 
function of KCp and advance number J. The damping 
coefficients c14 and c44 can be parametrized in terms of  KCp 
without large dispersion. The added inertia coefficients 
produce somewhat more scattering. In the J-domain the 
coefficients are subject to large dispersion. In the figures, 
different advance numbers for the same frequency are 
located in the same vertical line and viceversa (different 
frequencies for the same advance number). 
In the figures, the results computed using the URANS-
method are compared to estimates obtained with the semi-
empirical methods by Schwanecke (1963) and Parsons 

(1981), and with a potential flow method (Hutchison, 2013). 
Generally, quite substantial variations can be observed 
between the specific methods. Schwanecke’s method yields 
a m44 coefficient larger than other methods as shown in 
Figure 5a. The panel method results by Hutchison and the 
semi-empirical technique by Parsons generate similar m44 
coefficients. The URANS coefficients are between Parsons’ 
method estimates with and without lifting surface 
corrections. The lifting surface corrections have an effect 
similar to that described in Parsons’ paper: they reduce the 
magnitude of coefficients. A similar comparison was 
carried out in Martio et al., (2015): the coefficients 
computed with the URANS method were compared to those 
obtained by Schwanecke’s method. In the present paper, 
Schwanecke’s semi-empirical coefficients were recalculated 
using the revised propeller geometry. 
The magnitudes of c44 damping coefficients shown in 
Figure 5b diverge also rather substantially. The URANS 
coefficients are between the coefficients determined by 
semi-empirical methods (i.e. Parsons and Schwanecke). 
A similar behavior can be seen for the m14 and  c14 
coefficients in Figure 6a and 6b. The panel method 
(Hutchison) produces quite similar estimates compared to 
the method by Parsons without lifting surface corrections, 
and the computed coefficients are again between the semi-
empirical methods. 
The KT1 and KT4 coefficients are shown as a function of the 
excitation amplitude in Figure 7. The oscillations produce 
only minor impacts on the average KT1 coefficient, of the 
order of 1% or less for cases 2.1-2.15. As the advance 
number is increased, the oscillations seem to reduce the KT1 
as compared to the non-oscillating cases. Regarding the 
coefficient KT4,  the  most  extreme  case  1.7  induces  ~10  % 
larger average thrust than cases 1.3-1.6. 
 
 
 
 
 
 
 



  
Figure 8a. Added mass m11 as a function of KCp and of the advance number J. ‘P’ corresponds the method by Parsons 
(1981), ‘PC’ includes the lift surface correction by Parsons (1981),  ‘S’ denotes the semi-empirical method by Schwanecke 
(1963) and ‘H’ stands for the potential flow computations by Hutchison (2013). 
 

 
Figure 8b. Damping coefficient c11 as a function of KCp and of the advance number J. ‘P’ corresponds the method by 
Parsons (1981), ‘PC’ includes the lift surface correction by Parsons (1981),  ‘S’ denotes the semi-empirical method by 
Schwanecke (1963) and ‘H’ stands for the potential flow computations by Hutchison (2013). 
 



 
Figure 9a. Added mass coefficients m41 as a function of KCp and of the advance number J. ‘P’ corresponds the method by 
[Parsons‘PC’ includes the lift surface correction by Parsons (1981),  ‘S’ denotes the semi-empirical method by Schwanecke 
(1963) and ‘H’ stands for the potential flow computations by Hutchison (2013). 
 
 

 
 
Figure 9b. Damping coefficient c41 as a function of KCp and of the advance number J. ‘P’ corresponds the method by 
[Parsons‘PC’ includes the lift surface correction by Parsons (1981),  ‘S’ denotes the semi-empirical method by Schwanecke 
(1963) and ‘H’ stands for the potential flow computations by Hutchison (2013). 

 

 

Table V. The added inertia and damping force components in rotational harmonic motion x4. The bold-italic font style 
denotes the ducted cases 

 [deg] fe/n J m44 c44 m14 c14 KT4 

1.0 2.5 0.8 0.00161 0.0264 -0.00935 -0.171 0.228 

5.0 2.5 0.8 0.00166 0.0274 -0.00954 -0.178 0.247 

1.0 2.5 0.8 0.00161 0.0350 -0.00914 -0.218 0.184 

5.0 2.5 0.8 0.00165 0.0376 -0.00944 -0.233 0.199 



 

 
Table VI. The virtual mass and damping force components in translational harmonic motion x1. The bold-italic font style 
denotes the ducted cases. 
 
 

 

 

 
 

 
Figure 10. The evaluated forces as a function of time (s) for cases fe=22.5 Hz, x4a=1.0 deg (left) and fe=22.5 Hz, x4a=5.0 deg 
(right) at J=0.8 both for the ducted and the open propeller cases. 

 

Translational motion 
The time histories of the total thrust force T and of the 
viscous and pressure components are similar to the 
rotational motion case. They include some non-linearities in 
the viscous term, being again the magnitude of viscous 
component rather small compared to the pressure 
component. They are not presented here. 
The harmonic coefficients m11, c11, m41 and c41 are shown in 
Figures 8-9 as a function of KCp and J. The trends 
compared to the semi-empirical methods and potential flow 
computations are similar to those shown for the motion x4 in 
Figures 5-6. The computed coefficients are generally 
between those determined by the methods by Parsons 
(1981) and Schwanecke (1963), although the computed 
damping coefficient c11 and c41 are larger in magnitude than 
semi-empirical coefficients especially at low advance 
numbers and for high frequency. At these conditions the 
viscous effects are more dominant.  
Also the potential flow method (Hutchison, 2013) produces 
similar magnitudes of added mass coefficients as the 
URANS method, although it should be kept in mind that the 
potential flow evaluation was conducted with the locked 
propeller. According to MacPherson (2007) the relationship 
between the added mass coefficients for a rotating and a 
locked propeller can be expressed as follows: 

=
. . .

  (14) 

where CWER is the added mass for the rotating propeller and 
CWEL is the added mass for the locked case. Applying Eq. 
(14) to the P1374 propeller, the magnitude of the added 
mass coefficient for the locked case should be 17 % larger 
than for the rotating case. If this is taken into account, the 
magnitude of added mass coefficient m11 by Hutchison 
should be reduced about that percentage from the level 
shown in Figure 8a.  
 
4.3 Ducted propeller: added inertia and damping  
The P1374 propeller inside nozzle 19a of MARIN has been 
analyzed under both rotational and translational harmonic 
oscillations. The characteristics of the ducted propeller were 
evaluated only for the advance number J=0.8. A rotational 
harmonic motion was applied only to the propeller, i.e. the 
nozzle was not subject to any oscillations. For the 
translational oscillations, surface velocities were enforced 
on the propeller surface and the RANS simulations were 
conducted in a time-accurate manner. 
The magnitude of harmonic coefficients is presented in 
Table V for the rotational motion x4 and in Table VI for the 
translational motion x1. The thrust coefficients of the ducted 

[m/s] J fe/n m11 c11 m14 c14 KT1 

6.37 0.8 2.5 0.0597 0.649 -0.00925 -0.0818 0.226 

23.88 0.8 4.5 0.0668 0.776 -0.01063 -0.0958 0.227 

6.37 0.8 2.5 0.0692 1.112 -0.01065 -0.1534 0.184 

23.88 0.8 4.5 0.0821 1.546 -0.01281 -0.2083 0.184 



cases are clearly smaller than the open propeller cases due 
to the axial acceleration of the flow induced by the duct. 
Figure 10 shows the time histories of the computed forces 
both for the ducted and open propeller cases.  
In Figures 11-12 the computed coefficients of the ducted 
cases are presented for comparison with the open propeller 
cases. The added mass coefficients computed by the 
potential flow method (Hutchison, 2013) are also shown for 
both the open propeller and ducted configurations. 
Generally, the duct seems to have only minor impact onto 
the virtual mass terms for the m44 and m14 coefficients. On 
the other hand, the nozzle seems to contribute more to the 
damping terms, i.e. the ducted cases produce larger c11, c44 
terms whereas the magnitude of cross-terms c41, c14 is 
lower.  
The potential flow method (Hutchison) predicts trends for 
the added mass coefficients m11, m44 and m41 similar to the 
URANS-technique. In other words, the absolute magnitudes 
of coefficients m11 and m41 increase due to the presence of 
nozzle. The magnitudes of coefficients m44 and m14 related 
to rotational motion x4 change only slightly between the 
open propeller and ducted propeller cases. The duct has an 
evident impact on the inflow velocity to the propeller, 
which seems to influence more noticeably the coefficients 
related to the translational motion x1. The potential flow 
method (Hutchison, 2013) seems to estimate larger changes 
for the coefficient m14 than the URANS method. However, 
in this respect, it should be recalled that the potential flow 
method produces a symmetric added mass matrix, that is, 
m14=m41 and that the potential flow analysis was made on a 
locked propeller contrary to the RANS simulation which 
was made on a rotating one. 

 
In principle it seems surprising that there is (according to 
Table VI) almost no effect of the duct on the added mass of 
the propeller in rotational motion. On the contrary, the 
increase of the damping terms is more according to 
expectations. However, the added mass effect is not so 
surprising if we consider the potential flow part of the 
problem. Suppose a flat plate oscillating in the vertical 
direction (OY). The main parameter affecting the added 
mass is the length of the projection of the flat plate on the 
OX axis (i.e. the chord). Suppose that now the flat plate 
oscillates in the horizontal OX direction. The main 
parameter affecting the added mass is the length of the 
projection of the flat plate on the OY axis (i.e. zero). For a 
rotating propeller the effective inflow at the propeller tip is 
almost in the chordwise direction (close to the 
circumferential direction). The m44 related oscillations are in 
the circumferential direction and they do not change so 
much the effective angle of attack, which means that the 
effect is similar to OX oscillations of a flat plate at small 
angle of attack. For a non-rotating propeller especially at 
mid span the oscillating flow is not chordwise oriented and 
therefore a larger effect in m44 is expected. Additionally the 

m44 includes also a viscous part whose contribution is 
difficult to guess. 
 
4.4 Oblique cases 
The oblique flow cases were computed for 5, 10 and 20 
degree flow angle. The vibrational coefficients are shown in 
Table VII including zero angle case 2.8. 
The time histories of the thrust force are presented in Figure 
13. The zero angle case produces the lowest average thrust, 
since the propeller is more loaded with the lower axial 
inflow of the oblique flow cases. The coefficients in Table 
VII indicate that the magnitudes of virtual masses m11 and 
m41 decrease whereas the damping is increased once an 
oblique flow angle is specified. However, there is no much 
influence between the 5, 10 and 15 deg cases. 
 
5 CONCLUSIONS 
Added mass and damping coefficients were computed by a 
URANS approach for the P1374 propeller in model scale. 
Harmonic motions were enforced at two degrees of 
freedom, i.e. in translational x1- and rotational x4-directions. 
The propeller was also analyzed both in oblique flow and in 
the presence of a duct. 
The viscous flow simulation produces coefficients that are 
dependent from the excitation parameters, contrary to usual 
potential flow simulations where the coefficients are 
constant. The coefficients obtained from the URANS-
simulation were compared to those obtained from the semi-
empirical methods by Schwanecke (1963) and Parsons 
(1981) and to those obtained in Hutchison (2013) by a 
potential flow panel method. The dependency of the 
URANS coefficients with the excitation parameters was 
expressed in terms of appropriate non-dimensional numbers 
reflecting time-dependence like the KCP parameter. The 
average magnitudes of the coefficients were reasonable as 
compared against the semi-empirical results, although the 
semi-empirical coefficients varied quite substantially 
depending on the specific method. 
The magnitudes of the added mass coefficients were not 
much affected by the presence of the duct at the rotational 
motions, whereas the magnitudes of translational 
coefficients were increased. The comparison of URANS 
added mass coefficients to published potential-flow-based 
coefficients (Hutchison, 2013) revealed similar trends when 
passing from the open propeller to the ducted propeller 
configuration. The nozzle contributed also to the damping 
terms in such a way that the translational damping terms 
were increased together with the rotational damping 
coefficients.  

In the oblique inflow computations, the presence of an 
incidence angle increased the magnitudes of translational 
damping coefficients relative to the straight flow cases. 
However, the magnitudes of translational virtual mass 
coefficients were reduced. Once the flow is non-



axisymmetric, the magnitude of the angle of incidence 
seems not to affect too much the coefficients. 
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Figure 11. Computed force coefficients for cases fe=22.5 Hz, x4a=1.0 deg and fe =22.5 Hz, x4a=5.0 deg at J=0.8 for both the 
ducted and open propeller cases. ‘H’ stands for the potential flow computations by Hutchison (2013). 

 

Table VII. Force coefficients of the oblique flow cases. 

 

 

 

 

 

Flow angle [deg] KT1 m11 c11 m41 c41 

0 0.226 0.0597 0.649 -0.00934 -0.0805 

5 0.228 0.0504 0.695 -0.00738 -0.0924 

10 0.234 0.0499 0.690 -0.00732 -0.0922 

20 0.261 0.0502 0.695 -0.00735 -0.0902 



 

 
Figure 12. Computed forces as a function of time [s] for cases fe=22.5 Hz, ´ =6.37 m/s (top) and fe =40.5 Hz,  =23.9 
m/s (bottom) at J=0.8 for both the ducted and open propeller cases. ‘H’ stands for the potential flow computations by 
Hutchison (2013). 

 

Figure 13. Computed thrust forces as a function of time [s] for the oblique cases. 
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