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Impact of 15-day energy forecasts on the hydro-thermal

scheduling of a future Nordic power system

Topi Raskua,∗, Jari Miettinenb, Erkka Rinnea, Juha Kiviluomaa

aVTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT,
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Abstract

One of the most promising ways of de-carbonising the energy sector is
through increasing the amounts of variable renewable energy (VRE) genera-
tion in power systems. While the inherent uncertainty of VRE is a challenge,
it can be mitigated through improved forecasting and energy system mod-
elling. Typically, stochastic energy system studies have focused on the day-
ahead horizon of 36 hours ahead of time, while studies about hydro-thermal
scheduling and expansion planning often neglect VRE uncertainty entirely.
In this work, the potential benefits of extending the horizon of VRE forecasts
on the operation of hydro-dominated power systems was examined using a
future Nordic system case study. 15-day ensemble weather forecasts were
processed into realistic VRE and demand forecasts up to 348 hours ahead
of time, and their impact on power system operations was simulated using
stochastic unit commitment and economic dispatch optimisation. While de-
creases in total yearly operational costs, hydropower spillage and wind power
curtailment were observed until forecast horizons up to around 132–156 hours
ahead of time, the relative reductions remained rather insignificant at around
0.20–0.35 % for the costs, and 0.10 pp for the spillage and curtailment.
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Nomenclature1

ED Economic dispatch2

FDIR Total sky direct solar radiation at surface3

MAE Mean absolute error4

MEUR Million euros5

O&M Operations and maintenance6

pp Percentage point7

PV Photovoltaic8

SSRD Surface solar radiation downwards9

TYNDP Ten Year Network Development Plan10

UC Unit commitment11

VRE Variable renewable energy12

1. Introduction13

Mitigating climate change is a major driver increasing the amount of vari-14

able renewable energy (VRE) in power systems around the globe. Weather15

dependent VRE resources increase the uncertainty in the power system, af-16

fecting both the system operators trying to ensure the balance of generation17

and load, as well as the electricity market participants trying to decide their18

optimal bids. Thus, dealing with VRE uncertainty via improved weather19

forecasting and new energy system modelling approaches has been receiving20

increasing interest.21

Better generation forecasts for VRE have long been valuable in power22

markets. As a result, there is a considerable amount of literature about the23

various forecasting methods [1, 2], as well as their role in renewable energy24

integration [3, 4, 5] and microgrid management [6]. In recent years, the25

focus of energy forecasting has shifted from deterministic approaches towards26

probabilistic ones [7], in order to better represent the underlying uncertainty27

in power systems with significant amounts of VRE generation.28
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The increasing role of VRE resources has also emphasised stochastic mod-29

elling of the power system, over more traditional deterministic modelling30

approaches [8, 9, 10]. Existing literature has studied the impact of differ-31

ent wind power uncertainty representations on a two-stage stochastic unit32

commitment (UC) and economic dispatch (ED) problem [11], the energy33

market value of improving the accuracy of short-term wind power forecasts34

[12], as well as how the economic and reliability impacts of such forecast im-35

provements depend on the generation mix and energy storage capacity of the36

simulated power system [13]. Recently, Bakirtzis et al. presented a stochas-37

tic unified UC&ED model for short-term power system scheduling with a38

variable time resolution, and used it to study the benefits of stochastic over39

deterministic scheduling [14], as well as the optimal scheduling of energy stor-40

ages under short-term uncertainty [15]. Overall, most of the literature agrees41

that stochastic UC&ED results in lower costs and more robust solutions com-42

pared to deterministic approaches, but cautions that the magnitude of the43

benefits are dependent on the generation mix and energy storage capacity.44

All of the above-mentioned studies have focused on the short-term schedul-45

ing within common day-ahead market horizons of up to around 36–48 hours46

ahead of time, which is reasonable for systems without longer-term energy47

storage. However, in power systems with such storage, e.g. in the form of48

large hydropower reservoirs or district heating system scale hot water storage,49

considering the uncertainty in VRE generation beyond the day-ahead horizon50

might have an impact on the optimal scheduling of the system. Surprisingly,51

literature about the impact of using longer wind and solar power forecasts52

seems to be much harder to find. While optimisation horizons ranging from53

weeks to months and even years are common in hydro-thermal scheduling54

and expansion planning [16], the short-term uncertainty associated in VRE55

production is either not represented adequately for dispatch, or is neglected56

entirely.57

Previous approaches to long-term hydro-thermal scheduling have consid-58

ered the uncertainty of wind power on the weekly [17, 18] or monthly [19]59

time scales, but resort to deterministic dispatch within these time scales in60

order to reduce the computational burden. Some studies have also focused on61

short-term hydro-thermal scheduling using a robust approach under severe62

load uncertainty [20], as well as with improved technical modelling of pumped63

hydro units [21]. However, these studies again focus on optimal scheduling64

on the day-ahead horizon of only 24 hours. The impact of varying forecast65

lengths on the operation of power systems has been recently studied by Erich-66
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set et al. [22], focusing on the CO2 emissions of an electricity producer park67

with long-term energy storage. The tested horizons were chosen to represent68

possible weather forecast ranges 2–14 days ahead, as well as a hypothetical69

30 day forecast and a full 365 day perfect horizon. However, the used UC70

model was deterministic with perfect foresight for all tested horizons, and71

the use of the long-term energy storage was determined by simple heuristics72

instead of it being included the UC optimisation.73

This paper aims to study the impact of extended weather forecasts on74

the operational costs of hydro-dominated power systems by using a Nordic75

case study with actual ensemble weather forecast data in a rolling stochas-76

tic unified UC&ED optimisation model. We hypothesise that by utilising77

weather forecasts beyond the day-ahead horizon, the operational costs of the78

power system could be reduced further via improved co-scheduling of VRE79

and hydropower resources. While only hydropower is featured in the chosen80

case study, similar benefits could be possible with any form of sufficiently81

long-term energy storage solutions, and potentially even in power systems82

with significant amounts of slow response thermal power plants. A previous83

study by the authors [23] is improved upon by including forecasts for solar84

generation, as well as electricity and heat demands in addition to wind power85

forecasts. Furthermore, the impact of the modelled forecast horizon is stud-86

ied until the full 15-day ahead horizon of the ensemble weather forecast data87

in a more accurate depiction of the Nordic power system.88

Section 2 explains all the data and methods used for constructing the89

hypothetical future Nordic power system, processing the weather ensemble90

forecasts, as well as the used stochastic UC model. The results of power91

system simulations with a number of different forecast horizons and time92

resolutions are presented in Section 3, and the findings are discussed in Sec-93

tion 4. Finally, main conclusions are drawn and summarised in Section 5.94

2. Materials and Methods95

In order to study the impact of extended weather forecasts on hydro-96

thermal scheduling, a hypothetical future Nordic power system was con-97

structed based on existing scenario data, as detailed in Section 2.1. Further-98

more, large amounts of weather data were aggregated, converted into energy99

terms, and calibrated as explained in Section 2.2. Only after all the desired100

power system and weather data had been properly processed, the impact of101

the extended VRE forecasts on the operational costs of the power system102
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Table 1: Installed electricity generation capacities by country and energy source, as well
as the yearly electricity and heat demands.

Installed capacity [GW] Demand [TWh/a]

Solar Wind Hydro Biomass Nuclear
Coal&
Lignite

Gas Oil Electricity Heat

DE 64.0 67.2 5.9 6.9 0.0 36.8 27.0 1.3 559.0 121.6
DK 0.8 6.5 0.0 2.9 0.0 1.5 1.0 0.2 35.7 30.0
EE 0.0 0.5 0.0 0.2 0.0 1.4 0.3 0.0 8.3 6.1
FI 0.0 2.9 3.5 3.3 3.4 1.8 3.2 0.6 83.9 45.8
LT 0.1 0.5 0.1 0.1 1.1 0.0 1.4 0.0 10.2 9.9
LV 0.0 0.3 1.6 0.1 0.0 0.0 1.1 0.0 8.1 6.7
NO 0.0 2.4 41.8 0.0 0.0 0.0 0.6 0.0 135.7 6.8
PL 0.1 10.3 1.0 2.1 0.0 20.7 5.4 0.2 168.3 91.3
SE 0.1 9.0 16.7 3.2 7.0 0.1 3.3 0.5 144.2 51.8

could be simulated. A generic energy network optimisation tool called Back-103

bone [24] was used to set up a rolling stochastic unified UC&ED model for104

optimising the power system operations, briefly described in Section 2.3.105

2.1. Nordic case study106

The modelled Nordic power system included the countries around the107

Baltic sea, with the exceptions of excluding Russia and including Norway,108

as shown in Figure 1. The European Reference Scenario 2016 [25] results109

for the year 2030 were used for the country-level power and heat generation110

capacities, as well as their annual energy demands. The resulting country-111

wise generation capacities, as well as the yearly electricity and heat demands,112

are presented in Table 1. Similarly, the total transmission capacities between113

countries were based on the “NTC 2027 reference grid” in the Ten Year114

Network Development Plan (TYNDP) 2018 [26]. In order to get a finer115

depiction of the power system, the e-Highway 2050 project [27] “Large scale116

RES” scenario for the year 2030 was used as the base for the regional division117

seen in Figure 1, and the generation and transmission capacities within the118

countries were distributed accordingly. However, Germany and Poland were119

still represented by single country-wide regions to reduce the complexity of120

the model, as they were mostly included to provide a more realistic depiction121

of electricity trading between the Northern and Central European power122

systems.123
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Figure 1: Illustration of the scope of the modelled Nordic power system, and its division
into individual regions. The WILMAR project [28] heat areas used for generating the heat
demand time series are shown in colour.
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Fuel and carbon prices were obtained from the TYNDP 2018 [26] Market124

Modelling Data “2030 EUCO” scenario, and the CO2 content of the fuels125

were based on IPCC guidelines [29]. However, as biomass and biofuel prices126

weren’t available in the TYNDP 2018 data, estimated future prices from a127

report by Pöyry Management Consulting Ltd [30] were used for biomass in-128

stead. The cost of heating fuels were also increased by applying the minimum129

excise duty rates as required by the European Union [31].130

The technical parameters of the modelled power plants were based on131

the TYNDP 2018 Market Modelling Data [26], and the required amounts of132

frequency containment and restoration reserves in the Nordic countries were133

based on the Nordic System Operation Agreement [32] with the assumption134

that the new Olkiluoto 3 nuclear power plant becomes the dimensioning fault135

in the Nordic power system. The reserve requirements in the remaining coun-136

tries were estimated based on the Continental Europe Operation Handbook137

[33] parts P1 and A1. Replacement reserves were not included, as they are138

not used in the Nordic power system.139

2.1.1. Electricity and heat demand time series140

While the yearly demand for electricity and heat in Table 1 were based141

on the European Reference Scenario 2016 [25] and e-Highway [27] results, the142

hourly profiles were generated based on data from ENTSO-E transparency143

platform [34] for electricity demand, and from the WILMAR project [28]144

for heat demand. Instead of using the electricity and heat demand time145

series from the aforementioned sources directly, demand models detailed in146

Appendix A were used in order to generate demand forecasts based on147

the weather forecast data discussed in Section 2.2. Unfortunately, the heat148

demand data was only available for the areas shown in Figure 1, and the heat149

demand for the remaining regions was estimated using models parameterised150

with the existing data.151

2.1.2. Hydropower inflow time series152

Inflow data for hydropower reservoirs and run-of-river hydropower sta-153

tions was collected from various sources. Weekly inflow time series used154

for Norway and Sweden were originally simulated using EMPS [35]. The155

dataset was provided by SINTEF Energi AS (“Hydropower inflow for Nor-156

way and Sweden, 1958–2015”, received 24 October 2018). The EMPS areas157

were mapped to their corresponding regions, and the weekly inflow energies158

were divided into regulated inflow into reservoirs, and unregulated inflow into159
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Table 2: Variables used from ERA5 and ENS datasets. SSRD is the surface solar radiation
downwards and FDIR is the total sky direct solar radiation at surface (srf). The used
model levels are indicated using braces, and roughly correspond to altitudes of 107 m and
170 m.

variable ERA5 ENS
wind speed [m/s] 100 m, {86, 87} 100 m, {130, 132}
temperature [K] {srf, 86, 87} {srf, 130, 132}

pressure [Pa] {srf} {srf}
SSRDacc [J/m2] {srf} {srf}
FDIRacc [J/m2] {srf} {srf}

a [Pa]
336.77 {86}
162.04 {87}

302.48 {130}
122.10 {132}

b [–]
0.97 {86}
0.98 {87}

0.98 {130}
0.98 {132}

run-of-river hydropower stations. The data was re-sampled to hourly resolu-160

tion using linear interpolation, and the values were normalised to the annual161

totals from the European Reference Scenario 2016 [25]. Unfortunately, data162

for the year 2017, which was used as the weather data in Section 2.2, was not163

available for the entire modelled area and data from 2012 was used instead.164

Inflow data for Finland was derived from volumetric inflows from Finnish165

Environmental Administration [36], and inflows for the rest of the regions166

were based on data from the WILMAR project [28], again for the year 2012.167

2.2. Weather data manipulation168

The weather in the simulation was described using ERA5 [37] weather169

reanalysis data for the year 2017. ERA5 provides a great source of data170

for energy system modelling, including all spatial and temporal correlations171

which are paramount for modelling the impacts of VRE generation on the172

operation of energy systems. As for the weather forecast data, the ENS 15-173

day ensemble forecasts [38] were used, again for the year 2017. The data was174

obtained from the surface level and the model levels roughly corresponding175

to altitudes of 107 m and 170 m, as shown in Table 2 along with the other176

relevant parameters. Since the model levels are pressure based, the exact177

altitudes of the model levels vary depending on the surface temperature, and178

the aforementioned heights were estimated under fixed conditions.179
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2.2.1. Wind power conversion180

In order to calculate the wind power production, the wind speeds must181

first be estimated for the assumed hub heights. The height hl at different182

model levels l could be estimated using the equation [39]183

hl =
Tsrf

L

[(
pl
psrf

)−LR
g

− 1

]
, (1)

where Tsrf is the surface temperature, L is the atmospheric lapse rate of184

temperature, pl is the pressure at model level l, psrf is the pressure at the185

surface, R is specific gas constant and g is the gravitational constant. All the186

variables in Equation (1) depend on both the coordinates as well as time. In187

the case of a ENS-data, the variables also depend on the analysis time of the188

forecast and the ensemble member. The pressure pl could be calculated by189

applying model level dependent regression coefficients a and b in Table 2 to190

equation191

pl = al + blpsrf. (2)

The wind speed at altitude h was estimated using wind profile power law192

wh = wr

(
h

hr

)α
, (3)

where wr and hr are the reference wind speed and altitude, and α is the193

profile exponent defined by equation194

α =
log(wl[low]/wl[high])

log(hl[low]/hl[high])
, (4)

where the low and high subscripts refer to the model level number presented195

in Table 2. Due to the fluctuating height of the ERA5 and ENS model196

levels, the reference wind speeds wr were obtained from fixed reference height197

hr = 100 m for calculating the wind speeds for the assumed average wind198

turbine hub height of 140 m.199

After the wind speeds are know, the conversion into wind power produc-200

tion P (wh) is mainly dependent on two components: the wind resource at201

the the power plant site, and the technological parameters of the used wind202

turbines. These components can be combined into a power curve equation203

P (wh) = Ppc(Sr , cp, ρ, wh, wcut-off, wcut-off,∆), (5)
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where Sr is the specific rating, cp is the coefficient of performance, ρ is the air204

density, wh is the wind speed the at hub height h, wcut-off is the cut-off wind205

speed and wcut-off,∆ is the associated hysteresis wind speed range for running206

down the power plant. Equation (5) used a Gaussian filter to smooth the207

wind speeds according to the methodology in [40] in order to account for the208

resolution of the weather data and unknown turbulence intensities, and is209

explained in detail in Appendix B.210

2.2.2. Photovoltaic conversion211

A method by Pfenninger et al. [41] was used for converting ERA5 and212

ENS weather data to production capacity factors for solar photovoltaic (PV)213

panels. Unlike [41], however, the downward component of the direct irradi-214

ation (FDIR) and the total diffuse irradiation were used as inputs, and the215

diffuse irradiation was simply calculated as the difference of surface solar ra-216

diation downwards (SSRD) and FDIR. Furthermore, it was assumed that the217

panels were crystalline silicon with 10 % total system losses, and the panels218

were rooftop installed with no tracking capability.219

The tilt and azimuth angles were again based on [41], with the tilt angle220

of the panels β following the normal distribution221

β ∼ N (−9.06 + 0.78φ, (15◦)2), (6)

with the mean tilt angle depending on the current latitude φ, while the222

standard deviation was assumed to be 15◦. Similarly, the azimuth angle γ223

followed224

γ ∼ N (180◦, (40◦)2), (7)

where the mean azimuth angle of the panels was assumed to face south at225

180◦, and the standard deviation of the azimuth angles was assumed to be226

40◦.227

2.2.3. Forecast calibration228

As the realised and forecast and data were obtained from different data229

sources, the ensemble forecasts had to be calibrated in order to minimise230

any bias error. In order to reduce the computational burden, the bias was231

minimised for the modelled regions only, instead of calibrating the forecasts232

in every coordinate point separately. First, the aggregated capacity weighted233

regional time series of wind speed and irradiation were calculated for both the234

ERA5 and the ENS data based on the regional capacities and the assumed235
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power plant locations presented in Figure 2. The locations of most of the wind236

power plants were based on the wind power plant database [42], including237

power plants currently under development. However, data from [43] was used238

for Germany and Denmark for both wind and PV installations. For the rest239

of the regions, geospatial data for the solar PV installations was not available.240

Instead, the locations were estimated by clusterising the population density,241

and using the centre points of the resulting clusters. The weight used for the242

regional aggregation was the population density of the cluster, multiplied243

with the cluster area. The population density clustering was also used for244

weighting the temperature data for the heat and electricity demand models245

explained in Appendix A.246

In order to remove the bias error, the hourly median of the ensemble247

spread was calculated. Then, the error between the ERA5 data and the ENS248

data ensemble median ετ at horizon τ was represented using a generalised249

additive model250

E[ετ ] = f1(τ) + f2(Hτ ) + β0, (8)

where f1,2 are penalised B-splines functions, which all have 20 basis functions,251

Hτ is the hour of the day at horizon τ , and β0 is a constant. The pyGAM252

package [44] was used to solve Equation (8) for the suitable regression func-253

tions for correcting the forecast data. Finally, each ensemble member e was254

corrected using the obtained error255

Y corr
e,τ = Y raw

e,τ − ετ , (9)

where Y is the regionally aggregated weather quantity being corrected, namely256

wind speed, solar irradiation, or temperature. Figure 3 presents the bias and257

mean absolute error (MAE) of wind speed and SSRD in Germany before and258

after the bias correction.259

Since including the entire set of 50 ensemble forecasts into a large scale260

power system model was computationally infeasible, the number of the fore-261

casts needed to be reduced. The 20 %, 50 % and 80 % quantiles of the en-262

semble spread were used to represent the range of uncertainty in the power263

system model in order to guarantee a certain spread in the forecasts at all264

times. Figure 4 presents an example of the final wind power capacity factor265

quantile forecasts in Southern Finland, and the spread of the quantiles can266

clearly be seen to increase as the forecast horizon increases.267
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Figure 2: Illustration of the assumed wind and solar power plant locations. Wind power
locations are denoted using blue crosses and solar power locations are denoted using orange
disks. Geospatial data for solar in Germany and wind in Denmark was abundant, making
individual sites indistinguishable in the figure.
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(a) Wind speed bias (b) Wind speed MAE

(c) SSRD bias (d) SSRD MAE

Figure 3: SSRD and wind speed bias and MAE on different forecast horizons for Germany
before and after the bias correction.
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Figure 4: An example of the final wind power capacity factor quantile forecasts for the
first two weeks of the simulation in Southern Finland.

2.3. Power system simulation268

The rolling stochastic hydro-thermal scheduling of a future Nordic power269

system was performed using an open source mixed-integer linear programming-270

based generic energy network optimisation tool called Backbone [24]. The271

exact version of Backbone used in this work has been tagged as “VaGeRe-272

sults” in the online repository [45].273

The scheduling problem was formulated into a unified UC&ED model274

reminiscent of [14], but intended for longer modelling horizons required by275

reservoir hydropower and the extended weather forecasts. Figure 5 presents276

an illustration of the stochastic structure of a single solve in the rolling op-277

timisation, after which the solution for the first six hours was recorded and278

the model was solved again starting six hours later in time. The first six279

hours of each solve represent the operational dispatch of the power system,280

where the power system has perfect information and dispatches itself accord-281

ingly. From the seventh hour up until the desired forecast horizon, the power282

system has to rely on the uncertain quantile forecast information to commit283

reserves for the next solve, as well as how to prepare to operate the system284

in general. The quantile forecasts were updated every 24 hours of model285

time, as new information became available. In order to reduce the compu-286

tational burden, the time resolution of the model is progressively decreased287
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Figure 5: Illustration of the forecast-time structure of a single solve of the unified UC&ED
optimisation. The dotted lines demonstrate the changes in the structure and data when
the forecast horizon is varied between simulations.

beginning on the nineteenth hour, first to three hour time steps, and then288

even further as shown in Figure 5. The time resolution from the 36th hour289

until the 348th hour was varied between 6, 12, and 24 hours to determine290

whether the chosen time resolution has a significant impact on the results.291

From the forecast horizon until the end of the model horizon at 17,520 hours,292

the three quantile forecasts converge into a single deterministic forecast using293

statistical monthly averages.294

The impact of extending the VRE forecasts was studied by varying the295

length of the period when the model used the quantile forecast data before296

transitioning into the long-term statistical data, as illustrated in Figure 5.297

The modelled forecast horizons included the 36 hours ahead horizon as a298

baseline, and each subsequent horizon every 24 hours until the longest mod-299

elled forecast horizon of 348 hours ahead. These horizons were chosen to take300

full advantage of the ENS 15-day ensemble weather forecast data discussed301

in Section 2.2.302

The objective function used in the unified UC&ED problem303

vobjective =
∑
f,t

[
pprobability
f,t

(∑
u

[
cstartup&emission
u vstartup

u,f,t

+
(
cO&M
u vgeneration

u,f,t +
∑
F∈Fu

[
cfuel&emission
u,F vfuelUse

u,F,f,t

])
∆t

])] (10)

aimed to minimise the objective variable representing the total expected op-304

erational costs of the power system over all forecasts f and time steps t.305
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Each forecast-time step was assigned a probability parameter, assumed to be306

0.6 for the 50 % quantile forecast, 0.2 for both the 80 % and 20 % quantile307

forecasts, and 1.0 for both the realisation and the long-term statistical fore-308

cast. The startup&emission cost parameter included all the operational and309

maintenance, fuel, and emission related costs associated with the unit startup310

variable, while the operations and maintenance (O&M ) and fuel&emission311

cost parameters were handled separately along with the unit energy gen-312

eration and fuelUse variables respectively. As the generation and fuelUse313

variables represent average power during time step t, they were multiplied314

with the length of the time step ∆t to obtain the total costs over the time315

step. The presented objective function in Equation (10) has been simplified316

from its full formulation in [24] for clarity by omitting grid and node di-317

mensions, as well as all unused terms. In the model, nodes represent points318

for calculating energy balance, while grids are used to group nodes with the319

same energy carrier together.320

The hydropower reservoirs were modelled as simple energy equivalent321

aggregate reservoirs, one for each of the modelled power system region with322

reservoir hydropower. The dynamics of the reservoirs were governed by the323

generic energy balance equation324

vstaten,f,t − vstate
n,f,t−1 =

( ∑
n′∈Nn

[
(1− ptransferLoss

n′,n )vtransfer
n′,n,f,t − vtransfer

n,n′,f,t

]
+
∑
u∈Un

[
± vgeneration

n,u,f,t

]
− vspill

n,f,t ± τ
influx
n,f,t

)
∆t

∀{n, f, t},

(11)

where the state variables were used for keeping track of the amount of energy325

stored in the reservoir nodes, and water inflow was represented using the326

influx time series. The reservoir nodes were not connected to any other327

nodes via transfer variables, but were able to spill excess energy using the328

spill variable. The generation variable and the influx time series are included329

in Equation (11) using a ± for clarity, as they can be both positive and330

negative depending on the desired application. The set Nn contains all nodes331

n′ connected to node n via energy transfer variables, and the set Un contains332

all the units u that either output energy to node n, or draw energy from it as333

input using the generation variable. The transferLoss parameter was simply334

assumed to be 0.01 for all transmission lines, regardless of their capacity335

or length. The presented Equation (11) has been simplified from its full336
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formulation in [24] by omitting the grid dimension, as well as all unused337

terms. Run-of-river hydropower was aggregated similarly to the reservoir338

hydropower, except that no state variables were used in Equation (11) as339

run-of-river power plants were assumed to lack significant amounts of storage.340

Equation (11) was also used for ensuring the balance of the power and341

heat systems by removing the state and spill variables, essentially reducing342

the equation to a power balance constrain instead. The transfer variables343

represented power transmission in the power grid, and the influx time series344

represented the power and heat demands. Neither power nor heat nodes were345

allowed to use the spill variable to get rid of excess energy in the system.346

Further constraints were implemented to restraint power transmission ca-347

pacities, reserve balance and provision, as well as unit conversion efficiencies348

and online dynamics. These constraints are not presented here, however, as349

they are not crucial for understanding this study. Instead, interested read-350

ers are instead encouraged to take a look at the full model methodology351

presented in [24].352

3. Results353

The impact of extended weather forecasts on the operation of the mod-354

elled Nordic power system was studied by performing full year rolling stochas-355

tic unified UC&ED simulations using different forecast horizons. The time356

resolution between the 36th hour and the 348th hour of each solve was re-357

duced to improve computational performance, and the power system sim-358

ulations were carried out using time resolutions of 6 hours, 12 hours, and359

24 hours. The total computational time of the simulations was 27–77 hours360

when using the 6-hour time resolution depending on the modelled forecast361

horizon length, and 18–24 hours using a 24-hour time resolution on a Intel R©
362

Xeon R© CPU E5-2620 @ 2.00 GHz using GAMS 24.0.2. The simulations with363

the 12-hour time resolution took around 17–30 hours depending on the mod-364

elled forecast horizon, but were run on Intel R© Xeon R© CPU W3690 @ 3.47365

GHz using GAMS 24.1.3 instead, so the computational times are not directly366

comparable.367

Figure 6 presents the total yearly operational costs of the simulated power368

system as a function of the modelled forecast horizon, as well as the differ-369

ent cost components, with all the simulated forecast time resolutions. As370

hypothesised, the total operational costs of the power system could be seen371

to decrease as the modelled forecast horizon increases, but only until around372
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132–156 hours ahead. Interestingly, the total fuel and emission costs of the373

power system increased at forecast horizons above 132 hours, while the O&M374

and startup costs of the units maintained a slight decreasing trend. Overall,375

the total operational cost savings achieved by increasing the forecast horizon376

remain rather modest, only around 0.20–0.35 % (58–99 MEUR) per year. The377

total yearly CO2 emissions behaved similarly to the total fuel and emission378

costs presented in 6b, decreasing by around 0.33–0.94 % (0.90–2.54 MtCO2).379

As expected, the better accuracy of smaller time resolutions was seen to380

result in the lowest total yearly operational costs for most of the modelled381

forecast horizons. The differences in the total costs of the 12-hour and 24-382

hour time resolutions compared to the 6-hour resolution were relatively mod-383

est, between 0.00–0.05 % (−2–14 MEUR) and 0.04–0.10 % (11–28 MEUR) re-384

spectively. Even though the absolute values differ slightly between the used385

time resolutions, the overall trend in the different costs for the different fore-386

cast horizons remained quite similar. Interestingly, however, while the 6-hour387

time resolution resulted in the lowest total O&M and startup costs of all the388

tested resolutions, its fuel and emission costs were noticeably higher than389

those of the 12-hour and 24-hour resolutions.390

The total electricity generation by source over the modelled year is pre-391

sented in Figure 7a, with the changes compared to the 36 hours ahead fore-392

cast horizon highlighted in Figure 7b. The use of biomass could be seen to393

increase noticeably, by around 13–23 % (5–8 TWh), until a forecast horizon394

of 156 hours ahead. The increasing biomass generation replaced both coal395

and gas generation, decreasing them by around 5–8 % (3–6 TWh) and 1–4 %396

(2–6 TWh) respectively. Interestingly, while gas generation was observed to397

decrease until the longest modelled horizon of 348 hours ahead of time, coal398

generation reached its minimum at the 156 hour horizon, after which it was399

observed to slowly increase again.400

Figure 8 presents the share of total curtailed wind power production, as401

well as total spilled hydropower relative to the yearly inflows, as a function402

of the modelled forecast horizon. Both the curtailment of wind power and403

hydropower spillage could be seen to decrease as the modelled forecast hori-404

zon increased. PV generation was not curtailed in any of the simulations due405

to it having the cheapest operational costs of all the modelled generation406

technologies. However, the wind and hydropower resources were already al-407

most fully utilised before extending the forecast horizon, so the reductions in408

curtailment and spill remained modest around 0.10 pp. Unlike with the total409

yearly operational costs, no clear differences in wind power curtailment and410
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(d) Total startup costs

Figure 6: Total yearly operational costs (a) of the power system as a function of forecast
horizon with multiple time resolutions, as well as a breakdown of the individual cost
components. The fuel and emission costs (b) can be seen to account for the majority of
the total costs, while the O&M (c) and startup (d) costs play less significant roles.
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Figure 7: Total electricity generation by source for different modelled forecast horizons
with 6-hour time resolution (a), and its changes compared to the 36 hours ahead forecast
horizon (b). Darker shades of grey indicate a shorter forecast horizon. Oil-fired generation
has been omitted due to negligible total generation levels below 1 GWh with all modelled
forecast horizons.
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(c) Reservoir spill

Figure 8: Share of total curtailed wind power production (a), as well as the total spilled
run-of-river (b) and reservoir hydropower (c) relative to their yearly inflows as a function
of forecast horizon with multiple time resolutions.

hydropower spillage between the different time resolutions could be seen.411

Figure 9 presents the total energy in all the hydropower reservoirs over the412

simulations with different forecast horizons. The extended weather forecasts413

only have a barely noticeable impact on the total use of hydropower reser-414

voirs, although the relative differences in reservoir energy content between415

the horizons could be up to around 13–16 % in spring, when the reservoir lev-416

els were at their lowest. For individual reservoirs and especially for pumped417

hydro storage plants, the differences between the simulations were higher,418

but didn’t seem to impact the overall use of reservoir energy.419

4. Discussion420

While the total yearly operational costs of the modelled power system421

could be seen to decrease when increasing the forecast horizon beyond 36422

hours typical of day-ahead simulations, the benefits rather quickly stagnated423

around forecast horizons of 132–156 hours. Most of the observed cost de-424

creases at forecast horizons between 36–132 hours due to the rapid decline425

in fuel and emission costs shown in Figure 6b, driven by cheaper biomass426

based generation replacing coal and gas based generation as seen from Fig-427

ure 7b. With longer forecast horizons of 132–348 hours, however, the total428

fuel and emission costs could be seen to slowly increase, along with coal based429

generation.430
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Figure 9: Total energy in all the hydropower reservoirs over the simulations with different
forecast horizons using the 6-hour time resolution. Darker shades of grey indicate a shorter
forecast horizon.

The observed increase in fuel and emission costs could potentially be ex-431

plained by the increasing spread of the quantile forecasts at longer horizons,432

as seen in the example forecasts presented in Figure 4. With sufficiently433

large forecast uncertainty at the end of the forecast horizon, the expected434

operational cost minimisation could favour excessively robust solutions, but435

determining the exact mechanism through which the costs were increased is436

challenging. While the model was observed keeping increasing amounts of437

idle capacity online on longer forecast horizons, slightly decreasing the aver-438

age efficiency of the generation fleet, this effect alone couldn’t fully explain439

the observed increase in fuel and emission costs.440

Another possible way for the model to brace itself for the perceived un-441

certainty could have been to use reservoir hydropower more sparingly. This442

was considered unlikely, however, as there were no significant differences ob-443

served in total stored reservoir energy as the forecast horizon was increased,444

as shown in Figure 9, nor in the total hydropower generation shown in Fig-445

ure 7b. Based on these results, it would indeed seem that accounting for446

short-term VRE variability in long-term hydro-thermal expansion planning447

[17, 19, 18] wouldn’t result in significant differences on the long-term schedul-448

ing. However, in order to ascertain this, the long-term stochasticity in yearly449
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hydropower inflows would have to be properly accounted for in addition to450

the short-term VRE variability. Furthermore, increasing the forecast horizon451

length was observed to affect the operational strategies of differently sized452

reservoirs individually. Even though the differences evened out when com-453

paring the total reservoir energy of the system in the simulations, assessing454

the implications of extended forecast horizons on energy storages of different455

sizes could be a topic for further research.456

All in all, the results show that there was some additional value in ex-457

tending the forecast horizon beyond the day-ahead horizon of 24–36 hours458

typically used in existing literature on stochastic UC&ED [11, 12, 13, 14, 21,459

15, 20]. However, no clear savings were observed beyond forecast horizons of460

around 132–156 hours ahead of time. It is also worth noting that since most461

of the observed system cost savings were achieved via biomass replacing coal462

and gas, the results are potentially quite sensitive to the fuel and carbon463

price assumptions. Furthermore, while the observed decrease in CO2 emis-464

sions was not quite as negligible as the one in the study by Erichsen et al.465

[22], it still remained relatively small compared to the total yearly emissions466

of the modelled Nordic power system.467

Increasing the modelled forecast horizon was observed to reduce both the468

curtailment of wind power, as well as the spillage of reservoir and run-of-river469

hydropower, as seen in Figure 8. However, the modelled power system was470

large and flexible enough to be able to utilise most of these resources already471

at the shortest modelled forecast horizon of 36 hours, making the reductions472

in wind power curtailment and hydropower spillage largely negligible. The473

impact of extended weather forecasts in decreasing wind power curtailment474

and hydropower spillage could be more meaningful in a different case study475

with a significant reliance on VRE generation, or in an isolated system. Such476

case studies could be an interesting line of possible future work, along with477

determining if improving the accuracy of the ensemble forecasts past the478

132 hour mark would result in meaningful improvements for the optimal479

scheduling of the power system.480

Somewhat surprisingly, the overall trends in both the total yearly opera-481

tional costs as well as the wind power curtailment and hydropower spillage482

were found to be rather consistent across the 6-hour, 12-hour, and 24-hour483

time resolutions. While each time resolution had noticeably different cost lev-484

els, the costs behaved in a similar manner for all of the time resolutions when485

the forecast horizon was increased. Since the simulations with the coarser486

time resolutions didn’t affect the trends in the results, it would seem that487
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adjusting the time resolution could be useful e.g. for acquiring preliminary488

results in less time.489

5. Conclusions490

This work aimed to study the potential benefits of using extended weather491

forecasts for improving the hydro-thermal scheduling of hydro-dominated492

power systems. While the total yearly operational costs were seen to de-493

crease as the modelled forecast horizon was increased beyond the typical494

day-ahead horizon of 36 hours until around 132–156 hours, the relative costs495

savings remained relatively small at around 0.20–0.35 % per year. Further496

cost reductions were not observed with forecast horizons between 156–348497

hours, but further research is required to ascertain whether this is due to the498

increasing spread of the underlying ensemble weather forecasts, or due to the499

properties of the modelled power system.500

Similarly, only slight decreases of around 0.10 pp in wind power curtail-501

ment and hydropower spillage were observed. However, the modelled Nordic502

power system was already able to utilise its wind and hydropower resources503

almost fully at the 36 hours ahead forecast horizon. Further research is re-504

quired to see if extended weather forecasts could reduce wind power and505

hydropower spill in more isolated power systems, or in power systems with506

significantly higher dependance on VRE resources.507
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Appendix A. Demand models517

Generally, both electricity and heat demand on large enough scales are518

dependent on ambient temperatures due to e.g. direct electrical heating.519
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Additionally, both demands are also dependent on daily cycles due to societal520

patterns, such as business days and industrial processes. In this work, the521

electricity demand Delec
t at time t was modelled using a generalised additive522

model523

E[Delec
t ] = f1(Tt) + f2(Ht) + f3(Bt) + f4(mt) + β0, (A.1)

where Tt is the ambient temperature, Ht is the hour of the day, Bt is a boolean524

for business days, mt is the month, and β0 is a constant. The penalized B-525

spline functions from f1,...,4 were estimated using pyGAM [44]. Similarly, the526

heat demand Dheat
t followed527

E[Dheat
t ] = f1(Tt,MA24) + f2(Tt) + f3(Ht) + f4(Wt) + f5(mt) + β0, (A.2)

where Tt,MA24 is the 24-hour moving average of the ambient temperature Tt,528

and Wt is the weekday. Tables A.3 and A.4 present the bias, MAE, and529

standard deviation of the errors in the electricity and heat demand models530

respectively.531

Table A.3: Bias, MAE and standard deviation (sd) of errors of the electricity demand
model in Equation (A.1). The values are given as per units from the peak demand.

country bias/10−12 MAE sd
DE 1.005 0.041 0.055
DK 0.660 0.025 0.032
EE 0.934 0.030 0.039
FI 1.028 0.020 0.026
LT 1.018 0.033 0.043
LV 0.970 0.035 0.045
NO 0.857 0.017 0.024
PL 1.051 0.036 0.052
SE 0.912 0.023 0.030

Appendix B. Power curve model532

The per unit wind power conversion from wind speed to power can be533

expressed as534

Ppu(w) =
1

2Sr
ρw3cp, (B.1)
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Table A.4: Bias, MAE and standard deviation (sd) of errors of the heat demand model in
Equation (A.2). The values are given as per units from the peak demand.

heat area bias/10−12 MAE sd
DK W Rural 0.256 0.042 0.056
SE M Urban 0.219 0.060 0.076
SE M Rural 0.099 0.061 0.076
FI R Rural 0.302 0.050 0.066
SE N Rural 0.206 0.062 0.078
DE All 0.206 0.025 0.033
DK E Urban 0.205 0.039 0.054
SE S Rural 0.188 0.061 0.077
FI R Urban 0.276 0.057 0.071

where Sr is specific rating, which is the rated power divided by the swept535

area of the rotor Sr = Pmax / A , ρ is the density of the air, w is the wind536

speed at the desired height and cp is the coefficient of the performance. An537

important parameter that can be derived from Equation (B.1) is the rated538

wind speed539

wrated = 3

√
2Sr

ρcp

, (B.2)

showing that by lowering the specific rating or by increasing cp, the rated540

wind speed can be lowered. As the wind speed increases, the wind speed541

reaches a cut-off wind speed, wcut-off which after the power production is run542

down. The power curve model in this work assumed that the power produc-543

tion was run down linearly from Ppu(wcut-off − wcut-off,∆) = 1 to Ppuwcut-off +544

wcut-off,∆) = 0. Furthermore, wcut-off was assumed to be equal to 22 m/s and545

the hysteresis parameter wcut-off,∆ was assumed to be equal to 1 m/s.546

However, Equation (B.1) has two major drawbacks: first, the equation547

assumes that the wind resource has no turbulence, and second, the ERA5548

wind speed data has 0.25◦ spatial resolution and the value must correspond549

to the total wind power production over the wind power plants in the 0.25◦550

grid. Following the methodology in [40], a Gaussian filter was used to smooth551

the power curve in (B.1) according to552

P (w, δw, σ) =

∫ ∞
v=0

Ppu(v + δw)f(v, w, σ)dv, (B.3)
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where f(v, w, σ) is the probability density function of a normal distribution553

with mean w and standard deviation σ, and δw is a correction constant554

for the wind speed. It was assumed that the standard deviation follows the555

equation σ = Iw, where I is the turbulence intensity. In practice, the integral556

in Equation (B.3) was discretised and the upper limit for the sum was 50 m/s.557

The zero turbulence power curve Ppu(w) and it’s cp can be calculated558

using a method presented in [46], which is based on iterating Equation (B.3)559

and assumes that the zero turbulence power curve has a constant cp between560

cut-in and rated wind speed. In theory, the state-of-the-art variable speed561

wind power plants can operate with optimal cp by operating the turbine at562

the optimal tip-speed ratio by regulating the pitch angle. In this work, zero563

turbulence curves were solved for five different wind power technologies used564

in ten different wind power plants in Finland using sales power curves, which565

are standardised using IEC standard [46] ρ = 1.225 kg/m3 and turbulence566

intensity I = 0.1w. These zero turbulence power curves were assumed to be567

reasonable for the other modelled countries as well, and were used for all of568

the modelled power system regions.569

Additionally, since the turbulence intensity in the ERA5 data is unknown,570

the standard deviation in the Gaussian filter was estimated as571

σ(a, b) = a+ bwERA, (B.4)

following the methodology in [47]. The values for the parameters a, b and δw572

were determined by minimising the weighted absolute error over time t, using573

weights u(wt) from the wind speed distribution probability density function574

and using ERA5 wind speeds from 100 meters575

min
δw,a,b

8760∑
t=1

u(wERA,t) |Φt − P (wERA,t, δw, a, b)| , (B.5)

resulting in a = 0.35 and b = 0.075, where Φt was the measured wind power576

production from the Finnish wind power plant. The wind speed correction577

term δw varied from site to site, and it’s main purpose was to correct bias578

between the ERA5 and actual wind speeds, such that the parameters a and579

b from different sites and wind power technologies were comparable. This all580

results into the power curve model581

P (w) = Ppc(Sr , cp, ρ, w, wcut-off, wcut-off,∆). (B.6)
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