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ABSTRACT

The unsteady flow around a tractor thruster is simulated by solving the RANS equations with a sliding mesh
technique. A multiblock Navier—Stokes solver (FINFLO) developed at Helsinki University of Technology is used
in the calculations. In this paper a computational method with special emphasis on the sliding mesh technique is
described. The flow over a BB series propeller is analysed and a comparison with experimental data is made. This
calculation is made with a fine grid and used as a reference for the rest of the computations, where the flow around
the tractor thruster is simulated. The thruster consists of the BB-series propeller, a pod and a strut. The sliding
surface is located between the propeller and strut. The calculations are performed in two different ways. In the
first case the flow quantities are circumferentially averaged on the sliding surface in order to reduce computing

time. The second calculation is time-accurate.

INTRODUCTION

Azimuthing propulsor systems have long been con-
fined to low propulsive power levels. The reason is
the limitation of torsional moments that can be trans-
mitted by Z-drive units. Podded propulsors have re-
moved such a limitation. An electric motor coupled
directly to the propeller is housed inside a pod and
located as a separated unit outside the ship hull. Pod-
ded propulsors have many advantages over conven-
tional ones, e.g. improved wake to the propeller,
and, consequently, reduction of vibrations and noise,
better manoeuvrability, simpler engine control and
more flexibility for the selection of ship forms in
the hydrodynamic design of the stern. This also al-
lows space savings as well as higher propulsion effi-
ciency. Over the last decade Kvaener Masa-Yards and
ABB have pioneered the use of this innovative Diesel-
electric propulsion system for high propulsive power
levels. They have named it Azipod (azimuthing pod-
ded drive).

In recent years Reynolds Average Navier—Stokes
(RANS) solvers have been increasingly applied at
several research institutions around the world for the
prediction of the flow around marine propeller blades.
At the Technical Research Centre of Finland (VTT)
the application of RANS solvers to marine propeller
analysis started in 1995 with encouragingly good res-

ults [1]. Since then the application of RANS solvers
have been extended to more complex propeller con-
figurations, e.g. to podded propulsors. In such com-
plicated geometries the flow is basically unsteady,
which should be taken into account in the computa-
tional model.

There are different approaches to solving the
Navier—Stokes equations in the case of rotating ma-
chinery. The most accurate and straightforward one
is to divide the computational mesh into stationary
blocks fixed to the non-rotating part of the machinery
and into rotating blocks. They are connected to each
other through a sliding surface. The problem with
this approach is that the flow is modelled as being
time dependent, which requires a great deal of com-
puting time. Another and cheaper method is to find
a steady-state solution in a rotating coordinate sys-
tem. Then the velocities are expressed in the rotat-
ing frame and extra Coriolis and centrifugal forces
are introduced into the Navier-Stokes equations. A
disadvantage of this approach is that there might be
numerical problems far away from the rotating axis,
and also for turbulence modelling one must keep in
mind what velocities should be used to define the
strain and vorticity rates. An alternative approach is
to use the absolute Cartesian velocities in the rotating
frame. This method is accurate only with axisymmet-
ric flows, but is applied in the present study for the



unsteady flow around the Azipod, and compared to
the time-accurate calculation with the sliding mesh.

The multiblock Navier-Stokes solver (FINFLO)
used in this study has been developed at Helsinki Uni-
versity of Technology [2]. The original code has been
extended for incompressible flows using a pseudo-
compressibility method [3]. In the following, the
physical modelling and the solution methods used
are described. Next, the steady-state analysis of a
BB series propeller is provided, and the results are
compared with experimental data. This calculation
is made with a very fine grid to serve as a refer-
ence for the rest of the computations. A quasi-steady
analysis is then performed for the tractor thruster us-
ing circumferentially averaged conditions on the slid-
ing surface. The thruster consists of the above men-
tioned BB-series propeller, a pod and a strut. The fi-
nal calculation for the thruster is time-accurate and
the sliding-mesh technique is applied. Comparison
between the calculated and the mean experimental
thrust and torque forces is provided, and some details
of the flow are illustrated. The validation presented
in this paper has been possible thanks to the release
of some experimental data from some of the first pre-
liminary versions of the Azipod system.

SOLUTION METHODS
Governing Equations

The flow simulation is based on the solution of the
Reynolds averaged Navier—Stokes equations in a co-
ordinate system which rotates around the z-axis with
an angular velocity Q. Turbulence is modelled using
the k£ — e-model. The rotational speed of the domain is
(0 x 7= [0, -0z, Qy]T. The equations can be written
in a conservative form without the energy equation as

a_U + a(F_Fv) + a(G_Gv) + a(H_Hv)
ot Oz Oy 0z

=Q
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where U is a vector of conservative variables U =
[0, pu, pv, pw, pk, pe|T, p is the density, u, v and w
are the absolute velocity components in a Cartesian
coordinate system, and ) is a source term. In the
steady-state solution the time-derivative term is mean-
ingless and is only utilized in the numerical solu-
tion. Instead, a source term is introduced in the
momentum equation [4]. Altogether with the tur-
bulence equations, the source term becomes ) =
[0,0, pQuw, —pQv, Qr, Q]*. Thus in the quasi-
steady simulation the source term () has non-zero
components for the equations for y- and z-momentum
and turbulence. In the time-accurate integration the
source terms for the turbulence equations are retained,

but there are no source terms in the momentum equa-
tion and the time-derivative must be discretized accur-
ately. However, the differences in these two simula-
tion approaches are small.

The inviscid fluxes are
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where p is the pressure. The kinetic energy of tur-
bulence 2/3pk is connected with the pressure and
appears here in the convective, i.e. inviscid fluxes.
Above the convective, i.e. the relative speeds are

ﬁi:ui—(ﬁxf’). (3)
]

In this case the individual components are
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where the viscous stress tensor is
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The anisotropic and the shear stress parts of the Reyn-
olds stresses pu;'uyj — %pkdij are included in the vis-
cous fluxes. The stress tensor (6) contains a laminar
and a turbulent part. For the Reynolds stresses the

Boussinesq approximation is used

o [au] Ou;

—pu;u; = pr +

2

where pp 1s a turbulent viscosity. The diffusion coef-
ficients of the turbulence quantities are written as
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where o}, and o, are the appropriate Schmidt’s num-
bers.

Turbulence Modeling

In the low-Reynolds number k — € model, the solution
is extended to the wall instead of using a wall-function
approach [5]. The source term for Chien’s model is
given as
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where y, is the normal distance from the wall, and yT
is defined by
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In Chien’s model € is solved instead of €. The variable
€ 1s defined so that it obtains a zero value at the wall
and the true dissipation can be expressed as € = € +

wk . . .
2——. The production of turbulent kinetic energy is

modelled using Eq. (7)
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In the k — € model the turbulent viscosity is calculated
from

P = —pu

an

k2
pr =c, 2 - (12)

In order to avoid unphysical growth of the turbulent
viscosity ur, e.g., near the stagnation point, the pro-
duction of turbulent kinetic energy P is limited as

suggested by Menter [6]
P = min(P, 20 pé) (13)

According to the conducted tests [6], the maximum
of the ratio P/pé inside shear layers is about two
and, therefore, this limit should not affect the well—
behaving regions of the flow field. Only the problems
encountered near the stagnation point will disappear.

The equations for k& and € contain empirical coef-
ficients. In this study the following coefficients are
applied

c = 14 o, = 1.0
2 = 192(1—0.22e Re2/36) 5. = 1.3
cu = 0.09(1— e 00137
(14)
where the turbulence Reynold’s number is defined as
Rer = p—kf (15)
L€

Numerical Methods
Basic Features

Since the flow is incompressible, the time derivative
of density in Eq. (1) disappears. In a pseudocom-
pressibility approach [3] this is replaced by an arti-
ficial time derivative of pressure, and the continuity
equation V - V=0is replaced by

1 6P -
@E'FV'V:O (16)

where P = p/p. In the present approach the ori-
ginal conservative fluxes are retained, but utilizing the
chain rule we obtain

3 _0p0p _ 10 -
or ~ dpor  por

i.e. the derivative dp/dp is replaced by an artificial
pseudocompressibility factor 1/82 [7]. The following
continuity equation is obtained

1 dp -

ﬂ28T+V-pV—O 18)
The flow equations are solved using Roe’s method [8],
which was originally designed for compressible flow,
but can be applied with the artificial compressibil-
ity concept. In the derivation of the Jacobian matrix
of the flux-vector, the pseudolinearization 9p/dp =
1/68? is applied for each density-derivative term. In
the original method (16) a pressure-derivative term is
added only into the continuity equation. In the present



way the characteristic speeds reduce to simple expres-
sions of A;,2 = u £ 8. With a compressible flow the
corresponding speeds are A\ 2 = u % ¢, where c is
the speed of sound. This makes the flux calculation
straightforward and similar to the compressible for-
mulae. The flux is calculated as

F=T71F(TU) (19)
where T is a rotation operator that transforms the de-
pendent variables to a local coordinate system normal

to the cell surface. In this way, only the Cartesian
form F of the flux is needed. This is calculated from

FULU™ = Z[FUY+FOU]

K
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k=1

N = DN =

where U! and U™ are the solution vectors evaluated
on the left and right sides of the cell surface, r(¥)
is the right eigenvector of the Jacobian matrix A =
OF/8U = RAR™!, the corresponding eigenvalue is
M%) and a(®) is the corresponding characteristic vari-
able obtained from R~16U, where SU = U™ —Ut. A
MUSCL-type approach has been adopted for the eval-
vation of U* and U”. In the evaluation of U! and U,
primary flow variables (p, u, v, w), and conservat-
ive turbulent variables (pk, pe) are utilized. For the
turbulence quantities, flux calculation utilizes second-
order upwinding with a limiter of van Albada [9].

It should be noted that the flux calculation based
on Eq. (20) can be interpreted as a central difference
+ a damping term. With an incompressible flow this
damping term is based on @ and is non-physical, but
works properly. Since the damping term is not phys-
ically accurate, as is the case with the compressible
flow assumption, it has been simplified and only sig-
nificant terms are maintained.

Discretization

The quasi-steady approach and the time-accurate
solution utilize the same basic steady-state algorithm.
Since the differences between the two approaches are
small, in the following the main features of the steady-
state solution are firstly described. In the present solu-
tion, a finite-volume technique with a structured grid
is applied. The flow equations have a discrete form

dU; _ £ p b
Vigr =2 —S(F-F)+ViQi=R; (1)

faces

where the sum is taken over the faces of the computa-
tional cell. The inviscid part of the flux is

20
pulU +ngp
F= va + nyp (22)
pw(j +n.p
eU + pU

Heren J+ ny_;+ n ZE is the unit normal vector of the
cell face, U = ngyu + nyv + n,w is the velocity com-
ponent normal to a stationary cell surface, and Uis
the convective velocity relative to the moving cell sur-
face. The same flux formula is applied in the case of
the time-accurate solution. In both cases the viscous
fluxes are evaluated using a thin-layer approximation.
The thin-layer model is activated in all coordinate dir-
ections.

Eq. (21) is integrated in time implicitly by apply-
ing the D D AD I-factorization [10]. This is based on
the approximate factorization and on the splitting of
the Jacobians of the flux terms. The resulting impli-
cit stage consists of a backward and forward sweep in
every coordinate direction. The boundary conditions
are treated explicitly, and a spatially varying time step
is utilized. Hence, the integration is not accurate in
time, but provides an iterative way to approach the
steady-state. In order to further accelerate the con-
vergence, multigrid cycling is used. The method of
Jameson [11] with a simple V-cycle has been adop-
ted. When the multigrid is activated, turbulence is
not evaluated on the coarse levels. Instead, the turbu-
lent viscosities are transformed onto the coarse grid
levels, as are the other flow variables. This treatment
is essential when the k — e-model is used, and it may
also improve the stability with the algebraic model.
More details of the solution algorithm are given in [4]
and [12].

The time-accurate integration shares the same basic
features described above, but now the pseudo time-
integration is performed inside a physical time step
and a true time derivative is added on the right-hand
side of Eq. (21). A three-level fully implicit scheme
is applied for the time-integration [13]. Then the re-
sidual R; defined by the right-hand side of Eq. (21) is
discretized in time as

3Unt —4un 4 Un?
Ri= -V 2At

- D SE —EpTY + QP23

faces

Here n indicates the time level and At is a physical
time step. From Eq. (23) it is seen that the time-
derivative term is treated as a source term. It should



Propeller block ghost cells
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Figure 1: Interface between a moving block and a sta-
tionary block.

be noted that the time-derivative term replaces the ad-
ditional source terms caused by the rotation and here
@ only stands for the sources in the turbulence equa-
tions (9).

In the time-accurate case a kind of steady-state in-
tegration inside the true time step is performed us-
ing the solution methods described above. The left-
hand side of Eq. (21) is utilized in the iteration exactly
in the same way as in the steady-state calculation.
The iteration converges as the residual of Eq. (23)
approaches zero. During the solution the grid block
describing the impeller rotates and a new position as
well as the geometrical properties including the new
rotational speeds are calculated as the calculation pro-
ceeds to the next time level. The impeller is connected
to the rest of the domain using a sliding mesh tech-
nique. As a result the grid lines between the impeller
blocks and the stator are discontinuous. A mass con-
serving interpolation is made between the connecting
blocks at every time step [14]. This is discussed in the
next section.

The flow solver utilizes a multiblock grid. The
boundary conditions between the blocks are treated
explicitly and only on the highest grid level. In order
to decrease computational times the code is parallel-
ized. The parallelization is done over the blocks. The
details concerning the parallelization can be found
from Ref. [15].

Sliding Mesh Model

The sliding mesh technique is ideally suited for prob-
lems involving rotor/stator interactions, e.g. pro-
peller/ship hull geometry. In the sliding mesh tech-
nique two grids are employed: one for the stationary
components and another for the propeller. The pro-
peller grid moves with respect to the stationary grid
along a sliding surface. Fig. 1 illustrates the interface
between a propeller block and a stationary block.
Since the grid lines across the sliding surface are

not continuous, the information transfer across the
surface has to be done using interpolation. A con-
servative interpolation can be evaluated discretely as
follows: Let C; be the discrete flux in the propeller
block to be interpolated at a particular ¢ position from
the discrete flux in the stationary block. A piecewise
constant projection of C from one grid on to the other
is [14]

Cj =Y CuNJ"
m
where

0, if pry1/2 < @j_1/2
0, if prm—1/2 > Pjr1/2
N]m = 1 min(¢m41/2,05+1/2)
—— [ d¢,otherwise
A¢j max(Pm_1/2:9;5-1/2)
The N™ represent the relative area (angle) of over-
lap of cell m onto the cell j, (0 < N* < 1). The

discrete flux balance is maintained as

> CiAg; =) Cnlpn

7 m
since Zj N}”Aqﬁj = Ay = ¢m+1/2 - ¢m—1/2-

In the flow solver used in this study, it is required
that at one time step (e.g. ¢ = 0) the surface grids on
the opposite sides of the sliding surface match each
other. This means that the grid point clustering in the
circumferential direction must be the same on both
grids. The information transfer across the sliding sur-
face is handled in two phases. In the first phase, the
values in the ghost cells are updated by assuming a
zero rotation angle. The values in the ghost cells of
the moving block are copied from the corresponding
stationary block cells, and the values in the station-
ary block ghost cells are copied from the appropriate
moving grid cells. In the second phase, the ghost cell
values are rotated according to the rotation angle. In
this phase the interpolation weights N are utilized.

Assuming N computational cells in the circumfer-
ential direction, we get (N +2) x (N +2) interpolation
weight matrix. The “+42”s represent the first ghost
cells at the ends of the circular arc. These ghost cells
are not shown in Fig. 1. The weight matrix is valid
for all the circumferential cell rows, so it needs to be
computed only once for each sliding patch.

PROPELLER IN A UNIFORM FLOW
Geometry and Meshing

The propeller selected for the RANS calculations is a
0.219 m diameter, four-bladed propeller of the BB-
series. Measurements from open water tests per-
formed at MARIN for the BB-series are found in [16].
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Figure 2: Position of the grid blocks and boundary
conditions for the propeller.

Model tests have also been conducted at VTT. The
Troost BB propeller in the VTT open water tests had a
modified hub, i.e. the hub diameter ratio (about 0.23)
was larger than that of the standard BB propeller and
the coning angle was different. The same hub was
also used in the Azipod tests made at VT'T. The calcu-
lations presented in this paper correspond to the VIT
geometry with an advance ratio J = 0.8, and Reyn-
olds number Re = 4 x 10°.

For the RANS calculation only the space between
two contiguous propeller blades was modelled to take
full advantage of the periodicity of the flow and geo-
metry. The grid consists of six blocks, and the topo-
logy is schematically shown in Fig. 2. The grid has
the inlet boundary modelled by a spherical sector loc-
ated at three diameters from the propeller centre. The
outlet boundary is a plane located at z /D = —3.0, i.e.
three diameters downstream of the propeller plane.
Both boundaries are connected to each other by an
external boundary consisting in a cylindrical surface
placed at r/D = 3.0, i.e. at three diameters from
the propeller axis. The total number of cells is about
1,300,000. Fig. 3 shows the surface grid of the whole
propeller. Fine grid spacings are used in the vicin-
ity of the leading and trailing edges of the propeller
blades in the chordwise direction, and near the blade
tip and hub in the radial direction. The minimum grid
spacing in the circumferential direction for the res-
olution of the boundary layer is 0.3 x 1075 m. After
computations the parameter y+ was found to be lower
than 0.6 along most of the blade. Only at the tip the

Figure 3: Surface grid of the propeller. Every other
grid line is drawn.

mean value of g is a little higher than one.

The hub and blade surfaces of the propeller are ro-
tating solid walls. The lateral surfaces adjacent to
the propeller blades have a cyclic boundary condition.
Block boundaries, where two adjacent block surfaces
are coincident, are defined as connectivities. Uniform
and inviscid flow conditions are applied to the inlet
and external boundary surfaces, and the streamwise
gradients of the flow variables are set to zero at the
outlet.

Results

The computations were performed on a SGI Origin
2000 machine. Three processors were used. The
computation time was 45 seconds per iteration cycle.
For the second and third grid levels the CPU times are
1/8 and 1/64 times those of the first grid level, respect-
ively. A satisfactory convergence was obtained with a
Courant number of 0.5 and two multigrid levels. The
convergence histories of the overall lift and drag coef-
ficients are presented in Figs. 4 and 5.

Differences less than 1.5 % in the calculated thrust
and torque coefficients and about 1.5 % in efficiency
are found relative to measurements from MARIN,
where, in fact, the Reynolds number was five times
higher than that in the simulation. If experimental
values obtained at VIT are chosen as the reference,
calculations over-predict the thrust and torque coeffi-
cients by 4.5 %. However, the error in efficiency is
only about 0.2 %. The discrepancies in the experi-
mental measurements can be attributed to the differ-
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Figure 4: Convergence history of the lift coefficient
for the propeller.
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Figure 5: Convergence history of the drag coefficient
for the propeller.

ences in both the Reynolds number used in the tests
and the shape of the hub in the experimental mod-
els. In fact, the Reynolds number for which VIT
tests were performed for this tentative Azipod version
was close to 4 x 10° , which is small compared to
2 x 10° used in MARIN data. The experimental ap-
paratus may also be responsible for part of the dis-
crepancies, as it has been recognised in comparative
tests performed at various towing tanks with identical
propeller models.

When passing from the second grid level (coarse
grid) to the first grid level (finest grid) the improve-
ment of the efficiency prediction is about 4 % and that

STATIONARY MESH | ROTATING MESH

OUTLET INLET

STRUT

( POD

BLADE
N
<

SLIDING
SURFACE

Figure 6: Geometry and boundary conditions for the
tractor thruster.

of the thrust prediction about 2 %. This data will be
useful when interpreting the correlation with experi-
ments for the Azipod calculation.

THE TRACTOR THRUSTER
Geometry and Mesh

The thruster consists of the BB-series propeller men-
tioned in the preceeding section, a pod and a strut.
A sketch of the geometry is shown in Fig. 6. The
flow around the tractor thruster is no longer cyclic,
as was for the case of the propeller alone. The strut
breaks the symmetry. Consequently, periodic or cyc-
lic boundary conditions cannot be applied anymore to
reduce the computational domain, and the entire flow
region must be meshed.

The grid consists of 17 blocks divided into two
groups representing the space near and far away from
the pod. The space near the pod extends from the pod
to a distance of about one propeller radius. The space
far away from the pod extends from the propeller ra-
dius to the outermost external boundary. The grid has
a C-O topology in the axial-circumferential direction
for the group of blocks far away from the pod, and a
0-0 topology for the blocks contiguous to the pod.
The sliding surface is located between the propeller
and the strut. The total number of cells is 8§14,080.
The grid on the thruster surfaces is shown in Fig. 7.
As it can be seen from the figure, the grid is more re-
fined on the propeller blades than on the strut, since
most of the comparisons presented in this paper relate
to propeller forces.

The minimum grid spacing in the circumferential
direction for the resolution of the boundary layer is
about twice that of the grid of the computation for



Figure 7: Grid on the thruster surface.
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Figure 8: Convergence history of the drag coefficient
for the tractor thruster. Quasi-steady simulation.

the propeller alone. This is enough to have the mean
value of y+ close to 1 at the 0.7 nondimensional ra-
dius of the propeller.

Convergence
Quasi-Steady Calculation

In these calculations the Courant number was (.5, and
the number of multigrid levels was two. The conver-
gence history of the overall drag coefficient is presen-
ted in Fig. 8. The computation time with four pro-
cessors was 19.8 seconds per iteration cycle.

Time-Accurate Calculation

The computation was started by taking as an initial
guess the results obtained from the quasi-steady cal-
culation. For the first grid level the Courant number

-0.020

-0.021
a
O
-0.022
-0.023 | | |
0 0.5 1 1.5 2

VT

Figure 9: Convergence history of the drag coefficient
for the tractor thruster. Time-accurate simulation.

was 5, the number of internal iterations per time step
50, and the time increment A¢ corresponds to an an-
gular step of 0.625°. It should be noted that the Cour-
ant number corresponds to the step-size of A7 util-
ized inside the true time-step. In the time-accurate
case A7 can be larger than in the quasi-steady calcu-
lation. Slightly more than one thousand time steps
were taken until a sufficiently stable periodic solu-
tion was established. The total computation time was
almost 300 hours with four processors. The total
CPU time required to obtain converged results for the
forces and the moments is about 9 times that of the
quasi-steady calculation.

The convergence history of the overall drag coef-
ficient residuals for the first grid level is presented in
Fig. 9. The corresponding history of the Ly-norm of
the z-momentum residuals within five physical time
steps is shown in Fig. 10.

In order to verify the precision of the time-accurate
method, the simulation was performed on the second
grid level using time-step sizes that correspond to an-
gular steps of 0.625° and 1.25° This coarser grid has
a number of cells equal to 1/8 of the first grid level
(half of the cells in each one of the three block direc-
tions). The differences in the thrust and the torque
coefficients between the calculations with different
time steps are only about 1 %, which shows that the
time-step size is adequate.

Analysis of Results
Quasi-Steady Calculation

After 3,000 iterations most of the forces, especially
those on the propeller surfaces, have converged to one
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Figure 10: Convergence history of the Lg-norm of x-
momentum residuals within five time steps.

percent accuracy. Differences from experimental val-
ues in thrust of 8.5 % and in efficiency of about 6.5 %
appear. They can be attributed to several reasons:

1. The grid used for the Azipod calculations in the
first level represents the propeller geometry with
a little less precision than the second grid level
of the propeller-alone grid. This means that the
error could have been reduced by about4-5 % in
efficiency and 2-2.5 % in thrust, if a denser grid
had been used. This error is estimated from the
improvement of efficiency and thrust predictions
when passing from the second grid level to the
first one in the propeller-alone calculations.

2. The unsteadiness of the flow, not modelled in
the quasi-steady calculation, reduces the mean
thrust and torque coefficients due to the gener-
ation of the so-called shed vortices in the wake
in addition to the free vortices always present in
the steady-state results. The error can be estim-
ated by comparing the quasi-steady results to the
time-accurate results presented in the next sec-
tion. It was found to be 0.9 % in the efficiency
and 0.8 % in the thrust.

3. The tests were conducted with a plate located
on the upper part of the Azipod. The calcula-
tions have been done without the plate. The strut
has been progressively reduced in breadth at the
plate location.

4. For the propeller-alone calculations the ex-
perimental thrust and torque coefficients from
MARIN were about 4.5 % larger than those

found at VI'T. As mentioned before, the differ-
ences in the hub shape are not solely responsible
for the large difference. Reynolds number ef-
fects and the experimental set up may well have
some influence on it.

If a provision were made for the sources of the er-
rors, the prediction of efficiency could be improved
by about 4.9-5.9 % with a finer grid and a full un-
steady calculation, and the remaining error of 0.6-1.6
% would be attributed to the deficiencies in the com-
putational approach, e.g. limitations of the turbulence
modelling, etc. As far as the thrust coefficient is con-
cerned, the improvement would be 2.8-3.3 % relative
to the VIT measurements. If the trend observed in
the propeller-alone calculation for MARIN data is ex-
trapolated to the Azipod calculation, the error when
MARIN is chosen as a reference for the magnitude of
the thrust could be further reduced by no more than
4.5%. This does not concern the efficiency, which
would be more or less the same.

The calculated pressure distribution on the thruster
surface is given in Figs. 11 and 12. The minimum
pressures are located both on the leading edge of the
propeller blades, close to the tip, and on the suction
side of the strut. Tractor thrusters have the pod and
strut located in the high-velocity region of the pro-
peller wake. This means that higher viscous forces
are expected on the pod and the strut surfaces than is
the case with pushing thrusters. Non-symmetric struts
and fins could be designed to alleviate to some extent
this problem providing additional thrust, and they can
also be shaped to reduce low pressure peaks.

Time-Accurate Calculation

After arotation of 180° the propeller forces have con-
verged to one percent accuracy. However, the overall
forces require about two revolutions to converge. The
strut forces converge before the pod ones, the latter
being smaller. The mean propeller thrust and torque
are reduced from the quasi-steady calculations by 0.8
and 1.7 %, respectively. The normalized fluctuations
in time of propeller thrust, torque and efficiency are il-
lustrated in Fig.13. The fluctuations in thrust (3.2 %)
are higher than those of torque (2.8 %). This means
that at the maxima of the thrust the instantaneous effi-
ciency grows, and vice versa. The fluctuations of the
efficiency are not as high as those of the thrust and
the torque. A small shift between the thrust and the
torque fluctuations is observed.

The forces on the strut exhibit less fluctuation amp-
litude than those on the propeller. Only the portion
of the strut within the slipstream is affected by un-
steady forces. This means that in the case of design-



Figure 11: Distribution of pressure difference on the
starboard side of the thruster surface. Quasi-steady
simulation.

Figure 12: Distribution of pressure difference on the
port side of the thruster surface. Quasi-steady simula-
tion.

ing non-symmetric struts the lack of symmetry in the
strut geometry should be confined to the part washed
by the propeller slipstream. The fluctuations on the
hub are very small. The computation overpredicts
both the thrusting force of the propeller and the drag
force on the strut and pod. These effects tend to com-
pensate each other, and an error of 5% in the total
thrust of the unit results. The time-accurate computa-
tion was found to strongly improve the prediction of
drag forces on the strut and pod.

The calculated pressure distribution on the thruster
surface is given in Figs. 14-16 for different angular
positions of the propeller (30° of angular increment)
and in Fig. 17 for the propeller blades.

The minimum pressures are located both on the
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Figure 13: Fluctuations in time of propeller thrust,
torque and efficiency.

Figure 14: Distribution of pressure difference on the
thruster for a reference angular position of the pro-
peller. Time-accurate simulation.

leading edge of the propeller blades, close to the tip,
and on the suction side of the strut as it was in the case
of the quasi-steady computation. However, the low
pressure region on the suction side of the strut is not as
extensive as before. This is probably a consequence
of the higher loads present in the quasi-steady case
due to the lack of the so-called shed vorticity found in
unsteady potential-based methods. Fig. 17 reveals a
non-uniform distribution of pressure near the leading
edges of the blades, accompanied with low pressure
peaks at the leading edges. Blade sections of NACA
mean line ¢ = 0.8 or modern blade sections, such
as those designed with the Eppler method to delay
cavitation inception, would display distinctly differ-
ent pressure patterns in this area. It can be observed
that the region of lowest pressure is larger for the
blade located in front of the strut, as would be ex-



Figure 15: Distribution of pressure difference on the
thruster for 30° deviation from the reference angular
position of the propeller. Time-accurate simulation.

Figure 16: Distribution of pressure difference on the
thruster for 60° deviation from the reference angular
position of the propeller. Time-accurate simulation.

pected due to the higher wake at the propeller plane.
CONCLUSIONS

In this paper the unsteady flow around a tractor
thruster (pulling type) has been analysed by solving
the RANS equations in combination with the sliding
mesh technique.

First, the flow around a BB series propeller in
steady flow has been computed using the k¥ — € tur-
bulence model. The open water tests performed at
MARIN and VTT have been used as validation data.
Differences less than 1.5 % in the calculated thrust
coefficient and about 1.5 % in the efficiency are found
relative to measurements from MARIN. If experi-
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Figure 17: Distribution of pressure difference on the
surface of the blades. Time-accurate simulation.

mental values obtained at VTT are chosen as a ref-
erence, calculations over-predict the thrust coefficient
by 4.5 %. However, the error in efficiency is about
0.2 %. The discrepancies in the experimental meas-
urements can be attributed to differences in both the
Reynolds number used in the tests and the shape of
the hub in the experimental models. The experimental
apparatus may also be responsible for part of the dis-
crepancies, as it has been recognised in comparative
tests performed at various towing tanks with identical
propeller models.

Secondly, simulations have been performed for the
flow around the tractor thruster using the sliding-mesh
technique. The computations have been performed in
two different ways. For computations with circum-
ferentially averaged flow through the sliding surface,
larger differences from the experimental results ap-
pear in the computed thrust, torque and efficiency.
This can mainly be attributed to several reasons: the
mesh used for Azipod calculations is not as dense as
that used in the propeller-alone computations; the un-
steadiness of the flow tends to reduce the mean values
of thrust and torque; uncertainty in the measurements
at VIT and MARIN; and deficiencies of turbulence
modelling.

Finally, a time-accurate computation has been con-
ducted for the tractor thruster. Improvements in the
prediction of the thrust and the torque coefficients by
0.8 and 1.7 % respectively, and of efficiency close to 1
% were achieved as compared to the quasi-steady cal-
culation. Since the same relative coarse grid as in the
quasi-steady case was utilized, the difference from the
experimental data remains high. This is mainly due
to the relatively coarse mesh used in the calculations.
The time-accurate simulation strongly improves the



prediction of drag forces on the strut and pod rel-
ative to the time-averaged simulation. On the other
hand the forces on the propeller are not significantly
affected by the computational method. It should be
noted that by utilizing parallelization more efficiently,
the time-accurate computation could have been made
in a dense grid with about 300 CPU hours.

Considering the two simulation approaches, the
quasi-steady calculation allows the computer time to
be reduced to about 1/10 compared to the latter. Its
main merit consists of reducing the CPU time main-
taining a full representation of the propeller geometry,
1.e. without introducing simplified models for simu-
lating the propeller action, such as actuator disk mod-
els or body force models like that presented in [17].

Tractor thrusters have the pod and strut located in
the high-velocity region of the propeller wake. This
means that higher viscous forces are expected on the
pod and strut surfaces than is the case with pushing
thrusters. Non-symmetric struts and fins could be de-
signed to alleviate to some extent this problem provid-
ing additional thrust, and they can also be shaped to
reduce the observed low pressure peak.
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DISCUSSION
By M. Abdel-Maksoud

Thank you for the very interesting paper. Concern-
ing figure 9, do you think that the unsteadiness of the
maximum values of the drag coefficient is caused by
numerical or physical reasons? Did you study the ef-
fect of the size of time step on the periodic variation
of the drag coefficient?

Authors’ reply

We are not quite sure about the nature of the small
unsteadiness that appears in the convergence history
of the overall drag coefficient. We have noticed that
the unsteadiness is more pronounced for the smal-
ler time steps in the calculation with the coarse grid.
Hence, it is possible that the unsteadiness is caused
by physical reasons, but is damped with larger time-
steps. But it might also be caused by some conver-
gence problems with shorter time-steps.

By H. Raven

For the thruster calculation it is stated that by using a
finer grid the error would decrease by 4-5coarse/fine
comparisons for open propellers. However, this
would only be permitted if a precise indication of sign
and magnitude of the error would be available. This
would require solutions on at least 3 grids with suf-
ficient refinement for the thruster case, followed by a
check of the order of the error. Only under certain
conditions the sign and magnitude of the error can
then be estimated; otherwise it is an uncertainty; a fine
grid then may just as well increase the deviation from
experiment. In this paper, the error estimate seems to
be based on just two grids, for a substantially differ-
ent geometry and flow. This is obviously an unsafe
procedure. Reference: 22nd ITTC Resistance Com-
mittee Report, Section 6

Authors’ reply

In principle we agree that three grid levels are re-
quired for the error estimation. However, in this case
the third grid level is prohibitively coarse. The er-
ror estimation is based on the fact that we have tested
four different grids for open propellers having geo-
metry and loading similar to that of the tractor thruster
of this paper ranging from 900,000 to 1,300,000
cells. The differences in calculated performance coef-
ficients for the grids have always been below one per-
cent for the first grid level (fine grid). The improve-
ment of results in performance coefficients when
passing from the second grid level (coarse grid) to the
first grid level has been for the different grids similar
to that presented in this paper for the open propeller

calculation, i.e. significant reduction of torque coeffi-
cient and, consequently, increase of efficiency.

The flow in the vicinity of an open propeller is not
very different from that in the vicinity of a tractor
thruster propeller. Tractor thrusters are characterised
for having very small wake. Furthermore, in our cal-
culation the portion of the grid surrounding the pro-
peller is very close in shape for both the open pro-
peller and tractor propeller. For these reasons we ex-
pect to correctly capture the trend in our extrapola-
tion of the thruster propeller results to a finer grid,
provided that the open propeller used for the extra-
polation is the same as that of the tractor propeller
and the sign of the corrections is maintained.



