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1 Introduction

The assessment of the performance of a fuel rod in the reactor core is an integral part of the design,
operation, and safety analysis of the nuclear reactor. To study the behavior of the fuel rod, one
typically resorts to using a model in one of the two extremes. On one end are the dedicated fuel
performance codes, which take into account the multitude of physical phenomena involved in the
thermo-mechanical behavior of the fuel rod: diffusion of heat, elastic and plastic deformation of
the pellet and the cladding, release of gaseous fission products into the free volume, the interplay
of the gas pressure with the mechanical solution of the pellet and the cladding, the feed-back of the
deformations and temperatures to the gap heat conductance, the effect of the cladding surface heat
flux to the heat transfer into the surrounding coolant, and so on. All of this is done with a complex,
interconnected model, where experimental correlations are used to model the dependencies of the
material properties on temperature, pressure, burn-up, etc. On the other end of the spectrum are the
models used within, e.g., many thermal-hydraulics or neutronics codes, which are based on simple
correlations, non-mechanical thermal elements, or even fixed values of temperature. Although they
are quick to understand and efficient to solve, such fuel models may be less-than-realistic in, for
instance, transient conditions or, in cases where fuel with extended burn-up should be considered.

The purpose of this work is to develop a fuel performance model to be used in a multiphysics
context, allowing it to be coupled to existing thermal-hydraulics, reactor dynamics or neutronics
codes used at VTT, such as TRAB, HEXTRAN and SERPENT. The scope of the FINIX code
is somewhere between the full-fledged fuel performance codes and the simple thermal element:
although FINIX employs many of the same experimental correlations as the full fuel performance
codes, and solves the thermal and mechanical behavior of the rod, several simplifications have
been made, both to improve the performance of the code, and to expedite its development. These
assumptions and approximations are discussed in Section 2.2.

In the first stage of development, the aim has been to develop a model that is capable of solving the
transient heat equation, with couplings to the cladding and pellet mechanical behavior through the
gap conductance and pressure. Experimental correlations are used for the material properties, and
simple models for the heat transfer from the cladding to the coolant have been included. The latter
can also be easily replaced by the coupling to a thermal-hydraulics code. The physical models,
correlations and their numerical implementation is described in Sections 3-6.

The FINIX code has been designed so that it can be coupled on a source-code level, so that passing
input and output files between the codes is not necessary. FINIX includes a collection of built-in
functions that can be used for basic setup of the system, and for running the actual simulations,
using a fairly high-level syntax. In addition, FINIX has an error message system that can be used
to detect beyond-normal operation of the code without aborting program execution. The usage of
this high-level interface is described in Section 7. In addition, because of the direct coupling on
a source-code level, FINIX allows for low-level (detailed) control of its input and output. Mainly
for this purpose, the detailed code description is included in the Appendix of this document. Since
FINIX-0.15.6, input and output files for stand-alone usage have been defined and examples are
provided with the code.

Assessment of the FINIX-0.13.9 code without external coupling is presented in a separate re-
port [1], with a summary of the results given in Section 8 of this report. FINIX is compared
with the FRAPTRAN fuel performance code in several RIA scenarios, and with experimental
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Halden reactor data. The results show good agreement both with FRAPTRAN and the experi-
ments. Known limitations of FINIX are also discussed in Section 8 and in the validation report [1].
Validation of FINIX-0.15.12 is to be performed in the future.

2 General model description

2.1 Version
2.1.1 Current version

This document describes version 0.15.12 of the FINIX fuel behavior model. The version number
follows the convention where the first number identifies the general stage of development ("0" for
early development stage) and the following numbers identify the date of release (year followed by
month).

2.1.2 Version history

The following versions of FINIX have been released:
FINIX-0.13.1 (January 2013, reported in Ref. [2]).
FINIX-0.13.9 (September 2013, reported in Ref. [3]).
FINIX-0.15.6 (June 2015, reported in Ref. [4]).

FINIX-0.15.12 (December 2015, this report)

2.2 Model assumptions and approximations
221 Geometry

The FINIX model solves the heat equation and the cladding mechanical behavior in cylindrical
geometry. Furthermore, the heat equation is solved in one dimension, with the temperature hav-
ing dependence only on the radial coordinate r. The azimuthal (6-) dependence is completely
neglected (implying also the assumption that the central axes of the pellet and the cladding are the
same), and the axial (z-) dependence is only included by solving the heat equation independently
for several axial slices, or nodes. However, there is no heat flux between the neighboring axial
nodes. Therefore, the model is only applicable to scenarios where the axial heat transfer is small
compared to the radial heat transfer, and where the boundary conditions and the power distribution
are symmetric with respect to the azimuthal rotations.

The rod internal pressure is calculated by taking into account the deformations and temperatures
of all axial nodes, and is assumed equal throughout the axial length of the rod. Coupled with



WT RESEARCH REPORT VTT-R-05887-15
6(144)

the one dimensional treatment of the heat equation, this constitutes the so-called 1%—dimensional
model.

2.2.2 Fuel pellet

The fuel pellet is assumed mechanically rigid, so that it has no response to external stresses.
In addition, a number of phenomena that become important in extended operation and at high
burn-up have been left out of the model. For instance, accumulation of fuel swelling due to
irradiation, densification, and high burn-up structure is not included in the model. However, they
can be taken into account effectively through parametrization of the pellet and cladding dimensions
from irradiated rods. On the other hand, the effect of accumulated burn-up to material property
correlations is taken into account, where appropriate.

The pellet is assumed to be perfectly cylindrical for the purposes of the solution of the heat equa-
tion — specifically, dishing, chamfers or hourglassing is not taken into account. In calculating the
axial strain, the mechanical connection between consecutive pellets is assumed to occur at the
edges — a more realistic modeling of the pellet shape remains to be implemented.

As of version 0.13.9, FINIX supports externally given fuel swelling, densification and relocation
strains. Radial pellet relocation can also be calculated from correlations.

2.2.3 Cladding

The mechanical model of the cladding is based on the thick cylindrical shell approximation. The
model assumes, for example, that the radial differences in stresses and temperatures across the
cladding are small. In addition, the model is valid only when the axial curvature of the cladding is
small, i.e., when there is very little bowing or bending of the cladding.

The cladding mechanical response is assumed to elasto-plastic. As of version 0.13.9, plastic strains
can be externally given to FINIX, and as of version 0.15.12, time-independent plastic deformation
is modeled in accordance with the infinitesimal strain theory, but plastic deformations due to creep
are not modeled. The model is inadequate to model transient ruptures as no failure models are
implemented. Ballooning or other large deformations may not be correctly modeled, as these
are incorrectly described by the infinitesimal strain theory. Also, the model is not designed for
modeling long periods of steady state operation, due to the missing creep model.

Oxide formation of the cladding is not modeled, although the effect of the oxide layer is included
in the material correlations, where appropriate.

2.2.4 Fill gas and FGR

Since version 0.13.9, material correlations for helium, argon, krypton, xenon, hydrogen, nitrogen
and water vapor have been added. The amount of fill gas and fractions of individual species can
be given as input, although release of fission gases is not currently modeled. Material changes in
the pellet due to accumulating fission products, or the release of the said products into the gas gap
is therefore not taken into account.



WT RESEARCH REPORT VTT-R-05887-15
7(144)

2.3 Changes from previous versions
2.3.1 Version 0.15.12

Time-independent plasticity of the cladding is modeled in FINIX version 0.15.12. The radial
return method is implemented to solve the plasticity equations. The plastic deformation model is
described in detail in section 4.3.3. PNNL stress-strain correlation is used to calculate yield stress.

A new data structure Cylindrical was implemented for storing results in each component in cylin-
drical coordinates. This is used to store various values of stresses and strains, for example.

The pellet axial strain is now taken from the pellet centerline, as this yields the maximum value of
axial strain.

Material correlations for Zr1%Nb cladding used in VVER reactors are now implemented. Material-
specific correlations for thermal conductivity, heat capacity, Young’s modulus, Meyer’s hardness,
axial and diametral thermal expansion and yield stress are implemented.

Minor bug was fixed in the cladding mechanical model which caused the radial discretization to
be converted to constant-distance scheme in the cladding.

A bug in the material density calculation was fixed. Previously the density was underestimated
and this affected also the temperature calculations. As a result of the fix, predicted fuel centerline
temperatures are higher by approximately 1 % — 7 %.

2.3.2 Version 0.15.6

This chapter introduces the changes from version 0.13.9 to version 0.15.6.

FINIX data structures have been completely redesigned. All the data FINIX requires or calculates
is now stored in five structures. These structures hold the data describing the fuel rod, rod bound-
ary conditions, FINIX simulation options, FINIX simulation results, and the data describing the
simulated scenario. The old data arrays described in code documentation for version 0.13.9 are no
longer available.

Version 0.15.6 introduces the ability to read input from FINIX and FRAPTRAN input files. Input
files are still not necessarily needed in a coupled system, where the host code provides the bound-
ary conditions for FINIX. However, the input files contain several templates that can be used as a
starting point even in coupled-code simulations, if all necessary fuel performance input data is not
available. If FINIX is run as a stand-alone code, the fuel rod characteristics, boundary conditions
and model options should be provided through input files. FINIX no longer contains hard coded
input.

FINIX version 0.15.6 allows the user to print new types of output files. These files include node-
specific output files, a summary file, and a file showing the contents of all FINIX data structures.

Some bug fixes and minor changes have been done in version 0.15.6. An error in the cladding
hoop stress equation (Eq. (46)) was corrected. The effect of this correction is described in section
8. Also, FINIX did not use the fast neutron fluence from the FRAPCON restart file previously, but
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this value is now used by FINIX.

2.3.3 Version 0.13.9

Version 0.13.9 incorporates the following changes from version 0.13.1.

In the interface, power density array has been replaced with linear power (per axial node) and
radial power distribution (separately for each axial node) arrays. This change was necessary to
conserve linear power in the axial node with the introduction of the relocation model. Because
the relocation model can drastically change the dimensions of the pellet, using just a fixed power
density does not conserve linear power over one time step.

Also in the interface, the params array was split into two arrays. The first one (params) only
contains values that are not updated by FINIX. The second one (sresults, for scalar results) contains
values that can be updated by FINIX. The previous results array was also renamed vresults (vector
form results, for each axial node).

Radial relocation of the pellet is now modeled.

Several quantities have been added to improve FINIX’s simulation capabilities at accumulated
burnup. These include pellet swelling and densification strains, cladding plastic strains, calculation
of pressure from moles of gas instead of fill pressure, possibility to use He, Ar, Kr, Xe, Hy, N>
and H»O as fill gas. In FINIX 0.13.9 these values are not updated internally by FINIX, but can be
given by the user to initialize FINIX of accumulated burnup.

Rod internal pressure calculation is now based on the gas molar content instead of fill pressure.
The change was made to allow changes in the amount of fill gas that will be necessary when fission
gas release models are added to FINIX. The fill pressure is still given as input.

Gap conductance correlation has been updated to include the above mentioned fill gases. Also,
an option has been added to switch between FRAPCON and FRAPTRAN implementations of the
gap conductance correlation. The FRAPTRAN correlation is used as a default (see Section 8).

A module for reading FRAPCON/FRAPTRAN restart files has been added. This can be used to
initialize FINIX for accumulated burnup by using FRAPCON to provide the data from steady state
irradiation.

A FINIX database of simulation and rod data used in the FINIX-0.13.9 validation [1] was created.
The database is currently written inside the source code in files database.c and db_functions.c.
The default rod parameters used in system setup that used to be in defaults.c in FINIX-0.13.9 were
also moved to database.c.

The stability of the numerical iteration of the gap conductance in the transient and initial state
solvers has been improved. The transient solver now searches for upper and lower bounds for the
solution and, once found, switches to the Dekker method [5] from the secant method.

Default nodalization of the radial nodes has been changed to equal volume rings from equal radius
rings.

Several auxiliary functions have been added, including functions to calculate burnup from power
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history, density of the fuel and cladding, averages over cross sectional areas, and so on.

Small bug fixes, including the correlations for cladding Meyer’s hardness, cladding thermal con-
ductivity, cladding diametral thermal strain.

2.4

FINIX publications

In addition to the VTT reports, the following work related to FINIX development has been pub-
lished:

2015

2014

2013

E. Syrjélahti and V. Valtavirta and J. Kétté and H. Loukusa and T. Ikonen and J. Leppédnen
and V. Tulkki, Multiphysics simulations of fast transients in VVER-1000 and VVER-440
reactors [6]. (FINIX-0.15.6)

T. Ikonen, E. Syrjdlahti, V. Valtavirta, H. Loukusa, J. Leppdnen and V. Tulkki, Multi-
physics simulation of fast transients with the FINIX fuel behaviour module [7]. Descrip-
tion of FINIX and applications in coupled-code calculations with Serpent 2, TRAB-1D and
TRAB3D/SMABRE. (FINIX-0.13.9)

T. Ikonen, H. Loukusa, E. Syrjdlahti, V. Valtavirta, J. Leppidnen and V. Tulkki, Module
for thermomechanical modeling of LWR fuel in multiphysics simulations [8]. Description
of FINIX and applications in coupled-code calculations with Serpent 2, TRAB-1D and
TRAB3D/SMABRE. (FINIX-0.13.9)

V. Valtavirta, T. Ikonen, T. Viitanen, J. Leppénen, Simulating fast transients with fuel behav-
ior feedback using the Serpent 2 Monte Carlo code [9]. Application of FINIX and Serpent
2 in simulating self-consistently solved temperature and power in a prompt supercritical
pin-cell. (FINIX-0.13.9)

T. Ikonen, V. Tulkki, E. Syrjédhti, V. Valtavirta and J. Leppédnen, FINIX — Fuel Behavior
Model and Interface for Multiphysics Applications [10]. Brief description of the FINIX
code, its purpose as a universal fuel behavior module in multiphysics applications and first
results. (FINIX-0.13.1)

3 Thermal model

3.1

The heat equation

The conduction of heat is described by the heat equation, where the temperature 7" in general is a
function of time ¢ and all three spacial coordinates. In a cylindrical fuel rod, a convenient choice
for the coordinate system are the cylindrical coordinates, 7, 6 and z. In the present case, however,
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we make the simplifying assumption that within each axial slice, 7" has no dependence on z (by
assuming the axial heat transfer to be negligible) and no dependence on 6 (by assumed symmetry).
With these assumptions, the heat equation takes the form

CV(T)%:tF - ia?r [/\(T)r(g] — s(r) = 0. (0
Here C'y is the volumetric heat capacity, A the thermal conductivity and s the source term (thermal
power line density). The temperature is a function of time ¢ and the radial coordinate r, T' =
T'(r,t). The solution of Eq. (1) is obtained in the fuel pellet and in the cladding by discretizing
the equation with the finite element method (FEM) and by solving the system numerically (see
Sec. 6.2). The outer surface of the pellet and the inner surface of the cladding are subject to heat
transfer boundary conditions

or

a(Ry) = ATON G|

= h[T(Ry) = T(Rei)] 2)
f

where ¢(r) is the heat flux, Ry is the fuel outer radius, R,; the cladding inner radius and the
notation |,—p ; denotes evaluation of the preceding expression at r = Ry. The gap conductance
h is calculated using the model described in Sec. 3.3. The gap is assumed to have negligible heat
capacity, and thus the conservation of energy implies that the heat flux across the inner surface of

the cladding is given by

Ry
Rei) =
a(Rei) .

a(Ry). 3)

At the outer surface of the cladding, the boundary condition can be set as constant temperature,
constant heat flux or by using a heat transfer coefficient. A more thorough explanation is given in
Sec. 6.2, where the numerical solution of the heat equation is explained. The remaining boundary
condition is the zero heat flux at the inner surface of the pellet (at Ry),

q0) =0e L = 0. (4)

or r=Rp

3.2 Plenum temperature

The model for the plenum gas temperature is derived by assuming that the gas within the plenum
is well mixed and described by a single temperature, 7},je,. The gas exchanges heat with the
surrounding walls, whose temperatures are taken as given. Furthermore, it is assumed that the
heat capacity of the plenum gas is so small that one can neglect the term with the time derivative
of T'. One therefore has the steady-state heat equation for the plenum gas,

Aphp(Tp - Tplen) + Achc(Tc - Tplen) = 07 (5)

which gives

AphpT), + Ach T
Tplen = AR
php + Ache
for the temperature of the plenum. Here A, (A.) is the area of the end of the fuel pellet (cladding

inner surface) facing the plenum, 7),(7;) the temperature of the pellet (cladding), and hy,(h.) the
heat transfer coefficient between the pellet (cladding) and the plenum gas. The areas are given by

(6)
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A, = ﬁRff and A, = 7 R2,+27l,R.;, where I, is the (axial) length of the plenum. The temperature
of the end of the pellet is calculated as an area-weighted mean temperature (cf. Sec. 6.2). Since
the cooling of the end of the pellet due to heat flux into the plenum is not taken into account in the
1D heat equation, this leads to slight over-estimation of the temperature 7},. The temperature of
the cladding is assumed to be equal to the coolant temperature, which in turn leads to slight under-
estimation of the temperature 7.. The uncertainties introduced in these approximation are not
too severe, since the plenum affects the thermo-mechanical solution of the fuel rod only through
its coupling to the gap pressure, not affecting the temperatures directly. In addition, solving the
surface temperatures accurately would require 2D solution of the heat equations within the plenum,
which would lead to undesirable increase in the computational intensity of the model.

The heat transfer coefficients are solved with a similar method as the one used in FRAPTRAN [11].
For the pellet-plenum heat transfer, the coefficient is

0.27Apten L= for Gr < 0,
hp = {054 p1en DL for0 < Gr <2107, (7)
0.14\ pten TEZ for Gr > 2107,

where Apjey is the thermal conductivity of the plenum gas, Pr is the Prandtl number and

_9 (Tp/Tplen —1) (2Rcz‘)3

Gr - (8)

is the Grashof number. In the latter, g is the gravitational acceleration and v is the kinematic
viscosity of the plenum gas.

For the cladding-plenum heat transfer coefficient, the corresponding equations are

0.55Aplen%, for Gr < 1-10, o
P 0.021Aplen%, for Gr > 1 - 109,
with .
T/ Toen — 1)1
Gr = 9T/ Toten = D1y (10)

2

The correlations for the Prandtl number and the kinematic viscosity are given in Sec. 5.3. The
value for the heat conductivity Apje, is not needed, as it is canceled from Eq. (6).

3.3 Gas gap conductance

The heat transfer in the gas gap is modelled with Eq. (2), with the heat transfer coefficient / given
as a sum of three terms:

h = hcond + hrad + hcontact' (11)

The first term corresponds to heat conduction across the gap, the second to radiation heat transfer
between the pellet surface and the cladding inner surface, and the last one to heat transfer due to
solid-solid contact of the pellet and the cladding. When the gas gap remains open, the last term is
Zero.
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3.3.1 Conduction through the gas

The term hconq can be calculated from the heat equation in the gas gap. Assuming the heat
capacity of the gas to be small and noting that there is no heat produced in the gap, the equation
reduces to % ()\gap(T)r%—f) = 0. Integrating once with respect to r and applying Agap %—f ‘r: Ry =
heond(Tei — T) gives

dr

Agap (T)AT = heona(Tei — Tp) - (12)

By integrating from 7' to T;; and replacing the temperature-dependent heat conductivity with the
average \(T;, Ty) as f;:fl Agap(T)dT = MTe;, T¢)(T.; — Ty), one obtains
o MTei, Ty)
cnd = Reln(1+d/Ry)’

13)

where d = R.; — Ry is the gap width. Since d < Ry, the term In (1 + d/Ry) ~ d/Ry, which
gives the form used in FRAPTRAN and FRAPCON:

AT, T
heond = (Czlf) (14)
In practice, the average \(7,;, Ty) can be approximated by taking the average of the gap temper-
ature, instead of the heat conductivity: (7, Tf) = Agap(Tgap). The introduced error is of the

order of a few percent, at most.

In FRAPTRAN and FRAPCON, an effective gap width dg is used instead of the bare d. The same
approach is taken also here. The effective gap width is given by the FRAPCON correlation [12]

deff _ 6—0.00125Pc0nta(3t (pf + pc) + 18(gf + gc) — b+ d7 (15)

where Peontact iS the contact pressure between the pellet and the cladding (in kg/cm?, see Sec. 4.3.2),
pt(pe) is the surface roughness of the pellet (cladding) in meters, g¢(g.) is the temperature jump
distance (in meters) at the pellet (cladding) surface. The constant b = 1.397 - 10~ m. The sum of
the temperature jump distances is calculated from

T 1
gr + gc = 0.7816 ( 5 > (Zi @ifiMi1/2> , (16)

where A\, T and P are the thermal conductivity, temperature and pressure of the gas in units of
W/mK, K and Pa, respectively, and a;, f; and M; are the thermal accommodation coefficients,
mole fractions and molecular weights of the gas constituents.

FINIX also has an option to use the FRAPTRAN correlation for the effective gap width. In this
case, the gap width is given by

o = €7 000125 eontact (4 4 5 ) 1 0.0316(gy + ge) +d (optional). (17)

The heat transfer coefficient h¢qpq is then given as

)\eff
hcon = T 18
4= e (18)
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where d.g is given by Eq. (15) and A.g is calculated for the gas mixture of n species as [13]

n

Ail"i
Aeff = 19
T sz’+2j(1—5ij)‘1’z‘j$j (1

)

Here ); is the heat conductivity and x; the mole fraction of the species ¢, J;; the Kronecker delta
and

(M; — Mj)(M; — 0.142M5)
U, = | 1+ 2.41 20
1) ¢Z] < + (MZ +MJ)2 ) ( )
gos — L+ O/ 200 /My V) e
where M; is the molecular weight of the species.
The heat conductivity of the gases (with the exception of steam) is of the form
i = A TP (22)

with the coefficients given in Table 1.

Table 1. The gas conductivity constants of Eq. (22).

Species A B
He 2.531-1073 0.7146
Ar 4.092-107* 0.6748
Kr 1.966 - 10~4  0.7006
Xe 9.825-107° 0.7334
H, 1.349-10~% 0.8408
N, 2.984-107% 0.7799

For the water vapour (steam), the heat conductivity is given by [13]

A,0 =4.44 - 10757145 £ 9.45.107°(2.1668P/T)"3 (for T > 973.15K),  (23)
A0 =P/T (—2.851-107% +9.424 - 10717 — 6.005 - 10~ 117?)

+1.009 (P/T)* /(T —273.15)** +17.6 - 107>

+5.87-107° (T — 273.15) + 1.08 - 10~7 (T — 273.15)*

—4.5-107" (T = 273.15)%  (for T < 973.15 K). (24)

Here T is in Kelvin and P in Pascal.

3.3.2 Radiation across the gap

The radiation heat transfer coefficient is given by the gray body radiation formula
0SB T - T
L—I—ﬁ(l—l) Tf_Tci,

(25)
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where ogp is the Stefan-Boltzmann constant and €¢(e.) is the emissivity of the fuel outer surface
(cladding inner surface). The emissivities used in FINIX are

€r = 0.78557 + 1.5263 - 10*5Tf, (26)
where the temperature is in Kelvin, and
€. = 0.809. 27

The correlation for € is the same as in FRAPTRAN, while the value for €. is the same as in
the FEMAXI code [14]. The latter was chosen over the FRAPTRAN correlation, which requires
knowledge of the cladding oxide thickness, and currently FINIX has no model for cladding oxi-
dation. In FRAPTRAN, the value ¢, = 0.809 would correspond to an effective oxide thickness of
approximately 3.9 microns.

3.3.3 Contact between the pellet and cladding

The contact heat transfer coefficient hcontact 1S given by

APy for Py < 9-1079,

oszsm
, for9-107% < P,y < 0.003,
0528@ o (28)

o ‘el for 0.003 < P, < 0.0087,
rel

0528 /pf+pc

where Pio] = Peontact/H is the relative ratio of the contact pressure and Meyer’s hardness H; of
the cladding (see Sec. 5.2.4). In addition, \,, = 2AfA./(Af + A.) is the geometric mean of the
fuel thermal conductivity Ay and the cladding thermal conductivity A.. The correlation of Eq. (28)
is the same as in FRAPTRAN, with the numerical constants merged into one.

13.740 ——¢—

0.041226 ——~m—+—

hcont act —

4579. 5

39.846 for P > 0.0087,

4 Mechanical model

4.1 Internal pressure

The internal pressure P of the rod is calculated from the ideal gas equation of state, PV = nRT,
where V' is the gas volume, n the amount of substance of the gas, R the ideal gas constant and
T the temperature. Assuming that pressure differences between the gap, plenum and central hole
equalize immediately, the internal pressure is given by

nR

P = (29)
plen/ plen + Zk ( cent, k/Tcent kT Vgap k/Tgap k)

Here the plenum volume is
Volen = 7 RGily, (30)
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the central hole volume
Veent,k = TRE il ks (€20)

and the gap volume
Vaapk = 7y (Reig = Bip) (32)

where k is the index of the axial slice and [y, is the axial length of the fuel and Ry, 2 and
R.; ), are the pellet inner radius, pellet outer radius and cladding inner radius, respectively, of the
k:th axial slice.

4.2 Pellet mechanical model

The fuel pellet is assumed to have an infinite elastic modulus and no stress-induced deformations
(the so-called rigid pellet model [11]). Thermal strain and radial relocation of the fuel is taken
into account with correlations. Densification and swelling can be given as input, but are not
updated in FINIX-0.13.9. The correlation between the thermal strain and temperature is presented
in Sec. 5.1.3, and pellet relocation correlation in Sec. 5.1.4. The radial displacement of the pellet
outer surface is calculated by integrating the strains over the pellet radius. The axial strain is
calculated using the temperature on the center of the pellet for the thermal strain, where the strain
is largest. The details of the thermal strain calculation are explained in Sec. 6.4.1. Swelling and
densification strains are also included for the axial strain, but pellet relocation strain is neglected.

4.3 Cladding mechanical model

The mechanical model of the cladding is similar to the FRACAS-I model used in both FRAPCON
and FRAPTRAN [11, 12], although some further simplifications have been made. For example,
only time-independent plasticity of the cladding is modeled.

The cladding mechanical model is further divided into two distinct situations. The first model
considers the case when the gap remains open, and the mechanical equilibrium is determined
simultaneously with the calculation of the internal pressure. The second model is invoked when
the gap is closed, and the equilibrium is determined by a no-slip condition between the pellet and
the cladding. The calculation of the plastic strain increment proceeds similarly in the open gap
and closed gap cases.

4.3.1 Open gap model

First, we consider the open gap mechanical model. In this case, the displacement of the cladding
inner surface depends on the internal pressure, which in turn is a function of the gap volume.
Therefore, the mechanical equilibrium has to be determined simultaneously with the internal pres-
sure calculation. In practice, the solution has to be found iteratively, since no closed form solution
of the full set of equations is known. This numerical procedure is explained in Sec. 6.4.2. For the
purposes of deriving the equations, we take the rod internal pressure P as given and fixed.

The cladding model is based on the thin wall approximation, which implies constant stress, strain
and temperature across the cladding radial direction. The temperature is taken as the average
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temperature of the cladding from the solution of the heat equation. In addition, the loading and
deformation of the cladding is assumed axisymmetric, and bending strains and stresses are ne-
glected.

Given the internal pressure P, the outside (coolant) pressure F,, and the cladding inner and outer
radii, R.; and R.,, the hoop stress oy and the axial stress o, are obtained as

_ RczP - Rcopo

33
Rco - Rci ’ ( )

09
R%P — R2 P,
S TR A (34)
Rco - Rci

When the stresses are known, the effective stress and the effective strain can be calculated in
order to find out whether the yield stress has been exceeded. The effective stress is calculated as
described in section 4.3.3. The effective strain is calculated as a sum of plastic, thermal and elastic
strains. If the yield stress has been exceeded, a plastic strain increment is calculated as described
in section 4.3.3.

The hoop, axial and radial strains are connected to the stresses through relations

1

o= Lo v b vt ad @)
1 th | pl pl
EZZE(UZ_V09)+€Z +€Z +d62’ (36)
1%
€r = _E(UG + Uz) + Es‘h + €$1 + devl?la (37

Here ¢! are the cladding thermal strains (see Sec. 5.2.3), €' the cladding plastic strains, de?' the
cladding plastic strain increments (zero if yield stress was not exceeded), E the Young’s modulus
(Sec. 5.2.5) and v the Poisson ratio (Sec. 5.2.6). The strains relate the dimensions of the cladding
in the hot state to the dimensions in the cold state. The axial strain is essentially decoupled from
the hoop and radial strains, so that the axial length of the slice is

lc = (1 + 6z)lc,colda (38)

where the subscript &k identifying the axial slice has been dropped for convenience [cf. Eq. (32)].
The corresponding relations for the cladding inner and outer radii can be derived from the change
in the radius of the cladding midplane, (R, + R¢;)/2 = R = (1 + €p) Reolq and the change in the
cladding thickness, Rco — Rei = (1 + €)(Reo,cold — Reicold)- The resulting expressions for R.;
and R, are

1 1 1 1

R = Rci,cold (1 + 559 + 2€r> + Rco,cold (269 - 257") s (39)
1 1 1 1

Re, = Rci,cold 566 - ier + Rco,cold 1+ 566 + 567‘ . (40)

Equations (39) and (40) relate the radii to their cold-state values and the strains, thus completing
the model.

The open gap model of Eqgs. (33)—(40) is solved iteratively. This is because the values of R.; and
R, are used to determine the stresses oy and o, which in turn are used to solve R.; and R,,.
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4.3.2 Closed gap model

Strong contact. If the open gap model indicates that the inner surface of the cladding is in contact
with the pellet, i.e., R.; < Ry + py + pe, then the solution of the mechanical equilibrium proceeds
with the closed gap model. For the closed gap model, one uses similar relations to the open gap
model, albeit with different boundary conditions. Since the gap is closed, the internal gas pressure
cannot be used as a boundary condition. Instead, the contact pressure Peoniact between the pellet
and the cladding remains to be determined. However, the inner radius of the cladding is fixed by
the contact, so that

Ry =Ry + pg + pe. 41

In addition, the axial strain of the cladding, €., is determined by the no-slip condition at the pellet-
cladding boundary. Any axial strain of the pellet that takes place after the gap has closed is added
to the cladding axial strain. The axial strain of the cladding is therefore

€= €0+ 6fuel o Efugl, 42)

z z,

where the additional subscript O indicates the strain just prior to gap closing.

For the closed gap, the cladding outer radius can be solved explicitly. After some algebraic ma-
nipulation, one gets

1 2 2
;(Rco,cold + Rci,cold) - 2RCO,COld R. + Rco,cold - Rci,cold
1 ¢t T )
;(Rco,cold + Rci,cold) - 2Rcz’,cold ;(Rco,cold + Rci,cold) - 2Rci,cold

1 1
et e 4+ B ded! et 4 Py deP! 4 <V - 1> (qﬁh +el+ dﬁfl)} (43)

Rco =

From R.; and R, one can then solve the hoop and radial strains using

g = Rco+Rci _17 (44)
Rco,cold + Rci,cold
€ = Rco - Rci _ 1’ (45)

Rco,cold - Rci,cold
Equations (44) and (45) are equivalent with Eqs. (35) and (37). The strains then give the stresses

as
E ! !

e (o) (oae)). o

o, =vog+ FE <EZ —eth el degl) , 47)

Finally, the contact pressure is calculated from

o) (Rco - Rcz) + PoReo
Rci .

(48)

Pcontact =

If the effective stress (calculated as described in section 4.3.3) exceeds the yield stress, a plastic
strain increment is calculated as described in section 4.3.3. After the plastic strain increment has
been calculated, the total strains are calculated from Egs. (44) and (45), the stresses and contact
pressure updated and R, calculated.
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Weak contact. If the solution of the closed gap model with the strong contact assumptions gives
an interfacial pressure that is lower than the internal gas pressure, Peontact < P, then the gas can
push the cladding and the pellet slightly apart, allowing them to slide against each other. In this
situation, the no-slip condition in the axial direction no longer holds. Instead, the axial strain of the
cladding adjusts until the contact pressure equals the internal rod pressure, and the cladding again
becomes axially locked with the pellet. In the weak contact case, no more plastic deformation is
calculated.

For the weak contact case, the contact pressure Prontact = F. The cladding inner radius R,; is
given as for the strong contact case. The outer radius R, can be solved from the implicit equation,

1 R 2v
R} + R? <— = —1—eh Pl gt 2P >
«© Rco,cold - Rci,cold «© Rco,cold - Rci,cold " " " E ¢
R? v

+R [— ci - —(P,—P }

0 Rco,cold - Rci,cold E ( ¢ )

R3 2v
+ ci + (1 + P 4 Pl deP! 4 P> R% =0, (49)
Rco,cold - Rci,cold " " " E “

using Newton-Raphson iteration [S]. The stresses and strains can then be solved from

. RciP contact — RcoP [

oo , (50)
Rco - Rci
Oy = Rgipcontact - RSOPO‘ (51)
Rgo - Rgz
1
€9 = (09 —vo) + e’ + e +dey, (52)
1 th pl pl
€ = E(UZ_VUB)"‘G,Z +e +de7, (53)
€ = _%(Ue—i-ffz) +€f~h+€$l+d6$1- (54)

In the closed gap model, since the inner radius R,; is fixed by the boundary condition, there is no
need to iterate the solution with the solution of the internal pressure P (irrespective of the strength
of the contact).

4.3.3 Plastic deformation model

Only time-independent plasticity of the cladding is modeled in FINIX, and only infinitesimal
strains are covered by the approach. The calculations of the increment in plastic strain proceed
similarly in both the open gap and the closed gap, strong contact cases. The following assumptions
are made in FINIX concerning cladding plasticity:

e The cladding behaves isotropically,

e the cladding is incompressible,
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o the cladding follows the strain hardening hypothesis,
o the cladding yields according to the von Mises yield criterion,
o the cladding follows the Prandtl-Reuss flow rule.

The following discussion and definitions are based on Refs. [15] and [16]. The onset of yielding
can be determined from a yield function. When the yield function has a value below zero, the
cladding behaves elastically. When the yield function is zero, the cladding yields, and positive
values are impossible. In FINIX, the von Mises yield function is used. The von Mises yield
function, f, s, for a strain-hardening material is as follows:

forr = 0e — oy (€e). (55)

The so-called yield surface is determined by f,5; = 0. In Eq. (55), oy is the yield stress, which
is a function of effective strain, and o, is the (von Mises) effective stress. The calculation of the
yield stress is discussed in section 5.2.7. The effective stress (and analogously, strain) is defined

as
3
o =[5 D sisi (56)
2
€ =3 2 e (7

= 0 — Dhs) (58)

(59)

Here, T'r(o) is the trace of the (Cauchy) stress tensor o, or the sum of the principal values of the
tensor. The second term in the deviatoric stress equation is therefore equivalent to the hydrostatic
pressure, pps. Note that in this discussion, only the principal values of stresses and strains are
used, so o; = 04, for example.

Using Hooke’s law (see Egs. (35), (36) and(37)) and the definition of deviatoric stress and strain,
the following relation between the deviatoric stress and strain can be found:

E
S; = 2 <2(]_—|—y)) €; = 2G€i7 (60)
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where we have defined the shear modulus, GG. For effective stress and effective strain, a similar
relationship can be found using their definitions and Eq. (60):

o = 3Ge,. (61)

When stresses resulting in an effective stress greater than the yield stress is calculated to occur with
the elastic solution, FINIX solves the increment in plastic strain by the radial return algorithm in
order to return the stresses to the yield surface determined by Eq. (55). The radial return algorithm
is an implicit integration algorithm, so all values of stress and strain refer to stresses and strains at
the end of the time step. The effective stress in Eq. (55) can be decomposed into a effective trial
stress and an effective plastic strain increment, de’él, that returns the stress to the yield surface (see
Ref. [16] for the derivation):

Oe = Oc trial — 3GdeP. (62)

The effective trial stress can be calculated from the trial stress with Eq. (56). The trial stresses are
calculated using the following equation (see Ref. [16] for the derivation):

Otriali = 07 + 2Gde”. (63)

The plastic strain increment components, de? !, are obtained from the Prandtl-Reuss flow rule,
Eq. (65). Substituting Eq. (62) into Eq. (55), we can now solve for the effective plastic strain
increment that satisfies the yield function:

O trial — 3Gd6€l — Uy(egl) =0. (64)

This is called the radial return method, which is widely used in solving the plasticity equations.
The effective plastic strain increment is found from Eq. (64) by Newton-Raphson iteration. An
initial guess of 1-10® is used in FINIX. When the effective plastic strain increment is found, the
individual components of the plastic strain increment are obtained from the Prandtl-Reuss flow
rule:

3 Si
20,

de?', (65)

gt = 2 S qer
With the knowledge of the plastic strain increment components, one may calculate the stresses
at the end of the time step by solving for o; in Eq. (63). The new stresses and plastic strain
increments are then used to calculate the total strains from Hooke’s law. In the open gap case,
both the inner and outer radius of the cladding are updated with the new strains, but in the closed
gap, strong contact case only the cladding outer radius is updated.

The increments in plastic strain are only added to the plastic strain after the solution for the time
step has converged. It must be noted that the effective plastic strain must be treated separately
from the plastic strains as the effective plastic strain depends on the past deformation and does
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not decrease. The effective plastic strain is a sum of all the effective plastic strain increments
that have occurred in the past. Therefore the effective strain increment calculated with the radial
return method is saved separately and added to the effective plastic strain after the solution has
converged.

5 Material correlations

The material correlations used in FINIX have been mostly adopted from the MATPRO library [13]
and the FRAPTRAN fuel performance code [11]. VVER correlations have mostly been adopted
from Shestopalov et al. [17]. Typically, the correlations are taken ’as is’. Since they have been
thoroughly tested within other fuel performance codes, detailed study of their applicability was
not considered necessary at this point. Their properties are discussed in, e.g., Refs. [13,18].

5.1 Fuel properties
5.1.1 Specific heat

The fuel specific heat correlation is the same as in FRAPTRAN and MATPRO [11, 13]. The
specific heat ¢, is given as
©%exp(©/T)
1
T2 [exp(©/T) — 1]°

YE,;
2RT?

+ KoT + K3 exp(—Ed/RT), (66)

Cm =

where T is the temperature in Kelvin, R is the ideal gas constant (=~ 8.314 J/molK) and Y is the
oxygen-to-metal ratio. For UOg, the numerical values of the constants are K; = 296.7 J/kgK,
Ky = 0.0243 J/kgK?, K3 = 8.745 - 107 J/kg, © = 535.285 K and E; = 1.577 - 10° J/mol.

5.1.2 Thermal conductivity

The FRAPTRAN correlation (see Ref. [13]) is used for the fuel thermal conductivity. The thermal
conductivity A is given by
d
A=10789———A\ 67
1+05(1—d)"™ (©7)
where g5 is the thermal conductivity for UOy at 95 % of the theoretical density, and d is the
as-fabricated density of pellet as a fraction from the theoretical value. The correlation for Ags is

_ -1 E _

Xos = [A+a- gad + BT + f(Bu) + (1 — 0.9¢"""P") g(Bu)h(T)]  + T3¢ FIT  (68)
Here gad is the gadolinia weight fraction, Bwu is the burnup (GWd/MTU) and 7' is the temperature
(K). The functions introduced in Eq. (68) are f(Bu) = 0.00187Bu, g(Bu) = 0.038Bu%2®
and h(T) = [1 + 396 exp(—Q/T)]~!, with Q = 6380 K. The constants in Eq. (68) are A =
0.0452 mK/W, a = 1.1599, B = 2.46 - 10~ m/W, E = 3.5 - 10 WK/m and F = 16361 K.
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5.1.3 Thermal strain

The thermal expansion correlation for UOs is taken from MATPRO/FRAPTRAN. The correlation
is valid in the solid phase (below T /= 3110) of the fuel pellet, and gives zero strain at 300 K. The
(linear) thermal strain is

e = K1T — Ky + Kge~ FalksT (69)
where kg is the Boltzmann constant, ; = 9.8 - 1079 /K, Ky = 2.94 - 1073, K3 = 0.316

and Fg = 1.32 - 101 J. Ref. [13] reports the value Ko = 2.61 - 10~ for the second constant.
However, it is easy to verify that e;,(T = 300 K) ~ 0 is given by Ko = 2.94 - 1073,

5.1.4 Radial pellet relocation

Cracking and radial relocation of the fuel pellet due to irradiation and thermal stresses is modeled
using the FRAPCON correlation for the pellet radial cracking. Relocation is given as the fractional
closure of the gap in relation of the as-fabricated gap G as

0.3+ 0.1f(Bu), for LHR < 20 kW/m,
AG/G =< 0.28+ g(LHR) + [0.12 + g(LHR)]f(Bu), for20kW/m < LHR <40 kW/m,
0.32 + 0.18f(Bu), for LHR > 40 kW/m,

(70)
where f(Bu) = Bu/5 for Bu < 5 MWd/kgU and f(Bu) = 1 otherwise, and g(LHR) =
0.0025(LHR—20), with the linear hear rate L H R given in kW/m and the burnup Bu in MWd/kgU.

Half of the radial relocation is considered permanent (hard) and half recoverable (soft). In FINIX,
the total (soft + hard) relocation is only taken into account in determining the gap conductance,
while only the hard relocation is considered in the mechanical model and in determining the re-
duction in free volume for the pressure calculation.

5.2 Cladding properties
5.2.1 Specific heat

Zircaloy cladding specific heat (in J/kgK) is given as a function of temperature in a tabulated form
in Table 2. The data is adopted from Ref. [13]. Between 300 K and 1248 K, the temperature is
calculated by linear interpolation from the values of Table 2, while for temperatures lower than
300 K and higher than 1248 K, the specific heat is assumed constant.

For Zr1%Nb cladding, the data is presented similarly in a tabulated form in Table 3. The data
is adopted from Ref. [17]. Between 393 K and 1400 K, the temperature is calculated by linear
interpolation from the values of Table 3, while for temperatures lower than 393 K and higher than
1400 K, the specific heat is assumed constant.
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5.2.2 Thermal conductivity

The thermal conductivity of Zircaloy below 2098 K is given by the FRAPTRAN correlation
A=75142.09-10"27 —1.45-107°T? + 7.67 - 107713, (71)
where the temperature 7' is given in Kelvin and the conductivity A in W/mK [13].

According to Shestopalov et al. [17], the thermal conductivity of Zr1%Nb cladding below 2133 K
is given by

\ = 15.0636¢0-4618:107°T (72)

For both Zircaloy cladding at temperatures higher than 2098 K and Zr1%Nb cladding at tempera-
tures higher than 2133 K, the conductivity is

A = 36.0 (W/mK). (73)

5.2.3 Thermal strain

The correlation for Zircaloy cladding thermal strain is based on the correlation used in FRAP-
TRAN. The FRAPTRAN formulae give non-zero strain at 7' = 300 K, which we assume be the
cold reference state of the system. Thus, the constant term is adjusted to give zero strain at 300 K.
The difference w.r.t. the FRAP correlations is less than 1074,

The correlation is given separately for the axial and diametral strains (the strain is assumed to be
isotropic on the plane perpendicular to the axial direction, hence the diametral strain is used for
both the radial and hoop thermal strain). The correlation is given separately for the o and /3 phases
of zirconium and interpolated in the intermediate regime.

Table 2. The specific heat capacity of the Zircaloy cladding [13]. The specific heat is assumed to
have a constant value both below T' = 300 K and above T' = 1248 K.

Temperature (K) Specific heat (J/kgK)

300 281
400 302
640 331
1090 375
1093 502
1113 590
1133 615
1153 719
1173 816
1193 770
1213 619
1233 469

1248 356
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Table 3. The specific heat capacity of the Zr1%Nb cladding [17]. The specific heat is assumed to
have a constant value both below T' = 393 K and above T' = 1400 K.

Temperature (K) Specific heat (J/kgK)

393 345

473 360

573 370

673 380

773 383

873 385

883 448

973 680

1025 816

1073 770

1153 400

1173 392

1200 392

1300 393

1400 393

For T' < 1073 K, the strains are
€= —1.1924085 - 10~ + (T — 273.15) - 4.441 - 1079, (74)
€Simotral = —1.80459 - 1074 4 (T — 273.15) - 6.721 - 1075, (75)
and for T" > 1273 K

ef = —83942.107% + (T — 273.15) - 9.70 - 10~°, (76)
€l = —6.7432-107° 4 (T — 273.15) - 9.70 - 1075 (77)

For the intermediate temperatures the strains are interpolated from the « and 3 phase values so
that for 1073 K < T < 1273 K

ap 123K—T , T —1073K g

€axial = 9ok Caxial + 00K Cadal’ (78)
s 1213K-T T — 1073K g
6giametral - Wegiametral + Wediametral' (79)

The correlations for Zr1%Nb cladding thermal strains are provided by Shestopalov ef al. [17]. The
correlations give zero thermal strain at 300 K. In the correlations below, AT = (7" — 883.0). The
correlations are given for five temperature intervals. Below 573 K, the strains are given by

€axial = —0.127813365 - 1072 + 3.85875 - 1077 + 0.1338985 - 107872, (80)

€diametral = —0.199649865 - 102 + 5.6539 - 107°7" + 0.3336985 - 1072, (81)
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at temperatures above 573 K but below 883 K by

€axial = 0.13725577 - 1072 + 5.4 - 1075 (T — 573.0), (82)

Ediametral = 0.3336985 - 107572 + 5.6539 - 10 °T — 0.199649865 - 102, (83)

at temperatures above 883 K but below 1153 K by

€axial = 3.0465577 - 1072 +2.312- 107 8AT — 7.358 - 107 8AT? + 1.7211 - 10" '9AT3, (84)

€diametral = 5.597700- 1073 +2.312- 107 AT — 7.358 - 10 *AT? + 1.7211 - 10 '°AT?, (85)
at temperatures above 1153 K but below 2133 K by

€axial = 1.076549 - 1073 +9.7- 1070 (T — 1153.0),, (86)

€diametral = 3.6276 - 107 +9.7- 1070 (T — 1153.0),, (87)

and finally at temperatures higher than 2133 K by

€axial = 1.0582459 - 1072, (88)

€diametral = 1.3133600 - 1072 (89)

5.2.4 Meyer’s hardness

Meyer’s hardness H; is used in the gap conductance model to determine the magnitude of the
contact heat transfer coefficient. The following correlation is used for Hj, of Zircaloy cladding
(note the error in sign of last term in [13]):

Hyp = exp [26.034 + T(—0.026394 + T'(4.3502 - 10° — 2.5621 - 10~ °T"))],  (90)

where the dimension of Hj; is (N/m?). In addition, the lower limit of Hj; of Zircaloy is set as
1.94 - 10® N/m?.

Meyer’s hardness for Zr1%Nb cladding is given by Shestopalov et al. [17] for temperatures below
800 K as

Hyr =2172.1-10% — 10.7055 - 1057 + 2765072 — 32.787 + 0.014237T*, 91)
and for temperatures over 800 K as
Hyy = exp (26.034 — 2.6394 - 10727 +4.3502 - 107 °T% — 2.5621 - 107°7%),  (92)

where the dimensions of H); is (N/m?). Additionally, a minimum hardness of 1 - 10° N/m? is
specified for Zr1 %Nb cladding.
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5.2.5 Young’s modulus

The Young’s modulus F of Zircaloy cladding is given separately for the o and § phases [13].
Below 1094 K, the correlation used is

E* = (1.088 - 10" — 5475 - 10"T + K + K>)/K3, (93)

with 7" in Kelvin and F in N/m?. The coefficient K, K5 and K3 are calculated from

K; = (6.61-10" +5.912-10°T)A, (94)
Ky =—-26-10C, (95)
K3 = 0.88 + 0.12¢~%/10%, (96)

Here A is the average oxygen concentration minus the oxygen concentration of as-received cladding
(kg oxygen/kg Zircaloy), C'is the cold work (dimensionless ratio or areas) and @ is the fast neutron
fluence (n/m?).

From 1239 K upwards the correlation is
B =9.21-10" —4.05- 107T. (97)
In the intermediate range (1094 K < T' < 1239 K), the value is interpolated as

1239K — T T — 1094K
EeB — E~ EP. 98
(1239 — 1094)K (1239 — 1094)K ©8)

The Young’s modulus correlation for Zr1%Nb cladding is as in FRAPTRAN-1.4 [13]. At temper-
atures below 1073 K, it is given by

E=1.21-10" —6.438 - 107T + 3.021 - 10?20, (99)

where xo is the mass fraction of oxygen in the cladding. At temperatures above 1073 K, the
Young’s modulus is given by

E=9.129-10'° —4.5.107T. (100)

A minimum of 1 Pa is specified.

5.2.6 Poisson’s ratio

The correlation for the Poisson’s ratio v is taken from FRAPTRAN [13]:
v = 0.42628 — 5.556 - 107°T. (101)

The temperature 7' is given in Kelvin, and v is dimensionless. The same correlation is used for
both Zircaloy and Zr1%Nb claddings.
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5.2.7 Yield stress

The PNNL stress-strain correlation [19] is used in the calculation of the yield stress for Zircaloy
and Zr1%Nb claddings. Parameters for the correlation are reported by Geelhood et al. [19] for
Zircaloy and by Shestopalov et al. [17] for Zr1%Nb cladding. The yield stress, oy, correlation
has the following form:

oy = Ke (1063> (102)

where K, n and m are the strength coefficient, strain hardening exponent and strain rate exponent,
parameters fitted to experimental data, and € the strain rate. To find the yield stress after an amount
of plastic strain has been accumulated, one must take into account that the yield stress then occurs
at the intersection of the yield stress curve, described by Eq. (102), and the elastic stress-strain
line:

c=F (e — epl) (103)

First setting ¢ = oy and solving for € in Eq. (103) and then substituting € in Eq. (102) yields
an implicit equation for the yield stress, so the yield stress must be solved iteratively. A value of
34.5 MPa is used as an initial guess. Currently, a fixed value of 1 - 107 is used for the strain rate
when determining whether the yield stress has been exceeded and a plastic strain increment should
be calculated. However, the strain rate is reported to have a small effect on the calculated yield
stress [19].

The strain, ¢, in the correlation is true strain, and the yield stress is true stress. In FINIX, engi-
neering stress and strain are used, so before using this correlation the values of stress and strain
are converted into true stress and strain. The relation between true and engineering (or nominal)
stress and strain are as follows:

€rue = In (e + 1)
(104)
Otree = 0 (€+ 1)

The major difference between engineering and true strain is that true strain is additive, whereas
engineering strain is not. However, with very small strains, the error from using engineering strains
additively is small. In the plastic strain calculation, the calculation of the plastic strain increment
is done using true strain and stress, and the results are returned to FINIX as engineering strain
and stress. Also, care is taken to only compare true yield stress with the true effective stress or
engineering yield stress with the engineering effective stress.

Strength coefficient. For Zircaloy, the strength coefficient, K, is subdivided into terms that are
functions of temperature of the cladding, 7, fast neutron fluence, @, cold work, CW, and cladding
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type. The strength coefficient for Zircaloy is calculated as follows:

K Kr (1+KCW+K<I>). (105)
Kclad

K144 depends on the type of Zircaloy, and for Zircaloy-2 it is 1.305 and for Zircaloy-4 it is 1.0.
The temperature-dependent term K is reported for four temperature intervals. At temperatures
below 750 K, it is given by

Kp =1.17628 - 10 + 4.54859 - 10°T — 3.28185 - 10372 + 1.72752T3, (106)

at temperatures over 750 K but below 1090 K by

2.8500027 - 106
Kp = 2.522488 - 10% exp <T2> , (107)
at temperatures over 1090 K but below 1255 K by
Kp = 1.841376039 - 108 — 1.4345448 - 10°T, (108)
and finally at temperatures over 1255 K but below 2100 K by
Kp =4.330-107 — 6.685 - 10*T 4 37.579T% — 7.33 - 10373, (109)

The fast neutron fluence dependent term is reported for three fluence intervals. At fluences below
0.1- 1025% it is given by

Ko = (—0.1464 + 1.464 - 10259) - (2.256-200”’ min (1, eT‘T‘L’isO) + 1) . (110)
at fluences above 0.1 - 1025# but below 2 - 1025% by
Ko = 2.928 - 10200, (111)
and finally for fluences above 2 - 1025# but below 12 - 1025# by
Ko = 0.53236 + 2.6618 - 1027 . (112)
The cold work dependent term is simply
Kew = 0.546CW, when 0 < CW < 0.75. (113)

For Zr1%Nb cladding, the strength coefficient is reported separately for irradiated and unirradi-
ated cladding. In FINIX, if the fast neutron fluence is greater than zero, the irradiated cladding
correlation is used. For unirradiated cladding, the strength coefficient is given for two temperature
intervals. For the temperature range 293K < T' < 797.9K the strength coefficient is

K = 898.3710095 - 10° — 1.911883946 - 10° + 2.024675204 - 10372 — 0.962825985672, (114)
and for the temperature range 797.9K < T < 1223K itis

K = 1.518065748 - 100 ~0-005608069738T" (115)
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For irradiated cladding, the strength coefficient of Zr1%Nb is reported for three temperature inter-
vals. For temperatures above 293 K but below 763 K, it is given by

K = 916.8547193 - 10° — 0.6046334417 - 1057 — 247.482004312, (116)
at temperatures above 763 K but below 859.4 K by
K = 4.912469131 - 10*! ¢ 0-00965027547T (117)
and at temperatures above 859.4 K but below 1223 K by

K = 1518065748 - 100~ 0-005605069738T (118)

Strain hardening exponent. For Zircaloy, the strain hardening exponent, n, is subdivided into
terms that are functions of temperature, fast neutron fluence and the cladding type. The strain
hardening exponent is calculated as follows for Zircaloy:

nrng

n= . (119)
Nelad

Nclaqd depends on the type of Zircaloy, and for Zircaloy-2 it is 1.6 and for Zircaloy-4 it is 1.0. The
temperature dependent term, nr, is given for four temperature intervals. At temperatures below
4194 Kt is

ny = 0.11405. (120)

At temperatures above 419.4 K but below 1099.0772 K, it is given by
np = —9.490 - 102 + 1.165 - 1037 — 1.992 - 1072 + 9.588 - 1071973, (121)
and at temperatures above 1099.0772 K but below 1600 K by
np = —0.22655119 + 2.5 - 1047 (122)
At higher temperatures than 1600 K, it is
ny = 0.17344880. (123)

The fast neutron fluence dependent term, ng, is given for three fluence intervals. For fluence below
0.1- 1025%, the term is given by

ne = 1.321 + 0.48 - 10°2°®, (124)
while above 0.1 - 1025# but below 2 - 1025# it is given by
ne = 1.369 4 0.096 - 1072, (125)
and above 2 - 10%° -2 but below 7.5 - 1025 -2, by
m m
ne = 1.5435 + 0.008727 - 102°®. (126)
At fluences higher than 7.5 - 10%° 2 the fluence dependent term is

ng = 1.608953. 127)
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For Zr1%Nb cladding, the strain hardening exponent is reported separately for irradiated and
unirradiated cladding. In FINIX, if the fast neutron fluence is greater than zero, the irradiated
cladding correlation is used. For unirradiated cladding, the strain hardening exponent is given by:

n = 0.04628421012 4 0.000197951907T — 3.314868215 - 107712 4 1.3913294 - 101073, (128)
The lower limit for validity of the unirradiated cladding correlation is 293 K, and the upper limit
is 1223 K. For irradiated cladding the strain hardening exponent is given for three temperature
intervals. At temperatures above 293 K but over 759 K, it is given by

n = —0.125544775740.0013504161127 —3.536814687-10 T2 +3.734672258-107T3, (129)

at temperatures above 759 K but below 879 K by

n = —0.239614587 + 0.002839248035T — 8.226160457 - 10672+ (130)
9.276772204 - 10973 — 3.588141876 - 107127,
and at temperatures above 879 K but below 1223 K by

n = 0.04628421012+0.000197951907T — 3.314868215- 107772 4 1.3913294 - 1071°73. (131)

Strain rate exponent. For both Zircaloy and Zr1%Nb claddings, the strain rate exponent is only
dependent on the temperature of the cladding. For Zircaloy, the strain rate exponent is given for
three temperature intervals. Below 750 K, it is
m = 0.015. (132)
Between 750 K and 800 K, the strain rate exponent is given by
m = —0.544338 4 7.458 - 1077, (133)

and at temperatures over 800 K, it is given by

m = —0.20701 — 3.24124 - 10°4T.. (134)

For Zr1%Nb cladding the strain rate exponent is reported for three temperature intervals. Below
752.2 K but over 293 K it is given by

m = 0.02280034483 — 3.448275862 - 107 T, (135)
at temperatures over 752.2 K but below 902.1 K by
m = —2.534966886 +0.006626767224T — 5.303091629 - 10972 +1.34653092- 10973, (136)
and finally at temperatures over 902.1 K but below 1223 K by

m = —0.1619955889 + 3.080302048 - 1077, (137)
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5.3 Gas gap and plenum properties

The gas conductivity model and correlations are discussed in Section 3.3.

The plenum gas model in FINIX 0.15.12 has not been updated to treat gases other than helium.
The plenum gas is thus assumed to consist solely of helium. While this is a crude approximation, it
only affects the plenum temperature through the heat transfer coefficients calculated for the pellet
surface and the cladding facing the plenum. Since both are in any case in contact with the same gas
and thermal equilibrium in the plenum is assumed, the error resulting from the approximation is
manageable until correlations for the other species can be introduced. The correlations for helium
are taken from Ref. [20]. Compared to the FRAPTRAN correlations, the numerical values are
very similar.

The dynamic viscosity p, density p and Prandtl number Pr are given by

p=3.674-10""T%7 (kg/ms), (138)
= 48.14 10*5P 14 0.4446 - 107° P kg/m? 139
0.717 7= (001-142:10-°P) (dimensionless). (140)

P =
T I 1123-10-5P
In the above, T is given in Kelvin and P in N/m?.

The kinematic viscosity is given by v = %.

5.4 Coolant

FINIX has a rudimentary implementation of a thermal-hydraulic model for calculation of heat
transfer coefficients from the cladding to the coolant. The correlations are valid below the critical
heat flux (CHF), in the forced convection and nucleate boiling regime. The validity of the corre-
lations is internally checked by calculating the critical heat flux from the EPRI-1 correlation [21],
and by comparing with the computed heat flux. Currently, FINIX has no model to calculate
changes in bulk coolant temperature. Therefore, the coolant temperature is taken as given by the
user.

5.4.1 Heat transfer coefficient

The heat transfer coefficient A is given as the sum of the heat transfer coefficients from the Dittus-
Boelter correlation (hpg) and the Thom correlation (Aryom). The latter describes the additional
convection in the nucleate boiling regime, and is zero if the cladding surface temperature is below
the saturated coolant temperature, i.e., if To, < Tsge.

The Dittus-Boelter correlation is given in British units as [12]

hps =[(—5.1889 - 1075 + 6.5044 - 1075T},)T,, + (3.5796 - 10~7 — 1.0337 - 1079T},) P,
+3.2377 - 107228 D02, (141)
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where T, and P, are the temperature and pressure of the coolant (assumed light water in the
correlations), ¢,, is the coolant mass flux and D, the hydraulic diameter,

2 d2 —ﬂ'Rgo f .

"7 Reo or square lattice,

De =19 V3 srr2 _ (142)
g 2, forhexagonal lattice,

with d the rod pitch. Although the correlation for hpp is given in British units, the conversion to
and from SI units is handled internally by the respective FINIX functions. The output from the
calculation is therefore in units of W/m?K.

The Thom correlation, also in British units, is [11]

ePw/1260 2
i [ — Tco - Tsa Tco - T'w ’ 14
hThom 0.072 ( t) /( ) ( 3)

with T, given by the Frapcon correlation

Toar = [((0.4616716 - 107 P,, — 0.4424529 - 10~*)P,,) + 0.19042968] P,, + 394.03519,
(144)
where the pressure is in psia and temperature in °F. For T, < Tsqt, hThom = 0.

5.4.2 Critical heat flux

The critical heat flux is estimated from the EPRI correlation [21], which is valid for a wide range
of experimental parameters. The correlation can be used to derive a criticality criterion for the

heat flux. If the relation
A—xp

c
is satisfied, then the heat flux ¢ (in units of MBtu/hrft?) at axial node k exceeds the CHF. Here
xy, is the thermal equilibrium quality (the non-dimensional expression of coolant enthalpy),

o hk — hsat
hvap

Qe > (145)

Tk (146)

where the bulk fluid enthalpy Ay is evaluated at the axial node &, and the saturated liquid enthalpy,
hsat, and the enthalpy of vaporization, ., are given by internal correlations. The coefficients A
and C in Eq. (146) are given by

A= 0-5328(Pw/Pcm’t>0'1212¢_0'3040_0'3285(Pw/Pcrit)7 (147)
C = 16151(]3“}/1-_-)67%)1.4066(bO.484372.0749(13’10/Pcm',g)7 (148)

where the critical pressure P,.;; = 3208.2 psia and the coolant mass flux ¢ is given in units of
Mlbm/hrft2,

6 Numerical implementation

6.1 General outline of the execution order

The FINIX calculation of the thermal and mechanical time evolution of the fuel rod proceeds
in discrete time steps dt. For each time step, the thermal and mechanical solutions are found
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by numerical iteration. The iteration process is schematically presented in Fig. 1. The iteration
consists of two main loops. The outer loop consists of solving the thermal properties of the fuel
and the cladding, the gap conductance and the heat equation and plenum temperature. The second
loop consists of solving the internal pressure and pellet and cladding deformations, and is situated
within the outer thermal iteration loop. For the mechanical solution, the internal pressure is used
as a convergence criterion, while for the outer loop, convergence of the gap conductivities for all
axial nodes is required. On the algorithm level, the iteration is performed using the secant method,
which is a method similar to the Newton-Raphson method, but where the function derivative is
evaluated numerically instead of analytically. The method is described in detail in, e.g., Ref. [5].

The numerical methods used to solve the individual modules are described in the following Sec-
tions.

6.2 Thermal model
6.2.1 FEM discretization of the 1D heat equation

As was discussed in Section 3.1, the temperature in the pellet and cladding is solved in axial slices,
in each of which the temperature 7' is assumed independent of the axial and azimuthal coordinates
z and 6. The heat equation then takes the form

Cv[T(T)]a—T Lo |:)\[T(T)]T:| —s(r)=0, (149)

with C'y denoting the volumetric heat capacity and A the conductivity. Note that neither the heat
capacity nor conductivity is assumed constant w.r.t. the coordinate r.

The heat equation (149) is discretized with the Finite Element Method (FEM) [22]. The pellet is
divided into n s — 1 radial elements, with the :th element comprising the volume between the nodes
atr = r; and r = r;41. The first node is located at the inner surface of the pellet (r; = Ry), while
the last node is at the pellet outer surface (7, ;= Ry). The cladding is similarly divided into n.—1
elements and n. nodes, with the first cladding node at the cladding inner surface (r, 1= R.)
and the last at the outer surface (7, fne = R.,).

The gas gap element (between nodes ny and ny + 1) is handled through the gap conductance
boundary conditions, as will be discussed below. In what follows, an element will refer to a general
element, either within the pellet or in the cladding, unless otherwise indicated. For the pellet
elements, the material parameters (conductivity, heat capacity) are be given by the correlations of
Sec. 5.1, and for the cladding elements by the correlations of Sec. 5.2.

6.2.2 Discretization of one element

In the finite element method, the continuous equations are discretized first for each element. The
global discretization of the whole system is then assembled from the discretized individual ele-
ments. For each element, the numerical solution provides the value of the temperature only at the
location of the nodes. Within the element, the solution is approximated by shape functions, or
basis functions. In the simplest case, the basis functions are linear, so that within the element the
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Figure 1. Flowchart depicting the logic and execution order of the main FINIX modules and the
interface between FINIX and the host code. Computation of a new time step begins from the top
and proceeds through the modules as indicated by the arrows. Convergence checks are made for
the gap conductance in the thermal model, and for the internal pressure in the mechanical model.
On the first round of iteration, the convergence is always considered to have failed, so that the full
thermo-mechanical model is executed at least once.

temperature 7" is assumed to behave linearly as a function of r. The actual finite element equations
are then derived by minimizing the residual (discretization error) between the original equations
and the discretized equations. The minimization can be done with several different methods. A
common choice is the Galerkin method, where the minimization is done by weighting the residual
with the basis functions [22]. This is also the method we will use.

The temperature inside the i:th element is approximated with linear basis functions N; and N;
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so that

T(r) ~ [Ni(r) Niwa (r)] [ o ] , (150)

where the square brackets indicate row and column vectors, 7; is the temperature at the ¢:th node,
and

Tit1 — T
Ni(r) = 7":7—7“ (151)
1 K3
r—r;
Nisi(r) = ﬁ (152)
1 K3

For Eq. (149), the Galerkin method results in the matrix equation
Ni(r) 2| T
C N;(r)N; dVv —
/ [ o M V) NN )V g |

_ i Aiji+1 T; _/[ N;(r) ] B [ 0]
[ Aitl,i Aitlitl } [ Tiiq ] Niy1(r) s(r)dV = BE (153)

where the matrix elements A; ; are

o " ONi(r) ON;(r)
Nij = —27rAz/r rA(T) o o dr +27Az

i

N2 sy

Ty

and the integral operator can be written as [ dV = 2rAz f:“’l rdr, since the integrands have no

axial or azimuthal dependence in the slice of thickness Az. We also linearize the heat capacity
Cly, conductivity A and the source term s within the element, so that, given the values at the nodes
i and 7 + 1 (denoted by subscripts), we have

r—r;

Cv(r) = C; + (Cit1 — () ; (155)
Titl — Ty
r—r;
Ar) = A+ (Nig1 — Ni) ————, (156)
Tit1 — Ti
r—r;
s(r) ~ si+ (siy1 — 8i) ————, (157)
Titl — T4
for r; <r< Ti+1-
Integration over the element gives the matrix equation
an Tk
(KZ‘—FCZ‘) [ le—‘rl :| =C; I: ka :| + f; (158)
i+1 1+1

where time derivative has also been discretized with the implicit Euler method. The superscript of
T indicates the time step of the time-discretized temperature, so that Tf =T(r = rit = kdbt),
where 4t is the time step. The implicit Euler method remains unconditionally stable with all values
of 4t [22,23]. The matrices in Eq. (158) are defined as follows:

K, — Xi(2r; + 1) + N1 (i + 21ri41) [ I -1 } , (159)

a 6(ri1 + 1) -1 1

Titl — T Cz‘(127'i + 3T¢+1) + Ci+1(37’i + 27“1‘4_1) CZ'(37"Z‘ + 27’,‘4_1) + Cz‘+1(27°i + 37“1‘_,_1)
600t Ci(31"i + 2Ti+1) + Ci+1(2ri + 31”i+1) CZ'(QT‘Z' + 3T‘¢+1) + Ci+1(3ri + 12Ti+1)
(160)

C; =
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Tkl — T |83+ riga) + sipa(ri + rign) —Tii
£ — + . (161)
12 5i(1i + Tiy1) + sip1(ri +3rig1) Ti+1Gi+1

The second term in the vector f; is determined by the boundary conditions of the element, with ¢;
the heat flux over the surface at » = r;. The boundary conditions will be discussed in more detail
below.

6.2.3 The gas gap element

Fori = {1,2,...,ny — 1,ny +1,ny +2,...,ny + n.}, the element discretization is given by
the 2 x 2 matrices derived in the previous Section. For the gas gap, i.e., the ny:th element, the
matrices are derived from the gas gap conductance model described in Sec. 3.3. Given the heat
transfer coefficient h, the matrix an 18

hrnf —hrnf

(162)
—hr, ; hry, ;

Ky, =

There is no power generated in the gap, and the specific heat of the gas is assumed negligible.
Hence, Cnf = 0 and fnf =0.

6.2.4 Global matrices

The global matrices for the whole system are assembled from the 2 x 2 element matrices by taking
the sum node by node. The result is an (ny + n.) X (ny 4 n.) tridiagonal matrix. For brevity, we
introduce a shorthand notation of the element matrices:

(11) (12 (1) ~02)
KD g2 | @) ((22)
Then, the global matrices are of the tridiagonal form
[ D; Uy 0
L; Dy U
Ly D3 Us
K= ) (164)

0 Ln—l Dn

where n = ny + n. is the total number of nodes. The diagonal (D), upper diagonal (U) and lower
diagonal (L) elements are given as

D; = KM + K®) (for2 <i<n—1); Dy =K"; D, =K*), (165)
U; =K' (for1 <i<n-—1), (166)
L =K (for1 <i<n—1). (167)
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The matrix C is assembled in a similar fashion, with the elements of the matrices K; replaced
with the elements of C;.

The load vector is given as

f = , (168)
2 1
(2, + 1)
L fn—l J
where fz-(l) and fz-(2) are the two components of f;:
£
f = fZ@) . (169)
(A
Finally, the global matrix equation for the complete system is
(K 4+ C)T*! = CcTk + 1, (170)
where the vector T* contains the temperatures at the k:th time step:
Tt
)
TF=| (171)
Tk

n

6.2.5 Time discretization

Implicit time discretization of the heat equation is implied in Eq. (170). The time discretization
follows the standard implicit finite difference discretization (see, e.g., Ref. [23]), which remains
unconditionally stable for all time steps d¢. The implicit formulation means that to calculate the
temperature at time ¢ = (k + 1)dt, the temperature-dependent terms of the heat equation are
evaluated at the same point in time, at ¢ = (k + 1)dt. For constant (non-temperature-dependent)
material properties, it is possible to solve the one-dimensional implicit time-discretized matrix
equation, Eq. (170), without iteration. However, since the material correlations depend on temper-
ature, and cannot in general be linearized, it is necessary to iterate the solution of T**!, until the
temperature converges. This is part of the iteration procedure described above in Sec. 6.1.

6.2.6 Boundary conditions

The boundary conditions affect the discretization of the elements at the center of the pellet and at
the outer surface of the cladding. For the first element, the flux through the first node is set to zero,
i.e., g1 = 01in Eq. (161). For the cladding outer surface, several alternative boundary conditions
can be used.
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Dirichlet boundary condition For a fixed surface temperature, T'(R.,) = Tuut, the appropriate
boundary condition is enforced by setting L,, = D,, = 0 for C, L,, = 0 and D,, = 1 for K, and

f7(12—)1 = Tsut in the load vector f. This is equivalent with the the equation T,’f“ = Tourt-

Neumann boundary condition If the heat flux across the cladding outer surface is fixed, then one
only needs to assign ¢, the desired value in f.

Robin boundary condition The heat flux can also be given as a function of the bulk temperature
of the coolant, T¢oolant, and the heat transfer coefficient ke, so that ¢, = heo [T, — Teoolant]- In

this case, the last element of f is f,(f_)l = Tnhcolcoolant, and the remaining r, h., is added to the

last diagonal element D,, in the matrix K.

In the case of the Robin boundary condition, the heat transfer coefficients can be computed from
internal correlations (see Sec. 5.4) or, they be given by the user.

6.2.7 Solution of the matrix equations

The resulting matrix equation for the vector T*+1, Eq. (170), can be solved non-iteratively with the
tridiagonal matrix algorithm, which a variant of the standard Gaussian elimination method. The
algorithm is a standard numerical method, and its details are not explained here. The interested
reader is referred to Chapter 2 of Ref. [5].

Although the heat equation itself can be solved non-iteratively, the dependence of the material
properties, gap conductance and the pellet and cladding mechanical solution on the temperature
requires iteration of the full thermo-mechanical solution. The scheme is described in more detail
above, in Sec. 6.1.

6.3 Plenum temperature

The plenum temperature model described in Sec. 5.3 can be solved self-consistently for fixed
plenum pressure and cladding and pellet surface temperatures. However, since the properties of
the fill gas and thereby the heat transfer coefficients depend on the temperature, the equations
do not have a closed form solution. Instead, the solution is found iteratively with the secant
method [5]. The area-averaged temperature Ty = (4,7, + A.T¢)/(Ap + Ac) is used as the initial
guess. Typically, the iteration requires two steps or less to converge within the numerical tolerance.

6.4 Mechanical model
6.4.1 Rigid pellet model

The primary assumption of the rigid pellet approximation is that the pellet is rigid (hard) enough to
be completely non-deformable under external stresses. Thus, the displacement of the pellet nodes
and the outer surface can be calculated directly from the strain correlations, without iteration.
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6.4.2 Cladding model

The employed cladding mechanical model depends on the type of contact between the pellet and
the cladding. In principle, iteration of the mechanical solution with internal pressure is only nec-
essary when the gap remains open; if the gap is closed, the gap volume is fixed and therefore
does not affect the pressure. However, the model typically consists of several axial nodes, and the
pressure is function of the displacements in all of those nodes. In some of the nodes, the gap may
remain open while in others it is closed (due to, e.g., nonuniform axial power distribution). If the
gap remains open even in some of the nodes, the internal pressure has to be solved iteratively. This
iteration process then changes the boundary conditions in the closed gap model, which has to be
re-solved. Therefore, even the closed gap models are solved several times because of the iteration
of the mechanical solution of the full rod. Note that the plastic strain increments calculated on
each iteration are only saved to the total plastic strains after the whole solution has converged (at
the end of the time step).

In practice, the iteration is performed by first calculating an initial guess for the pressure (using
the displacements from, e.g., previous time step), then solving the mechanical model for each
axial node independently with fixed pressure, and finally re-calculating the pressure with updated
displacements. The process is repeated, using the secant method to predict the pressure, until the
internal pressure converges.

7 Usage instructions

7.1 General description

The FINIX fuel behavior model and interface is designed to work primarily as a subprogram within
a larger simulation code, to provide or replace the existing fuel performance model or subroutines.
In this document, this larger code is referred to as the host code.

The purpose of FINIX is to provide the host code all the required fuel behavior subroutines via
an interface that integrates directly with the host code on the source code level, and only requires
a limited number of function calls between FINIX and the host. All the data between the host
code and FINIX is passed as arguments of the function calls; no input or output files for the
data exchange are needed. This makes execution of the subroutines faster, because disk access is
minimized, and also allows the user of the host code to specify which output from FINIX (if any)
is saved as a file.

Although the communication between FINIX and the host code is handled without input/output
files, since FINIX 0.13.9 it has been possible to initialize FINIX for accumulated burnup using
FRAPCON-generated FRAPTRAN restart files. Since version 0.15.6 it has also been possible to
initialize FINIX data structures by using input files.

FINIX also has an error message system, which is designed to provide the host code run-time
errors and warnings. For example, convergence failures or invalid correlation parameters would
be passed as an error message to the host code. A more detailed description of the error message
system is given below.
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The setup and usage of the FINIX model is done via built-in functions, which can be used to pro-
vide default values for system parameters, give the spatial discretization and, to solve the thermo-
mechanical model. A more thorough walk-through of the procedure is given below, in Sec. 7.5.
The source code also includes an example file, host.c, which provides FINIX with the necessary
run-time data and shows how the model is initialized and run.

A more detailed documentation of the source code, with function descriptions and dependencies,
is also given in Appendix A of this document.

7.2 Units

FINIX functions always use the base SI units in both input arguments and in output. For example,
distances are given in meters (m), temperatures are given in Kelvin (K) and power, linear power,
and power density are given in W, W/m and W/m?, respectively. The user is responsible for writing
any unit conversion functions between the host code and FINIX.

In general, the data in FINIX input files should be given in SI units as well. However, time-related
data can be given in seconds, hours or days. If the input will be read from a FRAPTRAN input
file, it is possible to choose either British or SI units.

In FINIX, the term "power" refers primarily to thermal power, as opposed to fission power. Cur-
rently the code makes no distinction between the two. However, in principle the user should always
supply FINIX with the thermal power history, including the decay heat of the fission products.

The cold state in FINIX specifies the reference temperature for the fill gas properties and thermal
strains. The cold state is defined as 300 K.

7.3 Data structures

The main purpose of FINIX is to provide the host code the temperature distribution and spatial de-
formations of the pellet and cladding by using the power history and coolant conditions provided
by the host code as input. In addition to these primary data, there are data that are either required
by FINIX as parameters, or are generated by solution of the thermo-mechanical model. Although
much of this may be irrelevant to the host code, this data is required to continue the FINIX simu-
lation for several consecutive time steps. All the data that FINIX uses or produces is stored in five
structures. These structures are described below. A more detailed code documentation is given
in Appendix A.

The structure called Rod contains the data that describes the physical properties of the fuel rod.
These properties include rod dimensions, pellet properties, cladding properties, gas properties and
bundle dimensions. This data will not change during simulation. The contents of the Rod structure
can be read from the corresponding input file.

The Boundary_conditions structure is used for storing the boundary condition data needed by
FINIX. This data includes variables that specify the simulation time, power data, and the data
related to cladding and coolant conditions. For each FINIX calculation time step, the Bound-
ary_conditions structure needs to be updated either by the host code, or in the FINIX main program
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(in host.c).

The Scenario structure contains power profile and irradiation history data that will be read from an
input file if needed. Once this data has been read from an input file, it will not change during simu-
lation. The history data from the Scenario structure should be transferred to Boundary_conditions
structure at each time step. If the host code provides the boundary condition data, the Scenario
structure is not needed. The contents of the Scenario structure can be read from the corresponding
input file.

The Results structure contains all the simulation results calculated by FINIX.

The Options structure contains the variables that specify the nodalization and the calculation
options. This data will not change during simulation. The contents of the Options structure can be
read from the corresponding input file.

The Cylindrical structure is used in storing values of results in each component in cylindrical
coordinates, that is, values for strains and stresses in the mechanical model. Some members of the
Results structure are Cylindrical structures. The Cylindrical structure contains members hoop,
axial and radial, and functions for easy manipulation of these structures are implemented. With
these functions one can, for example, the copy the values of structures into another or perform
simple calculations with them.

7.4 Error message system

FINIX uses an error message system to inform the user of issues such as convergence failures,
parameters exceeding correlations’ range of validity, etc. The function that encounters the issue
returns the pointer to the error message. The message is then passed down, and further error mes-
sages are appended to it, until the message reaches the host code. It is then the responsibility of the
host code to act on the error message by printing it on screen, writing it on disc, aborting the pro-
gram execution, or otherwise. FINIX will not terminate the execution, if an issue is encountered.
Only the error message will be returned.

The format of the error message is an array of text strings, formally of type char**. If no errors
have occurred, then the top-level pointer will have a value of NULL. This can be used to distin-
guish between error-free and faulty operation of the FINIX functions. If the value is different from
NULL, then the return value contains an error message. The returned array then contains pointers
to the error message strings (of type char*). The last message is followed by a NULL pointer,
which is used as a marker to terminate the message.

In practice, the user can use built-in functions to deal with FINIX the error messages. One merely
needs to declare the pointer in the host code. For example, the following lines will declare the
pointer, then call the FINIX transient solver function, catch the error message, print it on screen if
it is not empty (i.e., non-NULL), and finally free the memory allocated to the error message.

char xxerr=NULL;

err=finix_solve_transient (dt,nnodes,T,r,r_cold,power_dist, linear_power,
burnup , params ,bcond , sresults , vresults , options);

if (err!=NULL){ finix_printf_err(err);}

finix_free_err(&err);
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7.5 System setup and simulation

To use the FINIX code in a coupled system, the user must declare the necessary data structures in
the host code, initialize the FINIX structures, and calculate the initial state of the simulation by
using FINIX functions. After this the model can be run for as many time steps as needed. FINIX
comes with an example host code file, host.c, which should be replaced in its entirety by the host
code. The host.c file can be used as an example on how to setup the model. The minimal necessary
steps to get FINIX up and running is described in this chapter.

In a coupled system the user is responsible for using an appropriate time step. Although the FINIX
algorithms remain stable for very long time steps (longer than several days), discretization error
can not be avoided. For relatively slow transients, a time step of the order of 1 millisecond should
give very small discretization error during the transient, although for a fast RIA, a considerably
smaller time step (6t ~ 10~ s) may be needed.

The declaration and the definition of the variables can be done as follows:

// Declare and construct FINIX data structures
Rod *xrod = finix_rod_construct ();
Boundary_conditions xbc = finix_bc_construct ();
Scenario xscenario = finix_scenario_construct();
Results xresults = finix_results_construct ();
Options *xoptions = finix_options_construct ();

// Declare FINIX error message strings
char xxfinix_err=NULL, *xnew_err=NULL;

The next step is to initialize the system. The FINIX data structures can be initialized by calling
the function finix_initialize_data_structures(). The function reads the input files given by the user,
and transfers the data from the input files to the data structures. If no input files are given or some
of the input is missing, the above constructor functions initialize the missing data with default
values.

In many cases the transient begins from a steady state, which has to be solved before calculating
the transient scenario. For this purpose FINIX has the function finix_solve_initial_steady_state(),
which solves the steady state heat equation and the corresponding mechanical equilibrium for the
cladding.

FINIX can be initialized as follows:

// Initialize FINIX data structures

finix_err = finix_initialize_data_structures (rod, bc, scenario, results, options);
if (finix_err != NULL) finix_printf_err(finix_err);

finix_free_err(&finix_err);

// Solve initial steady state

finix_err = finix_solve_initial_steady_state (rod, bc, results, options);
if (finix_err != NULL) finix_printf_err(finix_err);
finix_free_err(&finix_err);

After the initial state has been solved, the transient simulation can begin. The transient is solved in
distinct time steps defined in the host code, by calling the finix_solve_transient() function. Before
each function call, the power density, boundary conditions and other parameters and options can
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be changed. However, for one time step, i.e., for one function call, they are constant. After each
function call, the output of the FINIX model may be saved. For example, one can write FINIX
summary files and node-spesific files by calling a function finix_output_print().

The transient can be solved for each time step as follows:

// Solve time step with finix_solve_transient ()
finix_err=finix_solve_transient(bc—>dt, rod, bc, results, options);
if (finix_err != NULL) finix_printf_err(finix_err);
finix_free_err(&finix_err);

// Update the cumulative simulation time
bc—>time += bc—>dt;

When the transient simulation has been completed and FINIX is no longer needed, the memory
allocated for FINIX structures must be free’d. This can be done by using the function
finix_data_structures_destruct().

// Free allocated memory
finix_data_structures_destruct(rod, bc, scenario, results, options);

As mentioned before, the above lines of code are the minimal setup that is needed to run FINIX
in a coupled system. However, if the host code cannot provide all the necessary boundary condi-
tions, the missing boundary conditions must be given in FINIX input file finix_scenario.inp. The
boundary conditions must be updated for each time step by calling the function finix_update_bc()
as follows:

// Update boundary conditions before calling finix_solve_transient()

finix_err = finix_update_bc(bc, scenario, options, rod, results);

if (finix_err != NULL) finix_printf_err(finix_err);

finix_free_err(&finix_err);

7.6 Input instructions

FINIX distribution includes three input files called finix_options.inp, finix_rod.inp, and finix_scenario.inp.
These input files can be used to control the simulation. Each input file contains data for several

fuel rods. When a new input is created for a new fuel rod, the input should be appended at the end

of the files. An alternative way to control the simulation is to use FRAPTRAN input files.

In a coupled system, where all boundary conditions are given by the host code, no input files
are required. IIf no input files are used, default values for simulation options and rod properties
will be used. However, it is advisable to specify simulation options and rod properties in files
finix_options.inp and finix_rod.inp (or otherwise in the host code) to get more realistic results.
If the host code cannot provide all the necessary boundary conditions, i.e., the contents of the
Boundary_conditions structure, the finix_scenario.inp file must be used to specify the missing
boundary conditions.

If a stand-alone version of FINIX is used, the scenario boundary conditions must be given in file
finix_scenario.inp. Again, it is advisable but not mandatory to give the simulation options and
rod properties in files finix_options.inp and finix_rod.inp. Alternatively, input can be given in a
FRAPTRAN input file. However, even though the input is given in a FRAPTRAN input file, it
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is advisable to specify FINIX simulation options in finix_options.inp because FINIX simulation
options cannot be set in a FRAPTRAN input file. All the data given in FRAPTRAN input file
overwrites the default data and the data read from FINIX input files.

The contents of FINIX input files is organized in data blocks. Each block of data describes one
fuel rod. Therefore FINIX needs to know which block of data to read from a file. The data blocks
are of the following form:

begin rod_namel

data_1l = x
data_2 =y
data_n = z

end rod_namel

As can be seen above, every data block begins with "begin" statement and ends with "end" state-
ment. These statements are followed by the name of the rod. Note that the rod name must not
include white spaces. As the data in input files has been grouped into blocks that describe each
fuel rod, one should tell FINIX from which data block to read the data. This can be done with the
"USE" statement as follows:

USE rod_namel

begin rod_namel

data_1l = x
data_2 =y
data_ n = z

end rod_namel

begin rod_name?2
data_1l = x
data_2 =y

end rod_name?2

The "USE" statement tells FINIX that it should read the data from a data block that begins with
"begin rod_namel" and ends with "end rod_namel". Every FINIX input file should begin with
the "USE" statement.

n_n

The data in input files can be arranged in any order. After a keyword, there should be an "=
sign followed by the data that corresponds to the keyword. If the data consists of several values,
they should be separated with commas. The lines in input files that begin with "!", "*", or "/" are
commented lines, and FINIX will ignore them. The contents of the three input files is described
in the following chapters.

7.6.1 Input file finix_options.inp

Input file finix_options.inp can be used to set FINIX nodalization and to select the models FINIX
uses during simulation. Table 4 shows the data that can be given in finix_options.inp. If default
value will be used, it is not necessary to add that data in the input file. The contents of a file could
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USE rod_123

begin rod_123
axial nodes = 10

pellet_radial_nodes

boundary_option =
end rod_123

= 15
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Now the rod will be divided to 10 axial nodes and the fuel pellet will be divided to 15 radial nodes.
The rod outer surface temperature will be given by the user. For the rest of the keywords default

values shown in Table 4 will be used.

Input file finix_options.inp has also a special purpose. It can be used to tell FINIX that the input
will be read from a FRAPTRAN input file. In this case the the first line of the file should read "USE
FRAPTRAN". When FINIX simulation begins, it asks the user the name of the FRAPTRAN input
file and the name of the FRAPCON generated restart file. If FRAPTRAN input file will be read,
the contents of the finix_options.inp could look like this:

USE FRAPTRAN

or like this:

Table 4. Data that can be given in finix_options.inp

Keyword Units Default | Description
axial_nodes - 11 Number of axial nodes.
pellet_radial_nodes - 17 Number of radial nodes in fuel pellet.
clad_radial_nodes - 5 Number of radial node in the cladding.
boundary_option - 3 Specifies the type of the boundary con-
ditions. 0 = user-given rod outer sur-
face temperature, 1 = user-given heat flux
between rod outer surface and coolant,
2 = user-given heat transfer coefficient
and coolant bulk temperature, 3 = user-
given bulk temperature and calculated heat
transfer coefficient from internal correla-
tions (needs inlet mass flux).
temperature_iteration - 1 Temperature iteration. 0 = off, 1 = on.
gap_conductance_model | - 2 Gap conductance model. 1 = FRAPCON
model, 2 = FRAPTRAN model, -n = neg-
ative value switches off contact conduc-
tance
clad_elasticity_model - 1 Clad elasticity model. 0 = off, 1 = on.
plenum_model - 1 Plenum model. 0 = off, 1 = on.
pellet_relocation_model - 1 Pellet relocation model. 0 = off, 1 = on.
clad_plasticity_model - 1 Cladding plastic deformation model. 0 =

off, 1 = on.
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USE FRAPTRAN

begin FRAPTRAN

axial nodes = 10
pellet_radial_nodes = 15
boundary_option = 0;

end FRAPTRAN

In the first case all the data will be read from a FRAPTRAN input file. In the second case nodal-
ization and boundary option will be given in finix_options.inp. If nodalization is also given in
FRAPTRAN input file, the data given in FRAPTRAN input file overwrites the data given in
finix_options.inp. Note that the variables that specify FINIX model selections should always be
given in finix_options.inp. If the input will be read from the FRAPTRAN input file, input files
finix_rod.inp and finix_scenario.inp will be ignored.

7.6.2 Input file finix_rod.inp

Input file finix_rod.inp can be used to determine the fuel rod properties. Table 5 shows the data
that can be given in finix_rod.inp. The contents of a file could look like this:

USE rod_123

begin rod_123
fuel_length =
clad_length =
plenum_length
end rod_123

[ISNNTAN
o O O

In this case default values will be used for all the parameters except for fuel, clad, and plenum
length.

7.6.3 Input file finix_scenario.inp

Input file finix_scenario.inp can be used to determine the rod conditions during an irradiation or
experiment period. As mentioned before, this data must be given if FINIX is used as a stand-alone
version, or the host code cannot provide all the necessary boundary conditions. Table 6 shows
the data that can be given in finix_scenario.inp. Note that it is not necessary to give all the data
presented in Table 6 to fully determine the boundary conditions. For example, if the user has
chosen to use coolant bulk temperature as boundary condition (boundary_option = 3), it is not
necessary to determine the clad temperature history in finix_scenario.inp. The contents of the file
finix_scenario.inp could look like this:

USE rod_xyz

begin rod_xyz
restartfile = imprestart.rod xyz
end_time = 1.0
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Table 5. Data that can be given in finix_rod.inp

Keyword Units Default | Description

pellet_inner_radius m 0.0 Radius of fuel pellet center hole.

pellet_outer_radius m 0.0047 Pellet outer radius.

clad_inner_radius m 0.00479 | Fuel cladding inner radius.

clad_outer_radius m 0.00546 | Fuel cladding outer radius.

fuel_length m 3.6576 Length of rod fuel column.

clad_length m 3.6576 Length of fuel cladding wall in active area.

plenum_length m 0.2 Plenum length.

pellet_roughness m 2.0e-6 Arithmetic mean roughness of fuel pellet
surface.

fractional_density - 0.938 Fractional theoretical density of fuel pel-
let.

gadolinia_weight_fraction 0.0 Weight fraction of gadolinia (Gd2O3) in
fuel pellets.

clad_roughness m 0.5e-6 Arithmetic mean roughness of cladding
inner surface.

coldwork - 0.5 Reduction of cross-sectional area of
cladding by cold working process.

clad_oxygen_concentration - 0.0012 Cladding average oxygen concentration.

fast_neutron_fluence n/m? 0.0 Fast neutron fluence that the cladding was
exposed to during lifetime.

clad_type - 0 Cladding material identifier. 0 = Zircaloy,
1 =Zr1%Nb.

fill_gas_pressure N/m? 1.207e6 | As-fabricated fill gas pressure.

fill_gas_temperature K 300.0 As-fabricated fill gas temperature.

gas_fraction_He - 1.0 Fraction of gas that is helium.

gas_fraction_Ar - 0.0 Fraction of gas that is argon.

gas_fraction_Kr - 0.0 Fraction of gas that is krypton.

gas_{fraction_Xe - 0.0 Fraction of gas that is xenon.

gas_fraction_H2 - 0.0 Fraction of gas that is hydrogen.

gas_fraction_N2 - 0.0 Fraction of gas that is air.

gas_fraction_H20 - 0.0 Fraction of gas that is water vapor.

pitch m 14.43e-3 | Center-to-center spacing of fuel rods.

rods_in_unit_cell - 1.0 Number of rods in one unit cell (1.0 for

square lattice, 0.5 for triangular lattice).
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time_step_history =
0.0001, 0.0,
0.00001, 0.0702,
0.0001, 0.0815,
0.001, 0.210

power_history =
0.0, 0.0,
524934.384, 0.066,
23622047.28, 0.079,
5511811.032, 0.087,
262467.192, 0.095,
0.0, 0.1

axial_ power_profile =

0.728, 0.0,

0.975, 0.099,

1.156, 0.259,

1.053, 0.420,

0.668, 0.569

coolant_temperature_history_zones = 0.373, 0.569

coolant_temperature_history(l) =
553.15, 0.0
1023.15,
1048.15,
753.15, 1.0
coolant_temperature_history(2) =
553.15, 0.0,
878.15, 0.2,
923.15, 0.4,
948.15, 1.0

’
2,
4

4

0.
0.

heat_transfer_coefficient_history_zones = 0.569
heat_transfer_coefficient_history(l) = 2000000.0, 0.0

coolant_pressure_history = 0.5e6, 0.0
end rod_xyz

As can be seen in the example above, the history data is always given in data pairs. For example,
the time step history is given so that the first value of the data pair is the length of the time step,
and the second value is the time at which this time step length takes effect. This time step length
is used until a new data pair is given. Similar logic applies to other history data as well.

All time-related FINIX input can be given in seconds, hours or days. The units of the time can be
selected by modifying the value of time_unit in finix_scenario.inp. Note that all the time-related
data in Table 6 is expressed in seconds (default) only for clarity. The time units of the data shown
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in Table 6 depends on the value of time_unit. The value of time_unit also determines the units of
the time in output files finix.z* and finix.sum.

In the example above one can also see that some of the history data, such as the coolant temperature
history, can be given separately for different axial zones. In this case the coolant temperature
history has been given for axial zones 1 and 2. The number of zones does not have to match the
number of axial nodes given in finix_options.inp. FINIX will automatically calculate history data
for each axial node based on the data given for each zone. Note that one should also determine the
top elevations of each zone from the rod bottom. In the example above, the top of the fist coolant
temperature history zone is 0.373 m above the rod bottom, while the top of the second zone is
0.569 m above the rod bottom.
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Table 6. Data that can be given in finix_scenario.inp

Keyword

Units

Default

Description

restartfile

Name of the Frapcon generated restart file
(omit if there is no need to read a restart
file).

steady_state_simulation -

Type of the scenario. 0 = transient, 1 =
steady-state.

time_unit

Units of all time-related FINIX input. De-
termines also the units of time in output
files finix.z* and finix.sum. 0 = seconds, 1
= hours, 2 = days.

end_time

0.15

Simulation end time.

time_step_history

0.0001,
0.0

Time step history. The first value is the
size of the timestep. The second value is
the time at which this time step size takes
effect. Each time step size is used until a
new data pair is given.

power_factor

1.0

Multiplier for linear power.

power_history

0.1e6,
0.0

Rod average linear heat generation rate
history. Each linear heat generation rate
is used until a new data pair is given.

axial_power_profile

Axial power profile. The first value is
the axial power factor normalized to rod-
average. The second value is the node top
elevation beginning from the rod bottom.
Begin insering data pairs from the rod bot-
tom towards the top, until the the axial
power profile is fully defined.

radial_power_profile

Radial power profile for all axial nodes.
The first value is the radial power factor.
The second value is the distance from the
fuel centerline to the radial node periph-
ery. Begin inserting data pairs from fuel
centerline to the edge.

coolant_temperature_

history_zones

Top elevation of each coolant temperature
history zone. Enter as many values as
there will be coolant temperature history
Zones.

coolant_temperature_

history(n)

561.0,
0.0

Coolant temperature and time data pairs
for each coolant temperature history zone.
Each temperature will be used until a new
data pair is given. Enter as many data sets
as there are coolant temperature history
zZones. coolant_temperature_history(1)
starts input for zone 1,
coolant_temperature_history(n) starts
input for zone n.
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Table 6 (continued). Data that can be given in finix_scenario.inp

clad_temperature_history_
zones

Top elevation of each clad temperature
history zone. Enter as many values as
there will be clad temperature history
zones.

clad_temperature_history(n

561.0,
0.0

Clad temperature and time data pairs for
each clad temperature history zone. Each
temperature will be used until a new data
pair is given. Enter as many data sets as
there are clad temperature history zones.
clad_temperature_history(1) starts input
for zone 1, clad_temperature_history(n)
starts input for zone n.

heat_transfer_coefficient_
history_zones

Top elevation of each heat transfer coeffi-
cient history zone. Enter as many values
as there will be heat trasfer coefficient his-
tory zones.

heat_transfer coefficient_
history(n)

W/(m2K),

2e4, 0.0

Heat transfer coefficient and time data
pairs for each heat transfer coefficient
history zone. Each heat transfer coeffi-
cient will be used until a new data pair is
given. Enter as many data sets as there
are heat transfer coefficeint history zones.
heat_transfer_coefficient_history(1)

starts input for zone 1,
heat_transfer_coefficient_history(n)

starts input for zone n.

heat_flux_history_zones

Top elevation of each heat flux history
zone. Enter as many values as there will
be heat flux history zones.

heat_flux_history(n)

W/m?, s

0.0, 0.0

Heat flux (between rod outer surface and
coolant) and time data pairs for each heat
flux history zone. Each heat flux will be
used until a new data pair is given. Enter
as many data sets as there are heat flux his-
tory zones. heat_flux_history(1) starts in-
put for zone 1, heat_flux_history(n) starts
input for zone n.

coolant_pressure_history

N/m?, s

15.51e6,
0.0

Enter coolant pressure and time data pairs.
Each value of pressure is used until a new
data pair is given.

coolant_mass_flux_history

kg/(m?s),

3460.0,
0.0

Enter coolant mass flux and time data
pairs. Each value of mass flux is used until
a new data pair is given.
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7.7 Output files

FINIX includes functions that can be used to print output files for many purposes. One aim of this
chapter is to describe the contents of these output files. In addition, this chapter shows how to call
the output writing functions from the host code.

7.7.1 finix.sum and finix.z*

The data describing the behaviour of a fuel rod as a function of time is presented in output files
finix.sum and finix.z*.The contents of these files is presented in Tables 7 and 8. Output file
finix.sum contains rod summary data, while output files finix.z* contain node-specific data. Node-
specific output files are written for each axial node. Asterisk (*) in the aforementioned file names
represents the node number.

By default, the cumulative simulation time in files finix.sum and finix.z* is given in seconds.
However, the simulation time in the aforementioned files will be given in hours or days if a non-
default value is given for keyword "time_unit" in finix_scenario.inp. In other words, the same
units of time are used in files finix_scenario.inp, finix.sum and finix.z*.

To print these output files, the following additional lines of code must be included in the host code:

// Declare a structure containing file pointers to output files
Output *files;

// Initialize output writing to finix.sum and finix.z files
files = finix_output_initialize (options);

In the initialization call above the type of the function parameter is Options*. After declarations
and initializations the output writing function can be called for each time step as follows:

finix_output_print(files, rod, bc, options, results);

Here the types of the function parameters are Output®, Rod*, Boundary_conditions*, Options*,
and Results*. After the output files have been printed, they must be closed and the memory must
be free’d. This can be done as follows:

// Close files and free allocated memory
finix_output_close (files , options);

7.7.2 finix_data_structures.dbg

Output file finix_data_structures.dbg shows all the data stored in FINIX data structures at the time
of the output writing call. The function is called during FINIX initialization by default, but it can
be called later again if needed. The output file is especially useful for checking that the input
files have been read corretly. The output file finix_data_structures.dbg can be printed by calling a
funtion

finix_print_data_structures (rod, bc, scenario, results, options);
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Table 7. Contents of the output file finix.sum

Column name Units Description

Step - Time step number.

Time sorhord Cumulative simulation time.

Buav MWd/kgU Rod average burn-up.

Qav W/m Average linear power.

FGR%av % Percentage value of released fission gases. NOTE:
not supported yet.

Intpr N/m? Rod fill gas pressure pressure.

Coolpr N/m? Coolant pressure.

Fuext m Fuel axial elongation.

Clext m Cladding axial elongation.

Tplen K Fill gas temperature.

Tzon - Axial node where maximum temperature occurs.

Qlo W/m Maximum local linear power.

BUlo MWd/kgU Maximum local burn-up.

Tmax K Maximum temperature.

FGR%lo % Maximum local fission gas release. NOTE: not sup-
ported yet.

Gap m Average pellet-cladding gap width.

Gapcon W/(m’K) Gap average conductance.

Tclav K Clad average temperature.

Tcool K Coolant average temperature.

where the function parameter types are Rod*, Boundary_conditions*, Scenario*, Results*, and

Options*.

7.7.3 finix_stripfile.txt

Output file finix_stripfile.txt contains data in FRAPTRAN stripfile format. The file describes the

state of the fuel rod at various time steps.

To print this output file, the following additional lines of code must be included in the host code:

// Declare a variable for printing the results
FILE sxwritefile;

// Open the file
writefile = fopen("finix_stripfile.txt

noon

W)

// Print the header lines

finix_db_fprintf_stripfile (0, writefile , bc—>time, results, rod, options,

After these steps the output writing function can be called for each time step as follows:

finix_db_fprintf_stripfile (1, writefile , bc—>time, results , rod, options,

After the file has been printed, it must be closed:

bc,

bc,

scenario);

scenario);
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Table 8. Contents of the output file finix.z*

Column name Units Description

Step - Time step number.

Time sorhord Cumulative simulation time.

Burnup MWd/kgU Average fuel burn-up in node.

Linrat W/m Node linear power.

Tcool K Coolant temperature at the node elevation.
Tclou K Temperature at the cladding outer surface.
Tclav K Cladding average temperature.

Tclin K Temperature at the cladding inner surface.
Tfout K Temperature at the pellet surface.

Tfav K Pellet average temperature.

Tcent K Fuel centerline temperature.

FGR%lo % Fission gas release. NOTE: not supported yet.
Gap m Pellet-cladding gap width in node.

DTgap K Temperature difference over gap.

Gapcon W/(m?K) Gap conductance.

Conpr N/m? Pellet-cladding contact pressure.

Hoopstrs N/m? Clad hoop stress.

Dradcl m Change in cladding radius.

Buav MWd/kgU Rod average burn-up.

fclose (writefile );

8 Code assessment

8.1 General performance

The validation of FINIX-0.13.9 is presented in a separate validation report [1], where the detailed
results can be found. Version 0.15.12, where the cladding mechanical model has been changed
from the previous version, will be validated in the future. Some remarks on the new plastic de-
formation model in version 0.15.12 and a brief summary of FINIX-0.13.9 validation are given
below.

In figure 2 the plastic hoop strain calculated by FINIX in the CABRI REP-Na3 scenario is com-
pared to FRAPTRAN. Note that the plastic strain reference point in FINIX is the unirradiated rod,
whereas in FRAPTRAN it is the irradiated rod before the transient. In table 9 the calculated plastic
strains in both FINIX and FRAPTRAN are compared to experimental values for some scenarios.

In failed rods FINIX may calculate higher plastic deformations than FRAPTRAN, as no burst
model is implemented in FINIX. At the time of burst the internal pressure in FRAPTRAN is set
to equal the coolant pressure, and according to the FRAPTRAN model the deviatoric stresses —
the driving force of the deformation — are then zero. In intact rods FINIX calculates slightly
smaller plastic deformations than FRAPTRAN, even though the same stress-strain correlation is
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Figure 2. Plastic hoop strain in CABRI REP-Na3 scenario as calculated by FRAPTRAN (black
lines) and FINIX (blue lines). Black solid line corresponds to FRAPTRAN-1.5 as is, whereas the
dotted line is FRAPTRAN-1.5 without the pellet RIA thermal expansion model. The solid line is
FINIX-0.15.12 as is, and the dotted line is the same result normalized to give zero strain at the
beginning to better visualize the comparison to FRAPTRAN-1.5. The dotted lines overlap, but
have small differences.

Table 9. Maximum plastic hoop strains in some scenarios as determined by experiment or as
calculated by FRAPTRAN-1.5 (without the pellet RIA thermal expansion model) or FINIX. Since
FINIX has no criteria for rod failure, the strain in the BIGR scenarios would continue to increase
if the calculation was continued. Also, FRAPTRAN does not continue the plastic strain calculation
after the moment of rod failure.

Experiment FRAPTRAN without FINIX
pellet RIA thermal
expansion model
Scenario Rod Max. residual Rod Max. plastic Max. plastic
failure cladding hoop failure cladding cladding
strain hoop strain ~ hoop strain
CABRI REP-Nal yes n/a yes 0.06% 0.631%
CABRIREP-Na3 no 2.2% no 0.588% 0.589%
NSRR HBO-1 yes much less no 0.009% 0.027%
than 1%
NSRR FK-1 no 0.3-0.85 % no 0.260% 0.084%
BIGR RT-4 no 5.5% yes 0% 1.345%

BIGR RT-8 yes 11.1% yes 0% 57.932%
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used. This is partially because of the slightly smaller fuel centerline temperatures calculated by
FINIX: when the gap is closed, the cladding axial strain calculation is based on fuel axial thermal
strain at the pellet centerline. The magnitude of this strain has a significant effect on the calculated
plastic strain. Another effect lowering the calculated plastic strain is of the fast neutron fluence
read in from the FRAPCON restart file. It is not clear how FRAPTRAN uses this value in the
calculation of the yield stress correlation coefficients, and the yield stress calculated by FINIX
seems to be higher than that output by FRAPTRAN. If the fast neutron fluence is not read in into
FINIX, the yield stress values used by FINIX and output by FRAPTRAN are almost the same.

FINIX-0.13.9 has been compared against experimental centerline temperature data from Halden
steady state irradiation experiments IFA-429 and IFA-432. The agreement between simulated and
experimental results is good. For low burnup, the results match very well. With increasing burnup,
the match becomes worse, although FINIX and the experimental value typically agree within
roughly 100 K, with FINIX having a slight tendency to underestimate the centerline temperature.
The poorer performance at higher burnups is expected, as FINIX does not have models to describe
many of the burnup-dependent phenomena, such as fuel densification and swelling, cladding creep
and fission gas release. Although these can be taken into account when initializing FINIX for
transient calculations, simulating their behavior during long-term irradiation is not possible in the
present version.

FINIX-0.13.9 was also validated against FRAPTRAN simulations of selected reactivity initiated
accidents. The results for FRAPTRAN are described in the FRAPTRAN code assessment doc-
ument [24], while the FINIX results and the comparison are discussed in the FINIX-0.13.9 vali-
dation report [1]. The cases consisted of RIA’s with western and VVER type fuel rods, some of
which had failed during the experiment, and some had not. In some of scenarios significant plastic
deformation of the cladding was indicated by FRAPTRAN, while in some very little permanent
deformation occurred. All the cases were initialized for non-fresh fuel using FRAPCON for steady
state irradiation.

The comparison between FINIX and FRAPTRAN shows very good agreement between the codes.
In almost all the cases, the fuel and cladding temperatures are very closely reproduced. Even in the
cases where the cladding deforms plastically, FINIX succeeds in calculating the temperatures with
good accuracy, although the differences in the gap dimensions and conductance are clearly seen.
In addition, the cases where the rod fails are calculated very similarly up to the point of failure,
after which FRAPTRAN switches to a different model. FINIX-0.13.9 has no criteria to determine
rod failure, and therefore the calculation proceeds somewhat differently from the FRAPTRAN
solution.

According to the validation results, the gap conductance model of the FRAPTRAN showed the
best performance, both against FRAPTRAN (obviously) and the experimental Halden data. The
FRAPTRAN gap conductance correlation is therefore recommended. It has also been set as the
default model of FINIX-0.13.9. It should be noted that the FRAPTRAN correlation also ignores
the soft relocation part of the FRAPCON relocation model.

8.2 Solved issues from previous versions

The axial thermal expansion of the pellet was previously underestimated by FINIX. The cause was
that the axial thermal expansion of the pellet was calculated from the edge node (presumably due
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to strong pellet dishing), while the central node (assumed negligible dishing) would give better
results. In FINIX-0.15.12, the pellet axial thermal expansion is calculated from the central node.

A bug in the material density calculation was fixed. Previously the density was underestimated
and this affected also the temperature calculations. As a result of the fix, predicted fuel centerline
temperatures are higher by approximately 1 % — 7 %.

8.3 Known issues and possible caveats

As shown in [1], the performance is very good for temperature calculations. However, a number
of issues remain to solved. These are:

The pressure calculated by FINIX typically differs somewhat from that calculated by FRAP-
TRAN. The most probable cause for this is a difference in the rod free volume, possibly in
the volume of the plenum. The plenum temperature is also calculated in a different way, but
the difference exists already for zero power.

The plastic strains read from a FRAPCON restart file are treated differently by FINIX and
FRAPTRAN. It is not exactly clear how FRAPTRAN treats the plastic deformations, but it
seems that this is a source of some of the discrepancies between FINIX and FRAPTRAN.

The steady state solver of FINIX can be very slow to converge. A rewrite of the solver is
needed before serious steady state irradiation simulations are performed. Of course, this has
to be complemented with the addition of the relevant physical models.

In addition to the technical issues, one should keep in mind the limitations of the FINIX models:

In many cases, when the range of validity of a model is exceeded, FINIX will not crash
or abort execution. Instead, the solver will do its task and pass an error message. It is
the responsibility of the user to catch the message and act accordingly. Calls to FINIX
functions should always be accompanied by error message checking.

The steady state solver of FINIX-0.15.12 should only be used to solve the initial steady state
for a transient calculation. Because key physical models are missing, it should not be used
to evaluate the effects of long-term irradiation.

The coolant model of FINIX is very limited. The model is not reliable beyond nucleate
boiling. A warning message is issued if the critical heat flux is exceeded. Also, in FINIX-
0.15.12 the temperature of the coolant is not affected by the outward heat flux from the rod.
This will affect temperatures at the upper part of the rod, if no external model for the coolant
temperature is used.

FINIX-0.15.12 has no criteria for rod failure.

FINIX-0.15.12 does not take into account the effect of strain rate on the yield stress in plastic
deformation calculations. The strain rate is reported to raise the yield stress a maximum of
10 %.

FINIX-0.15.12 plastic deformation model is limited to infinitesimal deformations. Sce-
narios such as cladding ballooning where finite deformation takes place are therefore not
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realistically modeled.

e FINIX-0.15.12 has no models for fission gas release. In transients, this may lead to under-
estimation of the pressure.

e The burnup calculation of FINIX does not differentiate between the thermal and fission
power. The results are indicative, and generally accurate within roughly 5-10 % of the
experimentally determined values.

9 Summary

The FINIX fuel behavior code has been updated to version 0.15.12. In this version a time-
independent plastic deformation model has been implemented in FINIX.

Validation of the stand-alone FINIX-0.13.9 has been done in a separate report [1]. Results show
good performance in RIA and steady state scenarios. Especially the temperature distributions
are reliably calculated. Limitations have been discussed in Section 8. The validation of version
0.15.12 is to be done in the future.

The primary purpose of the FINIX code is to provide a fuel behavior module for other simulation
codes in multiphysics simulations. The intended use is the improvement of fuel behavior descrip-
tion in neutronics, thermal hydraulics and reactor dynamics codes, without having to employ the
available full-scale fuel performance codes. FINIX couples with the host code on a source code
level, and provides an interface of functions that can be used to access the fuel behavior model
from the host code. The required knowledge on the correlation-level details and rod parameters
has been minimized by defining default templates that can be used without having information on
all model-specific details.

Currently FINIX has been integrated into the Monte Carlo reactor physics code Serpent 2, where
FINIX serves as the default fuel behavior module. In addition to Serpent, FINIX has been inte-
grated into VTT’s reactor dynamics codes TRAB-1D, TRAB3D and HEXTRAN. Results have
been reported, for example, in Refs. [8-10].
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A FINIX code documentation

The implementation-level documentation for the FINIX code is included at the end of this docu-
ment.
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Chapter 1

File Index

1.1 File List

Here is a list of all files with brief descriptions:

aux_functions.c . . . .. L L e 3
clmech.c . . . . . 7
clmechaux.C . . . . . . e e 12
Clmechprop.C . . . . . . e e 15
CRhprop.C . . . o 22
coolant.C . . . L L e 24
finix_initialization.c . . . . . .. L 26
finix_oUtput.C . . . . L e 41
finixdata.C . . . . . e 45
fumech.C . . . . . e e e e 55
fumechprop.C . . . . . L 57
futhprop.C . . . . . 59
0AP.C . o e e e 61
heateqld.C . . . . . . e 64
hOSE.C . . . . e 67
initial.C . . . . e e e e 68
steadystate.c . . . . . L 70

transient.C . . . . . . L e e e 72
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Chapter 2

File Documentation

2.1 aux_functions.c File Reference

#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<crtdbg.h>
<stdio.h>
<math.h>
<string.h>
"finixdata.h"
"aux_functions.h"

Include dependency graph for aux_functions.c:

Macros

aux_functions.c

stdlib.h crtdbg.h stdio.h math.h string.h finixdata.h

+ #define _CRTDBG_MAP_ALLOC

Functions

« int finix_append_err (char xxxold_err, char sxxnew_err)

« char *x finix_create_err (const char xmsg)
« int finix_printf_err (char xxerr)

« int finix_free_err (char xxxerr)
« int finix_printf_array (Options xoptions, double *xarray)

aux_functions.h

« int finix_fprintf_array (FILE xstream, Options xoptions, double time, double *xarray)
+ double finix_interpolate_lookup (double xxarray, double x, int len, int q)

« double finix_calculate_volume_average (double xxr, double *xA, int zind, int rind_min, int rind_max)
+ double finix_calculate_linear_power (int zind, Options *xoptions, Results xresults, double xxpower_den)
 double finix_calculate_average_power (int mode, Options xoptions, Boundary_conditions xbc, Results

xresults, Rod *rod)



File Documentation

2141

21141

2.1.2

2.1.21

Macro Definition Documentation

#define _CRTDBG_MAP_ALLOC

Function Documentation

int finix_append_err ( char sxx old_err, char xxx new_err )

Appends a new error to previous FINIX error.

Parameters
old_err | array of previous error messages. will contain the messages in new_err after the function
call.
new_err | array of new error messages to be appended to old_err. will be free’d upon function call.
Returns

0 if new message appended, 1 if there was nothing to append

2.1.2.2 double finix_calculate_average_power ( int mode, Options * options, Boundary_conditions * bc, Results * results,

Rod x* rod )

Calculate rod average power

Parameters
mode | calculation mode
rod | data structure containing rod related data
bc | data structure containing rod boundary conditions
results | data structure containing FINIX simulation results
options | data structure containing the simulation options
Returns

average power

2.1.2.3 double finix_calculate_linear_power ( int zind, Options x options, Results x results, double xx power_den )

Calculation of linear power from power density. Added 31 May 2013 by Timo Ikonen.

Parameters
zind | axial node index
options | FINIX calculation options
results | data structure containing FINIX simulation results
power_den | power density at each node (W/m"3)
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2.1 aux_functions.c File Reference 5

Returns

linear power at axial node zind

Here is the call graph for this function:

finix_calculate_linear finix_calculate_wolume
_power _awerage

2.1.2.4 double finix_calculate_volume_average ( double x:x r, double xx A, int zind, int rind_min, int rind_max )

Calculation of volume weighted average over the given radial nodes for the specified axial node. Assumes linear
behavior between nodes. Added 30 May 2013 by Timo lkonen.

Parameters

r | positions of the nodes

A | array holding the quantity to be averaged

zind | index of the axial node

rind_min | minimum index of the radial nodes to be included in the average

rind_max | maximum index of the radial nodes to be included in the average

Returns

the volume weighted average of the quantity A

2.1.2.5 charxx finix_create_err ( const char x msg )

Creates a new FINIX error message

Parameters

msg | new error message

Returns

error message in FINIX error format

2.1.2.6 intfinix_fprintf_array ( FILE x siream, Options * options, double time, double xx array )

Prints out the values of the given array at each node to target stream (works similarly to fprintf in C).

Parameters
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6 File Documentation

Stream | target stream
options | FINIX calculation options
time | simulation time (or other identifier of type double that distinguishes between function calls)
array | the array to be printed out

Returns

0

2.1.2.7 intfinix_free_err ( char xxx err )

Free’s the memory allocated to FINIX error message. Leaves the pointer in state NULL.

Parameters

err | FINIX error to be cleared (free’d)

Returns

0 if error cleared, 1 is error was already cleared (NULL)

2.1.2.8 double finix_interpolate_lookup ( double xx array, double x, int len, int q )

Linear interpolation of a sorted lookup table with the binary search method.

Parameters
array | lookup table, with array[0] containing the index (or ’x’ coordinate) and array[1] the value (or’y’
coordinate). the array should be sorted by array[0] in ascending order
x | the index or ’x’ coordinate to be found in array[0]
len | length of the array
g | initial guess for the index
Returns

the interpolated value corresponding to x

2.1.2.9 intfinix_printf_array ( Options * options, double xx array )

Prints out the values of the given array at each node to stdout

Parameters

options | FINIX calculation options
array | the array to be printed out

Returns

0

2.1.2.10 int finix_printf_err ( char xx err )

Prints the FINIX error message to stdout.
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2.2 clmech.c File Reference

Parameters

err | FINIX error to be printed

Returns

2.2

0 if message printed, 1 is message was empty (NULL)

clmech.c File Reference

#include <stdlib.h>
#include <crtdbg.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "finixdata.h"
#include "clmech.h"
#include "clmechprop.h"
#include "clmechaux.h"
#include "aux_functions.h"
#include "gap.h"

Include dependency graph for clmech.c:

stdiibh crtdbg.h stdio.h math.h string.h finixdata.h clmech.h clmechprop.h clmechaux.h aux_functions.h gaph

Macros

#define _CRTDBG_MAP_ALLOC

Functions

2.21

22141

char *x finix_mech_solve_cladding_stress_strain (int zind, double sxpower_den, Rod xrod, Boundary_«
conditions *bc, Results xresults, Options xoptions)

char xx finix_mech_radial_return (double E, double xnu, double G, double Tclad, Cylindrical xstress_eng,
Cylindrical strain, Cylindrical *dplstrain_eng, double xstress_eff_eng, double strain_eff, double thstrain_eff,
double plstrain_eff, double xdplstrain_eff_eng, double xYS_eng, Rod *rod, Boundary_conditions xbc)

char *x finix_mech_closed_gap_strong_contact (double E, double xnu, double Ri, double *Ro, double
Ric, double Roc, Cylindrical xstress, Cylindrical *strain, Cylindrical thstrain, Cylindrical plstrain, Cylindrical
dplstrain)

char *x finix_mech_closed_gap_weak_contact (double E, double xnu, double Ri, double xRo, double Ric,
double Roc, double p_contact, double p_coolant, Cylindrical xstress, Cylindrical xstrain, Cylindrical thstrain,
Cylindrical plstrain, Cylindrical dplstrain)

char xx finix_mech_solve_thin_cladding (double xxpower_den, Rod xrod, Boundary_conditions xbc, Results
xresults, Options xoptions)

Macro Definition Documentation

#define _CRTDBG_MAP_ALLOC
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File Documentation

2.2.2 Function Documentation

2.2.2.1

charx finix_mech_closed_gap_strong_contact ( double E, double xnu, double Ri, double  Ro, double Ric, double

Roc, Cylindrical * stress, Cylindrical x strain, Cylindrical thstrain, Cylindrical plstrain, Cylindrical dplstrain )

Calculates the stress and strain components when the current axial strain, cladding inner radius and the hoop, axial,
and radial thermal and plastic strains are known, otherwise known as the closed gap, strong contact case.

Parameters
E | Young’s modulus
xnu | Poisson’s ratio
Ri | cladding inner radius (fixed by contact)
Ro | cladding outer radius (calculated)
Ric | cladding cold state inner radius
Roc | cladding cold state outer radius
stress | stresses in each direction (hoop and axial calculated)
Strain | strains in each direction (hoop and radial calculated, axial fixed by contact)
thstrain | thermal strains in each direction
plstrain | plastic strains in each direction
dplstrain | plastic strain increments in each direction
Returns

error string, NULL for no errors

2.2.2.2 charxx finix_mech_closed_gap_weak_contact ( double E, double xnu, double Ri, double « Ro, double Ric, double
Roc, double p_contact, double p_coolant, Cylindrical * sfress, Cylindrical * strain, Cylindrical thstrain, Cylindrical
plstrain, Cylindrical dplstrain )

Iterates the cladding outer radius with Newton-Raphson iteration and calculates stresses and strains in the closed
gap, weak contact case.

Parameters
E | Young’s modulus
xnu | Poisson’s ratio
Ri | cladding inner radius (fixed by contact)
Ro | cladding outer radius (calculated)
Ric | cladding cold state inner radius
Roc | cladding cold state outer radius
p_contact | the current contact pressure
p_coolant | coolant pressure
stress | stresses in each direction (calculated)
strain | strains in each direction (hoop and radial calculated, axial fixed by contact)
thstrain | thermal strains in each direction
plstrain | plastic strains in each direction
dplstrain | plastic strain increments in each direction
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2.2 clmech.c File Reference

Returns

error string, NULL for no errors

2.2.2.3 charxx finix_mech_radial_return ( double E, double xnu, double G, double Tclad, Cylindrical = siress_eng,
Cylindrical strain, Cylindrical  dplstrain_eng, double x stress_eff eng, double strain_eff, double thstrain_eff, double
plstrain_eff, double x dplistrain_eff eng, double « YS_eng, Rod * rod, Boundary_conditions x bc )

Calculates the plastic strain increment with the radial return algorithm. Input stresses and strains that are output are
input as pointers (marked with (x)), values that are not output are input as values. Input variables that are not output
are converted into true stresses and strains in the function, input variables that are output have corresponding true

stress/strain variables in the function.

Parameters
E | Young’s modulus (MPa)
xnu | Poisson’s ratio (dimensionless)
G | shear modulus (MPa)
Tclad | cladding average temperature (K)
stress_eng | pointer to stress tensor (x)
strain | components of strain

dplstrain_eng

pointer to plastic strain increment tensor (*)

stress_eff_eng

pointer to effective stress (x)

strain_eff

effective strain

thstrain_eff

effective thermal strain

plstrain_eff

effective plastic strain

dplstrain_eff «

pointer to effective plastic strain increment (x)

eng
YS _eng | pointer to yield stress (x)
rod | the Rod structure
bc | the Boundary_conditions structure

Returns

error string, NULL for no errors
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Here is the call graph for this function:

finix_mech_radial_retum

finix_eng_true_stress
_conversion

finix_stress_strain
_correlation_strain
_hardening_exponent

v finix_create_ermr

finix_stress_strain
_correlation_strain
_rate_exponent

finix_append_err

finix_stress_strain
_correlation_strength
_coefficient

finix_cylindrical_tr

finix_effective_strain '—.‘ finix_cylindrical_ddp |

——I finix_effective_stress '—p‘ finix_cylindrical_deviatoric |

finix_cylindrical_copy

finix_mech_plstrain
_increment_component

finix_eng_true_strain
_conversion

finix_cylindrical_add

2.2.2.4 charxx finix_mech_solve_cladding_stress_strain ( int zind, double xx power_den, Rod x rod, Boundary_conditions *
bc, Results x results, Options * options )

Solves the stresses, strains and contact pressures of the cladding for one axial node using the thin cladding approx-
imation. Updated 7 June 2013 to include plastic strains as constant input (Timo Ikonen).

Parameters
zind | axial node index
power_den | power density (W/m”\3)
rod | data structure containing fuel rod properties
bc | data structure containing rod boundary conditions
results | data structure containing FINIX simulation results
options | FINIX calculation options
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_clthaxstrain
finix_clthdistrain

finix_stress_strain
_correlation_strain
_rate_exponent

finix_stress_strain
_correlation_strength
_coefficient

7
mmm
N

finix_stress_strain
_corelation_strain
hardening_exponent

finix_eng_true_stress
_conversion

finix_eng_true_strain
_conversion

finix_cylindrical_add

finix_mech_radial_retum

finix_mech_plstrain
_increment_component

. finix_cylindrical_dewatoric

finix_effective_strain

finix_cylindrical_tr

finix_calculate_volume
_awrage

finix_mech_closed_gap
strong_contact

finix_mech_closed_gap
“weak_contact

2.2.2.5 charxx finix_mech_solve_thin_cladding ( double xx power_den, Rod * rod, Boundary_conditions * bc, Results %
results, Options x options )

Solves the mechanical behaviour of the cladding with the thin cladding appoximation.

Parameters

power_den | power density (W/m”\3)

rod | data structure containing fuel rod properties

bc | data structure containing rod boundary conditions

results | data structure containing FINIX simulation results
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options \ FINIX calculation options

Returns

error string, NULL for no errors

Here is the call graph for this function:

=

o
;\!

finix_mech_closed_gap
—strong_contact

finix_stress_strain

_rate_exponent

finix_stress_strain
_correlation_strain
hardening_exponent

finix_cylindrical_copy

finix_mech_radial_retum

finix_cylindrical_add
finix_cylindrical _tr

finix_eflective_strain

7L nix_efiective_stress finix_cylindrical_deviatoric
Hr——a—

finix_cylindrical_odp

finix_mech_plstrain
_increment_component

finix_calculate_volume
_awrage

2.3 clmechaux.c File Reference

#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<math.h>
<string.h>
"finixdata.h"
"clmechaux.h"
"clmechprop.h"
"aux_functions.h"
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Include dependency graph for cimechaux.c:

clmechaux.c

stdlib.h math.h string.h finixdata.h clmechaux.h clmechprop.h aux_functions.h

Macros

#define  CRTDBG_MAP_ALLOC

Functions

2.3.1

2.3.1.1

2.3.2

2.3.2.1

void finix_mech_plstrain_increment_component (Cylindrical stress, double dplstrain_eff, Cylindrical
xdplstrain)

double finix_effective_stress (Cylindrical stress)
double finix_effective_strain (Cylindrical strain)

void finix_eng_true_stress_conversion (Cylindrical inputstress, Cylindrical inputstrain, Cylindrical
xoutputstress, char output)

void finix_eng_true_strain_conversion (Cylindrical inputstrain, Cylindrical sxoutputstrain, char output)

Macro Definition Documentation

#define _CRTDBG_MAP_ALLOC

Function Documentation

double finix_effective_strain ( Cylindrical strain )

Calculates the (von Mises) effective strain from strain tensor expressed as a Cylindrical struct.

Parameters

|

strain \ the strain tensor in Cylindrical form

Returns

the effective strain

Here is the call graph for this function:

finix_cylindrical_deviatoric |—>| finix_cylindrical_tr

finix_effective_strain

finix_cylindrical_ddp |
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2.3.2.2 double finix_effective_stress ( Cylindrical stress )

Calculates the (von Mises) effective stress from a stress tensor expressed as a Cylindrical struct.
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Parameters

stress | the stress tensor in Cylindrical form

Returns

the effective stress

Here is the call graph for this function:

finix_cylindrical_deviatoric |—>| finix_cylindrical_tr

finix_effective_stress

finix_cylindrical_ddp |

2.3.2.3 void finix_eng_true_strain_conversion ( Cylindrical inputstrain, Cylindrical  outputstrain, char output )

Converts engineering strain to true strain or true strain to engineering strain. Input values as Cylindrical structures.

Parameters

inputstrain | the engineering or true strain tensor as a Cylindrical struct

outputstrain | pointer to the true or engineering strain tensor as a Cylindrical struct

output | option to convert from true to eng (set to 'E’) or from eng to true (set to 'T’)

2.3.2.4 void finix_eng_true_stress_conversion ( Cylindrical inputstress, Cylindrical inputstrain, Cylindrical x outputstress,
char output )

Converts engineering stress to true stress or true stress to engineering stress using the current engineering strains.
Input values as Cylindrical structures.

Parameters

inputstress | the engineering or true stress (MPa)

inputstrain | the engineering strain (NOTE: always engineering strain)

outputstress | pointer to the true or engineering stress tensor as a Cylindrical struct (MPa)

output | option to convert from true to eng (set to 'E’) or from eng to true (setto 'T)

2.3.2.5 void finix_mech_plstrain_increment_component ( Cylindrical stress, double dplistrain_eff, Cylindrical * dplstrain )

Components of the plastic strain increment

Calculates the plastic strain increment by the Prandtl-Reuss flow rule from the total plastic strain increment for each
strain component.

Parameters

stress | stress tensor in Cylindrical form (Pa)

dplstrain_eff | the effective plastic strain increment (unitless)

dplstrain | pointer to the plastic strain increment tensor in Cylindrical form (unitless)
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Here is the call graph for this function:

finix_mech_plstrain
_increment_component

finix_effective_stress

2.4 clmechprop.c File Reference

#include
#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<crtdbg.h>
<stdio.h>
<math.h>
<string.h>
"finixdata.h"
"clmechprop.h"
"aux_functions.h"

Include dependency graph for clmechprop.c:

Macros

clmechprop.c

stdlib.h crtdbg.h stdio.h math.h string.h

+ #define _CRTDBG_MAP_ALLOC

Functions

finix_cylindrical_deviatoric |—>| finix_cylindrical_tr

finix_cylindrical_ddp

finixdata.h clmechprop.h aux_functions.h

 char xx finix_clmeyer (double T, double *HM, int cladtype)

+ char x finix_clpoisson (double T, double *xnu, int cladtype)

+ char x finix_clyoung (double T, double oxygen_con, double coldwork, double fnf, double *E, int cladtype)

« char *x finix_clthaxstrain (double T, double xstrain, int cladtype)

« char *x finix_clthdistrain (double T, double xstrain, int cladtype)

« char *x finix_stress_strain_correlation_strength_coefficient (double T, double coldwork, double fnf, double
xK, int cladtype)

« char *x finix_stress_strain_correlation_strain_hardening_exponent (double T, double fnf, double *n, int clad-

type)

« char *x finix_stress_strain_correlation_strain_rate_exponent (double T, double xm, int cladtype)
« char *x finix_clyield (double T, double effective_stress, double effective_strain, double plstrain_eff, double
strain_rate, double xyield_stress, Rod xrod, Boundary_conditions xbc)

2.4.1 Macro Definition Documentation

24.1.1 f#define _CRTDBG_MAP_ALLOC
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2.42 Function Documentation
2.4.2.1 charxx finix_clmeyer ( double T, double x HM, int cladtype )

Cladding Meyer’s hardness

Calculates the Meyer’s hardness of the cladding. FRAPTRAN-1.4 correlations for Zircaloy and Zr1Nb (E110) are
implemented. See Shestopalov, A. et al. (2003), NUREG/IA-0209, for E110 correlation.

Parameters

T | temperature (K)

HM | Meyer's hardness (N/m”2)

cladtype | cladding type, 0 = Zircaloy, 1 = Zr-1Nb

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_clmeyer

finix_append_err

2.4.2.2 charxx finix_clpoisson ( double T, double * nu, int cladtype )

Cladding Poisson’s ratio

Calculates the Poisson’s ratio of the cladding. FRAPTRAN-1.4 correlation for Zircaloy is implemented, and this
correlation is also used for ZriNb (E110).

Parameters

T | temperature (K)

nu | Poisson’s ratio (dimensionless)

cladtype | cladding type, 0 = Zircaloy, 1 = Zr-1Nb
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_clpoisson

finix_append_err

2.4.2.3 charxx finix_clthaxstrain ( double T, double x strain, int cladtype )

Cladding thermal axial strain

Calculates the axial thermal strain of the cladding. FRAPTRAN-1.4 (MATPRO) correlations for Zircaloy and Zr1Nb
(E110) are implemented. See Shestopalov, A. et al. (2003), NUREG/IA-0209, for E110 correlation.

Parameters

T | temperature (K)

strain | thermal axial strain

cladtype | the cladding type (0 = Zircaloy, 1 = E110)

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_clthaxstrain

finix_append_err

2.4.2.4 charxx finix_clthdistrain ( double T, double x strain, int cladtype )

Cladding thermal diametral strain

Calculates the diametral thermal strain of the cladding. FRAPTRAN-1.4 (MATPRO) correlations for Zircaloy and
ZriNb (E110) are implemented. See Shestopalov, A. et al. (2003), NUREG/IA-0209, for E110 correlation.
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Parameters
T | temperature (K)
strain | thermal axial strain
cladtype | the cladding material (0 = Zircaloy, 1 = E110)
Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_clthdistrain

finix_append_err

2.4.2.5 charxx finix_clyield ( double T, double effective_stress, double effective_strain, double pistrain_eff, double
strain_rate, double x yield_stress, Rod * rod, Boundary_conditions x bc )

Yield stress

Calculates the yield stress of the cladding. Inputs are given in engineering stress/strain, and converted to true
stress/strain for the correlation. Yield stress is output as engineering stress.

Zircaloy: The PNNL correlation is used. See Geelhood, Luscher & Beyer (2007), PNNL-17700. ZriNb (E110): The
RRC-KI correlation is used. See Shestopalov, A. et al. (2003), NUREG/IA-0209.

Parameters

T

temperature of the cladding (K)

effective_stress

the effective engineering stress at this time step (Pa)

effective_strain

the effective engineering strain at this time step (unitless)

plstrain_eff

the total effective plastic engineering strain (set to zero for yield stress without prior deforma-
tion)

strain_rate

the current engineering strain rate (s”-1)

stress | the calculated engineering yield stress (Pa)
rod | the Rod structure
bc | the Boundary_conditions structure
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_stress_strain
_correlation_strength
_coefficient

finix_stress_strain
_correlation_strain finix_create_err
_hardening_exponent

finix_clyield

finix_stress_strain
_correlation_strain finix_append_err
_rate_exponent

finix_clyoung

2.4.2.6 charxx finix_clyoung ( double T, double oxygen_con, double coldwork, double fnf, double x E, int cladtype )

Cladding Young’s modulus

Calculates the Young’'s modulus of the cladding. FRAPTRAN-1.4 correlations for Zircaloy and ZriNb (E110) are

implemented.
Parameters
T | temperature (K)
oxygen_con | average oxygen concentrantion minus oxygen concentration of as-received cladding (kg oxy-
gen / kg Zircaloy)
coldwork | cladding cold work (unitless ratio of areas)
fnf | fast neutron fluence (n/m”\2)
E | Young’s modulus (N/m”2)
cladtype | the cladding type (0 = Zircaloy, 1 = E110)
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Returns

error string, NULL for no errors

assume as-received oxygen concentration of 0.0012.

Here is the call graph for this function:

finix_create_err

finix_clyoung

finix_append_err

2.4.2.7 charxx finix_stress_strain_correlation_strain_hardening_exponent ( double T, double fnf, double x n, int cladtype )

Stress-strain curve plastic region power law strain hardening exponent

Calculates the strain hardening exponent of the power law used to calculate the stress-strain curve of the cladding.
Zircaloy: The PNNL correlation is used. See Geelhood, Luscher & Beyer (2007), PNNL-17700. ZriNb (E110): The
RRC-KI correlation is used. See Shestopalov, A. et al. (2003), NUREG/IA-0209.

Parameters
T | temperature (K)
fnf | the fast neutron fluence (n/m”"2y
n | the calculated strain hardening exponent
cladtype | cladding type, 0 = Zircaloy, 1 = Zr-1Nb
Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_stress_strain | P
_correlation_strain

_hardening_exponent [

finix_append_err
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2.4.2.8 charxx finix_stress_strain_correlation_strain_rate_exponent ( double T, double « m, int cladtype )

Stress-strain curve plastic region power law strain rate exponent

Calculates the strain rate exponent of the power law used to calculate the stress-strain curve of the cladding.
Zircaloy: The PNNL correlation is used. See Geelhood, Luscher & Beyer (2007), PNNL-17700. ZriNb (E110): The
RRC-KI correlation is used. See Shestopalov, A. et al. (2003), NUREG/IA-0209.

Parameters

T | temperature (K)

m | the calculated strain rate exponent

cladtype | cladding type, 0 = Zircaloy, 1 = Zr-1Nb

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_stress_strain | __—9»i
_correlation_strain
_rate_exponent [T——n

finix_append_err

2.4.2.9 charxx finix_stress_strain_correlation_strength_coefficient ( double T, double coldwork, double fnf, double * K, int
cladtype )

Stress-strain curve plastic region power law strength coefficient

Calculates the strength coefficient of the power law used to calculate the stress-strain curve of the cladding.
Zircaloy: The PNNL correlation is used. See Geelhood, Luscher & Beyer (2007), PNNL-17700. Zr1Nb (E110):
The RRC-KI correlation is used. See Shestopalov, A. et al. (2003), NUREG/IA-0209.

Parameters

T | temperature (K)

coldwork | cold work parameter (unitless)

fnf | the fast neutron fluence (n/m”2y’

K | the calculated strength coefficient

cladtype | cladding type, 0 = Zircaloy, 1 = Zr-1Nb
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Returns

error string, NULL for no errors

Here is the call graph for this function:

_correlation_strength

2.5 clthprop.c File Reference

#include
#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<crtdbg.h>
<stdio.h>
<math.h>
<string.h>
"finixdata.h"
"clthprop.h"
"aux_functions.h"

Include dependency graph for clthprop.c:

Macros

stdlib.h crtdbg.h stdio.h math.h string.h

+ #define _CRTDBG_MAP_ALLOC

Functions

finix_stress_strain | P>

finix_create_err

_coefficient |

finix_append_err

finixdata.h clthprop.h

 char xx finix_clthcond (double T, double xlambda, int cladtype)

« char *x finix_clcp (double T, double xcp, int cladtype)

2.5.1 Macro Definition Documentation

25.1.1 #define _CRTDBG_MAP_ALLOC

aux_functions.h

Generated on Mon Dec 7 2015 14:59:52 for FINIX-0.15.12 by Doxygen



24 File Documentation

2.5.2 Function Documentation
2.5.2.1 charxx finix_clep ( double T, double x cp, int cladtype )

Cladding specific heat

Calculates the specific heat of the cladding. The FRAPTRAN-1.4 correlation for Zircaloy is implemented (see N«
UREG/CR-7024) and the RRC-KI correlation for ZriNb (E110) is implemented (see Shestopalov et al. (2003)
NUREG/IA-0209).

Parameters

T | temperature (K)

cp | specific heat

cladtype | the cladding type (0 = Zircaloy, 1 = Zr1Nb)

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_clcp ——p» finix_append_err

finix_interpolate_lookup

2.5.2.2 charxx finix_clthcond ( double T, double x lambda, int cladtype )

Cladding thermal conductivity

Calculates the thermal conductivity of the cladding. The FRAPTRAN-1.4 correlation for Zircaloy is implemented
(see NUREG/CR-7024) and the RRC-KI correlation for Zr1Nb (E110) is implemented (see Shestopalov et al. (2003)
NUREG/IA-0209).

Parameters

T | temperature (K)
lambda | thermal conductivity (W/mK)
cladtype | the cladding type (0 = Zircaloy, 1 = Zr1Nb)
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_clthcond

2.6 coolant.c File Reference

#include
#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<crtdbg.h>
<stdio.h>
<math.h>
<string.h>
"finixdata.h"
"coolant.h"
"aux_functions.h"

Include dependency graph for coolant.c:

Macros

finix_append_err

coolant.c

stdlib.h crtdbg.h stdio.h math.h string.h finixdata.h coolant.h

+ #define _CRTDBG_MAP_ALLOC

Functions

« char *x finix_hcoolant (int zind, Options *xoptions, Results xresults, Boundary_conditions xbc, Rod *rod)

aux_functions.h

» char =x finix_update_bcond (int zind, Boundary_conditions xbc, Rod *rod, Options xoptions, Results
xresults)

2.6.1 Macro Definition Documentation

2.6.1.1 #define _CRTDBG_MAP_ALLOC
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2.6.2 Function Documentation
2.6.2.1 charxx finix_hcoolant ( int zind, Options x options, Results  results, Boundary_conditions x bc, Rod x rod )

Calculates the heat transfer coefficient between the cladding outer surface and the coolant. Uses Dittus-Boelter for
single-phase convection and Thom correlation for nucleate boiling.

Parameters

zind | index of the axial node

options | FINIX calculation options

results | data structure including array radial_node_position which holds the node positions

bc | boundary conditions, including the temperatures of the cladding and the coolant (must be
given), and the heat transfer coefficient (function output)

rod | data structure containing fuel rod properties

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_hcoolant

finix_append_err

2.6.2.2 charxx finix_update_bcond ( int zind, Boundary_conditions = bc, Rod x rod, Options x options, Results x results )

Calculates the heat transfer coefficient between the cladding outer surface and the coolant. Uses Dittus-Boelter for
single-phase convection and Thom correlation for nucleate boiling.

Parameters
zind | index of the axial node
results | data structure including array radial_node_position which holds the node positions
bc | boundary conditions, including the temperatures of the cladding and the coolant (must be
given), and the heat transfer coefficient (function output)
rod | data structure containing fuel rod properties
options | Model options. The boundary conditions are selected in options->boundary_option.
Returns

error string, NULL for no errors

If options->boundary_option==0, use user-given rod outer surface temperature as boundary condition
If options->boundary_option==1, use user-given heat flux between rod outer surface and coolant

If options->boundary_option==2, use user-given heat transfer coefficient and coolant bulk temperature as boundary
condition
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If options->boundary_option==3, use user-given bulk temperature and calculate heat transfer coefficient from in-
ternal correlations (needs inlet mass flux)

If options->boundary_option==4, use user-given inlet temperature and mass flux to calculate heat transfer coeffi-
cient and coolant bulk temperature downstream (NOT IMPLEMENTED)

Here is the call graph for this function:

finix_create_err

finix_update_bcond finix_hcoolant

—» finix_append_err

2.7 finix_initialization.c File Reference

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

"finixdata.h"
"finix_initialization.h"
"aux_functions.h"
"gap.h"
"finix_output.h"
"fumech.h"
"clmech.h"
"futhprop.h"
"clthprop.h"
<stdio.h>
<stdlib.h>
<assert.h>
<stddef.h>
<string.h>
<ctype.h>
<math.h>
<sys/stat.h>

Include dependency graph for finix_initialization.c:

Macros

+ #define M_PI 3.14159265358979323846

Functions

ananan

ssssss

« char *x finix_initialize_data_structures (Rod *rod, Boundary_conditions xbc, Scenario *scenario, Results
xresults, Options xoptions)
« char *x finix_read_input (Rod *rod, Scenario *scenario, Options xoptions, int mode, int xexisting_files)
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2.71

2.7.141

2.7.2

2.7.21

Input * finix_inputstring_construct (void)
void finix_inputstring_destruct (Input xinput)

char *x finix_read_input_file (Rod *rod, Scenario xscenario, Options *options, Input xinput, int mode, int
xexisting_files)

void finix_read_file_names (Scenario *scenario)

int finix_does_file_exist (const char xfilename)

void finix_insert_line_to_inputstring (Input *input, const char xelement)
void finix_keywords_initialize ()

void finix_keywords_destruct ()

char *x finix_find_data_0d (Rod =rod, Scenario xscenario, Options xoptions, Input *input, const char
xsubstring, int mode)

char *x finix_find_data_1d (Rod xrod, Scenario xscenario, Options xoptions, Input xinput, const char
xsubstring, int mode)

char xx finix_find_data_2d (Rod =xrod, Scenario xscenario, Options xoptions, Input xinput, const char
xsubstring, int mode)

char *x finix_find_data_3d (Rod =xrod, Scenario xscenario, Options xoptions, Input *input, const char
xsubstring, int mode)

double *x finix_matrix_initialize_2d (int dim1, int dim2)

int finix_find_the_number_of_substrings (Input xinput, const char xsubstring)

int finix_find_the_number_of_values (char xlocation)

char x finix_read_one_value_from_inputstring (double xvalue, char xlocation)

void finix_read_word_from_inputstring (char xword, char *location)

void finix_change_to_si_units (const Rod *rod, Options *options, double *value, const char *substring)
void finix_change_to_seconds (Scenario *scenario, double xvalue, const char xsubstring)

void finix_allocate_memory_for_bc_and_results (Options xoptions, Boundary_conditions xbc, Results
xresults)

char xx finix_set_defaults_for_bc_and_results (Boundary_conditions xbc, Results *results, Options *options,
Rod *rod)

char *x finix_get_default_positions (Options *options, Results *results, Rod *xrod)
char *x finix_check_data_validity (Options *options, Rod *rod, Boundary_conditions *bc, Results xresults)

char *x finix_read_frapcon_restart (Rod *rod, Boundary_conditions xbc, Results *results, Options *options,
Scenario *xscenario)

Macro Definition Documentation
#define M_PI 3.14159265358979323846
Function Documentation

void finix_allocate_memory_for_bc_and_results ( Options * options, Boundary_conditions x bc, Results * results )

Function allocates memory for Boundary_conditions and Results data structures.

Parameters

bc | data structure containing rod boundary conditions

results | data structure containing FINIX simulation results

options | data structure containing the simulation options
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Returns

nothing

Here is the call graph for this function:

finix_allocate_memory

_for_bc_and_results ——» finix_matrix_initialize_2d

2.7.2.2 void finix_change_to_seconds ( Scenario * scenario, double « value, const char x substring )

Function converts hours and days to seconds.

Parameters
options | data structure containing the simulation options
value | the original value converted to seconds
substring | a keyword identifying the value to be converted
Returns
nothing

2.7.2.3 void finix_change_to_si_units ( const Rod x* rod, Options x options, double * value, const char x substring )

Function converts Fraptran input data to Sl-units.

Parameters
rod | data structure containing rod related data
options | data structure containing the simulation options
value | the original value converted to Sl-units
substring | a keyword identifying the value to be converted
Returns
nothing

2.7.2.4 charxx finix_check_data_validity ( Options * options, Rod * rod, Boundary_conditions * bc, Results * results )

Function checks the validity of the data in FINIX data structures.

Parameters
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rod | data structure containing rod related data

bc | data structure containing rod boundary conditions

results | data structure containing FINIX simulation results

options | data structure containing the simulation options

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_check_data_validity

finix_append_err

2.7.2.5 intfinix_does_file_exist ( const char x filename )

Function checks if the file determined in the parameter list exists.

Parameters

filename | the name of the file whose existence will be checked

Returns

nonzero if file exists, zero othewise

2.7.2.6 charx:x finix_find_data_0d ( Rod * rod, Scenario * scenario, Options x options, Input x input, const char x substring,
int mode )

Function searches for a keyword from an input string. If the keyword is found, the corresponding value will be stored
in FINIX data structures.

Parameters

rod | data structure containing rod related data

scenario | data structure containing rod history and power data

options | data structure containing the simulation options

input | a data structure containing the contents of an input file in a string format

substring | the keyword to be searched from the input string

mode | an integer defining the input to be read
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_read word _from
_inputstring

finix_read_one value
_from_inputstring

finix_find _data 0d

finix_change to_si
_Uunits

finix_change_to_seconds

2.7.2.7 charxx finix_find_data_1d ( Rod * rod, Scenario x scenario, Options x options, Input x input, const char x substring,
int mode )

Function searches for a keyword from an input string. If the keyword is found, the corresponding 1D array of values
will be stored in FINIX data structures.

Parameters

rod | data structure containing rod related data

scenario | data structure containing rod history and power data

options | data structure containing the simulation options

input | a data structure containing the contents of an input file in a string format

substring | the keyword to be searched from the input string

mode | an integer defining the input to be read
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_find_the _number

_of values

finix_find_data_1d |—p» ﬁ”"f‘r(—)ﬁa?;;’lj‘éﬂ‘i’ﬁ;‘e

finix_change_to_si
_units

2.7.2.8 charxx finix_find_data_2d ( Rod * rod, Scenario * scenario, Options * options, Input x input, const char  substring,
int mode )

Function searches for a keyword from an input string. If the keyword is found, the corresponding 2D array of values
will be stored in FINIX data structures.

Parameters

rod | data structure containing rod related data

scenario | data structure containing rod history and power data

options | data structure containing the simulation options

input | a data structure containing the contents of an input file in a string format

substring | the keyword to be searched from the input string

mode | an integer defining the input to be read
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_find_the number
_of values

finix_read_one value
_from_inputstring

finix_find data_2d

finix_change to_si
_Uunits

finix_change_to_seconds

2.7.2.9 charxx finix_find_data_3d ( Rod * rod, Scenario * scenario, Options x options, Input x input, const char x substring,
int mode )

Function searches for a keyword from an input string. If the keyword is found, the corresponding 3D array of values
will be stored in FINIX data structures.

Parameters

rod | data structure containing rod related data

scenario | data structure containing rod history and power data

options | data structure containing the simulation options

input | a data structure containing the contents of an input file in a string format

substring | the keyword to be searched from the input string

mode | an integer defining the input to be read
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_find_the _number
_of values

finix_find_the _number
_of _substrings

finix_matrix_initialize_2d

finix_find_data_3d

) finix_read_one_value

_from_inputstring

finix_change_to_si
_units

finix_change to_seconds

2.7.2.10 int finix_find_the_number_of_substrings ( Input * input, const char x substring )

Function finds the number of the occurrences of a substring in the input string

Parameters

input | a data structure containing the contents of an input file in a string format
substring | the string to be searched from the input string

Returns

the number of the occurences of a substring in the input string

2.7.2.11 intfinix_find_the_number_of values ( char x location )

Function goes throug an input-string and calculates how many values are related to a keyword.
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Parameters

location | a pointer to the beginning of the reading block

Returns

the number values related to a keyword

2.7.2.12 charxx finix_get_default_positions ( Options x options, Results * results, Rod x rod )

Function sets default values for fuel rod radial node positions.

Parameters

results | data structure containing FINIX simulation results

options | data structure containing the simulation options

rod | data structure containing rod related data

Returns

error string, NULL for no errors

2.7.2.13 charxx finix_initialize_data_structures ( Rod x rod, Boundary_conditions  bc, Scenario x scenario, Results x
results, Options x options )

The main subroutine for reading data from input files to FINIX data structures. If input files are not provided, the
data structures will be initialized with default values.

Parameters

rod | data structure containing rod related data

bc | data structure containing rod boundary conditions

scenario | data structure containing rod history and power data

results | data structure containing FINIX simulation results

options | data structure containing the simulation options
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_matrix_initialize_2d

finix_find_the_number

_of_substrings

N finix_find_the_number
_of values
\ h

finix_inputstring_destruct
‘(‘
fi 7 _units.
finix_keywords_initialize finix_find_data_1d .“

N
— Ve o
finix_inputstring_construct finix_read_one_value
/ A _from_inputstring
_for_bc_and_results

finix_allocate_memory
finix_find_data_2d

7 finix_change_to_seconds
finix_read_input
=z
finix_read_word_from
_inputstring

I finix_read_input_file L

\AI finix_insert_line_to
finix_check_data_validity nputstring
~

\\ I finix_read_file_names }—b' finix_does_file_exist
s’

finix_bo._interpolate 5 fnix_append_er
_zonehistory_data

</

finix_interpolate_lookup

finix_initialize_data
_structures

finix_bc_interpolate
_history_data

finix_bc_interpolate
zone_data

finix_set_defaults

for_bc_and_results

finix_print_data_structures
finix_bc_interpolate
finix_keywords_destruct ring dar[;;o
finix_get_default_positions

finix_gap_moles_from
_pressure_cold

2.7.2.14  Inputx finix_inputstring_construct ( void )

Function creates a new Input data structure. The data structure contains a string where the data from the input file
will be stored.

Returns

new_input a data structure that will contain the contents of an input file in a string format

2.7.2.15 void finix_inputstring_destruct ( Input * input )

Function frees all the memory related to the Input data structure.
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Parameters

input | a data structure containing the contents of an input file.

Returns

nothing.

2.7.2.16 void finix_insert_line_to_inputstring ( Input x input, const char  element )

Function appends one line to an input string.

Parameters

input | a data structure containing the contents of and input file

element | a string that will be appended to the input string

Returns

nothing

2.7.2.17 void finix_keywords_destruct ( )

Function frees all the memory allocated to keylist data structure

Returns

nothing

2.7.2.18 void finix_keywords_initialize ( )

Function determines the keywords to be searched from the input files. These keywords are stored in data structure

keylist for later use.

Returns

nothing

2.7.2.19 doublex:x finix_matrix_initialize_2d ( int dim1, int dim2 )

Function allocates memory for a 2D matrix.

Parameters

dim1 | number of columns

dim2 | number of rows

Returns

matrix with allocated memory

2.7.2.20 void finix_read_file_names ( Scenario * scenario )

Function asks the user the name of the Fraptran input file and the name of the Frapcon generated restart file. These

file names are stored in scenario data structure.
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Parameters

scenario

data structure where the names of the input files will be stored.

Returns

nothing

Here is the call graph for this function:

finix_read file_names

-

finix_does_file_exist

2.7.2.21 charxx finix_read_frapcon_restart ( Rod * rod, Boundary_conditions * bc, Results x results, Options x options,
Scenario x scenario )

Reads the FRAPCON-generated FRAPTRAN style restart file for initializing the FINIX model for nonzero burnup

Parameters
options | FINIX calculation options
rod | data structure containing fuel rod properties
bc | coolant boundary conditions
results | miscellaneous computed values
scenario | data structure containing the name of the Frapcon generated restart file
Returns

error string, NULL for no errors
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Here is the call graph for this function:

finix_mech_sohe_nigd inx_mech_sohe_pellel
_pollet _sirain

iix_get_oelaull_positions.

T

e
MMS

seni_component
fix_cylindrical_adp

finix_cylindrical_copy.

2.7.2.22 charxx finix_read_input ( Rod  rod, Scenario  scenario, Options *x options, int mode, int x existing_files )

Function reads one input file and strores the data in FINIX data structures

Parameters

rod | data structure containing rod related data

scenario | data structure containing rod history and power data

options | data structure containing the simulation options

mode | an integer defining the input to be read

existing_files | an array containing the information about existing input files

Generated on Mon Dec 7 2015 14:59:52 for FINIX-0.15.12 by Doxygen



40 File Documentation

Returns

error string, NULL for no errors

Here is the call graph for this function:

| finix_read_file_names |—>| finix_does_file_exist

finix_insert_line_to

_inputstring

| finix_inputstring_construct |

finix_read_input_file

finix_append_ermr

finix_read_word_from

inputstring

finix_find_data_0d

So

finix_find_data_1d .

V‘Y/ﬁ finix_read_one_value
‘ A _from_inputstring
finix_find_data_2d -"‘
ST AT

/“‘ finix_change_to_seconds
finix_find_data_3d ‘\

finix_find_the_number
_of values

finix_matrix_initialize_2d

finix_find_the_number
_of_substrings

finix_change_to_si

units

finix_read_input

finix_inputstring_destruct

2.7.2.23 charxx finix_read_input_file ( Rod * rod, Scenario x scenario, Options x options, Input x input, int mode, int x
existing_files )

Function reads the contents of an input file (exculding commented lines). The input will be stored in string format in
Input data structure.

Parameters

rod | data structure containing rod related data

scenario | data structure containing rod history and power data

options | data structure containing the simulation options

input | a data structure containing the contents of an input file

mode | an integer defining the input to be read

existing_files | an array containing the information about existing input files

Generated on Mon Dec 7 2015 14:59:52 for FINIX-0.15.12 by Doxygen



2.7 finix_initialization.c File Reference 4

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_read_file_names |—>| finix_does_file_exist

finix_create_err

finix_read_input_file

finix_append_err

finix_insert_line_to
_inputstring

2.7.2.24 charx finix_read_one_value_from_inputstring ( double x value, char x location )

Function reads one value from an input-string. The value that will be read is pointed by parameter "location", and
will be stored in parameter "value".

Parameters

value | the value that will be read from the input-string

location | a pointer to the beginning of the reading block

Returns

pointer to the end of the reading block

2.7.2.25 void finix_read_word_from_inputstring ( char x word, char x location )

Function reads one word from the input-string.

Parameters

word | the word that will be read from the input-string

location | a pointer to the beginning of the reading block

Returns

nothing

2.7.2.26 charxx finix_set_defaults_for_bc_and_results ( Boundary_conditions x bc, Results * results, Options x options, Rod
* rod )

Function sets default values for Boundary_conditions and Results data structures.
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Parameters

bc | data structure containing rod boundary conditions

results | data structure containing FINIX simulation results

options | data structure containing the simulation options

rod | data structure containing rod related data

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_get_default_positions

finix_set_defaults

_for_bc_and results | finix_append_em

finix_gap_moles_from
_pressure_cold

2.8 finix_output.c File Reference

#include <stdlib.h>

#include <crtdbg.h>

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <time.h>

#include "finixdata.h"
#include "aux_functions.h"
#include "finix_output.h"
Include dependency graph for finix_output.c:

stdlib.h crtdbg.h stdio.h math.h string.h time.h finixdata.h aux_functions.h finix_output.h

Macros

+ #define _CRTDBG_MAP_ALLOC
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Functions

2.8.1

2.8.1.1

2.8.2

2.8.2.1

Output * finix_output_initialize (Options *options)

void finix_output_print (Output *files, Rod *rod, Boundary_conditions xbc, Options xoptions, Results *results,
Scenario xscenario)

void finix_output_close (Output *files, Options xoptions)

char =x finix_db_fprintf_stripfile (int printoption, FILE xwritefile, Results xresults, Rod *rod, Options *xoptions,
Boundary_conditions xbc, Scenario xscenario)

void finix_print_data_structures (Rod *rod, Boundary_conditions xbc, Scenario xscenario, Results *results,
Options *options)

Macro Definition Documentation

#define _CRTDBG_MAP_ALLOC

Function Documentation

charxx finix_db_fprintf_stripfile ( int printoption, FILE x writefile, Results x results, Rod x rod, Options x options,
Boundary_conditions x be, Scenario x scenario )

Outputs results to writefile in the same format as a FRAPTRAN stripfile. Note that many of the parameters cannot
be output from FINIX, so they are set to zero.

Parameters

printoption | printing option, 0 = print the beginning of the file, 1 = print the data section of the file

writefile | the file to output to

time | time step

results | results calculated by FINIX

rod | data structure containing fuel rod properties

options | FINIX calculation options

bc | boundary conditions

scenario | data structure containing rod history and power data

Returns

Here

always returns NULL

is the call graph for this function:

finix_calculate_average
_power

finix_db_fprintf_stripfile

finix_calculate_wolume
_awverage
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2.8.2.2 void finix_output_close ( Output x files, Options x options )

Function closes the finix.sum and finix.zx output files and frees the memory allocated to Output data structure. This
function must be used if function finix_output_initialize has been called earlier.
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Parameters

files | a data structure containing an array of file pointers.

options | a data structure containing simulation options.

Returns

nothing

2.8.2.3 Outputx finix_output_initialize ( Options * options )

Function prints the header lines in finix.sum and finix.zx output files. This function must be used if these files are
printed with finix_output_print, because it allocates memory for a structure containing an array of file pointers. After
calling this function, the memory of the Output structure and the memory of file pointer array must be freed by calling
the function finix_output_close.

Parameters

] options \ a data structure containing simulation options.

Returns

files a data structure containing an array of file pointers.

2.8.2.4 void finix_output_print ( Output x files, Rod * rod, Boundary_conditions x bc, Options x options, Results * results,
Scenario * scenario )

Function prints the data lines in output files finix.sum and finix.zx. NOTE: because the function uses the file pointers
in Output data structure, the data structure must first be initialized by calling the function finix_output_initialize.

Parameters

files | a data structure containing an array of file pointers.

rod | a data structure containing the fuel rod data.

bc | adata structure containing boundary condition data.

options | a data structure containing simulation options.

results | a data structure containing simulation results.

Returns

nothing

2.8.2.5 void finix_print_data_structures ( Rod x rod, Boundary_conditions = bc, Scenario x scenario, Results x results,
Options * options )

The function prints all the data stored in FINIX data structures.

Parameters

rod | data structure containing rod related data

bc | data structure containing rod boundary conditions

scenario | data structure containing rod history and power data
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results | data structure containing FINIX simulation results
options | data structure containing the simulation options
Returns
nothing
2.9 finixdata.c File Reference

#include "finixdata.h"
#include "aux_functions.h"
#include <stdlib.h>
#include <stdio.h>

#include <string.h>
#include <assert.h>
finclude <math.h>

Include dependency graph for finixdata.c:

finixdata.h aux_functions.h stdlib.h stdio.h string.h assert.h math.h

Functions

Rod x finix_rod_construct ()

Boundary_conditions x finix_bc_construct ()

Scenario * finix_scenario_construct ()

Results * finix_results_construct ()

Options * finix_options_construct ()

void finix_data_structures_destruct (Rod xrod, Boundary_conditions xbc, Scenario *scenario, Results xres,
Options *options)

void finix_rod_destruct (Rod *rod)

void finix_bc_destruct (Boundary_conditions xbc, Options *xopt)

void finix_scenario_destruct (Scenario *s)

void finix_results_destruct (Results xres, Options xoptions)

void finix_matrixDestruct_2d (double *xmatrix, int dim1)

char x finix_update_bc (Boundary_conditions xbc, Scenario xscen, Options xopt, Rod *rod, Results xres)
char *x finix_bc_interpolate_zonehistory_data (double xxzonelnterp, double *xinterp, Scenario xscen, Rod
xrod, Boundary_conditions xbc, Options *opt, char *option)

char *x finix_bc_interpolate_ring_data (double xxinterp, Scenario *xscen, Boundary_conditions xbc, Results
xres, Options xopt, char xoption)

char *x finix_bc_interpolate_history_data (double xxinterp, Scenario xscen, Boundary_conditions xbc, Op-
tions xopt, char xoption)

char xx finix_bc_interpolate_zone_data (double sxinterp, Scenario xscen, Rod xrod, Boundary_conditions
xbc, Options *xopt, char xoption)

Cylindrical finix_cylindrical_copy (Cylindrical t)

void finix_cylindrical_add (Cylindrical *t, Cylindrical dt)

void finix_cylindrical_add_scalar (Cylindrical *t, double s)
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« void finix_cylindrical_substract (Cylindrical xt, Cylindrical dt)

« void finix_cylindrical_substract_scalar (Cylindrical *t, double s)

+ double finix_cylindrical_ddp (Cylindrical t1, Cylindrical t2)

+ Cylindrical finix_cylindrical_scalar_multiply (Cylindrical t_orig, double s)
+ double finix_cylindrical_tr (Cylindrical t)

« Cylindrical finix_cylindrical_deviatoric (Cylindrical t)

2.9.1 Function Documentation

2.9.1.1 Boundary_conditions: finix_bc_construct ( )

Constructor function for the boundary conditions data structure. The data structure contains data related to rod

boundary conditions.

Returns

boundary conditions data structure

2.9.1.2 void finix_bc_destruct ( Boundary_conditions  bc, Options * opt )

Destructor function for the boundary_contions data structure. Frees all boundary_conditions-related memory.

Parameters
bc | data structure containing rod boundary conditions
opt | data structure containing the simulation options
Returns
nothing

Here is the call graph for this function:

finix_bc_destruct ——p»{ finix_matrixDestruct_2d

2.9.1.3 charxx finix_bc_interpolate_history_data ( double x: interp, Scenario *« scen, Boundary_conditions * be, Options *
opt, char x option )

Function to interpolate data in Scenario struct members of type struct history_data to Boundary_condition struct.

Parameters
interp | array of pointers for interpolation in time
scen | Scenario struct
bc | Boundary_conditions struct
opt | Options struct
option | string to identify the member of Scenario struct
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Returns

return_err error string

Here is the call graph for this function:

finix_bc_interpolate

history_data —p»| finix_interpolate_lookup

2.9.1.4 charxx finix_bc_interpolate_ring_data ( double xx interp, Scenario * scen, Boundary_conditions * bc, Results x res,
Options * opt, char « option )

Function to interpolate data in Scenario struct members of type struct ring_data to radial boundary condition arrays
(in an array[i][j] i = axial index, j= radial index).

Parameters

interp | array of pointers for interpolation in time

scen | Scenario struct

res | Results struct, the cold radial node positions are used

bc | Boundary_conditions struct

opt | Options struct

option | string to identify the member of Scenario struct

Returns

return_err error string

Here is the call graph for this function:

finix_bc_interpolate

"ring_data ——p»{ finix_interpolate_lookup

2.9.1.5 charx:x finix_bc_interpolate_zone_data ( double xx interp, Scenario * scen, Rod * rod, Boundary_conditions  bc,
Options = opt, char x option )

Function to interpolate data in Scenario struct members of type struct zone_data to axial boundary condition vectors.
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Parameters
interp | array of pointers for interpolation in time
scen | Scenario struct
rod | Rod struct
bc | Boundary_conditions struct
opt | Options struct
option | string to identify the member of Scenario struct
Returns

return_err error string

Here is the call graph for this function:

finix_bc_interpolate

“zone_data ——p» finix_interpolate_lookup

2.9.1.6 charxx finix_bc_interpolate_zonehistory_data ( double xx zonelnterp, double xx interp, Scenario x scen, Rod * rod,
Boundary_conditions * bc, Options * opt, char * option )

Function to interpolate data in Scenario struct members of type struct zonehistory_data to axial boundary condition

vectors.
Parameters
zonelnterp | work array for saving values at each zone interpolated to current simulation time
interp | array of pointers for interpolation in time
scen | Scenario struct
rod | Rod struct
bc | Boundary_conditions struct
opt | Options struct
option | string to identify the member of Scenario struct
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Returns

return_err error string

Here is the call graph for this function:

finix_create_err

/

finix_bc_interpolate

_zonehistory_data »

finix_append_err

finix_interpolate_lookup

2.9.1.7 void finix_cylindrical_add ( Cylindrical = t, Cylindrical dt )

Adds a Cylindrical struct to another Cylindrical struct.

Parameters

t | the original struct in Cylindrical form

dt | the struct containing values to add to t in Cylindrical form

2.9.1.8 void finix_cylindrical_add_scalar ( Cylindrical x f, double s )

Adds a scalar value to a Cylindrical struct.

Parameters

the original struct in Cylindrical form

s | ascalar

2.9.1.9 Cylindrical finix_cylindrical_copy ( Cylindrical t )

Copies a Cylindrical struct to another Cylindrical struct.

Parameters

] t | the original struct in Cylindrical form

Returns

¢ the copied struct in Cylindrical form

2.9.1.10 double finix_cylindrical_ddp ( Cylindrical t1, Cylindrical {2 )

Calculates the double dot product of two tensors with zeroes as the non-diagonal elements. The tensors are

expressed in Cylindrical form.
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Parameters

t1 | astruct in Cylindrical form

{2 | another struct in Cylindrical form

Returns

product the double dot product

2.9.1.11  Cylindrical finix_cylindrical_deviatoric ( Cylindrical t )

Calculates the deviatoric values of a tensor in Cylindrical form (with zeroes as the non-diagonal elements).

Parameters

] t | the tensor in Cylindrical form

Returns

deviatoric the deviatoric tensor in Cylindrical form

Here is the call graph for this function:

finix_cylindrical_deviatoric (——®»| finix_cylindrical_tr

2.9.1.12  Cylindrical finix_cylindrical_scalar_multiply ( Cylindrical t_orig, double s )

Multiplies a Cylindrical struct with a scalar.

Parameters

t orig | the original struct in Cylindrical form

s | the scalar value with which the struct is multiplied

Returns

t_multiplied the multiplied struct in Cylindrical form

2.9.1.13 void finix_cylindrical_substract ( Cylindrical x , Cylindrical dt )

Substracts a Cylindrical struct form another Cylindrical struct.

Parameters
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t | the original struct in Cylindrical form

dt | the struct containing values to substract from t in Cylindrical form

2.9.1.14 void finix_cylindrical_substract_scalar ( Cylindrical =« t, double s )

Substracts a scalar value from a Cylindrical struct.

Parameters

the struct in Cylindrical form

s | ascalar

2.9.1.15 double finix_cylindrical_tr ( Cylindrical t )

Calculates the trace of a tensor in Cylindrical form.

Parameters

t | atensor in Cylindrical form

Returns

tr the trace of tensor t
2.9.1.16 void finix_data_structures_destruct ( Rod * rod, Boundary_conditions  bc, Scenario * scenario, Results * res,
Options * options )

Function frees all the memory allocated to FINIX data structures.

Parameters

rod | data structure containing rod related data

bc | data structure containing rod boundary conditions

scenario | data structure containing rod history and power data

res | data structure containing FINIX simulation results

options | data structure containing the simulation options

Returns

nothing

Here is the call graph for this function:

finix_rod_destruct

finix_bc_destruct
finix_data_structures
_destruct

\hl finix_scenario_destruct |—>| finix_matrixDestruct_2d

finix_results_destruct
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2.9.1.17 void finix_matrixDestruct_2d ( double xx matrix, int dim1 )

Frees the memory of a 2D matrix.

Parameters
matrix | a pointer to the matrix that will be destroyed
dim1 | number of matrix columns
Returns
nothing

2.9.1.18 Options: finix_options_construct ( )
Constructor function for the options data structure. The data structure contains the FINIX simulation options.

Returns

options data structure

2.9.1.19 Results: finix_results_construct ( )
Constructor function for the results data structure. The data structure contains the FINIX simulation results.

Returns

results data structure

2.9.1.20 void finix_results_destruct ( Results * res, Options  options )

Destructor function for the results data structure. Frees all results-related memory.

Parameters

res | data structure containing FINIX simulation results

options | data structure containing the simulation options

Returns

nothing

Here is the call graph for this function:

finix_results_destruct | ——»| finix_matrixDestruct_2d
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2.9.1.21 Rod:x finix_rod_construct ( )
Contructor function for the rod data structure. The data structure contains data related to a fuel rod.

Returns

rod data structure

2.9.1.22 void finix_rod_destruct ( Rod x rod )

Destructor function for the rod data structure. Frees all rod-related memory.

Parameters

rod \ data structure containing rod related data

Returns

nothing

2.9.1.23 Scenariox finix_scenario_construct ( )

Constructor function for the scenario data structure. The data structure contains the rod history and power data.

Returns

scenario data structure

2.9.1.24 void finix_scenario_destruct ( Scenario x s )

Destructor function for the scenario data structure. Frees all scenario-related memory.

Parameters

s \ data structure containing rod history and power data

Returns

nothing

Here is the call graph for this function:

finix_scenario_destruct ——» finix_matrixDestruct_2d
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2.9.1.25 charxx finix_update_bc ( Boundary_conditions x bc, Scenario  scen, Options * opt, Rod  rod, Results x res )

Updating boundary conditions for the current time step

This function updates the boundary conditions in Boundary_conditions struct with values interpolated from history
data in the Scenario struct. All given boundary conditions are updated. An error is shown if boundary conditions
other than specified in opt->boundary_condition are given. If time step or node location is below or over the
minimum/maximum value given in the history, the first/last time step/node location value is used for all such values.

Parameters
bc | boundary condition struct (actually used by FINIX)
scen | scenario struct with history data
opt | options struct
rod | rod parameter struct, rod length and pellet radius used
res | results struct, cold state rod radii are used
Returns

error string

Here is the call graph for this function:

finix_bc_interpolate
_zone_data

finix_bc_interpolate
_ring_data

finix_interpolate_lookup

finix_bc_interpolate
_history_data

finix_update_bc

finix_bc_interpolate
_zonehistory_data

finix_create_err

finix_append_err

2.10 fumech.c File Reference

finclude <stdlib.h>
#include <crtdbg.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
finclude "finixdata.h"
#include "fumech.h"
#include "fumechprop.h"
#include "aux_functions.h"

Generated on Mon Dec 7 2015 14:59:52 for FINIX-0.15.12 by Doxygen



56 File Documentation

Include dependency graph for fumech.c:

stdlib.h crtdbg.h stdio.h math.h string.h finixdata.h fumech.h fumechprop.h aux_functions.h

Macros

+ #define _CRTDBG_MAP_ALLOC

Functions

+ char *x finix_mech_solve_pellet_strain (int zind, double xxpower_den, Results xresults, Options xoptions)

+ char *x finix_mech_solve_rigid_pellet (double xxpower_den, Rod *rod, Results xresults, Options xoptions)

2.10.1 Macro Definition Documentation

2.10.1.1 #define _CRTDBG_MAP_ALLOC

2.10.2 Function Documentation

2.10.2.1 charxx finix_mech_solve_pellet_strain ( int zind, double xx power_den, Results x results, Options x options )

Solves the strains for one axial node with the rigid pellet appoximation.

Parameters

zind | index of the axial slice

power_den | power density (W/m”\3)

results | computed results

options | FINIX calculation options
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_relocation_strain finix_create_err

finix_futhstrain finix_append_err

finix_mech_solve_pellet
_strain

finix_calculate_linear
_power

B finix_calculate_wolume
average
W -

2.10.2.2 charxx finix_mech_solve_rigid_pellet ( double x power_den, Rod x rod, Results * results, Options x options )

Solves the pellet mechanical deformations with the rigid pellet appoximation.

Parameters

power_den | power density (W/m”\3)

rod | data structure containing fuel rod properties

results | computed results

options | FINIX calculation options

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_mech_solve_rigid
_pellet

" finix_append_err
[ ]~

finix_mech_solve_pellet
finix_relocation_strain

finix_calculate_linear

_power

finix_calculate_volume

_awerage
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2.11 fumechprop.c File Reference

finclude <stdlib.h>

#include <crtdbg.h>

#include <stdio.h>

#include <math.h>

#include <string.h>

finclude "finixdata.h"
#include "fumechprop.h"
#include "aux_functions.h"
Include dependency graph for fumechprop.c:

fumechprop.c

stdlib.h crtdbg.h stdio.h math.h string.h finixdata.h fumechprop.h aux_functions.h

Macros

+ #define _CRTDBG_MAP_ALLOC

Functions

 char xx finix_futhstrain (double T, double xstrain)
+ char xx finix_relocation_strain (double Ihr, double bu, double rfo, double rci, Options xoptions, double xstrain)
« char *x finix_calculate_density (Options *options, Rod xrod, Results xresults, double *xden)

2.11.1 Macro Definition Documentation

2.11.1.1 #define _CRTDBG_MAP_ALLOC

2.11.2 Function Documentation
2.11.2.1 charxx finix_calculate_density ( Options * options, Rod * rod, Results * results, double xx den )

Pellet and cladding density calculation from grid point locations assuming conservation of mass. Added 10 June
2013 by Timo Ikonen.

Calculates the radial pellet relocation.

Parameters

options | FINIX calculation options

rod | data structure containing fuel rod properties

results | computed results

den | density at to be calculated for each node (kg/m”3)

Returns

error string, NULL for no errors
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2.11.2.2 charxx finix_futhstrain ( double T, double x strain )

Fuel thermal strain

Calculates the thermal strain of UO2 with the FRAPTRAN-1.4 correlation.

Parameters

T

temperature (K)

strain

thermal strain

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_futhstrain

finix_create_err

finix_append_err

2.11.2.3 charxx finix_relocation_strain ( double /hr, double bu, double rfo, double rci, Options x options, double  strain )

Fuel relocation strain. Added 30 May 2013 by Timo Ikonen.

Calculates the radial pellet relocation.

Parameters
Ihr | pellet average linear heat rate (W/m)
bu | pellet average burnup (MWd/kgU)
rfo | fuel outer radius in the cold state (m)
rei | cladding inner radius in the cold state (m)
options | model options
strain | relocation strain (output)
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_relocation_strain

finix_append_err

2.12 futhprop.c File Reference

#include <stdlib.h>
#include <crtdbg.h>
#include <stdio.h>
#include <math.h>

#include <string.h>
#include "finixdata.h"
#include "futhprop.h"
#include "aux_functions.h"
Include dependency graph for futhprop.c:

stdlib.h crtdbg.h stdio.h math.h string.h finixdata.h futhprop.h aux_functions.h

Macros

+ #define _CRTDBG_MAP_ALLOC

Functions
« char xx finix_futhcond (double T, double Bu, double den, double gad, double xlambda)
« char *x finix_fucp (double T, double *xcp)

2.12.1 Macro Definition Documentation

2.12.1.1 #define _CRTDBG_MAP_ALLOC
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2.12.2 Function Documentation

2.12.2.1 charxx finix_fucp ( double T, double x cp )

Fuel specific heat

Calculates the specific heat of UO2 with the FRAPTRAN-1.4 correlation.

Parameters

temperature (K)

cp

specific heat

Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_fucp

i

finix_append_err

2.12.2.2 charxx finix_futhcond ( double T, double Bu, double den, double gad, double x lambda )

Fuel thermal conductivity

Calculates the thermal conductivity of UO_2 with the FRAPTRAN-1.4 correlation.

Parameters
T | temperature (K)
den | as-fabricated density as a fraction from the theoretical value
gad | gadolinia weight fraction
Bu | burn-up (GWd/MTU)
lambda | thermal conductivity (W/mK)
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_create_err

finix_futhcond

finix_append_err

2.13 gap.c File Reference

#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<crtdbg.h>
<stdio.h>
<math.h>
<string.h>
"finixdata.h"
"gap.h"
"clmechprop.h"
"aux_functions.h"

Include dependency graph for gap.c:

Macros

stdlib.h crtdbg.h stdio.h math.h string.h finixdata.h gap.h

- #define CRTDBG_MAP_ALLOC

Functions

clmechprop.h aux_functions.h

« char *x finix_hgap (int zind, double *xlambda, Rod *rod, Results *results, Options xoptions)

« char *x finix_Tplenum (Options xoptions, double *xlambda, Results *results, Boundary_conditions *bc)

« char *x finix_pgap (Options xoptions, Rod *rod, Results *results)

« char *x finix_gap_moles_from_pressure (Options *options, Rod xrod, Results xresults)

« char *x finix_gap_moles_from_pressure_cold (Options xoptions, Rod *rod, Results xresults)
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2131

2.13.141

Macro Definition Documentation

#define _CRTDBG_MAP_ALLOC

2.13.2 Function Documentation

2.13.21

charxx finix_gap_moles_from_pressure ( Options x options, Rod x rod, Results x results )

Calculates the amount of gas (moles) from the gas pressure, temperature and volume.

Parameters
options | FINIX calculation options
rod | data structure containing fuel rod properties
results | results struct, including the fuel pellet axial strains in results->pellet_strain.axial and the gas
amount to be calculated in results->gas_mole_amount
Returns

error string, NULL for no errors

2.13.2.2 charxx finix_gap_moles_from_pressure_cold ( Options x options, Rod x rod, Results x results )

Calculates the amount of gas (moles) from the gas pressure, temperature and volume using cold state (300 K)

values.
Parameters
options | FINIX calculation options
rod | data structure containing fuel rod properties
results | results struct, including the fuel pellet axial strains in results->pellet_strain.axial and the gas
amount to be calculated in results->gas_mole_amount
Returns

error string, NULL for no errors

2.13.2.3 charxx finix_hgap ( int zind, double xx lambda, Rod x rod, Results  results, Options x options )

Gap heat transfer coefficient

Calculates the gap heat transfer coefficient h, taking into account conductive, radiative and contact heat transfer.

23 July 2013: Corrected effetive gap width correlation

Parameters
zind | index of the axial slice
lambda | conductivity at each node (W/mK)
rod | data structure containing fuel rod properties
results | computed results
options | FINIX calculation options
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Returns

error string, NULL for no errors

currently pure helium is assumed; should add A and B for other gases’ conductivities

Here is the call graph for this function:

finix_create_err

finix_hgap [——®»| finix_clmeyer

finix_append_err

2.13.2.4 charxx finix_pgap ( Options x options, Rod x rod, Results x results )

Calculates the rod internal gas pressure with given temperatures and dimensions. Modified 5 June 2013 by Timo
Ikonen to calculate current pressure from amount of gas, instead of fill pressure. Allows nonconservation of gas.

Parameters
options | FINIX calculation options
rod | data structure containing fuel rod properties
results | results struct, including the fuel pellet axial strains in results->pellet_strain.axial and the pres-
sure to be calculated in results->fill_gas_pressure
Returns

error string, NULL for no errors

2.13.2.5 charxx finix_Tplenum ( Options * options, double xx lambda, Results x results, Boundary_conditions x bc )

Plenum gas temperature

Calculates the plenum gas temperature. Assumes helium for gas properties.

Parameters
options | FINIX calculation options
lambda | heat conductivity at each node
results | calculated results (including plenum temperature at results->fill_gas_temperature and pres-
sure at results->fill_gas_pressure)
bc | boundary conditions (gives, e.g., coolant temperature)
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Returns

error string, NULL for no errors

Here is the call graph for this function:

finix_calculate_wolume

_average

finix_Tplenum |———» finix_create_err

finix_append_err

2.14 heateq1d.c File Reference

#include
#include
#include
#include
#include
#include
#include
#include

<stdlib.h>
<crtdbg.h>
<stdio.h>
<math.h>
<string.h>
"finixdata.h"
"heategld.h"
"aux_functions.h"

Include dependency graph for heateqid.c:

Macros

heateqid.c

stdlib.h crtdbg.h stdio.h math.h string.h finixdata.h

- #define CRTDBG_MAP_ALLOC

Functions

heateq1d.h

aux_functions.h

» char xx finix_FEM_discretize_ HE_1D (int zind, double dt, double *xpower_den, double *xlambda, double
xxcv, Results *results, Boundary_conditions xbc, Options xoptions, double xxdiag, double *x*subdiag, double
xxsuperdiag, double xxloadvec)

« char xx finix_FEM_solve_tridiagonal (int zind, Options xoptions, Results xresults, double xxdiag, double
xxsubdiag, double xxsuperdiag, double xxloadvec)
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2.14.1 Macro Definition Documentation

2.141.1 #define _CRTDBG_MAP_ALLOC

2.14.2 Function Documentation

2.14.21 charxx finix_FEM_discretize_HE_1D ( int zind, double dt, double xx power_den, double xx lambda, double xx cy,
Results * results, Boundary_conditions x bc, Options x options, double xx diag, double *x subdiag, double
superdiag, double xx loadvec )

The FEM discretization of the 1D heat equation

Assembles the discretization matrix and load vector of the heat equation in the pellet, gap and cladding, using the
given nodalization, material parameters and boundary conditions.

Parameters

zind | index of the axial slice

dt | discretization time step

options | FINIX calculation options

power den | power_den density at each node (W/m”2)

lambda | conductivity at each node (W/mK)

cv | volumetric heat capacity (J/m” 3K)

results | computed results (including gap conductance)

bc | boundary conditions

diag | matrix diagonal (function output; must be initialized beforehand)

subdiag | matrix sub-diagonal (function output; must be initialized beforehand)

superdiag | matrix super-diagonal (function output; must be initialized beforehand)

loadvec | load vector (function output; must be initialized beforehand)

Returns

error string, NULL for no errors

If options->boundary_option==0, use user-given rod outer surface temperature as boundary condition
If options->boundary_option==1, use user-given heat flux between rod outer surface and coolant

If options->boundary_option==2, use user-given heat transfer coefficient and coolant bulk temperature as boundary
condition

If options->boundary_option==3, use user-given bulk temperature and internally calculated heat transfer coefficient

If options->boundary_option==4, use user-given inlet temperature and mass flux to calculate heat transfer coeffi-
cient and coolant bulk temperature downstream (NOT IMPLEMENTED)

Here is the call graph for this function:

finix_create_err

finix_FEM_discretize
_HE_1D

finix_append_err
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2.14.2.2 charxx finix_FEM_solve_tridiagonal ( int zind, Options x options, Results * results, double xx diag, double
subdiag, double xx superdiag, double xx loadvec )

Solves the 1D FEM discretized heat equation using the tridiagonal matrix (Thomas) algorithm. Does NOT preserve
the LHS matrix or the load vector.
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Parameters

zind | index of the axial slice

options | FINIX calculation options

results | data structure including parameter temperature (K) (which is the function output to be solved;
must be initialized beforehand)

diag | matrix diagonal

Ssubdiag | matrix sub-diagonal

superdiag | matrix super-diagonal

loadvec | load vector

Returns

error string, NULL for no errors

2.15 host.c File Reference

#include <stdlib.h>
#include <crtdbg.h>
#include <stdio.h>
#include <conio.h>
finclude <math.h>
#include <string.h>
#include "finixdata.h"

#include "finix_initialization.h"

#include "initial.h"
#include "steadystate.h"
finclude "transient.h"
#include "aux_functions.h"
#include "finix_output.h"
Include dependency graph for host.c:

Macros

+ #define _CRTDBG_MAP_ALLOC

Functions

 int main ()

2.15.1 Macro Definition Documentation

2.15.1.1 #define _CRTDBG_MAP_ALLOC

2.15.2 Function Documentation

stingh finixdata.h finix_initialization.h initial.h steadystate.h transient th aux_functions.h finix_outputh
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2.15.21 intmain( )

The host code file.

The host code that runs the FINIX subprogram. This file should be replaced in its entirety with the host code.

Here is the call graph for this function:

finix_rod_construct
finix_be_construct
finix_scenario_construct

finix_results_construct

finix_options_construct

finix_printf_err

finix_output_initialize

finix_get_default_positions \
finix_solve_initial
_steady_state
finix_free_err
\ >
fi itput t \
=
finix_db_fprintf_stripfile
‘- [ spoend e
_pellet = =
W
|
finix_data_structures n . \ /
destruct finix_read_frapcon
- _restart finix_mech_solve_thin
‘ _cladding l
‘ finix_futhcond ’//'/

finix_calculate_bumup

P

~\

finix_print_data_structures

finix_keywords_destruct

finix_keywords_initialize

finix_read_input

finix_bc_interpolate
_history_data

finix_be_interpolate
zone_data

finix_bc_interpolate
ring_data

finix_initialize_data
u

finix_allocate_memory

finix_bc_interpolate
_for_bc_and_results

_zonehistory_data

finix_set_defauits
_for_be_and_results

finix_cylindrical_substract

finix_cylindrical_scalar
~_multiply’

finix_get_thermal_properties

finix_solve_transient

=N
V=

] 3T e
,,v
finix_FEM_solve_tridiagonal /
finix_update_bcond
finix_cylindrical_add -

\ finix_Tplenum

finix_calculate_average
_power

finix_calculate_linear | finix_calculate_volume
~power I " awerage

2.16 initial.c File Reference

#include <stdlib.h>
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#include <crtdbg.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "finixdata.h"
#include "initial.h"
#include "transient.h"
#include "aux_functions.h"
#include "futhprop.h"
#include "clthprop.h"
#include "fumechprop.h"
#include "clmechprop.h"
#include "gap.h"

#include "heategld.h"
finclude "fumech.h"
#include "clmech.h"
#include "coolant.h"
Include dependency graph for initial.c:

staoh ann [ | st rangint cimechin | | conlnth

Macros

. #define CRTDBG_MAP_ALLOC

Functions
» char *x finix_solve_initial_steady_state (Rod *rod, Boundary_ conditions xbc, Results xresults, Options
xoptions)
2.16.1 Macro Definition Documentation

2.16.1.1 #define _CRTDBG_MAP_ALLOC

2.16.2 Function Documentation

2.16.2.1 charxx finix_solve_initial_steady_state ( Rod * rod, Boundary_conditions  bc, Results * results, Options x options

)

The initial state function.

This function is used to solve the initial steady state of the fuel rod, with given boundary conditions and power
density.

Parameters

rod | data structure containing fuel rod properties

bc | boundary conditions

results | miscellaneous computed values
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options | FINIX calculation options

Returns

error string, NULL for no errors

Here is the call graph for this function:

2.17 steadystate.c File Reference

#include <stdlib.h>
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#include <crtdbg.h>

#include <stdio.h>

#include <math.h>

#include <string.h>

#include "finixdata.h"
#include "steadystate.h"
#include "aux_functions.h"
#include "fumechprop.h"

Include dependency graph for steadystate.c:

steadystate.c

stdlib.h crtdbg.h stdio.h math.h string.h finixdata.h steadystate.h aux_functions.h fumechprop.h

Macros

- #define CRTDBG_MAP_ALLOC

Functions

« char *x finix_calculate_burnup (double time, Options *options, Rod *rod, Results xresults, Boundary <«
conditions *bc)
2.17.1 Macro Definition Documentation

2.17.1.1 #define _CRTDBG_MAP_ALLOC

2.17.2 Function Documentation

2.17.2.1 charxx finix_calculate_burnup ( double time, Options x options, Rod * rod, Results * results, Boundary_conditions
* be )

Calculates the accumulation of burnup during one constant-power time step.

Parameters

time | duration (time step) of burnup accumulation

options | FINIX calculation options

rod | data structure containing fuel rod properties

results | miscellaneous computed values

bc | boundary condition data structure

Generated on Mon Dec 7 2015 14:59:52 for FINIX-0.15.12 by Doxygen



2.18 transient.c File Reference

73

Returns

error string, NULL for no errors

Here is the call graph for this function:

2.18

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

Include dependency graph for transient.c:

crdbgh stingh ™| frixcata

cimechproph | | gaph | | heateqidh | | fumechn

Macros

finix_calculate_burnup

transient.c File Reference

<stdlib.h>
<crtdbg.h>
<stdio.h>
<math.h>
<string.h>
"finixdata.h"
"transient.h"
"aux_functions.h"
"futhprop.h"
"clthprop.h"
"fumechprop.h"
"clmechprop.h"
"gap.h"
"heategld.h"
"fumech.h"
"clmech.h"
"coolant.h"

+ #define _CRTDBG_MAP_ALLOC

Functions

nnnnnnnn

aux_funct

jons. h

fathproph

finix_calculate_density

clpoph

finix_append_err

fumechproph

cimechn

contanth

» char *x finix_solve_transient (double dt, Rod xrod, Boundary_conditions xbc, Results xresults, Options
xoptions)
« char «x finix_get_thermal_properties (double xxpower_den, Rod *rod, Results xresults, Options *options,
double *xlambda, double *xcp, double *xden, double *xcv)
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2.18.1 Macro Definition Documentation

2.18.1.1 #define _CRTDBG_MAP_ALLOC

2.18.2 Function Documentation

2.18.2.1 charxx finix_get_thermal_properties ( double *x power_den, Rod * rod, Results x results, Options * options,
double xx lambda, double xx cp, double xx den, double xx cv )

Here is the call graph for this function:

finix_futhcond

' finix_append_err

finix_interpolate_lookup |

\

finix_get_thermal_properties

finix_calculate_density

2.18.2.2 charxx finix_solve_transient ( double df, Rod * rod, Boundary_conditions x bc, Results x results, Options * options

)

The main transient behavior function.

This function is used to solve the transient behavior of the fuel rod. The function gives the temperature distribution
and the dimensions of the pellet and the cladding at a specified time.

Parameters

dt | time step (seconds); the function solves the thermal and mechanical time evolution of the fuel
rod and propagates solution by dy in time

rod | data structure containing fuel rod properties

bc | boundary conditions

results | miscellaneous computed values

options | FINIX calculation options
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Returns

error string, NULL for no errors

Here is the call graph for this function:
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