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Abstract. This paper provides a lucid introduction to Conceptual Graphs (CG), 

a powerful knowledge representation and inference environment that exhibits the 

familiar object-oriented features of contemporary enterprise and web 

applications. An illustrative business case study is used to convey how CG adds 

value to data, including inference for new knowledge. It enables newcomers to 

conceptual structures to engage with this exciting field and to realise “Conceptual 

Structures: Knowledge Architectures for Smart Applications”, the theme of the 

15th Annual International Conference on Conceptual Structures (ICCS 2007, 

www.iccs2007.info).  

1 Introduction  

Conceptual Graphs (CG, www.conceptualgraphs.org) provide a powerful knowledge 

representation and inference environment, whilst exhibiting the familiar object-oriented 

and database features of contemporary enterprise and web applications. CG capture 

nuances in natural language whilst being able to be implemented in computer software. 

CG were devised by Sowa from philosophical, psychological, linguistic, and artificial 

intelligence foundations in a principled way [8, 9]. Hence CG are particularly attractive 

as they are built upon such a strong theoretical and wide-ranging base.  

There is an active CG community, evidenced by the annual International Conferences 

on Conceptual Structures (ICCS, www.iccs.info), now in its 15th year (ICCS 2007, 

www.iccs2007.info), not to mention the annual CG workshops beforehand 

(www.conceptualstructures.org/confs.htm). There is also the CG discussion list 

(cg@conceptualgraphs.org). Its participants happily support newcomers to CG e.g. in 

answering queries; www.conceptualgraphs.org provides information on how to join this 

list, as well as a comprehensive catalogue of software CG tools.  

CG is core to the ISO Common Logic standard (http://cl.tamu.edu/) 1 . The CG 

community has furthermore grown to embody a wider notion of Conceptual Structures 

(CS, www.conceptualstructures.org, and the title of Sowa’s seminal 1984 text [9]). This 

is typified by the large scale and valued contributions that Formal Concepts Analysis 

(FCA, www.upriss.org.uk/fca) brings to ICCS each year [4].  

 

1 Assigned to WG2 (Metadata) under SC32 (Data Interchange) of ISO/IEC JTC1.  

  



 

A strong case therefore exists for bringing an awareness of CG to an even wider 

community. Through an illustrative business case study, the following explication of 

CG 2  aims to achieve this objective so that many more researchers and industry 

professionals can realise the benefits of CG and, as the theme of ICCS 2004 highlighted, 

put them to work [10].  

2 Concepts and Relations  

CG are based upon the following general form:  

  

  
  

This may be read as: “The relation of a Concept-1 is a Concept-2”. The direction of 

the arrows assists the direction of the reading. If the arrows were pointing the other way, 

then the reading would be the same except that Concept-1 and Concept-2 would 

exchange places (i.e. “The relation of Concept-2 is a Concept-1”).  

As an alternative to the above ‘display’ form3, the graphs may be written in the 

following ‘linear’ text-based form:  

[Concept_1] -> (relation) -> [Concept_2].  

The full stop '.' signals the end of a particular graph. Consider the following 

example:  

[Funding_Request] -> (initiator) -> [Employee].  

This example will form a part of an illustrative case study about requests for funding 

new business projects in the fictitious enterprise ‘P-H Co.’. The example graph reads as 

“The initiator of a funding request is an employee”. This may create readings that may 

sound long-winded or ungrammatical but is a useful mnemonic aid in constructing and 

interpreting any graph. It is easier to state, “An employee initiates a funding request”.  

Concepts can have referents, which refers to a particular instance, or individual, of 

that concept4. For example, consider the concept:  

[Employee: Simon].  

This reads as “The employee known as Simon”. The referent is a conformity to the 

type label in a concept. This example shows that Simon conforms to the type label 

‘Employee’.  

A concept that appears without an individual referent has a generic referent. Such  

 

2 That also draws on an earlier introduction to CG in 1992 [7].  
3 The display form CG throughout this paper were produced using the CharGer software 

(http://charger.sourceforge.net/), one the many useful CG software tools that are catalogued at 

www.conceptualgraphs.org.  
4 There are other kinds of referents, such as plural (‘sets’ of) referents (which are rather like 
collections in object-orientated classes, and scalars (‘measures’) [8, 9]. In passing, as well as 
Concepts and Relations in CG there are Actors (which incidentally are not to be confused with 
UML Actors! [6]) Delugach is a proponent for the use of CG Actors [3].  



 

‘generic  concepts’  should  be  denoted  as [Type_Label: *]. 

 Writing [Type_Label] is merely a convenient shorthand.  

Generic concepts may take up an individual referent. A unique identifier can be used 

to make a concept distinct. Thereby the generic concept  

[Funding_Request] might become [Funding_Request: #1234] with 

respect to [Employee: Simon]. This would yield:  

[Funding_Request: #1234] -> (initiator) -> [Employee: Simon].  

If there are two or more employees with the name Simon, we would then need to 

make them distinct from one another e.g. [Employee: Simon#122014].  

3 The Type Hierarchy  

In CG, type labels belong to a type hierarchy. Thereby:  

Manager < Employee. (“A manager is an employee”)  

This means Manager is a more specialised type of the type Employee i.e. Manager is 

a subtype of Employee. Alternatively, this can be stated as Employee is a supertype of 

Manager. (Subtypes and supertypes are analogous to subclasses and superclasses in 

object-orientation, thus a subtype inherits the characteristics of its supertypes.) 

Similarly, the remainder of the hierarchy may be:  

Employee < Person.  

Person < Animal.  

Animal < Entity.  

Entity < T.  

Funding-Request < Request.  

Request < Act.  

Act < Event. Act 

< T.  

Sowa provides a conceptual catalog that includes a representative set of hierarchical 

concepts, as well as relations [9]. It also shows the context in which a type label should 

be used. For example an Act is an Event with an Animate agent:  

[Act] -> (agent) -> [Animate].  

The type denoted as ‘T’ means the universal supertype. It has no supertypes and is 

therefore the most general type.  

A subtype can have more than one immediate supertype. For example, consider the 

concept [Animal], which has a more detailed set of supertypes than indicated above. 

This concept has a type label Animal which may be defined as [9]:  

Animal < Animate, Mobile_Entity, Physical_Object, ¬Machine.  
Animate < Entity.  
Mobile_Entity < Entity.  
Physical_Object < Entity.  



 

An animal therefore inherits the characteristics of being animate, a mobile-entity, 

and a physical object, but it is not a machine (¬ means ‘not’).  

4 Projection  

Projection in CG extends the notion of projection in SQL in database systems [1, 8, 9]. 

It is used in conjunction with specialised graphs. A CG becomes more specialised when 

one or more of the following happens:  

a) more concepts, types and relations are added to it to narrow the scope further, e.g. 

an employee initiates a funding request that is the outcome of a company policy (as 

opposed to the earlier where it is only shown that an employee initiates a funding 

request) i.e.:  

[Funding_Request] –  

 (initiator) -> [Employee]  

 (outcome) <– [Company_Policy].  

This larger graph illustrates the use of hyphen ‘-’, which allows the relations of a 

concept (being Funding-Request in this case) to be listed on subsequent lines. In the 

visual display form of CG this is not needed as the following equivalent CG shows:  

  

  

  

b) it acquires non-generic referents, e.g. [Employee] becomes [Employee: 

Simon], or  

c) subtypes are substituted for (super)types e.g. replacing [Employee] with  

[Manager]  

The following example illustrates a combination of these:  

[Funding-request] –  

 (initiator) -> [Manager: Susan]  

 (outcome) <– [Company-Policy: #CP76321].  

Therefore, each specialised graph may have a more general graph from which it was 

derived. Likewise, a general graph can have a number of specialised variants. Thus, 

projection is where we take a graph and try to see if another graph is a generalisation of 

it. It there is such a fit we have determined that the graph is indeed a specialised variant, 

and that the other graph is indeed a generalisation of it. We can then state that the general 

graph ‘projects’ into the specialised one.   

  

Projection plays an important role in the inference for new knowledge with 

conceptual graphs. If a graph projects into another, then a particular pattern may have 

been identified. Projection may result in a new graph being asserted. Inference, the 



 

operation that describes these assertions, is discussed later. Projection also features in 

the combining of graphs to form larger graphs. This subject is discussed first and will 

serve to illustrate projection and help us to understand inference better.  

5 Combining Graphs  

The joining of graphs facilitates inference because more projections can be made into 

bigger graphs. Maximal join, which extends the notion of join in SQL in database 

systems [1, 8, 9], defines the optimal method by which graphs are joined. Maximal join 

occurs when graphs are joined on the most common, or maximally extended, projection. 

This is illustrated by the P-H Co. case study in Fig. 1 as follows:  

 

( a) Graphs to be maximally joined:  

( b) Some possible projections:  

  

Fig. 1.  Maximal join  



 

 

For this figure, the type hierarchy elements are (in addition to those given earlier):  

State < T.  

Policy < State.  

Company-Policy < Policy.  

Company < Entity.  

Manager < Employee.  

Having stated all this, such joining of graphs may lead to invalid results. This obstacle 

arises because Sowa treats the generic referent as theoretically equivalent to the 

existential quantifier, ‘∃’, in predicate logic5. ∃ means a conditional “there exists an 

item such that ..... ”. For instance, a graph which has [Person], [Person: *], or 

[Person: *x] in it means ‘There exists a person (or some person) such that the 

other concepts and relations which make up the attached graph are valid’. However, this 

comparison is violated when graphs are combined because any item will be suitable as 

a referent in a generic concept provided it conforms merely to the type label in the 

concept. This pays no regard to the conditional statement given by any concepts and 

relations attached to it. [Person] is treated as any person when it should mean an 

unknown person.  

This can be illustrated in Figure 1 where it is quite possible for instance that an 

employee other than Simon has Susan as his manager, or that Susan is a manager who 

in fact works for a different company to P-H Co.! Joining should thus only occur when 

the referents are known to match in the graphs to be joined. It is CG’s inference 

capability that can assist in determining this knowledge.  

 

5 Conceptual graphs are, in fact, an existential notation, as there is a direct mapping between 
conceptual graphs and first order predicate logic.  

( c) The maximally extended projection:  

( d) Maximally joined graph:  

  

Fig. 1.  ( continued )   



 

6 Inference  

Inference in conceptual graphs theory is based upon the existential graphs logic of 

Charles Sanders Peirce 6 . This ‘Peirce logic’ is developed by Sowa in the same 

principled way to provide a comprehensive inference capability in conceptual graphs. 

Peirce logic, cited by its founder as ‘the logic of the future’, is described by Sowa as an 

enhancement of the traditional propositional and predicate logic of Peano, Russell, and 

Whitehead [9].  

Consider the following example (where we have simply referred to graphs as ‘Graph 

1’ and ‘Graph 2’ as this allows us to focus on how the inference operates; a fuller 

example involving actual CG will be described later):  

  

if Graph 1 then Graph 2.  

  

This may be read as “If Graph 1 can project into any outer graphs, then Graph 2 can 

be asserted”.  

In Peirce logic, ‘if-then’ can be rewritten as: not (Graph 1 and not Graph 2). This 

can be written graphically in Peirce logic as:  

  

This visual form illustrates the contextual domination of graphs over other graphs. A 

graph is dominated by another graph if the dominated graph is ringed by what is known 

as a negative context7, whereas the dominating graph is outside of that ring. Here, the 

outer graphs dominate Graph 1 which dominates Graph 2.  

Any graph which projects into a graph which dominates it may be ‘rubbed out’ or 

deiterated. To assert Graph 2, Graph 1 must project into the outer graphs. Should this 

occur, Graph 1 can be deiterated leaving two rings around Graph 2 thus:  

  

  
  

The term ‘not(not Graph 2)’ equates to the term ‘Graph 2’ so the empty outside ring 

and the inside ring cancel out, or double negate. This frees Graph 2 out of its contexts 

 

6 Pronounced as ‘purse’.  
7 Peirce referred to these as ‘cuts’ [9].  



 

and thereby means it has been asserted as a new graph in the outer graphs. Graph 2 is 

thus true. This example demonstrates that a true antecedent in an ‘if-then’ rule means 

its consequent is always true. This is the general inference rule of modus ponens and 

has been demonstrated here using Peirce logic.  

The linear equivalent of the above is:  

¬[Graph 1 ¬[Graph 2]].  

As we know, the symbol ‘¬’ means ‘not’. A ‘¬[....]’ forms a negative context 

ring. Thus ‘¬[Graph]’ means that graph is not true. The term ‘not true’ in this sense 

equates to that graph being false. Therefore, it is also possible by the appropriate use of 

negative contexts and nested negative contexts to build a knowledge base consisting of 

both true graphs, false graphs, and various inferences of those graphs. For the sake of 

clarity, this discourse will substitute ‘(....)’ in place of  

‘¬[....]’ to denote negative contexts written in the linear form.  

Using this preference, the linear equivalent of the above example is:  

(Graph 1 (Graph 2)).  

Consider the next example: Graph 1 and Graph 2. This is merely a case of adding 

Graph 1 and Graph 2 to the outer graphs because they both are true i.e.:  

Graph 1 Graph 2.  

Say, however, the example was:  

 if  (Graph 1 and Graph 2) then Graph 3.  

  

In Peirce logic form this would be:  

(Graph 1 Graph 2 (Graph 3)).  

If Graph 1 and Graph 2 existed in the outer graphs, then they can be deiterated and 

Graph 3 double negated thereby asserting it as a new graph. Now say that the outer 

graphs happened to include the graph (Graph 3) instead – i.e. Graph 3 is false. 

Regarding the above rule, (Graph 3) can be deiterated from it leaving:  

 (Graph 1 Graph 2).  

This shows that because Graph 3 is false then both Graph 1 and Graph 2 are false. It 

is still possible for either Graph 1 or Graph 2 to be in the knowledge base but not both. 

If they were or some derivative that would state they were, this would show there is an 

inconsistency in that knowledge base. Return to the first ‘if Graph 1 then Graph 2’ 

example:  

(Graph 1 (Graph 2)).  

Should (Graph 2) be in the outer graphs, then (Graph 1) would be asserted. 

This demonstrates another general inference rule of modus tollens, or that if the 

consequent (‘then’ part) of an ‘if-then’ rule is false then so is its antecedent (‘if’ part). 

The illustration also shows that if the antecedent is false, then the consequent cannot be 

determined from it. If (Graph 1) was in the knowledge base to begin with, there is 

no possible way to assert either Graph 2 or (Graph 2) from (Graph 1) alone.  



 

It should be noted that if a graph is false then so will be any of its specialisations. If 

“the employee Simon” is false, then “the employee Simon who works for P-H Co.” (or 

indeed any employer) must also be false.  

As a final example, consider: Graph 1 or Graph 2. Logically, ‘or’ can be rewritten 

as: not (not (Graph 1) and not (Graph 2)). This maps to the Peirce logic form:  

((Graph 1) (Graph 2)).  

By the above discussed Peirce logic operations, if either Graph 1 or Graph 2 was 

false then Graph 2 or Graph 1 would be true respectively. It also shows that ‘or’ is the 

same as ‘if not … then’. Thus ‘if not Graph 1 then Graph 2’ is the same as ‘Graph 1 or 

Graph 2’, as is ‘if not Graph 2 then Graph 1’.  

An example using actual CG is given by Fig. 2:  

 

  

( a) Starting graphs:  

( b) Specialisation of projecting graph and referent passing through link:  

  

Fig. 2.  An actual conceptual graphs inference  



 

 

This figure continues the P-H Co. example as before and shows that if a person is in 

employment that person is an employee, and that this is true for Simon. We also need 

to add that:  

Employment < State.  

Fig. 2 shows that before any projecting graph can be deiterated, it must first be 

specialised, and any referents passed onto all other co-referent concepts. In the display 

form the co-referent can be shown as a dotted link, which can be seen in this figure.  

Whilst Fig. 2 demonstrates modus ponens with CG, we can also demonstrate modus 

tollens with the following CG that shows that it is false that Simon is an employee i.e. 

([Employee: Simon]):  

([Person:*x] <- (experiencer) <- [Employment] ([Employee:*x])).  

Here the co-referent is shown by the alternative of matching *x values. After 

specialisation:  
([Person: Simon] <- (experiencer) <- [Employment] ([Employee: Simon])).  

After deiteration:  

( c) After deiteration of projecting graphs:  

( d) After double negation:  

  

Fig. 2.  ( continued )   



 

([Person: Simon] <- (experiencer) <- [Employment]).  

Hence as it is false that Simon is an employee, he cannot be experiencing 

employment!  

In summary, Peirce logic shows contexts of knowledge elements visually dominating 

others and inference is performed by attempting to reduce those contexts. As we can 

also see, it also sets the conditions by which referents can be correctly instantiated thus 

addressing the issue identified by the earlier Fig. 1 discussions.  

7 A More Comprehensive Illustration   

Whilst the foregoing examples demonstrate the elegance of CG, real-world information 

systems would need to handle much more complex problems. The following is a more 

realistic illustration of a typical problem, again referring to the PH Co. funding request 

scenario as the ongoing case study. Note that even this example must be necessarily 

simple so as to get the ideas across, but that it more fruitfully suggests how CG can be 

put to work in the real world.  

Let us therefore refer to the following statement as our starting point:  

  

P-H Co. Company Policy # PHCP69692. There have been no guidelines to help 

P-H Co. allocate its budget for funding requests by employees for new business 

projects. There is a need for a guideline so that the decisions of the company are 

consistent, to encourage less senior members of staff to make such requests, and 

to evidence this rationale. P-H Co. therefore has decided on this company policy, 

which is that funds will be allocated in the following order (highest priority first): 

Junior Staff, Senior Staff, Manager, and lastly Director.  

  

The actual employee seniority relationships in P-H Co. are given by Fig. 3:  

  

Fig. 3. The seniority relationships in P-H Co  

Added to the type hierarchy are:  

Junior_Employee < Employee.  

Senior_Employee < Employee. Director 

< Employee.  

We can also describe in CG the general applicable concept of seniority, Fig. 4.  



 

  

Fig. 4. The generally applicable concept of seniority  

  

Fig. 5. Describing the funding priority element in P-H Co.’s company policy  

Fig. 4 shows that seniority is transitive in nature. Thus, if we wished to establish if 

the Director ‘Richard’ was the senior of a Junior Employee ‘Robyn’ the above CG could 

determine this beginning with maximal join of the first two CG in Fig. 3 i.e.:  

[Junior_Staff: Robyn] -> (senior) -> [Senior_Staff: Simon] -> 

(senior) -> [Manager: Lucy].  

This is a legitimate maximal join as we had denoted that the referents match through 

being co-referent. The antecedent component of Fig. 4 can project onto this CG and 

specialise to match it:  

[Junior_Staff: Robyn] -> (senior) -> [Senior_Staff: Simon] -> 

(senior) -> [Manager: Lucy].  

Continuing, the lines of identity (co-referent links) would specialise the consequent 

part of Fig. 4 to:  

[Junior_Staff: Robyn] -> (senior) -> [Manager: Lucy].  



 

The antecedent can then be deiterated and, after double negation, the consequent 

would be asserted. It can, in turn, be maximally joined with the third CG in Fig. 3 to 

give:  

[Junior_Staff: Robyn] -> (senior) -> [Manager: Lucy] -> 

(senior) -> [Director: Richard].  

This forms a new antecedent CG in Fig. 4 (after specialisation, deiteration then 

double negation) to give the asserted CG:  

[Junior_Staff: Robyn] -> (senior) -> [Director: Richard].  

Thus, Richard is senior to Robyn. Using this background knowledge, we can draw a 

CG rather like Fig. 5 to describe the company policy. This more comprehensive CG 

models the priority of funding that favours less senior employees. Essentially, if a 

funding request is initiated by a more senior employee then that will become a priority 

funding request provided a less senior employee has not initiated a funding request. To 

appreciate the lucidity of this CG (and the previous ones), try them out with various 

scenarios (including modus ponens and modus tollens), following the steps of 

projection, maximal join, specialisation, deiteration and double negation as appropriate.  

To assist, Aalborg University provide a comprehensive online course on CG 

(www.huminf.aau.dk/cg). For a practical implementation of Peirce logic in CG, refer to 

Heaton [5]; for further theoretical discussion see Sowa and Dau [2, 9].  

Also Fig. 5 might be adapted in the light of new circumstances: P-H Co’s funding 

policy would need to be adapted if there was more than one employee of the same grade; 

the new CG may then need to reflect that, for example, priority is then given according 

to the proposal being ranked by a panel of judges. We can therefore see that this simple 

funding example is beginning to take on real-world dimensions.  

8 Concluding Remarks  

We can see that CG are variable-sized, hierarchical structures. Projection, maximal join 

and inference show how value is being added to data as CG capture the underlying 

concepts behind data, relate data to other data, and find patterns from them. By 

capturing the meaning behind data, CG therefore capture knowledge in a way that is 

more useful to people whilst bring able to be directly represented in software.  

Whilst many in the CG and CS community will find little that’s new in this 

introduction (albeit it might provide a useful refresher), it is hoped that it will encourage 

newcomers to engage with this exciting field and to help realise “Conceptual Structures: 

Knowledge Architectures for Smart Applications”, the theme of ICCS 2007.  
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