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Abstract

The object of this note is to describe a method that can be used to
obtain useful boundary conditions to model various situations that arise in
diffraction theory. In particular when wanting to apply the Wiener-Hopf
technique to diffraction problems that involve thin transmissive media.
Transmissive here means that the thin layer medium suffers a change in
the physical quantities of density, acoustic velocity, and wave number from
the surrounding medium. The present approach can be used to obtain
approximate boundary conditions for other physical applications where
thin strata of transmissive material arise.
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1 Introduction

Situations often arise where one has to deal with problems that involve the
propagation of sound waves through liquid, gaseous, or porous layers. The
discontinuity in the density and speed of propagation in these layers can con-
siderably complicate the mathematical analysis of the sound field outside the
layer. It is often the case in practice that the external far field effects of the
layer is required but not the precise nature of the internal field within the thin
layer. With this in mind given that one wants to analyze physical problems of
the scattering of sound from a transmissive layer that suffers a change in the
physical quantities of density, acoustic velocity, and wave number from the sur-
rounding medium; the first thing one needs to do is to mathematically model it.
This requires boundary conditions on the contiguous plane interfaces between
the different mediums to be used to find the field everywhere in space. However
if the layer is in some sense thin, and the field inside this thin layer is not re-
quired, then we shall show that the thin layer can be replaced by a discontinuous
boundary condition on a line which lies along the centre line of the thin layer.
In this work we present the method that can produce the differential boundary
conditions which can be used to replace thin transmissive media. This con-
siderably simplifies subsequent mathematical analysis of the physical problem,
because it avoids having to deal with the region inside the thin medium. The
present approach can be used in other branches of the physical sciences, for ex-
ample, hydrodynamics, elasticity and electromagnetism. Here we shall describe
this method by considering two problems from acoustics. The first problem is
where a sound wave travels through and is reflected back from a thin layer. In
the second problem the sound wave is reflected back off a thin layer which lies
above an impenetrable surface. The methods derives the boundary conditions
by considering the transmission of a plane wave through the thin layer. This
boundary condition will then hold for any type of wave that consists of a linear
superposition of plane waves incident on a thin layer.

2 A thin transparent layer between two other
media

Consider the situation where a plane pressure acoustic wave e−ik(x cos θ0+(z−d/2) sin θ0)

, with time harmonic variation e−iωt , is incident upon a thin trasmissive
medium.The angle of incidence θ0 is the angle between the wave propagation
direction and the upper surface of the layer. The transmissive layer is infinite
in the y-direction, and the origin of the horizontal(x) and vertical(z) axes is
located at the centre of the layer of thickness d. The physical quantities inside
the thin layer will have subscript 1, whereas those outside the layer will have no
subscript. WE shall denote the density of the region outside (inside) the layer
by ρ(ρ1) and the sound speed there by c(c1); the corresponding wave number is
given by k = ω/c(k1 = ω/c1). The transmissive region is thin in comparison to
the wavelength of the incident wave, kd << 1. The geometry of the situation is
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shown in Fig. 1.
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Figure 1:

The pressure field inside the thin layer can be written as

p1(x, z) = Ae−ik1(x cos θ1−z sin θ1) + Be−ik1(x cos θ1+z sin θ1), −d/2 < z < d/2

(1)

where from Snell’s law we have k cos θ0 = k1 cos θ1.
Thus denoting by p(x,±d/2) ≡ p(0±) we have

p1(0+) = e−ik1x cos θ1 [Aeik1
d
2 sin θ1 + Be−ik1

d
2 sin θ1 ], (2)

∂p1(0+)
∂z

= ik1 sin θ1e
−ik1x cos θ1 [Aeik1

d
2 sin θ1 −Be−ik1

d
2 sin θ1 ], (3)

p1(0−) = e−ik1x cos θ1 [Ae−ik1
d
2 sin θ1 + Beik1

d
2 sin θ1 ], (4)

∂p1(0−)
∂z

= ik1 sin θ1e
−ik1x cos θ1 [Ae−ik1

d
2 sin θ1 −Beik1

d
2 sin θ1 ]. (5)

We now require that the pressure wave field outside the thin layer matches
the pressure field inside the layer which results in the satisfaction of the bound-
ary conditions:
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p(0+) = p1(0+),
1
ρ1

∂p1(0+)
∂z

=
1
ρ0

∂p(0+)
∂z

; (6)

p(0−) = p1(0−),
1
ρ1

∂p1(0−)
∂z

=
1
ρ0

∂p(0−)
∂z

. (7)

These boundary conditions enable us to express the internal pressure field
within the layer in terms of the external pressure field outside the layer. Thus
from (2) and (3) with (6) we get the system of equations

eik1x cos θ1

[
p(0+)
∂p(0+)

∂z

]
=

[
eik1

d
2 sin θ1 e−ik1

d
2 sin θ1

(ρ0
ρ1

)ik1 sin θ1e
ik1

d
2 sin θ1 −(ρ0

ρ1
)ik1 sin θ1e

−ik1
d
2 sin θ1

] [
A
B

]
.

(8)
Similarly from (4) (5), and (7) we have

eik1x cos θ1

[
p(0−)
∂p(0−)

∂z

]
=

[
e−ik1

d
2 sin θ1 eik1

d
2 sin θ1

(ρ0
ρ1

)ik1 sin θ1e
−ik1

d
2 sin θ1 −(ρ0

ρ1
)ik1 sin θ1e

ik1
d
2 sin θ1

] [
A
B

]
.

(9)
Eliminating the matrix involving A and B from (8) and (9) gives

[
p(0+)
∂p(0+)

∂z

]
=

[
cos(k1d sin θ1) (ρ1

ρ0
) sin(k1d sin θ1)

k1 sin θ1

−(ρ0
ρ1

)k1 sin θ1 sin(k1d sin θ1) cos(k1d sin θ1)

][
p(0−)
∂p(0−)

∂z

]
.

(10)
Thus we have now related the pressure field external to the thin layer on either
side of the layer. This means we can solve problems in the region outside the
layer without regard to what is happening to the wave field inside the layer. We
notice that the 2x2 matrix in the last equation is similar to the transmission line
matrix that occurs in electrical engineering. It will also be observed that the
matrix elements depend on θ1 and therefore, from Snell’s law, on the angle of
the incident plane wave. If the thin layer has some absorption the dependence
on the incident angle becomes weakened. Since k1 = kn where n is the acoustic
refractive index of the thin layer, then we can write

sin θ1 =

√
1− (

cos θ0

n
)2.

If the layer has absorption then =n > 0, and for large absorption =n > 0
and |n| À 1 in which case

k1 sin θ1 = kn

√
1− (

cos θ0

n
)2 = kn + O(

1
n

),

and the result (10)becomes
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[
p(0+)
∂p(0+)

∂z

]
=

[
cos(knd) (ρ1

ρ0
) sin(knd)

kn

−(ρ0
ρ1

)kn sin(knd) cos(knd)

][
p(0−)
∂p(0−)

∂z

]
. (11)

We notice that now the boundary condition is independent of θ0. This is
because if =n > 0 and |n| À 1 irrespective of the angle of incidence, the wave
fronts in the layer all travel normal to the surface of the thin layer, see Fig. 2.
Geometrically the boundary condition (11), shows that in one dimentional wave
propagation with wavenumber kn, the vector[p, (kn)−1∂p/∂z] rotates through
an angle kn per unit distance.

This type of boundary condition was used successfully in conjunction with
the Wiener-Hopf technique to solve the problems of the diffraction of a plane
wave by a semi-infinite thin transparent dielectric [1]; and for an acoustically
porous barrier with a finite slit [2] The derivation of the boundary condition
was achieved in [1] by using a symmetry and reciprocity argument; which is
not as straightforward as the present approach. The present approach can also
be used to deal with a thin layer that consists of thinner multiple layered strata,
each strata consisting of different media.The final boundary condition will be
of the form (11), where the elements of the matrix will be a function of the
various physical properties of the sub strata. This type of situation can model
a thin transparent layer whose physical properties vary continuously across the
thin layer.

3 A thin transparent layer on top of a rigid
plane.

Consider the situation where a plane acoustic wave is incident upon a thin
transmissive medium that lies on top of a rigid plane.The layer is infinite in the
y-direction, and the origin of the horizontal(x) and vertical(z) axes is located
at the bottom of the layer of thickness h. The transparent region is thin in
comparison to the wavelength of the incident wave, kh << 1. The geometry of
the situation is shown in Fig. 2.

The field inside the thin layer of thickness h can be written as

p1(x, z) = Ae−ik1(x cos θ1−z sin θ1) + Be−ik1(x cos θ1+z sin θ1), 0 < z < h; (12)

whereas the field above the layer can be written as

p(x, z) = e−ik(x cos θ0+(z−h) sin θ0) + Re−ik(x cos θ0−(z−h) sin θ0), z > h; (13)

where from Snell’s law we have k cos θ0 = k1 cos θ1.The angle of incidence
θ0 is the angle between the incident wave propagation direction and the upper
surface of the layer.
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Figure 2:

Thus denoting by p(x, h) ≡ p(0+) we have

p1(0+) = e−ik1x cos θ1 [Aeik1h sin θ1 + Be−ik1h sin θ1 ], (14)

and

∂p1(0+)
∂z

= ik1 sin θ1e
−ik1x cos θ1 [Aeik1h sin θ1 −Be−ik1h sin θ1 ]. (15)

On the surface of the rigid plane we must have ∂p1(0)
∂z = 0 so that from (15)

we get

∂p1(0)
∂z

= ik1 sin θ1e
−ik1x cos θ1 [A−B] = 0. (16)

From (16)we have A = B so that (14) and (15) become

p1(0+) = e−ik1x cos θ12A cos(k1h sin θ1); (17)

∂p1(0+)
∂z

= −k1 sin θ1e
−ik1x cos θ12A sin(k1h sin θ1). (18)

Hence eliminating A from the last two equations gives the impedance type
boundary condition:

∂p1(0+)
∂z

+ k1 sin θ1 tan(k1h sin θ1)p1(0+) = 0. (19)

which becomes, on using the boundary condition on the upper surface of the
thin layer, ie (6)
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∂p(0+)
∂z

+
k1ρ0

ρ1
sin θ1 tan(k1h sin θ1)p(0+) = 0. (20)

Thus the thin transparent layer is replaced by an impedance type boundary
condition. If the layer has absorption (=n > 0 and |n| À 1)this boundary
condition becomes

∂p(0+)
∂z

+
knρ0

ρ1
tan(knh)p(0+) = 0. (21)

4 Conclusions

We have presented a simple systematic method which enables one to derive
approximate boundary conditions outside thin transmissive strata that avoids
having to consider the region inside the strata. This considerably simplifies
the mathematical analysis of problems that involve wave scattering by such
surfaces, especially if they are of semi-infinite or finite length. The method can
be applied to thin layers that consist of thinner sub-strata, and therefore can
deal with thin layers whose material properties vary across the thin layer in a
smooth manner. A further technical point that is worth making is that this
approach yields boundary conditions that involve derivatives of a lower order
than those of the wave equation and therefore avoids uniqueness problems that
that approximate boundary conditions of a higher order would involve.
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Legend to fig1: A plane wave incident on a thin transmissive layer.
Legend to fig2: Plane wave incident on a thin transmissive layer above a

rigid plane.

9


