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Summary

We shall derive new results for the electromagnetic scattered far wave field produced
when a high frequency plane E-polarized wave is at grazing incident on an imperfectly
conducting rectangular cylinder. The solution to the problem is obtained by using the
geometrical theory of diffraction, multiple diffraction methods, the canonical solution
for the problem of the diffraction of a plane wave by a right-angled impedance wedge,
in conjunction with a novel analytic approach.

1. Introduction

In dealing with mobile phone propagation in cities the effect of building corners and their
surface cladding is of importance for the signal strength of the phones, see references in
Rawlins(1). A building of rectangular cross-section can be modelled by four of these corners.
With appropriate polarization this building can be effectively modelled for high frequency
diffraction by a rectangular impedance cylinder in two dimensions. To obtain quantitative
and qualitative results for the signal strength far from the building when there are multiple
diffraction from such corners an effective approach is to use the Keller’s method of the
geometrical theory of diffraction(GTD) Keller(2), and information about the ”diffraction
coefficient” which are obtained from the asymptotic solution of canonical impedance wedge
problems, Rawlins(3). In a previous work Rawlins(1), by using some uniform asymptotics
developed from the canonical wedge solution Rawlins(3), useful asymptotic results were
obtained for the oblique incidence case. These asymptotic results were in good agreement
with numerical calculations using a development of the Nystrom method, and geometrical
modeling of the corner structure by Smith and Rawlins(4). An alternative numerical
method using a hybrid of physical optics and boundary element approach to deal with
impedance structures with sharp corners has been developed by Chandler-Wilde, Langdon
and Mokgolele(5). However the the asymptotic method used for the oblique case breaks
down when the incident wave is at grazing incidence, that is when the incident ray is
parallel to a side of the rectangular cylinder. The breakdown of the previous methods
occurs because near the grazing incidence shadow boundaries, which lie along the sides
of the rectangular cylinder faces, the asymptotic form of the far field changes rapidly
for slight angular deviation from these boundaries. In using the plane wave asymptotic
expansion formula of Zitron and Karp(6) for the far field it was necessary to evaluate
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angular derivatives of the diffraction coefficient for the far field. At grazing incidence the
far field varies rapidly for small angular variation because there is a coalescence of specular
and shadow boundaries and Keller’s straightforward method is no longer applicable because
the diffraction coefficient becomes infinite. The analytical reason for this is that multiple
poles of the integrand of the integral solution of the canonical wedge problem move towards a
critical saddle point. This requires a more delicate asymptotic evaluation of the ”diffraction
coefficient”, for two different approaches see Rawlins (7) for the ideal wedge problem, and
Osipov(8), Osipov, Hongo and Kobayashi (9) for analogous uniform asymptotics for the
impedance wedge problem. Initially an attempt was made to apply a method used by
Morse(10) for the simpler problem of grazing incidence on an ideally conducting cylinder.
His method consisted of substituting the known complete uniform asymptotic expansions
involving Fresnel integrals of the solution to the canonical ideal conducting wedge problem
given by Oberhettinger (11) directly into the Green’s theorem field representation for the
far field. The field on the surface of the cylinder was represented as various derivatives
of the canonical right-angled wedge solution. Hence their application required that they
differentiate and integrate these asymptotic series which resulted in dealing with arbitrary
constants of integration which were functions of the cylinder dimensions, and divergent
integrals †. Even though some analogous complete asymptotic expansions were available for
the impedance wedge problem Rawlins (3), the complete grazing asymptotics required for
the present application produced insuperable problems for the present author when trying
to deal with the analogous divergent integrals and arbitrary constants of integration. This
was because of the complexity of the integrand of the canonical solution of the impedance
wedge problem. Hence a simpler alternative method had to be sought in order to derive
the grazing incidence far field for the impedance cylinder. The alternative approach was
to use Green’s theorem and analytic manipulation of the complex integral solution of the
impedance wedge diffraction problem and then carry out the asymptotic evaluations to
any desired order of accuracy. To achieve this the complex integral representation of the
canonical problem, Rawlins(1)(12), for the diffraction field for a right-angled impedance
wedge is used; in conjunction with the multiple diffraction that arises from waves traveling
from corner to corner of the rectangle.

A time harmonic E-polarized plane wave Ei = ui(r, θ)e
−iωtẑ, ui(r, θ) =

e−ikr cos(θ−(π/2−θ0)) = e−ikr sin(θ+θ0), is incident on the cylinder; for convenience the angle
of incidence θ0 is measured from the vertical y-axis. ẑ is the usual unit vector in the
positive z-direction. The resultant total field, which consists of the incident and the field
scattered by the cylinder, is given by E = u(r, θ)e−iωtẑ. In the rest of the paper the
time dependence e−iωt will be suppressed. From the symmetry of the scatterer, Maxwell’s
equations, and incident polarization the total electromagnetic field can be reduced to a
scalar problem involving the determination of the scalar function u(r, θ). The starting
point of this alternative approach is Green’s theorem in two dimensions which gives

us(r, θ) =
i

4

∮
[

u
∂

∂n
H

(1)
0 (kR) − H

(1)
0 (kR)

∂u

∂n

]

ds, (1.1)

where us(r, θ) = u(r, θ) − ui(r, θ) is the scattered field at the point (r, θ) for any angle
of incidence. The field quantity u which appears in the integrand of (1.1), is the total

† For example in equation(3.44) of Morse(10) the integral∂I/∂ρ does not exist for α > π, ρ = 0.
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Fig. 1 Co-ordinates (r, θ) = (x, y) at the centre of the absorbing rectangular cylinder of dimensions
2a×2b. The corners E1, E2, E3, E4 of the rectangular cylinder have respective cartesian co-ordinates
(-a,-b),(a,-b),(a,b),(-a,b). In the far-field R ≫ 1, r ≫ 1;R = r − xs cos θ − ys sin θ where R is the
straight line from the co-ordinates on the cylinder (xs, ys) and the far field point P (r, θ).The angle
̟ between the unit vector n and R is given by n · R = R cos̟

field on the surface of the cylinder; n is the outer normal from the sides of the cylinder,
and R(s, r) the distance from the point s on the cylinder to the observation point P , see
Fig. 1. In the work that follows we are going to assume that high frequency means that the
sides of the rectangular cylinder (2a and 2b) are large compared to the incident wavelength,
ka > 1, kb > 1, but small enough to include curvature of the the fields propagated along
the cylinder faces; and that we are calculating the field far away from the scatterer, that is,
r ≫ 2

√
a2 + b2, kr ≫ 1. In order to determine the asymptotic representation of the integral

(1.1) for r large compared to the lengths 2a and 2b, the following well known asymptotic
representation is required,

H
(1)
0 (kR) =

(

2

πkR

)
1

2

ei(kR−π/4) + O((kR)−3/2), (1.2)



4 a.d. rawlins

together with the fact that

∂H
(1)
0 (kR)

∂n
=

∂H
(1)
0 (kR)

∂(kR)

∂(kR)

∂n
= −ik cos̟

(

2

πkR

)
1

2

ei(kR−π/4) + O((kR)−3/2), (1.3)

where ̟ is the angle between the unit vector n and the unit vector R/R. By using the
convention that the faces E1E2, E2E3, E3E4, E4E1, are identified by the parameterj(j =
1, 2, 3, 4 respectively) the expression (1.3) can be re-written as

∂H
(1)
0 (kR)

∂n
= ik sin[θ + (1 − j)

π

2
]

(

2

πkR

)
1

2

ei(kR−π/4) + O((kR)−3/2). (1.4)

By substituting (1.2) and (1.4) into (1.1) we get for any angle of incidence

us(r, θ) =
ei(kr−π

4
)

2
√

2πkr

4
∑

j=1

exp [−ik(xj cos θ + yj sin θ)]

×
∫ 2dj

0

[

−kuj,j+1 sin[θ + (1 − j)
π

2
] − i

∂uj,j+1

∂n

]

e−ikρj cos[θ+(1−j) π
2
]dρj

+O[(kr)−3/2], (1.5)

where ρj , (j = 1, 2, 3, 4), is the distance measured from the vertex Ej towards the vertex
Ej+1, 2dj is the length of the side EjEj+1, and (xj , yj) are the coordinates of Ej ; the field
quantity uj,j+1 is the field on the side EjEj+1. The impedance boundary conditions on the
cylinder faces is given by

∂u

∂n
= ik cosϑu, (1.6)

which on substituting into (1.5) gives

us(r, θ) = −k
ei(kr−π

4
)

2
√

2πkr

4
∑

j=1

exp [−ik(xj cos θ + yj sin θ)]

×[sin[θ + (1 − j)
π

2
] − cosϑ]

∫ 2dj

0

uj,j+1e
−ikρj cos[θ+(1−j) π

2
]dρj + O[(kr)−3/2]. (1.7)

We shall now use (1.7) to determine the forward scattered field when the incident field rays
are parallel to the sides of the rectangle, that is when θ = π

2 θ0 = π. Substituting these
values into (1.7) gives

us(r,
π

2
) = −k

ei(kr−π
4
)

2
√

2πkr
[eikb(1 − cosϑ)

∫ 2a

0

u1,2dρ1 − eikb cosϑ

∫ 2b

0

u2,3e
−ikρ2dρ2

−e−ikb(1 + cosϑ)

∫ 2a

0

u3,4dρ3 − e−ikb cosϑ

∫ 2b

0

u4,1e
−ikρ4dρ4] + O[(kr)−3/2], (1.8)

where in terms of the coordinates (x, y) located at the centre of the rectangle the integration
variables are given by ρ1 = x + a, ρ2 = y + b, ρ3 = a − x, ρ4 = b − y.
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2. Calculation of the field at the corners of the cylinder

It is now necessary to evaluate the field quantities under the integral signs of (1.8). To
achieve this the field at each corner of the cylinder must first be calculated, as they will
be the incident fields that produce the diffracted fields along the cylinder faces and hence
contribute towards computing the integrands of (1.8). We shall use the notation for the
vertex field ul(Ej) where if l = i the contribution is from the diffracted field produced by
the incident plane wave directly incident on the corner j; if l = 1 the contribution is from
the diffracted field from the corner j that has been produced by a diffracted field incident
on corner j that resulted from the plane wave directly incident on another corner.Thus
a subscript l = 1 means that the incident field on the cornerj has been produced by
diffraction of the incident plane wave by another corner.The field at the corners E1 and E2

due to direct illumination by the incident wave is ui(E1) = ui(E2) = e−ikb. It is required to
determine the field at the corners E3 and E4 after the incident wave has been diffracted by
the corners E2 and E1 respectively. We shall also need to consider the field at E1 produced
by diffraction of the incident wave by E2 and vice-versa. As in previous computations
carried out in Rawlins(1), only terms up to order O[(kd)−3/2], where d = a or d = b,
will be retained. The canonical solution for the diffraction of a time-harmonic plane wave
Ui(ρ, θ) = e−ikρ cos(θ−θ0) by a right angled wedge results in an edge diffracted field Ud(ρ, θ)
given (see(7) of Rawlins(3)) by

Ud(ρ, θ) =
1

2πi

∫

S(θ)

F (γ, θ0)e
ikρ cos(γ−θ)dγ, (2.1)

where

F (γ, θ0) =

2√
3

sin 2γ
3 sin 2θ0

3 (cos γ − cosϑ)(sin γ + cosϑ)

(cos θ0 + cosϑ)(sin θ0 − cosϑ)(cos 2π
3 − cos 2(γ−θ0)

3 )

× (cos 4θ0

3 − cos 4(π+ϑ)
3 )(2 cos 2θ0

3 cos 2γ
3 + 1

2 − cos 4(π+ϑ)
3 )

(cos 2π
3 − cos 2(γ+θ0)

3 )(cos 4(γ−π−ϑ)
3 + 1

2 )(cos 4(γ+π+ϑ)
3 + 1

2 )
. (2.2)

The contour of integration S(θ), 0 ≦ θ 6 π, is the path of steepest descent through γ = θ
which starts at θ + π

2 − i∞ and ends at θ + π
2 + i∞ and its shape is given by the equation

ℜγ = θ − arccos(1/ cosh(ℑγ))sign(ℑγ) and is shown schematically in Fig. 2. Upper case
letters Ud will denote the canonical solution to the right-angled impedance wedge problem,
and lower case letters ud the application of this solution to the rectangular impedance
cylinder problem. The field u1(E3) at E3 produced by the diffraction of the incident plane
wave ui(ρ, π) from E2 can be obtained by referring to Fig. 3 and using the following method.
As shown in Fig. 3 a coordinates system (ξ3, η3) has been located at the corner E3 and
P (ξ3, η3) is a point in the neighbourhood of E3 such that η3 > 0. The total field at
the corner E3 is defined by u1(E3) = ui(P ) + ud(P, E2); and from expression (2.1) with
ρ cos θ = 2b + ξ3, ρ sin θ = η3, θ0 = π, θ = δ3 → 0+ we get

ud(P, E2) =
e−ikb

2πi

∫

S(δ3)

v(γ)F (γ, π)e2ikb cos γdγ, (2.3)
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0

π

π

S(θ)

θ

-

Fig. 2 The path of steepest descent S(θ) : ℜα = θ− arccos(1/ cosh(ℑγ))sign(ℑγ) in the complex
γ-plane which starts at θ + π

2
− i∞ and terminates at θ − π

2
+ i∞ where 0 6 θ 6 π.

where v(γ) = eik(ξ3 cos γ+η3 sin γ). By using the explicit form (2.1) for F (γ, π), we expand
the expression v(γ)F (γ, π) as a Laurent series , about the saddle point γ = 0. By using
Mathematica Series this gives :

v(γ)F (γ, π) = −2v(0)

γ
− 2

[

v′(0) +
v(0)

cosϑ

]

+ O[γ]. (2.4)

Thus as δ3 → 0,

ud(P, E2) = −v(0)e−ikb

πi

∫

S(0)

e2ikb cos γdγ

γ
− e−ikb

πi

∫

S(0)

[

v′(0) +
v(0)

cosϑ
+ O(γ)

]

e2ikb cos γdγ.

(2.5)
The first integral in the above expression can be replaced by half a residue contribution at
the origin and a principal value integral over S(0); the second integral can be evaluated by
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Fig. 3 The diffracted field from corner E2 represented as plane wave incident fields at corners E3

and E1 in terms of plane waves v(ψ) and h(ϕ) respectively.

the method of steepest descent. Because of the oddness of the integrand of the principal
value integral and the symmetry of the path of integration S(0) its value is zero. Thus

ud(P, E2) = −v(0)eikb − eikb+iπ/4

√
πkb

[

v′(0) +
v(0)

cosϑ

]

+ O[(kb)−3/2]. (2.6)

We obtain after some simplifying and noting that ui(P ) = eikbv(0), and u1(E3) = ui(P ) +
ud(P, E2) where P ⋍ E3:

u1(E3) = −eikb+iπ/4

√
πkb

[

v′(0) +
v(0)

cosϑ

]

+ O[(kb)−3/2]. (2.7)

We note that we already know the solution to the problem of the diffraction a plane
wave. Hence the response to the incident plane wave v(0), v′(0) is given respectively by
ud(0),−u′

d(0). Because symmetry the field at E4 due to diffraction by E1 of the incident
plane wave, is also given by (2.7), that is, u1(E3) = u1(E4). Consistent with our definition
for u1(E3) the only singly diffracted field reaching E1 comes from E2. As shown in Fig. 3
a coordinates system (ξ1, η1) has been located at the corner E1 and P (ξ1, η1) is a point in
the neighbourhood of E1 such that η1 > 0. The total field at the corner E1 is defined by
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u1(E1) = ui(P ) + ud(P, E2); and from (2.1) with ρ cos θ = 2a + ξ1, ρ sin θ = η1, θ0 = π, θ =
δ1 → 0+ we get

ud(P, E2) =
e−ikb

2πi

∫

S(δ1)

h(γ)F (γ, π/2)e2ika cos γdγ, (2.8)

where h(γ) = eik(ξ1 cos γ+η1 sin γ); and expanding by using Mathematica we get

h(γ)F (γ, π/2) = −2
(3 − 2 cos 4(π+ϑ)

3 )

(3 + 6 cos 4(π+ϑ)
3 )

h(0)γ + O[γ2]. (2.9)

An application of the saddle point method then gives

u1(E1) = O[(ka)−3/2], (2.10)

also by symmetry u1(E1) = u1(E2). Thus the second order diffracted fields at these
corners(E1 and E2), need not be considered because they are of O[(kd)−3/2].

3. Calculation of the field on the cylinder faces

Having found the vertex fields we can now proceed to calculate the field on any face of the
cylinder. The notation [umn/ul(Ej)] will denote the component of um,n contributed by the
vertex field ul(Ej).

Determination of u3,4

When the incident plane wave illuminates the corner E2 the diffracted field can be
represented as a series of plane waves; these plane waves will now illuminate the corner
E3. We shall thus require the response of the corner E3 to a plane wave. The field along
E3E4 due to a plane wave incident on corner E3 at an angle θ0 ≃ 0 is given by ud(ρ3, 3π/2),
where ud is given by (2.1). To find the field along the face E3E4 after the incident field has
been diffracted by E2 and then subsequently E3 we substitute the above field ud(ρ3, 3π/2)
into (2.7) and allow θ0 → 0. Hence

[u34|u1(E3)] =
ei(kb+ π

4
)

2
√

πkb
[
∂ud(ρ3, 3π/2)

∂θ0
− ud(ρ3, 3π/2)

cosϑ
]θ0→0 + O[(kd)−3/2],

=
ei(kb+ π

4
)

2
√

πkb
[
∂ud(ρ3, 3π/2)

∂θ0
]θ0→0 + O[(kd)−3/2]. (3.1)

Since from the expression (2.1) and (2.2) ud(ρ, θ)θ0→0 = 0. By symmetry the contribution
to the surface field u34, by the incident wave after first being diffracted by corner E1 and
then by the corner E4, that is [u34|u1(E4)] is the same as (3.1) except that ρ3 is replaced
by 2a− ρ3.

[u34|u1(E4)] =
ei(kb+ π

4
)

2
√

πkb
[
∂ud(2a − ρ3, 3π/2)

∂θ0
]θ0→0 + O[(kd)−3/2]. (3.2)

The total field at the point P on the face E3E4 is now given by adding (3.1) and (3.2)
together. Thus

u34(P ) = [u34|u1(E4)] + [u34|u1(E3)].
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u3,4 =
ei(kb+ π

4
)

2
√

πkb

[

∂ud

∂θ0
(ρ3,

3π

2
) +

∂ud

∂θ0
(2a − ρ3,

3π

2
)

]

θ0→0

+ O[(kd)−3/2]. (3.3)

Determination of u2,3

The field at a point P along the face E2E3 contributed by the incident wave being diffracted
by corner E2 is given by the expression

[u23|ui(E2)] = [ud(ρ2, 0)e−ikb]θ0→π. (3.4)

The contribution to u23 from the incident field diffracted by the corner E2 and then
subsequently by the corner E3, that is, [u23 | u1(E3)], can be calculated by using (2.7)
to give

[u23|u1(E3)] =
ei(kb+ π

4
)

2
√

πkb
[
∂ud(2b − ρ2, 0)

∂θ0
]θ0→0 + O[(kd)−3/2]. (3.5)

The total field along E2E3 due to diffraction at corners E2 and E3 is the sum of (3.4) and
(3.5) and hence

u2,3 = [ud(ρ2, 0)e−ikb]θ0→π +
ei(kb+ π

4
)

2
√

πkb
[
∂ud(2b − ρ2, 0)

∂θ0
]θ0→0 + O[(kd)−3/2]. (3.6)

Determination of u4,1

From symmetry the field on the face E4E1 is exactly the same as u2,3 except that the field
quantities will be in terms of ρ4 instead of ρ2. To obtain the appropriate field we must
replace ρ2 in (3.6) by 2b − ρ4, since for any particular value of, y, ρ2 + ρ4 = 2b. Thus

u1,4 = [ud(2b − ρ4, 0)e−ikb]θ0→π +
ei(kb+ π

4
)

2
√

πkb
[
∂ud(ρ4, 0)

∂θ0
]θ0→0 + O[(kd)−3/2]. (3.7)

Determination of u1,2

The field along the face E1E2 due to diffraction of the incident wave by the corner E1 is
given by

[u12|ui(E1)] = [ud(ρ1, 0)e−ikb]θ0→π/2. (3.8)

The contribution to u12 from the incident field first being diffracted by E1, and the resulting
field being diffracted by E2 is given by, using the formula (2.10). Thus

[u12|u1(E2)] = O[(ka)−3/2]. (3.9)

Thus the total contribution caused by the incident wave illuminating corner E1, is given by

[ud(ρ1, 0)e−ikb]θ0→π/2 + O[(ka)−3/2]. (3.10)

From symmetry the contribution to u12 of the incident ray illuminating E2, is given by
replacing ρ1 by 2a − ρ1 in (3.10), and is

[ud(2a − ρ1, 0)e−ikb]θ0→π/2 + O[(ka)−3/2]. (3.11)



10 a.d. rawlins

Finally the cylinder face E1E2 will experience direct illumination by the incident plane
wave, which, because of the impedance boundary condition, gives rise to the geometrical
optics field contribution,

[u12|ug
1(E2)] =

2e−ikb

(1 − cosϑ)
. (3.12)

Thus the total field on the face E1E2 is given by adding (3.10),(3.11) and (3.12) together
giving

u1,2 = [(ud(ρ1, 0) + ud(2a − ρ1, 0))e−ikb]θ0→π/2 +
2e−ikb

(1 − cosϑ)
+ O[(kd)−3/2]. (3.13)

4. Computing the scattered field

Substituting (3.3), (3.6) (3.7) and (3.13) into (1.8); and then making a change of the
variable of integration where appropriate, to bring similar terms under a common range
of integration, we obtain eventually

us(r,
π

2
) = −k

ei(kr−π
4
)

2
√

2πkr
[4a − cosϑeiπ/4

√
πkb

∫ 2b

0

[
∂ud(ρ3, 0)

∂θ0
]θ0→0e

ikρ3dρ3

−2 cosϑ

∫ 2b

0

[ud(ρ2, 0)e−ikρ2 ]θ0→πdρ2 + 2(1 − cosϑ)

∫ 2a

0

[ud(ρ2, 0)]θ0→π
2
dρ2

− (1 + cosϑ)eiπ/4

√
πkb

∫ 2a

0

[
∂ud(ρ3, 3π/2)

∂θ0
]θ0→0dρ3 + O[(kd)−3/2]] + O[(kr)−3/2].

(4.1)

The integrals appearing in (4.1) are in fact double integrals, because ud(ρ, θ) is given by
(2.1).

For the evaluation of the double integrals appearing in (4.1), it will be necessary to express
the canonical solution Ud(ρ, θ) given by (2.1) in the alternative form:

Ud(ρ, θ) =
1

2πi

∫

S(θ)

[F (γ + π) − F (γ − π)]eikρ cos(γ−θ)dγ, (4.2)

where

F (χ) =
2(cosχ + cosϑ)(cos ϑ − sin χ) sin 2θ0

3 (cos 4θ0

3 − cos 4(ϑ+π)
3 )

3(cos θ0 + cosϑ)(sin θ0 − cosϑ)(cos 4χ
3 − cos 4(π+ϑ)

3 )(cos 2χ
3 − cos 2θ0

3 )
. (4.3)

By a straight forward change of the variables of integration it can be shown that for any
G(γ) which renders the following integral convergent:

1

2πi

∫

S(θ)

[G(γ+π)−G(γ−π)]eikρ cos(γ−θ)dγ =
1

2πi

{

∫

S(π)

+

∫

S(−π)

}

G(θ+α)e−ikρ cos αdα.

(4.4)
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s(-π) s(π)
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Fig. 4 The contours of integration S(±π) : ℜα = ±π−arccos(1/ cosh(ℑα))sign(ℑα); and γ1, γ2 in
the complex α-plane. The starting point of S(±π) and γ1,2 being ±(π

2
+ i∞), and the termination

point of S(±π) and γ2,1 being ±( 3π
2

− i∞).

Finally we will require the following result which is proved in Malyuzhinets(13). For ρ = 0
in (4.4) we have that for arbitrary finite θ

1

2πi

∫

γ1

G(α + θ)dα = iG(R),
1

2πi

∫

γ2

G(α + θ)dα = −iG(−R), (4.5)

where R = i∞, provided G(±R) → Const. as R → i∞. The contours of integration
appropriate to (4.2), (4.4) and (4.5) are shown in Fig. 2 and Fig. 4, where the contours
of integration start and terminate within the regions where the exponential term of the
integrand ensures uniform convergence of the integral. Any pole singularities of the
integrands lie below γ1 and above γ2.
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Evaluation of the
∫ 2a

0 ud(ρ2, θ)dρ2 for θ = 0, θ0 = π/2

Consider the integral,

I =

∫ 2a

0

ud(ρ2, θ)dρ2, (4.6)

which appears in (4.1) for the particular case of θ = 0, θ0 = π/2. Substituting the contour
integral representation for ud(ρ2, θ), by means of (4.2) to (4.4), will give

I =
1

2πi

∫ 2a

0

{

∫

S(π)

+

∫

S(−π)

}

F (θ + α)e−ikρ cos αdαdρ2. (4.7)

It is now possible to interchange the order of integration by virtue of the uniform convergence
of the complex contour integral. Thus

I =
1

2πi

{

∫

S(π)

+

∫

S(−π)

}

F (θ + α)

(−ik cosα)
[e−2ika cos α − 1]dα. (4.8)

In the expression (4.8) we now convert the integrals involving e−2ika cos α back into a single
integral along the path S(θ) by means of (4.4), giving

I =
1

2πi

{

∫

S(π)

+

∫

S(−π)

}

F (θ + α)

ik cosα
dα +

1

2πi
√

3

∫

S(θ)

D(γ, θ0)

ik cos(γ − θ)

×
(

1

cos 2π
3 − cos 2(γ−θ0)

3

− 1

cos 2π
3 − cos 2(γ+θ0)

3

)

eik2a cos(γ−θ)dγ, (4.9)

where

D(γ, θ0) =
(cos γ − cosϑ)(cosϑ + sin γ)(cos 4θ0

3 − cos 4(ϑ+π)
3 )(2 cos 2θ0

3 cos 2γ
3 + 1

2 − cos 4(ϑ+π)
3 )

(cos θ0 + cosϑ)(sin θ0 − cosϑ)(cos 4(γ−π−ϑ)
3 + 1

2 )(cos 4(γ+π+ϑ)
3 + 1

2 )
.

Now substituting the particular values θ = 0, θ0 = π/2 gives

I =
1

2πi

{

∫

S(π)

+

∫

S(−π)

}

[F (α)]θ=0
θ0=π/2

ik cosα
dα +

1

2πi
√

3

∫

S(0)

D(γ, π/2)

ik cos γ

×
(

1

cos 2π
3 − cos

2(γ−π
2
)

3

− 1

cos 2π
3 − cos

2(γ+π
2
)

3

)

eik2a cos γdγ. (4.10)

The evaluation of the last integral of (4.10) can be achieved by a direct application of the
ordinary saddle point method(ka >> 1); because no poles of the integrand lie in the vicinity
of the saddle point. Thus

1

2πi
√

3

∫

S(0)

D(γ, π/2)

ik cos γ

(

1

cos 2π
3 − cos

2(γ−π
2
)

3

− 1

cos 2π
3 − cos

2(γ+π
2
)

3

)

eik2a cos γdγ

⋍ − 2D(0, π/2)ei2ka+iπ/4

3ik
√

2π(2ka)3/2 cosϑ
+ O[(ka)−5/2] = O[(ka)−3/2].
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We now evaluate the remaining integral of (4.10), that is

I =
1

2πi

{

∫

S(π)

+

∫

S(−π)

}

[F (α)]θ=0
θ0=π/2

ik cosα
dα,

where

[F (α)]θ=0
θ0=π/2

ik cosα
= − (cosα + cosϑ)(cos ϑ − sin α)√

3ik cosα(1 − cosϑ) cosϑ

×
{

(cos 2α
3 + 1

2 )

((cos 2α
3 )2 − (cos 2(π+ϑ)

3 )2)
− 1

(cos 2α
3 − cos π

3 )

}

. (4.11)

Clearly,
[F (±i∞)]θ=0

θ0=π/2

ik cos(±i∞)
= 0,

so that, by virtue of (4.5), the contour of steepest descent,S(π) and S(−π) can be joined
by the contours γ1 and γ2 to form a closed loop. Since no surface wave poles, which would
be complex, are enclosed by this closed contour, see Rawlins(1)(3), we can deform S(π)
and S(−π) to take up the straight line contours shown in Fig. 5. This closed contour will
be denoted by C. Hence

1

2πi

{

∫

S(π)

+

∫

S(−π)

}

[F (α)]θ=0
θ0=π/2

ik cosα
dα =

1

2πi

∫

C

[F (α)]θ=0
θ0=π/2

ik cosα
dα

= −ΣResidues of poles of
[F (α)]θ=0

θ0=π/2

ik cosα
enclosed by C. (4.12)

The only poles enclosed by C are the poles along the real axis between (−π, π). These poles
occur at the values of α for which

cosα = 0, that is, α = ±π/2;

cos
2α

3
− cos

π

3
= 0, that is, α = ±π/2.

Thus single and double poles occur in the expressions (4.11) at α = ±π/2. By means of
Mathematica the sum of the residues of (4.11) are given by

∑

α=±π
2

Res
[F (α)]θ=0

θ0=π/2

ik cosα
=

2

ik(1 − cosϑ)

{

1

cosϑ
+

1

3
√

3
− 1√

3(1
4 − (cos 2(π+ϑ)

3 )2)

}

. (4.13)

Thus

lim
θ0→π/2

∫ 2a

0

ud(ρ2, 0)dρ2

= − 2

ik(1 − cosϑ)

{

1

cosϑ
+

1

3
√

3
− 1√

3(1
4 − (cos 2(π+ϑ)

3 )2)

}

+ O[(ka)−3/2].(4.14)
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-π 0 π

C

-π+i∞ π+i∞

-π-i∞ π+i∞

α-plane

Fig. 5 The closed contour of integration C

Evaluation of the limθ0→0

∫ 2a

0
∂ud

∂θ0

(ρ3, 3π/2)dρ3

We shall now consider the integral:

I = lim
θ0→0

∫ 2a

0

∂ud

∂θ0
(ρ3, 3π/2)dρ3.

After differentiating under the integral sign of the integral representation for ud(ρ3, θ), this
being permissible because the integral converges uniformly before and after the operation,
we obtain

lim
θ0→0

∂ud

∂θ0
(ρ3, 3π/2) =

1

2πi

∫

S( 3π
2

)

4D(γ, 0) sin 2γ
3 eikρ3 cos(γ− 3π

2
)

3
√

3(cos 2π
3 − cos 2γ

3 )2
dγ.

Transforming the above contour, as before, to take up the two contours S(π) and S(−π)
and integrating with respect to ρ3 gives

I =

∫ 2a

0

1

2πi

{

∫

S(π)

+

∫

S(−π)

}

[
∂F

∂θ0
(α +

3π

2
)]θ0→0e

−ikρ3 cos αdαdρ3,
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where

[
∂F

∂θ0
(α +

3π

2
)]θ0→0 =

4(sinα + cosϑ)(cos ϑ + cosα)

9(1 + cosϑ) cosϑ

×
{

(1 − cos 2α
3 )

((cos 2α
3 )2 − (cos 2(π+ϑ)

3 )2)
+

1

(cos 2α
3 + 1)

}

. (4.15)

integrating with respect to ρ3 gives, after re-arranging the integrals as before

I =
1

2πi

∫

C

[
∂F

∂θ0
(α +

3π

2
)]θ0→0

dα

ik cosα

+
1

2πi

∫

S( 3π
2

)

4D(γ, 0) sin 2γ
3 eik2a cos(γ− 3π

2
)

3
√

3ik cos(γ − 3π
2 )(cos 2π

3 − cos 2γ
3 )2

dγ. (4.16)

The second integral in (4.16) can be evaluated directly by the normal saddle point method;
it is found to be of order O[(ka)−3/2]. The evaluation of the first integral of (4.16) is achieved
by summing the residues of [ ∂F

∂θ0

(α + 3π
2 )/ik cosα]θ0→0 enclosed by C. The only poles that

can occur in the interval |α| 6 π are those for which cosα = 0, that is, α = ±π/2, since

[ ∂F
∂θ0

(α + 3π
2 )]θ0→0

ik cosα
=

4(sin α + cosϑ)(cos ϑ + cosα)

9ik cosα(1 + cosϑ) cosϑ

×
{

(1 − cos 2α
3 )

((cos 2α
3 )2 − (cos 2(π+ϑ)

3 )2)
+

1

(cos 2α
3 + 1)

}

.

The sum of the residues is easily found to be

− 8

9ik(cosϑ + 1)

{

1

2(1
4 − (cos 2(π+ϑ)

3 )2)
+

2

3

}

.

Thus

lim
θ0→0

∫ 2a

0

∂ud

∂θ0
(ρ3, 3π/2)dρ3 =

8

9ik(cosϑ + 1)

{

1

2(1
4 − (cos 2(π+ϑ)

3 )2)
+

2

3

}

+ O[(ka)−3/2]. (4.17)

Evaluation of the limθ0→0

∫ 2b

0
∂ud

∂θ0

(ρ3, 0)eikρ3dρ3

Considering the integral

I = lim
θ0→0

∫ 2b

0

∂ud

∂θ0
(ρ3, 0)eikρ3dρ3,

we obtain, following a similar procedure as before

I = − 1

2πi

∫

C

[
∂F

∂θ0
(α)]θ0→0

dα

ik(1 − cosα)

+
1

2πi

∫

S(0)

4D(γ, 0) sin 2γ
3 eik2b(1+cos γ)

3
√

3ik(1 + cos γ)(cos 2π
3 − cos 2γ

3 )2
dγ.
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The saddle point of the second integral in the above expression occurs at γ = 0; and since
the poles of the integrand are not near the saddle point, a straight forward application of
the saddle point method shows that this integral is of order O[(kb)−3/2]. As before the first
integral in the above expression is equal to the sum of the residues at the poles of

−
[ ∂F
∂θ0

(α)]θ0→0

ik(1 − cosα)
= −4(cosα + cosϑ)(cos ϑ − sinα)

9ik(1 − cosα)(1 + cosϑ) cosϑ

×
{

(1 + cos 2α
3 )

((cos 2α
3 )2 − (cos 2(π+ϑ)

3 )2)
− 1

(cos 2α
3 − 1)

}

, (4.18)

which lie within |α| 6 π. These poles occur at the values of α for which

cosα − 1 = −2 sin2 α

2
= 0,

and

cos
2α

3
− 1 = −2 sin2 α

3
= 0,

thus the poles all occur at α = 0. Rewriting (4.18) in the form

− 4(cosα + cosϑ)(cos ϑ − sinα)(1 + cos 2α
3 )

9ik(1 − cosα)(1 + cosϑ) cosϑ((cos 2α
3 )2 − (cos 2(π+ϑ)

3 )2)

+
4(cosα + cosϑ)(cos ϑ − sin α)

9ik(1 − cosα)(1 + cosϑ) cosϑ(cos 2α
3 − 1)

,

from which we can see that the first term has a double pole at α = 0, and the second term
a fourth order pole at α = 0. the combined residue is given by

16

9ik[1 − (cos 2(π + ϑ)/3)2]
− 5

27ik cosϑ
− 2

ik(1 + cosϑ) cosϑ
.

Thus

lim
θ0→0

∫ 2b

0

∂ud

∂θ0
(ρ3, 0)eikρ3dρ3 = − 16

9ik[1 − (cos 2(π + ϑ)/3)2]

+
5

27ik cosϑ
+

2

ik(1 + cosϑ) cosϑ
+ O[(kb)−3/2]. (4.19)

Evaluation of the limθ0→π

∫ 2b

0 ud(ρ2, 0)e−ikρ2dρ2

Finally we will evaluate the remaining integral in (4.1), that is,

I = lim
θ0→π

∫ 2b

0

ud(ρ2, 0)e−ikρ2dρ2. (4.20)

After substituting into this last expression the integral representation for ud(ρ2, 0) and
carrying out the ρ2 integration the result can be put in the form

I =
1

2πi

{

∫

S(π)

+

∫

S(−π)

}

[F (α)]θ=0
θ0=π

(−ik(1 + cosα))
[e−2ika(1+cos α) − 1]dα. (4.21)
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-π 0 π

C

-π+i∞ π+i∞

-π-i∞ π+i∞

α-plane

Fig. 6 The broken contour of integration C.

This integral representation exists and is uniformly convergent. However if we split off
the integral into the two parts as we have done previously poles will lie on the contours of
integration, and in particular at the saddle point. The integrals will therefore not separately
exist in the usual sense. It is therefore necessary to interpret the integrals as principal value
integrals.

Thus the contours of integration have to have gaps at α = ±π, and γ = 0 giving

I =
1

2πi
PV

∫

C

[F (α)]θ=0
θ0=π

ik(1 + cosα)
dα +

1

2πi
√

3
PV

∫

S(0)

D(γ, π)

ik(cos γ − 1)

×
(

1

cos 2π
3 − cos 2(γ−π)

3

− 1

cos 2π
3 − cos 2(γ+π)

3

)

eik2b(cos γ−1)dγ, (4.22)

where the broken contours C and S(0) are as shown in Fig. 6 and Fig. 7 respectively, and
the integrals are principal value integrals. To evaluate the second integral of (4.22) it is
required to expand the integrand in terms of powers of γ, around the saddle-point γ = 0,
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0
π π

S(0)

-

Fig. 7 The broken contour of integration S(0) in the complex γ-plane.

which gives

J =
1

2πi
√

3
PV

∫

S(0)

D(γ, π)

ik(cosγ − 1)

(

1

cos 2π
3 − cos 2(γ−π)

3

− 1

cos 2π
3 − cos 2(γ+π)

3

)

ei2kb(cos γ−1)dγ,

=
1

2πi
PV

∫

S(0)

ei2kb(cos γ−1)
∞
∑

n=−3

αnγndγ, (4.23)

where by using Mathematica we get

α−2 =
−4i

k cosϑ
,

α0 =
i

3k cosϑ

(

−1

3
+

6

(1 − cosϑ)
− 16

(1 + 2 cos 4(π+ϑ)
3 )

− 64

(1 + 2 cos 4(π+ϑ)
3 )2

)

.
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We shall see that it is not necessary to know the explicit forms of the odd coefficients, or to
consider terms higher than n = 0 for the accuracy we are interested in. The integral (4.23)
can be written as

J =
α−2

2πi
PV

∫

S(0)

ei2kb(cos γ−1) dγ

γ2
+

α0

2πi
PV

∫

S(0)

ei2kb(cos γ−1)dγ

+
1

2πi

∞
∑

n=1

α2nPV

∫

S(0)

ei2kb(cos γ−1)γ2ndγ +
1

2πi

∞
∑

n=0

α2n−3PV

∫

S(0)

ei2kb(cos γ−1)γ2n−3dγ.

From the symmetry of the path of integration S(0) and the oddness of the integrand it can
be shown that

PV

∫

S(0)

ei2kb(cos γ−1)γ2n−3dγ = 0.

We can now write J as

J = −α−2e
−i2kb

2πi
PV

∫

S(0)

ei2kb cos γd(γ−1) +
α0

2πi
PV

∫

S(0)

ei2kb(cos γ−1)dγ

+
e−i2kb

2πi(−2ikb)

∞
∑

n=1

α2nPV

∫

S(0)

(
γ2n

sin γ
)d(ei2kb cos γ).

The first and third integral can be evaluated by carrying out integration by parts; the
integrated parts vanishes exponentially. We can then apply the method of steepest descent
to the remaining integrals so that that (4.23) is asymptotic to

J =

√

kb

π
e−i π

4 α−2 +
ei π

4

2
√

πkb
(α0 +

α−2

24
) + O[(kb)−3/2]. (4.24)

We now evaluate the remaining integral of (4.22),

1

2πi
PV

∫

C

[F (α)]θ=0
θ0=πdα

ik(1 + cosα)
, (4.25)

where

[F (α)]θ=0
θ0=π

ik(1 + cosα)
=

− (cosα + cosϑ)(cosϑ − sin α)(cos 2α
3 − 1

2 )
√

3ik(1 + cosα)(cos ϑ − 1) cosϑ((cos 2α
3 )2 − (cos 2(π+ϑ)

3 )2)

+
(cosα + cosϑ)(cos ϑ − sin α)√

3ik(1 + cosα)(cos ϑ − 1) cosϑ(cos 2α
3 + 1

2 )
. (4.26)

The poles of F (α)
ik(1+cos α) , for |α| 6 π occur at α = ±π. We now close the contour C by adding

two small semicircular indentations and by adding or subtracting the appropriate residue



20 a.d. rawlins

-π 0 π

-π+i∞ π+i∞

-π-i∞ π+i∞

α-plane

C’

Fig. 8 The closed and indented contour of integration C′.

contributions at α = ±π, so that the value of the integral (4.25) remains unchanged. How
we indent is arbitrary provided we add or subtract the appropriate residue contribution.
We shall indent in such a way that the new indented closed contour C′, see Fig. 8, does not
enclose any poles of the integrand and so by Cauchy’s theorem its value is zero. Thus we
have

1

2πi
PV

∫

C

[F (α)]θ=0
θ0=πdα

ik(1 + cosα)
= −







Res[ F (α)
ik(1+cos α) ]α=π + Res[ F (α)

ik(1+cos α) ]α=−π

2







, (4.27)

and after some computation with the help of Mathematica for the evaluation of the residues
of (4.26) at the second and third order poles which appear at α = ±π we obtain

1

2πi
PV

∫

C

[F (α)]θ=0
θ0=πdα

ik(1 + cosα)
=

−2√
3ik cosϑ

(

1

3
+

1

[14 − (cos 2(π+ϑ)
3 )2]

)

. (4.28)
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Hence

lim
θ0→π

∫ 2b

0

ud(ρ2, 0)e−ikρ2dρ2 =
1

ik cosϑ
[
4
√

kbe−
π
4

√
π

− 2

3
√

3

− 2√
3[14 − (cos 2(π+ϑ)

3 )2]
+

e
iπ
4

2
√

πkb
(

5

18
− 2

1 − cosϑ

+
16

3(1 + 2 cos 4(π+ϑ)
3 )

+
64

3(1 + 2 cos 4(π+ϑ)
3 )2

) + O[(kb)−3/2]]. (4.29)

The total scattered field, the scattering cross section, and graphical results

Thus the expression for the total scattered field is given by substituting the values of the
integrals (4.14),(4.17), (4.19), and (4.29), into (4.1), which gives

us(r,
π

2
) = −ei(kr−π/4)

2
√

2πkr

(

4ka − cosϑe−iπ/4

√
πkb

×
{

−16

9(1 − (cos 2(π+ϑ)
3 )2)

+
5

27 cosϑ
+

2

(1 + cosϑ) cos ϑ

}

+ 2i

{

4
√

kbe−
π
4

√
π

− 2

3
√

3
− 2√

3[14 − (cos 2(π+ϑ)
3 )2]

+
e

iπ
4

2
√

πkb

[

5

18
− 2

1 − cosϑ
+

16

3(1 + 2 cos 4(π+ϑ)
3 )

+
64

3(1 + 2 cos 4(π+ϑ)
3 )2

]}

+ 4i

{

1

cosϑ
+

1

3
√

3
− 1√

3(1
4 − (cos 2(π+ϑ)

3 )2)

}

−8e−iπ/4

9
√

πkb

{

1

2(1
4 − (cos 2(π+ϑ)

3 )2)
+

2

3

}

+ O[
1

(kb)3/2
] + O[

1

(ka)3/2
]

)

+ O[(kr)−3/2].

The above expression is quite complicated, however it can be put in a more useful form
by expanding everything out in terms of inverse powers of cosϑ,(where in the limit for a
perfectly conducting cylinder | cosϑ |→ ∞), we obtain,

us(r,
π

2
) = −ei(kr−π/4)

2
√

2πkr

(

4ka +
8
√

kbe
iπ
4

√
π

− 19e−
iπ
4

18
√

πkb
− 1

cosϑ

{

4

i
+

4e−
iπ
4

√
πkb

}

+O[
1

(cos ϑ)2
] + O[

1

(kb)3/2
] + O[

1

(ka)3/2
]

)

+ O[(kr)−3/2]. (4.30)

The total scattering cross section σ for the cylinder can be found by using the the cross
section theorem Jones(14), that states that if

us = u + O
[

(kr)−
3

2

]

,

then the total cross section σ is given by

σ = −2

k
ℜ
[

(

ei(kr−i π
4
)

√
2πkr

)−1

u

]

.
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Fig. 9 Scattering cross section σ against k for various rectangles with a = 1, n = 2;µ =
1, µ0 = 1, κ = 1. The top most graph corresponds to b = 5 and the lower graphs to
b = 2, 1, 1/2, 1/5,respectively in that consecutive order.
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Fig. 10 The ratio σ/σ∞ against n for a = 1, b = 1, k = 100;µ = 1, µ0 = 1, κ = 1

The leading term of the above expression corresponds with the Kirchhoff approximation.
By substituting the complex refractive index N = n(1 + iκ), n > 0 for cosϑ = −µ0

µ N and
applying the cross section theorem we get

σ = 4a +
8
√

kb√
2πk

− 19

18k
√

2πkb
+

µ

µ0(1 + κ2)n

[

−4κ

k
+

4(1 − κ)√
2πkbk

]

+ O[n−2] + O[
(kd)−3/2

k
].

In the limit as | n |→ ∞ the above expression reduces to the scattering cross section for
a perfectly conducting rectangular cylinder σ∞; which agrees with the expression obtained
by Morse(10).

5. Conclusions

We have derived new high frequency approximate expressions for grazing incidence of a plane
wave E-polarized electromagnetic field scattered by an imperfectly conducting rectangle.The
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present work compliment the oblique incidence results already published in Rawlins (3). The
techniques used here can also be applied to any polygonal structure with more complicated
boundary conditions provided the canonical wedge problem with these boundary conditions
is known in the form of a contour integral. The approach could also be used to deal
with the double impedance wedge problem where radiation from the aperture between
the wedges is required.A intriguing idea is the modeling of a smooth structure, say an
impedance elliptical cylinder, by an impedance polygonal cylinder; the corners are wedges
whose canonical solutions is known. In the limit as the number of sides increases this
polygonal cylinder structure will approach the smooth cylinder problem. The only caveat
to this approach is that as the number of sides increase the polygonal segments become
small compared to the wavelength and hence the high frequency approach breaks down
so a hybrid method would need to be used. The method of this work is a considerable
improvement on the existing approach used by Morse, on a simpler problem, in that it is
more direct and less complicated and avoids differentiating complete asymptotic expansions,
and using divergent integrals which is not strictly rigorous †. These results will be of use in
the practical situations described in the author’s earlier publication which dealt with oblique
incident waves. We have also obtained the scattering cross section for grazing incidence for
an impedance cylinder which has high conductivity. The graphs show that the effect of
conductivity does result in a reduction of the scattering cross section. The methods used
in this paper can be extended to deal with the H-Polarized situation by including the effect
of surface waves. This will involve more asymptotic analysis on the known canonical wedge
diffraction problem. We remark that the approach used here can be used for any angle
of incidence and any observation point. It is also a simple straight forward approach in
that it can be used in conjunction with Mathematica and the steepest descent method to
derive asymptotic results to any desired order at singular transition points without the
necessity of introducing the asymptotics of higher transcendental functions like Fresnel
integrals. Finally we remark that the approach used here from (2.3) to derive the result
(2.6) is in fact a simpler generalization of the results of Karp and Zitron (15) who derived
a complete complicated plane wave expansion for diffraction integrals whose integrands are
regular. Their results showed that it is always possible to represent the radiated field by
a linear combination of plane waves and their derivatives. By using the Series function in
Mathematica we have obtained the same sort of plane wave expansion for integrands that
have multiple pole singularities that can occur at the saddle points of the integrand. In the
appendix we show that it is always possible to represent radiated fields with arbitrary pole
singular integrands in the same manner.
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APPENDIX A

A generalization of Karp and Zitron’s result.

Following the terminology of Karp and Zitron (15) the two dimentional radiated field is
represented by

u(r, θ) =

∫

C1

f(β)eikr cos(θ−β)dβ.

The function in the integrand f(β) is now assumed to have a Laurent series such that:

f(β) =
∞
∑

m=−M

fmβ
m, where fm =

1

2πi

∮

f(β)

βm+1
dβ;

The circular contour of integration encloses the origin but excludes the nearest singularity of f(β)
to the origin. We now follow (15) and write the integrand in terms of new coordinates of the
second scatterer giving

u(r, θ) =

∫

C1

v(β)f(β)eikd cos βdβ =

∫

C1

g(β)eikd cos βdβ,
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where v(β) = eik(x cos β+y sin β) and g(β) = v(β)f(β). The plane wave v(β) and the function f(β)
can be expanded as a power series and a Laurent series respectively in β giving

g(β) =

∞
∑

n=0

vnβ
n

∞
∑

m=−M

fmβ
m,

where vn = v(n)(0)/n! and fm are the known coefficients of the Laurent series for f(β). Assuming
both series are absolutely convergent we can rearrange the double series representation for g(β) as

g(β) =

∞
∑

s=−M

(

s+M
∑

k=0

vkfs−k)βs =

∞
∑

s=−M

gsβ
s.

Clearly gs =
∑s+M

k=0 vkfs−k, s > −M, is a linear combination of the plane wave v(β) and its
higher derivatives at β = 0. We now shift the contour C1 to take up the new indented path of
steepest descent S(0) through β = 0. Interchanging the order of integration and summation gives

u(r, θ) =
∞
∑

s=−M

gs

∫

S(0)

βseikd cos βdβ = (

−1
∑

s=−M

+
∞
∑

s=0

)gs

∫

S(0)

βseikd cos βdβ.

The integrals that occur for −M 6 s 6 −1 are replaced by residue contribution at the origin and
a principal value integral. The principal value integrals for odd s vanish giving

u(r, θ) =

−2
∑

s=−M[sEven]

gsPV

∫

S(0)

βseikd cos βdβ+iπ
1
∑

s=M

gs

(s− 1)!

ds−1

dβs−1
(eikd cos β) |β=0 +

∞
∑

s=0

gs

∫

S(0)

βseikd cos βdβ.

Although explicit expressions can be given on applying the method of steepest descent and higher
order differentiation, in the context of modern computer algebra the main result that is important
is that the radiated field in the vicinity of the second scatterer is a linear combination of plane
waves and its derivatives.


