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Abstract

The top quark has been extensively studied since the Large Hadron Col-
lider (LHC) began operating in 2010. The excellent performance of both
the LHC and the Compact Muon Solenoid (CMS) detector has enabled com-
plex analyses of many properties of the top quark. In this thesis inclusive
and differential top pair (¢) production cross sections have been measured.
Inclusive tf cross sections of 145.6 + 8.2 (stat.) T5s% (syst.) pb and 237.4
+ 1.9 (stat.) T3%5 (syst.) pb were measured at 7 TeV and 8 TeV center-of-
mass collision energies using luminosities of 1 fb™'and 19.7 fb~!, respectively.
These measurements were performed in the semi-leptonic channel by means
of a maximum likelihood fit of the lepton’s pseudorapidity. The work in this
thesis focuses specifically on the muon-plus-jets channel.

The methods used for measuring the inclusive cross sections were built
upon to measure differential cross sections with respect to event level observ-
ables. These observables include the missing transverse energy (EX5) as well
as some other kinematic distributions involving the jets, lepton and E¥* in
the decay. These results are unfolded to remove detector and selection ef-
fects and have uncertainties in the range of 3% to 15%. A low uncertainty
is achieved by normalising the differential cross section using the total cross
section. This leads to cancellations of some uncertainties. The results were
compared with different Monte Carlo generators and with different input pa-
rameters. No significant deviations from predictions of the Standard Model
were observed.

This thesis also contains test beam results on CMS ECAL Endcap Lead
Tungstate (PbWOQOy,) crystals. These crystals had been damaged using various
doses of proton irradiation. The damage for some crystals is expected to be
roughly equivalent to 300 fb™" of integrated luminosity at /s = 14 TeV. The
energy resolution for these crystals was seen to reduce by close to a factor of
20.
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Chapter 1
Introduction

Particle physics is the study of the fundamental constituents of matter and
the forces that govern how these particles interact with one another. Al-
though the idea that all matter is composed of fundamental particles dates
back to the 6" century BC, a revolution in the field took place in the 20
century. This revolution has continued into the 215 century. Breakthroughs
in both experimental and theoretical work have led to the concise picture of
the Standard Model (SM) of particle physics that is seen today.

In this thesis, measurements of the inclusive top pair (¢t) production cross
section at both 7 and 8 TeV will be presented. The top quark is an impor-
tant part of the SM. It has been studied extensively at both the Tevatron
and since the start up of the Large Hadron Collider (LHC). The excellent
performance of the LHC machine opened up the possibilities of differential
cross section measurements due to the millions of top quark pairs being pro-
duced. Global event-level variables have been studied such as the missing
transverse energy (ET); the jet transverse momentum sum (Hr); the total
observed transverse momentum sum (St); the transverse mass (M) and
transverse momentum (p) of the W boson. These measurements allow the
comparison and verification of Monte Carlo generators which aim to model
top quark pair events. Knowing these distributions precisely will also help for
future observations of rare Standard Model (SM) processes possible such at

ttH. This chapter introduces our current understanding of particle physics
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to set the scene for the work presented in this thesis.

1.1 The Standard Model of Particle Physics

The Standard Model (SM) of particle physics is the theoretical framework
that attempts to bring together all of what we know about the fundamental
building blocks of the universe. The SM is an evolving theory which has
been put together in a collaboration between many theorists and experimen-
talists. The main components of the SM are the electroweak theory and
quantum chromodynamics (QCD) which together describe the fundamental
interactions at the quantum scale.

The SM of particles and forces consists of both the fermions and the

gauge bosons. Fermions have half-integer (%h, %h, gh, ...) spin where £ is

2
the reduced version (= %) of Planck’s constant which is used to quantise

spin. Planck’s constant is equal to 6.62 x 10731J - 5. In this thesis, natural
units will be used where h = ¢ = 1. Here, c is the speed of light ~ 3x 10%ms!.
Fermions obey the Pauli exclusion principle which states that no two
particles can be in the same quantum state. This means that they obey
Fermi-Dirac statistics [1]. The fermions in the Standard Model and some
of their key properties are shown in Table 1.1. Fermions consist of quarks
and leptons. These particles are all Spin-% and have electric charge defined
in terms of the elementary charge constant, e. Elementary charge units are
defined as the charge of a proton (or a positron) where e = 1.602 x 107'% C.
Exchanges of gauge bosons between fermions is what allows matter par-
ticles to interact with one another. Bosons have integer spin (0h, 1k, 2h,
..) and obey Bose-Einstein statistics [2]. The gauge bosons within the SM
are presented in Table 1.2. The electromagnetic (EM) interaction is medi-
ated by the photon () which couples to particles with electric charge. The
weak interaction is mediated by the massive W and Z vector bosons. These
bosons can interact with one another as well as with the Higgs boson. The
high masses of these particles mean that the force is short ranged. The strong
force is mediated by the massless gluon (g) which carries colour. Since gluons

possess colour they are able to self interact which gives the strong interaction



The Standard Model of Particle Physics 4

’ Flavor \ Symbol \ Charge (e) \ Mass (GeV/c?) ‘
Quarks
Up u 2/3 ~ 2.3 x107°
Down d 1/3 ~ 4.8 x107°
Charm c 2/3 ~ 1.275
Strange s -1/3 ~ 95 x1073
Top t 2/3 ~ 173.20
Bottom b -1/3 ~ 4.18
Leptons
Electron e -1 0.511 x1073
Electron Neutrino v, 0 <22 %107
Muon I -1 105.7 x107*
Muon Neutrino vy 0 < 0.17 x1073
Tau T -1 1.777
Tau Neutrino v, 0 < 15.5 x1073

Table 1.1: The fermions within the Standard Model of particle physics as
well as their electric charges and masses.

its very short range. All of these force mediators are of spin-1. The force
of gravity is not currently included within the Standard Model as it is hard
to mathematically describe at the quantum scale. Gravity has a negligible

effect at atomic length scales so does not effect the theory.

1.1.1 The Electroweak Interaction

The concept of a SM of particle physics first came about in the 1960s through
the unification of the electromagnetic and weak forces [3, 4, 5]. The theory
of quantum electrodynamics (QED) already provided an excellent descrip-
tion of the EM force. Unifying the EM and weak forces however, provides
a more complete theory. This unification comes in the form of the gauge
group SU(2)xU(1) and ensures that the electromagnetic and weak coupling
constants are correlated.

The photon and the massive vector bosons which mediate the interac-
tions are first introduced together as four massless fields (W, W2, W32, B,,).

The field triplet, W, transforms via the special unitary group, SU(2). The
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’ Name \ Symbol \ Charge (e) \ Spin \ Mass (GeV/c?) ‘

Strong Force
Gluon \ g \ 0 \ 1 \ 0
Electroweak Force

Photon 0 0 1 0
Z boson Z° 0 1 91.2
W boson W= +1 1 80.4

Electroweak Symmetry Breaking
Higgs | H | 0 | 0 ] ~ 125

Table 1.2: The Bosons within the Standard Model.

weak field triplet interacts with the third component of isopsin (I, ) of the
particles. Isospin is an abstract quantum property of a particle that is always
conserved in weak interactions. The B, field transforms unitary group, U(1),
and interacts with the weak hypercharge of the particles. Weak hypercharge
is another conserved quantum property defined as: Yy = 2(Q) — Iy, ) where
@ is the charge of the particle.

The physical fields that mediate the forces are composed of linear combi-
nations of the massless fields <W;}’ Wj, Wj’ ,B,). In the the charged current

(CC) weak interaction, W* consists of the superposition:

W+ = %(Wl FiW?).
The field W, of SU(2) couples to the weak isospin current with strength
proportional to the coupling constant, g. An additional coupling constant,
¢', is introduced for U(1) to describe the strength of the coupling of B,
to the weak hypercharge current. The physical fields (Z° and A) which
mediate the weak neutral current (NC) and electromagnetic interactions can

be constructed as follows:

(ZO)_ 1 g —d (W3)_ cos By — sin Oy (W3)
A _\/m J g B ) sinfy,  cos by B )

The angle 6y (weak mixing angle) quantifies the relationship between the



The Standard Model of Particle Physics 6

two coupling constants:

/
Oy = tan g (1.1)
9

The unification of the electromagnetic and the weak force can be seen in the

expression:

gsinfy = = Vira (1.2)

where €, is the permittivity of free space and « is the fine structure constant
which is the coupling coefficient of the EM force (~ 1/137 at low energy
scales). The unification of EM and weak forces allows these interactions
to be expressed using just a few fundamental parameters. The model does
not predict the value of fy,. This has to be determined from experiment or
from global SM fits. Oy has been measured through a variety of direct and
indirect methods at different energy scales. A value of sin®#fy = 0.23116
was obtained through a global fit [6] of standard model parameters using
experimental constraints.

The decays of W bosons maximally violate parity conservation in that
left-handed particles are always produced. The fermions within the SM there-

fore come in the form of left-handed isospin doublets:

G2 t) = (o) () (o) G )- ()G )

Each quark doublet has a colour which is the charge carried by the strong
force. Colour comes in three flavours: red, green and blue (R, G, B) and so
there are 12 doublets in total including the leptons. Particles within a left
handed doublet have equal hypercharge. The lower members of the quark
doublets are shown with a prime to represent a rotated quark state. This
shows that mixing can occur between different quark generations through
the CC weak interaction. Kobayashi and Maskawa introduced the third
generation of quarks as a way of explaining observations of charge-parity

(CP) violation [7]. Quark mixing between generations is defined by the
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Cabibbo-Kobayashi-Maskawa (CKM) matrix [8] which transforms as:

U Vida Vus Vi d 0.974 0.225 0.004 d
c|l=1Va Ves Vau s =10.225 0.973 0.041 s’
t Vie Vis Vi b 0.009 0.040 0.999 b

On the left are the up-type quarks (u, ¢ and t). The components of the
matrix, Vj;, represent the probability of the transition to down-type quarks
(d', s and ') on the right. The CKM matrix is unitary such that:

szk: jZ =0 (1.3)
k

and it can be parameterised [7] using three angles (612, 023 and 6;3) to quantify
the quark mixing between the different generations as well as a phase factor
(0) to account for CP violation. Within the SM right-handed singlets also

exist with Iy = 0 and can interact in NC interactions:

6;27 :u]_{7 T}ga dR) UR, SR, CR, bRa tR-

Right-handed neutrinos do not exist since they would possess both zero
isospin and zero hypercharge and so would not interact with any of the
force carriers of the SM. Right-handed anti-particle doublets and left handed
anti-particle singlets also interact via the weak interaction.

The spontaneous symmetry breaking [9] mechanism of the Higgs field
gives mass to the W= and Z°, whilst leaving the photon massless. This is
what gives the weak interaction its finite range whilst the photons range is
infinite. The discovery of the Higgs boson by both the CMS and ATLAS
experiments in the summer of 2012 [10] was the SM’s most recent success.
Two of the key decay channels that lead to the discovery of the Higgs boson
where the di-photon (v7y) and ZZ channels. Distributions of the invariant
mass of yys and ZZs can be seen in Figure 1.1. A clear excess can be seen
at a mass of around 125 GeV indicating the existence of the Higgs. Further
studies are required to determine the properties of this new particle such as

its branching ratios in all decay channels. Initial indications show that its
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properties are consistent with SM predictions.

CMS (s=7TeV,L=51f"Vs=8TeV,L=5.3fb"
e -

%) cMs Vs=7TeV,L=51fb" \s=8TeV,L=53f"
N ; ; S T T
O 8 Unweighted [0) [ ¢ Data % oF ' ' ' 11
© L 1500 O 161 mz.x o Ko 08 31
1500 Z ™» L - © 5E ]
~ i ) < 14-[zy. 2z oA ERsl
§2] 5 0 r[Jmg=125GeV T 3t 1
c 511000 c 12F o .
o [T 1 2 ]
im i @ 1o] i3 1
_010007* N 1:(5(038\/) ] F =20 140 160 .
% by | 8F m,, (GeV) -
> [ 6F E
(] ¢ Data r
= 500?—S+B Fit r
— [ oo B Fit Component 4r
Cf [ I+t
(%)) | @ +20 B 2
5 ol 1 1 0 2] : ‘ 3
110 120 130 140 130 80 100 120 140 160 180
m,, (GeV) m,, (GeV)

Figure 1.1: The invariant mass of two photons in the H — ~~ analysis (left).
In the main figure the events are weighted by the signal /(signal+background)
that the event is catergorised as. The colour bands represent the +£1 and +2
standard deviation uncertainties on the background estimate. The invariant
mass of the four leptons in the H — ZZ channel (right). The inset shows the
distribution after selecting events with Kp > 0.5 where Kp is the S/(S+B)
probability ratio of the events. Taken from the CMS Higgs discovery paper
[10].

1.1.2 The Strong Interaction

The strong interaction is represented by the gauge symmetry group SU(3)
and only effects particles that possess a colour charge [11, 12]. The under-
lying theory in this interaction is described by the quantum chromodynamic
(QCD) field theory. The three colour charges (red (R), green (G) and blue
(B)) come in both positive and negative varieties (e.g the red colour charge
has a corresponding anti-red form). Quarks are the only fermions that pos-
sess a colour charge. Gluons also carry colour themselves which enables self
interactions leading to the finite range of the strong force. This means that
individual quarks can not exist on their own and must be confined to hadrons
(hadronisation). In the strong interaction, colour is a conserved quantity

whilst the force is independent of both the electric charge and quark flavour.
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Hadrons are composed of bound colour-neutral states which interact within
the fields of massless gluons. Mesons are composed of a coloured quark and
an anti-quark which possesses the corresponding anti-colour. Baryons are a
three quark system with each quark carrying a different colour. Together
they are colour neutral. The SU(3) symmetry group can be represented by

eight gluons which carry the colour charge:

glzRé 92233 gngR g4:GB g5:B}?

_ L _ L
V2 G

Protons are composed of two up quarks and a down quark (“valence”

g =BG  g= —(RR-GG)  gs— —(RR+GG—2BB).

quarks). The mass of these three quarks only constitutes roughly 1% of the
proton’s mass. The remainder comes from the potential energy contained
within the gluon fields that hold the the quarks together. Gluons within a
proton are continually producing g pairs. These non-valence quarks and
gluons within a proton are referred to as a “sea” of partons. The word
parton was initially introduced by Feynman to describe the hard objects
within nucleons [13]. Understanding the composition of the proton is crucial
when calculating event production rates at the LHC as will be described in

the next chapter.

1.2 Summary

The SM of particle physics provides a description of the fundamental forces
which are at play in the quantum world. The theory has survived many of
the tests it has faced over the past half century. It is able to describe to a
high precision what has been observed by many particle physics experiments.
This includes the prediction of the existence of the Higgs Boson. Since the
Standard Model Higgs Boson couples to fermions with strength proportional
to the fermion’s mass, the Higgs coupling to the top quark is large. The top
quark, being the most massive particle discovered so far will therefore play

an important role in future Higgs measurements.
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Several signatures of new physics accessible at the LHC either suffer from
top-quark production as a significant background or contain top quarks them-
selves. Knowing the top quark pair production cross section to a high preci-
sion is therefore not only important as a test of the Standard Model but also

in knowing how it contributes as a background to rarer processes.



Chapter 2

The Top Quark

The top quark is a fundamental building block of the Standard Model and
was first observed in pp collisions at the Tevatron in 1995 using the CDF
[14] and DO [15] detectors. The top quark is the most massive of the known
Standard Model particles with a current best measured value from a LHC
and Tevatron combination of m; = 173.30 £ 0.76 [16]. Due to its large mass,
it decays rapidly with a lifetime (7;) of ~ 5 x 1072* seconds. This is before
it can form a bound-state hadron (Thadronisation ~ 10723s). This means that
the study of the top quark’s decay products allow direct access to various
properties such as its mass, spin and charge in a way that is inaccessible for

any of the other known quarks.

2.1 Top Quark Production

At the LHC, top pair production proceeds primarily through gluon-gluon
(gg) fusion (~ 90%), with a small contribution from quark-antiquark (¢q)
annihilation (~ 10%). There is also a small (almost negligible) contribution
from quark (¢g) and anti-quark (gg) scattering with gluons. Leading order
Feynman diagrams for top pair production are shown in Figure 2.1. Top
quarks can also be produced singly which serves as an irreducible background
to tt due to the similar decay products being produced. Feynman diagrams

for leading order single-top production are shown in Figure 2.2.

11
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g t g t g t
+ +
g
g t 9 t 9 t
(b)
Figure 2.1: Schematic of leading order (LO) top pair production from quark-
antiquark annihilation (a) and gluon-gluon fusion (b) in the s (space-like),

t (time-like) and u (time-like but with a switch in the out going particles)
channels.

7 t gy 7 g o000
Z
>ww< W
&
1 b9 Wﬁ_

Figure 2.2: The three main LO single-top production mechanisms. The
image shows (a) s-channel, (b) t-channel and (c) associated W single-top
production (tW).
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In top pair production the following hard scattering process is considered

i(p1) + J(p2) — t(ps) +t(ps) + X

where 7 and j represent the incoming partons (¢, q, g) and X is additional
radiation produced in the final state. The differential cross section is a sum
over all possible spin and colour states of the incoming partons and can be

calculated using:

do = Z /diB1d£E2f1(51?1, pr) fa(e, pp)doij(z1, T2, pr, pr, s(pR)),
1,J€4,4:9
where ur and pp is the renormalisation and factorisation scales respectively,
as(pr) the strong coupling coefficient and f;(z;, pr) the parton distribution
function of the parton, . In this form, z;, is the fraction of the momentum
that a parton, i, carries with respect to the momentum of the proton.

The factorisation scale characterises the boundary between short (parton-
level) and long (hadronisation) distances and is in place such that theoretical
predictions are infra-red safe. Infra-red safe means that the calculation is
stable against divergences due to soft gluon emissions which arise in QCD
perturbation theory. The theoretical calculation can therefore be comparable
to experimental measurements which are independent of pr. The renormal-
isation scale is in place as a consequence of ultra violet divergences that can
occur in QCD perturbation theory due to the running of the coupling con-
stant. The strong coupling constant decreases as a function of the momentum
transfer in the collision so the correct energy scale needs to be chosen. In
the case of top quark production both pg and pp are chosen as the hard-
scattering scale squared, @2, and is set to the invariant mass of the produced
particle, mr.

The partonic cross section, do;;, can be expanded to a certain order within
perturbative QCD

46, = a2 |de® + L5V 4+ O‘—fd&@
1] s ij T ij ’/T2 ij o
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The first term in the square bracket is the leading-order (LO) term and the
second and third terms the next-to-leading-order (NLO) and next-to-next-
to-leading-order (NNLO) terms respectively.

An important factor in the calculation of the production cross section
for top pairs is the partonic composition of the incoming protons. This is
characterised by the parton distribution functions (PDF's, f;(z;, ur)) and is
represented as a the number density of a given parton, ¢, with a certain mo-
mentum fraction within a proton. PDFs are determined using both theoret-
ical and experimental input from deep-inelastic scattering experiments such
as HERA [17]. The PDFs for a (squared) hard-scattering scale, Q* = 10000
GeV?, are shown in Figure 2.3. This momentum transfer is of the order re-
quired for top quark or W and Z boson production. At high Q? the sea of
quarks (xS) and gluons (zg) become resolvable and it is these gluons that
are mostly responsible for producing t¢ pairs. CTEQ [18] PDF sets are com-
monly used in the calculations of the hard scattering process although others
are available.

As a consequence of the large mass of the top quark, partons with a
relatively high momentum fraction are required for its production. The mo-

mentum fractions of the two incoming partons must satisfy the following:

\/T1T28 = 2m

At a center-of-mass energy, /s = 7 TeV, back-to-back top pair production in
the lab frame would take place when z; = x5 = 0.05. The tops are produced
at smaller angles with respect to one another when one of the momentum
fractions is significantly larger than the other. The minimal angle at which
tops can be produced with respect to one another is about 15° which would
happen if ;1 = 1 and x5 = 0.002 or vice versa.

Top quarks are usually produced quite centrally within the detector (i.e.
with a large angle with respect to the beam line). This is the result of
them being spin-half particles and hence their angular distribution follows
(14cos?0). Due to its rapid decay, the angular distribution of the top quarks

is passed on to the decay products. This results in tf events predominantly
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Figure 2.3: Parton distribution function (PDFs) as a function of parton
momentum fraction for ? = 10000. The number density, xf, is plotted

against the momentum fraction, x, of the partons.

At low z the sea of

quarks (x.S) and gluons (zg) dominate. It’s only at higher x that the valence
quarks (zd, and zu,) come into play. Image taken from [19].
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occurring quite centrally within the detector. Lower mass particles such as
the W and Z bosons can be produced by a broader range of x values. There-
fore these particles are less centrally produced. This is an important factor
and is used later on in the process to separate tf from the main background
processes.

The top quark pair (¢t) production cross section has been precisely mea-
sured at three different centre of mass energies. The CDF and D@ collab-
orations made the measurement at /s = 1.96 TeV in pp collisions at the
Tevatron [20]. In addition to this, measurements by ATLAS and CMS at
Vs of 7 and 8 TeV in proton-proton collisions have been performed [21, 22].
A summary of these results and a comparison to NNLO (Next-to-next-to-
leading-order) theoretical predictions are shown in Figure 2.4. Recent nu-
merical values of theoretical predictions and experimental measurements of
tt and single-top production cross sections at both 7 and 8 TeV are sum-

marised in Table 2.1.

[
o
w
T

CMS prelim. combined 8 TeV (2.8 fb?)
LHC prelim. combined 7 TeV (0.7-1.1 fo?)
CMS dilepton 7 TeV (2.3 fb?)

Tevatron prelim. combined (up to 8.8 fo?)
CDF prelim. combined (up to 8.8 fb)

DO combined (5.4 o) ==

o(th (pb)

OO0 < o & o

10?

Approx. NNLO QCD (pp)

Scale uncertainty

Scale O PDF uncertainty

—————— Approx. NNLO QCD (pp)
Scale uncertainty

I Scale O PDF uncertainty

Langenfeld, Moch, Uwer, Phys. Rev. D80 (2009) 054009
MSTW 2008 NNLO PDF, 90% C.L. uncertainty

10

‘ 2 3 4 5 6 7 8 9
Vs (TeV)

=

Figure 2.4: A summary of ¢t cross section results measured as a function
of \/s. Measurements of the CMS experiment at 7 and 8 TeV are shown
along with the preliminary combined result with the ATLAS measurement.
The CDF, DO and the combined Tevatron results at /s= 1.96 TeV are also
shown. Taken from [23].
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Measured and theoretical top production cross sections (pb)
Production | 7 TeV th. 7 TeV meas. | 8 TeV th. 8 TeV meas.
tt 16371 +9 161.9 + 12347 +12 [239+2+13

2.5753[21] [24]
Single-t 659721715 1672 £37 + | 872725720 185 £ 4 £ 11
(t-chan) 4.8[25] 26]
Single-t 15.64+0.4707 | N/A 222 +06+ 234 + 55
(tW) 1.4 [27]
Single-t 4.56 + | < 26.5@95% | 5.55+0.08+ | N/A
(s-chan) 0.071015 28] 2.21

Table 2.1: This table displays the measured and theoretical top production
cross sections. The 7 and 8 TeV theoretical values have been obtained from
approximate NNLO calculations [29]. The first uncertainty on theoretical
values is due to the choice of scale (renormalisation and factorisation) and the
second due to the PDF uncertainty. The measured values have a statistical
and a systematic error associated with them respectively.

2.2 Top Quark Decays

Within the Standard Model, the top quark is expected to decay via the
weak process t — Wb approximately 100% of the time. The decay am-
plitude is proportional to the |Vj|*> component of the CKM matrix. A
value of |Viy| = 0.99914675 000035 [30] was determined by performing a global
fit of the SM using various experimental constraints and requiring unitar-
ity of the CKM matrix. CMS has made a recent measurement of |V,| =
0.998 £ 0.041 [31] using the single-top (t-channel) decay channel. It is
also possible to make a direct measurement without CKM unitarity using
CDF measured a value of
[Vis] = 0.91 & 0.11(sys. + stat.) £ 0.7(theory) [32] and set a lower limit of
[Vip] > 0.71 at the 95% confidence level.

The various tt decay topologies are therefore characterized by the decays

single-top quark production in the s-channel.

of the two W bosons in the event. W bosons decay both hadronically (¢q)
and leptonically (I7;) giving yield to three distinct decay channels:

e Fully-leptonic: both Ws in the event decay leptonically
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e Semi-leptonic: one W boson decays leptonically and the other hadron-
ically
e Fully-hadronic: both Ws in the event decay hadronically

The various branching ratios (BRs) for these processes with the different
lepton contributions are shown in Table 2.2. The hadronic decay BRs contain

a factor of three coming from the different quark colours.

W+
cs,ud (=6/9) | etv. (=1/9) | ptv, (=1/9) | 77, (=1/9)
Gs,ud (~6/9) | 45.7% 7.3% 7.3% 7.3%
e | €T (%1/9) 7.3% 1.2% 1.2% 1.2%
1, (~1/9) 7.3% 1.2% 1.2% 1.2%
70, (~1/9) 7.3% 1.2% 1.2% 1.2%

Table 2.2: Measured branching ratios [6] of the various ¢t decay channels as
a result of the different W boson decays.

2.2.1 The Fully-Leptonic Decay Channel

This decay channel is characterised by the presence of two opposite sign
leptons which give a very clean event signature. The leptons which are usually
used are electrons and muons and so there are three distinct sub channels:
ee, up and ep. Tau particles can also be used but measurements using these
leptons are usually less precise. This is because they are heavy enough to
decay hadronically* via the weak interaction making it difficult to separate
from the fully-hadronic and semi-leptonic decays. Large amounts of missing
transverse energy (ER) are expected in these events due to the presence
of the two undetected neutrinos from the W decays. At least two jets are

expected to be present from the b quarks.

*Via 7 — v; + W(— ud), this accounts for roughly 65% of 7 decays
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2.2.2 The Semi-Leptonic Decay Channel

The final state is defined by the presence of a single, isolated, high transverse
momentum (pr) lepton. As with the di-lepton channel, ER is expected
from the presence of the neutrino in the event. At least four central and en-
ergetic jets are expected, two of which originate from b quarks. This channel
is sometimes referred to as a golden channel since it is relatively clean and
has a higher branching fraction than in the di-lepton case. Figure 2.5 shows
the LO Feynman diagram for a ¢t decay in the muon-plus-jets channel. The

work in this thesis was performed using the muon-plus-jets decay channel.

Figure 2.5: Feynman diagram illustrating the ¢ decay topology in the semi-
leptonic (p+jets) decay channel.

2.2.3 The Fully-Hadronic Decay Channel

In this channel both of the W bosons decay hadronically and so no isolated
leptons are expected to be present in the decay. All decay products are likely
to be jets of which there should be at least six. This channel suffers badly
from QCD multi-jet background contamination. It is hard to separate this

large background from the t¢ signal.
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2.3 Event Simulation

Physics processes are simulated such that theoretical predictions can be com-
pared to the data. Monte Carlo (MC) generators which utilise random num-
bers are used to do this. There are various MC generators available of which
several are used by CMS to model specific physics processes. MCs are respon-
sible for the production of the hard scattering processes via matrix element
(ME) calculations and the resulting parton showering (PS). Parton match-
ing is required to merge these two processes. Hadronisation also needs to be
modelled as the showered partons form colourless bound states.

The MC generator gives a list of all the particles produced in an event
and the corresponding kinematic properties of the particles. This includes
the production of the underlying event (UE) and additional interactions from
pile-up (PU). The underlying event is defined as anything in the event that
does not originate from the hard scattering process. This includes interac-
tions coming from the beam remnants and also initial and final state radia-
tion. Pile-up is a result of multiple interactions taking place during a bunch
crossing. Each interaction has it’s own distinguishable primary vertex. Fig-
ure 2.6 shows a schematical overview of the MC production process. Geant4
[33] is used to simulate the CMS detector such that the particles produced
in the MC are reconstructed in the same way as for the recorded data.

A list of the main MC generators is shown in Table 2.3. The default MC
that is used for most CMS analyses is MADGRAPH [34]. POWHEG [35]
and MC@QNLO [36] are the alternative generators available on the market.
All of these MCs are inclusive of all ¢ decays described in Section 2.2. The
differences highlighted in the table will be summarised in the following sec-
tion. One of the main reasons for performing differential cross sections is to
try and verify which generator gives a better description of the data. The
vast amounts of data available from the 2012 run makes it possible to test

these models.
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Figure 2.6: This image depicts how MC generation is performed. Coming
in from the left and right are the two protons. Two gluons then enter the
hard scattering interaction which is shown as the large red circle. This step
represents the matrix element calculation. After the hard scatter prompt
decays and parton showering then takes place as shown by the smaller red
circles. Finally, hadronisation ensues which is shown in the diagram as the
green ovals. We are then left with stable particles that are observed in the
detector. The image also shows the underlying event which is initiated at
the purple oval.
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’ process \ ME \ PS \ Method \ PDFs ‘

tt + jets | Madgraph vb.x | Pythia v6.42x | ME+PS | CTEQ6L1
tt POWHEG-box 1.0 | Pythia v6.42x | NLO+PS | CTEQ6M
tt MC@NLO v3.41 | Herwig v6.520 | NLO+PS | CTEQ6M

Table 2.3: Table of the main Monte Carlo event generators.

2.3.1 Matrix Element (ME) Calculation

The general procedure of event simulation starts by determining all of the
Feynman diagrams that contribute to a certain process. The incoming par-
tons are generated using their parton distribution functions. The four-
momenta of the outgoing partons is then predicted using fixed order matrix
element calculations as was described in Section 2.1. Matrix element calcu-
lations are computationally expensive and are best suited to processes with
just a few well separated hard partons. Due to this long computational time
the highest order that MCs are calculated to is NLO (for MC@QNLO and
POWHEG). It is envisioned that NNLO generators will become available in
the next few years. MADGRAPH uses a slightly different technique where
LO calculations are performed where up to three additional partons can be
included as either initial or final state radiation. This is represented as tt +

jets in Table 2.3, where jets are the result of showered partons.

2.3.2 Parton Showering (PS)

Typically a different generator, better suited to soft QCD scattering inter-
actions is used for the showering of final state quarks and gluons. PS is
computationally cheap, has no limit on particle multiplicity and is valid for
soft and collinear partons. Parton showering typically follows the following

procedure:

1. A parton shower is initiated with a virtual mass scale, 3, at the mass

of the decaying particle. This parton has a momentum fraction, zo = 1.

2. At a later stage during the evolution of the shower the virtual mass

scale becomes t; and the momentum fraction z; due to the emission of
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radiation from a parton. A uniform random number between 0 and 1

is generated to replicate the probability of the parton splitting.

3. If t; < treq, it signifies the end of the propagation of the shower. #,eq. is
the minimum energy radiated by a parton and is usually defined to be
~ 1 GeV. This is the energy where hadronisation begins to dominate

over perturbative QCD effects.

4. If this requirement is not reached a parton is radiated with z = z;/2; 41
with a distribution proportional to (av/27)P(z) where P(z) is the prob-
ability of the specific type of splitting (e.g qq, 9q, qg9, gg). The shower

then continues to propagate repeating the process from step 1.

Parton showering is provided by two multi-purpose event generators.
These being PYTHIA and HERWIG. These have a different ordering of
the shower propagation. PYTHIA is transverse-momentum-ordered (starting
with the highest pr), whilst HERWIG uses angular ordering.

The physics of electromagnetic showers is modelled in a similar way as
hadron showering. Electromagentic corrections are applied where soft photon
emission becomes important. Electromagnetic radiaition from quarks is cut

off at the typical hadronic scale.

2.3.3 Parton Matching Prescriptions

The matching (merging) between the initial hard partons produced at the
matrix element and the evolution of the softer partons produced in the shower
is a critical part of the MC. It is important that there is no double counting
within the two schemes. To avoid the double counting of initial or final state
radiation, phase space requirements are used between the two schemes. This
usually includes a selection requirement on the pr of the parton or a positional
requirement. Jets are only matched to harder partons. The requirement on
the energy of a parton that is matched to a jet is referred to as the matching
threshold. The MADGRAPH generator uses a nominal requirement of 20

GeV such that only partons with an energy above this value initiate showers
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producing jets. The MLM [37] approach to merging is the adopted method

by the main generators mentioned in Table 2.3.

2.3.4 Hadronisation

After partons within a shower have evolved such that their energy is ~ 1
GeV, hadronisation into colourless baryons and mesons begins. As with
PS, PYTHIA and HERWIG provide hadronisation modelling. These MC
generators use two completely different models.

The Lund string model is adopted by PYTHIA. This is based on the
assumption that the colour potential between two partons increases linearly
with their separation for distances greater than about 1 fm. When the energy
within the colour “string” holding the two partons together reaches a certain
threshold it is energetically beneficial for a ¢q pair to be created out of the
string. After the energy within the string has diminished, on-shell hadrons
form out of the remaining colour connected hadrons.

HERWIG uses the cluster model where first, all gluons split into ¢ pairs.
The remaining quarks that are in similar regions of phase space are then
grouped into colourless clusters. These clusters are then sub-divided into
smaller colourless clusters from which hadrons are formed. The decays of
short-lived hadrons are modeled in both PYTHIA and HERWIG.

2.4 Summary

This chapter has introduced the top quark and has briefly summarised the
theoretical tools used to make predictions about the top pair production rate.
The MC generators that aim to replicate the data have also been outlined.
These generators contain the matrix element calculation, parton showering
and the hadronisation which together produces events as are expected to be

observed in the detector.



Chapter 3

Experimental Apparatus

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is the highest energy particle accelerator
ever built. It straddles the French/Swiss border and has a circumference of
about 26.7 km. It was designed to run at a centre of mass energy of /s =
14 TeV. A technical setback meant running finally began in 2010 at /s = 7
TeV through to the end of 2011. This was then increased up to 8 TeV for
2012 running. A scheduled upgrade is now in progress to bring the machine
up to a centre of mass energy of 13 TeV which is due to be completed by
early 2015.

3.1.1 The Path of the Protons

The layout of the LHC and all of its sub accelerators are shown in Figure
3.1. The protons are first extracted by injecting Hydrogen (Hs) gas into a
Duoplasmatron cylinder that is surrounded by an electric field. This strips
the electrons from the hydrogen atoms leaving the protons. The protons
are then linearly accelerated by radio frequency (RF) cavities in LINAC 2
producing bunches of protons of energy 150 MeV. The bunches of protons
then enter the first synchrotron called the booster. This hardware dates back
to 1972 and accelerates the protons up to an energy of 1.4 GeV in 1.2 seconds.

It also squeezes the bunches such that they have a smaller cross sectional

25
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area. The protons are then injected into the Proton Synchrotron (PS) ring
which has a radius 100 m. The protons leave this ring with an energy of
26 GeV within 3.2 seconds. From there, the protons make an underground
trip into France where they enter the Super Proton Synchrotron (SPS). The
SPS ramps the protons up to an energy of 450 GeV in 20 seconds. When
not being used to fill the LHC, protons from the SPS can be sent off to
various other experiments. The bunches of protons are then injected into the
main LHC ring in two locations where they begin to circulate in opposite
directions. Each beam was designed to contain 2808 bunches. The LHC still
has some work to do to get the protons up to collision energy. RF cavities
are again used to accelerate the protons up to higher energies whilst dipole
magnets are used to bend the protons around the rings’ 8 curved sections.
Quadrupole magnets are used to keep the bunches tightly packed together.
It takes around half an hour for both beams to become stabilised at full
beam energy. A final shaping and cleaning of the beam takes place before
collisions can begin. Table 3.1 contains a list of design parameters for the
LHC. A more detailed description of the LHC can be found elsewhere [38].

IHC e

ALICE

neutrinos
CNG/S\‘\

Gran Sasso

East Area,

LINAC 2/

r
N LINAC 3
Tons

Figure 3.1: Sketch of the layout of the LHC. Protons start at LINAC 2 and
Pb ions at LINAC 3 and then follow the arrows to the collision in CMS.

Notice that the protons are also used in other experiments at the LHC which
branch of the smaller accelerator rings.
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LHC vital statistics

circumference

depth

total number of magnets
number of main dipoles
number of quadrupoles
temperature

beam vacuum pressure
nominal p energy
center-of-mass energy
design luminosity
protons per bunch
bunch spacing

bunches per beam
turns per second
collisions per second
length of each dipole
weight of each dipole
dipole field

26659 m

50 - 175 m
9600

1232

392

1.9 K (-271.3C)
10713 atm

7 TeV

14 TeV

10%* ecm 257!
1.1 x 10"

50 ns

2808

11245

600 million
15 m

~ 35 tonnes
8.33 T

Table 3.1: Design parameters for LHC running.

27
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3.1.2 Luminosity at the LHC

In line with the LHC’s extensive physics goal, vast amounts of collision data
needed to be obtained. This means accumulating a large integrated lumi-
nosity: £™ = [ Ldt. Achieving these goals required the LHC to maintain a
high instantaneous luminosity, £. The machine luminosity depends on the

following beam parameters:

Ngnbfrev Vr

L=F
4dre, B*

where F is the geometric luminosity reduction factor due to the crossing
angle at the interaction point (IP), N, is the number of particles per bunch,
ny is the number of bunches per beam, f.., the revolution frequency, v, the
relativistic gamma factor, €, the normalised transverse beam emittance [39]
and [* the amplitude function at the collision point. €, and * are used to

describe the shape of the beam at the interaction point and are related by:

0.2

€n = T——

where o is the cross sectional area of the bunch. Emittance is defined as
the parallelism of the beam and so for a low emittance beam the particles
are confined to a small area with approximately the same momentum. [x is
determined by the focusing strength of the quadrupole magnets. The LHC
operates at low % where the beam is narrower or “squeezed”. This allows
for more interactions per bunch crossing.

The instantaneous luminosity of the LHC has been rapidly improving
since running began in 2010. This was a result of increasing the number
of bunches and optimising the optics to minimize transverse spread of the
beam. In 2010 the LHC delivered a total of 44.22 pb~! of which 40.76 pb~!
was recorded by the CMS detector. Since then the 2011 and 2012 runs have
yielded total integrated luminosities of 5.55 fb=! and 21.79 fb~! respectively,
thus making the 2010 data set irrelevant. Table 3.2 shows some luminosity

information for the first 3 years of LHC running and Figure 3.2 presents the
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accumulation of the total luminosity for these runs.

CMS Integrated Luminosity, pp

Data included from 2010-03-30 11:21 to 2012-12-16 20:49 UTC

N
v
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Figure 3.2: The accumulation of the integrated luminosity produced at the
LHC vs time in 2010, 2011 and 2012. The 2010 integrated luminosity is
multiplied by a factor of 100 so that it is visible on the plot. Image from [40].

3.2 The Compact Muon Solenoid Detector

The Compact Muon Solenoid (CMS) [41] is a multi-purpose detector located
100 meters underground at point 5 near the town of Cessy, France. Along
with ATLAS (A Large Toroidal ApparatuS) it is designed to cover a broad
range of physics goals including stringent tests of the Standard Model as well
as searches for new physics. CMS has an overall length of 28.7 meters and a

diameter of 15 meters. It weighs in at roughly 14000 tonnes.

3.2.1 Detector Components

CMS (shown in Figure 3.3) is characterised by a large superconducting
solenoid which provides a 3.8 T magnetic field. The solenoid is about 14
meters long with a radius of 3 meters and is located between the Hadron
Calorimeter (HCAL) and the muon detection system. At the design in-

stantaneous luminosity of 103 cm~2s7!, an average of 20 interactions are
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2010
Peak Inst. lumi. 205.14 x10%° cm 2?57t
Total Integrated lumi. delivered | 44.22 pb~1
Total Integrated lumi. recorded | 40.76 pb™!

2011
Peak Inst. lumi. 3535.08 x10%Y cm =271
Total Integrated lumi. delivered | 6.13 fb~!
Total Integrated lumi. recorded | 5.55 fb~!

2012
Peak Inst. lumi. 7670.19 x10%° cm=2s7!
Total Integrated lumi. delivered | 23.30 fb~!
Total Integrated lumi. recorded | 21.79 fb~!

Table 3.2: CMS luminosity information

expected per bunch crossing. This can lead to the production of more than
1000 particles and so very high detector granularities are required to be able
to decipher interesting events from the copious backgrounds. The innermost
subdetector is comprised of the Tracker which is used to pin point the loca-
tion of the primary vertex of an event and to track the trajectory of charged
particles. The CMS tracking system is the largest tracking detector ever
built for a high energy physics experiment with dimensions of 5.4 meters in
length and 1.1 meter in radius. Outside of the Tracker is the Electromagnetic
Calorimeter (ECAL), which is comprised of 61200 lead tungstate (PbWOy)
crystals within the barrel and 7324 in each of the two endcaps. It has an
internal radius of 1.29 meters. The HCAL is located outside of the ECAL
and is also made up of barrel and endcap sections built of brass layers. It
has a radial width of 1.18 m. The Tracker, ECAL and HCAL are all located
within the field volume of the solenoid. Outside the solenoid are the muon
chambers which make up the outermost layer of the detector. Muons were
pinpointed as a key ingredient for the discovery of the Higgs boson and so

their detection was of high priority in the design of the detector.
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Figure 3.3: Schematic of the CMS detector with all the key components

labelled.
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3.2.2 Coordinate System

The standard CMS coordinate system is a right handed system with the
z-axis along the beam direction. The z-axis points towards the centre of
the LHC ring and the y-axis points vertically upwards. The momentum
components of an individual particle in the z-y plane are p, and p,, and its
transverse momentum is pp = \/m The polar and azimuthal angles of
a particle are § = tan™! (pr/p,) and ¢ = tan™' (p,/p.), respectively. In the
polar coordinate system the radial position, r, is used. The pseudorapidity
is defined as 7 = —Intan (6/2) and the transverse energy of an object with

energy F is B = Esinf.

3.2.3 The Inner Tracking System

The CMS tracking system is shown in Figure 3.4 and covers a pseudorapidity
(n) range up to 2.5. Its job is to measure the trajectories of charged particles
such that the four-momentum of the particles and the position of the primary
vertex of an event can be determined. Tracking the path that a charged par-
ticle makes as it traverses the Tracker enables the momentum of the particle
to be calculated. The Tracker is comprised of two parts, the pixel detector
and the strip Tracker. Both are made of silicon, which was chosen since it
can be finely-segmented into sensors that provide a better spatial resolution
and a faster readout than other technologies such as cloud and wire Trackers.
Silicon is, however, expensive and requires sophisticated electronics and cool-
ing systems. This means that the Tracker has quite a large material budget.
In particular, in the region between the barrel and the endcap (|n| ~ 1.5)
where the material budget reaches 1.8 radiation lengths (Xo) [42], where one
radiation length corresponds to the distance over which an electron loses 1/e
of its initial energy. As large fluxes of high energy particles are produced

close to the interaction point the Tracker has to be built radiation hard.
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Figure 3.4: A cross section view of a quarter of the CMS inner tracking
system in the r, z plane. The 0,0 position is the nominal interaction point.
Taken from [43].

Pixel Detector

The pixel detector is the subdetector closest to the interaction point. It is
primarily for vertexing and it also plays a crucial role in identifying decays
from bottom quarks and tauons by observing displaced vertices. It is also the
region of the detector where there will be the highest particle density. At full
design luminosity, around 10 million particles are expected to pass through

2 every second. It therefore needs to have a high granularity to be

each cm
able to separate the tracks of different particles. To do this, silicon pixels
of rectangular shape 100(r¢) x 150(z) pym? are used. A position resolution
of approximately 15 pum can be obtained when charge is shared between
neighbouring electrodes. The pixel detector is arranged into three layers at
radii of 4.4, 7.3 and 10.7 cm, respectively. Two end cap disks that extend
the pseudorapidity coverage are located at 34.5 cm and 46.5 cm, respectively,

from the nominal interaction point.

Silicon Strip Tracker

After the inner pixel detector, the next part of the Tracker is the silicon strip

Tracker. As there are lower particle fluxes whilst moving radially outwards
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from the interaction point, strips can be used instead of pixels to save on
cost. This part of the detector is composed of more than 15000 strips and
covers an area of more than 200 m?. The strip Tracker is comprised of four
sub detectors as shown in Figure 3.4 and is divided into inner and outer
segments.

In the inner part the strips are arranged into the Tracker Inner Barrel
(TIB) and Tracker Inner Disk (TID). Strips in the TIB/TID come in a variety
of geometries which range in width from 80 pym to 141 pm, have a length of
10 cm and are 320 pm thick. These two inner layers of the TIB achieve a
position resolution in r¢ of 16 to 27 pm in the barrel [44].

The outer part of the tracking system consists of the Tracker Outer Barrel
(TOB) and the Tracker endcaps (TECs). Strips in these parts of the detector
range in width from 97 pym to 184 pm, are 10 cm in length and have a
thickness of 320 ym. The TOB is made of 6 layers and is able to resolve a
position in r¢ of 25 ym to 41 pm [44] in the barrel.

3.2.4 The Electromagnetic Calorimeter (ECAL)

The ECAL part of the detector as shown in Figure 3.5 is the part of the
detector that is responsible for stopping particles that shower electromag-
netically, these being electrons and photons. An electron initiates a shower
via bremsstrahlung and a photon via pair production. Radiation losses due to
bremsstrahlung scale with particle mass, m~* (m~%) when a charged particle
travels perpendicular (parallel) to an electric field and hence heavier leptons
are much less likely to shower. The ECAL is a hermetic, homogeneous de-
tector which consists of 61200 lead tungstate (PbWQOy) crystals in the barrel
and 7324 in each of the endcaps. Pre-shower detectors are also located at
both ends. The design of this part of the detector is focused towards the
discovery of the Higgs boson and hence the position and energy resolution of

photons and electrons are required to a very high precision.
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Figure 3.5: Illustration of the CMS ECAL. Taken from [45].

Lead Tungstate (PbWO,) Crystals

The choice of PbWO, as the material to be used for this part of the detector
is motivated by its high density (8.28 gem™) which means it has a very
short radiation length (0.89 cm) and a low Moliere radius (2.2 cm). This
means that EM showers are contained within a small volume and, as such, a
better position resolution can be obtained. These properties also mean that
around 80% of the shower is initiated within 25 ns. It is important that a

fast response is achieved when dealing with high pile up conditions.

ECAL Barrel (EB)

The barrel section of the ECAL covers a pseudo rapidity range up to 1.479.

In this section the PbWO, crystals are tapered such that the smaller end

(2.2x2.2 cm?) faces the beam line at a radial distance of 1.29 m. Crystals are

divided into 36 super modules which each give 10° coverage in ¢. Crystals

in the barrel are 23.0 cm in length which equates to 25.8 X,. The barrel

crystals are read out by Avalanche Photodiodes (APDs) which have an area
1 dE

of 5x5 mm?. The energy resolution is sensitive to both the voltage (557 ~

3.1%V ') and the temperature (£ ~ —2.4%°C~') and so these both need
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to be monitored closely such that the resolution is kept to within 0.1%.

ECAL Endcap (EE)

The ECAL endcaps (EE) are located at either end of the barrel at a distance
of 3.15 m from the nominal interaction point. The endcap covers a range of
1.479 < |n| < 3.0. Each EE is divided into 2 dees with each dee providing
180° ¢ coverage. The dees are arranged into an x-y grid of 5x5 PbWOQO,
supercrystals. The EE crystals have a area of 2.86x2.86 cm? at the end
facing the interaction point and a length of 22.0 cm (24.7 X;). The light
yield in the EE crystals is read out by Vacuum Phototriodes (VPTs) these
having an area of 280 mm?2. The read out is done via a copper mesh anode

at a pitch of 10 pum such that it is operational within the high magnetic field.

ECAL Pre-shower

A pre-shower (ES) detector is also in place just in front of each endcap
covering a range of 1.653 < |n| <2.5. The ES is comprised of 137,000 Pb-Si
strips and its high granularity helps discriminate between isolated photons

and photons from neutral meson decays.

Energy Resolution of ECAL

The energy resolution, %%, of the ECAL crystals can be parameterised by

the following equation:

2 2

(%E)Q = (%) + <§) +C? (3.1)
where A is the stochastic term due to the probabilistic nature of scintillation
showers. B is the noise term due to the PMTs and the readout electronics.
C is the constant term which is a direct measure of the performance of the
crystals. The performance of the ECAL can be affected by non-uniformity
in longitudinal light collection, intercalibration errors and energy leakage at

the back of the crystal. The resolution has been measured in test beams

using electrons of energies between 20 and 250 GeV. The coefficients were
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determined to be A = 2.8%, B = 0.12% and C' = 0.3% [46]. This means
that the constant term becomes dominant at electron energies of around 100
GeV. In-situ measurements of the energy resolution have also been performed
using Z — ete” decays with the 7 TeV data set [47]. An energy resolution
for electrons from Z decays is determined to be 2% in the barrel for |n| < 0.8
and ranging from 2-5% elsewhere. The transmission of the PbWO, crystals
is reduced by high radiation doses as is described in detail in Chapter 4.

3.2.5 The Hadronic Calorimeter (HCAL)

The Hadronic Calorimeter, shown in Figure 3.6, is used to measure the energy
and position of hadrons in an event, which are usually produced in jets. The
HCAL is also important in the measuring of the missing transverse energy
in an event as the measurement of jet energy resolution is key. This part of

the detector must therefore be hermetic in ¢.

Figure 3.6: Illustration of the CMS HCAL. Taken from [48].

Components of the HCAL

The HCAL is divided in to four main segments. The Barrel Calorimeter
(HB) is sandwiched between the ECAL and the solenoid and so is limited to
a radial width of 1.18 m providing coverage up to |n| < 1.4. An additional
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part of the HCAL extends outside (HO) the region of the solenoid using
the magnet for additional absorption. The HO catches the tails of hadronic
showers and extends the HCAL’s width to 11.8 interaction lengths (A;). As
corresponds to the mean free path of a charged hadron within a medium.
The Endcap Calorimeter (HE) is within the field volume of the solenoid and
extends the |n| coverage up to 3.0. Finally, the Forward Calorimeter (HF)
is positioned at a distance of 11.2 m from the nominal interaction point and
gives additional coverage in the region 3.0 < |n| < 5.2.

The HCAL is a sampling calorimeter comprised of wedges made up of 14
azimuthal Brass (70% Cu and 30% Zn) plates with a steel plate either side
for structural stability. The plates absorb particles from hadronic showers
which then produce light in scintillating tiles which are placed between the
absorbers. This light is then read out via optical fibres which are linked to
Hybrid Photodiodes (HPDs).

Energy Resolution of HCAL

The resolution of the HCAL is limited by the nature of the interaction of the
particles within it. The energy from neutral mesons decaying to two photons
can be measured directly in the scintillators whilst charged particles produce

scintillating photons via ionisation, excitation and also nuclear interactions.

The resolution of the HB, HE and HO is described by:

2
(2)2 _ (i) e
E VE
where the stochastic term, A, is 90% and the constant term is 4.5%. For
the HF, A = 172% and C = 4.5% [49]. The results were obtained from
HCAL test beam measurements. The resolution can be substantially im-

proved for charged hadrons by additionally using tracking information and

reconstructing using the particle flow algorithm (see Section 5.2).
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3.2.6 The Muon Detection System

Since “muon” is in the name of the detector the identification and the mo-
mentum resolution of this particle were clearly of high importance in the
detectors design. Muons decay with a lifetime of 2.2 us and so they typically
travel well beyond the outer edge of the detector before decaying. Higher pr
muons travel in an almost straight line through the Tracker and hence a larger
detector is required to obtain the desired momentum resolution. In total, the
muon detector chambers are made up of a gaseous volume of approximately
25,000 m®. The detection chambers are located outside the solenoid within
the steel yoke. The yoke is in place to homogenise the magnetic field and
returns the magnetic flux to the solenoid. It also absorbs hadrons that have
managed to get this far. A large volume is required for this part of the
detector. Gas chambers were used as thay are a cheap, robust and reliable
option. Muons are detected as they ionise the gas as they pass through. A
more detailed overview of the muon detection system can be found in the

technical design report [50].

1200
Z (em)

Figure 3.7: Hlustration of the CMS muon detection system. Taken from [50].
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Barrel Muon System

In the barrel, where there is a low muon flux and a uniform magnetic field is
present, Drift Tubes (DT) are used. Four stations are embedded within the
yoke as can be seen in Figure 3.7. The three innermost stations consist of
four pairs of chambers which measure muon position in the r¢ and z planes.
The outer chamber is used primarily for the z position measurement. The
gas in the chambers is a mixture of 85% Ar and 15% COq. A 50 pym anode
wire runs down the centre of the chamber and the walls are grounded such
that they act as a cathode. Each drift cell is offset by half a cell width with
respect to its neighbours to help eliminate dead spots in efficiency. The barrel

region of the muon detector covers the region up to |n| < 1.2.

Endcap Muon System

In the endcap region the muon fluxes are higher and there are also increased,
non-uniform magnetic fields present. Cathode Strip (CS) Detectors are used
in this part of the muon system. These have a faster response time and are
more radiation hard than the DTs. The CS are comprised of 468 trapezoidal
gas chambers each covering 10° or 20° in ¢ and provide coverage in the range
0.9 < |n| < 2.4. The chambers contain 6 planes of anode wires within
7 cathode panels providing excellent spatial resolution. A gas mixture of
40% Ar and 50% COs is used with the addition of 10% CF, to prevent

polymerisation of the wires.

Resistive Plate Chambers

In the |n| < 1.6 region Resistive Plate Chambers (RPCs) are installed along
side the DTs and CSs to provide an independent, efficient triggering system.
They give a coarser position measurement than the other chamber types but
give a fast read out and a good time resolution (~ 1 ns) which is important

for triggering.
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Resolution of the Muon System

The momentum resolution was initially determined prior to LHC start up
using cosmic ray data [51]. In these tests the cosmic ray muons traverse
the full detector and so comparisons of the momentum measurement in the
upper and lower segments can be used to determine the resolution. When
using both the muon detection system and the Tracker, the muon momentum
resolution was found to be around 1% or 2% for lower pr muons (10 GeV/c)
and no more than about 10% for high pr muons (1 TeV//c). This observation

was supported using Z — pu events in early collision data [52].

3.2.7 Trigger and Data Acquisition (DAQ) System

When running at full luminosity an event rate of 40 MHz is expected. With
each event corresponding to roughly 0.5-1 MB of data it is impossible to
store all of them. The purpose of the trigger is to filter the more interesting
events, such that only these events are saved for further analysis. Figure
3.8 shows the cross sections of various physics processes and the event rates
associated with them at a luminosity of 103 cm~2s!. The trigger operates
in two layers. The first is the level 1 (L1) trigger which is based on hardware
built into the CMS detector and in the underground control room. The L1
trigger’s purpose is to reduce the event rate from 40 MHz to a maximum
output of 100 kHz. If an event passes the L1 it is then passed on to the high
level trigger (HLT) which is software based and executes algorithms similar
to those used offline on a computer farm located at Point 5. An array of
triggers are used to select events appropriate for a variety of analyses. This
is known as the trigger menu. Overlap between similar triggers is minimised
to no more than 10% of events that pass. Events that pass a given trigger

go on to make up the data set needed for a specific physics analysis.

L1 Trigger

The L1 trigger uses coarse information from the muon and calorimetry sys-

tems to assess whether an event should be passed onto the HLT. The architec-
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Figure 3.8: Production rates for various physics processes. Event rates for a
luminosity of 103* cm~2s7! is on the right hand scale. Figure from reference
[53].



The Compact Muon Solenoid Detector 43

ture of the L1 trigger is depicted in Figure 3.9. The L1 trigger analyses every
bunch crossing and has 3.2 us to pass events on to the front-end electronics.
The information from the detector must therefore be pipelined within the
electronics. The first step at L1 are the Trigger Primitive Generators (TPG)
which look for hit patterns in the muon system or energy depositions in the
calorimeters. Regional triggers are then employed which match hits/clusters
within local regions of the sub detectors to form tracks. These are designated
primitive muon, electron, photon or jet candidates. This regional information
is then ranked in terms of pr or Er and the quality of the deposition within
the detector. The Global Calorimeter Trigger (GCT) and Global Muon Trig-
ger (GMT) determine the highest ranked of these across the whole detector.
Finally this information is passed to the Global Trigger (GT) which makes

the decision on whether or not to pass the event onto the HLT.

L1 Accept

Global Trigger d Trigger Control System I
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Figure 3.9: Image showing the structural flow of the data as it goes through
the L1 trigger. Image from reference [41].

The High Level Trigger (HLT)

The HLT is composed of programmable software that has access to all of

the information from the CMS detector. In the early stages of LHC running
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the HLT selection criteria and trigger menus changed regularly to deal with
the rapidly increasing instantaneous luminosity. The HLT has the following

functions:

1. Collection of all the information from the various CMS sub-detectors;

2. Online reconstruction of interesting physics parameters such as pr, Er,
n and the isolation of leptons and jets. Other event variables such as

Hy and EX are also reconstructed;

3. Selection (triggering) based on these reconstructed quantities.

The HLT takes roughly 50 ms to carry out these functions and reduces
the recorded event rate by a factor of 103, resulting in an output rate of 300
Hz. The data accepted by the HLT is then transferred to the Tier 0 computer
system located at the main CERN site where full event reconstruction takes

place (See Chapter 5 for more details).

3.3 Summary

This chapter was dedicated to the LHC and the CMS detector. The design
specifications for these experimental apparatus have been described. The
LHC machine performed exceptionally during the first three years of running
and the instantaneous luminosity increased by several orders of magnitude.
In 2011 and 2012, total integrated luminosities of 6.1 fb~" and 23.3 fb™*
were produced, respectively. This has meant that CMS has had to be very
adaptable to these changing conditions in terms of the trigger and DAQ
system. The detector has performed very well in terms of energy resolution

and identification of physics objects.



Chapter 4

Hadron Induced Radiation
Damage in PbWQO, ECAL
Endcap (EE) Crystals

The CMS EE (see Section 3.2.4), is designed to withstand radiation doses of
up to 100 kGy* or charged hadron fluences of up to 6 x 103 cm=2 [46]. In
phase II of LHC running, a total integrated luminosity of around 300 fb~! is
expected to be accumulated. This is equivalent to the doses that have been
used to irradiate some of the EE crystals studied in this chapter. This level
of dose can lead to crystal light output losses of up to 50-60% for EE crystals
at |n| >1.7 [54]. The residual damage to PbWOy, crystals is defined as the
reduction in light output due to losses in light transmission. Transmission
(T'=1/1) is defined as the loss in the intensity of light traversing a crystal,
where [ is the intensity prior to traversing the crystal and [ is the intensity
after traversing. There is almost no recovery from hadron induced damage at
the ECAL operating temperature [55, 56, 57, 58]. It is therefore important
to understand the effect of the damage and model its effects.

As was previously stated in Section 3.2.4, the performance of the ECAL
can be parameterised using Equation 3.1. In this chapter the effect of radi-

ation damage on the energy resolution and linearity will be examined using

*Gy (gray) is the SI unit for a radiation dose and is defined as the amount of energy
(in Joules) absorbed per kg of matter.

45
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the results from electron test beam experiments of energy in the range 10
to 150 GeV. The results are used to validate a phenomenological damage
model [59] that has been developed to describe the observed effects. Energy

linearity for a crystal matrix is defined as:

EI‘GCO

Ebeam

Linearity (Epeam) = (4.1)
where E™ is the reconstructed energy and FEyeanm is the test beam energy
(known to a high precision, op/p ~ 0.3%).

The energy resolution and linearity of crystals are both expected to be
affected to some degree by hadron irradiation. In the EE, a high precision
light monitoring system is designed to correct for transmission losses in order
to maintain the contribution of the constant term to the energy resolution
to less than 0.3% [46]. The effect of the transmission loss within the crystal
will, however, degrade several aspects of the crystal response such as the
pulse shape and the uniformity of the light collection efficiency which affects
the energy linearity and resolution.

The work in this chapter was performed in collaboration with people
based at CERN. The author was involved in the data taking (electron test
beam shifts) as well as the reconstruction and analysis of the test beam data
during the 2011 and 2012 test beam data taking periods.

4.1 Crystal Irradiation and Damage

The following subsections outline the proton irradation procedure and the
method for measuring the damage caused to each crystal. PbWOQO, crystals
with dimensions identical to the ones used in the EE (30x30x220 mm?)
have been proton-irradiated at the PS irradiation facility at CERN [60]. A
spectrophotometer was then used to measure the damage and check if this

damage is uniformly distributed accross the crystals.
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4.1.1 Proton Irradiation Procedure

The protons that were used to irradiate the crystals were of energy 24 GeV.

2 was used with a proton average flux

A proton beam of area 30x30 mm
of 10° s~'em™2. The transverse proton beam profile was tuned before each
irradiation to be as uniform as possible over the entire (z-y) area of the
crystal. At the start of the 2012 irradiation campaign a new beam detector
with higher sensitivity and finer granularity was installed, which allowed
better beam profile monitoring. This monitoring showed a slightly reduced
flux of protons towards the edge of the beam with rates of about 75% of the
central flux 20 mm from the centre in the z-y plane. A full list of the crystals

that have been irradiated is shown in Appendix A.

4.1.2 Crystal Damage and Non-Uniformity

The damage to each crystal is defined by the induced absorption coefficient
(tina)- This quantity is related to the transmission loss at 420 nm. This
wavelength corresponds to the maximum transmission of the PbWQO, emis-

sion spectrum. pnq is calculated using:

1 f)l?f()nm
Mind = Z In ﬁ (42)

after
where L is the crystal length equal to 0.22 m, Tiefore and Tygier correspond to
the crystal light transmission at 420 nm before and after irradiation. Damage
profiles were measured at wavelengths in the 300-700 nm range. Results
obtained for crystal 11135 (pnq = 7.4 m~!) are shown in Figure 4.1. Damage
causes the transmission band edge to be shifted by several tens of nanometers
to higher values causing it to start to overlap with the emission peak.

The transverse non-uniformity of the damage as a result of the non-
uniformity of the proton beam was visible particularly for the crystals ir-
radiated to high integrated fluences, ®, of ~ 10 p/cm?. The transverse
damage non-uniformity was measured using a dedicated spectrophotometer
(optical beam spot of 2 mm diameter). Comparisons of the light transmission

at 420 nm for different positions along the  and y axes indicates a strong



Crystal Irradiation and Damage 48

[ PbWO crystal transmission (X) | [ PbWO crystal transmission (Y) |
< 100 —_
S5 —— X =-8mm £1OG ——Y=-8mm
E'—=—X=-6mm ~ E —=—Y=-6mm
5 90 X =-4mm 5 90? ——Y=-4mm
7 L —~X=-2mm ‘» F —=—Y=-2mm
2 80 ——X=0mm 2 80 ——Y=0mm
£ before irradiation £ before irradiation
E 70; § 7G;
= F = F
£ oy E st
60" i 60" ——
E e E A“““MJ""_.-"’-:
50F o 50F gt
£ f Sl £ P.A“‘F o
= v J"f.- ..""y F w ﬂ <
40¢ W 40F L
F . ﬂ .w"".‘ F ol
30 g s 30F o
20E ;5"’/’#’ 20E {f;"’ ~
£ £ s
E £l E gt
100 - 10F
E 'ﬁu‘ E '
SR ..., R N U S N e ol I W WU N N
00 350 400 450 500 550 600 650 700 QOO 350 400 450 500 550 600 650 700
Wavelength (nm) Wavelength (nm)

Figure 4.1: Transmission curves for crystal 11135 (uinq = 7.4) at different
positions on the z (left) and y (right) axis of the crystal. The x = y = 0
position corresponds to the centre of the crystal. The transmission curve for
a standard non-irradiated crystal is shown in green.

non-uniformity within the crystal as shown in Figure 4.2.

The pinq for crystals irradiated in 2012 were averaged over each crystal’s
surface using the profiles shown in Figure 4.2. A polynomial fit to model the
non-uniformity of the crystals. This fit gives a very good agreement to the
data as seen with the low x? value. The error bars on the pj,q are propagated
from the uncertainty on the spectrophotometry measurement. It is necessary

to use the average ui,q over each crystal for two main reasons:

e The value of accumulated fluence is integrated over the crystal surface;

e The development of an electromagnetic shower inside PbWO, crystals

interacts with the whole crystal volume.

Only negligible non-uniformity was observed in crystals irradiated prior to
2012 and hence the average ji;,q does not need any correction. A 15% relative
error on the estimation of pu;,q is assumed due to a 2% systematic error in
the transmission measurement which propagates to o, , via Equation 4.2.
A 20% uncertainty is assigned for crystals irradiated in 2012 to represent the

spread of png along the z axis, in the range (-7.5,7.5) mm.
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Figure 4.2: Transverse scan of the pyq for crystal 11135 calculated from
transmission curves at 420 nm using a spectrophotometer with beam spot 4
mm?. Similar profiles are observed for both the = (left) and y axis (right).
Data points are fitted using a 2"¢ order polynomial function.

4.2 Test Beam Setup

4.2.1 The Test Matrix

The crystal configuration (Figure 4.3) used in test beam runs aims to re-
produce the setup in the actual EE as much as possible [46]. A 5x5 EE
supercrystal was placed in the standard supercrystal alveolar. The plastic
inserts in front of the crystals were the same as the ones used in the EE, while
the Al inserts at the photo detector side were modified to house Hamamatsu
Photonics PMTs, which were used for the light readout instead of the EE-
standard Vacuum Photo Triodes (VPT). Crystals were coupled to the PMT
with optical grease of refractive index of 1.45 to enhance the light yields. The
alveolar was surrounded by 1 c¢m thick Cu plates with pipes for water circu-
lation used for the thermal stabilisation of the matrix. Two thermal sensors
were installed on each side of the matrix. The precision of the temperature
readout was better than 0.1 °C. The temperature variation was found to be
lower than 0.2 °C and so its effect on the system stability was negligible.
An LED-based light monitoring system consisting of a blue LED light
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Figure 4.3: Image of the test beam matrix setup. The crystals are housed
within a carbon fibre alveolar inside cooling plates (yellow). PMTs with HV
dividers (green) and cables are behind the crystals readout by the red wiring.
The LED light source and fibres for light monitoring are attached to the right
wall of the box.

source (with a 455 nm emission peak) and a bundle of quartz optical fibres
were mounted next to the crystal matrix. This was used to deliver the light
to the back end of each crystal . The entire matrix was mounted inside an
Aluminum box sealed to provide optical and thermal isolation. The box was
installed on a remotely controlled z-y table with a displacement range of +

20 cm and positioning precision of approximately 1 mm.

Crystal Configurations

The test matrices were configured to provide similar values of p;,q in the cen-
tral 3x3 matrix, surrounded by non-irradiated or slightly irradiated crystals.
The matrices tested in 2011-2012 are shown in Figure 4.4. The values of pnq
quoted in the Figures represent the average p;,q measured prior to entering
the test beam.

Average induced absorption for a 3x3 matrix

Since the matrices of crystals used for this analysis are characterized by

different p,q, we define an average M?gﬁf of the matrix by re-weighting the
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tina Of each crystal with its relative contribution to the reconstruction of an

electromagnetic shower centred on the 3x3 matrix.

9 9
ui3n>213 = Zluiind X Wi , sz =1 (43)
i=1 i=1

where for the central crystal ws is equal to 0.84, for the crystals adjacent
to the central one wy = wy = wg = wg = 0.032 and for the crystals in
the corners of the matrix w; = ws = wy; = wg = 0.008. These weights have
been determined by considering the relative average energy deposited in each

crystal of the 3x3 matrix at 50 GeV using a 10x 10 mm? beam spot.
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Figure 4.4: The crystal matrices from 2011 and 2012 test beam runs are
shown in the above figure. The fi,q of the irradiated crystals in m~! are
shown in red in the centre of the crystal, the crystal identification number
(black, bottom) and the position number of each crystal (blue, top left) is
also shown. The 3x3 clusters used for the following analysis are surrounded
by a coloured thick line. The average value of the pu;,q for the selected cluster
is shown above each matrix as was calculated using Equation 4.3 in Section

4.2.1.
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4.2.2 H4 Experimental Setup

Beam counters

A sketch of the CMS H4 test beam zone is shown in Figure 4.5. The incoming
beam was detected by a set of four scintillation counters: S1 (60x60 mm?), S3
(40x40 mm?), S4 (10x 10 mm?), and S6 (60x60 mm?), installed at 5525 mm,
5340 mm, 5210 mm, and 2820 mm from the crystal matrix respectively. T'wo
settings were used: “Wide beam” - coincidence of S1 and S6, and “Narrow
beam” - coincidence of all four scintillators, S1, S3, S4 and S6. A narrow
beam was usually used to maintain centralised electron impact. Wide beam
was only used when the electron statistics were low. The impact position
of the beam particles on the matrix was measured using two sets of beam
hodoscopes. Each set was composed of two planes of 64 scintillating fibres
of square cross section 0.5x0.5 mm?, readout by a multi-anode PMT. The
planes FH1 and FH3 measured the horizontal coordinate, and FH2 and FH4
the vertical one. These planes were installed at 6015 mm, 3490 mm, 5650

mm and 3125 mm from the matrix respectively.

Data Acquisition System (DAQ)
An event trigger could be one of three signals:

e “Electron” - coincidence of beam counting scintillators (four for “nar-

row” or two for “wide” beam).
e “LED” - generated by the LED pulsing at about 30 Hz.

e “Pedestal” - generated by the random gate generation at a rate of about
10 Hz.

An additional “spill” trigger, indicating the start and stop of particle spills
from SPS was utilised. The SPS spill structure varied slightly between runs
depending on the LHC operation. The average spill cycle was 38-45 seconds
and consisted of a slow extraction to the fixed target (~10 sec), several fast
extractions for the CNGS neutrino beam and also LHC injection. The data

was taken during the slow extraction, recorded to disk and monitored during
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Figure 4.5: A birds eye view of the CERN H4 test beam zone showing the
position of the fibre hodoscopes (FH1, FH2, FH3, FH4) and the scintillation
counters (S1, S6, S3, S4) with respect to the box which contains the crystals.
The black arrow indicates the beam direction.

the remaining 25-30 seconds of the SPS cycle. A standard data taking rate
of approximately 10000 triggers per spill gave roughly 3000 electron events.

4.2.3 Data Taking Procedure and System Monitoring

There were two data taking modes in operation: Short calibration runs where
a 50 GeV beam was positioned on each crystal and longer scans at a specified

energy usually focusing on the central crystal in the matrix.

Calibration Runs

Calibration of the crystal matrix readout chain was performed by positioning
the crystals, one-by-one, into the path of a 50 GeV electron beam by mov-
ing the table supporting the matrix. The particle rate was around 1 kHz.
All three types of event: “electron”, “LED” and “pedestal” were recorded.
The calibration run finished once 20000 “electron” events per crystal had

been collected. The reproducibility of the table positioning was measured
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to be better than 1 mm. The table movement was controlled by the DAQ
computer and the calibration procedure was fully automated to run over
all crystals. During standard beam conditions the full calibration run took

about 60 minutes.

Energy Scans

Energy scans were performed with the beam incident on a specific crystal
in the matrix. The beam energy was defined by magnet elements within
the H4 beam line. The configuration of the beam line permitted an adequate
quality of electron beam in the 10 to 250 GeV range. The quality of the beam
was defined in terms of low amounts of hadron and muon contamination, a
sufficient rate and a low angular divergence. Energy scans at 10, 20, 50, 100,
120, 150 and 250 GeV were performed (although only 10-150 GeV results
are shown in this thesis). Typically a few scans were done for each energy

requiring 50k events per scan.

System Monitoring

The gain of the PMTs change with anode current variation. LED light was
injected in to all 25 crystals of the supercrystal to monitor the gain stability
of individual PMTs. The purpose of this was to verify that the gain of
the PMTs was constant during and between spills. LED stability ensures
the stability of the crystal, PMT and electronic readout chain. On larger
time scales (30 hours and upwards), a difference of a few percent in the
recorded LED signal was observed. As a precaution, approximately every
20-30 hours, a repeat of the calibration run using the 50 GeV electron beam

was performed.

4.3 Analysis Methods

The procedure used to calibrate a 3x3 crystal matrix involved beam spot
selection, calibrating each individual crystal and finally obtaining a calibra-

tion coefficient for the entire 3x3 matrix. Calibration coeflicients were used
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to reconstruct the electron energy for all energy scans where the LED value
remains stable. The energy reconstruction was then used to measure the
energy linearity and resolution of the irradiated crystals. The noise term was
fixed for each matrix by extracting it from the pedestal as is described later

in this section.

4.3.1 Beam Spot Selection

The beam hodoscopes (F'H; 2 and F Hs4) were positioned before the crystal
matrix in the beam line (ZFHLQ, ZFH3,4)> as seen in Figure 4.5. The hit position
of the electron on the matrix (z,,, ¥,,) was reconstructed by extrapolating the

particle trajectory using:

ZFH,

(4.4)

Ty = Tpp, + (TrH, — TrE,) X ————.
RFH—FH;

The information about the electron position permits the study of crystal
response as a function of electron impact point. These hit profiles enable the
crystal center with respect to the matrix coordinate system (z,,y,) to be
found. The coordinates (z°,4") of the centre are obtained for each crystal,
i, by fitting these distributions with a 2°¢ order polynomial function in the

range of £10 mm:
Normalised Response = pg + p12,, + paz?, (4.5)

This procedure allows the position of the centre of each crystal in the matrix
to be found with a precision of approximately 1 mm.

A narrow beam spot selection of 4x4 mm?

around the crystal centre
was chosen for calibrating individual crystals. This selection was chosen
in order to reduce fluctuations in amplitude. This improved the resolution
of the electron peak and consequently the precision of the intercalibration
coefficients from 11% to 9%. Beam spot selection reduces the statistics in
proportion to the selected beam spot area. The beam hodoscope efficiency

(70-90% per plane) used to record both z and y coordinates is an additional
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limiting factor. A beam spot selection of 4x4 mm? reduced event statistics
by up to 90%. The advantages of a narrower beam spot, however, outweigh
these losses.

The energy spectra reconstructed using a 3x3 cluster does not improve
when reducing the beam spot size from 10x 10 mm? to 4x4 mm? because the
shower is not confined to just one crystal. More statistics were also required
in outer crystals. A 10x10 mm? beam spot area is therefore used when

calibrating and reconstructing the energy within a 3x3 cluster of crystals.

4.3.2 Calibration of Individual Crystals

Individual crystals are calibrated by converting the recorded ADC (Analog-

to-Digital-Converter) count to the beam energy (GeV) using the following
procedure:

1. The ADC value corresponding to the electron peak, ADCS®, is obtained

by fitting the amplitude distribution after the 4x4 mm? position section

(see Figure 4.6 for example). A Crystal Ball function was used to

extract this value:

e$p(—($2;“z)2), for@ > —«

A(B - =2, for@ < —a

flz;a,n,z,0) = N.

where N is a normalisation factor, and a, n and ¢ are parameters which
are fitted to the distribution (x). The mean value of the peak of the
electron distribution is given by Z. A Crystal Ball function was chosen
as the amplitude distributions have asymmetric tails. A low energy tail
is observed for non-irradiated crystals while a high energy tail appears
for highly irradiated ones. A Gaussian function is unable to account

for these tails.

2. The subtraction of the offset between the PMT output and the ADC
input is known as “pedestal subtraction”. The “pedestal” peak is fitted
with a Gaussian function to extract the peak ADC position, ADC} ed,
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The signal amplitude, A; = ADC® — ADCP™, can then be obtained

for each crystal, 1.

3. The ADC-to-energy conversion coefficient, GG;, was then obtained for
each crystal using the following relationship: Fpeam = G; X A;. The

calibration beam energy, Fpeam, was 50 GeV.

The uncertainties on this procedure were assessed using two methods.
One was to vary the beam spot size between 2x2 mm? to 8x8 mm?2. This
yielded an error on G; of about 0.2%. The central position was also varied
by + 1 mm in both the x and y planes. This also gave approximately a 0.2%

error on value of Gj;.

Calibration of 3x3 Crystal Matrix

Once the individual crystal calibrations had been obtained, the energy de-
posited by a shower within a 3x3 cluster of crystals was calibrated by sum-
ming up all the contributions from the 9 crystals. A similar procedure was

performed as for individual crystals but with a sum over 9 crystals:

9
Fream = G3x3 X Z G x A, (4.6)
i=1
As with the individual crystal calibrations a Crystal Ball function is used to
find the peak position in the electron distribution. A 10x10 mm? beam spot
selection was required. The energy calibration coefficient G343 in Equation
4.6 is defined by setting the peak of the energy reconstructed in the 3x3
matrix to be equal to the beam energy (50 GeV).

4.3.3 Energy Resolution Measurements

The energy resolution has been estimated by calculating oeg. oo is defined
as half of the interval containing 68% (1o) of the 3x3 electron (F3x3) distri-

bution. The energy resolution is then defined as:

OE Oeff
R 4.
E = E (4.7)
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where FE is the peak value obtained from the Crystal Ball fit using the Fsy3
distribution. This method was preferred to using the width from the Crystal
Ball function, o¢pg, which doesn’t take the tails of distributions into account,
hence biasing op towards lower values. A slightly worse resolution is found
using o.g rather than ocp. A comparison between the two methods using a

non-irradiated matrix is shown in Figure 4.6.
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Figure 4.6: Left: The amplitude distribution for a single non-irradiated crys-
tal using a 50 GeV electron beam. The red line shows the position of the
peak estimated using a Crystal Ball fit and the red arrow represents the value
ocp. The black arrow represents the smallest interval containing 68% of the
distribution equivalent to 20.¢. Right: a comparison of the energy resolution
estimated using the two different methods is shown using a non-irradiated
matrix from the 2012 test beam.

Noise Term Estimation

In the energy resolution measurements the contribution from the noise term
(B in Equation 3.1) was determined using the pedestal and is fixed for each
crystal matrix (see Table 4.1). The pedestal of each channel was continuously

%

monitored. The mean pedestal value and the pedestal noise, oy,

were
estimated by fitting the pedestal peak using a Gaussian function for each
channel. The width of the Gaussian is referred to as opeq and has been used

to estimate the noise contribution to the energy resolution.
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The noise term has been calculated by adding in quadrature the contribution

of the pedestal, opeq, for each channel involved in the reconstruction:

9

B =) (004 % Gy)? (4.8)

i=1

where G; is the ADC to GeV conversion coefficient for a specific channel i,
which allows the different gain of each PMT to be taken into account (see
Section 4.3.2).

The pedestal noise of a single channel varied between 40 and 150 MeV. The
pedestal noise term, B, was 0.22 GeV for the central 3x3 cluster of the
non-irradiated 2012 matrix. Table 4.1 shows the values of B obtained for
each matrix configuration. The difference in noise term between matrices is

mostly due to the intrinsic noise of the PMTs used in a certain test beam.

| Year | Matrix # | B (GeV) |
2011 | cluster 12 0.17
2011 | cluster 11 0.17

2012 1 0.22
2012 2 0.34
2012 3 0.19
2012 4 0.25

Table 4.1: Contribution of the noise term to the energy resolution for each
configuration of the matrices used during test beam running.

4.4 Results

The results obtained during test beam periods from 2011 to 2012 are sum-
marised in this section. The energy resolution and linearity reconstructed
using 3x 3 crystal matrices are shown for crystals with a range of p;,q values.
Test beam energies in the range 10 to 150 GeV were used.

The energy linearity of crystal matrices used in the 2011 and 2012 test

beam set ups are displayed in Figure 4.7. The linearity curves have been fit
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using the following parameterisation:

L(E) =1+ Sni(tina) % l0gro <§)) (4.9)

where Sy, is a non linearity parameter related to the p;,q and E is the beam
energy. Sy is an 8" order polynomial function of the py,q variable only
[61, 62]. This is the reason perfect agreement with the data is not observed.

This parametrization assumes that L(50) = 1 by construction.
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Figure 4.7: Fit of linearity for 2012 and 2011 irradiated matrices using the
parametrization of Equation 4.9.

The energy resolution measurements using the method described in Sec-
tion 4.3.3 are shown in Figure 4.8. The data has been fit using the parame-
terisation in Equation 3.1. The stochastic and constant term contributions

to the energy resolution are shown in Table 4.2.
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Figure 4.8: The energy resolutions as a function of beam energy are compared
for different crystal matrices of varying radiation damage. The resolution is
fit using Equation 3.1.

4.5 Discussion

The increasing non-linearity corresponding to higher values of pj,q can be
interpreted as the effect of transmittance loss leading to less efficient light
collection from the crystal. Since the maximum of the shower, t,,,., moves

toward the rear face of the crystal with higher beam energy according to:
timaz X IN(E) (4.10)

it is expected that light produced by low energy showers will suffer more from
transmittance losses since it has to travel a longer path before reaching the

PMT. This light will be more attenuated along the crystal introducing a non-
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[Matrix [ g™ () [l ) [A %GV [ C (%)

2012 -1 0.0 0.0 5.6 £0.2 0.5£0.1
2011 -1 3.4 3.5 8.9 £ 0.6 23 £0.2
2012 -3 7.4 7.7 127 £ 1.0 3.1+£0.2
2011 -2 10.9 10.1 11.8 £ 0.8 3.7£0.2
2012 - 2 114 10.9 125+ 14 4.9 £0.3
2012 - 4 21.7 20.3 24.5 £ 3.0 10.3 £ 0.5

Table 4.2: Stochastic and constant terms affecting the energy resolution as
extracted from the fits.

linear effect on the energy reconstructed. This suggests a parametrization
of the linearity as in Equation 4.9. The matrices of non-irradiated crystals
show a good energy linearity in the range 10-120 GeV whereas the irradiated
matrices show an increasing non-linearity, as can been seen in Figure 4.7.
The energy resolution decreases with increasing average g of the crystal
matrices. Using the chosen parmeterisation of the energy resolution, the
constant term evolves from 0.5% for non-irradiated matrices to 10.3% for
the most damaged matrix of October 2012 (matrix 4). The constant term
is expected to degrade with increasing average pi,q of the crystals within
a matrix. In this test beam configuration, there are several contributions

affecting the constant term:
1. Different p;,q of the crystals within a 3x3 cluster.
2. Partial containment of the shower inside a limited-size matrix.

3. Non uniformity of light collection efficiency along individual crystals.

4.6 Summary

The results presented, show the evolution of the performance of EE matrices
constructed from 3x3 hadron-irradiated PbWO, crystals in terms of energy
linearity and resolution. The set of matrices consists of PbWO, crystals

with different levels of proton radiation damage corresponding to an induced
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absorption jii,q in the range 0-20 m~!. Assuming no dose rate dependency
and no annealing of the hadron damage, such induced absorptions coefficients
are expected to largely cover the effect of the doses predicted for EE after an
integrated luminosity of 300 fb=! at n = 2.3 — 2.5.

[rradiated matrices show non-linearities in the reconstructed energy which
increase with the loss of transparency of the crystals. The constant term of
the energy resolution changes from 0.54% to 10.3%. These results suggest
that the main effects of the proton radiation damage in PbWQO, crystals can
be described by a loss of the light transmission along the crystal. The results
presented in this chapter provide important information on the effect of ra-
diation in PbWO, crystals and provide information about how to validate a

model for the damage within the CMS reconstruction software.



Chapter 5

Event Reconstruction and
Weighting

Y

In this chapter the transformation of the “raw” information from the CMS
detector into the construction of physics “objects” such as particles, jets and
Emss will be described. In order to achieve this, a number of reconstruc-
tion algorithms have been implemented that help improve the resolution of
measurable physics observables. This chapter outlines the variables used
to identify specific particles such that mis-identified particles (fakes) can be
minimised. The event weighting procedure is also described, which aims to

correct for known differences between the Monte Carlo and the data.

5.1 Track and Primary Vertex Reconstruc-
tion

Tracking is the measurement of the path that charged particles take as they
traverse the Tracking detector. It is vitally important for the measurement of
the pr of charged particles. The force, F', that a charged particle experiences
is given by

F=q(@x B) (5.1)

65
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where ¢ is the charge of the particle, B is the magnetic field strength and v
is the velocity of the particle. Equation 5.1 can be rearranged such that the
momentum, p, of the particle is related to the radius of curvature, r, of the
particle within the detector

7= qBr (5.2)

The tracking of particles is also important in the determination of the
primary vertex, which is the location of the interaction point where the hard
scattering was initiated. The reconstruction of a good primary vertex is
key in separating the interesting physics events from soft QCD interactions

(pileup) and also from the underlying event.

5.1.1 Track Reconstruction

The first step in track formation with CMS [63] is to cluster energy deposi-
tions from the inner pixel detector and tracker into “hits”. So-called “seeds”
are then formed using minimal tracking information. A particle trajectory
is defined if at least three hits are present in various layers of the tracker.
Hits are chosen based on their position and the associated uncertainty. A
combination of two hits and a beam spot constraint can also be used.
Tracks are then constructed from the seeds using a Kalman Filter ap-
proach [64]. This involves propagating outwards through the tracker layers
and forming potential tracks from hits on the outer layers. In some circum-
stances multiple hits can be compatible; in this case an additional track is
formed. After this process, there can be multiple seeds assigned to tracks
and multiple tracks assigned to seeds so some cleaning up is required; If more
than 50% of the hits on a trajectory are multiply-assigned the track with the
lowest number of hits is discarded. If the number of hits for both tracks
are equal the track with the lowest y? divided by the number of degrees of

freedom is used where y? is defined as:

2

=) @ (5.3)

. %
%

where x; is a measured track position, p; is the expected position from ex-
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trapolating a particles’ trajectory at layers, ¢, in the tracker and o; is the
uncertainty on the x; measurement.

After the initial stringent fit criteria, the final particle track is recon-
structed by refitting the Kalman Filter method. Hits with a large residual
from the trajectory are removed. A track quality selection is then applied
using the number of hits, normalised x? of the track and the vertex compat-

ibility. This helps to reject fake tracks in the case of high track multiplicity.

5.1.2 Primary Vertex Reconstruction

The reconstruction of the Primary Vertex (PV) is the determination of the
interaction point from which the majority of tracks originate for a specific
event. More than one primary vertex can be present in a bunch crossing
due to pileup. A PV is reconstructed using tracks that fulfill certain quality
criteria such as the y2, the number of hits in the inner tracking system and
the impact parameter with respect to the beam spot position. These tracks
are input into a vertex-fitting procedure [65]. This uses a Kalman Filter
approach that calculates a weight related to the likelihood that a given track
is associated with a particular vertex position. The sum of these weights
relates to the number of degrees of freedom (ndof) associated with a PV.
More than four dofs are required for a PV to be selected. The |z| position of
the PV along the beam line must be within 24 cm of the center of the detector
and within a distance, p, of less than 2 cm from the nominal interaction point

(beam spot) in the x-y plane.

5.2 The Particle Flow Algorithm

The particle flow (PF) reconstruction [66] algorithm aims to reconstruct all
stable (long lived) particles within an event. These particles include charged
and neutral hadrons, photons, electrons and muons. The information from
all sub-detectors is combined for optimal identification of individual particles.
The algorithm produces a list of all particles in the event, which can then

be input into a clustering algorithm to reconstruct higher order objects such
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as jets, hadronically decaying taus and EM5. The CMS detector is ideally
suited to use this algorithm with its large silicon tracker immersed within a
high magnetic field. The algorithm combines information from the tracker
and the calorimeters to form “blocks” in the detector. These blocks are then

interpreted as particles.

5.2.1 Iterative Tracking

The iterative tracking algorithm is used to identify charged particle tracks.
This algorithm starts by first seeding and then reconstructing tracks as de-
scribed in Section 5.1 with a tight selection criteria. Once a well defined
track has been formed its hits are removed from the next iteration of track
forming. The next track is identified using a slightly looser selection require-
ment. The PV requirement is relaxed after more than three iterations, which
helps to reconstruct charged tracks coming from photons or neutral hadron
decays. Some longer lived neutral hadrons and some photons may not leave
a track at all and their presence can only be inferred from energy depositions

in the calorimeters.

5.2.2 Calorimeter Clustering

The hadronic and electromagnetic calorimeters are important in the identifi-
cation and energy measurement of neutral hadrons and photons. Calorimetry
is also used to help improve the energy/momentum measurement for parti-
cles and is particularly useful for hadrons that are associated with low quality
tracks. The algorithm is used separately for each sub-calorimeter. The first
step of the algorithm is to form “seeds” within cells where the energy de-
posited is greater than a certain threshold. This threshold is defined by the
noise within the calorimetry electronics: 80 MeV in the ECAL barrel, 300
MeV in the ECAL endcap and 800 MeV in the HCAL. Next, topological
clusters are formed by aggregating adjacent cells where the adjacent cell has
an energy of more than 20 above the average noise expected for a cell within
that sub-detector. Finally, the granularity of the calorimeter is exploited

to distinguish between particle flow clusters within topological clusters such
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that the number of particle flow clusters match the number of initial seeds.

This process helps distinguish particles having a low spatial separation.

5.2.3 Linking Algorithm

A linking algorithm is next performed to match tracks with the clusters. This
allows the path of particles to be mapped as they traverse the detector and
helps to remove double counting of tracks. A connection is made between
a track and a cluster by extrapolating the trajectory of the track outwards
from the tracker. This extrapolation is performed out to the expected shower
maximum for a typical electron in the ECAL or the typical interaction length
of a hadron shower in the HCAL. The quality of a match is defined by the
distance in the n¢ plane between a track and a matched cluster. A link is
formed if the extrapolated track is within the boundary of a calorimetric
cluster. Links can also be formed between pairs of clusters in the ECAL
and HCAL or the ECAL and preshower sub-detectors in the case where the

cluster in the more granular detector is within that of the less granular.

5.2.4 Particle Identification

The final part of the PF algorithm is the identification of particles types
within an event. The algorithm starts by matching linked “blocks” to the
most easily identifiable particles. As particles are matched to “blocks” by
passing a set of identification criteria (outlined in the following sections),
their tracks and clusters are removed from further processing. The algo-
rithm then moves on to particles where the identification is more ambiguous.
The algorithm starts by identifying electrons. Muons that are not contained
within a jet are then identified by linking the inner tracks with those in the
muon chambers. Muons within a jet are required to pass tighter identification
requirements as charged pions can quite easily be misidentified.

Charged hadrons, neutral hadrons and photons are then identified. This
begins with the identification and removal of tracks from charged hadrons.
This is done by comparing the energy of matched clusters in the ECAL with

those in the HCAL and also with the momentum measured from tracking. If
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the charged hadron hypothesis is satisfied these clusters and tracks are then
removed. In the case where multiple tracks match a cluster, the sum of the
track momenta is required to be compatible with the calorimetric energy.
In the opposing case where multiple clusters are linked to a single track,
the momentum of the track is compared to the energy of the closest linked
cluster. If the values are compatible, the track and corresponding cluster are
removed. Otherwise, the sum of the energy in neighbouring clusters is used
until there is a reasonable match to the track pr.

If there are still clusters present at this stage, they are considered to be
photons, unless there is an excess energy in the HCAL compared to that in
the ECAL, in which case a neutral hadron is identified. The assignment is
done in this order because photons are expected to carry around 25% of jet

energy compared to only 3% from neutral hadrons.

5.3 Electron Reconstruction and Identifica-
tion

Electrons are reconstructed [67] using information from both the ECAL and
the tracker. The reconstruction starts with the deposition in the ECAL.
This is then matched to the seeds within the tracker. The trajectory, and
therefore the momentum can then be calculated using the particle flow al-
gorithm. Bremsstrahlung associated to the electron must be included in its
reconstruction.

The deposition in the ECAL is measured by clustering the hits within cells
into clusters. In the EE, the cluster is propagated back to the preshower (PS)
detector and the deposition here is also used in constructing the trajectory.
As a result of CMS’s large magnetic field, bremsstrahlung photons can be
spread quite widely in ¢ from the primary electron. The deposition within
an ECAL supercluster (5x5) is therefore used. Superclusters (SCs) with an
energy deposition of greater than 4 GeV are selected and then matched to a
tracker seed. The electrons’ trajectory, and hence its pr are then obtained

using the particle flow algorithm.
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Identity variable tight loose
Electron Identification Particle Flow: MVA > 0.5 MVA > 0.5
Exclusion of EE-EB transition region (1.4442 < |n| <1.566) applied not applied
Transverse impact parameter w.r.t primary vertex < 0.02 < 0.04
Photon conversion rejection applied applied
Missing inner tracker hits 0 0

PF Relative Isolation < 0.1, cone 0.3 < 0.15, cone 0.3

Table 5.1: Table containing electron identification requirements for both tight
and loose selection as prescribed by the CMS top group.

These electron candidates must then pass a set of selection and identifica-
tion criteria [68]. These aim to minimise mis-identification and are outlined
in Table 5.1. A simple selection-based [69] criteria was used for the 2011
data with a more sophisticated multivariate (MVA) identification [70] re-
quirement applied in 2012. The efficiencies of the MVA identification as a
function of pr in both the barrel and the endcap can be seen in Figure 5.1.
Similar variables are used in both the selection-based and MVA identifica-
tion. These include tracking variables such as the x? of the track divided by
the number of degrees of freedom and the impact parameter with respect to
the primary vertex. Geometric properties of the candidate electron are also
used including the tracks spread in both 1 and ¢. Shower shape variables and
energy matching terms are also included such as H/E, the ratio of the energy
deposited in the HCAL to that in the ECAL, and E/p which is the energy
measured in a ECAL supercluster divided by the momentum measured using

the particle flow algorithm.

5.3.1 Photon Conversion Veto

An additional bit of identification is required to make sure the electron does
not originate from a converted photon. Electrons can be misintrepreted in
an event when a photon produces a pair of electrons. To minimise this
occurrence, photon conversion and missing inner track vetos are applied.
Photon conversions are identified by combining opposite sign pairs from a
secondary vertex in the tracker. Photons do not leave hits in the inner
pixel detector and hence missing hits would indicate that a photon produced

the detected electron. Events containing a pair of electrons from a pair of
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Figure 5.1: Identification efficiencies for both the data and the MC extracted
from the the tag and probe method (see Section 5.7.1) using the MVA iden-
tification criteria. The left plot shows the efficiencies in the barrel and the
right for electrons detected in the endcap. Taken from [71].

converted photon are rejected.

5.3.2 Relative Isolation

In top pair events, leptons are produced from the prompt decay of a W boson
and are expected to be produced away from other event activity. This feature
of an electron in events is characterised as relative isolation ( izg) It can be
defined using all particles within an event that are reconstructed using the

particle flow algorithm by the following:

charged neutra
iso __ pT ¢ +ZE%+ZET tral (54)
lep = lep :
br

where 3 paeed S™ EY and 7 B2l are the sums of the pp or Ep of all the
charged hadrons, photons and neutral hadrons, respectively, within a cone

around the lepton in question. The cone radius, AR, is defined as:

AR = /Ap? + A2 (5.5)

where An and A¢ are radial distances in pseudorapidity and ¢ from the
electrons’ path. A cone size of AR = 0.3 is used for electrons. Corrections

are also applied to the isolation to remove the effect of neutral hadrons and



Muon Reconstruction and Identification 73

photons arising from pileup being included in the isolation cone. The pileup

energy is simply subtracted in the calculation of the relative isolation:

charged Y+neutral Y+neutral
iso br + HlaX<Z ET —pP Aeff 70)

lep — e

pr

(5.6)

Here, p is a measure of the pileup energy density in an event and is calculated
using jet activity from other interaction vertices. AJF™""* is defined as the
effective area and is the probability of finding a photon or neutral hadron
within a certain isolation cone as a function of pseudorapidity. The effective
rather than the geometric area is used to take detector effects into account.
The A values used were obtained from 12.1 fb~'of 2012 Z — ee data [72].

5.4 Muon Reconstruction and Identification

Muons have a long lifetime of 7 ~ 2.2 ps. This means that high pr (pr 2 20
GeV) muons can escape the entire CMS detector without losing all of their
energy through Coulomb scattering. Low pp muons (pr < 5 GeV), however,
are usually stopped in the detector and decay via the electroweak interaction
to an electron and two neutrinos. Muon reconstruction is performed using
the particle flow algorithm as has been previously described in Section 5.2.
There are some slight deviations to the standard particle flow algorithm for
muons which will be described. Muons produced in tf events are from the
decay of a W boson and so are produced close to the primary vertex and
isolated from other event activity. Reconstruction starts by building tracks
separately in the tracker and muon detection system. The information from

these two sub-detectors is reconstructed in two different ways:
e Global muon reconstruction - “from outside-in”

e Tracker muon reconstruction - “from inside-out”
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5.4.1 Global Muon Reconstruction

Global muon reconstruction first reconstructs tracks in the muon detection
system. The track is then propagated inwards using the Kalman Filter tech-
nique [64] starting with local segment seeds. If other hits have a compatible
x%/ndof then these are included and the trajectory is recalculated. After the
track has been reconstructed in the muon detector, it is propagated inwards
taking into account the magnetic field and multiple scatterings effects. This
continues until the closest approach to the beam line is reached. Since there
is a much higher track density in the inner tracker, there could be multiple
tracks compatible with the track propagated from the muon detector. Ini-
tially tracks are selected that are within an 77 X ¢ region of the propagated
track. Then more stringent pr and spatial requirements are requested of
the inner tracks. Selected inner tracks are then propagated outwards until
it meets the inwardly propagated track from the muon system at a common
surface between the two subdetectors. A quality test is done on the compat-
ibility of the two tracks. The hits in both the inner tracker and the muon
detector are then used to form a global track. If there is more than one

compatible track the one with the lowest x?/ndof is used.

5.4.2 Tracker Muon Reconstruction

Tracker muon reconstruction relies more on the tracker information and only
uses minimal information from the muon detection system. Tracks with pr
> 0.5 GeV/c and a total momentum greater than 2.5 GeV/c are considered
as possible muon candidates. As in the global muon case the track is extrap-
olated outwards to the muon chambers. As long as the track can be matched
to within a radial distance of 3 cm of a segment (few hits in the muon DT
or CS detector) or has a pull of less than 4 then it is selected as a tracker

muon. The pull is defined as:

(Xex - Xhit)

0x

pull = (5.7)
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where X, is the extrapolated position, Xy is the hit position in the muon
detector and oy is the combined error on both positions.

The tracker algorithm obtains a better efficiency for low pr muons (p <
5 GeV) since lower pr muons don’t always pass through many of the outer
muon detectors before losing all of their energy. The global muon algorithm
improves the momentum resolution for higher pr muons that escape the

detector before losing all of their energy.

5.4.3 Identification

Global and tracker muon reconstruction algorithms provide the basis for tight
and loose muon identification. A “tight” muon is required to be reconstructed
globally whereas a “loose” muon may be reconstructed using either the global
or tracker algorithms. Tight muons are then also required to pass some
additional requirements that are outlined in Table 5.2. These requirements
are related to the quality of the track, the impact parameter with respect to

the PV and the z axis and the number of hits in various parts of the detector.

Identity variable tight loose

PF Muon Reconstruction true true

Muon Reconstruction Algorithm Global muon Global or Tracker muon
norm x?2/dof <10 not applied
Tracker layers with measurement >5 not applied
Number of valid muon chamber hits >0 not applied
Transverse impact parameter w.r.t primary vertex < 0.2 cm not applied
Vertex,,(z)-PV(z) <05 not applied
Number of hits in inner pixel tracker >0 not applied
Matched hits in muon stations >1 not applied
PF Relative Isolation <012, AR=104 <0.20, AR=104

Table 5.2: Muon identification requirements are shown for both “tight” and
“loose” selections as prescribed by the CMS Muon object group [73].

5.4.4 Isolation

As with the electrons there is an isolation requirement for the muons. Again,
particle flow isolation is used in a similar fashion as for electrons. There are,

however, two differences compared to the electron case. The first difference is
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that a slightly different method is used to remove the PU from the isolation
cone as seen in the following equation:
pcharged + max(z E%—Q—neutral —05- Zngy 0)

iso __ T
Rlep - H
Pr

(5.8)

where >~ prV is the sum of the pr of the charged pileup within the cone of
interest. The factor of 0.5 corresponds to the naive estimation of the neutral
to charged hadron ratio in jets [74]. The second difference from the electron
channel is that a cone of AR = 0.4 rather than 0.3 is used.

5.5 Jet Reconstruction and Identification

Jets are an important feature in top pair events as two b quarks are produced.
In the semi-leptonic channel two additional quarks are also produced from
the decay of one of the W bosons. Jets are produced in the detector from the
hadronisation of these quarks. Jets are reconstructed by combining particles
reconstructed and identified using the PF algorithm described in Section 5.2.
PF reconstruction has been shown to improve energy resolution substantially
over using calorimetric reconstruction as seen in Figure 5.2 and gives closer
values with respect to generator/truth level. There are various algorithms
that can be used to reconstruct jets. The two main requirements are that

the reconstructed jets should be:

e Infra-red safe: should not be affected by soft gluon emissions;

e Collinear safe: should not be affected by collinear parton splitting.
Along with these two requirements, an algorithm that has a low sensitivity

to pileup and the underlying event is preferred.

5.5.1 Reconstruction

CMS currently uses the “anti-k;” algorithm [75], which sequentially clusters
particles into jets. The algorithm starts with the highest pr particle, 1,
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Figure 5.2: Jet-Energy resolution as a function of jet pr for calorimetic and
particle flow jets from simulation. An improved resolution is observed par-
ticularly for low pr jets. Taken from [66].

and iterates over softer nearby particles calculating effective distances, d;;,

between neighbouring particles and the beam, d;g:

. A}

dij = mln(ktgip, k‘fjp) ARJQ (5.9)
1

dip = — (5.10)
ki

where A?j = (yi — y;)* + (¢i — ¢;)* and ky;, y; and ¢; are the transverse
momentum, rapidity and azimuthal angle, respectively, of the particle. AR
is the cone radius (0.5) as defined in Equation 5.5 and p is the parameter
that defines the choice of clustering algorithm [76]. The anti-k; algorithm
uses a p value of -1. If the value of d;; is less than d;p then the softer particle
is included in the jet, otherwise it will form part of another jet. The result of
this approach is that soft particles surrounding a hard particle form conical

jets.
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5.5.2 Identification

PF reconstructed jets are required to pass a set of fairly loose quality re-
quirements which are outlined in Table 5.3. In addition to this jets that
are within AR of less than 0.5 to an electron or muon which pass the tight
selection (defined in Tables 5.1 and 5.2) are rejected. This removes jets that

were wrongly identified as electrons or muons.

Identity variable selection requirement
Number of particles in jet > 1

Neutral hadron energy fraction < 0.99
Photon energy fraction < 0.99
Charged EM energy fraction (|n| < 2.4) < 0.99
Charged hadron energy fraction (|n| < 2.4) >0
Charged hadron multiplicity (|n| < 2.4) >0

Table 5.3: The loose jet identification requirements as prescribed by the CMS
Jet object group [77].

5.5.3 B-tagging

The presence of two b quarks makes the identification of top pair events more
recognisable. A method called b-tagging aims to identify jets produced by b
quarks as opposed to lighter quarks or gluons (u, d, ¢, s, g). The properties
of the bottom quark are used to make this distinction. A b quark decays
via the weak interaction to either a charm or an up quark. These decays
are suppressed by the CKM matrix and so the b quark has a relatively long
lifetime (7, ~ 1.5 ps). A relativistically travelling b quark would have a decay
length of ~ 450 pum. This is an observable length for the high resolution
CMS pixel tracker. A displaced secondary vertex can therefore be used (as
shown in Figure 5.3) as a b-tagging technique (Simple Secondary Vertex,
SSV algorithm [78]).

The b quark has a large mass (m, = 4.18 GeV/c?) and so a large multi-
plicity of charged particles are produced during hadronisation. The b hadron

carries a large fraction of the jet energy. In its decay the off-shell W boson
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Displaced
cks

Secondary
Vertex

Figure 5.3: Schematic of the displacement of secondary vertex (SV) due to
the b decay from the PV. Here the PV is associated with the tracks from
two jets. Displaced tracks are used to reconstruct a SV. Each track has an
impact parameter, dy, which is its displacement with respect to the PV along
the z-axis. Lg, is the transverse distance of the SV from the PV in the z-y
plane.
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decays with 20% probability to an electron or a muon so b-jets can often be
associated with one of these leptons. Particle tracking information combined
with the properties of the secondary vertex can therefore be used as input
to a b-tagging algorithm. The algorithm that is currently used is called the
Combined Secondary Vertex (CSV) algorithm [79].

All jets within an event are possible b candidates. The CSV algorithm
starts by looking for a secondary vertex. All reconstructed particle tracks
within a jet are input [80]. A similar Kalman Filter Vertex Finder [81] to
that used for the PV is implemented to reconstruct the SV. The vertex must

then pass a set of requirements to be classified as a true reconstructed vertex:

e The distance, L

secondary vertex must be greater than 100 pm and be less than 2.5

zy, 10 the transverse plane between the primary and

cm.
o L,/ or,, > 3, where o, is the error on Ly,.

e The invariant mass of the charged particles associated to the secondary
vertex must not exceed 6.5 GeV/c? as this would exceed the the mass of
a bottom quark, even taking into account the uncertainties associated

with the value.

e A veto is applied for KV decays (K? — 7t7~), where an oppositely
signed pair of particle tracks originate from a vertex with an invariant
mass within 50 MeV /c? of the K? mass (~ 0.5 GeV/c?).

If a secondary vertex is not found a pseudo-secondary vertex is identified
using tracks that are not compatible with the primary vertex. Otherwise no
secondary vertex is found.

A set of discriminating variables is then combined into a single discrim-
inator that is used to separate the charm and the lighter quark jets from
the b-jets. The set of discriminating variables includes the invariant mass of
the charged particles associated to the vertex, the number of charged tracks
associated to the vertex, Ly, /o, and the energy of the charged particles
associated to the vertex divided by the energy of the charged particles associ-

ated to the jet. B-tagging can be performed at various working points using
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this discriminator. The partons that initiated candidate b-jets in ¢¢ enriched
events is presented in Figure 5.4. Tight, medium and loose working points
can be used depending on the purity requirements of a particular analysis.
The loose, medium and tight working points are at 0.244, 0.679 and 0.898,
respectively. The medium working point has a b-tagging efficiency of roughly
65% and a mis-tag (wrongly tags u, d, s, g as b quarks) rate of 1% [82].
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Figure 5.4: Logarithmic distribution of the partons as a function of the CSV
b-tagging discriminant. Taken from [83].

5.6 Missing Transverse Energy Reconstruc-
tion

The missing transverse energy (E2) in an event is defined as the imbalance
of transverse energy in an event. This arises naturally in semi-leptonic tf
events due to the energy carried away by the undetected neutrino produced
in the W decay. E¥5 is also used in a lot of searches for new physics since
new exotic particles may be undetectable. ER is calculated by obtaining

the vectorial sum of the transverse momenta of all particles, 7, identified
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using the PF algorithm in an event:

s 1
Bps == (p2+py)2. (5.11)

%

EXss can also arise unnaturally as a result of random electrical noise in
a certain part of the detector. Noise filters are applied to remove events
where there is excess noise in certain parts of the detector. The resolution
of the EI plotted against the sum of the transverse energy can be seen
in Figure 5.5. Roughly a factor of two improvement is seen when using PF

reconstruction over purely calorimetric reconstruction.
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Figure 5.5: Resolution of E¥* vs. the scalar sum of the Er of all particles
in an event using 7.5 nb~* of 2010 data compared to simulation. Both PF
and calorimeter reconstructed ER are shown. Taken from [84].

5.7 Event Reweighting

The MC simulation does not always perfectly describe the data. An example
of this is that in the 2011 data taking the amount of pileup changed as the
instantaneous luminosity increased. The simulation included pileup assuming

that it was flat up to 10 pileup events and had a Poissonian tail. As such,
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reweighting had to be performed to ensure that the MC matched the data.

To correct for mis-modelling in the MC, correction factors are derived
from the data. Well known physics processes such as Drell-Yan (Z boson
decays to lepton pairs) are usually used to extract the event weights. Weights

have been applied to account for the following data/MC mismatches:

o Trigger efficiency (SFrig,);
e Lepton Identification and Isolation (SFiq-1so,);
e pileup Scale Factors (SFpy);

e B-tagging Scale Factors (SFy_tag).

A weight must also be applied for each MC sample to reweight the total
number of events produced by the MC generator, Npyocessed, t0 the integrated
luminosity, £, of the data and the theoretical cross section, o, of the simulated

process. The following scaling factor, SFyc, is obtained:

L Xxo
Skhuc = —— 5.12
Me Nprocessed ( )
All of these scale factors are applied on an event-by-event basis. The

overall scaling factor, SF', is given by their product:
SF = SFMC X SFTrig,L X SFIdesoM X SFPU X SFbtag (513)

An additional weight was applied to t¢ MC events to account for an observed
difference between the data and MC top pr distributions [85].

5.7.1 Muon Scale Factors

A trigger is applied to the data during the data taking process. The trigger
being applied in the MC attempts to replicate the same implementation but
it is not always able to mirror the exact details of the actual trigger. The “tag

& probe” method [86] is used to measure the trigger efficiency as a function
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of muon pr and 7 for both data (€qata) and MC (eyc). The scale factor is
then given by:

SF = data (5.14)
EMC

In the tag and probe method the di-muon resonance from the decay of a
Z boson is used. A tag is defined as a muon that passes a tight selection.
The probe is a muon which passes only a loose muon requirement and also
has an opposite charge to the tight muon. A passing probe is then a probe
muon that passes a desired selection requirement, so in the case of the trigger
it would have to pass the isolated muon trigger. The efficiency of this desired
selection requirement is then:

ypass

robe
€= N};H (5.15)

probe

where NP** 'is the number of passing probes and N2 is the total number

robe robe
of probe: within the Z mass resonance. Drell-Yan aniched data is used to
calculate the efficiency for data with Drell-Yan Monte Carlo being used for
the MC.

The trigger scale factors used in the analysis were centrally produced by
the CMS muon group for the various data taking periods [87]. The 2011
efficiencies for the muon 7 distribution are plotted in Figure 5.6.

Scale factors also need to be applied to account for muon identification
and isolation differences between the data and MC. These SFs are again ob-
tained using the tag and probe method, except now the probe must pass the
tight identification or isolation requirement rather than the trigger. Figure
5.7 shows the identification and isolation scale factors for the 2011 data set.
These muon SFs are dependent on the pr and n of the “tight” muon in the

event.

5.7.2 Pileup Reweighting

Due to the rapidly changing pileup conditions, particularly during the 2011

data taking period, it is impossible for the Monte Carlo to precisely model
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Figure 5.6: Efficiencies for data and MC passing the HLT_Mu30 trigger as a

function
(bottom

of muon 7 (top) and pr in the barrel (bottom left) and the endcaps
right) for 1.1 fb~'of 2011 data. The scale factors are obtained by

dividing the data by MC. A 35 GeV pr cut was made on the muon in the n
study to ensure that the muon is well clear of the trigger turn on at 30 GeV.

Images taken from [87].



Event Reweighting 86

% 1.05— % 1.05

g F 5 F

o r o r

= 17 R ey h=] 1j%‘ e g

o o= ] o ro=- ' ]

S 0.95F= MS Preliminary . S 0.950= MS Preliminary .

v r 2011 data,Ns=7TeV ] v 2011 data,\N5=7TeV ]

7 09r% ] I 09F™ :

o - o -

g r s r

§ 0.85: % 0.85:

< E lhis1.2 < F li>1.2

é 0'87" Data é 0'8?" Data

= r = r

£0.75F SooMe £0.75F SooMe

= —+— Data/MC = —+— Data/MC

(e Yy B T OO e e (e Yy B OO o e e e e

50 100 150 200 250 50 100 150 200 250

muon p_ (GeVlic) muon p_ (GeVic)
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pileup. In the MC produced in the summer of 2011 for example, events were
simulated with a flat pileup distribution up to 10 interactions with a Pois-
sonian tail. The situation improved for the 2012 MC production somewhat.
It still however isn’t perfect as can be seen in Figure 5.8. This MC distribu-
tion clearly doesn’t match the PU distribution of the data which is more or
less Poissonian distributed with a mean of about 14 interaction vertices per
bunch crossing.

To perform the reweighting, normalised PU distributions in data and the
MC are used. The PU distribution for MC is taken directly from a centrally
provided set of normalised values for the required MC production cycle. The
PU distribution for the data is estimated using the number of in-time in-
teractions per luminosity block. The estimated instantaneous luminosity for
the runs included in the data sample and the total inelastic proton-proton
cross section are used (Npy = L X opp) to produce a distribution of the
expected number of pileup interactions. Figure 5.9 shows the true number

of interactions per bunch crossing for different pp inelastic cross sections for
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both the 7 and 8 TeV data. The event weights are then calculated using:

SFpy =

NNormalised data

N Normalised MC

(5.16)

These weights are normalised such that their mean is 1, leaving the total

number of simulated events unaffected.
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Figure 5.8: Number of reconstructed vertices in the 2012 data set. Events
with at least four jets are used. The left shows the number of vertices before,
and the right plot after, pileup reweighting. A vast improvement in the
modelling of the data is observed.

5.7.3 B-tagging Scale Factors

In the analysis performed on the 8 TeV data b-tagging was implemented. A
pr dependent b-tag scale factor is applied to each b-tag for simulated events
to account for the differences between data and simulation [88]. These scale-
factors are derived using a combination of b-enriched QCD and ¢t data sets
[89]. Simulated events passing the b-tagging requirements are given a weight
(following the prescription from the b-tagging physics object group [90]) to
ensure that the probability of selecting a simulated event matches the prob-
ability of a data event with the same jet flavour composition being selected.

The results of the reweighting can be seen in Figure 5.10. The number

of MC events in the 0 and 1 b-tag bins are scaled up while the number of
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Figure 5.9: The normalised number of expected vertices per bunch crossing
for various inelastic proton-proton cross sections for the 2011 and 2012 data.

MC events with b-tag multiplicity greater than 1 are scaled down. There is
a slight mismatch between the data and MC for higher b-tag multiplicities.
This can be put down to the fact that MADGRAPH MC is only simulated

with up to three additional partons.

5.7.4 Jet Energy and Resolution Corrections

Particles produced in the underlying event (UE) and PU have the effect of
smearing the energy of jets that are produced in a hard scattering process.
Jet energy corrections are applied to remove the effect of this. A similar
procedure as with the electron relative isolation (see Section 5.3) is used to
correct for the effect of PU and the UE on the jets. Again, this uses the
energy density (p) for a particular event and the effective area, A.g, which is
determined as a function of 1 within the detector.

Corrections are also applied to account for the non-linearity of the detec-

tor as a function of the n and pr of jets. Di-jet data and Drell-Yan simulation
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Figure 5.10: Logarithmic distribution of b-jet multiplicity before (left) and
after (right) applying b-tag scale factors for the 8 TeV data.

are used to derive these corrections [91]. These corrections are applied not
only to the MC but also to the data. The reason for this is that energy
leakage from jets is dependent on where in the detector it is measured. In
some cases, it may not be possible to fully reconstruct a jet, for example, if
it punches through the HCAL.

Jet energy resolution corrections are applied to account for the fact that
jet energy resolution is worse in data than in simulation. All PF jets in MC
are smeared by the prescribed scale factors that were derived using 0.8 fb~!
of 2011 di-jet data [92]. Measurements with 2012 data and more statistics

showed consistent results.

5.7.5 Missing Transverse Energy Corrections

The ET is corrected by propagating the correction from the jet energy and
resolution corrections described in the previous section to the EX5. These
are known as “Type [” ER corrections. The ER and ERS ¢ distributions
are shown in Figure 5.11. These distributions show the small effect that these

corrections have.
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Figure 5.11: Distributions of raw EX and EXs ¢ (left) and TYPE I cor-
rected BT and EX° ¢ (right) for the 8 TeV data. In the E¥*s distributions
the final bin is as an overflow, containing events beyond the range of the z-
axis.
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5.7.6 Top pr Reweighting

The differential cross section measurement of the top quark pr showed a
discrepancy between the data and the prediction of MADGRAPH and the
other MC generators. The data was observed to be softer than the predictions
from the various generators [93, 94, 95]. This was first observed for the 7 TeV
top pr distribution as can be seen for the semi-lepton channel in Figure 5.12.
This mis-modelling in MC can also have a slight effect on other distributions
including the E¥s Hp and St. The nature of this discrepancy is still not

very well understood. Top pr reweighting is applied to correct for it.
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Figure 5.12: The top pr distribution above shows the discrepancy between
the data and the MADGRAPH prediction. The agreement is better for the
approximate NNLO prediction. Image from [93].

A weight is applied to each event dependent on the generated pr of the
top and anti-top. The weight, w, is given by:

w = SF(top) x SF(anti — top) (5.17)

where SF(top) is calculated for both the top and the anti-top quark and is
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given as a exponential function of the top pr:
SF(top) = exp(A + Bx) (5.18)

where A and B are coeficients determined from a fit to remove the discrep-
ancy [96]. x is the pr of the top/anti-top. This correction is normalised such

that the total events in MC is conserved.

5.8 Summary

In this chapter, all of the physics objects which are used to identify top-
pair decays have been reviewed. The reconstruction and identification of the
various particles that are present in ¢ decays has been described. Details on
the corrections applied to account for differences between data and MC have

also been given.



Chapter 6

Inclusive tt Cross Section
Measurement at /s = 7 and 8
TeV

Top quark pair decays are capable of producing all particles and so all parts
of the detector may be required. To ensure that the CMS detector was
behaving as expected, ¢t was therefore one of the first things that had to be
studied in detail when the LHC was first turned on. It was important to check
that the particles, jets and EM* are well understood such that the inclusive
cross section can be measured precisely. This would give confidence going
on to more complicated studies involving the top quark such as differential
cross sections. This chapter will describe the methods used for measuring
the inclusive cross section starting with the definition of the cross section
measurement. The reader is reminded that the work done for this thesis
was performed in the muon-plus-jets decay channel. The electron-plus-jets
channel was worked on in parallel in a collaboration with people at CERN
and Cornell University.

The general analysis strategy to extract the tf cross section is by means
of a maximum likelihood fit of the muon || distribution. This distribution
is chosen since its shape is sensitive to differences between the signal and the

background as was explained in Section 2.1. Other analyses have chosen to

93
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use different variables such as M3 and my, [97]. M3 and my, are the invariant
masses of the three jets with the highest reconstructed pt and of the selected
lepton and a b quark, respectively. The fit is performed after the final event
selection described in Section 6.2. The event selection is an important part of
the analysis as this helps remove some of the vast backgrounds arrising from
other physics processes. Most of these backgrounds can be estimated using
data driven techniques as will be described in detail in Section 6.3. The
7 and 8 TeV analyses have been performed using similar methods. There
are, however, some differences between the analyses in the event selection
and the background estimation. These differences will be outlined in this

chapter, where appropriate.

6.1 Data Samples and Triggers

During the technical stop between the 2011 and 2012 LHC runs, the centre
of mass energy was increased from 7 to 8 TeV. This provided the opportunity
to measure the tf cross section at different centre of mass energies. The next
section outlines the data samples and triggers used for both the 7 and 8 TeV

analyses.

6.1.1 Dataset used in 7 TeV Analysis

The 7 TeV analysis was performed using the first 987.2 pb™! collected by
the CMS detector during the 2011 LHC run. The full data set was not
used because the uncertainty on the measurement was already becoming
systematically dominated. Additional statistics would not have drastically
improved the sensitivity of the result. The single muon trigger with a pr
requirement of 30 GeV was used. There was no muon isolation requirement
for this trigger, which meant that the QCD background could be studied
in detail. This trigger was only in operation for run A (April-June of LHC
running) of 2011 collecting an integrated luminosity of 1.1 fb™'of data. It
was not used after the instantanecous luminosity reached 3x103% cm=2s~!
due to the event rate being too high. The CMS trigger rate had to be kept
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under control in the face of rapidly increasing luminosities. The datasets
that have been used along with the corresponding run ranges and integrated

luminosities are shown in Table 6.1.

Dataset Run period | Ly / pb~ ' | Run Range

Single Muon (pr > 30 GeV) | Run 2011 A 987.2 160404-167284

Table 6.1: Data samples used for the 7 TeV analysis.

6.1.2 Dataset used in 8 TeV Analysis

In the 8 TeV analysis, the full 2012 dataset was used (Runs A: April, B:
May-June, C: July-September and D: October-December). Table 6.2 shows
a list of the data samples and their corresponding integrated luminosities and

run ranges. The total integrated luminosity equates to 19.7 fb™'.

Dataset Run period | Ly / pb~ ' | Run Range
Single Muon (pr > 24 GeV, Rfo < 0.15) | Run 2012 A 889.4 190456-193621
Single Muon (pr > 24 GeV, Rifo < 0.15) | Run 2012 B 4424.0 193834-196531
Single Muon (pr > 24 GeV, Rifo < 0.15) | Run 2012 C 7152.0 198022-203742
Single Muon (pr > 24 GeV, Rjjo < 0.15) | Run 2012 D 7280.0 203777-208686

Table 6.2: Data sets by run period with corresponding integrated luminosities
(Lint) and run ranges.

The single muon trigger was also used for this analysis but this time
with an isolation requirement and a reduced pr requirement (24 GeV). The
isolation requirement within the trigger uses detector-based rather than par-
ticle flow isolation (see Equation 5.8). Detector-based relative isolation is

calculated using:

Zp%acker + Z E%CAL + ZngAL
m
Pr

iso __
R =

(6.1)

where 3 piacker is the sum of the pr of the tracks reconstructed in the tracker,
3 EECAL and Y pHPAL are the sum of the energy deposits in the ECAL and
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HCAL, respectively, surrounding the muon within a cone of size AR in the
detector. Muons only pass the trigger if they have Rifo < 0.15 within a cone
of AR = 0.3. This trigger was in operation throughout the whole of the 2012
data taking period.

6.2 Event Selection

The 7 and 8 TeV analyses both use the muon-plus-jets ¢t decay channel and
so the event selection is reflected by this. The semi-leptonic event topology
was outlined in Section 2.2 with an isolated lepton and four jets expected
in the final state. The purpose of the event selection is to maximise the
efficiency (see Equation 6.16) of semi-leptonic ¢ events whilst removing as
much of the background as possible. The systematic uncertainty associated
with the backgrounds can be minimised by selecting a very pure tf sample,

where the purity of the selection is defined as:

sel
Ntf

se se (62)
Nt + Ng¢

purity(tt) =
where N and N§& are the number of ¢f and background events passing a
certain selection step.

The general selection requirements are applied in the following order:

1. Trigger and event cleaning. Event cleaning consists of removing events
where parts of the detector are not performing as expected. For exam-
ple, if there is noise in a part of the ECAL or HCAL.

2. The event must have a good primary vertex selection as defined in

section 5.1.2.

3. Exactly one high pr (see Table 6.3), isolated muon is then selected.

This muon must satisfy the tight selection requirements in Table 5.2.

4. Events with additional looser, lower pr muons are vetoed in order to

remove contamination from the Drell-Yan (DY) process.
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5. Events with additional low pr electrons are also vetoed in order to

remove contamination from di-lepton ¢t events.

6. Each event is further required to have at least three (7 TeV analysis)
or four (8 TeV analysis) high pr jets. These jets are reconstructed
and identified as described in section 5.5. A more stringent selection
was used in the 8 TeV analysis to reduce the systematic uncertainties

related to the backgrounds.

7. The tagging of b quarks (see section 5.5.3) is implemented for the 8
TeV analysis but not in the 7 TeV analysis. The looser b-tagging and
jet requirements in the 7 TeV analysis are due to the lower statistics
data sample. A high signal purity is obtained in the 8 TeV analysis by
adding this b-tagging requirement.

The main selection requirements are highlighted in the Table 6.3. The
key differences between the 7 and 8 TeV analyses are presented. It was
possible to reduce the muon pr selection requirement because the trigger pr
requirement was reduced. The muon pseudorapidity range is extended from
2.1 to 2.5 for loose muons inorder to remove more dileptonic backgrounds.
Tight muons are only triggered within || < 2.1. The Events that pass the
selection described above are weighted according to the correction factors

described in Section 5.7 and using the predicted cross sections in Table 6.4.

6.2.1 Event Yields and Key Kinematic Distributions

It is important to understand the effect that each selection requirement has
on the number of signal and background events. Checks are done by looking
at the number of events surviving each requirement and by studying the key
kinematic distributions in the selected events. Comparisons have been made
with other analysis groups to clarify that the selection is being performed
correctly.

The contribution from the various physics processes after each selection
step for the 8 TeV analysis can be seen in Figure 6.1. In the 8 TeV analysis

there was an initial muon-plus-three-jet pre-selection applied. The purpose
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Selection parameter | /s =7 TeV | Vs =8 TeV
Trigger

Trigger Single Muon Isolated Muon

pr 30 GeV 24 GeV

Reliso none < 0.15 (PF AR =04)
Tight Selected Muon

pr > 35 GeV > 26 GeV

0| <21 <21

Reliso, AR = 0.4 < 0.125 (PF) | < 0.12 (PF Ag corr)

Loose Vetoed Muon

pr > 10 GeV > 10 GeV

0| <25 <25

Reliso, AR = 0.4 < 0.2 (PF) < 0.2 (PF Ap corr)
Loose Vetoed Electron

pr > 15 GeV > 20 GeV

0| <25 <25

Reliso, AR =0.5 < 0.2 (PF) < 0.15 (PF rho corr)

Selected Jets

multiplicity >3 >4

pr > 30 GeV > 30 GeV

0| <25 <25

B-tagging
multiplicity \ >0 \ > 2

Table 6.3: Selection requirments applied in the 7 and 8 TeV analyses.

Process 7 TeV (pb) | 8 TeV (pb)
tt 163 234
Single-top 86 115

W — v 31314 36257
Z)y* — 1F1- (my > 50 GeV) | 3048 3504
QCD multi-jet (p enriched) A~ 84679 A~ 97381

Table 6.4: Cross sections (pb) of the major contributing physics processes at
7 and 8 TeV. The ¢t and single-top cross sections are provided by approximate
NNLO calculations [29]. The W and Z boson production cross sections are
calculated at NNLO using FEWZ [98]. Pythia [99] was used to estimate the
QCD multi-jet LO cross section. The QCD sample only contains multi-jet
events containing muons (muon enriched). This is because simulating QCD
events is computationally taxing and it would take too long to simulate the
inclusive sample.
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of this pre-selection was to reduce the size of the files and hence the com-
puter processing time of the next step of the analysis. As can be seen from
Figure 6.1 it is clear that QCD dominates the event composition prior to any
selection. After all the selection requirements have been applied the data be-
comes tt dominated. At least two b-tags are required for the final selection
step such that systematic uncertainties relating to backgrounds are reduced.
There is also a lot more MC than data in the first bin of the distribution be-
cause the trigger has been used to select the required data but is not applied
to the MC until the second step “cleaning and HLT”. The isolated muon
requirement removes a lot of the QCD since multi-jet events rarely produce
isolated muons. Quite a lot of V+jets (V stands for vector boson and is
W and Z production) events are still present though as these are capable of
producing genuinely isolated muons. The contribution from V+jets events

slowly drops off with the requirement of additional jets and b-tagging.
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Figure 6.1: The number of events surviving each stage of the selection.

The event yields after each selection step for the 7 and 8 TeV analysis are
presented in Tables 6.5 and 6.6, respectively. These tables show the number
of events surviving each successive requirement. The number in the brackets

shows the efficiency as a percentage for an individual requirement, i, with
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respect to the previous requirement (i — 1):
i i—1
GTGQ- = 100 x (Nsel/ sel )% (63)

Selection step tt W+Jets | Z+Jets QCD Single-t | Total MC Data
Tnitial 160013 | 30913180 | 3008085 | 83505108 | 84925 | L.17763x10° 16976284
Cleaning and HLT | 24496 | 3825206 | 601544 | 3985165 | 6991 | 8.4434e-+06 (7.17%) | 14817498 (31.5%)
one isolated 14910 | 2200137 | 263201 | 17812 | 4476 | 2.50954e-+06 (29.7%) | 2558884 (17.3%)
loose 41 veto 14240 | 2200105 | 110793 | 17706 | 4401 | 2.35624e+06 (93.9%) | 2394181 (93.6%)
loose ¢ veto 12794 | 2208666 | 110186 | 17520 | 4246 | 2.35342e+06 (99.9%) | 2390848 (99.9%)
> 3 jets 9620 | 17889 | 2221 317 1047 | 31094 (1.32%) 31955 (1.33%)

Table 6.5: Numbers of ¢t, single-top, W and Z+Jets and QCD events sur-
viving after each selection step in the 7 TeV analysis. MC is scaled to a
luminosity of 987.2 pb™! using the 7 TeV theoretical cross sections. The
number in brackets in the last two columns is the percentage of events sur-
viving from the previous selection requirement.

Selection step tt Wjets Z+jets QCD Single-t | Total MC Data

Initial 4609800 | 714262900 | 69028800 | 1.9184x10° | 2265500 | 3.4228 x 109 20284215
Cleaning and HLT | 440179.2 | 960480.1 | 220771.8 | 1653207.6 | 44436.7 | 3196233.7 (0.1%) | 3063569.0 (15.1%)
one isolated 358553.7 | 706122.6 | 131565.5 82992.3 35315.5 | 1262892.4 (39.5%) | 1327738.0 (43.3%)
loose 1 veto 351350.3 | 706050.6 | T79376.2 82324.6 35031.4 | 1202482.7 (95.2%) | 1254896.0 (94.5%)
loose e veto 334289.5 | 705833.2 | T78887.9 82302.9 34408.8 | 1184094.7 (98.5%) | 1237495.0 (98.6%)
> 3 jets 332300.6 | 633859.1 | 70777.6 33287.1 32931.1 | 1079969.3 (91.4%) | 1108272.0 (89.6%)
> 4 jets 187768.9 | 1240624 | 15118.2 6960.8 10487.7 | 342347.2 (31.7%) | 340786.0 (30.7%)
>1 CSV b-tag 159651.0 | 18391.8 2519.3 3739.2 8268.4 | 192291.6 (56.2%) | 196667.0 (57.7%)
>2 CSV b-tag 75827.0 2184.4 370.4 478.7 3076.8 | 81900.9 (42.6%) 85028.0 (43.2%)

Table 6.6: Expected and observed event yields after each event selection step
for the 8 TeV analysis. The MC event yields are scaled to a luminosity of 19.7
fb~! using the 8 TeV theoretical cross sections. The number in brackets in
the last two columns is the percentage of events surviving from the previous
selection requirement.

Figures 6.2 and 6.3 show a comparison between data and MC for some of
the key kinematic variables after the final selection for the 7 and 8 TeV data,
respectively. The muon pr, n and relative isolation are shown along with the
jet multiplicity, pr and 7. The individual MC samples are all stacked on top
of one another with QCD at the bottom and tf at the top. It is possible to
use a finer binning for the 8 TeV data due to the increased statistics. As
shown in Tables 6.5 and 6.6, there is a slight excess of data with respect to

the MC expectations for both 7 and 8 TeV. The excess seems to be more
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pronounced at lower energies. It could be a similar affect as seen in the top
pr distribution. The normalisation factors for the various processes can be

determined in the MLE fit which resolves any excess.
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Figure 6.2: Data-MC comparison for some key kinematic distributions at 7
TeV for events passing the full selection. MC distributions are normalized
to the number of events expected from MC for the amount of data analysed.
The distributions underneath show the data/MC ratio.
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Figure 6.3: Kinematic distributions of some key variables comparing data and
MC at 8 TeV. Events passing the full selection are used with MC normalised
to the theoretically predicted cross section and a luminosity of 19.7 fb™'. In
the muon and jet pr distributions the final bin is as an overflow, containing
events beyond the range of the z-axis. The distributions underneath show
the data/MC ratio.
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6.3 Background Estimation Methods

As was introduced earlier in this chapter, process dependent normalised tem-
plates are used in the MLE fit. These templates can be either input using
MC or they can be estimated using the data. Processes that are more dif-
ficult to model such as QCD multijet background can be better estimated
using the data.

The increase in integrated luminosity between the 7 and 8 TeV datasets
meant a more stringent selection could be applied to the 8 TeV data. Differ-
ent techniques were therefore implemented in order to estimate the various
background templates. Stricter selection requirements remove most of the
background before the fit is even performed in the 8 TeV analysis. In the
7 TeV analysis, however, a lower statistics sample is used and so looser
selection requirements meant that there was a higher contamination from
reducible background processes such as W+Jets, Z+Jets and QCD multijet
events. It is good practice to use data to estimate the backgrounds to check
that the MC provides a good description. This allows MC to be used in the
8 TeV analysis. It was therefore necessary to develop a better understanding
of the backgrounds, particularly for the muon pseudorapidity shapes that
enter the MLE fit.

In following subsections, the template shapes for the three main reducible
background processes are studied in detail using data driven techniques.
These techniques usually involve inverting or changing part of the event selec-
tion criteria such that the background enriched data is selected. Corrections
are then used to correct back to the signal region where the MLE is per-

formed.

6.3.1 W-+Jets

The template to be used in the MLE for the W background is constructed

using the fact that the ratio of the W production cross sections

o(pp = W)

o(pp — W~) 64
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is larger than unity, i.e. the W background process produces more p* than
1~ . This can be explained by referring back to Figure 2.3. At the LHC,
W bosons can be produced with at low = of about 0.01 per parton where
the sea quarks and gluons dominate. In W production with additional jets,
however, higher x is required and this is where the contribution from valence
quarks start to become important. The more energy (jets) that there is in
the final state the more important the valence quarks become. As there are
two up and one down quark within a proton this yields slightly more W+
production than W~.

As an example, the W42 jet production process is shown in Figure 6.4

where an up-type quark interacts with a gluon. Other processes, excluding t-

q 1

g

Figure 6.4: Feynman diagram showing the W+Jets production process with
two additional jets.

and s-channel single-top production are expected to produce leptons of both
charge at more or less the same rate.

Subtracting the |r,-| distribution from the |7,+| distribution produces a
W enriched data sample. The charge subtracted distribution, Afu is defined
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A = N([n+ )" = N(Jm-|)’ (6.5)

where N(|n,+|)" and N(|n,-|)" denote the number of events in an |n| bin, i,
for positively and negatively charged muons, respectively. The charge sum

distribution, EZ, corresponding to the desired W template shape is given by:
35, = N+ )" + N(|n.-])* (6.6)

Obtaining ¥, from A requires corrections to be applied to account for
the differences in the shapes of the W and the W~ muon pseudorapidity
spectra. This correction factor, ¢, for each bin can be defined such that X,

is obtained when ¢ is multiplied with A’ :
ZL = 'y X AL. (6.7)

where ¢, can be derived such that:

¢ — (1 + Rf_ 1) (6.9)

The ratio factor, R;, is defined as the ratio of the expected W+ and W™ rates

in bin 7:

Ri = N([n,+1)'/N(|n,.~ 1)’ (6.9)

R; can be expressed using normalized differential distributions, d&/dn,, the
overall cross section ratio, R = o+ /oy -, and the ratio of the efficiencies,

pe = ey+ /ey~ such that

~ ~ -1
Ew+ daw+) (dUw)
Ew- (d’n/ﬁ‘ i d|77u*| i ( )

where the ratio of the normalized differential cross sections is defined as:

déyy+ > (d&w )1
(d|77u+| i d|77uf| i ( )
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Equation 6.8 then becomes:

; 2
w=1+5—— 6.12
w ( " Rpepz' - 1) ( )

R changes as a function of jet multiplicity. The objective is to extract the
template shape for > 3 jets, since this is where the signal region is defined.
The charge subtraction is, however, done using 1 or 2 jets to enhance statis-
tics. A x? test was performed on a closure test using the R values measured
with > 1 and > 3 jets. A lower x? was observed when using the R value
from the > 3 jets measurement. This value of R = 1.6 & 0.3 as measured by
CMS [100].

To estimate p; and p. values, the parton-level NLO Monte Carlo pro-
gram MCFM [101] was used. MCFM has no hadronising/showering effects
but these effects are expected to cancel in the ratio calculation. Events are
simulated using the same muon p; and 7 requirements as in the 7 TeV event
selection described in section 6.2.

The distributions of p; and the resulting corrections factors, ¢, with
uncertainties due to the error propagated from the R value are shown in
Figure 6.5. The correction factors are relatively flat using an R value of 1.6.

The distributions of positive and negative muons for jet-multiplicities of
Niet = 1||2 (one or two jets) and Nje, > 3 are shown in Figures 6.6 and 6.7
respectively. There is a slight excess in data events with respect to MC.
This could be a result of poor statistics in the QCD multijet MC sample.
The corresponding charge-subtracted distributions, AL, for the same jet-
multiplicities are shown in Figure 6.8.

The W template is finally obtained by taking the product of the charge-
difference (A,) and the correction factor (cy) distributions. Ideally it would
be preferable to use the actual signal region, i.e. the Nje > 3 region to extract
the template shape. The statistics are, however, to limited to do that. There
is also more contamination from other processes (mostly single-top) in the
Njet > 3 multiplicity region when using this region. The contamination is
very small for N = 1]|2 and so no contamination subtraction is required.

The first test of the procedure is to perform it using MC rather than the
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Figure 6.5: Ratio of normalized muon pseudorapidity distributions for
W+ and W~ (left) and muon pseudorapidity dependent correction factors
(right) calculated using an R value of 1.6. These correction factors are al-
most flat within uncertainties. The uncertainties for the p values are set to
5% to include any miss-modelling effects in the MC used. The uncertainties
on cw also include the uncertainty on the measured value of R.

data. In this closure test, the correction factors, cy, are applied to the W MC
prediction in the Nje = 1||2 charge-subtracted region. The results are then
compared to the actual MC prediction in the signal region. Figure 6.9 shows
the comparison of the “W MC template” in the Nj = 1||2 muon charge-
subtracted region and the actual MC prediction in the N = 1||2 signal
region on the left and in the Nje;, > 3 signal region on the right. As expected,
the W MC template describes the W+Jets MADGRAPH MC well as shown
by the ratio plots. The uncertainties on the templates are calculated by
propagating the error on ¢y in addition to the statistical error.

The final W+Jets template, 6, can now be constructed using the charge
subtracted data. Figure 6.10 shows the comparison between the W template
extracted from data in the Nj = 1||2 charge-subtracted region and the
MADGRAPH predictions for the W process in the Nj, = 1/|2 (left) and the
Niet > 3 (right) regions. The uncertainties associated with the normalised W
template range from 5% at low |n| to around 10% for the last || bin where

there are less statistics. The agreement between data and MC is good.
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Figure 6.6: The absolute value of the pseudorapidity for negatively (left) and
positively (right) charged muons in the N = 1|2 jet-multiplicity bin.
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Figure 6.7: Absolute value of the pseudorapidity for negatively (left) and
positively (right) charged muons in the N > 3 jet-multiplicity bin.
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Figure 6.8: Charge-subtracted muon pseudo rapidity distributions for Nje =
112 (left) and Nje; > 3 (right).
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Figure 6.9: The results of the closure test where the W background template
is extracted in the Nje, = 1[|2 region using MC only. The template is com-
pared to the MADGRAPH predictions in the Nj, = 1/|2 (left) and Njet > 3
(right) multiplicity bins.
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Figure 6.10: The W background template estimated from data compared to
MADGRAPH predictions in the Nj, = 1||2 (left) and Nj, > 3 (right) jet
multiplicity bins.

6.3.2 Drell-Yan

g q g q
LQOQQO——
A
+
q z/y 7 2/

Figure 6.11: Leading order Feynman diagrams showing the Z+Jets produc-
tion process.

The Drell-Yan (DY) process as shown in Figure 6.11 can pass the signal
selection when one of the muons coming from the Z° /v* decay is not detected.

This can happen when the second muon is
e outside the muon selection pseudorapidity region |r,| > 2.1;

e softer than the loose muon definition pr < 10 GeV;
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e fails the loose muon isolation requirement, i.e R;s, > 0.2;

e when one of the muons is mis-reconstructed as another particle such as

a T,

As with the W+Jets template estimation, a region needs to be defined
where the DY processes is enhanced. Events with two opposite sign muons
passing the tight muon selection in Table 6.3 and an invariant mass in the Z°-
window defined as |my,,, —m%| < 15 GeV (DY background region) are there-
fore selected. The pseudorapidity distribution (Figure 6.12) of the harder of
the two muons is then studied. This selection contains a small amount of
contamination from other processes. The relative contamination from other
processes in each bin is shown in Table 6.7 and originates almost entirely
from tt events. Since the contamination in each bin is well below 1% it can

be ignored.

Ne =112 CMS Preliminary N 23 CMS Preliminary

® Data, 987.2 pb-1 ® Data, 987.2 pb-1

M [ I
[[single-top [ single-top
Ew-v Ew-v
Wzt Wzy -
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Figure 6.12: Absolute value of the muon pseudorapidity for Nje, = 1(|2 (left)
and Nje > 3 (right) of the harder muon in the Drell-Yan selection.

1] 0.0-0.2 | 0.2-0.4 | 0.4-0.6 | 0.6-0.8 | 0.8-1.0 | 1.0-1.2 | 1.2-1.4 | 1.4-1.6 | 1.6-1.8 | 1.8-2.0 | 2.0-2.2 | > 2.2
cont.[%] | 0.56 0.54 0.48 0.45 0.4 0.36 0.28 0.29 0.26 0.23 0.22 0

Table 6.7: Relative contamination of the Drell-Yan template region with
other processes for jet multiplicities of one or two.

Bin-by-bin correction factors are then applied to extrapolate back to the

signal region from the DY control region. These correction factors are ob-
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tained using particle level DY Monte-Carlo with the MC@QNLO [102] event

generator. These |7,| dependent correction factors are calculated using:

NEvgnts
1 tight muon (613)

CF = NEvents
2 tight muons

which is the ratio of the number of events for a Z boson to produce one
or two tight muons within the measurable n range (|n| < 2.1) for all jet
multiplicities. The uncertainties on the correction factors resulting from
limited MC statistics are small. A pessimistic uniform 5% uncertainty is
applied to account for any MC mis-modelling. The distribution of these
correction factors is shown in Figure 6.13. The cp values are reasonably

large due to the requirement imposed by the single muon trigger.
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Figure 6.13: Correction factors to extrapolate from the DY background re-
gion to the signal region using MCQNLO.

The final Drell-Yan template is obtained by applying the correction fac-
tors to the muon pseudorapidity distribution in the Nje = 1||2 DY-enriched
region. To test this procedure a closure test is again performed using the
MADGRAPH DY+Jets MC. The resulting template (DY MC template) is
compared with the MC predictions for the Drell-Yan background in the sig-
nal region as shown in Figure 6.14. Good agreement is observed for both
Nier = 1||2 and Nje, > 3.

A comparison of the final DY template extracted from data is made to the

MC predictions in both jet multiplicities and is shown in Figure 6.15. The
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Figure 6.14: Comparison of the corrected MC prediction from the DY back-
ground region (DY MC template) to the MADGRAPH prediction in the
signal region for N = 1||2 (left) and Nje, > 3 (right).

good agreement indicates an accurate description of the Drell-Yan data by
the MC. The uncertainties are the combination of the statistical uncertainty
from the DY background region distribution and the modelling uncertainties
on the correction factors. The total uncertainties are typically about 10% of

the normalised values in each bin.
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Figure 6.15: Comparison of the DY template obtained from data with the
DY MADGRAPH predictions in the signal region for Nje, = 1|2 (left) and
]Vjet Z 3 (I‘lght)
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6.3.3 QCD Multi-Jet

The QCD multi-jet background can mimic the signal process when muons
are produced in the decays of hadrons. The majority of the time, the muons
are produced within jets. Occasionally, muons are produced that are isolated
from jet activity. This could happen in charged pion decays or in the decay
of a b quark to a virtual W boson. This background is difficult to model
and so a data-driven method is required for both the 7 and 8 TeV analyses.
Poor statistics in the QCD MC sample in the selected signal region means
that the description suffers from wild statistical fluctuations producing an
unrealistic representation.

When constructing the shape of the QCD template an inversion of the

relative isolation, R°, criteria on the selected muon is performed. Instead

of requiring Rifo <H0.12(5), a requirement of Rifo > 0.2 is used instead.
Relaxed jet requirements are also used: > 2 jets for the 7 TeV analysis
and > 3 jets for the 8 TeV analysis with an additional 0 b-tag requirement.
These requirements are chosen such that the QCD background dominates as
can be seen in Figure 6.16. This figure shows the muon relative isolation
distribution with all other selection requirements applied. Muons in QCD
events are expected to be non-isolated since they are produced close to the
jet activity. After applying the inverted RSO selection requirement, the muon
pseudorapidity is as shown in Figure 6.17. There are clearly a lot more events
in the QCD enriched region in the 7 TeV analysis. This is because there was
no isolation requirement in the trigger for the 7 TeV analysis.

The contamination from other processes is small in the 7 TeV analysis
(1 —4% per |n,| bin) and was therefore neglected. There was a much larger
contamination (6 — 10% per |n,| bin) in the 8 TeV analysis. This was a
result of the isolation requirement in the trigger and the use of > 3 jets
rather than > 2 jets. The contamination was therefore subtracted using the
MC prediction. A conservative 50% uncertainty on this subtracted value in
each bin was assumed when producing the template.

When comparing the QCD Monte Carlo prediction for the |r,| distribu-

tion in the signal region and QCD enriched region, a clear difference in shapes
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Figure 6.16: Plot showing RLSO with no isolation selection applied for the 7
TeV (left) and 8 TeV analyses (right). This enables the choice of 0.2 for the
inverted RLSO selection requirement in order to obtain a QCD enriched data
sample.

was observed in the 7 TeV data. The |n,| distribution in the signal region is
a lot flatter than in the QCD control region. It was therefore necessary to
introduce a correction factor derived from QCD MC to extrapolate back to

the signal region. The correction factors are given by

NEvents

Cr = qms (6.14)

rellso>0.2

where NEER o is the number of events passing the baseline event selection
described in section 6.2 with > 2 jets, and N > 0.2 is the number of
events passing the same selection but with RLSO > 0.2. The correction factors
have been normalised such that > Cy = 1 and are shown in Figure 6.18.
This effect was not seen in the 8 TeV analysis and so no correction factors
were applied in this case.

After applying the correction factors obtained for Nj, > 2(3 for 8 TeV) to
the QCD enriched data, the QCD data driven template is obtained. A closure
test was first performed where the correction factors were applied to MC from
the QCD enriched region (Figure 6.19). The full data-driven QCD template

is seen in Figure 6.20. These is a slight discrepacny between MC and the
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Figure 6.17: Absolute value of the pseudorapidity for N, > 2 for the 7 TeV

analysis (left) and Nj > 3 (0 b-tag) for the 8 TeV analysis (right) after the
inversion of the relative isolation selection requirement.
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Figure 6.18: This plot shows the normalised correction factors which are
applied to the QCD |n,| shape extracted from the control region in the 7
TeV analysis (left). These have been normalised to unit area. On the right
the same correction factors for the 8 TeV analysis are shown. These are
normalised to the number of bins.

data. This is a result of the poor MC statistics and is justification for using
a data-driven approach. The uncertainties from the combined statistical
limitations of both the data and the MC samples are around 8% and slightly

higher for the last few bins where the number of events is low.

6.4 Inclusive Cross Section Definition

The importance of accurately measuring the ¢ production cross section was

outlined in Chapter 2. A general formula for the calculation of the ¢t cross
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Figure 6.19: Closure test performed on the QCD MC for Nje, > 2 (left) and
Niet > 3 (right). The resulting MC template has been normalised. These
closure tests were performed for the 7 TeV analysis.
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Figure 6.20: Normalised QCD data driven template compared with the MC
prediction for Nj, > 2 (7 TeV analysis left) and Nje, > 3 (8 TeV analysis
right).

section (o) in experiment is given by:

Ntf 1
L e

O = (6.15)
where N;; is the number of observed ¢t events, €; is the overall efficiency of
the tt events that pass the final selection within the measured phase space
and L is the integrated luminosity of the data being used for the measure-

ment. Cross sections in particle physics are measured in units of barn (b*).

*1b = 10?®m? is approximately the area of a Uranium nucleus.
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Calculations of cross section are made easier by converting the units of £ into
fbfl

The tt cross section is found by determining the contribution of the signal
and background processes using a maximum likelihood (ML) fitting technique
as will be described in the next section. The dominant reducible background

processes include:
e W boson production with additional jets (W+Jets);
e Z boson production with additional jets (Z+Jets or Drell-Yan);

e QCD: multi-jet events from soft QCD interactions, in particular where

a muon is produced in the decay of a hadron (i.e. a charged pion).

The contributions from these processes can be estimated using the ML fit.
Single-top production is the largest irreducible background and must be sub-
tracted using the MC prediction. Diboson backgrounds (WW /WZ/ZZ) have
a negligable contribution to the selected data sample.

The total ¢t efficiency, €4, is the number of selected tt events reconstructed
by the detector, N5 . divided by the total number of generated tf events,
NEE:

NseelCO
€t = Nljgot (6.16)

This efficiency correction can be considered as a conversion between the phase
space in which the measurement is performed (i.e. accounting for detector
and selection effects) and the full theoretical phase space. The value, €,
is obtained from the prediction of the MADGRAPH event generator. The
model dependence of this value is assessed in the analysis of the systematic
uncertainties (see Chapter 8). Although the measurement is performed in
the muon-plus-jets channel, other ¢ decay processes may be selected, such as
tauons decaying to muons or fully-leptonic decays where one of the leptons is
not detected. The correction above takes this into account when calculating

the full inclusive cross section.
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6.4.1 Maximum-Likelihood Estimation (MLE)

The number of observed tf events, Ny, and hence the cross section (from
Equation 6.15) is extracted using a MLE. The Minuit implementation within
the ROOT framework is used to perform this procedure [103]. It is used to
estimate the fit parameters (e.g N;;) such that the underlying model (from
the MC) best describes the observed CMS data. The method is equivalent to
minimising the x? between the model and the data. The number of events in
each |n,| bin, 7, is expected to be Poissonian distributed. This is because the
number of proton-proton collisions tends to infinity whilst the ¢f cross section
is low. This leads to a small but finite number of ¢f events being measured in
each pseudorapidity bin. The Poissonian function is used in the Likelihood
function that describes the probability of the model (the Standard Model)
being consistent with the observed data:
ML e

L(frd}) =] “r (6.17)
where ); is the expected, and d; the observed, number of events in each bin,
1, of a chosen distribution. It is more convenient to work with the Logarithm
of the Likelihood function (LL) such that the product over the bins becomes

a SuImn:

di _)\i

e di | o=Xi
LL({)\,d;}) = =2 log (H AT) = —QZlog (AT> (6.18)

. %
)

The expected pseudorapidity distribution, \;, is modeled by process depen-
dent (normalised to unit area) templates (6}) and normalisation factors (N;),
such that:

A=) N;b} with Y " 6i =1 (6.19)
7 %

for each physics process, j.
The normalization factors can be defined for the various contributing

processes, i.e:

e Niop: for top processes (tt and single-top). Since the ¢¢ and single-top
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|n,.| distributions are very similar these are combined into one template

and hence have one normalisation factor
o Ny: W+Jets background;
e Npy: Drell-Yan (DY) background;
o Ngcep: QCD multijet background;

e Npg: WlJets, DY and QCD can be combined into one background

template as was done for the 8 TeV analysis.

The shape of the signal template, 0y, is taken from the MC prediction.
In the 7 TeV analysis all of the background templates are constructed using
data-driven techniques as described in section 6.3. In the 8 TeV analysis only
the QCD was estimated from data due to the low statistics of the QCD MC in
the signal region. The 7 TeV data-driven estimates for Z+Jets and W+Jets
showed that MC does a good job of describing these backgrounds. The more
stringent selection criteria used for the 8 TeV analysis also meant that these
data-driven methods would be more difficult to use due to contamination
from signal processes. MC was therefore used for these processes in the 8
TeV analysis.

The MLE fit is then performed using the Minuit framework [103]. This
fit allows the normalisation factors to vary so as to maximise the value given
by the likelihood function. The output of this fit provides the contribution
of the signal and background normalisation factors used in the calculation of
the tf cross section.

In order to calculate the ¢t cross section, the contribution from single-
top production must be subtracted from the fitted number of top-like events
using the MC prediction:

Nz = Nigp — Naingle-top (6.20)
Single-top production contributes around 20% of the signal events. Once

corrected, N;; can be inserted into Equation 6.15 to obtain the final result.
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Constraining the Fitted Normalisation Factors

In the likelihood fit it is possible to constrain the allowed values of the back-
ground normalisation factors. This can be done by adding additional terms
to the LL function. Without constraints there can be quite large statistical
fluctuations in the fitted results. It is therefore useful to add constraints to
the fitted background normalisation values. These constraints are not abso-
lute limits to the fitted values but are Gaussian in nature. The fit can be
constrained by placing a constraint on the ratio of the number of Z+Jets
events to W+Jets. For example, the fitted results can be constrained to
within 5% of the expected MC value by adding the following term to the LL:

(Nz/Nw — N} /NMOY?
(0.05 - NMC /NMC )z

(6.21)

A constraint can also be applied to limit the number of events to within
a certain percentage of its initial MC predicted value. This can be done, for
example, by adding a 100% constraint on Ngcp. Again, an additional term
must be added to the LL:

(Nacp — Ngisp)”
(- Ny )?

(6.22)

Different constraints were used in the 7 and 8 TeV analyses. The above ratio
constraint on the Z+Jets and W+Jets normalisation factors was applied
for the 7 TeV analysis whilst a 50% constraint was applied on the Npg
value (since the Z+Jets, Z+Jets and QCD templates were combined) for
the 8 TeV analysis. The Z+Jets and W—+Jets were combined for the 8 TeV
analysis because more stringent selection criteria were applied, and so more
MC statistics were required. The size of the normalisation constraints are
justified, since they are large in comparison to the uncertainties predicted by
theory [104].
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6.5 Results

As has been described previously, the MLE method predicts the total num-
ber of signal and background events after selection. Figure 6.21 shows the
normalised templates used as input into the binned likelihood fit of the muon
pseudorapidity for both the 7 and 8 TeV analyses (left plots). The right plots
in figure 6.21 show the muon pseudorapidity with the number of signal and
background events scaled to the results from the template fit for the MC. A

good agreement is seen with the data.
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Figure 6.21: The left plots show the normalised templates used in the binned
likelihood fit for the 7 TeV analysis (top) and the 8 TeV analysis (bottom).
The background templates for the 7 TeV analysis are all estimated using
data-driven techniques. Simulation is used to model the signal template
and also the 8 TeV background template excluding the QCD component,
which is always estimated using the data. The right plots show the muon
pseudorapidity normalised to the number of events obtained from the fit for
the 7 TeV analysis (top) and the 8 TeV analysis (bottom). It was possible
to use a finer binning in the 8 TeV analysis as more statistics were available.

The number of events predicted by MC for each process is compared with
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that obtained from the fit in Table 6.8. The number of top events from the
fit and Equation 6.15 are used to calculate the tf production cross section.

The measured cross section values are:
ol TV = 145.6 & 8.2 (stat.) T35 (syst.) pb
o8 TV = 237.4 £ 1.9 (stat.) T109 (syst.) pb

A discussion of the systematic uncertainties (syst.) and how these are esti-

mated is described in Chapter 8.

7 TeV using 987.2 pb~!

Sample Top W+jets Z+jets QCD Total

MC estimation | 11170.8 £+ 21.4 | 17893.3 + 105.0 | 2221.9 £ 14.2 317.4 £ 37.2 31603.3+ 114.3

Fit result 9941.54+463.9 19253.0+£510.2 | 2398.8+121.4 361.5+314.0 31954.7+767.4
8 TeV using 19.7 fb~?!

Sample Top W+jets Z+jets QCD Total

MC estimation | 78903.8 + 241.9 | 2184.4 + 24.2 370.4 + 4.6 478.7 £ 412.9 | 81937.3 £+ 475.5

Fit results 76310.1 &+ 600.8 | 6243.7 £ 611.4 | 1058.6 & 134.9 | 1367.1 + 152.1 | 84979.5 + 804.3

Table 6.8: Expected number of events from MC (before fit) and number of
events from the fit for each process.

6.6 Summary

In this section the measurement of the inclusive cross section at both 7 and
8 TeV has been presented. The differences between the data samples meant
that slightly different selection methods and estimations of the backgrounds
have been used. The final results are within agreement of the theoretical
predictions made at NNLO of 163 pb and 234 pb for 7 and 8 TeV, respectively.
The methods used in this chapter are built upon to perform differential cross

sections which are shown in the next chapter.



Chapter 7

Global Event Level Observables
in ¢t Events at /s = 8 TeV

Following on from the measurements of the inclusive cross sections at 7 and
8 TeV presented in the previous chapter, the next natural step is to measure
differential production cross sections. These measurements have been made
achievable by the vast quantities of data obtained by the CMS experiment
in the 2011 and 2012 data taking periods. Differential measurements can
be made with respect to interesting properties of the top quark. Measure-
ments by both ATLAS [105] and CMS [93] at 7 TeV have previously been
performed. These measurements are with respect to the invariant mass of
the tt pair (my), the pr of the top quarks, as well as various other prop-
erties of the top quark and its decay products. Some of these distributions
require kinematic reconstruction of the top pair events. This reconstruction
determines which decay products are associated with each top quark. In the
analysis presented in this thesis, no kinematic reconstruction is required as
all variables of interest can be reconstructed easily without assigning decay
products to top quarks. The work presented in this chapter was done by the
author in collaboration with the Bristol Top Physics group.

To extend previous studies, a measurement of the differential cross section
with respect to EX in top pair production was performed using the 7 TeV

dataset [106]. The EX distribution from this analysis is shown in Figure

125
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7.1.
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Figure 7.1: Comparison of measured normalised differential cross section
with respect to EX* compared to different generators using the 7 TeV data.

Building on this measurement and using the full 2012 dataset, measure-
ments of other event-level variables in the production of top-quark pairs have
been studied. This includes variables such as the Ht which is defined as the
the sum of the pr of the jets measured in an event.

Differential cross section measurements of the global event variables will
help verify the models that are embedded within the MC generators. This
is done by comparing the result with the predictions of the generators listed
in Table 2.3. Comparisons can also be made to the choice of renormalisa-
tion and factorisation (Q?) scale and the matching threshold of the partons.
This makes it possible to constrain the uncertainties due to these model
inputs. Additional gluons are commonly produced in roughly 50% of ¢t de-
cays. Differential measurements involving additional jets are a good test of
perturbative QCD physics and the running of the strong coupling constant.

Measuring distributions such as E¥5 may help to uncover rare Standard
Model processes such as top quark pair plus boson production. Additional

EXss would appear in top pair decays with an associated vector boson (tt+
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W — lv or tt+ Z — vi) from the presence of additional neutrinos. Top pair
plus Higgs boson production is another example where additional EX® can
be produced. This can happen when the Higgs boson decays to two Z bosons
which in turn decay to two neutrinos. There is also a new physics scenario
where the Higgs boson decays to massive non-interacting particles.

Top pair events are a major background to beyond the Standard Model
(BSM) physics processes. BSM searches such as those for supersymmetry
(SUSY) where the SUSY partner of the top (t~t: — tXotXo) where Yo is the
lightest super-symmetric particle and is a possible candidate for dark mat-
ter. Exotic heavy partners of the top, e.g the T"* have a very similar event
signature to tf. These searches often use variables such as E2 and Hr. It
is therefore important that these distributions are well understood for the ¢t
process. The tails of these distributions are particularly interesting as this is

where signs of new physics would be likely to show up.

*A T’ is a heavy partner that decays in a similar way to the top
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7.1 Analysis Strategy

The differential cross section measurements have been performed using sim-
ilar methods to those described in Chapter 6. The same selection criteria as
were used in the 8 TeV inclusive cross section analysis have been used. A
tight selection using at least two b-tags gives a high ¢t purity and hence the
uncertainties on the backgrounds are reduced.

As with the inclusive cross section analyses, a maximum likelihood fit of
the |n,| distribution was implemented as described in Section 6.4. The same
dataset as for the inclusive cross section was used. However, this data has
to be sub-divided into bins of each variable under study. The choice of the
binning aims to reduce the migration of events between bins due to detector
resolution effects and is described in Section 7.3.

Once the number of events has been extracted for a given bin in the
selected (visible) phase space, the result has to be corrected back to the
full theoretical phase space. This process is known as “unfolding” and is
performed so that the result can be compared to different theoretical models
as well as results from different experiments. In this analysis SVD unfolding
has been implemented, which is described in detail in Section 7.5.

Finally, the result is combined with those from the corresponding electron-
plus-jets channel and normalised using the total measured cross section. The
final results are then presented as a normalised differential cross section in

each bin of any given variable, X:

— 7.1
Ot dX ( )

dO’tE
ax
the inclusive cross section measured for a particular variable given by:

att:/ g x (7.2)
0

is the differential cross section with respect to a variable, X and o is

dX

The normalisation is performed because cancellations of the systematic un-

certainties occur giving a more precise result. It is also useful in the presenta-
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tion of the results when comparing to various models of the MC generators.

Details about how the final results are calculated are given in Section 7.6.

7.2 Definitions of Event Level Observables

It is first of all important to formally define the variables that have been
studied and to express mathematically how they are calculated experimen-
tally. Sometimes variables are defined slightly differently at reconstruction
and generator level. These differences will be accounted for in the unfolding
to the generator level variable. It is also important to be clear about exactly
what is being unfolded. Tt is possible to unfold the ER to the generator
Emss or the generated pr of the neutrino. The generator ER is different
from the neutrino pr as it includes missing energy from noise in parts of the

detector. The variables under study are given in Table 7.1.

EXiss | Missing transverse energy

Hry Scalar sum of all jet transverse momentum (pr) in event
St Scalar sum of jet pr, lepton pr and FERs

Y pr of W boson (that decays leptonically)

MY | transverse mass of W boson (that decays leptonically)

Table 7.1: Variables under study.

1
The transverse momentum of a particle is defined as pr = (pi + pz) 2.

The overall missing transverse momentum in an event, or Ef"%, is defined as

s — (Z pz,i) + (Z py,i) (7.3)

where the sums extend over all measured particles in the event. It was
decided to unfold to the transverse momentum of the neutrino as it is a more
fundamental particle-level definition and therefore more useful to theorists.

The Hrt in an event is defined as the scalar sum of the pr of all jets in
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the event:

Hry = Z lpr| (7.4)

jets
At reconstruction level at least four jets are required to have a pr of 30
GeV and additional jets must have a pr of 20 GeV. Generator level jets
are reconstructed from generated particles in an event using the clustering
algorithm described in Section 5.5.

St is the scalar sum of the pr of all jets, plus the EX and the pr of
the single isolated lepton presumed to come from the decay of one of the W
bosons in the event:

Sp = Hry + EP™ + |py?™| (7.5)

The reconstructed lepton pr could potentially come from a lepton that is not
from the decay of a W boson. At generator level only the lepton from the
W in semi-leptonic top decays are used in the calculation of St.

The transverse momentum of the W boson, p¥ | is derived from the single

isolated lepton and the E¥ in the event:

P = (7 p)? + (P + 2 (76)

at reconstruction level. At generator level however the W boson pr can be
accessed directly.
Finally, M}¥ is the transverse mass of the W boson in the event, again

using the single isolated lepton and Eiss

MY = (B 1 By (1)
pY and MY are calculated in the same way at reconstruction and generator
level.

7.3 Binning of Variables

In order to reduce statistical fluctuations when unfolding the differential cross

section measurements, the binning of the variables must be chosen carefully
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so as to minimise migration between neighbouring bins. The event statistics

(NG

events
that the likelihood fit can be performed (> 3000 events). In order to quantify
the effect of bin migration, the purity, p*, and stability, s*, of a bins are
defined:

) within a bin after the final selection must also be substantial such

Nlic& en
P = —E (7.8)
Nk
Sk _ rec}fcgen (79)
gen

k
where N &gen

the same bin and N*  and NF

rec gen

is the number of events both generated and reconstructed in
are the number of events reconstructed and
generated, respectively, within a bin after the final event selection. The purity
parameter is sensitive to migration into a bin while the stability parameter
is sensitive to migration out of a bin. These values are calculated using tt
Monte Carlo events.

Binning is chosen such that p* and s* values do not fall far below 0.5. This
is done by incrementing over a range of values for each of the variables until
threshold p*, s* and N* _ . are obtained. The boundaries of bins were chosen
such that they are rounded to the nearest 5 GeV to improve aesthetics. The
2D, reconstructed vs. generated variable distributions are shown in Figure
7.2. Purity and stability values along with the number of events in each
chosen bin for the five variables are presented in Tables 7.2 to 7.6. The
Ht and St variables both have quite a large first bin. This is because of the
kinematic requirements on the jets and the muon at reconstruction level. The
values of purity and stability are consistent between the muon and electron-

plus-jets channels.

0< ERss <25 | 25< EIss <45 | 45< B <75 | 75< B <100 | 100< B <150 | B >150
events | 11506 20348 22594 14413 8416.5 3274
pk 0.52 0.49 0.45 0.42 0.52 0.69
sk 0.43 0.42 0.47 0.5 0.66 0.87

Table 7.2: Stability and purity of the chosen EX'* bins.
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Figure 7.2: The above distributions show the reconstructed versus generated
values for all of the variables. These 2D histograms are used to calculate

the p* and s* values. The lines indicate the final choice of the binning.

z-axis represents the number of events in MC after event reweighting.

The
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0< Hy<240 | 240< Hy<280 | 280< Hy<330 | 330< Hy<380 | 380< Hy<450 | 450< Hr<600 | Hx>600
events | 12337 14821 16747 14268 12258 12119 5856.7
o082 0.63 0.64 0.63 0.67 0.81 0.9
st o6 0.64 0.65 0.65 0.68 0.81 0.89
Table 7.3: Stability and purity of the chosen Ht bins.
0< Sr<350 | 350< Sr<400 | 400< Sy<450 | 450< Sy<500 | H00< Sr<580 | 580< Sp<700 | Sy=700
events | 13503 15717 13878 12307 12732 10135 SR748
o 0.83 0.61 0.54 0.54 0.64 0.71 0.87
st 0.74 0.61 0.55 0.56 0.66 0.74 0.9
Table 7.4: Stability and purity of the chosen St bins.
0< p <40 [ 40< pl¥ <70 | 70< pl <100 | 100< pl¥ <130 | 130< p¥ <170 | p¥ =170
events | 12379 18821 18330 13495 10260 8393.9
p* 0.67 0.55 0.52 0.5 0.55 0.76
sk 0.63 0.55 0.53 0.51 0.56 0.76
Table 7.5: Stability and purity of the chosen p¥ bins.
0< MW<30 | 30< MY <50 | 50< MW <80 | 80< MW <100 | M¥>100
events | 13209 13636 30669 16974 9179.3
pF 0.56 0.36 0.66 0.42 0.37
sk 0.64 0.38 0.54 0.42 0.66

Table 7.6: Stability and purity of the chosen M}" bins.
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7.4 Maximum Likelihood Fits

The same maximum likelihood estimation method was used as for the 8 TeV
inclusive cross section measurement described in Section 6.4. The only dif-
ference being that instead of using the full data set that passed the selection,
the data and the MC used in the fit are divided into the bins chosen in the
previous section.

Three normalised templates are fit to the data: Signal, V' +Jets and QCD.
The same QCD template as was extracted from the data for the inclusive
cross section was used. It was found that within statistical errors, the tem-
plate shape is the same for all Ht bins. As usual, the Signal and V+Jets
templates come from the MC prediction. The templates used for the ERiss
variable are shown in Figure 7.3, as an example.

After performing the fits for each variable, the total number events for
each process has been used as the normalisation for the variables under study.
These are shown in Figure 7.4. The correlations between the fitted input

parameters for the EX variable are shown in Appendix B.
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Figure 7.4: Data to MC comparison plots after the final event selection. The
MC is normalised to the fit results obtained from each individual variable.
The following variables are shown: Hr(top left), St (top right), M7" (middle
left), p?¥ (middle right) and ER® (bottom). The distributions below the
varibales display the data/MC ratio.
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7.5 Unfolding

Measured quantities are bound to certain restrictions. These arise as a result
of finite detector resolution and acceptance constraints (for example, from
applying the trigger and event selection). This can lead to tt events with a
true EXS in a bin, 4, ending up in an adjacent bin (4 1) or not even passing
the selection at all. It is of great interest to be able to interpret results
independently of the detector and any selection requirements. Such results
enable a direct comparison to be made between theoretical predictions as
well as between different experiments.

A distribution of true x values will be measured as a distribution, v,
with potentially different values. Here, x and y can be considered as vectors

containing the contents of each bin, i:

and

Ym = : (7.11)

Ym

where n is the number of bins for the true distribution and m for the measured
distribution. In this analysis m = n for all the considered variables. The
migration of events and acceptance effects can be described by inserting an
m X n response matrix A,,y, which represents the convolution between the

measured the true distributions:
Ym = Amxn X T, (712)

The response matrix is constructed using events from MC to form a prob-

ability density matrix of an event migrating from a bin m to n. By simply
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inverting the matrix A, and applying it to the background subtracted data,
the true “unfolded” distribution can be obtained:

Um = AL x b, (7.13)

mxn

where b,, and u,, are the measured and unfolded vectors, respectively. These
are given different letters to z,, and y,, to differentiate the use of data (b, and
Up) from MC (z, and y,,). The direct inversion of the response matrix is
known as bin-by-bin unfolding and was used to obtain the final result for the
7 TeV EXs measurement [106]. This method can produce large statistical
fluctuations in the unfolded result. These spurious statistical fluctuations can
arise from off diagonal elements of the response matrix with poor statistics.
The problem is highlighted using a simple two binned example from reference
[107]. In this simple case, the response matrix can be defined such that € is

introduced to account for inefficiencies in detection within a bin:

l4e 1-
Apy = 1 < e 6) (7.14)

2\1—€ 1+c¢€

After the direct inversion of this response matrix the following unfolded vec-

tor, u, can be obtained by:

by —by [ 1 by+by 1
w= A;lb= 12€2<_1>+1"§2<1> (7.15)

It is clear that if € is small the first term will dominate producing a nonsense

value. This is why care was taken when choosing the binning inorder to
minimise the migration of events, thus, keeping € reasonably high (> 0.4).
Another problem could arise if (by — by)* < (by + by) the number of events
in neighbouring bins is not statistically significant and the solution will be a
random number. It was reasonable to perform bin-by-bin unfolding for the
EX5ss variable as the purity and stability values are relatively high and there
were quite large variations between bins and hence the values were statisti-

cally significant. A more accurate solution can be obtained by regularising
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the unfolding which requires there to be certain constraints placed on the

solution.

7.5.1 Singular Value Decomposition (SVD) Unfolding

Various regularised unfolding techniques and implementations exist. The
method that has been adopted for this analysis is the singular value de-
composition (SVD) approach [107] which uses a regularised inversion of the
response matrix. Regularisation takes a priori knowledge of the true under-
lying distribution i.e. its curvature. Another constraint could be to impose
that the result must have positive values. These constraints help to eliminate
the spurious statistical fluctuations in the unfolded result. In SVD unfolding,
only statistically significant contributions from the response matrix are used
to derive the solution.

SVD unfolding is a simple implementation that decomposes the response
matrix, A, into set of linear orthogonal equations such that exact solutions
can be found for the values of u;. This is done by applying rotation matrices
(U and VT) to the left and the right such that a diagonal matrix, S, is
obtained:

A=USVT (7.16)

U and V7T are both orthogonal such that:
U'U =U0U" =1 ViV =vvl =1 (7.17)

The S matrix contains the singular values, s;;, for the unfolding along the
diagonal. The values within S are equal to 0 for i # j. A perfect detector
has singular values that are equal to 1. In most cases however, some of the
singular values will be low. These singular values correspond to components
of the response matrix that are not statistically significant.

The problem of unfolding can be rewritten in such a form that the y?

between the unfolded result and the true distribution is minimised:

X2 = (Au — b) cov ™ (Au — b) + 7% - (Cu)T (Cu) (7.18)
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The first term corresponds to the direct inversion of the response matrix with
cov ! being the covariance matrix for the measurement vector. The second
term is the imposed regularisation condition. C' is a matrix that contains
an a priori curvature condition in order to minimise the curvature of the
solution. 7 is the regularisation strength parameter. A 7 value set to zero
means no regularisation and a high 7 value can bias the result towards the
regularisation condition. The regularisation causes the matrix containing
the singular values to be reweighted emphasising the statistically significant
terms. The RooUnfold [108] implementation of the the SVD algorithm has
been used in this analysis. The regularisation term which is required as input
in this implementation is a k-value. This k-value corresponds to the number
of statistically significant values within the S matrix. It is also related to 7
such that:

T=s (7.19)

where s, is the k™ most statistically significant singular value. The k-value is
chosen as to minimise the x? of the solution to equation 7.18. By doing this
the bias of the imposed curvature condition will be reduced whilst preventing

large statistical fluctuations. The choice of k-value will now be discussed.

7.5.2 Closure Test and Choice of Regularisation Pa-

rameter

The first thing to check before justifying the choice of regularisation param-
eter is that the unfolding procedure works correctly using the RooUnfold
framework. A closure test was performed using MC. Applying the unfold-
ing to the MC distribution after event selection should return the MC truth
distribution before any selection. This should be the case regardless of the
choice of regularisation parameter. The result of the closure test can be seen
in Figure 7.5.

A regularisation parameter is chosen to regulate the large statistical fluc-
tuations that can arise from unfolding whilst not biasing the result to that of

the MC input. There are various methods that can be used to determine the
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Figure 7.5: Closure test performed for the EMS variable. As expected,
applying the response matrix to the MC measured returns the MC truth.
The MADGRAPH MC generator was used for this closure test.

regularisation parameter, k or 7. In this analysis the k-value has been deter-
mined based on a suggested method in [107]. In this method, the closure test
is again performed but this time using a different MC generator (MC@QNLO)
to produce the response matrix. The x? is then calculated between the MC
truth and the unfolded result using the MC@QNLO response matrix. The y?
for all k-values is calculated within a range of 2 to the number of bins of the
distribution. The k-value with the smallest x? is that which is chosen to do
the unfolding on the data. Table 7.7 presents the y? values obtained for the
different variables. A cross check of these values was performed using the
POWHEG MC generator. This yielded similar results.

The Hry, St and M} variables had a low optimised choice of k-value of
two. The reasons for the low choice of k-value for these variables is that
there is quite a low variation in event numbers between neighbouring bins.
Therefore, there is a low statistical significance between bins as the truth
distribution has a low curvature. There is more curvature between bins for
the ERS and p¥ variables and so optimised k-values of three and five are
chosen, respectively. Due to the increased statistical significance between

bins, less regularisation is required.



Normalised Differential Cross Section Calculation 142

x? values for different variables
k-value | EXS | Hp St Y My
215.2 | 2238.0 | 2293.0 | 576.4 | 268.8
79.6 | 5834.9 | 4291.4 | 284.5 | 803.0
208.3 | 7710.3 | 5319.8 | 266.9 | 1174.2
370.8 | 9126.6 | 6302.9 | 265.5 | 1693.8
418.5 | 10019.1 | 6866.0 | 266.4 | NA

S O = W N

Table 7.7: x? values obtained for the different variables in order to choose
the k-value.

7.6 Normalised Differential Cross Section Cal-

culation

After performing the unfolding on the fitted results, the number of ¢t events,

N, &, in the semi-leptonic decay channel is obtained for each bin, i, of a given
2
for tt production in each bin by dividing by the total integrated luminosity:

variable. This value can then be converted into a partial cross section, Ao

Nt
Notice that this calculation no longer needs an efficiency correction. The
unfolding takes care of this correction. The differential cross section for each
variable, X, is then found after dividing the contents of each bin by the width

of the bin, AX’ (in GeV):

do- Ao’
t_ t
dX AXE (7.21)

These are the widths that were determined in Section 7.3. Finally, the nor-
malised differential cross sections are calculated using the sum of the partial

differential cross sections:

1 dazE _ 1 | daéf
(fg’t dX D doiy dX

i dX

(7.22)

The electron and muon semi-leptonic channels are combined by first per-

forming the fitting and unfolding procedures in the respective channels. The
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distributions output by the individual channels are then summed. The fi-
nal combined normalised differential cross section is determined using the

equations above.

7.7 Results

The final normalised differential cross section results in the combined electron
and muon-plus-jets channels are presented for each variable: E¥5 Hp S,
pY and MY in Figures 7.6 to 7.10. Systematic uncertainties will be discussed
separately in Chapter 8. The results are compared to the predictions from
MADGRAPH using different tunes of the Q? parameter and the parton to
jet matching threshold (left). Comparisons are also made to the MCQNLO
and POWHEG MC generators (right). The differences between these MC
generators was outlined in Chapter 2.

The results show no significant deviations from the predictions made by
the MC generators. No excess was observed in the tails of any of the distri-
butions where signs of new physics would have been expected to show up.
It has not been possible to make comparisons to approximate NNLO pre-
dictions as these are not available. The values in each bin for the presented
variables along with the uncertainty associated with each value can be seen
in Table 7.8. Results presented individually in the electron and muon+jets
channels can be found in Appendix C.

It has been possible to differentiate the predictions of the various gener-
ators for some of the measurements. The E¥5 variable does not have very
good separating power, as the different generators give similar predictions.
The uncertainties on the measurement are not small enough to make any
conclusions about which is best. In contrast, for the Hr and St variables,
reasonably large distinctions can be made between the predictions. The mea-
surements for both variables lie between the Q? up and down variations on
the renormalisation and factorisation scale. This suggests that these vari-
ations are over estimated and that it is correct to use the top mass as the
value of renormalisation. When comparing the different generators, quite a
large difference is observed between MCQNLO and both MADGRAPH and
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POWHEG. This is down to the fact that MCQNLO used a different hadro-
nisation model (Herwig rather than Pythia). Pythia seems to give the better
agreement at softer energy scales.

The W boson pr distributions yields the largest discrepancy between the
data and the MC. It is reasonable to suggest that this is caused by the same
MADGRAPH mismodelling which resulted in the discrepancy in the top-pr
measurement [93]. The large uncertainties on the M}’ measurement make
it hard to draw any firm conclusions. This measurement will be improved in

the future by reducing bin migrations.

CMS Preliminary, £ =19.7fo~" at \/s =8 TeV CMS Preliminary, £ =19.7fo"" at \/s =8 TeV
e, 1t + jets combined, > 4 jets, > 2 b-tags e, /1 + jets combined, > 4 jets, > 2 b-tags
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Figure 7.6: Comparison of measured normalised differential cross section with
respect to EX to different MC tunes (left) and different generators (right)
for the combined channels. The error bars are divided into systematic (inner
band) and statistical (outer band) uncertainties.
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Measured normalised top-quark pair cross section for various bins in B2 (GeV 1)

0-25 GeV (0.60 +0.03) - 10_ (4.65%)
25-45 GeV (1.35 4 0.04) - 1072(2.99%)
45-70 GeV (1.15£0.03) - 1 2(2 96%)
70-100 GeV (0.58 +0.03) - 107%(4.67%)
100-150 GeV (0.18 £0.01) - 1 2(6 68%)
> 150 GeV (0.03 £ 0.00) - 107%(7.66%)
Measured normalised top-quark pair cross section for various bins in Hy (GeV™!)
0-240 GeV (0.24 +0.02) - 107%(7.78%)
240-280 GeV (0.41 4 0.02) - 107%(4.61%)
280-330 GeV (0.31 £ 0.01) - 1072(4.38%)
330-380 GeV (0.21 £ 0.01) - 1072(6.55%)
380—450 GeV (0.13+0.01) - 10 2(8.75%)
450-600 GeV (0.0540.01) - 107%(11.74%)
> 600 GeV (0.01 4 0.00) - 107%(11.68%)
Measured normalised top-quark pair cross section for various bins in St (GeV ™)
0-350 GeV (0.17+0.01) - 107%(6.45%)
350400 GeV (0.34 4 0.02) - 107%(4.65%)
400-450 GeV (0.26 +0.01) - 1072(4.29%)
450-500 GeV (0.18 £ 0.01) - 1072(6.02%)
500-580 GeV (0.11 £ 0.01) - 107%(7.92%)
580-700 GeV (0.05+0.01) - 10_2(10.25%)
> 700 GeV (0.02 4+ 0.00) - 107%(10.95%)
Measured normalised top-quark pair cross section for various bins in pit (GeV™1)
0-40 GeV (0.49 4 0.02) - 107%(3.62%)
40-70 GeV (0.91 £ 0.02) - 1072(2.53%)
70-100 GeV (0.77 £ 0.02) - 107%(2.05%)
100-130 GeV (0.49 +0.02) - 107%(4.30%)
130-170 GeV (0.23 +0.01) - 1072(3.38%)
> 170 GeV (0.08 & 0.00) - 1072(5.38%)
Measured normalised top-quark pair cross section for various bins in M{" (GeV~1)
0-30 GeV (0.4540.06) - 107%(12.26%)
30-50 GeV (0.79 4 0.06) - 107%(7.92%)
50-80 GeV (1.81 £ 0.07) - 107%(3.63%)
80-100 GeV (0.72 4 0.05) - 107%(7.63%)
> 100 GeV (0.02 4 0.00) - 107%(14.40%)

Table 7.8: Measured normalised top-quark pair cross section for the different
variables. The values in brackets show the total uncertainty (stat.+syst.) on
the measurement as a percentage.
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Figure 7.7: Comparison of measured normalised differential cross section with
respect to Hr to different MC tunes (left) and different generators (right)
for the combined channels. The error bars are divided into systematic (inner
band) and statistical (outer band) uncertainties.
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Figure 7.8: Comparison of measured normalised differential cross section with
respect to St to different MC tunes (left) and different generators (right) for
the combined channels. The error bars are divided into systematic (inner
band) and statistical (outer band) uncertainties.
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Figure 7.9: Comparison of measured normalised differential cross section with
respect to p¥ to different MC tunes (left) and different generators (right) for
the combined channels. The error bars are divided into systematic (inner
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Figure 7.10: Comparison of measured normalised differential cross section
with respect to MY to different MC tunes (left) and different generators
(right) for the combined channels. The error bars are divided into systematic

50 100

e, /1 + jets combined, > 4 jets, > 2 b-tags
L e e T e

CMS Preliminary, £ =19.7fo"" at \/s = 8 TeV

L s s e e B R s e s

4 unfolded data ||
1 tt (MadGraph)
1 tt (MC@NLO)
3 tt (POWHEG) ||

TS 200
My [GeV]

50 100 150 200
My [GeV]

(inner band) and statistical (outer band) uncertainties.



Summary 148

7.8 Summary

In this chapter the process of extracting differential cross sections with re-
spect to global event-level variables has been described. The variables that
have been studied are EXS Hy, Sy, pi¥ and M} . The analysis involves
optimising the binning for each variable, extracting the number of tf events
in each bin using a maximum likelihood fit and then unfolding the true num-
ber of events in both the electron and muon-plus-jets channels to correct for
selection and detector effects. The results in the two channels are then com-
bined and the final results are presented as a normalised differential cross
section. The uncertainties on the measured results will be detailed in the

next chapter.



Chapter 8

Evaluation of Uncertainties on

Measurements

There are various sources of uncertainties that can have an effect on the
measurements. Uncertainties can be statistical by nature or can arise from
systematic effects. Systematic uncertainties can be characterised as either
experimental or theoretical. Experimental uncertainties originate from finite
detector resolution in terms of both energy and momentum measurements
of particles and jets, as well as efficiencies in identifying a particular particle
type correctly. Theoretical systematic uncertainties are present due to the-
oretical parameters that are input into the Monte Carlo used to model the
signal and background processes.

In the case of the inclusive cross section, uncertainties can affect the
shapes of the |7, | distributions that are used in the fitting procedure and the
efficiency of tf events, ¢, passing the final event selection. In order to assess
a particular source of uncertainty, the +10 systematics variations on both
the template shape and €;; are used as input. The effect that this variation
has on the final result is then quantified as:

AO’;% — O_:tyst.:l: o O_?fominal' (8].)

£+ - : . . :
Both oY% and op™™ are calculated using Equation 6.15, with ofeminal
syst.+

being the central result and o} the corresponding result obtained when
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the appropriate variation is made. The Aag and Ac,; variations are not
necessarily symmetric about g,; and so are assessed separately.

The uncertainties related to the differential cross section measurements
are assessed by repeating the fitting and unfolding procedures using the +1o
variations as input. This involves changing the input |7,| templates and e;
for the experimental uncertainties and the response matrix used for the un-
folding for theoretical uncertainties. It is not necessary to change both the
templates and the response matrix as this would result in double counting
in the estimation of the uncertainty. Equation 7.22 is then used to calculate
the result in the same way as for the nominal case. The difference from the
nominal result is taken as the uncertainty. The normalisation of the differen-
tial cross section means that uncertainties only effecting normalisation, such
as luminosity, cancel. Cancellations will also occur when uncertainties are
positively correlated between the bins of a given distribution.

In this chapter, all of the sources of uncertainties will first be described.
Each will be assessed individually and for some of the key systematics, the
effect on ez and the shape of the |r,| templates will be investigated. To
obtain the total uncertainty on a measurement, the correlations between
all of the individual uncertainties must be taken into account. In the 7 TeV
cross section analysis, this was done by performing pseudo-experiments using
random numbers to simulate the variations on each individual uncertainty.
This method was chosen for this analysis because it is able to take account
of the uncertainties on the background templates by smearing the shapes
within their uncertainties. These pseudo-experiments are used in a Neyman
construction scheme which was first used in reference [109]. This removes
any bias on the cross section measurement by using a range of alternate tf
cross sections values as input. More details on the pseudo-experiments and
the Neyman construction will be given in Section 8.4.

After the comprehensive study on the uncertainties in the 7 TeV cross
section analysis, the uncertainties in the 8 TeV analysis are determined via a
more conventional method. This involves passing each systematic variation
of fit templates through the fitting procedure whilst using the systematic

variation on €, in the calculation of o;. The uncertainties from the different
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sources are summed in quadrature to calculate the total systematic uncer-
tainty on the result. Tables containing all of the systematic uncertainties for

the various analyses are presented towards the end of this Chapter.

8.1 Statistical Uncertainties

The statistical error in each bin of the |n,| distribution that enters the fit is
given by the Poisson standard deviation, i.e. the square root of the number
of events in that bin. Statistical errors also arise from the statistical proce-
dures that are used to extract the results such as in the maximum likelihood
estimate and the unfolding. In both of these cases the statistical uncertainty
is the square root of the ¢t component from the diagonal of the covariance

matrix.

8.2 Experimental Systematic Uncertainties

8.2.1 Jet Energy Scale (JES) and Resolution (JER)

The uncertainty on the Jet Energy Scale (JES) potentially has an impact on
the shapes of both the ¢t and single-top templates, as well as on the selection
efficiencies for the two processes. To understand this effect, the four-momenta
of each jet is varied simultaneously by one standard deviation, +1o0. Jet
energy uncertainties are related to the errors on the jet n- and ppr-dependent
correction factors as was mentioned in Section 5.7.4.

The effect of varying the JES on the muon rapidity distribution is studied
for both ¢t and single-top processes. The relative shape difference between
the nominal JES and the varied values is shown in Figure 8.1. For both
the ¢t and single-top the differences are well below 1%. The uncertainty is
actually driven by the limited statistics of the Monte Carlo samples as can
be seen from the fact that the points are all within the shaded region. The
effect of the JES uncertainty on the signal template shapes can therefore be

neglected.
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When assessing the effect of the JES on the selection efficiencies, its effect
can be parameterised using the strength-parameter, d;pg € [—1, +1], where
a strength-parameter 0 ;55 = +1 corresponds to the +1¢ variation of the jet
four-momenta. The effects of varying the JES on the selection efficiencies for
tt and single-top are shown in Figure 8.2. The three points show the efficiency
ratios (€(d)/€(0)) to the nominal efficiency. This ratio is parameterised using
a linear function that gives a good description of the efficiency ratio in this

region. The resulting functional dependencies for ¢ and single-top are:

€(05s)
65t0p(5JEs> B
) 0.1216;5 + 1 (8.3)

The linear parameterisation is required such that values of ;7 can be gener-
ated and entered into pseudo-experiments later. The JES has roughly double
the effect on the single-top efficiency as it does for t£. This could be because
there are fewer jets produced in single-top production so it is closer to the

three jet threshold required in this study.
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Figure 8.1: The relative shape uncertainty due to JES variations for ¢t (left)
and single-top (right) from Monte Carlo predictions. The red hashed box
represents the error on the down variation and the black hashed box on the
up variation. The two shapes are within statistical error of one another. The
errors on the points are due to the statistical error on the MC sample.

The JER uncertainty arises due to the uncertainty on the amount of
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Figure 8.2: The relative uncertainty on the efficiency due to JES variations
are shown for tt(left) and single-top (right) using Monte Carlo predictions.
In both cases the variation is parametrised using a linear fit. The Guassian
at the bottom shows distribution of how ¢; will be generated in pseudo-
experiments. The errors on the points are due to the statistical error on the
MC sample.
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smearing applied to the MC in order to make it consistent with the data.
Jet asymmetry measurements [92] suggest that the jet-pr resolution in data
is about 10% worse than in MC. Smearing therefore needs to be applied to
the jet four-momenta for the MC. This smearing effect has very little effect

on the pr of the jets and so the systematic uncertainty is very small.

8.2.2 s

The EX uncertainty is only considered for differential cross sections where
EXss is used, that is, all of the differential variables except Hy. The un-
certainties directly connected to the EXS measurement are evaluated by
changing the energy and momentum of all objects which are used to calcu-
late the E¥5. The main source of uncertainty is that propagated from the
error on the JES and has roughly a 15% effect on the calculation of the EMss,
Other things that can effect the B2 include:

e Unclustered energy (energy that in an event from detector noise): +10%

e Tau energy (since semi-leptonic tau decays can sometimes be included

these include additional EX* from the neutrinos): +3%
e Electron & photon energy: +0.6% in EB and +1.5% in EE

e Muon momentum: +0.2%

The percentages are the uncertainty propagated to the measurement of the
EXss from the various sources. These values are provided by the dedicated

physics object groups within CMS.

8.2.3 Luminosity

The luminosity has been measured for the both the 7 and 8 TeV physics runs.
The luminosity enters the cross section calculation and has an effect on the
global event rate. The uncertainty on the luminosity amounts to 2.2% [110].
The uncertainty completely cancels out for the normalised differential cross

section measurements, but must be included for the inclusive cross section.
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8.2.4 Pileup

Two sources of uncertainty need to be taken into account when assigning the
pileup weights. These are the luminosity uncertainty, which is estimated to be
2.2% [110] and the uncertainty on the total inelastic cross section. An inelas-
tic cross section, oy, value of 68 mb was obtained using forward calorimetry
with the 2011 data [111]. These values (luminosity + cross section) have a
combined uncertainty of 3.6%. The PU weights were reproduced with +1o
variations on the pp inelastic cross sections and the luminosity. The impact
of using the lower and upper bounds on the inelastic pp cross section and the
luminosity can be seen in Figure 8.3. Pileup reweighting has little effect on
the n distribution of the muon and so is not an major source of uncertainty

in this analysis.
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Figure 8.3: Number of reconstructed vertices for the —1o (left) and the +1o
(right) variations of the pileup reweighting procedure.

8.2.5 Lepton Identification, Isolation and Trigger Effi-

ciencies

The uncertainties on the scale factors for the muon identification, isolation
and trigger have been considered. These scale factors are provided by the
CMS muon physics object group using the tag and probe method [86]. The
scale factors are dependent on the 1 of the muon. They therefore have an ef-
fect on the template shapes that are used in the fitting procedure. Muon SF's
(combined trigger + identification + isolation) have an overall uncertainty

of 1%. The uncertainties on the electron scale factors (combined trigger +
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identification + isolation) are also considered when combining in the two
channels. The electron scale factors are flat in 7 and have uncertainties of

typically 3%.

8.2.6 B-tagging

The b-tagging scale factors are applied as was described in Section 5.7.3.
Since b-tagging was only implemented in the 8 TeV analysis the uncertainty
is only considered for the measurements based on this data set. The un-
certainties on the scale factors are dependent on the flavour of the parton
that initiates the jet and its kinematics. The uncertainties are summarised

as follows:

e b-flavoured jets with pr < 800 GeV have pr-dependent uncertainties
in the range 1.6-8%;

e c-flavoured jets with pr < 800 GeV have twice the uncertainty as that

of b-flavoured jets;

e ¢- and b-flavoured jets with pr > 800 GeV again have twice the uncer-
tainty of those with pr < 800 GeV. Uncertainties are fully correlated

with b-tagging uncertainties);

e mis-tagging (or b-tagging of light-flavoured jets: w,d,s) occurs for
roughly 1% of jets. These uncertainties are uncorrelated with b-tag
uncertainties for c/b-flavoured jets and are again pr-dependent in the
range 6-10%.

8.3 Theoretical and Modelling Uncertainties

Some fundamental parameters are used as input in the MC generators. To
take account of the theoretical uncertainties due to modelling effects, a dif-
ferent MC generator tune is used as input and the result from this tune is

compared to the central result (using the nominal MC tune).
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8.3.1 Renormalisation and Factorisation Scale

The renormalisation (ur) and factorisation (up) scale which is set to be equal
to the momentum transfer squared (Q?) required for top pair production (see
Chapter 2) is a key input parameter in MC generators. The nominal choice
for % is to set it equal to the mass of the top (m; = 173 GeV). In order
to estimate the uncertainty on this choice of Q% MC samples have been
simulated with 2Q? (up) and 0.5Q? (down). These samples are then used to
evaluate the theoretical uncertainty. The renormalisation and factorisation
scales are both varied together.

The effect of varying the scale Q? on the muon pseudorapidity shapes and
selection efficiency is shown in Figure 8.4. The relative differences for each bin
with respect to the default scale Q3 are displayed and the uncertainty due to
statistical limitations is represented by the coloured bands. Most values are
consistent with each other within uncertainties. To assess the effect of the
Q? scale on the selection efficiency, a linear parameterisation is performed
as was done for the JES (again for later use in pseudo-experiments). A

strength-parameter, 02, is defined such that:
P(0g2) = Qf - <" (8.4)

where dg2 € {log0.5,log2}. This has the physical meaning of varying the
QQ? parameter in the range [Q?/2,2Q?]. The effect on the selection efficiency

is parameterised using a linear fit to give

9 — _(.27652 + 0.998 (8.5)

This systematic also had to be included in the 8 TeV analyses, where the
W+jets and Z+jets backgrounds were taken from MC. In both of these cases
the nominal @Q? scale is set to the mass of the boson being produced. The

same variations as for the tt case are used.
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Figure 8.4: Relative uncertainty on the shape (left) and efficiency (right)
due to variations of the Q2 choice for the tt process. The red hashed box
represents the error on the down variation and the black hashed box on the
up variation. The errors on the points are due to the statistical error on the
MC sample.

8.3.2 Jet-Parton Matching Threshold

Another fundamental input parameter into the MC is the matching threshold
(th). This parameter is the parton pr required to initiate a shower. The
nominal choice of the matching threshold for the t¢ MC is 20 GeV. The “up”
and “down” simulated samples have a matching threshold of 10 and 40 GeV,
respectively.

To estimate the systematic uncertainties due to the choice of the matching
threshold, the effect on the muon pseudorapidity shape and the selection
efficiency of the ¢t process have again been investigated.

A similar procedure as for the % scale and JES was performed. The effect
of varying the matching threshold on the |r,| distribution and the selection
efficiency is shown in Figure 8.5. In contrast to the JES and Q? studies,
a clear difference is observed between the |n,| shapes for the matching up
and down samples. The right hand Figure shows that there is no linear

representation of the selection efficiency with the matching threshold input.
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Again, for the 8 TeV analyses the W+jets and Z+jets matching threshold
must be assessed. The nominal matching threshold for these sample is 10
GeV and the “up” and “down” samples are simulated with thresholds of 5

and 20 GeV, respectively.
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Figure 8.5: Relative uncertainty on the shape (left) and selection efficiency
(right) due to variations of the matching threshold for the ¢t process using
MADGRAPH MC. The red hashed box represents the error on the down
variation and the black hashed box on the up variation. The errors on the
points are due to the statistical error on the MC sample.

8.3.3 Hadronisation Modelling

A hadronisation uncertainty is present due to the choice of using MAD-
GRAPH+PYTHIA to obtain the nominal result. PYTHIA uses a different
hadronisation model to HERWIG as was described in Chapter 2. It is there-
fore necessary to account for this choice of modelling. To do this the results
are obtained using both response matricies in the unfolding. The difference

between the two results is taken as the uncertainty.
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8.3.4 Single-Top Production

Since the ¢t and single-top templates are very similar they have to be fit
together as a combined template (signal). It is therefore necessary to subtract
the single-top contribution from the signal using the number of single-top
events predicted by MC, normalised using the theoretical production cross
sections given in Table 6.4. A pessimistic uncertainty of 30% on the single-
top theoretical cross section is recommended by the CMS top quark group.
In the differential cross section measurements this uncertainty largely cancels

in the normalisation of the cross section.

8.4 Uncertainties on 7 TeV Inclusive Cross

Section Measurement

The 7 TeV inclusive cross section was the first time this analysis had been
performed and so it was important to make sure that there were no sources
of bias. This was the reason for performing the full Neyman construction
from pseudo-experiments.

In the 7 TeV analysis all of the fit templates and constraints on the nor-
malization for the background processes are extracted from data and some
theoretical predictions. Therefore, the only uncertainties to be taken into
account on the background estimates are due to statistical limitations and
uncertainties on the theoretical numbers used to extract the template. The
backgrounds were extracted using different methods in various signal de-
pleted phase spaces and so the uncertainties are completely uncorrelated.

The treatment of the background uncertainties for the 7 TeV analysis are

summarised here for each process:

1. W+Jets background

e Template shape: Each bin has an uncertainty defined by the sta-
tistical limitations of the charge subtraction method explained in

Section 6.3.1 and the uncertainty on the correction factors used
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to extrapolate from the charge subtraction region to the signal re-
gion. The relative uncertainties per |n,| bin typically range from
5% — 10%.

2. Drell-Yan background

e Template shape: The bin-wise uncertainties due to limited statis-
tics and correction factors (again from the extrapolation into the
signal region) are used. The uncertainty in each |r,| bin is typi-

cally around 10%.
3. QCD multi-jet background

e Template shape: The only uncertainty is the statistical uncer-

tainty for each bin. The typical range is 6% — 14%.

e Normalization: A 100% uncertainty on the number of events pre-

dicted by QCD MC is applied.

In the 8 TeV analyses the theoretical uncertainties on the % scale and the

matching threshold described in the previous section have been considered.

8.4.1 Construction of Pseudo-Experiments

Pseudo-experiments using pseudo-data derived from MC is produced in order
to assess uncertainties on the measurement. Distributions are generated for
each sub-process (signal, W+jets, Z+jets and QCD) independently and then
added to obtain the final observed pseudo-data. The construction of each

background |7,| distribution follows the procedure below:

1. For each bin of the distribution a normally distributed random number
is generated with a mean set to the expected number of events and

width corresponding to the uncertainty in that |r,| bin.

2. In each |n,| bin a Poissonian random number is then generated about
the mean from step 1. Step 2 represents the statistical uncertainty in

each bin.
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The construction of the signal pseudo-data is a little more involved since
each source of systematic uncertainty has to be taken into account, all
of which will have an effect on the fitted cross section result. Strength-
parameters such as those defined for JES and the % uncertainties are used.
These allow for the signal pseudo-data to be produced within 10 bands for
each uncertainty. This is performed for each source of systematic uncertainty
defined previously in this chapter. The variation of each strength-parameter,
d;, can have an impact on both the ¢t and single-top selection efficiencies.

The construction of the signal pseudo-data can now proceed as follows:

1. A strength-parameter, 9;, is simulated for each source of systematic, i,
using a random normal variable about the mean expected number of

events with a width corresponding to its uncertainty.

2. These strength-parameters are combined to produce efficiencies for

both the ¢t and single-top processes.

3. Normally distributed random numbers are simulated within uncertain-
ties for systematic uncertainties such as the matching threshold where

the |n,| shape is significantly different.

4. The expected number of ¢t and single-top events are also computed
using
N=LXxoxe (8.6)

5. In each |n,| bin a Poisson distributed random number with mean con-
structed in the previous step is generated. This step again relates to

the statistical error in each bin.

The final pseudo-data distributions are then the simple sum of the distri-
butions of all sub-processes. These distributions are then fitted using the
maximum likelihood method as explained in Section 6.4 to extract the re-

sult.
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8.4.2 Full Uncertainty on the Cross Section: Neyman

Construction

The fitted tf cross section is computed from the fitted number of events Nt
as was described in Section 6.4.1. The fitted result can be related to the true
tt cross section via a Neyman construction scheme. In the process of this

Neyman construction the following parameter is defined as

Ot

tt = theory * (87)
Ot
0 is varied in a range of values such that g, € [0.2,0.5,0.7,0.9,1.0,1.2, 1.4, 1.8, 2.0].
An ensemble of 100K pseudo-experiments are performed for each value of 5.
In each pseudo-experiment, pseudo-data is used to extract a fitted cross sec-

fit

tion result, 0. A value or 8% is obtained from each pseudo-experiment,

which is in turn defined as

fit

g,7
%= e (8.8)

theory °
I

These pseudo-experiments yield an approximately normal probability dis-

tribution, P(3), related to the variable S for each S value. The central

value 81(0) is defined as the mean of the probability distribution. The up-

per and lower 1o (and 20) bands can be defined as i (+no), with n = 1,2.

With this in mind the following equations are satisfied:

fit
| Pro /OO P(B)df = /ﬂ“_( " p@as, n=12  (89)
2 Bt (+no) —o0
with the 1o and 20 probabilities are defined where p;, = 0.68 and py, = 0.95,
respectively. The results of the pseudo-experiments are summarized in Table
8.1.

The relationship between 6{? and f; follows a linear relationship (central
values, as well as for the error bands). These dependencies can be seen in
Figure 8.6. Linear functional dependencies are therefore constructed for the

mapping of ﬁg—t — (ﬁt5+ Aa;g — Aa};) in order to obtain the cross section
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B
0.2 0.5 0.7 0.9 1.0 1.2 1.4 1.8 2.0
—20 -0.045 0.207 0.369 0.515 0.591 0.735 0.881 1.16 1.29
—0 0.077 0.353 0.527 0.699 0.785 0.953 1.12 145 1.6
g“ Ccntral(O) 0.199 0499 0.697 0.897 0.997 1.2 1.4 1.79 1.95
+o 0.319 0.645 0.869 1.1 1.21 1.45 1.68 2.13 2.27
+20 0.441 0.791 1.03 1.29 1.41 1.67 193 2.39 2.46

Table 8.1: B values for several input values of ;.
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Figure 8.6: Functional dependence between Btﬁft and (; with corresponding
lo (yellow) and 20 (green) uncertainty. The red lines correspond to the
Neyman construction for the measured ¢t cross section.

and the uncertainties:

o1 = 02 % (B + Aof; — Aoyr) . (8.10)

fit

The fitted cross section o,; using the nominal values is used to extrapolate

across Figure 8.6 to obtain the final result. A value of 8 = 0.93 was found.

4 F39-0(26.7%)

This gives a final result for the tf cross section of 146. 29.5(—90.1%

Vs =TTeV.

)pb at
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8.4.3 Breakdown of Uncertainties

Individual uncertainties can be assessed by only allowing one source of un-
certainty at a time to influence the construction of the pseudo-data in ex-
periments. The same mapping can then be performed as was described for
the full uncertainty. The breakdown of the contributions from the individual
uncertainties for the 7 TeV inclusive cross section are shown in Table 8.2.
The dominant sources are those relating to the statistical uncertainties on
the Wjets template and the Q? scale uncertainty. The systematic uncer-
tainties on the background templates will improve with increased statistics
but will eventually be limited by the uncertainties assigned to the correction
factors. This limitation is almost reached for the 1 fb~! of 7 TeV data set as

was used in this analysis.

Source Bir(—c) pb (%) | Bu(0) | Bu(+0) pb (%)
W-+jets Temp stat. -15.8 (-10.9%) | 0.924 15.9 (11%)
DY Temp stat. -2.9 (-2.01%) | 0.924 | 2.99 (2.06%)
QCD Temp stat. L0.4 (-0.247%) | 0.924 | 0.315 (0.216%)
All backgrounds stat. | -16.2 (-11.1%) | 0.924 | 16.2 (11.2%)
JES 12 (-2.88%) | 0.923 | 4.34 (2.98%)
Q? scale -22.3 (-15.3%) | 0.926 32 (22%)
matching threshold -0.2 (-0.168%) | 0.922 | 0.291 (0.2%)
luminosity -3.5 (-2.41%) | 0.923 | 3.69 (2.54%)
single top xsect. -5.2 (-3.55%) | 0.923 | 5.06 (3.48%)
stat. 72 (4.97%) | 0.924 | 7.46 (5.12%)
syst. @ stat. -29.5 (-20.1%) | 0.93 39 (26.7%)

Table 8.2: Breakdown of systematic and statistical uncertainties for the 7
TeV inclusive cross section analysis.

8.5 Uncertainties on 8 TeV Inclusive Cross

Section Measurements

The comprehensive study of the uncertainties for the 7 TeV cross section

measurement showed only a negligible bias on the final result in comparison
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to the uncertainty on the measurement. It is therefore sufficient to simply
repeat the analysis with the various systematic shifts as input for the 8
TeV analyses. This involves using systematically shifted event weights to
fill histograms or using different systematic samples as has been described
earlier in this Chapter. A breakdown of the uncertainties is shown in Table
8.3.

Source ‘ —o pb (%) ‘ +o pb (%)
JES 74 (3.1%) | 10.1 (4.3%)
JER 0.7 (0.3%) | 0.6 (0.2%)
PU 15 (0.6%) | 2.1 (0.9%)
B-tag 109 (-4.6%) | 12.1 (5.1%)
lumi. -5.1 (-2.2%) | 5.3 (2.2%)
Q* scale (V+jets) -6.4 (-2.7%) | 10.4 (4.4%)
Matching threshold (V+jets) | -2.5 (-1.1%) | 2.5 (1.1%)
QCD 42 (-1.8%) | 2.8 (1.2%)
Q? scale (tt) -0.4 (-0.2%) | 0.7 (0.3%)
Matching threshold (tt) -2.5 (-1.0%) | 0.1 (0.0%)
single top xsect. -3.0 (-1.3%) | 3.0 (1.3%)
stat. -1.9 (-0.8%) | 1.9 (0.8%)
syst. @ stat. -16.9 (7.1%) | 20.4 (8.6%)

Table 8.3: Breakdown of systematic and statistical uncertainties for 8 TeV
inclusive cross section measurement. The value in brackets is the percentage
of the uncertainty on the result.

8.6 Uncertainties on Differential Cross Sec-

tion Measurements

The systematic uncertainties for the differential cross section measurements
are estimated in a similar way to those in the 8 TeV inclusive cross section.
The main difference is that for the experimental uncertainties the error is also
propagated through the unfolding procedure. The theoretical uncertainties

are assessed by replacing the response matrix in the unfolding with that as-
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sociated with the prescribed uncertainty. All of the systematic uncertainties
for the ER* variable are summarised in Table 8.4 for the combined (e and

p+jets) measurement. Tables for the other variables can be seen in Appendix

D.

Systematic Errors

Systematic 0< ERS <25 [ 25< BN <45 [ 45< EP™ <75 | 75< BB <100 | 100< EFs <150 | ERs >150
b-jets - (%) 0.12 0.03 -0.06 -0.05 -0.01 0.02
b-jets + (%) -0.11 -0.03 0.06 0.04 -0.00 -0.02
JER - (%) 0.03 0.03 -0.04 -0.01 0.02 0.06
JER + (%) -0.07 0.04 0.03 -0.03 -0.04 0.01
JES - (%) 1.80 1.22 0.10 -1.62 -2.81 -3.22
JES + (%) -2.09 -1.21 0.20 1.67 2.38 2.83
Light jet - (%) 0.05 0.01 -0.04 -0.02 0.03 0.03
Light jet + (%) -0.05 -0.01 0.04 0.01 -0.04 -0.03
Pile-up - (%) -0.05 0.03 0.00 -0.01 0.01 -0.04
Pile-up + (%) 0.14 -0.04 -0.04 0.01 -0.00 0.04
QCD shape uncertainty (%) -1.47 -0.24 0.53 0.52 0.36 0.33
hadronisation uncertainty (%) | 1.16 0.01 -0.94 -0.27 1.08 1.65
pr(l) reweight (%) 0.55 0.19 -0.10 0.14 0.48 131
tt (matching down) (%) -1.08 -0.16 0.07 0.62 1.16 -1.05
tt (matching up) (%) 0.67 -0.10 -1.04 -0.65 2.66 3.70
tt (Q* down) (%) 1.65 117 -1.35 -1.78 1.21 1.08
tt (Q% up) (%) -0.09 -0.74 -0.87 1.30 1.94 2.20
V-+jets (matching down) (%) | -0.07 0.49 0.15 -1.18 -0.19 2.11
V-tjets (matching up) (%) 0.65 0.98 0.48 151 2.33 -1.00
V-tjets (QF down) (%) 0.65 0.38 0.26 025 0.38 325
Vtjets (Q* up) (%) 2.27 1.36 -0.49 -2.04 -2.55 0.81
Electron energy —1o (%) 0.12 0.13 -0.16 -0.21 0.21 0.34
Electron energy +10 (%) -0.40 0.08 0.28 -0.02 -0.33 -0.34
Muon energy —1o (%) 0.08 -0.02 -0.08 0.01 0.10 0.21
Muon energy +1o (%) -0.10 0.02 0.10 -0.02 -0.15 -0.10
Tau energy —1o (%) -0.06 0.02 0.03 -0.00 -0.03 0.00
Tau energy +1o (%) 0.13 -0.02 -0.09 0.02 0.08 0.03
Unclustered energy —1o (%) | 0.88 0.88 0.21 -1.25 -1.88 -1.49
Unclustered energy +1o0 (%) | -1.08 -0.93 0.02 1.17 1.76 1.64
Total (%) 4.65 2.99 2.96 4.67 6.68 7.66

Table 8.4: Systematic uncertainties for E* variable after unfolding for the
combination of channels. These uncertainties are presented as a percentage
of the result for each uncertainty in each EZ bin.

It can be seen that for some systematics, the shift for the both the “up”
and the “down” systematic is in the same direction. For this reason, the
uncertainties for the final results shown in Chapter 7 are symetrised with
the highest error taken from the +1¢ variation. The most notable case was
seen for the ? systematic for the last £ bin. These fluctuations in the
same direction can be explained by poor statistics in the theory samples.
The shapes of the templates that enter the fit are shown in the left plot of
Figure 8.7. In this example the central ¢t shape is steeper than that of the
two systematic samples. When the statistics were increased by going to the

inclusive b-tag region (right plot of Figure 8.7) no significant deviations in
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shape were observed. It was therefore decided to use this enhanced statistics

region in determining the contribution to the uncertainty.
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Figure 8.7: Comparison of Q? shapes after > 2 b-tags (left) and > 4 jet
(right) selection.

8.7 Summary

In this chapter the systematic uncertainties that can have an effect on the
inclusive and differential cross section have been described. The key sources
of uncertainty are the JES and the modelling of the V' +Jets background. The
b-tagging uncertainty is also quite large where b-tagging is implemented. A
discussion on how these might be improved will be made in the next chapter.

The systematics were assessed in more detail in the 7 TeV inclusive cross
section analysis using a full Neyman construction to extract the final re-
sult and the uncertainties. This was done in order to check for any bias
in the method. Since the bias was negligible in relation to the size of the
uncertainties, for the 8 TeV analyses, a more standard way of assessing the
uncertainties was used. One of the key problems in assessing the systematic
uncertainties is the poor statistics, particularly after > 2 b-tag selection for
the differential cross section analysis. Higher statistics MC samples would

allow these systematics to be more reliably assessed.



Chapter 9

Summary and Outlook

In this thesis, the inclusive and differential cross sections of the ¢t production
process have been studied using both 7 and 8 TeV CMS data. The work in

this thesis focuses on the muon-plus-jets decay channel. Collaborations have

been made with others in order to combine the results with the electron-plus-

jets channel for the final measurements.

The 7 TeV inclusive cross section measurement presented here was used

to cross check the main result in reference [112]. This analysis used data-

driven methods to extract information about the backgrounds. A maximum
likelihood fit of the |n,| distribution was used to extract the result. This

result is in agreement with results measured by ATLAS and CMS as can be

seen in Table 9.1.

Measurement Lumi. (fb~1) Result (pb)
Thesis (u+jets) 1.0 146 + 8 (stat.) "5y (syst.)

CMS (e/p+jets) 2.2-2.5 158 + 2 (stat.) &+ 10 (syst.) = 4 (lumi.)
CMS (ee, pup, ep) 2.3 162 + 3 (stat.) = 5 (syst.) £ 4 (lumi.)
ATLAS (e/p+jets) 2.05 186 £ 13 (stat.) £ 20 (syst.) £ 7 (lumi.)
ATLAS (ee, pp, ep) 0.7 176 + 5 (stat.) *i7 (syst.) &+ 8 (lumi.)

Theory N/A 163 *% (ur and pp scale) + 9 (PDF)

Table 9.1: A selection of CMS [112, 113] and ATLAS [114, 115] cross section
measurements at /s = 7 TeV compared to the one presented in this thesis
(blue). The approximate NNLO calculations [29] are also shown.

The 8 TeV inclusive cross section measurement was performed using the
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same method as that for the 7 TeV. The result is compared to various other
measurements performed by CMS and ATLAS and the theoretical prediction
in Table 9.2.

Measurement Lumi. (fb~1) Result (pb)
Thesis (u-+jets) 19.7 237 + 2 (stat.) "2 (syst.)
CMS (e/u+jets) 2.8 228 4 9 (stat.) T52 (syst.) £ 10 (lumi.)
CMS (ee, pp, ep) 2.4 227 £+ 3 (stat.) £ 11 (syst.) & 10 (lumi.)
ATLAS (e/p+jets) 5.8 241 £ 2 (stat.) £ 31 (syst.) = 9 (lumi.)
ATLAS (ep) 20.3 242 £ 2 (stat.) £ 6 (syst.) £ 8 (lumi.)
Theory N/A 234 7% (ug and pp scale) = 12 (PDF)

Table 9.2: A selection of CMS [24, 23] and ATLAS [116, 117] cross section
measurements at /s = 8 TeV compared to the one presented in this thesis
(blue). The approximate NNLO calculations [29] are also shown.

Some enhancements were made when moving from the 7 TeV to the 8
TeV inclusive cross section measurement. Rather than estimating the V+jets
background from data, MC was used. This is because it was possible to apply
a much tighter event selection in the 8 TeV analysis. Using the same data-
driven techniques would have yielded too much contamination from other
processes, particularly ¢¢ and single-top production. It had also been proved
in the 7 TeV analysis that MC models the data very well for the W and
Z+jets processes. Tightening the event selection meant that the background
is significantly reduced as well as the uncertainties associated with them.
This can be seen when comparing tables 8.2 and 8.3, where the uncertainty
due to the background modelling reduces from 11% to 5%. The largest
experimental uncertainties in the 8 TeV analyses arise from b-tagging and
the jet energy scale (JES). The uncertainty due to the JES will reduce as our
understanding of the detector improves and more sophisticated methods of
extracting the jet energy corrections are developed [118]. These uncertainties
can also be reduced by adding nuisance parameters to the fitting procedure
and performing fits on divided data sets as was done in reference [112]. The
QCD multi-jet and W /Z+jets backgrounds can be distinguished better by
using additional fitting variables such as M.

A measurement of the t¢ differential cross section with respect to the miss-
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ing transverse energy in the event was first performed using the 7 TeV data
[119]. This analysis was described in the conference proceedings for the Top
2012 workshop [120] (not presented in this thesis). Additional variables in-
cluding the Hr, St, p¥ and M}" were added for the 8 TeV analysis [121]. In
general, these measurements showed a good agreement with the predictions
from Monte Carlo generators. In the 8 TeV analysis, a regularised unfolding
approach was adopted rather than bin-by-bin unfolding as was used in the
7 TeV ERs analysis. Regularisation helps to suppresses the large statistical
fluctuations that can result from poor statistics in the response matrix. Im-
proving the method of binning selection will help reduce migrations between
bins and help improve the measurements. This could be done by allowing
the bin widths to float as free parameters such that they can be optimised.

The study of inclusive and differential cross sections are important for the
understanding of perturbative QCD physics in ¢t production. In particular
constraints can be made on the PDFs. The Hr and St variables can give
insight in to the hadronisation of the quarks produced in top pair decays.
The p¥ and M} variables allow us to learn about the leptonically decaying
W-boson produced by the top quark. All of these variables, in particular the
EXss are used in BSM physics searches. This includes searches for SUSY and
for heavy exotic top partners where top pair production is a large background.
It is therefore important for these analyses to understand these variables
well which could help with reducing the ¢ background contribution. Top
pair production is also a major background to rare standard model processes
such as ¢tV and ttH where neutrinos are produced in the decay of Vector
boson or the Higgs.

The differential measurements are compared to the predictions of three
different MC generators: MADGRAPH, MC@NLO and POWHEG. Compar-
isons are also made to different MC tunes using the MADGRAPH generator.
These tunes include variations in the factorisation and renormalisation scale
and the parton matching threshold. No significant deviations are observed
between the data and these predictions. All theoretical tunes yield similar
predictions for the B variable. No excess is observed in the tail of the dis-

tribution which could have been an indicator of new physics. The Ht and St
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variables show more significant differences between the MADGRAPH tunes
particularly for the ) variations. This seems to suggest that it is correct to
set the factorisation and renormalisation scales to the mass of the top quark.
The POWHEG and MADGRAPH generators tend to make very similar pre-
dictions for the Ht and St variables. The explanation behind this is due
to PYTHIA being used for the hadronisation for both of these generators.
MADGRAPH tends to give a better description of softer transverse events
whilst MC@QNLO seems slightly better for harder events where more high pr
objects are produced. The p'¥ results show a slight discrepancy between the
MC and data. It is reasonable to suggest that this is due to a similar effect as
is seen in the top-pr distribution [93] where the data is softer than the MC.
It would be interesting to see if the NNLO prediction for this variable gives
a better description as it does in the case of the top pr. MY is the least pre-
cisely measured variable. This is a result of significant bin-to-bin migrations.
A refinement of the binning would help improve this measurement.

It is planned that all of the variables presented will be measured using
the 7 TeV data and combined with the 8 TeV results in a publication. It will
be interesting to look at a ratio of the differential cross sections between 7

and 8 TeV:
dU7TeV/dX

do¥TV JdX (9.1)

In these measurements, many systematic uncertainties would cancel giving
very precise results. This could help when attempting to differentiate be-
tween MC generators. Another interesting future measurement could be to

perform 2D differential cross sections, e.g:

d*c

! . 2
AR [dSy (5:2)

These measurements could tell us a lot about top pair decays and would be
very sensitive to new physics, particularly at high E¥'* and St. The presence
of these sorts of events could indicate the presence of a massive undetected

particle.
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9.1 Summary

Measurements of top pair inclusive cross sections in the muon-plus-jets chan-
nel have been presented. The results agree with theoretical predictions and
measurements from other analyses and experiments within uncertainties.
Differential cross section measurements have also been made with respect
to various global event variables. These include Ef Hry, Sy, p and MjY.
The differential cross section results have been unfolded to remove selection
and migration effects. This allows results to be compared with other experi-
ments. Comparisons have been made to the available Monte Carlo simulation

samples. A reasonable agreement is observed for these variables.
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Appendix A

Irradiated Test Beam Crystals

Table A.1 shows the proton fluence and the resulting damage (j1inq) to crystals
from proton irradiation between 2009 and 2012. The values shown are after
the initial irradiation. Some of the crystals were re-irradiated or thermally

recovered before being reused in test beam experiments.
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Crystal Year Accumulated fluence | g
ID of irradiation (p/cm?) (m™1)
11124 2009 1.0 x 103 2.7
11992 2010 3.72 x 101 7.7
11952 2010 3.74 x 1013 8.0
11935 2010 3.89 x 1013 8.6
11121 2010 3.75 x 1013 8.6
11128 2010 3.69 x 1013 8.5
12014 2010 3.81 x 1013 7.7
11962 2010 3.70 x 1013 7.7
11118 2010 3.75 x 1013 8.7
11133 2010 3.75 x 1013 8.2
7022 2010 3.73 x 1013 8.8
11856 2011 2.21 x 1013 3.4
11830 2011 2.13 x 1013 2.5
11845 2011 2.26 x 1013 3.1
11133 201042011 5.94 x 10 10.9
11828 2012 5.60 x 103 9.2
11832 2012 5.33 x 1013 8.8
11834 2012 5.21 x 10%3 8.3
11836 2012 6.65 x 10'3 10.2
11135 2012 5.36 x 1013 7.4
11138 2012 5.87 x 1013 8.8
11137 2012 5.34 x 10%3 7.6
11931 2012 5.90 x 103 8.4
12010 2012 5.75 x 1013 8.3
11861 2012 1.14 x 104 18.8
11862 2012 1.34 x 104 21.7
11866 2012 1.17 x 104 19.9

Table A.1:
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List of the crystals irradiated at the PS Irradiation Facility from
2009-2012. The accumulated fluence and the induced absorption coefficient
for each crystal are reported.
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Correlations between Fitted

Variables

The correlations between the fitted variables: Nggnai, Nvijets and Nqcep for
the EXS variable are shown in Figure B.1 for the muon+jets channel. Tt is
seen that the correlation between signal and QCD remains very low for all
EXss bins, while that between V+jets and QCD is negatively correlated at
low EX5 bins but not so at higher EF¥ bins as they contain almost no QCD

multi-jet background.
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Figure B.1: Correlation between input fit processes for the EMs vari-
able in the muon channel: 0-25 GeV(top left), 25-45 GeV(top right), 45-
70 GeV(middle left), 70-100 GeV(middle right), 100-150 GeV(bottom left)
and > 150 GeV(bottom right).



Appendix C

Comparison of Differential
Cross section Results in the

Electron and Muon-+tJets

Channels

The measured differential cross section are shown for both the muon and
electron+jets channels prior to the combination in Figures C.1-C.10 for all
variables. A comparison is made to the Q? scale and matching threshold on

the left and the different generators on the right.
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Figure C.1: Comparison of measured normalised differential cross section
with respect to E¥s to different MC tunes (left) and different generators
(right) for the muon-plus-jets channel.
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Figure C.2: Comparison of measured normalised differential cross section
with respect to ER to different MC tunes (left) and different generators
(right) for the electron-plus-jets channel.
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CMS Preliminary, £ =19.7fb"" at \/s = 8 TeV CMS Preliminary, £ =19.7fo~" at \/s =8 TeV
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Figure C.3: Comparison of measured normalised differential cross section
with respect to Hr to different MC tunes (left) and different generators
(right) for the muon-plus-jets channel.
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Figure C.4: Comparison of measured normalised differential cross section
with respect to Ht to different MC tunes (left) and different generators
(right) for the electron-plus-jets channel.
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Figure C.5: Comparison of measured normalised differential cross section
with respect to St to different MC tunes (left) and different generators (right)
for the muon-plus-jets channel.
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Figure C.6: Comparison of measured normalised differential cross section
with respect to St to different MC tunes (left) and different generators (right)
for the electron-plus-jets channel.
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Figure C.7: Comparison of measured normalised differential cross section
with respect to p¥ to different MC tunes (left) and different generators (right)
for the muon-plus-jets channel.
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Figure C.8: Comparison of measured normalised differential cross section
with respect to p'Y to different MC tunes (left) and different generators (right)
for the electron-plus-jets channel.
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Figure C.9: Comparison of measured normalised differential cross section
with respect to M7 to different MC tunes (left) and different generators

(right) for the muon-plus-jets channel.

CMS Preliminary, £ =19.7fb~' at \/s = 8 TeV

e + jets, > 4 jets, > 2 b-tags
s o e |

0.005)

0.010

[

—

i tt (matching down)

unfolded data
tt (MadGraph)

tt (matching up) 4
tt (Q* down)
1 (Q* up)

0.000y

100

R 2
M, [GeV]

CMS Preliminary, £ =19.7fo"' at \/s = 8 TeV

e + jets, > 4 jets, > 2 b-tags
— e e

0.010]

0.005F"%&

1 unfolded data
,,,,,,,,, 1 tt (MadGraph)

[t (MC@NLO)
73 tf (POWHEG) [

-

0.000y

0 200
My [GeV]

Figure C.10: Comparison of measured normalised differential cross section
with respect to MY to different MC tunes (left) and different generators
(right) for the electron-plus-jets channel.



Appendix D

Systematics Uncertainties

Tables D.1 to D.9 show the exact values of the systematic uncertainties after
unfolding the measurement for the muon-plus-jets channel and the combi-
nation of the muon and electron-plus jets channels for all of the considered

variables.

Table D.1: Systematic uncertainties for Em variable after unfolding in the
p-plus-jets channel.

Systematic Errors

Systematic 0< EXBs <25 [ 25< ERS <45 [ 45< B <75 [ 75< ER™ <100 | 100< B <150 | B2 >150
b-jets - (%) 0.17 0.07 -0.06 -0.11 -0.09 -0.01
b-jets + (%) -0.15 -0.07 0.05 0.10 0.08 0.01
JER - (%) 0.04 0.04 -0.02 -0.02 -0.06 -0.04
JER + (%) -0.00 0.06 0.01 -0.05 -0.09 -0.04
JES - (%) 2.38 1.35 -0.08 -1.85 -2.85 -2.95
JES + (%) -3.03 -1.48 0.64 211 217 219
Light jet - (%) 0.05 0.03 -0.01 -0.05 -0.04 0.03
Light jet + (%) -0.04 -0.03 0.01 0.05 0.03 -0.04
Pile-up - (%) -0.14 -0.02 0.04 0.08 0.03 -0.13
Pile-up + (%) 0.34 -0.00 -0.12 -0.09 -0.02 0.12
QCD shape uncertainty (%) 0.00 0.00 0.00 0.00 0.00 0.00
hadronisation uncertainty (%) | 2.40 0.73 -1.30 -1.67 0.62 3.06
pr(l) reweight (%) 0.84 021 018 021 054 134
tt (matching down) (%) -0.70 0.27 0.19 0.03 0.15 -1.66
tt (matching up) (%) -0.96 0.96 -0.24 -1.95 2.01 4.01
i (Q% down) (%) 3.99 224 2.07 3.7 058 335
T (Q? up) (%) 1.84 -0.03 -1.96 0.45 3.24 3.49
V+jets (matching down) (%) | -0.39 0.88 0.39 -1.91 -0.33 2.85
V+jets (matching up) (%) 3.89 1.62 -0.74 -2.63 -2.90 -1.13
V+jets (Q* down) (%) 2.21 -1.08 -1.62 0.63 2.65 3.15
Vjets (Q* up) (%) 2.47 2.91 0.23 -4.10 -5.60 2.07
Electron energy —1o (%) 0.12 0.10 -0.03 -0.10 -0.12 -0.17
Electron energy +1o (%) -0.11 -0.04 0.05 0.05 0.01 0.13
Muon energy —1o (%) 0.20 -0.05 -0.17 0.04 0.16 0.37
Muon energy +1o (%) -0.23 0.04 0.21 -0.01 -0.29 -0.29
Tau energy —1o (%) -0.10 0.07 0.08 -0.08 -0.15 -0.01
Tau energy +1o (%) 0.24 -0.06 -0.10 0.01 0.06 0.09
Unclustered energy —1o (%) | 0.88 0.81 0.36 -1.14 -2.20 -1.38
Unclustered energy +10 (%) | -0.90 -0.82 0.02 0.81 1.53 2.05
Total (%) 8.12 4.81 4.09 7.78 8.64 9.48
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Table D.2: Systematic uncertainties for Hy variable after unfolding in the
p-plus-jets channel.

Systematic Errors

Systematic 0-240 GeV | 240-280 GeV | 280-330 GeV | 330-380 GeV | 380-450 GeV | 450-600 GeV | > 600 GeV
b-jets - (%) 0.04 -0.02 -0.08 -0.07 -0.03 0.07 0.15
b-jets + (%) -0.04 0.02 0.08 0.07 0.02 -0.07 -0.16
JER - (%) -0.13 -0.04 0.05 0.19 0.18 0.23 -0.14
JER + (%) 0.10 -0.02 -0.19 0.02 0.03 -0.15 0.03
JES - (%) 4.83 0.79 -3.19 -4.62 -4.47 -4.73 -5.19
JES + (%) -1.99 0.03 0.91 1.32 1.90 2.50 2.80
Light jet - (%) 0.02 -0.02 -0.07 -0.07 -0.01 0.09 0.14
Light jet + (%) -0.02 0.02 0.07 0.07 0.01 -0.09 -0.15
Pile-up - (%) -0.06 0.01 0.05 0.07 0.08 0.02 -0.04
Pile-up + (%) 0.19 -0.03 -0.16 -0.18 -0.18 -0.08 0.01
QCD shape uncertainty (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hadronisation uncertainty (%) | -2.77 -3.61 -0.11 2.08 5.32 8.63 8.40
pr(t) reweight (%) 0.25 0.00 -0.14 -0.14 -0.19 -0.28 -0.47
tt (matching down) (%) 2.82 0.14 -1.61 -1.63 -2.27 -3.64 -4.90
tt (matching up) (%) 0.47 -0.41 -1.48 -0.71 0.78 2.11 -0.80
1 (Q7 down) (%) 350 211 0.00 114 325 3.61 1.04
1 (Q? up) (%) 3.02 -1.40 257 143 -1.06 -1.91 2,08
V+jets (matching down) (%) | -1.35 -0.67 0.92 1.01 0.25 2.63 3.91
V-jets (matching up) (%) 1.40 -0.29 -0.72 -1.16 -1.02 -0.95 -2.17
Vjets (QF down) (%) 177 170 0.56 301 3776 1.65 1.09
Vets (Q2 up) (%) 0.82 0.85 0.16 -0.98 2,00 2.07 -0.66
Electron energy —1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Electron energy +1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Muon energy —1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Muon energy +1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tau energy —1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tau energy +1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Unclustered energy —1o (%) | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Unclustered energy +1o0 (%) | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total (%) 7.51 4.86 4.94 5.99 8.23 11.05 11.87
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Table D.3: Systematic uncertainties for Hr variable after unfolding in the
combined channel.

Systematic Errors

Systematic 0-240 GeV | 240-280 GeV | 280-330 GeV | 330-380 GeV | 380-450 GeV | 450600 GeV | > 600 GeV
b-jets - (%) 0.02 -0.02 -0.04 -0.03 -0.02 0.03 0.11
b-jets + (%) -0.02 0.02 0.04 0.03 0.02 -0.03 -0.11
JER - (%) -0.05 0.00 0.02 0.06 0.06 0.09 -0.09
JER + (%) 0.10 -0.03 -0.16 -0.04 -0.00 -0.06 0.01
JES - (%) 4.37 0.57 -2.79 -4.00 -4.20 -4.68 -5.14
JES + (%) 2.18 0.24 121 191 2.13 2.46 3.03
Light jet - (%) 0.01 -0.01 -0.04 -0.03 -0.01 0.04 0.09
Light jet + (%) -0.01 0.01 0.03 0.03 0.01 -0.05 -0.10
Pile-up - (%) 0,04 .02 0.02 0.06 0.09 0.05 2001
Pile-up + (%) 0.11 0.01 -0.07 -0.10 -0.13 -0.10 -0.03
QCD shape uncertainty (%) -0.50 -0.07 0.32 0.58 0.57 0.43 0.25
hadronisation uncertainty (%) | -4.14 -3.90 1.24 3.80 6.48 9.45 9.53
pr(t) reweight (%) 0.19 0.00 -0.09 -0.10 -0.15 -0.25 -0.40
tt (matching down) (%) 2.67 0.03 -1.45 -1.69 -2.72 -3.61 -2.97
tt (matching up) (%) 0.73 0.17 -0.62 -1.28 -0.56 0.11 -1.02
tt (Q? down) (%) -3.45 1.74 1.27 1.78 3.28 3.65 2.33
tt (Q2 up) (%) 3.32 -1.21 -2.19 -2.04 -2.21 -3.24 -1.98
V+jets (matching down) (%) | -0.60 -0.19 0.47 0.28 -0.08 1.28 1.91
V-tjets (matching up) (%) | 0.73 -0.09 -0.49 0.82 048 027 -1.01
Vtjets (Q down) (%) -0.42 -0.65 -0.05 0.98 1.49 0.39 0.24
Vjets (Q? up) (%) 0.47 0.35 -0.09 -0.71 -1.17 -0.67 0.22
Electron energy —1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Electron energy +1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Muon energy —1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Muon energy +1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tau energy —1lo (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tau energy +1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Unclustered energy —1o (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Unclustered energy +1o (%) | 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Total (%) 7.78 4.61 4.38 6.55 8.75 11.74 11.68
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Table D.4: Systematic uncertainties for St variable after unfolding in the
p-plus-jets channel.

Systematic Errors

Systematic 0-350 GeV | 350-400 GeV | 400-450 GeV | 450-500 GeV | 500-580 GeV | 580-700 GeV | > 700 GeV
b-jets - (%) 0.05 -0.03 -0.09 -0.09 -0.05 0.04 0.12
b-jets + (%) -0.04 0.02 0.08 0.08 0.04 -0.04 -0.12
JER - (%) -0.17 0.15 0.14 0.04 0.09 0.12 0.10
JER + (%) 0.21 0.02 -0.24 -0.29 -0.22 -0.14 0.01
JES - (%) 3.55 0.37 -2.51 -3.76 -3.96 -4.11 -4.37
JES + (%) -1.86 0.07 0.94 1.33 1.96 2.88 2.85
Light jet - (%) 0.03 -0.02 -0.08 -0.08 -0.03 0.08 0.12
Light jet + (%) -0.03 0.01 0.08 0.08 0.02 -0.08 -0.12
Pile-up - (%) -0.11 0.04 0.10 0.11 0.13 0.05 -0.03
Pile-up + (%) 0.26 -0.08 -0.24 -0.27 -0.26 -0.16 -0.03
QCD shape uncertainty (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hadronisation uncertainty (%) | -2.65 -3.36 0.32 3.08 4.94 7.95 7.99
pr(t) reweight (%) -0.02 0.22 0.15 -0.06 -0.18 -0.19 -0.34
tt (matching down) (%) 1.64 0.04 -1.74 -0.83 -0.91 -1.29 -4.11
tt (matching up) (%) -1.54 -0.17 1.27 1.40 1.49 2.38 1.52
1 (Q7 down) (%) 107 2.16 175 2.4 385 199 3.55
tt (Q2 up) (%) 1.50 -1.18 -1.19 -0.01 -0.77 -1.25 -2.04
V+jets (matching down) (%) | -0.63 0.14 0.52 -0.20 -0.11 1.37 2.18
V-jets (matching up) (%) 2.19 -0.50 -2.15 -2.20 -1.37 -1.36 -2.17
Vtjets (Q down) (%) -1.33 -1.63 0.42 2.89 2.86 2.26 2.03
Vjets (Q? up) (%) 0.60 0.54 -0.03 -0.33 -1.17 -2.47 -0.89
Electron energy —1lo (%) 0.06 0.01 -0.05 -0.06 -0.07 -0.06 -0.02
Electron energy +1o (%) -0.04 -0.03 0.02 0.08 0.09 0.03 -0.01
Muon energy —1o (%) 0.01 -0.03 -0.05 0.00 0.04 0.02 0.05
Muon energy +1o (%) 0.08 -0.04 -0.06 -0.05 -0.10 -0.09 -0.03
Tau energy —1lo (%) 0.02 -0.00 -0.04 -0.02 -0.02 -0.02 0.01
Tau energy +1o (%) -0.00 -0.01 0.01 0.00 -0.00 0.02 0.02
Unclustered energy —1o (%) | 0.32 0.05 -0.17 -0.35 -0.49 -0.39 -0.29
Unclustered energy +10 (%) | -0.36 -0.04 0.20 0.39 0.45 0.40 0.48
Total (%) 7.01 4.64 4.28 6.29 7.99 11.02 10.66
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Table D.5: Systematic uncertainties for St variable after unfolding in the

combined channel.

Systematic Errors

Systematic 0-350 GeV | 350-400 GeV | 400-450 GeV | 450-500 GeV | 500-580 GeV | 580-700 GeV | > 700 GeV
b-jets - (%) 0.03 -0.01 -0.04 -0.04 -0.04 -0.00 0.06
b-jets + (%) -0.02 0.01 0.03 0.03 0.04 0.00 -0.06
JER - (%) -0.13 0.10 0.10 0.05 0.11 0.11 0.06
JER + (%) 0.13 0.03 -0.16 -0.21 -0.13 -0.09 -0.00
JES - (%) 3.46 0.28 -2.66 -3.66 -3.70 -4.07 -4.35
JES + (%) 181 0.08 117 1.34 1.62 2.50 3.19
Light jet - (%) 0.02 -0.01 -0.03 -0.04 -0.03 0.01 0.05
Light jet + (%) -0.02 0.01 0.03 0.04 0.03 -0.01 -0.05
Pile-up - (%) 20.06 0.02 0.04 0.05 0.09 0.08 20.00
Pile-up + (%) 0.14 -0.03 -0.11 -0.12 -0.15 -0.14 -0.05
QCD shape uncertainty (%) -0.51 0.08 0.58 0.65 0.47 0.29 0.06
hadronisation uncertainty (%) | -3.23 -3.56 1.33 3.60 5.55 8.16 8.90
pr(t) reweight (%) 0.06 0.16 0.07 -0.10 -0.20 -0.25 -0.39
tt (matching down) (%) 1.66 -0.06 -1.06 -1.21 -1.62 -1.96 -3.33
tt (matching up) (%) -0.45 0.54 1.19 -0.23 -0.54 0.22 -0.14
1 (Q2 down) (%) 354 2.26 183 165 368 101 2.8
tt (Q2 up) (%) 2.42 -1.32 -1.33 -1.76 -1.65 -3.03 -2.14
V+jets (matching down) (%) | -0.17 -0.00 0.06 -0.16 -0.10 0.62 0.97
Vtjets (matching up) (%) 1.33 0.22 -1.39 151 -0.86 0.82 134
Vtjets (Q down) (%) -0.01 -1.07 -0.66 0.75 1.18 0.94 0.80
Vjets (Q? up) (%) 0.57 0.18 -0.25 -0.39 -0.86 -1.54 -0.54
Electron energy —1o (%) 0.06 -0.03 -0.10 -0.08 -0.01 0.05 -0.03
Electron energy +1o (%) 0.00 0.02 0.03 0.02 -0.01 -0.09 -0.08
Muon energy —1o (%) 0.01 -0.02 -0.03 -0.00 0.03 0.02 0.03
Muon energy +1o (%) 0.03 -0.01 -0.02 -0.02 -0.05 -0.05 -0.01
Tau energy —1lo (%) 0.02 -0.00 -0.03 -0.02 -0.01 -0.00 0.02
Tau energy +1o (%) 0.01 -0.00 -0.01 -0.01 -0.01 0.01 0.01
Unclustered energy —1o (%) | 0.27 0.08 -0.09 -0.32 -0.46 -0.44 -0.30
Unclustered energy +10 (%) | -0.29 -0.05 0.10 0.31 0.45 0.46 0.36
Total (%) 6.45 4.65 4.29 6.02 7.92 10.25 10.95
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Table D.6: Systematic uncertainties for p'Y variable after unfolding in the

p-plus-jets channel.

Systematic Errors

Systematic 0-40 GeV | 40-70 GeV | 70-100 GeV | 100-130 GeV | 130-170 GeV | > 170 GeV
b-jets - (%) 0.00 0.11 0.03 -0.15 -0.18 0.03
b-jets + (%) -0.00 -0.11 -0.03 0.14 0.18 -0.03
JER - (%) -0.03 -0.06 -0.00 0.04 0.09 0.15
JER + (%) 0.09 -0.02 -0.05 -0.01 0.01 0.02
JES - (%) 1.35 1.07 -0.16 -1.22 -1.80 -2.57
JES + (%) 118 -0.95 -0.05 1.26 1.71 2.31
Light jet - (%) 0.03 0.06 0.01 -0.11 -0.13 0.09
Light jet + (%) -0.03 -0.07 -0.01 0.12 0.14 -0.08
Pile-up - (%) -0.09 -0.09 0.07 0.09 0.07 0.10
Pile-up + (%) 0.10 0.17 -0.09 0.17 0.11 0.12
QCD shape uncertainty (%) 0.00 0.00 0.00 0.00 0.00 0.00
hadronisation uncertainty (%) | -0.21 1.84 -0.35 -3.13 -0.57 2.45
pr(i) reweight (%) 0.17 0.27 0.05 2020 043 077
#f (matching down) (%) 0.46 0.94 0.44 104 083 335
tt (matching up) (%) 1.26 1.10 -0.10 -2.49 -1.26 -0.42
tt (Q* down) (%) 2.14 1.90 -1.29 -3.82 -0.99 0.64
# (Q? up) (%) 0.90 121 -0.40 225 -1.62 1.36
V+jets (matching down) (%) | 4.40 -0.07 -2.33 -1.26 -0.60 -0.95
V+jets (matching up) (%) 0.20 0.53 -0.42 -0.33 0.70 -1.60
Vijets (QF down) (%) 1.0 20.79 0,50 0.65 2.16 3.36
Vets (Q up) (%) -1.40 1.32 1.64 -1.98 2.19 -0.93
Electron energy —10 (%) -0.03 0.07 0.09 -0.06 -0.16 -0.19
Electron energy +1o (%) -0.09 -0.00 -0.00 -0.02 0.08 0.23
Muon energy —1o (%) -0.21 -0.09 0.04 0.04 0.18 0.52
Muon energy +1o (%) 0.15 0.17 0.06 -0.14 -0.31 -0.59
Tau energy —1o (%) 0.12 -0.03 -0.05 0.01 -0.02 -0.08
Tau energy +1o (%) 0.03 -0.05 -0.03 0.02 0.05 0.11
Unclustered energy —1o (%) | 1.08 0.56 -0.17 -0.73 -0.99 -1.89
Unclustered energy +10 (%) | -1.05 -0.69 0.11 0.77 1.35 1.94
Total (%) 5.79 4.05 3.24 6.73 4.54 6.55
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Table D.7: Systematic uncertainties for p'Y variable after unfolding in the

combined channel.

Systematic Errors

Systematic 0-40 GeV | 40-70 GeV | 70-100 GeV | 100-130 GeV | 130-170 GeV | > 170 GeV
b-jets - (%) 0.00 0.03 -0.01 -0.06 -0.04 0.08
b-jets + (%) -0.00 -0.03 0.01 0.06 0.04 -0.07
JER - (%) -0.01 -0.04 -0.02 0.01 0.08 0.17
JER + (%) 0.05 0.01 -0.04 -0.03 0.01 0.01
JES - (%) 1.08 0.83 0.10 -0.98 -1.82 -2.49
JES + (%) -1.45 -0.84 0.21 1.27 1.69 2.05
Light jet - (%) 0.02 0.01 -0.02 -0.05 -0.02 0.08
Light jet + (%) -0.02 -0.02 0.02 0.05 0.03 -0.08
Pile-up - (%) -0.09 -0.03 0.06 0.02 0.01 0.12
Pile-up + (%) 0.10 0.07 -0.09 -0.06 -0.03 -0.12
QCD shape uncertainty (%) -0.36 -0.39 0.07 0.58 0.58 0.38
hadronisation uncertainty (%) | -1.09 1.15 -0.23 -1.97 0.51 3.14
pr(t) reweight (%) 0.18 0.22 0.06 -0.16 -0.44 -0.78
#f (matching down) (%) 20.03 0.67 0.27 0.01 058 0.82
tt (matching up) (%) 0.65 0.28 -0.18 -1.20 -0.22 0.53
tt (Q* down) (%) 1.18 1.00 -0.56 -2.20 -0.74 0.24
# (Q? up) (%) 0.70 0.40 -0.09 122 -1.01 0.70
V+jets (matching down) (%) | 1.53 -0.06 -0.61 -0.16 -0.56 -1.09
V+jets (matching up) (%) 0.34 0.16 -0.06 -0.01 -0.10 -1.39
Vijets (QF down) (%) 1.20 0.02 0.75 0.51 20.27 011
Vets (Q up) (%) -0.81 0.61 0.78 -0.64 -0.89 10.22
Electron energy —1o (%) -0.54 -0.09 0.18 0.18 0.34 0.51
Electron energy +1o (%) 0.33 0.15 -0.05 -0.13 -0.33 -0.73
Muon energy —1o (%) -0.11 -0.04 0.03 0.01 0.08 0.27
Muon energy +1o (%) 0.09 0.08 0.01 -0.08 -0.16 -0.28
Tau energy —1o (%) 0.01 -0.01 0.01 0.02 -0.03 -0.02
Tau energy +1o (%) 0.02 -0.02 -0.03 0.00 0.02 0.08
Unclustered energy —1o (%) | 0.94 0.52 -0.09 -0.64 -1.04 -1.89
Unclustered energy +10 (%) | -1.08 -0.57 0.14 0.77 1.23 1.83
Total (%) 3.62 2.53 2.05 4.30 3.38 5.38
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Table D.8: Systematic uncertainties for M}¥" variable after unfolding in the

p-plus-jets channel.

Systematic Errors

Systematic 0-30 GeV | 30-50 GeV | 50-80 GeV | 80-100 GeV | > 100 GeV
b-jets - (%) 0.07 0.12 -0.01 -0.16 -0.19
b-jets + (%) -0.03 -0.14 0.00 0.16 0.18
JER - (%) “1.00 0.41 0.14 0.22 0.22
JER + (%) -0.47 0.13 0.16 -0.36 -0.16
JES - (%) -3.91 0.83 0.66 -0.41 1.57
JES + (%) 2.55 0.08 -0.46 -0.33 -1.49
Light jet - (%) 70.06 0.11 0.02 0.16 0.12
Light jet + (%) 0.07 0.11 -0.02 0.16 0.12
Pile-up - (%) -0.49 0.21 0.13 -0.38 0.23
Pile-up + (%) 1.03 -0.24 -0.21 0.28 -0.35
QCD shape uncertainty (%) 0.00 0.00 0.00 0.00 0.00
hadronisation uncertainty (%) | 17.97 3.00 -3.68 -3.65 -10.37
pr(t) reweight (%) 2.71 -0.25 -0.37 -0.58 -0.65
tt (matching down) (%) -1.37 -1.53 -0.14 3.94 -0.36
tt (matching up) (%) 0.63 -4.68 0.19 4.76 -0.85
1 (QF down) (%) 2.84 0.93 0.39 078 15.18
t (Q2 up) (%) -0.98 -0.52 0.54 3.03 5.58
V+jets (matching down) (%) | -0.87 -6.79 0.54 6.81 3.35
V+jets (matching up) (%) 5.34 -2.07 -0.46 -0.35 -0.44
Vijets (QF down) (%) 110 3.87 116 384 20.62
V+jets (Q* up) (%) -2.38 -2.32 2.17 -2.94 -6.64
Electron energy —1lo (%) 0.22 -0.25 0.11 -0.32 -0.21
Electron energy +1o0 (%) -0.39 0.14 0.12 -0.33 -0.12
Muon energy —1o (%) 1.48 0.49 -0.12 -1.24 -1.87
Muon energy +1o (%) -0.59 -1.10 0.15 1.18 1.19
Tau energy —1o (%) 0.18 -0.17 -0.05 0.22 0.21
Tau energy +1o (%) 0.08 0.08 -0.06 0.12 -0.22
Unclustered energy —1o (%) | -0.53 -2.20 0.06 2.85 1.47
Unclustered energy +10 (%) | 0.35 2.68 -0.44 -1.73 -1.20
Total (%) 21.13 10.56 5.01 11.77 20.10
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Table D.9: Systematic uncertainties for M}¥" variable after unfolding in the

combined channel.

Systematic Errors

Systematic 0-30 GeV | 30-50 GeV | 50-80 GeV | 80-100 GeV | > 100 GeV
b-jets - (%) 0.00 0.06 0.01 -0.08 -0.07
b-jets + (%) 0.02 -0.07 -0.01 0.08 0.07
JER - (%) -0.43 0.19 0.10 -0.19 0.13
JER + (%) -0.34 0.00 0.13 -0.17 -0.06
JES - (%) -3.43 -0.42 0.80 0.36 2.17
JES + (%) 2.09 1.25 -0.67 -0.59 -1.53
Light jet - (%) -0.03 0.03 0.02 -0.06 -0.06
Light jet + (%) 0.03 -0.03 -0.02 0.06 0.06
Pile-up - (%) -0.00 0.09 0.02 -0.16 0.02
Pile-up + (%) 0.25 -0.14 -0.05 0.11 -0.10
QCD shape uncertainty (%) -0.15 -0.49 -0.09 0.87 1.03
hadronisation uncertainty (%) | 9.41 5.10 -2.32 -4.69 -6.70
pr(l) reweight (%) 1.22 0.00 0.13 0.57 053
tt (matching down) (%) 0.10 -0.16 0.15 0.01 -3.20
tt (matching up) (%) 0.89 -1.40 0.06 0.65 -1.11
t (Q% down) (%) 1.80 0.07 0.23 20.89 -10.65
t (Q2 up) (%) -0.18 -1.36 0.36 2.06 6.32
V+jets (matching down) (%) | -0.54 -3.12 0.27 2.62 1.87
V+jets (matching up) (%) 2.67 -1.54 -0.50 1.11 -0.21
V+jets (Q* down) (%) 1.60 2.40 -0.79 -1.05 -0.78
V+jets (Q* up) (%) -1.07 117 1.17 -1.62 -3.29
Electron energy —1lo (%) 1.31 0.99 -0.05 -1.74 -2.58
Electron energy +1o0 (%) -2.05 -0.65 0.20 1.42 3.24
Muon energy —1o (%) 0.67 0.24 -0.05 -0.58 -0.86
Muon energy +1o (%) -0.27 -0.61 0.07 0.58 0.61
Tau energy —1o (%) -0.19 0.11 0.03 -0.08 0.14
Tau energy +1o (%) 0.05 -0.01 -0.02 0.02 0.03
Unclustered energy —1o (%) | -1.07 -1.71 0.27 1.72 1.03
Unclustered energy +10 (%) | 0.84 1.68 -0.40 -1.05 -0.48
Total (%) 12.26 7.92 3.63 7.63 14.40
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