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ABSTRACT

Disintegration of sunspots (and starspots) by fluxtube erosion, originally proposed by Simon and Leighton, is
considered. A moving boundary problem is formulated for a nonlinear diffusion equation that describes the sunspot
magnetic field profile. Explicit expressions for the sunspot decay rate and lifetime by turbulent erosion are derived
analytically and verified numerically. A parabolic decay law for the sunspot area is obtained. For moderate sunspot
magnetic field strengths, the predicted decay rate agrees with the results obtained by Petrovay and Moreno-Insertis.
The new analytical and numerical solutions significantly improve the quantitative description of sunspot and starspot
decay by turbulent erosion.
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1. INTRODUCTION

Bumba (1963) investigated how the areas of large, slowly de-
caying sunspots decrease with time. His data analysis suggested
that the sunspot area A decreases linearly with time t:

A(t) = A0 − Ȧt, (1)

where the decay rate Ȧ is a constant. The result is consistent
with the Gnevyshev–Waldmeier relation T ∼ A0, where T is
the sunspot lifetime and A0 is its initial area (see, e.g., Petrovay
& van Driel-Gesztelyi 1997 for a review). Following Bumba
(1963), sunspot observations were usually interpreted in terms of
the linear decay law for the sunspot area (e.g., Robinson & Boice
1982). Yet it is difficult to distinguish linear and nonlinear decays
observationally, and observations have also been interpreted
using a parabolic decay law, with A(t) a decreasing quadratic
function of time (Moreno-Insertis & Vázquez 1988; Martı́nez
Pillet et al. 1993).

On the theoretical side, Meyer et al. (1974) argued that the
linear decay law is a consequence of turbulent diffusion of the
magnetic field across the whole area of a sunspot and expressed
the constant decay rate in terms of a constant uniform diffusivity
(see also Krause & Rüdiger 1975).

Simon & Leighton (1964) inferred from observations that the
gradual disintegration of sunspots is due to “erosion” of the
penumbral boundaries by supergranular flows, which occurs
when bits of magnetic field are sliced away from the edges
of the sunspot and swept to the supergranular cell boundaries.
In contrast to the model of Meyer et al. (1974), such erosion
can occur if the turbulent diffusivity associated with the flows
is suppressed within the spot (Petrovay & Moreno-Insertis
1997). Alternative theoretical approaches were reviewed by
Solanki (2003).

Petrovay & Moreno-Insertis (1997) developed the turbulent
erosion model mathematically, taking into account the depen-
dence of the turbulent diffusivity on the magnetic field strength.
The diffusivity rapidly decreases if the magnetic field exceeds
an energy equipartition value (Kitchatinov et al. 1994). As a re-
sult, a current sheet is formed around the spot. The model leads
to the parabolic decay law, specified by a constant inward speed
w of the current sheet, viz.,

A(t) = π (r0 − wt)2 (2)

for a circular flux tube (sunspot) of an initial area A0 = πr2
0 .

Moreover, the model yields w ∼ 1/r0, and so it agrees with the
Gnevyshev–Waldmeier relation. Petrovay & Moreno-Insertis
(1997) concluded that solar observations are consistent with tur-
bulent erosion based on a granule-size diffusion length. Petrovay
& van Driel-Gesztelyi (1997) presented observational evidence
in favor of the parabolic decay rate, predicted by the turbulent
erosion model, although an independent magnetohydrodynamic
simulation suggested that the sunspot decay law is almost lin-
ear (Rüdiger & Kitchatinov 2000). Petrovay et al. (1999) also
explored the effect of a preexisting “plage” field on the decay
rate, whereas Chatterjee et al. (2006) applied the model to the
development of twist in a flux tube rising through the solar
convection zone.

The analytical results of the turbulent erosion model have
been recently used to complement numerical simulations of
sunspot formation and decay (e.g., Rempel & Cheung 2014).
The model has also been applied to starspots, with a goal
of using the starspot decay data to place constraints on the
magnetic diffusivity, which may be useful for dynamo models
(e.g., Strassmeier 2009; Bradshaw & Hartigan 2014).

It is worthwhile to revisit the turbulent erosion model of
sunspot decay. The original calculation of Petrovay & Moreno-
Insertis (1997) was guided by numerical results and one-
dimensional analytical solutions. A dimensional argument was
used to estimate the magnetic field gradient at the sunspot edge:

∂B

∂r
∼ −Be

r0
, (3)

where Be is the magnetic field value above which the turbulent
diffusivity is assumed to be suppressed (see Equations (11)–(16)
in Petrovay & Moreno-Insertis 1997). In addition, their numer-
ical estimate for the sunspot lifetime appears to be based on
an estimate of the current sheet speed w rather than on direct
computation.

A rigorous derivation of the sunspot decay law is necessary
if the theory is to be used to develop reliable predictive tools.
Explicit analytical predictions of the turbulent erosion model
could complement more detailed numerical (e.g., Hurlburt &
DeRosa 2008) and empirical (Gafeira et al. 2014) models of
sunspot decay. Hence our aim is to put the turbulent erosion
model on a firmer footing. We do this by formulating a moving
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boundary problem (Carslaw & Jaeger 1959; Crank 1984) for
the model and solving it to derive a prediction for the sunspot
decay law. In the remainder of the paper, we present the new
analytical (Section 2) and numerical (Section 3) results and their
discussion (Section 4).

2. FORMULATION OF THE PROBLEM AND
ANALYTICAL RESULTS

In order to model the turbulent erosion of a sunspot, we follow
Petrovay & Moreno-Insertis (1997) and consider the evolution
of a cylindrically symmetric magnetic flux tube. The magnetic
field B = B(r, t)ẑ is described by the diffusion equation

∂B

∂t
= 1

r

∂

∂r

(
rD

∂B

∂r

)
. (4)

Here t is time, and r is the distance from the z-axis.
The turbulent diffusivity D = D(B) is strongly suppressed

when the magnetic field exceeds an energy equipartition value
Be = √

4πρu where ρ is the mass density and u is a
characteristic turbulent speed (e.g., Kitchatinov et al. 1994). For
instance, taking a photospheric value of ρ ≈ 2 × 10−7 g cm−3

and a granular value of u ≈ 2 × 105 cm s−1 yields Be ≈ 400 G
(Petrovay & Moreno-Insertis 1997). To simplify the analytical
treatment, we assume

D(B) = D0 = const, B < Be (5)

and
D(B) = 0, B > Be. (6)

The initial value problem is specified by the field profile

B(r, 0) = B0 = const, 0 < r < r0, (7)

and B(r, 0) = 0 otherwise (see Tlatov & Pevtsov 2014 for recent
data on sunspot magnetic fields). We nondimensionalize the
problem by measuring the magnetic fields, times, and distances
in units of Be, r2

0 /D0, and r0, respectively.
The sunspot size decreases with time because the magnetic

flux is removed by diffusion. The strongly nonlinear dependence
of the diffusivity D on the magnetic field strength leads to the
formation of a tangential discontinuity at the edge r = re of the
flux tube. Physically, the magnetic field discontinuity at re(t)
corresponds to a current sheet at the sunspot edge, where the
magnetic flux removal is made possible by a strongly localized
electric current.

It is useful to observe that the problem at hand is mathemat-
ically similar to a moving boundary problem in the theory of
heat conduction, and so we can use existing methods of analysis.
In particular, an analog of the Stefan condition is obtained by
the integration of the governing diffusion equation across the
moving boundary r = re(t) (Carslaw & Jaeger 1959). Allowing
for the tangential discontinuity at r = re(t), we substitute

B(r, t) = B0 + (B − B0)H [r − re(t)], (8)

where H is the Heaviside step function, into Equation (4) and
integrate across the discontinuity (from re − 0 to re + 0). The
result is

(B0 − 1)
dre

dt
= ∂B

∂r

∣∣∣∣
r=re+0

, (9)

where we used B(re − 0, t) = B0, B(re + 0, t) = 1, and
D(re − 0) = 0.

To find an approximate analytical solution, we use the pseudo-
steady-state approximation that can be adopted when the rate
of change ṙe is small compared with a global diffusion rate ∼1,
making it possible to neglect the term ∂B/∂t in Equation (4).
Physically, the magnetic field profile near a moving boundary
relaxes to a pseudo-steady state on a time scale δtD � (δr)2/D
where δr � ṙeδt is the displacement of the boundary re(t)
in a time δt . The approximation is valid if the relaxation
is sufficiently rapid, say if δtD � δt . In our dimensionless
variables, we have δr � re � 1 and D = 1, and so δtD/δt � ṙe.
If T is the sunspot lifetime, we use ṙe � T −1 to infer that, as
long as T � 1, the approximation is globally valid in the range
1 < t < T − 1. We show below that roughly T � B0 − 1.
Consequently, the pseudo-steady-state approximation becomes
more accurate as B0 increases. Detailed analysis of the accuracy
of the approximation can be found in standard textbooks on heat
conduction (e.g., Crank 1984; Hill & Dewynne 1987).

Inside the spot, the vanishing diffusivity implies that the
magnetic field is constant:

B(r < re(t), t) = B0. (10)

Outside the spot, the pseudo-steady-state field satisfies

1

r

∂

∂r

(
r
∂B

∂r

)
= 0, (11)

and so

r
∂B

∂r
= const. (12)

Equation (5) gives the boundary condition

B(r = re(t), t) = 1, (13)

which would be B = Be in dimensional units. The magnetic
field diffusion outside the spot causes the field to become
negligibly small at some r = rf (t) outside the spot. Solutions of
the standard diffusion equation in two dimensions suggest that
rf (t) = (2t)1/2 (Carslaw & Jaeger 1959). Thus we set

B(r = rf (t), t) = 0. (14)

The solution of Equation (12), satisfying the boundary condi-
tions at re and rf , is given by

B(r > re(t), t) = ln(r2/2t)

ln(r2
e /2t)

. (15)

On substituting this into Equation (9), we get

(B0 − 1)
dr2

e

dt
= 4

ln(r2
e /2t)

. (16)

We also obtained a similar differential equation for re(t)
using an independent heat-balance approximation (e.g., Crank
1984). We do not present the results here: although the approach
requires longer calculations, it does not appear to be more
accurate than the pseudo-steady-state approximation.

Equation (16) does not appear to have a solution in elementary
functions. The magnitude of its right-hand side is of order
unity, which yields an order-of-magnitude estimate r2

e (t) �
1−t/(B0−1). Consequently, we have T � B0−1 and r2

e (T/2) �
1/2. Next we obtain a more accurate solution of Equation (16).
An approximate polynomial solution would be convenient
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for comparison with the available observational results and
theoretical predictions. We use a quadratic approximation:

r2
e (t) ≈ c0 + c1(t − T/2) + c2(t − T/2)2, (17)

where

c1 = dr2
e

dt

∣∣∣∣
t=T/2

(18)

and

c2 = 1

2

d2r2
e

dt2

∣∣∣∣
t=T/2

. (19)

We expand r2
e (t) about t = T/2 because this is where the

pseudo-steady-state approximation is expected to be most ac-
curate. The remaining constants c0 and T are defined by the
conditions

r2
e (0) = 1 (20)

and
r2
e (T ) = 0. (21)

Equations (17), (20), and (21) give

r2
e (t) ≈ 1 + (c1 − c2T )t + c2t

2. (22)

Here

T = − 1

c1
(23)

is the sunspot lifetime, unless T ′ < T where

T ′ = −c1

c2
(24)

is the other root of the equation r2
e (t) = 0.

We evaluate the constant c1 by substituting the order-of-
magnitude estimates t = T/2 � (B0 −1)/2 and r2

e (T/2) � 1/2
into Equation (16). This yields an accurate expression for c1
because T/2 and r2

e (T/2) only appear in the argument of the
logarithm in Equation (16). The resulting prediction for the
sunspot lifetime is as follows:

T = 1

4
(B0 − 1) ln 2(B0 − 1), (25)

which should be compared with Equation (16) in Petrovay &
Moreno-Insertis (1997) for the inward speed w = −ṙe of the
current sheet. In their model, w = const and the sunspot lifetime
is given by TPM = re/w, which leads to

TPM = 21/3B0 (26)

in our dimensionless variables. The same result (up to a
numerical coefficient) is obtained by nondimensionalizing our
Equation (3), substituting it into Equation (9), and assuming
ṙe = const.

Differentiation of Equation (16) with respect to time yields

c2 = 2

(B0 − 1)[ln(r2
e /2t)]2

[
1

t
− 4

(B0 − 1)r2
e ln(r2

e /2t)

]∣∣∣∣
t=T/2

.

(27)

Again using t = T/2 � (B0 − 1)/2 and r2
e (T/2) � 1/2 is

justified when these quantities appear in the argument of the
logarithm. Therefore,

c2 = 1

ln 2(B0 − 1)

[
1 +

1

2r2
e (T/2)

]
1

T 2
, (28)

where T is defined by Equation (25). The solution below can be
used to verify that r2

e (T/2) = 1/2 + O(1/ ln 2(B0 − 1)). Thus
using r2

e (T/2) � 1/2 in Equation (28) only leads to a relatively
small error of order 1/[T ln 2(B0 − 1)]2, and we get

c2 ≈ 2

T 2 ln 2(B0 − 1)
. (29)

Collecting the results, we obtain a parabolic decay law for the
sunspot area:

r2
e (t) ≈ 1 −

(
1 +

2

ln 2(B0 − 1)

)
t

T
+

2

ln 2(B0 − 1)

t2

T 2
. (30)

The sunspot lifetime is given by T in Equation (25) if B0 > B∗
and by

T ′ = 1

8
(B0 − 1) [ln 2(B0 − 1)]2 (31)

if 1 < B0 < B∗, where

B∗ = 1 + e2/2 ≈ 4.7 (32)

corresponds to T = T ′.
Our explicit analytical solution for re(t) provides an improved

quantitative description of sunspot decay by turbulent erosion.
Notably, if B0 = B∗, our solution predicts a constant decrease
rate w = 2/(B∗ − 1) ≈ 0.54 of the fluxtube radius:

re(t) ≈ 1 − wt, (33)

as in the parabolic decay law, predicted by Petrovay & Moreno-
Insertis (1997). More generally, we obtain a constant speed
approximation

w ≈
(

1

2
+

1

ln 2(B0 − 1)

)
1

T
(34)

by defining w = −ṙe(0) in our solution. If A(t) = πr2
e is

the sunspot area, the accuracy of the approximation can be
quantified by calculating

2Ä

Ȧ2

∣∣∣∣
t=0

= 8 ln 2(B0 − 1)

[2 + ln 2(B0 − 1)]2
, (35)

which would be unity in the model of Petrovay & Moreno-
Insertis (1997).

On returning to the original dimensional quantities, we get
the lifetime–size scaling T ∼ A0, where A0 = πr2

0 is the initial
cross-sectional area of the flux tube. This result formally agrees
with the Gnevyshev–Waldmeier relation for sunspot lifetimes. It
is worth stressing that the statistical nature of the relation should
follow from the strong dependence of T on the spot magnetic
field B0.

3. NUMERICAL RESULTS

The analytical results obtained in Section 2 may be tested
by numerical solution of Equation (4). Following Petrovay &
Moreno-Insertis (1997), we assume the analytical forms for the
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Figure 1. Magnetic field vs. radius at times t = 0, t = 0.5T , and t = 0.95T ,
for the case B0 = 7. The solid curves show the numerical solutions (for the
parameter choices αD = 7, αB = 22), and the dashed curves show the analytical
solutions.

diffusivity and the initial field profile:

D(B) = 1

1 + |B|αD
, (36)

B(r, 0) = B0

1 + rαB
, (37)

where we use the nondimensionalization introduced in
Section 2. The parameter αD in Equation (36) determines the
strength of the suppression of diffusion by the field, and the
parameter αB in Equation (37) specifies the initial spot profile.
In the following we choose αB = 22 to model an isolated flux
tube with nearly constant internal field strength, and αD = 7,
to represent strong suppression of diffusion. For the purpose of
numerical solution, the radius of the spot at time t is defined by
the condition

B(re, t) = 1

2
B0. (38)

We solve Equation (4) using a Crank–Nicolson scheme (e.g.,
Press et al. 1992) which is described in the Appendix. The
diffusion equation is evolved in time in the region 0 � r � rm

with the boundary condition ∂B/∂r = 0 at r = 0 and with a
boundary condition at r = rm which allows loss of flux from the
region. Note that Petrovay & Moreno-Insertis (1997) used a less
realistic condition ∂B/∂r = 0 at an outer boundary (at r = 10),
and their numerical solution was based on a Lax–Wendroff
scheme.

Figure 1 illustrates the numerical solution for the case B0 = 7.
The solid curves in the figure show the numerical result for
B(r,t) as a function of r for times t = 0, t = 0.5T , and
t = 0.95T , where T is the analytical decay time, defined
by Equation (25). The solutions are shown for the region
r � 1/2rm, where rm = 7 is the outer boundary of the numerical
domain. Figure 1 also shows the analytical solution at the same
times, following Equations (10) and (15) with the spot radius
defined by Equation (30). The spot decays more rapidly in
the analytical solution, and the magnetic field outside the spot
decreases more rapidly with increasing radius. The numerical
solutions illustrate how the initial central flux concentration is
redistributed to larger radius by diffusion, leading to an initial
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Figure 2. Sunspot radius squared vs. time, for the case shown in Figure 1.
The solid curve shows the numerical solution, and the dashed curve shows the
analytical solution.
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Figure 3. Decay time vs. sunspot field strength B0. The crosses indicate results
for numerical solutions (with the parameters αD = 7, αB = 22), and the dashed
curve is the analytical solution of this paper. The dotted vertical line indicates
which of two times (T and T ′) applies. The dot-dashed line is the decay time
for the Petrovay & Moreno-Insertis (1997) model (our Equation (26)).

increase in field strength at points external to the spot. The
qualitative behavior of the numerical solution is generally well
reproduced by the analytical solution.

Figure 2 shows the square of the sunspot radius as a function
of time for the same case B0 = 7. The solid curve shows
the numerical solution, with re defined by Equation (38), and
the dashed curve shows the analytical solution defined by
Equation (30). The analytical solution decays more rapidly than
the numerical solution, but both clearly show the departure from
a linear decay law. The analytical estimate for the decay time is
T = 3.72, and the numerical decay time is 5.02.

Figure 3 plots numerically determined sunspot decay times
versus central field strength B0 (crosses). The decay time is
seen to depend almost linearly on field strength. The dashed
curve shows the analytical results of Section 2. Recall that
Equation (30) defines two times at which re(t) = 0, namely
T in Equation (25) and T ′ in Equation (31). The decay time
for the spot is given by T if B0 > B∗, and by T ′ if B0 < B∗,
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Figure 4. Sunspot radius squared vs. time, normalized by the decay time T from
the numerical solution, for B0 = 7 (black) and B0 = 14 (red). Other parameters
are as in Figure 1. The solid curves show the numerical solution, and the dashed
curves show the analytical solution.

where B∗ is defined by Equation (32). The dotted vertical line in
Figure 3 indicates the threshold value B∗. Figure 3 also shows
the decay time in the Petrovay & Moreno-Insertis (1997) model.
Our analytical predictions agree with the numerical results: in
particular the rates of increase of decay time with B0 are quite
similar. Although our analytical model underestimates the decay
times, it is significantly more accurate than the earlier model.

Finally, we emphasize that our calculation generally yields
a time-dependent rate of decrease of the fluxtube radius re(t).
Equation (30) predicts that the deviation from the parabolic
decay law, derived by Petrovay & Moreno-Insertis (1997),
should increase as the initial magnetic field B0 increases. As
a result, a linear decay law (rather than a parabolic one) should
become more accurate as B0 increases, although the logarithmic
dependence on B0 makes the effect rather weak. Figure 4 shows
the effect of doubling the field strength B0 on the shape of the
function r2

e (t). While the computation time and numerical errors
increase for larger B0, we do see numerical evidence that the
decay law becomes more linear for a larger initial magnetic
field, which is consistent with our analytical prediction.

4. DISCUSSION

We have presented in this paper a quantitative theory of
sunspot decay by turbulent erosion, considered as a moving
boundary problem. The physical mechanism of sunspot ero-
sion was proposed by Simon & Leighton (1964), and a sunspot
decay law due to turbulent erosion was derived by Petrovay
& Moreno-Insertis (1997; see also Petrovay et al. 1999, and
references therein). Although Petrovay and collaborators cor-
rectly identified the key dependence of the decay rate on the
sunspot magnetic field B0, the accuracy of the analytical predic-
tions was limited: for instance, we have shown that the numeri-
cally computed sunspot lifetime is about a half of that predicted.

Our Equation (25) for the sunspot decay time T is an
improvement on Equation (26), derived by Petrovay & Moreno-
Insertis (1997). Equation (30) confirms that the decay law for
the sunspot area A(t) = πr2

e is in general parabolic, as long as
higher-order terms in t/T can be neglected. Equation (30) also
quantifies the accuracy of the assumption, made by Petrovay
& Moreno-Insertis (1997), that the inward speed ṙe of the
current sheet surrounding the decaying spot is constant. We

have shown that the assumption is justified if the initial sunspot
magnetic field B0 is not too large. Equation (30) predicts that a
linear decay law should become more accurate as B0 increases.
The numerical solutions in Figure 4 confirm this prediction,
although, as noted by the referee, they also show that the
deviation from a linear decay is systematically underestimated
in the analytical model.

Application of the turbulent erosion theory to sunspot and
starspot decay is a topic of current research interest (e.g.,
Strassmeier 2009; Rempel & Cheung 2014; Bradshaw &
Hartigan 2014), and so our quantitative analytical predictions,
reinforced by numerical solutions, should be useful in studies of
solar and stellar activity. The value of an analytical calculation is
that it can be used to verify more detailed magnetohydrodynamic
simulations (e.g., Hurlburt & DeRosa 2008; Rempel & Cheung
2014) and to guide empirical models (e.g., Gafeira et al. 2014).

The erosion model can be further refined. For instance, we
assumed D0 = const in our analysis of Section 2. The rate
of relative diffusion of two photospheric magnetic fragments
is controlled by turbulent eddies whose size is equal to the
current distance between the fragments. Consequently, the tur-
bulent diffusivity is expected to be scale-dependent. In practice
the turbulent diffusivity is determined by applying the induc-
tion equation to pairs of solar magnetograms (e.g., Chae et al.
2008, and references therein). Scale-dependent turbulent diffu-
sivity has been invoked to interpret observations of photospheric
flux cancellation (Litvinenko 2011) and the dispersion of pho-
tospheric bright points (Abramenko et al. 2011). The turbulent
erosion model of sunspot decay should be generalized to incor-
porate the dependence of the effective diffusivity on the size of
a decaying sunspot. In addition, although Petrovay & Moreno-
Insertis (1997) argued that regular radial flows play little if any
role in sunspot decay, the effect of regular photospheric flows
on sunspot decay should be investigated in more detail. Finally,
recent observations emphasized the difference between the max-
imum and average sunspot magnetic field strengths (Tlatov &
Pevtsov 2014), and so it may be worthwhile to derive a solution
for a more general initial profile of the magnetic field within the
sunspot, as well as a more realistic dependence of the turbulent
diffusivity on the field strength within the spot.

The authors thank the referee for comments and suggestions
that helped to improve the original manuscript.

APPENDIX

NUMERICAL METHOD

The numerical solutions in Section 3 use the Crank–Nicolson
method to solve the nonlinear diffusion Equation (4), in which
a discrete version of the equation is linearized at each time step.
The Crank–Nicolson method is a preferred one for solution of
parabolic partial differential equations because it is uncondi-
tionally stable, and second order accurate in time (e.g., Press
et al. 1992).

Equation (4) is solved at spatial locations rj = (j − 1)h
with j = 1, 2, . . . , L and h = rm/(L − 1), for a sequence
of times tn = (n − 1)τ , with n = 1, 2, . . .. Introducing
the notation Bn

j = B(rj , tn) and Dn
j = D(Bn

j ), we consider
a Crank–Nicolson scheme with the differencing of terms in
Equation (4):

r
∂B

∂t

∣∣∣∣
tn,rj

≈ rj

Bn+1
j − Bn

j

τ
(A1)
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and

∂

∂r

[
rD(B)

∂B

∂r

]∣∣∣∣
tn,rj

≈ 1

2

∂

∂r

[
rD(B)

∂B

∂r

]∣∣∣∣
tn+1,rj

+
1

2

∂

∂r

[
rD(B)

∂B

∂r

]∣∣∣∣
tn,rj

≈ 1

2h

⎛
⎜⎝r

j+
1

2

Dn+1

j+
1

2

Bn+1
j+1 − Bn+1

j

h
− r

j−
1

2

Dn+1

j−
1

2

Bn+1
j − Bn+1

j−1

h

⎞
⎟⎠

+
1

2h

⎛
⎜⎝r

j+
1

2

Dn

j+
1

2

Bn
j+1 − Bn

j

h
− r

j−
1

2

Dn+1

j−
1

2

Bn
j − Bn

j−1

h

⎞
⎟⎠ . (A2)

In the final expression in Equation (A2), the centered differences
are taken about locations rj− 1

2
and rj+ 1

2
. We introduce the

approximations Dn+1
j → Dn

j and

Dn

j± 1
2

→ Dn
j± = 1

2

(
Dn

j + Dn
j±1

)
, (A3)

involving a linearization in time and a spatial averaging respec-
tively. Combining Equations (A1) and (A2) we have

Bn+1
j − s

2(j − 1)
F

(
Bn+1

j

) = Bn
j +

s

2(j − 1)
F

(
Bn

j

)
, (A4)

with s = τ/h2 and

F
(
Bn

j

) =
(
j − 1

2

)
Dn

j+B
n
j+1 −

[(
j − 1

2

)
Dn

j+ +

(
j − 3

2

)
Dn

j−

]

× Bn
j +

(
j − 3

2

)
Dn

j−Bn
j−1. (A5)

A von Neumann analysis of Equations (A4)–(A5) in the linear
case Dj = D0 = const confirms that the scheme is uncondition-
ally stable. The corresponding explicit scheme with the same
spatial differencing is unstable if D0τ/h2 > 1/2 (e.g., Press
et al. 1992).

Equations (A4) and (A5) define the update for points j =
2, 3, . . . , L − 1. At the point j = 1, the boundary condition
∂B/∂r|r=0 = 0 is enforced using the one-sided second order
difference approximation to the derivative:

∂B

∂r

∣∣∣∣
tn+1,r1

≈ −3Bn+1
1 + 4Bn+1

2 − Bn+1
3

2h
= 0, (A6)

or
− 3Bn+1

1 + 4Bn+1
2 − Bn+1

3 = 0. (A7)

For the point j = L we obtain an update equation allowing
flux transport across the boundary r = rm via a discretization of
Equation (4) at time t = tn and spatial location r = rL−1/2 with
differencing schemes

r
∂B

∂t

∣∣∣∣
tn,rL− 1

2

≈ rL− 1
2

Bn+1
L− 1

2
− Bn

L− 1
2

τ
(A8)

and

∂

∂r

[
rD

∂B

∂r

]∣∣∣∣
tn,r

L−
1

2

≈ 1

h

(
rLDn

L

∂B

∂r

∣∣∣∣
tn,rL

− rL−1D
n
L−1

∂B

∂r

∣∣∣∣
tn,rL−1

)

≈ 1

h

(
rLDn

L

Bn
L−2 − 4Bn

L−1 + 3Bn
L

2h
− rL−1D

n
L−1

Bn
L − Bn

L−2

2h

)
, (A9)

where Equation (A9) involves the one-sided second order
difference approximation to the derivative:

∂B

∂r

∣∣∣∣
tn,rL

≈ Bn
L−2 − 4Bn

L−1 + 3Bn
L

2h
. (A10)

Equations (A8) and (A9) give the update equation for j = L:

Bn+1
L + Bn+1

L−1 = s

(
L − 2

L − 3
2

Dn
L−1 +

L − 1

L − 3
2

Dn
L

)
Bn

L−2

+

(
1 − 4s

L − 1

L − 3
2

Dn
L

)
Bn

L−1

+

(
1 − s

L − 2

L − 3
2

Dn
L−1 + 3s

L − 1

L − 3
2

Dn
L

)
Bn

L.

(A11)

Equations (A4), (A5), (A7), and (A11) provide a system of
linear equations for the field values Bn+1

j , with j = 1, 2, . . . , L,
which must be solved at each time step. The scheme may be
written in matrix form as

(I′ + a−A)Bn+1 = (I′ + a+A′)Bn, (A12)

where Bn = (Bn
1 , Bn

2 , . . . , Bn
L)T , a± = ∓ 1

2 s, I′ is the L × L
matrix

I′ = diag(0, 1, . . . , 1), (A13)

the matrix A is defined by AL j = 0 for all j except

AL L−1 = 1

a−
, (A14)

and the matrix A′ is defined by A′
Lj = 0 for all j except

A′
L L−2 = s

a+

(
L − 2

L − 3
2

Dn
L−1 +

L − 1

L − 3
2

Dn
L

)
,

A′
L L−1 =

(
1 − 4s

L − 1

L − 3
2

Dn
L

)
,

A′
L L = s

a+

(
−L − 2

L − 3
2

Dn
L−1 + 3

L − 1

L − 3
2

Dn
L

)
. (A15)

A simple test for the new method is provided by the exact
solution for constant diffusivity D0 with a Gaussian profile:

B(r, t) = Φ0

σ 2
exp

(
−1

2
r2/σ 2

)
(A16)

with
σ 2 = 2D0t + σ 2

0 , (A17)

where the constant σ0 defines the initial width. The magnetic
flux (divided by 2π ) from r = 0 to r = rm for this solution is

Φ(rm, t) =
∫ rm

0
rB(r, t) dr

= Φ0

[
1 − exp

(
−1

2
r2
m/σ 2

)]
. (A18)

Equation (A18) provides a check on the implementation of the
boundary condition at r = rm. The method incurs truncation
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error (proportional to τ 2 and h2) at each time step, and the accu-
mulation of the error limits the accuracy of the solution when the
system is evolved over many time steps. The calculations pre-
sented in this paper are checked by trials with different spatial
steps.
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