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Abstract

Wireless Sensor Networks (WSNs) consist of spatially distributed sensor nodes that

perform monitoring tasks in a region and the gateway nodes that provide the acquired

sensor data to the end user. With advances in the WSN technology, it has now

become possible to have different types of sensor nodes within a region to monitor

the environment. This provides the flexibility to monitor the environment in a more

extensive manner than before.

Sensor nodes are severely constrained devices with very limited battery sources

and their resource scarcity remains a challenge. In traditional WSNs, the sensor

nodes are used only for capturing data that is analysed later in more powerful gateway

nodes. This continuous communication of data between sensor nodes and gateway

nodes wastes energy at the sensor nodes, and consequently, the overall network

lifetime is greatly reduced. Existing approaches to reduce energy consumption by

processing at the sensor node level only work for homogeneous networks.

This thesis presents a sensor node architecture for heterogeneous WSNs, called

SEPSen, where data is processed locally at the sensor node level to reduce energy

consumption. We use ontology fragments at the sensor nodes to enable data exchange

between heterogeneous sensor nodes within the WSN. We employ a rule engine

based on a pattern matching algorithm for filtering events at the sensor node level.

The event routing towards the gateway nodes is performed using a context-aware

routing scheme that takes both the energy consumption and the heterogeneity of the

sensor nodes into account.
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As a proof of concept, we present a prototypical implementation of the SEPSen

design in a simulation environment. By providing semantic support, in-network data

processing capabilities and context-aware routing in SEPSen, the sensor nodes (1)

communicate with each other despite their different sensor types, (2) filter events

at the their own level to conserve the limited sensor node energy resources and

(3) share the nodes’ knowledge bases for collaboration between the sensor nodes

using node-centric context-awareness in changing conditions. The SEPSen prototype

has been evaluated based on a test case for water quality management. The results

from the experiments show that the energy saved in SEPSen reaches almost 50%

by processing events at the sensor node level and the overall network lifetime is

increased by at least a factor of two against the shortest-path-first (Min-Hop) routing

approach.
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Chapter 1

Introduction

In recent times, the use of Wireless Sensor Networks (WSNs) in various applications

in industry and government has significantly increased [32, 68, 76]. The benefit

of a WSN is that it allows users to remotely observe the physical conditions of an

environment [62, 91]. WSNs can gather a wealth of information over prolonged

periods in potentially inhospitable environments [59].

A WSN is composed of sensor nodes and gateway nodes. Sensor nodes are small,

low-cost devices that are distributed to perform monitoring tasks [33, 82]. These

sensor nodes are capable of sensing, processing and communication. Generally,

sensor nodes sample their sensors and send sample readings (i.e. sensor data) to

gateway nodes. Gateway nodes are more powerful than the sensor nodes in terms of

processing and communication capabilities. Gateway nodes receive data from the

individual sensor nodes, process it and send the results to the end-users [8].

In most applications of WSNs the end-users are interested in events. An event

can be described as a meaningful change in sensor readings, such as when the

phosphorus concentration in a body of water is less than 10 mg/L or when the

nitrogen concentration in a body of water is more than 15 mg/L [1]. These events

are typically called simple events (or lower-level events) as they require only a single

sensor reading to evaluate whether to notify the end-user of this event [37].
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Chapter 1 Introduction

With advances in WSN technology, it has now become possible to have different

types of sensor nodes within a region to monitor the environment. This provides

the flexibility to monitor an environment in a more extensive manner than before.

However, as a result, the end-users may be now interested in the occurrence of

complex events (or higher-level events). A complex event is a combination of

simple events that occur within a specified period [37]. Thus the processing of

complex events requires events to be integrated from multiple heterogeneous sensor

events [6, 43, 69, 95]. For example, in monitoring lake water quality, the users may

be interested in being notified about an event of nutrient pollution rather than normal

phosphorus or nitrogen values at certain intervals. In such a case, an event of nutrient

pollution could be interpreted only by integrating data from the sensors indicating

excessive phosphorus compared to the nitrogen values [74].

Traditionally, processing a query from a user for such an event first requires

the user to translate it into a lower-level query; nutrient pollution may be trans-

lated into the condition where the ratio of nitrogen to phosphorus is less than 10

(i.e., N/P < 10) [74]. After translation, the lower-level query is sent to the gateway

nodes. The gateway nodes then monitor the sensor data obtained from the appropri-

ate sensor nodes. The results obtained from the sensors measuring phosphorus and

nitrogen values are merged and processed by the gateway node to identify nutrient

pollution. When all the conditions are met the gateway node notifies the end-users of

this event [69, 95]. That is, in traditional processing, the sensor nodes communicate

all sensor data to the gateway nodes and computation is done at the gateway nodes.

1.1 Motivating Example

This project uses examples from the area of environmental monitoring, such as

earthquake monitoring, habitat monitoring, and water/wastewater monitoring. The

most important characteristics of these applications are heterogeneous networks in

often hard-to-reach areas, and the desired longevity of the network [38]. Additionally,

2
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these applications require events to be filtered in real time to be able to identify and

react to critical changes in the environment in a timely manner [36].

The motivational example focuses on a water quality management system. Water

quality is a measure of the fitness of water based on several characteristics. Tra-

ditionally, samples are collected manually from the water supplies and then water

characteristics are analysed in a laboratory. These characteristics are compared to

numeric standards and guidelines to decide if the water is suitable for a particular

use [11]. This often causes considerable delays in the monitoring process.

Therefore, the example application domain provides a water quality monitoring

network through wireless sensor networks, in which various sensors are used to

detect pollutants in the water. In addition to the sensors needed to measure water

pollutants, the application needs to monitor weather conditions to study the effects

of weather patterns on water quality. Gathering information from both these sensor

types then allows for well-directed management of water supplies [89]. Typical

events a user could be interested in from such a network of sensors include reports

of:

• dissolved oxygen (DO) and water pH values during high algal productivity;

• high nutrient conditions based on phosphorus and nitrogen; and

• non-point source pollution (NPS) from turbidity and high precipitation events.

A typical setup of regulations is described by the following pattern: Government

authorities receive regulation data and constraints from reputable agencies, such

as the Environmental Protection Agency (EPA) and other state agencies. These

regulations are then sent to the sensor network in the form of rules, where the sensors

gather data and perform analyses on the gathered data. The monitoring operations

identify where and when pollutant levels violate the given guidelines. Once a

violation is detected, the sensor network sends information about the identified

pollutants and references to the polluted water sources to the monitoring agency.

3



Chapter 1 Introduction

This example is developed throughout the thesis to explain the proposed approach

and evaluate its performance.

1.2 Problem Statement

Wireless Sensor Networks (WSNs) are often employed in remote and hostile en-

vironments [59, 62, 91]. They consist of sensor nodes, each of which has only

limited energy supply [45]. Therefore minimizing energy consumption is of critical

importance. Of all the operations of the WSN sensor nodes (i.e. sensing, processing

and communication), communication is the dominant energy consumer [35]. Thus,

reducing network communication could prolong the network lifetime.

Reduction in communication can be achieved by processing and filtering data at

the sensor nodes such that only relevant data will be forwarded within the sensor

network [19]. Traditional WSNs support sensor nodes of one type only – they are

homogeneous sensor networks. Recent developments have led to the availability of

heterogeneous WSNs supporting a variety of sensor node types [64].

Most existing methods for reducing energy consumption (e.g., [57]) consider

homogeneous sensor networks only and do not take into account WSN heterogeneity.

Approaches that allow for heterogeneous sensor nodes (e.g., [95]) send all sensor

data to the centralized gateway nodes, where complex event processing is performed.

This includes the sending of irrelevant sensor data to the gateway nodes, leading to a

shorter network lifetime.

Complex event processing at sensor nodes is not easily integrated in heterogeneous

networks, because sensor nodes have no knowledge of event types beyond their own.

Energy consumption is not homogeneous throughout the WSN. Imbalanced energy

depletion of sensor nodes may make established communication paths unstable. A

number of solutions address this possible imbalance of energy levels by adapting the

routing paths between sensor and gateway nodes according to the energy depletion

of the affected sensor nodes (e.g., [42]). No work apparently exists that combines

4



Chapter 1 Introduction

energy awareness and adaptation in routing with complex event processing at the

sensor node level.

1.3 Research Objective & Hypothesis

The main objective of this thesis is to:

Design an architecture that takes into account the processing capabil-

ities of the sensor nodes and utilizes it for energy conservation in a

heterogeneous Wireless Sensor Network (WSN).

The idea is to embed data processing capabilities within the sensor nodes in order

to reduce the amount of data that needs to be transmitted, and dependence upon

gateway nodes for processing. This thesis proposes to perform data integration for

complex event detection at the sensor node level for maximum energy benefits. Due

to the heterogeneity of the network, semantic information may need to be encoded

in each node to support complex event processing. Moreover, each node now needs

to be aware of the neighbouring sensor nodes (i.e. information of sensor nodes in its

own vicinity) to make routing decisions. Deployment of such semantic context-aware

in-network processing in heterogeneous WSNs has the potential to reduce the energy

consumption for event communication [84]. The central hypothesis is therefore:

If the sensor nodes: i) semantically annotate the sensed data, ii) collab-

orate with the surrounding sensor nodes, and iii) perform filtering and

integration of events on the gathered knowledge, then they will be able to

detect complex events locally in heterogeneous sensor networks, thereby

resulting in reduced overall energy consumption of the WSN.

Thus, the working hypothesis for the remainder of this thesis is that inclusion

of these three factors at the sensor node level is beneficial for reduced energy

consumption in a heterogeneous wireless sensor network.

5
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1.4 Research Questions

Sensor nodes have storage and computational limitations. Moreover, sensor nodes

rely on their own very limited energy resources [45], which necessitate their efficient

use. To achieve the aim of developing an architecture design that performs complex

event detection at the sensor nodes for energy benefits, three facets are examined.

The first question was “what are the factors that need to be consid-

ered for complex event detection in an energy efficient Wireless Sensor

Network (WSN)?”

Secondly, it was necessary to determine “how could a complex event

detection task be performed in a resource-constrained sensor node?”

Finally, an exploration of “how much energy benefit could be gained by

performing complex event detection tasks at the sensor node level?” was

required.

Each question is discussed in more detail below.

1.4.1 What are the factors that need to be considered for complex
event detection in an energy efficient Wireless Sensor
Network (WSN)?

This question can be answered by describing existing solutions whose goal is to

perform complex event detection in WSNs. The current state of WSNs was reviewed

to identify the factors that are needed for an energy efficient WSN (see Chapter 2 for

details). The need for complex event detection arises from the constraints of wireless

sensor networks, i.e., energy constraints, heterogeneity and unpredictability. This

served to identify factors that are important in performing complex event detection

in heterogeneous WSNs. These factors are: (i) filtering and integrating the events at

the sensor node level for energy benefits, (ii) a need for sensor data to be enriched

6
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with semantic information to make it understandable by heterogeneous sensor nodes,

and (iii) adapting or deriving important information from the gathered context for

sharing the information within the sensor network.

The research presented in this thesis also examined research solutions provided by

various researchers who aimed to solve these problems (see Chapter 3 for details).

The review of the existing approaches identified the research gap that we address in

this thesis.

1.4.2 How could complex event detection tasks be performed in a
resource-constrained sensor node?

To design an architecture that takes into account the above-mentioned factors for

complex event detection, an architecture had to be designed that would also fit within

the storage and computational constraints of WSNs.

Following the factors identified in the first research question, a new system was

developed that combined the strengths of existing approaches while avoiding their

weaknesses. The system is described on two levels: at the conceptual level (see Chap-

ter 4 for details) and at an operational level in the form of a selective implementation

(see Chapter 5 for details), the SEPSen.

The conceptual design incorporates the factors identified in relation to the first

research question. It focuses on support for semantic annotation of heterogeneous

sensor data, reasoning at the sensor nodes for filtering and integration of data and

context-awareness for sharing the gathered information in an energy efficient manner.

These characteristics allow a lower-end sensor node to make decisions locally and

efficiently.

The implemented SEPSen architecture also incorporates the identified factors and

aims to perform the processing tasks at the sensor node level, the area in which

the gap in existing research was identified. The implementation supports semantic

annotation through the use of an ontology, filtering and integration of data through a

7
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reasoner that fits within the resource-constrained sensor nodes and data and energy

context-awareness at the sensor nodes for sharing the events in the sensor network.

1.4.3 How much energy benefit could be gained by performing
complex event detection tasks at the sensor node level?

Any architecture put forward as an answer to the previous question needs to be

evaluated to determine whether it actually meets the objective. This thesis examined

the processing and communication costs of performing complex event detection. The

processing cost was derived from semantic annotation, filtering and routing table

lookup, while communication cost was derived from the number of transmissions

required while receiving and transmitting events for the detection of complex events.

This thesis provides a theoretical cost-analysis for complex event detection within

the network (see Section 4.3 of Chapter 4 for details). The energy costs for complex

event detection in heterogeneous environments were analysed. The costs of a

centralized approach for complex events were compared with the fully distributed

approach of semantic context-aware in-network processing. A tradeoff was identified

between lower communication cost and higher processing cost due to semantic

annotation, context analysis for routing and processing of complex events.

The overall results were also confirmed in a simulation-based environment (see

Chapter 6 for details). The energy saved in SEPSen reaches almost 50% for the

sensor nodes and the overall sensor network lifetime was improved by factor of two

against the traditional centralized architecture.

1.5 Structure of the Thesis

This thesis is organized into seven chapters. Figure 1.1 shows how the chapters

address each of the questions from Section 1.4.

Chapter 2 helps to answer the first research question about the requirements

for an energy efficient WSN. An overview of WSNs is also presented to provide

8
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Figure 1.1: Overview of coverage of research questions in the chapters of the thesis.

the background necessary for general understanding of the issues discussed in the

remainder of this thesis.

Chapter 3 reviews existing approaches and their limitations to identify the research

gap that the second research question aims to answer. It discusses the shortcomings

of traditional wireless sensor networks and presents critical issues that must be

addressed in order to have an energy-efficient WSN.

Chapter 4 and Chapter 5 complete the answer to the second research question: how

can we perform complex event detection tasks at the sensor node level. Chapter 4

proposes a conceptual design of the architecture. It discusses in detail the different

components of the architecture and how they interact with each other. Chapter 5

introduces the SEPSen, an implementation of those aspects of the conceptual design

that relate to in-network complex event detection in a heterogeneous WSN.

Chapter 6 addresses the third research question: how much energy benefit could be

gained by performing complex event detection tasks at the sensor node level. It pro-

vides performance evaluation of the proposed architecture introduced in Chapters 4

and 5. The evaluation is done in a simulation environment on PowerTOSSIM [77].

9



Chapter 1 Introduction

Finally, Chapter 7 summarises the work presented in this thesis including its

contributions. It discusses the implications of the findings of the work presented in

this thesis and also points out the opportunities for future work.

10



Chapter 2

Background

This chapter contributes to answering the first research question: “What are the

factors that need to be considered for complex event detection in an energy efficient

Wireless Sensor Network (WSN)?” by reviewing the current state of WSNs and

presenting factors that are essential for an energy-efficient WSN.

This chapter is structured as follows: Sections 2.1 and 2.2 provide an overview

of the wireless sensor network and its applications respectively. In Section 2.3,

we examine the technical challenges for an efficient WSN. In Section 2.4, initial

research solutions are identified to address technical challenges described earlier in

Section 2.3. The functional requirements for an energy-efficient heterogeneous WSN

are presented in Section 2.5. The chapter concludes with a summary in Section 2.6.

2.1 Wireless Sensor Network (WSN)

Recent advances in hardware technology have allowed the integration of sensing,

data processing, and wireless communication capabilities into a small, inexpensive,

battery-powered device called a wireless sensor node (or simply sensor node or

mote) [82]. The Mica2 mote [2], shown in Figure 2.1, is a member of the family

of UC Berkeley motes that has been used in a number of scientific and commercial

applications [82, 91, 53].
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MICA2 
The MICA2 Mote is a third genera-
tion mote module used for enabling 
low-power, wireless, sensor networks. 
The MICA2 Mote features several new 
improvements over the original MICA 
Mote. The following features make the 
MICA2 better suited to commercial de-
ployment:

•	 868/916 MHz multi-channel 
	 transceiver with extended range

•	 Supported by MoteWorks™ wireless  
	 sensor network platform for reliable,  
	 ad-hoc mesh networking

•	 Support for wireless remote 
	 reprogramming

•	 Wide range of sensor boards and 
	 data acquisition add-on boards

MoteWorks enables the development 
of custom sensor applications and is 
specifically optimized for low-power, 
battery-operated networks. MoteWorks 
is based on the open-source TinyOS 
operating system and provides reliable, 
ad-hoc mesh networking, over-the-
air-programming capabilities, cross 
development tools, server middleware 
for enterprise network integration and 
client user interface for analysis and 
configuration. 

 

Processor and Radio 
Platform (MPR400)
The MPR400 is based on the Atmel 
ATmega128L. The ATmega128L is 
a low-power microcontroller which 
runs MoteWorks from its internal 
flash memory. A single processor 
board (MPR400) can be configured 
to run your sensor application/pro-
cessing and the network/radio 
communications stack simultane-
ously. The MICA2 51-pin expansion 
connector supports Analog Inputs, 
Digital I/O, I2C, SPI and UART inter-
faces. These interfaces make it easy 
to connect to a wide variety of exter-
nal peripherals.

Sensor Boards
Crossbow offers a variety of sensor 
and data acquisition boards for the 
MICA2 Mote. All of these boards con-
nect to the MICA2 via the standard 
51-pin expansion connector. Custom 
sensor and data acquisition boards are 
also available. Please contact Cross-
bow for additional information.

•	 3rd Generation, Tiny, Wireless  
Platform for Smart Sensors

•	 Designed Specifically for Deeply 
Embedded Sensor Networks

•	 > 1 Year Battery Life on AA  
Batteries (Using Sleep Modes) 

•	 Wireless Communications with 
Every Node as Router Capability

•	 868/916 MHz Multi-Channel 
Radio Transceiver

•	 Expansion Connector for Light, 
Temperature, RH, Barometric  
Pressure, Acceleration/Seismic, 
Acoustic, Magnetic and other  
Crossbow Sensor Boards

Applications
•	 Wireless Sensor Networks

•	 Security, Surveillance and  
Force Protection

•	 Environmental Monitoring

•	 Large Scale Wireless Networks 
(1000+ points)

•	 Distributed Computing Platform

Antenna

Logger 
Flash

Processor
Analog I/O
Digital I/O

Tunable Frequency
Radio

51-Pin Expansion Connector

MPR400CB Block Diagram

MMCX
Connector

        Document Part Number: 6020-0042-08 Rev A

MPR400 Block Diagram

Figure 2.1: Mica2 Sensor Node. From “Mica2 Datasheet” by Crossbow Technology Inc.,
2004, Crossbow.

Typically, a sensor node consists of sensing, computing, and communication

components. Depending on their sensing components, sensor nodes can be used to

monitor phenomena such as temperature, light, humidity and other environmental

features. The processing module of the sensor node is able to do computation

on the sensed values and also on other received values from its neighbours. The

communication module in a sensor node is used to send and receive information

from neighbouring nodes [9]. Since a single sensor node provides only limited

information, a network of these sensors is used to manage large environments [90].

In most settings, tens to thousands of such sensor nodes are distributed throughout

a region of interest, where they self-organize into a network through wireless com-

munication and collaborate with each other to accomplish the assigned tasks [8, 82].

Such a network is called a Wireless Sensor Network.

Figure 2.2 shows a Wireless Sensor Network (WSN) comprised of several sensor

nodes and a gateway node. The sensor nodes continually sense data from the

environment and send them to the gateway node. The gateway node receives all the

information from these sensor nodes, processes it and sends it to the end-user [30].

2.2 WSN Applications

The integration of sensing, processing and communication components into a small,

battery-powered sensor node opens the door to a wide range of real-world appli-
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Figure 2.2: Wireless Sensor Network. Adapted from “A survey on sensor networks”, by
I.F. Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci, 2002, IEEE
Communications Magazine, 40(8), p. 103. Copyright 2002 by IEEE.

cations [53]. There is no single set of design requirements that fulfils the entire

diversified range of wireless sensor network applications. Therefore, it is critical to

explore the application-specific characteristics and requirements before designing a

WSN application. This section presents an overview of some of the major application

areas and their requirements, which are then summarised in Table 2.1.

2.2.1 Environmental Monitoring

WSN applications for environmental monitoring and control have numerous potential

benefits for scientific communities and for society as a whole [16, 10]. Often a large

number of sensors are required to gather the data in an environment in order to

monitor and control environmental trends and inter-dependencies within various

habitats [35]. These applications can involve both indoor and outdoor environments

which may consist of huge monitoring areas (i.e. hundreds to thousands of square

kilometres) and may also require long periods (i.e. months or years) of monitoring in

order to examine long-term and seasonal trends. This may also require large numbers
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(i.e tens to thousands) of sensor nodes to be deployed over the desired area in order

to collect detailed and meaningful information about the environment [19].

An example of a WSN environmental monitoring application is GlacsWeb [62],

which aims to monitor glaciers for long periods (i.e. months or years) in order

to understand what is happening under the glaciers and the possible effects on

climate change and global warming. Burrel et al. [15] deployed WSN to monitor

vineyards in order to prevent freezing damage to crops. Werner et al. [91] used

seismic and acoustic sensor nodes to monitor active volcanos in Ecuador. Likewise,

SmartCoast [68] was developed to monitor water quality based on the EU Water

Framework Directive (WFD).

Such applications often require the system to sense and respond to changes in the

environment; therefore, sensor nodes perform data collection by continuously sensing

and transmitting the data back to gateway nodes for further analysis. Typically,

these applications require low sampling rates, since the most common factors to be

monitored, such as temperature, humidity and light, do not change quickly. However,

these applications need to operate for long periods in unattended areas. Extended

network lifetime is thus the most important requirement of environmental monitoring

applications, while data transmission rates can be delayed or reduced in order to

improve overall network lifetime.

2.2.2 Surveillance

One of the key advantages of wireless sensor networks is their ability to track

and detect patterns in their surroundings, which makes WSNs an integral part of

surveillance applications. Military applications are one of the major areas where

the fast deployment and self-organizing capabilities of WSNs make them a popular

choice to perform battlefield surveillance. In addition to this, WSNs can also be

deployed to monitor buildings, airports, shops and homes by promptly sensing and

reporting the detected information back to the gateway nodes.
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VigilNet [32] is an example of a surveillance application where sensor nodes

with magnetic capabilities are deployed over an area of interest to detect magnetic

fields generated by the movement of vehicles or other metallic objects. The “A line

in the Sand” [12] project by Ohio State University is another similar surveillance

application. Like VigilNet, the latter also focuses on the detection and tracking of

metallic objects such as armed soldiers and vehicles via a network of nodes deployed

over the surveillance area.

Unlike environmental monitoring applications, surveillance applications must

immediately report the sensed data back to the gateway nodes in a reliable and timely

fashion. For such applications, it is important to protect the data from unauthorized

data manipulation. It is also crucial for this category of applications to locate and

track selected moving objects within the WSN. Reliable object detection within time

bounded latency is an integral part of surveillance applications, which is performed

at the cost of high energy consumption. Thus, a major portion of the available energy

is consumed by each node communicating its status to neighbouring nodes, whereas

the actual transmission of data consumes only a small portion of the available energy.

2.2.3 Health Care

Advances in bio-medical, tele-monitoring and tracking devices have made it possible

to use WSNs in a variety of health-care applications. The integration of wireless

sensors with health-care applications is highly convenient and beneficial not only

for doctors, but also for patients and disabled people. WSNs can be used to monitor

patients’ movements with the help of tracking devices, while reporting these move-

ments back to the relevant authorities. Elder care is another interesting application,

where sensors can send automatic notification to a contact centre in the case of any

emergency situations.

The CodeBlue [60] project developed at Harvard University is a good example in

the area of health-care applications. CodeBlue continuously monitors patients based
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on data gathered from wearable sensors. This involves the monitoring of patients’

blood pressure, heart rate, muscular activities and physical movement. The data

gathered is continuously transmitted to a Personal Digital Assistant (PDA) device

monitored by medical personnel. Other health care applications of WSNs include

tracking and monitoring doctors and patients inside hospitals [76], and overseeing

drug administration [78].

Similar to surveillance applications, health-care applications also require high

accuracy to track the location of patients and medical personnel, as well as returning

data to medical personnel in a timely fashion. Moreover, privacy of patients’ data

is of utmost importance in health care applications. Thus, special consideration of

authentication and authorization is undertaken to prevent unauthorized disclosure

of information. However, the longevity of the sensor network is not as critical as in

environmental applications, since most of the wearable sensor node batteries can be

replaced from time to time by patients and/or medical staff.

2.2.4 Other Applications

WSNs can be used in many other areas, including disaster prevention and relief,

warehouse inventory tracking, and traffic monitoring [8]. However, these applica-

tions’ characteristics and requirements are not explained here because the majority

of these applications fall into the general category of one of the already mentioned

applications (see Table 2.1).

2.3 Constraints of WSN

WSNs are inherently constrained due to the limited resources of the sensor nodes [33].

This section discusses the limitations that complicate the design of WSNs specifi-

cally for environmental monitoring applications. It is important to understand the

constrained capabilities of sensor nodes in order to address the challenges faced by

the WSNs.
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Table 2.1: Summary of WSN applications and their requirements
Application Energy

Constraint
Heterogeneity Adaptability Real-time

operations
Privacy

Environmental
Monitoring [62,
15, 68]

High High High Low Low-Medium

Surveillance [32,
12]

Medium-High High High High High

Healthcare [60,
76, 94]

Low-Medium Medium-High Medium-High Medium-High High

Habitat
Monitoring [59,
33]

Medium-High Medium-High High High Medium-High

Disaster
Management [92,
61]

Low-Medium Medium Medium High Low-Medium

Transport and
Asset Track-
ing [28, 80]

Low-Medium Medium Medium Medium-High Medium-High

Facility
Management [18,
17]

Low-Medium Low-Medium Low-Medium High Medium

2.3.1 Energy Constraints

Energy consumption in sensor networks is a significant problem [45]. Energy

constraints in the sensor nodes are due to the power restrictions and limited radio

range of the sensor nodes.

The power restrictions of sensor nodes are due to their small physical size. Sensor

nodes are typically battery-driven. Moreover, as sensor networks are deployed in

remote or hostile environments in most cases, it is difficult to replace or recharge the

batteries of the sensor nodes [59, 62, 91].

Sensor nodes consume power for various operations such as running the sensors,

processing the information and data communication (see Table 2.2). Communica-

tion between sensor nodes consumes most of the power compared to sensing and

computation. In fact, each bit transmitted costs as much energy as about processing

800 – 1000 instructions [34].

Moreover, the wireless sensor nodes do not have enough power or communication

range to send messages directly to the gateway nodes [63]. In most of the settings, a

large number of densely populated sensor nodes continually transmit sensed data

back to a set of gateway nodes in a multi-hop manner to extend the coverage of the
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Table 2.2: Power model for the Mica2. From “Simulating the power consumption of large-
scale sensor network” by Victor Shnayder, Mark Hempstead, Bor-rong Chen,
Geoff Werner Allen, and Matt Welsh, 2004, SenSys ’04, p. 191. Copyright 2004
by ACM.

Mode Current (mA)
Receive 7.00
Transmit with max power 21.50
CPU (active) 8.00
CPU (idle) 3.20
Sensor board 0.70
LEDs 2.20

network well beyond the the limited radio range of the wireless links connecting the

sensor nodes [93, 13]. Although, for a given radio range, multi-hopping increases

the network coverage, it decreases the network lifetime. This is due to the increased

power consumption at the sensor nodes to relay other sensors’ data within the

network. When a sensor node runs out of energy, its coverage is lost and the network

may fail to carry out the assigned task due to an insufficient number of active

nodes [83].

2.3.2 Heterogeneity

The type of sensors that are contained in the sensor network determine whether

a network is heterogeneous or homogeneous. If all sensors measure the same

phenomenon we call the network homogeneous [64]. If the network is capable of

measuring different phenomena we call the network heterogeneous.

The proliferation of WSNs has given rise to monitoring facilities including het-

erogeneous sensor networks and the ability to extract information from disparate

sensor nodes in a meaningful manner to solve real-world problems. On the one hand,

this growth has led to monitoring environments in a more extensive and holistic

manner [31]. On the other hand, the heterogeneity of the sensor nodes makes finding,

extracting and aggregating data at the sensor nodes much harder.

As described in [75], heterogeneity can occur at different levels: system, structure,
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syntax and semantics. System heterogeneity is caused by differences in hardware and

software components and thus having a set of sensor nodes with different capabilities

and functions. For example, a node might have more memory and a more powerful

microprocessor than the other nodes in the network. Structural heterogeneity chiefly

refers to the fact that different WSNs may employ different storage structures and data

models. Syntactic heterogeneity corresponds to differences in data representation

and formats, and semantic heterogeneity mainly refers to the fact that the same

concept may have different meanings in different WSNs [43].

2.3.3 Unpredictability

Sensor Networks may be very unpredictable in their operations. New nodes can

join the network and others may be damaged or run out of power. For example,

new sensors could be added to a network which could measure different phenomena

from the existing sensors in the network. Other sensors might be displaced due to

environmental events, such as flooding in water reservoirs. Moreover, connectivity

between the sensor nodes and the routing structures changes dynamically [81]. Thus,

the network needs to adapt to changing conditions and requirements in order to

remain operable [5, 42].

2.4 Techniques to Mitigate WSN Constraints

This section briefly describes the research techniques used to solve the problems

faced by WSNs in terms of energy consumption, heterogeneity and unpredictability.

This serves as a criterion for energy efficient heterogeneous WSNs.

2.4.1 In-Network Data Processing

Recent WSN research focuses on the use of in-network data processing to reduce

energy consumption by minimizing data volume locally. In-network data processing,

shown in Figure 2.3, assumes that only a minimal amount of data is transferred
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within the network [19, 57]. Depending upon the application requirements, several

processing tasks can be performed in-network such as filtration, aggregation and

integration of data, to reduce transmission within the sensor network [79].

For many applications of sensor networks, the end users are not interested in the

raw data; instead they are only interested in specific events like when it is freezing or

when it is too dark [57]. In-network filtering reduces transmission of insignificant

events by restricting the source to transmitting a message only if there is an event to

report.

Data aggregation reduces further propagation by merging data from multiple

homogeneous sensor nodes at intermediate nodes and transmitting the aggregated

data to the gateways [79, 49]. During aggregation, summarization functions such

as minimum, maximum, or average are applied to reduce the volume of data [58].

Aggregating data in this manner helps to remove redundant data and improves the

reliability of the information gathered from multiple sensor nodes.

Data integration is performed to detect spatially distributed events by fusing data

from multiple heterogeneous sensor nodes. It is similar to filtering of data in that

it avoids the transmission of irrelevant sensor data. However, in contrast to simple

Gateway 

Node

Sensor 

Node

Aggregator 

Node

Event of 

Interest

Aggregated 

Data

Figure 2.3: In-Network Data Processing in WSNs. Adapted from “Distributed Data Aggre-
gation Scheduling in Wireless Sensor Networks”, by Yu, Bo, Jianzhong Li, and
Yingshu Li, 2009, INFOCOM’09, p. 2161. Copyright 2009 by IEEE.
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filtering, data integration relies on the readings from multiple sensors and their

integration to detect higher-level events of interest [52, 65]. Data integration, when

performed within the network, reduces overall communication by avoiding the

transmission of irrelevant sensor data.

Mostly, aggregation and integration of data is performed at the intermediate sensor

nodes [79]; whereas filtering is done at every level, i.e. at intermediate and source

node level of the WSN [19]. In this manner, in-network data processing avoids

wasting energy on sending large amounts of raw data and significantly reduces

energy consumption [49, 57].

2.4.2 Semantic Data Integration

The basic purpose of WSNs is to monitor the environment in which they are placed.

They detect events of interest and report them to the user. In addition to simple

events, the monitored events may also consist of complex events (or higher-level

events) requiring the integration of events from multiple heterogeneous data sources.

However, the detection of complex events requires the sensor nodes to be able to

understand the received data, perform logical reasoning and integrate such data.

Thus, there is a need to attach semantic information to the sensor data [66]. Many

researchers [6, 69, 43, 51] have addressed the problem of integrating data from het-

erogeneous data sources (known as semantic data integration), by using ontologies.

Ontologies provide formal specifications of the terms used in a domain, where

relationships between these terms are explicitly defined [67]. They serve to identify

the meaning and context of every data element in the sensor network, thereby

enabling a semantic-based classification of data throughout the network. Providing

semantics to data sources improves the collaboration between heterogeneous data

sources and facilitates the integration and exchange of various sensory data among

these nodes in WSNs [21]. It thus allows the deployment of different types of sensor

nodes in an environment to collect information.
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Figure 2.4: Semantic Data Integration from heterogeneous data sources. Adapted from
“Semantic sensor information description and processing”, by V. Huang and
M.K. Javed, 2008, SENSORCOMM ’08, p. 458. Copyright 2008 by IEEE.

Various middleware systems, such as SWASN [43] and S-ToPSS [69], offer meth-

ods of providing semantics to allow exchange of information between heterogeneous

sources. Ontologies have been used to describe and exchange data, thus allowing

sensor networks to understand data from different types of sources.

Figure 2.4 shows a general architecture using a layered approach for integrating

data from heterogeneous sensor nodes. The sensor nodes may all belong to a single

sensor network or may be from different WSNs. As can be seen from Figure 2.4, the

bottom level may consist of different WSNs or a single sensor network comprised

of different sensor nodes. These nodes send their data to their respective gateways.

Gateway nodes perform translation, filtering and aggregation on the gathered data

and send results to mediators/brokers. Appropriate merging operations are then

performed at a centralized location in the middleware processing layer, and processed

information is finally delivered to the application layer for user consumption.

22



Chapter 2 Background

2.4.3 Context-Awareness

Context refers to any information that describes the identity, location, time and

activity of an entity. It tells us about the facts surrounding an entity, where the

entity may be a person, place or an object [4]. The use of contextual information

to determine user needs and provide relevant information and/or services to users

makes a system context-aware [5].

Typically, context-aware systems are human-centric and context is applied at the

application-level (to adapt or to derive important information from the gathered

context). Location-aware information delivery systems and augmented memory

systems are examples of human-centric, context-aware systems.

However, in this case, interest is centred on context-awareness including sensor

nodes and its application at the sensor node level. This makes it node-centric [56].

Node-centric context-awareness requires nodes to perform different actions, such

as altering the event-reporting frequency of a sensor node or the routing path for

communication in the sensor network, depending on the available context. It enables

a node to adapt its behaviour automatically without requiring instructions from the

gateway nodes or the end-user. According to [56], if each sensor node in a sensor

network is context-aware then the whole network is context-aware.

Figure 2.5 shows context-awareness in the sensor nodes for energy efficient routing

in WSNs. In this case, each sensor is aware of its remaining battery power. They

are also aware of other sensor nodes in its vicinity. The sensor nodes adjust their

reporting frequency of events based on their available energy and when a system has

to send data, it chooses those nodes which have the most energy remaining. In this

manner, the energy context-awareness in the sensor nodes prolongs their lifetime

and hence that of the sensor network.

23



Chapter 2 Background

R
an

ge

6
5

%

9
0

%

2
0

%

5
0

%

3
0

%

9
0

%

7
0

%

4
0

%

5
2

%

6
8

%

2
0

%

Gateway 

Node

Sensor 

Node

Remaining 

Energy

8
0

%

Figure 2.5: Adaptive routing based on context-awareness in WSNs. Adapted from “A Survey
on Temperature-Aware Routing Protocols in Wireless Body Sensor Networks”,
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2.5 Functional Requirements

This section provides the factors that are necessary for the detection of complex

events within a heterogeneous WSN in an energy efficient manner. The constraints

of WSN in environmental applications are presented in Section 2.3. The most rele-

vant constraints of WSNs in environmental applications that need to be addressed

are those of energy, heterogeneity and unpredictability. Reduced energy consump-

tion is necessary for long-term operation, while the sensor network should be able

to accommodate a wide variety of heterogeneous sensor nodes to monitor vari-

ous environmental phenomena (e.g., temperature, humidity and light). Moreover,

due to remote deployment of the network in harsh or hard-to-reach environments,

adaptability is required to manage unpredictable network conditions in any given

environment.
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Table 2.3: Summary of application requirements, WSN constraints and research solutions
Application
Requirement

WSN
Constraint

Research
Solution

Description

Longer
lifetime

Energy
constraint

In-network
data
processing

Many applications of sensor network
require network operation for longer
periods of time. Sensor nodes have
limited energy resources. As radio
communication between sensor nodes
is energy-expensive, it may not be fea-
sible to transmit large amounts of un-
interesting or repetitive data across the
network. Various in-network data pro-
cessing techniques are employed to re-
duce the transmission and hence the
energy consumption.

Event
detection

Heterogeneity Semantic
data
integration

Unlike other networks, such as sim-
ple and ad hoc networks, the goal in
WSNs is detection of specific events,
not just communication. Integrating
data from heterogeneous sources for
event detection is a difficult challenge.
Semantic technologies such as ontolo-
gies can help in collaborative event
detection as they allow the data to be
shared and processed by the heteroge-
neous sensor nodes.

Self-
organization

Unpredictability Context-
awareness

Given that WSNs are typically placed
in remote and hostile environments,
the sensor nodes must be able to self-
organize. Context-awareness enables
the sensor nodes to adapt to changes in
the environment and to act accordingly.
This ensures the successful operation
of the network in unpredictable condi-
tions.
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The research solutions mentioned in Section 2.4 present a process of mitigating

the constraints of energy, heterogeneity and unpredictability by using in-network

data processing, semantic data integration and context-awareness at the sensor

nodes in the WSN. We summarize the analysis of application requirements, WSN

constraints and research solutions in Table 2.3. The respective solutions to mitigate

the constraints of WSNs are thus the functional requirements for the design of an

energy-efficient heterogeneous WSN. These requirements are:

(R1) In-network data processing: The processing of data must be done at the sensor

node level to limit the communication of unnecessary events and conserve the

limited sensor node energy.

(R2) Semantic data integration: The sensor data must be semantically annotated and

processed in order to integrate data from heterogeneous sources.

(R3) Context-awareness: The sensor nodes should make their routing decisions

based on the available sensor data in the locality and their energy-related

context-awareness in order to communicate with other relevant sensor nodes in

an energy efficient manner.

Therefore, the hypothesis is that inclusion of these three factors at the sensor node

level is beneficial for overall reduced energy consumption in a heterogeneous WSN.

2.6 Summary

This chapter presented an analysis of research in wireless sensor networks that

contributes to answering the first research question. The analysis was conducted

to derive factors for an approach to achieve the objectives of this thesis, i.e., to

“develop an architecture design that takes into account the processing capabilities of

the sensor node and utilize it for energy conservation in WSNs” (see Section 1.3).

The identified factors are in-network data processing, semantic data integration and

context-awareness at the sensor node level.
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The first part of this chapter provided the background of wireless sensor networks.

It discussed a number of potential applications of wireless sensor networks and

their requirements. Major applications discussed in this chapter were environmental

monitoring, surveillance and health-care applications. Since this thesis focuses on

environmental monitoring, the constraints of wireless sensor networks related to

environmental monitoring were discussed in detail.

This chapter also examined initial solutions to mitigate network constraints. This

provided the functional requirements for the proposed work. Finally, this chapter

provided a basis for discussion of the research work in this area.

The next chapter analyses how these recommendations have been realised in

existing systems to achieve energy efficiency in a heterogeneous sensor network and

its related areas.
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Related Work

This chapter contributes further to the first research question: “what are the factors

that need to be considered for complex event detection in an energy efficient Wireless

Sensor Network (WSN)?” by examining how others have addressed the issues faced

by WSNs. It identifies the strengths and weaknesses in existing work and provides a

justification for the present study.

This chapter is structured as follows. Section 3.1 explains the focus of this chapter,

the scope of the analysis and the criteria used. Sections 3.2, 3.3 and 3.4 then

apply these criteria to approaches in their respective areas. Section 3.5 discusses

the implications of the research summarized in this chapter for this thesis and for

wireless sensor networks in general. The chapter concludes with a summary in

Section 3.6.

3.1 Focus

This chapter analyses semantic in-network complex event detection approaches that

are related to the objectives of this thesis (see Section 1.3). This section gives more

details about the scope of the analysis i.e. which areas are covered, and about the

criteria used for the evaluation of related work.
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3.1.1 Scope

In-network data processing, semantic data integration and context-awareness have

been introduced in the previous chapter. This chapter looks further into specific

related work pertaining to the above-mentioned techniques to see how other re-

searchers have covered these areas. Given that we hypothesize (see Section 1.3) that

the integration of these three factors is important for an energy-efficient heteroge-

neous wireless sensor network, related literature is presented wherever possible that

includes the integration of these three techniques.

3.1.2 Criteria

The functional requirements for energy-efficient heterogeneous wireless sensor

networks described in Section 2.5 are used as criteria for the analysis of work in

related areas. These are:

(R1) In-network data processing: Processing of data such as filtering, aggregation or

integration can be performed at different levels of the WSN. Existing work is

compared on the basis of where the data is processed, i.e. either at the powerful

gateway nodes or at the sensor node level.

(R2) Semantic data integration: To process the data from multiple heterogeneous

sensor nodes, a mechanism is needed to represent the information in such a way

that can be understood by the all the participants. Existing work is examined

on the basis of whether it assumes a homogeneous or heterogeneous sensor

network i.e. whether it provides a semantic-based classification of data for data

processing in the WSN.

(R3) Context-awareness: Sharing the information requires the sensor nodes to make

or adapt their decisions based on changing sensor information in the WSN.

Existing work is compared based on whether or not it uses context-awareness

for sharing of data in an energy efficient manner.
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These three requirements represent the choices that must be made in the design of

semantic in-network complex event detection in a heterogeneous sensor network. The

analysis in this chapter describes what choices were made, implicitly or explicitly,

for the analysed systems.

3.2 In-Network Data Processing

Wireless Sensor Networks (WSNs) provide a unique distributed platform that al-

lows users to collect and query events of interest from the sensory data. Different

strategies have been proposed for efficient in-network processing of data, such as

TinyDB [57, 58], Directed Diffusion [44] and Cougar [96]. In this section, we exam-

ine solutions whose purpose is to move the event detection (i.e. users’ interest) to the

data sources (i.e. sensor nodes) and obtain energy benefits by processing events at

the sensor node level.

TinyDB

TinyDB [57, 58] is a distributed query-processing system that allows users to perform

event aggregation over streaming sensor data. In practice, the user formulates a query

and it is distributed across the sensor network. Along the path of query distribution,

a routing tree is formed for sensor nodes to return the results to the user. At each

sensor node in the routing tree, the sensor combines its own values with the data

received from its children and sends the aggregate to its parent.

An important feature of TinyDB is that it allows the user to express the queries

in a simple SQL-like language. In particular, it uses a database view of the sensor

network and for this purpose, it maintains a single logical database table (called

sensors). The sensors table has one row for each node per time instant with one

column per attribute that a sensor node can produce. An example of an aggregation

query in TinyDB is the following:
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SELECT AVG(temp)

FROM sensors

WHERE temp > 15

SAMPLE PERIOD 10s

This query computes the average temperature of all sensors that sense a temperature

value of more than 15◦C, and updates the user every 10 seconds.

In TinyDB, the dissemination of the query in the network is optimized by main-

taining semantic routing trees (SRT). Based on the attribute of the query, the sensor

nodes determine whether they have data relevant to the query (i.e. data context). If

the attribute of the query applies locally to a sensor node then it produces a result for

that particular query. In case it does not apply locally, the sensor node broadcasts it

to its children. The parent sensor node then waits for a reply from its children and

replies to its own parent when it has heard from all of its children. This process is

repeated in the same manner until the replies reach the root of the network. Moreover,

if the query does not apply to a sensor node or its child nodes, then those nodes

are excluded from reporting the results for a query, thereby resulting in reduced

computation and communication costs.

However, TinyDB does not support the integration of data from multiple heteroge-

neous sensor nodes. It only filters and aggregates data for similar types of sensor

data. Thus, user queries based on integrating multiple sensor node data cannot be

performed in-network by TinyDB.

Directed Diffusion

Directed Diffusion (DD) [44] is a popular data-filtering and aggregation paradigm in

sensor networks (see Figure 3.1). It allows the user to query the sensor network for an

event by specifying an interest in attribute-value pairs (called named data). The sink

node1 then broadcasts this interest message to all other nodes in the sensor network.

After receiving the interest message, each node re-broadcasts the information to its

1The authors use the term sink node for the gateway node.
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Figure 3.1: (a) Interest propagation; (b) Initial gradients setup; and (c) Data delivery along
reinforced path in Directed Diffusion. Adapted from “Directed diffusion for
wireless sensor networking”, by Chalermek Intanagonwiwat, Ramesh Govindan,
Deborah Estrin, John Heidemann, and Fabio Silva, 2003, IEEE/ACM Trans.
Netw., p. 3. Copyright 2003 by IEEE/ACM.

neighbours and sets up interest gradients for propagating the result back to the sink

node. As the gradient set-up phase for a certain interest is complete, only a single

path for each source is reinforced and used to route packets towards the sink.

Sensors that hold data matching the interest message send it back to the sink via

unicast transmissions. Intermediate nodes that are part of various data paths might

also aggregate the data e.g., more accurately pinpointing a pedestrian’s location by

aggregating reports from multiple sensors. An important feature of directed diffu-

sion is that interest, data propagation and aggregation are determined by localized

interactions between the sensor nodes. Moreover, data filtering in DD is based on

the suppression of identical data from multiple sources e.g, only an event matched

with high confidence levels is sent by the intermediate nodes to the sink node. How-

ever, DD does not perform in-network processing of complex events from multiple

sources as the task descriptions are based on sampling of a single sensor node for

event detection, such as the use of only sampled waveforms for the detection of a

pedestrian or an animal in the region.
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COUGAR

The Cougar [96] approach is similar to TinyDB in that it performs in-network

distributed query processing. In Cougar, the sensor nodes store and process the

data by aggregating similar sensor readings. It also eliminates irrelevant readings

by sending only the necessary readings to the gateway nodes. Similar to TinyDB, a

declarative, user-friendly query language has been developed that allows users to

define queries such as Generate a notification if abnormal temperature is observed

by the sensors or Return the average temperature on each floor.

However, unlike TinyDB where each node maintains an SRT, Cougar is based on

clustering. In Cougar, the sensor nodes send partially aggregated events only to their

selected leader nodes (i.e. cluster heads). When the cluster head collects all the data

from its child sensor nodes, it filters and aggregates the sensor readings according

to the query plan and sends the results to the gateway nodes. More importantly,

aggregation operations such as average and maximum can be used in the query plan.

However, Cougar does not support integration operations which require data to be

merged and filtered from heterogeneous sensor nodes.

Evaluation

TinyDB, Directed Diffusion, and Cougar are good at conserving sensor node energy

by performing in-network filtering and aggregation of sensor data. However, these

approaches are based on homogeneous sensor networks. They do not provide

semantic support for different types of sensor data and as a result, do not provide

a means to integrate data from heterogeneous sources in order to detect complex

events within the sensor network. As in these approaches, cooperation and exchange

of data among the sensor nodes is not possible, it hampers the scalability of the

sensor networks in cases where data has to be integrated from multiple sensor nodes

to answer user queries.
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3.3 Semantic Data Integration

In heterogeneous sensor networks, it is a requirement to provide meaning to the

sensed data for it to be interpreted and processed by a diverse set of sensor nodes.

Moreover, it is important to reason on the gathered events to deduce higher-level

events from simple events. This section examines various systems that aim to

integrate heterogeneous sensor events in a WSN to detect user-defined complex

events.

CPS

Alex Wun et al. [95] propose a Content-based Publish/Subscribe (CPS) technique,

that is constructed over the S-ToPSS (Semantic Toronto Publish/Subscribe System)

[69], to allow semantic data integration across heterogeneous sensor networks. One

of the major roles in a CPS system is that of brokers. The brokers incorporate a

semantic engine (S-ToPSS) that uses mapping functions to translate raw or aggre-

gated sensor events into semantically equivalent events as shown in Figure 3.2. For

example, an event recorded by a sensor node as (light, 250) will be translated to

(weather, cloudy) by the broker. These mapping functions are included in ontologies

of different domains and can additionally be supplied by the applications. Matching

Raw

Aggregated

Untranslated Semantic
Sensor Data

Publications

(light, 250)

(light, 250)

(light, 250)

(light, 250)

(light_1, 200),

(light_2, 300)

(weather, cloudy)

(weather, cloudy)

(light_1, 200),
(light_2, 300)

Figure 3.2: Sensor and semantic publications in CPS. From “A system for semantic data
fusion in sensor networks”, by Alex Wun, Milenko Petrovic, and Hans-Arno
Jacobsen, 2007, DEBS ’07, p. 77. Copyright 2007 by ACM.
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of subscriptions for higher-level or complex events is also performed at the brokers

by integrating data from multiple heterogeneous sources.

As CPS allows aggregation of raw sensor data at the sensor node level, a certain

level of in-network data processing is achieved. This results in reduced transmission

at the sensor nodes by suppressing unnecessary or similar data. However, detection

of complex events requiring integration of data from multiple sensor nodes is not

performed at the sensor node level. CPS only sends sensor level filtered or aggregated

data to the broker overlay network. The brokers then perform semantic matching

and integration of events against application interests and publish those application-

specific events to the user.

SWASN

In SWASN (Semantic Web Architecture for Sensor Networks) [43], a layered ap-

proach to data integration has been proposed. Sensor data is gathered from hetero-

geneous sensor nodes at the Sensor Network Layer. This data is then processed at

the Ontology Layer by attaching semantics to it. Further reasoning for the detection

of events is done using a rule-based engine at the Semantic-Web Processing Layer

of the architecture. The processed data is then made available to different client

applications that require it through an Application Layer. The application Layer

basically provides the interaction between the client application and the SWASN

middleware through any server over the internet/intranet.

In SWASN, the sensor data is not processed at the sensor node level (i.e. Sensor

Network Layer). SWASN therefore does not perform in-network data processing

of sensor data as all the sensor data is sent to the gateway nodes. Processing for

detection of complex events is then performed at the upper layers in the gateway

nodes or the middleware layer (i.e. Semantic-Web Processing Layer). Moreover,

SWASN also does not specify the underlying communication model for the sensor

nodes in the sensor network. It therefore does not use a context-aware mechanism

for managing routes between the sensor nodes and the gateway nodes.
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Event Dashboard

In [97], the authors propose an ontology-driven user interface through which users

can describe the event constraints on sensor events (e.g. Reporting a high total

nitrogen event when Total Nitrogen (TN) is greater than 10). The user-interface

also allows users to define conjunctive constraints on the set of sensor data for the

detection of complex events, such as the detection of algal bloom events based on

the nitrogen and phosphorus sensor events. The event constraints are then translated

by a Semantic Mediator to be stored in Global Sensor Network (GSN) middleware.

The GSN middleware receives events from the sensor nodes, matches sensor data to

the event constraints and notifies the mediator of it. The mediator then updates the

user-interface with the matched event notification.

However, in Event Dashboard, the sensor nodes in the sensor network are de-

coupled from the other components of a system i.e., the sensor nodes are not aware

of user-specified events. Thus, all sensor data, irrespective of its significance, is

sent to the middleware, where the processing for user-specific events takes place.

Moreover, similar to SWASN [43], the authors do not specify any communication

model and the focus of their work is on the processing of user-specific events only.

ACTrESS

In [29], the authors present an architecture (i.e., ACTrESS) that performs automatic

context transformation to enable easy event-based integration and development of

systems with different semantics. ACTrESS can be added to any existing pub-

lish / subscribe middleware. An important aspect of ACTrESS is that it does not

rely on a globally accepted base schema. A context repository is maintained which

is modifiable at runtime. This allows for transparent context transformation for

event producers and consumers; and enables the integration of new event producers

and consumers with their respective contexts. However, ACTreSS is designed to

be employed in high-end sensor nodes and it also does not provide node-centric

context-awareness.
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Evaluation

The above systems address the problem of heterogeneity in wireless sensor networks.

However, in such systems, sensor nodes are used only for the capturing of data from

the environment, while data analysis and interpretation is performed at the more

powerful gateways or application levels. This puts a heavy communication load on

the sensor nodes for performing their operation in a continuous manner, as all data

needs to be forwarded to the gateway nodes regardless of its usefulness.

3.4 Context-aware networks

Wireless Sensor Networks (WSNs) are often deployed in an ad-hoc fashion with no

infrastructure support. As described earlier in Section 2.3.1, sensor nodes usually

have limited bandwidth and energy resources, which require simple and efficient

underlying communication protocols. One of the most fundamental actions that

such devices in the sensor networks need to do is to find information about the

environment they are operating in. Moreover, to share and use the available context

information in the network, sensor nodes first need to discover and locate the required

information. This action is called context discovery. With the use of this context

information, the sensor nodes can then make intelligent decisions regarding the

appropriate usage of their resources. This section presents context-aware solutions

that aim for a context-aware sensor network by providing the sensor nodes with a

means to adapt to their surroundings.

SPIN

The family of SPIN [50] protocols (SPIN-PP and SPIN-EC) are resource aware

and resource adaptive. SPIN-PP protocol aims at diffusing information within the

network using information descriptors (i.e. meta data) to reduce the transmission of

redundant data in the sensor networks. When a sensor node running SPIN (shown in

Figure 3.3) wants to send data, it first advertises (ADV) it to its neighbouring nodes
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in the sensor network using the meta-data. If the neighbouring node is interested in

the advertised data, it requests (REQ) the source for this kind of data. The source

node then responds and sends the data to the sinks (DATA). The sink node, after

receiving the DATA sends the advertisement (ADV) for the obtained data further in

the network, and the process continues until it reaches the gateway node.

While SPIN-PP uses a negotiation mechanism to reduce energy consumption,

sensors running SPIN-EC are resource-aware. They can make informed decisions

about the efficient use of their resources. Thus, if a sensor has low residual energy,

it controls its participation in the data dissemination process. It does not however

take energy-awareness into account in selecting the routes between the sensor nodes.

Thus, it partially supports energy-awareness within the sensor network. Moreover,

both the protocols allow the sensors to exchange information about their sensed data,

thus helping them to obtain data of interest.

AB
ADV

(a)

AB
REQ

(b)

AB
DATA

(c)

ABADV

(d)

ABREQ

(e)

ABDATA

(f)

Figure 3.3: SPIN Protocol. (a) Node A advertises its data to node B, (b) Node B sends a
request for node A data, (c) Node B receives the requested data, (d) Node B then
sends out advertisements to its neighbours, (e-f) Node E and F send requests
back to node B and get the data. Adapted from “Negotiation-based protocols
for disseminating information in wireless sensor networks”, by Joanna Kulik,
Wendi Heinzelman, and Hari Balakrishnan, 2002, Wireless Networks, 8, p. 172.
Copyright 2002 by Kluwer Academic Publishers.
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IS_SDM

The In-network Semantic Sensor Data Model (IS_SDM) [20] targets energy con-

sumption by processing the data at enhanced context-aware sensor nodes. The

context input is derived from explicit and implicit context inputs for sufficient con-

text information about the sensor network. Explicit context is formed from the actual

readings of the sensor nodes, whereas implicit context is formed from secondary

information available to the sensor nodes through their neighbouring nodes in the

sensor network. The context input in IS_SDM is based on the defined attribute set

for each sensor node. The attribute set of a sensor node (Si) consists of sensor node

readings (Ri), energy required for one sample (Ei), frequency of sampling (Fi), con-

fidence level based on battery voltage (Ci), resolution mask (Ui) and group size (Gi).

These attributes enable the sensor nodes to take context into consideration and adapt

their operations, such as altering the frequency of sampling when the sensor nodes’

energy drops below a certain threshold.

Furthermore, IS_SDM allows filtering of events by imposing a resolution mask on

the sensor readings. In this way similar or repeated sensor readings are discarded

and only a sudden sharp change in sensor readings is reported. More importantly,

IS_SDM allows similar types of sensor nodes to be placed in one group with an

additional attribute called group confidence (GCi). This enables the sensor nodes to

report events only when the group confidence is above a certain threshold, such as the

reporting of a security problem when noise is detected, with high group confidence,

during non-working hours.

However, IS_SDM does not provide a mechanism to integrate events from two or

more different groups of sensor nodes. It is thus limited to sensor nodes or groups

consisting of similar sensor types, to perform in-network filtering of simple events.

Moreover, similar to SPIN-EC [50], IS_SDM uses energy context for altering the

sampling frequency of the sensor nodes and does not provide energy-awareness for

altering the routes between the sensor nodes and the gateway nodes.
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EAR

Energy-aware routing [73] uses energy-awareness in the sensor nodes to alter the

paths for communication between the sensor nodes and the gateway nodes. The paths

are probabilistically updated and one of several paths is chosen for communication

by the sensor nodes in the network. This also includes sub-optimal paths, as using

the minimum energy paths all the time may deplete the sensor nodes’ energy on a

particular path.

The sensor nodes in EAR are addressed based on their type, such as temperature

or humidity sensors. However, sensor events are communicated based only on

type, such as “Temperature of Room 5” rather than on user-specified events such as

reporting sensor events “When the temperature is below 10 in Room 5”. It therefore

does not perform in-network processing of data for filtering and integration purposes.

Moreover, in EAR, information about multiple routes (from source to destination)

has to be maintained by the sensor nodes to enable changing between different

routes to manage sensor nodes’ energy resources fairly. This proves to be useful

in increasing the lifetime of sensor networks, but it puts a heavy burden on limited

sensor storage.

Pub-2-Sub

Pub-2-Sub [85] is a content-based routing mechanism for P2P networks. It has the

virtualization and indexing component for maintaining the overlay network structure

and determining the subscription and publication paths for given queries, respectively.

A unique virtual address is assigned to each of the sensor node. The routing for

subscription and publication is then performed based on the virtual addresses of

the nodes. Pub-2-Sub+ [86] is an extension to Pub-2-Sub, which is built on a logic

overlay without requiring the location information. However, energy-awareness in

deciding the routing paths is not considered in PUB-2-SUB+, which can cause high

routing overhead at the relay sensor nodes, especially in regions to which many
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events and queries are directed such as the sensor nodes nearer to the gateway node.

The sensor nodes in this region may deplete their energy quicker and thus the network

lifetime is severally affected.

Evaluation

Integrating data within a heterogeneous sensor network requires the sensor nodes

to be aware of the available sensor data in the locality (i.e. data context). It also

requires the sensor nodes to share the available information by keeping in view the

available energy resources (i.e. energy context) in the sensor network. The context-

aware networks mentioned above perform different operations by considering either

the data context or the energy context only, such as SPIN-PP and SPIN-EC [50].

Moreover, in SPIN-EC [50] and IS_SDM [20], energy context-awareness is used

to trigger power saving functionalities in the sensor nodes such as increasing or

decreasing event reporting rates based on sensor node energy levels. However, they

do not consider the available energy of the different routes as in EAR [73]. EAR [73]

uses both data and energy contexts in considerating selection of routes but does not

perform any data processing at the sensor node level for event detection.

3.5 Discussion

This section discusses the implications of the approaches analysed in this chapter.

The relevant approaches in the surveyed research are viewed along with insights into

the effectiveness of the approaches where such insights are available.

Table 3.1 provides a comparison of different approaches to the criteria for the

proposed work. It can be seen that the problem with existing methods for in-network

data processing is that it considers homogeneous sensor networks and does not

perform integration of heterogeneous sensor data at the sensor node level. This

limits the potential scale of sensor networks as the sensory data cannot be shared

between various sensor nodes and thus only the processing of simple events can be
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Table 3.1: Comparison of related work to the criteria.
(+) supported, (−) not supported, (±) partially supported

Approach / Criteria
R1: In-network Data

Processing

R2: Semantic Data

Integration

R3: Context-Awareness

Data-context Energy-context

TinyDB + − + −

DD + − + −

COUGAR + − + −

CPS ± + + −

SWASN − + − −

Event Dashboard − + − −

ACTrESS − + − −

SPIN + − + ±

IS_SDM + − + ±

EAR − − + +

Pub-2-Sub+ ± − + −

performed at the sensor node level. Moreover, the solutions provided for semantic

data integration perform the operations at centralized locations which are normally

designated, more powerful gateway nodes. In both cases, the scalability of the overall

network is hampered and a large amount of energy is wasted on sending/receiving

irrelevant data.

In addition, context-awareness has been used only to conserve energy at the sensor

nodes by selecting optimal routes to the destination nodes; whereas others provide

a method to request and acquire sensor data in the sensor network by enabling

data context-awareness at the sensor nodes. Most importantly, the context-aware

networks that take both the data and energy context into account do not combine

energy awareness and adaptation in routing with complex event processing at the

sensor node level.

3.6 Summary

This chapter focused on recent research work related to wireless sensor networks.

It contributed further to answering the first research question (see Section 1.4.1) by

examining how others have addressed the issue of complex event detection for an
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energy efficient Wireless Sensor Network (WSN). The related work was divided into

three main categories: in-network data processing, semantic data integration and

context-aware sensor networks.

It showed that most systems which aim to support complex event detection

(e.g., [95]) perform the processing at powerful gateway nodes, whereas solutions

supporting in-network data processing (e.g., [57, 58]) lack semantic capabilities

and hence can be only used for homogeneous sensor networks. Systems that pro-

vide context-awareness (e.g., [50]) are again isolated solutions that do not handle

processing of events at the sensor node level.

The review of studies into the effectiveness of these approaches showed that no

single approach achieves the goal of this thesis and no single approach meets all

recommendations made in the previous chapter. The material presented in this

chapter forms a basis for the approach of this study, which aims at overcoming some

of the limitations of prior research.

The following chapter introduces a new approach for semantic in-network complex

event detection that addresses the gaps in the surveyed approaches with regards to the

recommendations and builds on the demonstrated strengths of existing approaches.
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System Design & Architecture

This chapter introduces the conceptual design of the SEPSen architecture. The

design is based on the results of the previous two chapters, on the recommendations

for efficient wireless sensor networks derived from the constraints and strengths of

existing wireless sensor networks. This chapter explains how these recommendations

are fulfilled, keeping in mind the resource-constrained nature of WSNs, and thus

finding an answer to the second research question raised in Section 1.4.3: “how

can complex event detection tasks be performed in a resource-constrained sensor

node?” This chapter also presents an energy-based cost model for processing and

communication of events in heterogeneous WSNs. This contributes to answering the

third research question, i.e., “how much energy benefit could be gained by performing

complex event detection tasks at the sensor node level?”

The chapter is structured as follows. Section 4.1 gives a high-level description of

the focus employed in the design of the proposed SEPSen architecture. Section 4.2

introduces the conceptual architecture and Section 4.3 provides a cost-analysis of

the proposed architecture during various operations. The limitations of the system

design are discussed in Section 4.4 and the chapter concludes with a summary in

Section 4.5.

Early versions of parts of Sections 4.2 and 4.3 have been previously published in

[48] and [47], respectively.
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4.1 Design Requirements

The objective of this thesis, as introduced in Section 1.3 is to develop a sensor node

architecture that performs processing tasks at its own level. Using terms and concepts

common to wireless sensor networks, the central hypothesis of this thesis was stated

in Section 1.3 as follows:

If the sensor nodes: i) semantically annotate the sensed data; ii) collab-

orate with the surrounding sensor nodes; and iii) perform filtering and

integration of events on the gathered knowledge, then they will be able to

detect complex events locally in heterogeneous sensor networks, thereby

resulting in reduced energy consumption.

This thesis puts forward a novel solution that uses semantic annotation and in-

tegration of data at the sensor node level. Moreover, since knowledge sharing is

a key aspect of data integration in an unpredictable and dynamic sensor network,

this architecture employs context-awareness at the sensor node for data integration

purposes.

The functional requirements for semantic in-network complex event detection in a

heterogeneous sensor network have already been specified in Section 2.5. The first

step in achieving the goals of this thesis is to look at general sensor node architecture

and its characteristics.

Figure 4.1 shows the general architecture of a sensor node. It consists of: (i) a

sensing unit including sensors for data sampling; (ii) a processing unit including a

micro-controller to execute applications and manage resources, and provide storage

for local data processing; (iii) a communication unit consisting of transceiver for

transmitting and receiving the data and coordinating with other sensor nodes; and

finally (iv) a power unit that supplies power to all the components [9].

Mica2 motes, made commercially available by Crossbow, are the de facto standard

for sensor nodes in industry, government and research [41]. A Mica2 mote has
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PROCESSING UNIT COMMUNICATION 
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SENSING UNIT

POWER UNIT

STORAGE

Figure 4.1: General architecture of a Sensor Node. Adapted from “Energy conservation
in wireless sensor networks: A survey”, by Giuseppe Anastasi, Marco Conti,
Mario Di Francesco, and Andrea Passarella, 2009, Ad Hoc Networks, 7, p. 538.
Copyright 2009 by Elsevier.

128 KiB of program flash memory, 4 KiB of RAM, and 512 KiB of measurement

serial flash memory for data logging [2]. Thus, if processing has to be done at the

sensor nodes, the design has to cater for the sensor node’s limited storage capacities.

Keeping in mind the issues discussed above regarding sensor nodes’ architecture

and available storage, functional requirements from Section 2.5 and the goal of

integrating heterogeneous data at the sensor node level, the design requirements are:

(D1) a mechanism to support semantic annotation of sensed data for filtering within

the sensor node and for enabling other sensor nodes to use it for integrating

data within the heterogeneous sensor network.

(D2) a pattern-matching rule engine for processing complex events. As the sensor

nodes regularly generate events, the sensor events (i.e. facts) stored in the

knowledge base for pattern-matching should be within the limits of sensor

nodes’ storage capacity.

(D3) a communication model that allows the sensor nodes to share data and energy-

related context within the sensor network, so that information can be shared in

an energy-efficient manner.
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These requirements are necessary to support semantic in-network data integration

in a heterogeneous sensor network. Most importantly, the design of these components

should fit within the limited sensor node storage. The next section discusses the

details of the design and how these requirements are fulfilled in the design of the

new architecture.

4.2 Overview of SEPSen

This section introduces the conceptual design of an energy-efficient sensor network

that builds on the results of the previous two chapters. Figure 4.2 shows the general

architecture of a single SEPSen node1. The basic components of the proposed

architecture are: Receiver, Semantic Annotator, Knowledge Base, Rule Engine

and Transmitter. This relates to the general architecture of the sensor node in the

sense that the communication unit is split into receiver and transmitter components.

The receiver component deals with the sensed and shared sensor data, while the

transmitter deals with the transmission of data to the gateways or other relevant

sensor nodes in a context-aware fashion. The processing unit is split into semantic

annotator and rule engine components, where it performs the annotation, filtering

and integration of the sensor data. The available storage in the processing unit is

used for storing the facts and rules in the knowledge base of the sensor nodes. The

following sections discuss the individual components of the system architecture in

detail.

4.2.1 Receiver

The Receiver component distinguishes between three types of incoming events:

sensed, shared or forwarded. The distinction between these types of events is

necessary as different operations are performed on each of the event types.

1 The power unit is omitted in the figure as it does not add any SEPSen specific functionality to the
overall system.
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Figure 4.2: SEPSen Node Architecture

The monitored phenomenon is measured as event data at regular intervals. This

sensed event is then annotated and compared against the rules in the rule engine. For

rules that refer to events that need to be integrated from multiple heterogeneous sensor

nodes, the data is shared among the relevant sensor nodes. The node identifies shared

events by looking into the destination-ID field of the packets. If the destination-ID

belongs to the node itself then it is an event that needs further processing. Moreover,

on arrival, the shared event is added to the knowledge base and it then triggers the

rule engine for evaluating rules against the shared knowledge base. If the forwarded

event is received from other sensor nodes and is to be passed on in a multi-hopping

manner to the gateways (routing), no filtering is performed for the forwarded events.

This component is also responsible for maintaining routes along with the transmitter

component (see details in Section 4.2.5).

4.2.2 Semantic Annotator

There is a need to add an explicit description to measurements: for example, a

temperature provided by heterogeneous sensors can be measured in Celsius or

Fahrenheit. The Semantic Annotator component converts the sensor readings into

semantically equivalent descriptions. For this purpose, semantic technologies (i.e.

RDF) are integrated with sensor measurements and domain ontologies to convert

sensor measurements into semantic measurements.
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Resource Description Format (RDF) is based on triples. A triple is like a sentence

and consists of subject, predicate and object. For example, in “Sensor_1 measures

25 degrees Celsius”, "Sensor_1" is the subject, “measures” is predicate and “25

degree Celsius” the object. We can describe a large number of triples in this manner

such as: the sensor is at location X, location X belong to Site A and Site A is managed

by party P1.

The semantic annotation of sensed events requires the relevant ontology fragments

to be infused into each node in the sensor network. Events are then mapped to the

concepts of the infused ontology. For example, if a sensor node monitoring water

pH in a lake senses a value of 5.0, it will then annotate it with the relevant domain

ontology information, such as:

wqo:WaterpHSensor_1 is_a wqo:WaterpHSensor,

wqo:hasValue "5.0"^^xsd:double.

The annotation is based on the ontology fragment available to this sensor node (see

Figure 4.3). The ontology fragments are obtained from the main ontology that models

the overall application (see details in Section 5.3). The ontology fragmentation can

be performed by following the method discussed in [71]. Another option is using

Protégé: while running the specified rules on Protégé, it imports the required classes

and instances based on the relationships between the concepts of the ontology. These

selected classes of the ontology can been used to deploy ontology fragments (i.e.,

relevant ontology concepts) into the sensor nodes. In our prototype, the ontology

fragments are currently manually infused in the sensor nodes. However, the gateway

nodes would be responsible for automatically injecting ontology fragments in the

sensor nodes. Alternatively, some high-end nodes may also be able to retrieve or

pull ontology fragments on the fly and process them for the sensor nodes.

4.2.3 Knowledge Base

The Knowledge Base of a sensor contains a facts base and a rules base. Facts are

data recorded by the sensor or data received from other sensors. The facts base
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Figure 4.3: Ontology fragment for Water pH sensor node
@prefix wqo:<http://www.co-ode.org/ontologies/wqo.owl#>
@prefix epa:<http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#>
@prefix ssn:<http://purl.oclc.org/NET/ssnx/ssn#Sensor#>
@prefix owl:<http://www.w3.org/2002/07/owl#>
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema#>

epa:MeasurementSite rdf:type owl:Class;

epa:WaterMeasurement rdf:type owl:Class;

epa:WaterProperty rdf:type owl:Class;

ssn:Sensor rdf:type owl:Class;

wqo:WaterpH rdf:type owl:Class;
rdfs:subClassOf epa:WaterProperty.

wqo:WaterpHSensor rdf:type owl:Class;
rdfs:subClassOf ssn:Sensor.

epa:hasMeasurement rdf:type owl:ObjectProperty;
rdfs:domain epa:MeasurementSite;
rdfs:range epa:WaterMeasurement.

epa:hasProperty rdf:type owl:ObjectProperty;
rdfs:domain epa:WaterMeasurement;
rdfs:range epa:WaterProperty.

wqo:observedBy rdf:type owl:ObjectProperty;
rdfs:domain epa:WaterProperty.
rdfs:range ssn:Sensor.

wqo:hasValue rdf:type owl:DatatypeProperty;
rdfs:domain ssn:Sensor;
rdfs:range xsd:double.

changes throughout the execution of a program as new data is recorded by sensors or

new data is obtained as result of an action triggered by a rule execution. Individual

facts are stored in triple form as <Subject, Predicate, Object>. This is the format as

provided by the sensors after the semantic annotation of the sensed values. Below is

an example of facts stored in the knowledge base for the WaterpH sensor node at a

particular time.

epa:WaterMeasurement_1

epa:hasProperty wqo:WaterpH_1.

wqo:WaterpH_1

wqo:observedBy wqo:WaterpHSensor_1.

wqo:WaterpHSensor_1

wqo:hasValue "5.0"^^xsd:double.
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Part of the knowledge base is also a collection of rules, i.e. the rule base, defined

by the application. Rules are updated as the application changes its requirements

or new requirements arrive. A rule contains both a set of conditions and the actions

to be performed when those conditions are met. A rule fires if all its conditions are

true. In this project, semantic rules are used in the form of IF-THEN expressions,

which is similar to Event-Condition-Action (ECA) rule structure. The IF-statement

specifies the conditions to which the rule should apply in order to make the THEN

statement valid. Below is an example of a rule that is used to detect a pollutant in

water reservoirs if the value of the water pH is less than 7.0.

epa:WaterMeasurement(?p) & wqo:hasProperty(?p, ?q)

& wqo:WaterpH(?q) & wqo:observedBy(?q, ?r)

& wqo:WaterpHSensor(?r) & epa:hasValue(?r, ?s)

& lessThan(?s, 7.0) -> epa:NutrientPollution(?q)

The knowledge base consumes a major portion of sensors’ limited storage re-

sources and it is desirable to minimize its size. This is achieved by only storing

the information that is related to a particular sensor node. In this way, irrelevant

information is discarded and only the required portion of information is stored on

each sensor node. Details of this are provided in the next section.

Duplicate Facts Deletion (DFD)

In many applications, such as environmental monitoring, the data typically changes

slowly, perhaps only daily or even over weeks. In contrast, the sensors will produce

fresh readings several times per second. Although the impact of such changes is

mitigated by the sensor filtering the unwanted data at its layer, it still forwards

the sensed events after they have passed the filtering thresholds. These events are

forwarded if they are required for complex event detection. In such a case, the

reading needs to be stored by the receiving nodes.

The conventional insert-based fact management and rule processing method would

result in serious performance degradation in resource-limited sensor devices. The
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strategy in this project is to keep the sensor data up-to-date by regulating the number

of facts. With such mechanisms, the sensor can maintain adequate but not excessive

levels of information.

Thus, to achieve the desired level of performance, facts that have already been

sent by a particular sensor node and placed in the memory (i.e. knowledge base) are

updated and the previous similar facts are deleted from the memory. The impact of

discarding historical values is discussed in Section 4.4.

4.2.4 Rule Engine

Most of the systems discussed earlier in Section 3.3, employ a rule engine for filtering

and integrating sensor data in heterogeneous sensor networks. Similarly, external

standalone rule engines such as Jess2 and Drools3 can also be used to process sensor

data for filtering and integration purposes. However, due to the sensor nodes’ limited

storage and computational capabilities, these engines cannot be employed directly

at the sensor nodes but rather are used at the powerful gateway nodes. Thus, a rule

engine is needed that can be directly used at the sensor nodes for processing sensor

data.

Therefore, a reasoner is used at the sensor nodes as the Rule Engine compo-

nent. The rule engine performs reasoning on the sensed data for data filtering and

integration purposes, using the adapted Rete algorithm [27].

For the rule engine, the application submits its requirements in the form of rules.

It also specifies the action to be taken when the requirements specified in the rule

are met. The rule engine, shown in Figure 4.4, gathers the rules and builds a pattern

network of nodes which encodes the condition parts (IF-parts) of the rules. At the

bottom of the pattern network are the nodes representing the individual rules (i.e.

THEN-parts of the rule). The input consists of changes in the facts as new facts are

inserted or deleted from the knowledge base.

2 http://www.jessrules.com/
3http://www.jboss.org/drools/
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Figure 4.4: Rule engine pattern-matching process. Adapted from Wikimedia Commons, by
Charles Young, 2006, Retrieved from http://commons.wikimedia.org/wiki/
File:Rete.JPG

The pattern matching starts with the root node. For each fact, there is a selection

that follows the root node. Each selection is based on the pattern of conditions that

are looked for and alpha nodes are created which conform to the corresponding

selected pattern. The Rete algorithm makes the pattern matching efficient by having

memories to remember the matched facts for pattern nodes. Thus with each alpha

node, there is an associated alpha memory. If there is a rule that requires more than

one condition to be checked then a beta node is created. Beta nodes are the joiner

nodes, which join two alpha node inputs. The beta node has a beta memory which

is split into left and right memories. Partial facts are stored in each memory after

matching and when both the join conditions are successfully evaluated, it passes the

joined facts downwards to the terminal nodes.

When an input traverses all the way down the network to the terminal nodes, it

has passed all the tests on the left hand side of the rules and activation is performed,

which produces the corresponding output. The outputs, after matching the rules

against the facts, are the applicable rules. The applicable rules then trigger the

execution of the THEN-parts and the respective actions are performed.
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The different actions specified by the rule engine could be: discard, share or

forward an event. In case the incoming fact does not match the rules then the event

is discarded, resulting in the filtering of events. When the fact completely matches

any of the rules then the event is forwarded to the gateway node. If a partial match is

found then the event is shared with the relevant sensor node for further processing.

4.2.5 Transmitter

The Transmitter component is responsible for sending events to the gateway nodes

or sharing the information with other relevant sensor nodes. The decision regarding

with whom to share the information is based on the types of sensors and available

data in the locality. Moreover, the communication paths (i.e. routes) are chosen

based on energy-awareness. Thus, context and context-awareness are used in the

following way:

• Data-context for sharing the information with the relevant sensor nodes, and

• Energy-context for selecting the energy efficient path to the destination.

As data is processed locally at the sensor nodes, information sharing is of utmost

importance. A data-related context helps the sensor nodes in finding and sharing their

information with the other relevant sensor nodes (i.e. in cases of partial matches). It is

based on traditional publish/subscribe (pub/sub) communication patterns [26], where

different sources subscribe to information of interest, and sensor nodes that can

provide such information become the publishers of the information. An important

aspect of pub/sub is in the way events flow from senders to receivers: receivers are

not directly targeted by publishers, but rather they are indirectly addressed according

to the content of the events.

Most of the earlier pub/sub systems use a centralized architecture, where a central-

ized broker/mediator regulates the subscriptions and publications [43, 95]. However,

as this study aims to process data at the sensor nodes, a distributed solution is

provided where every sensor node can be a publisher and subscriber at the same

time.
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Another important aspect of the pub/sub systems is event routing. Events that

match subscribers’ interests have to be sent in a manner that does not significantly

reduce the network’s lifespan. For this reason, this project employs an energy-related

context in the sensor nodes. The sensor nodes are aware of their energy levels and

the energy requirements of different routes to the subscribers. This is achieved

by calculating path costs to each of the subscribers and selecting the most energy-

efficient path amongst them for communication. Thus, when the publishers publish

an event, they use those routes that have sufficient energy left.

4.3 Cost Analysis of SEPSen

Cost models for in-network data processing have been proposed considering hard-

ware parameters [45, 98] and for routing in homogeneous WSNs [84, 87]. No cost

model appears to have been proposed for processing and routing in heterogeneous

WSNs. The present energy-based cost model shows the cost of in-network data

processing and presents circumstances under which it is advantageous (in terms

of energy benefits) for heterogeneous sensor networks. It is important to note that

the cost analysis does not cover the data storage and latency cost caused due to

in-network data processing. However, the evaluation (see Chapter 6) of the imple-

mented architecture provides analysis and simulation results of all these aspects

(i.e. sensing, processing, communication, storage and latency) of in-network data

processing in heterogeneous WSNs.

4.3.1 Comparative Cost Model

Costs are measured as energy consumed at sensor nodes for sensing, processing and

communicating events to the gateway node. The total energy consumption of a WSN

depends on the set of events E available to the network and the set of filters F for

simple and complex events:

Cwsn(E,F ) = Csense(E) + Cproc(E,F ) + Ccomm(E,F ) (4.1)
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=
∑
e∈E

Csense(e) +
∑
e∈E
f∈F

Cproc(e, f) +
∑
e∈EF

Ccomm(e)

where EF refers to the set of events being communicated within the network

(i.e. the events e ∈ E that are matched by filters f ∈ F ). Note that ∅ ⊆ EF ⊆ E if

F contains only simple event filters (EF = Esim
F ). For complex events, EF may be

larger or smaller than E when using in-network processing (EF = Esim
F + Ecom

F ).

For centralized processing it always holds that EF = Esim
F .

To compare the costs of in-network processing CI
wsn(E,F ) to centralized process-

ing CC
wsn(E,F ), each of the three cost components need to be evaluated. Naturally,

the costs of sensing events are equal CI
sense(E) = CC

sense(E) (equal node sets and

sensors).

Processing cost

In the centralized setup, the processing cost at each sensor node ni ∈ N (set of all

nodes N , i ∈ N) is twofold: simple event filtering at the source node n(e) ∈ N of

an event e (F sim being the set of simple event filters; and routing table looking-up to

identify the direction of communication towards the gateway node GW :

Cc
proc(E,F ) =

∑
e∈E

f∈F sim

Cfilter(e, f) +
∑
ni∈N
e∈Esim

F

Crlup(e, ni)xχ(ni, n(e), GW ) (4.2)

with χ(ni, n(e), GW ) =

 1 ni part of route from n(e) to GW

0 otherwise

Note that any calculations at the gateway node do not need to be factored in for

energy consumption.

In complex in-network processing, a source node n(e) consumes energy by fil-

tering the sensed event data for simple events and processing the matching events

for semantic annotation. Source nodes and other nodes en-route to the gateway
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additionally perform filtering of complex events, semantic annotation of complex

events and routing. Complex event detection may require several sensor nodes to

recognize an event; nodes that identify complex events are called rendezvous nodes.

There may be several rendezvous nodes identifying parts of complex events (r(e)

refers to the number of nodes for event e). The overall processing costs are:

CI
proc(E,F ) =

∑
e∈E

f∈F sim

Cfilter(e, f) +
∑

e∈Esim
F

Csemantic(e)

+
∑

e∈Ecom
F

f∈F com

Cfilter(e, f)xr(e) +
∑

e∈Ecom
F

Csemantic(e)

+
∑
ni∈N
e∈EF

Crlup(e, ni) ∗ χ̄(ni, n(e), GW ) (4.3)

with χ̄(ni, n(e), GW ) =


1 ni part of the context-dependent

route from n(e) to GW

0 otherwise

By comparing the above equations (4.2) and (4.3), we can see that:

CC
proc(E,F ) ≤ CI

proc(E,F ) (4.4)

Communication cost

In the centralized setup, all sensor nodes forward their matching simple events

e ∈ Esim
F to the gateway node according to their sampling frequency f(e) traversing

along a multi-hop network. Each hop within the network is assumed to incur a

base energy cost of Chop, which may vary for different WSNs. Complex events

are detected at the gateway node. Their contributing simple events need to be

communicated to the gateway. For a complex event ec, the set of all contributing
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simple events is denoted by Esim
F (ec).

CC
comm(E,F ) =

∑
ni∈N
e∈Esim

F

f(e) ∗ χ(ni, n(e), GW ) ∗ Chop

+
∑
ni∈N

ec∈Ecom
F

e∈Esim
F (ec)

(f(e, ni)× χ(ni, n(e), GW )) ∗ Chop (4.5)

Simple event detection in in-network processing is identical. For complex event

detection, let R be the set of all rendezvous nodes and S(nr, e
c) the set of all sensor

nodes that collaborate to form a complex event ec at node nr. Overall communication

costs are:

CI
comm(E,F ) = CI

comm(Esim
F ) + CI

comm(Ecom
F ) (4.6)

=
∑
ni∈N
e∈Esim

F

f(e) ∗ χ̄(ni, n(e), GW ) ∗ Chop

+
∑
nr∈R
ni∈N

ec∈Ecom
F

(
f(ec, nr)× χ̄(ni, nr, GW )

+
∑

nj∈S(nr,ec)

e∈Esim
F (ec)

(f(e, nj)× χ̄(nj, n(e), nr))
)
∗ Chop

For both centralized and in-network communication, the cost-reduction factor

caused by overlaps between simple events and events contributing to complex events

is omitted.

4.3.2 Tradeoff Analysis

This section analyses the conditions for in-network processing to be advantageous

for energy consumption, i.e., CI
wsn(E,F ) ≤ CC

wsn(E,F ). For this to be true, the
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following condition is required while using the above equations:

∑
e∈EF

Csemantic(e) +
∑

e∈Ecom
F

f∈F com

Cfilter(e, f) ∗ r(e)+

∑
ni∈∆N
e∈EF

Crlup(e, ni) ≤ CC
comm(E,F )− CI

comm(E,F ) (4.7)

with ∆N being the set of nodes that may additionally have to be traversed using

context-aware routing. Thus the condition states that the costs for semantic annota-

tion, complex filtering and routing-table lookup in additional nodes have to be less

than or equal to the improvements in communication cost.

Communication costs will decrease if the frequency of simple events contributing

to complex events is higher than that of the complex events. This has been argued in

[84, 87]. However, this depends on both the set of filter definitions F and the WSN

layout.

4.4 Limitations of the System Design

Three functional requirements are mentioned in Section 2.5 (i.e. in-network data

processing, semantic data integration and context-awareness) for an energy-efficient

WSN. For in-network data processing, the focus is on support for detection of

complex events within the WSN, throughout the research presented in this thesis. A

complex event is described as a combination of simple events that occur within a

specified period in Chapter 1. The authors in [87] classified the detection of events

into the following four main categories:

• Local instantaneous event detection,

• Local history-sensitive event detection,

• Distributed instantaneous event detection, and

• Distributed history-sensitive event detection.
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For this thesis, analysis of related work (see Chapter 3) mainly focused on dis-

tributed event detection in any aspect (i.e. instantaneous or history-sensitive) of

the event detection described above for an unbiased review of those approaches.

However, the design developed in this thesis addresses and focuses on instantaneous

event detection, both local and distributed, for the detection of simple and complex

events respectively. This is due the fact that history-sensitive event detection requires

the sensor nodes to store historical sensor data. Example of such events are when the

temperature has been above 20◦C for the last five minutes or when the temperature

has been above 20◦C for the last five minutes and dissolved oxygen has decreased by

0.5 mg/L in the same region [87]. Since, in our design, the facts are being regularly

updated (i.e. sensor events) as and when they arrive in the knowledge base of the

sensor nodes, detection of history-sensitive events cannot be performed. The decision

to limit the knowledge base is dictated by the sensor nodes’ limited storage and

the advantage is that only minimal amounts of information (facts) are stored at the

sensor nodes. However, the consequence of such an approach is that the detection of

events requiring historical context can not be performed at the sensor nodes.

4.5 Summary

This chapter contributes to answering the second research question identified in

Section 1.4.2, i.e., “How can complex event detection tasks be performed in a

resource constrained sensor node?” by proposing the conceptual design of such

a system. It builds on the recommendations discussed in Section 2.5, keeping in

view the design requirements mentioned in Section 4.1. The design fulfils the

recommendations by providing support for semantic annotation, in-network event

detection and context-awareness for communicating events for the detection of

complex events within a heterogeneous WSN. The design caters for the limited

storage capacity of the sensor nodes by using ontology fragments for semantic

annotation, a limited facts base for pattern-matching and efficient context-awareness

at the sensor nodes in the sensor network.
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This chapter also analyses the energy costs of complex event processing in het-

erogeneous WSNs. The costs of a centralized approach for complex events (simple

events are processed in the distributed WSN) were compared with the fully dis-

tributed approach of semantic context-aware in-network processing. This contributes

to answering the third research question, i.e., “how much energy benefit could be

gained by performing complex event detection tasks at the sensor node level?”

A trade-off between lower communication cost and higher processing cost due to

semantic annotation, context analysis for routing and processing of complex events

was identified. Any approach for context-based routing and semantic processing

of complex events need to be under the identified threshold for increased network

lifetime.

In the proposed architecture, by processing event data locally, the sensor nodes

will make decisions quickly and remotely without the need for instructions from

gateway nodes. This makes the proposed architecture particularly appropriate for

remote environments and situations in which a stable WSN cannot be guaranteed.

The following chapter introduces the implementation of all components (i.e., Re-

ceiver, Semantic Annotator, Knowledge Base, Rule Engine and Transmitter) of the

conceptual design.
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Chapter 5

Prototypical Implementation of SEPSen

The previous chapter described the conceptual design of a novel architecture for

semantic data integration in a heterogeneous sensor network. This chapter describes

SEPSen, a prototypical implementation of this architecture that focuses on in-network

data processing in a heterogeneous sensor network. Together Chapters 4 and 5

address the second research question, i.e., “how can complex event detection tasks

be performed in a resource-constrained sensor node?”

This chapter is structured as follows: Section 5.1 links SEPSen to the components

introduced in the previous chapter. Section 5.2 briefly describes the implementation

environment. Section 5.3 explains the ontology design for the implemented SEPSen

architecture. Sections 5.4, 5.5 and 5.6 discuss the annotation, event detection and

communication processes of the implementation. Section 5.7 discusses the lim-

itations of the implemented prototype and the chapter closes with a summary in

Section 5.8.

Early versions of parts of Sections 5.6 have been previously published in [46].

5.1 Focus of Implementation

This section explains how SEPSen fulfills the requirements discussed in the previous

chapter. The conceptual design of SEPSen consists of five components i.e. Receiver,

Semantic Annotator, Knowledge base, Rule engine and Transmitter. Figure 5.1
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Figure 5.1: SEPSen node architecture: visualization of the processes involved

repeats the visualization of these components according to the processes in which

they participate: annotation, event detection, and communication.

The annotator performs the annotation of the sensed data based on the provided

ontology fragments. Once the data has been semantically annotated, it is sent to

the filtering process. The annotated data and the rules from the Knowledge Base

component are gathered by the Rule Engine component and filtering is performed to

detect events of interest. Finally, the communication process ensures the transmission

and reception of the filtered events through the Transmitter and Receiver components

of SEPSen. Details of the implementation according to the processes involved is

provided later in this chapter.

5.2 Implementation Environment

We used Protégé 3.4.41 for designing the ontology and the OntoViz2 plugin for

visualization. The ontology was exported in N3 (i.e. Notation3) format3 to be used

in the sensor nodes for semantic annotation purposes. The complete core ontology

can be viewed in Appendix A.

1 http://protege.stanford.edu/
2 http://protegewiki.stanford.edu/wiki/OntoViz
3 http://www.w3.org/TeamSubmission/n3/
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The application is implemented in TinyOS [55]. TinyOS is an event-driven, open-

source operating system for wireless sensor networks. The application is simulated

in PowerTOSSIM [77], which is an extension of TOSSIM simulator [54].

5.3 Ontology as Knowledge Base

There are numerous available ontologies that can be used to model the sensor data.

Since building ontologies from scratch is a laborious process, a search for an existing

ontology that fully or nearly matched the knowledge-representation requirements of

the project was done to avoid unnecessary work. For this project, TWC-SWQP [88,

89] ontology was reused and extended as the basis for the core ontology for this

thesis, called the Water Quality Ontology (WQO), as shown in Figure 5.2.

TWC-SWQP provides a water core ontology and regulation ontology. The water

core ontology includes terms for relevant water pollution concepts such as Mea-

surementSite, ObservedProperty and PollutedWaterSource. The regulation ontology

models water quality regulations for various federal and state organizations such as

epa:MeasurementSite

epa:WaterMeasurementepa:ObservedProperty epa:MeasurementSite_1

wqo:PhysicalObject epa:WaterProperty epa:WaterMeasurement_1

wqo:WaterpHSensor

wqo:WaterpHwqo:Sensor

wqo:hasValue =           4.0

wqo:hasUnit =              pH

wqo:WaterpHSensor_21

wqo:hasID =                 21

wqo:WaterpH_1

wqo:observedBy =         wqo:WaterpHSensor_21

isa

isa isa

isa

epa:hasMeasurement*

epa:hasProperty*

wqo:observedBy*

epa:hasMeasurement

epa:hasProperty

wqo:observedBy

io

io

io

io

Figure 5.2: Fragment of WQO core ontology: black elements denote classes and subclasses,
blue elements refer to ObjectProperties i.e. relationships between classes, and
pink elements refer to instances of classes
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the New Zealand Environmental Protection Agency (EPA). It defines the pollutants

and their maximum containment levels, such as “any measurement has value 0.01

mg/L is the limit for Arsenic”. Together these ontologies are used to identify water

sources that are polluted due to violations of regulations.

This ontology was therefore extended to support regulatory standards of interest in

the present study. The TWC-SWQP water core ontology was not completely suitable

for the purposes of this project. Its shortcomings are twofold: (i) TWC-SWQP does

not model sensors, and (ii) TWC-SWQP uses OWL2 [39] classification inference

to support regulation features. The present study introduced sensor modelling, and

customised rules to support regulation features.

wqo:PhysicalObject

wqo:Sensor

wqo:AmmoniaSensor

wqo:ConductivitySensor

wqo:DissolvedOxygenSensor

wqo:TemperatureSensor

wqo:TotalNitrogenSensor

wqo:TotalPhosphorusSensor

wqo:TurbiditySensor

wqo:WaterpHSensor

wqo:WaterLevelSensor

wqo:PerticipationRateSensor

Figure 5.3: PhysicalObject Class

wqo:ObservedProperty

wqo:WaterProperty

wqo:SpecificConductance

wqo:DissolvedOxygen

wqo:Temperature

wqo:Nitrogen

wqo:Phosphorus

wqo:Turbidity

wqo:WaterpH

wqo:WaterLevel

Figure 5.4: ObservedProperty Class

To incorporate the modelling of sensors, the class PhysicalObject was intro-

duced (see overview of classes and subclasses in Figure 5.3). To represent different

types of sensors, the subclass Sensor was added to this class. The sensors class was

further categorised into subclasses for each sensor type, e.g. TemperatureSensor,

TurbiditySensor and WaterpHSensor. An object property ObservedBy was added to

indicate that sensors observe the WaterProperty, which in turn is an ObservedProp-

erty. Different water properties that sensors observe under the class WaterProperty

were also added (see overview of classes and subclasses in Figure 5.4). These include

Water Temperature, Turbidity, and WaterpH. With the introduction of these water

properties, links were possible with the specific sensors that make those observations,

such as WaterpH is observed by WaterpHSensor for instance.
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TWC-SWQP infers water pollution events using OWL2 inference. Based on

this study’s design pattern, this could not be done at the ontology level, due to the

involvement of the expressive OWL property restrictions in TWC-SWQP regulation

ontology which cannot be implemented on resource constrained devices such as

sensor nodes [7]. The custom rule is a suitable solution for expressing this rationale.

For example, the WQO rule “If WaterpH is less than 7.0, then water source is

polluted” may be expressed through the following rule:

epa:MeasurementSite(?p) & wqo:hasMeasurement(?p, ?q)

& epa:WaterMeasurement(?q) & wqo:hasProperty(?q, ?r)

& wqo:WaterpH(?r) & wqo:observedBy(?r, ?s)

& wqo:WaterpHSensor(?s) & epa:hasValue(?s, ?t)

& lessThan(?t, 7.0) -> epa:PollutedWaterSource(?p)

This rule checks each sensor observing WaterpH, to filter the sensor observations

that are less than 7.0. If the observations satisfying all these conditions are met, then

that water source is polluted. In the implementation for this thesis, fragments of this

ontology along with the custom rules are provided to the relevant sensor nodes for

event detection (more details in Section 5.5).

5.4 Annotation Process

The annotation process is implemented in the semantic annotator component of

the SEPSen node. The semantic annotation of sensor data in SEPSen is based on

the Resource Description Framework (RDF) data model. Information in RDF is

represented in triplets of subject-predicate-object statements [14]. Since the object

of one statement can be the subject of another statement, a set of statements forms a

graph, with subjects/objects as nodes and predicates as edges.

Figure 5.5 shows the corresponding graph of nodes (subjects/predicates) and edges

(predicates), and the RDF statement for the English language statement “WaterTem-

perature is observed by a TemperatureSensor”. All the nodes are labelled. Edges are

shown directed and labelled.
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is observed by

Water
Temperature

Temperature
Sensor

Figure 5.5: RDF Graph

OWL ontologies provide types for subjects/objects and predicates for the RDF

statements. The subject of an RDF triplet is an instance of one or more OWL classes.

The predicate of an RDF triplet is an instance of an OWL property. The object of a

triplet is either an instance of one or more OWL classes (where the predicate is an

object property) or a literal (where the predicate is a datatype property). Classes and

properties form inheritance hierarchies, since a class or property can be extended to

other classes or properties.

The semantic annotation is performed in two phases, explained in the following

sections.

5.4.1 Parsing Ontology into a Data Structure

Semantic annotation begins by parsing infused ontology into a data structure that

can be maintained in a sensor node. Tables 5.1, 5.2 and 5.3 show the data structure

for parsing the ontology into an RDF graph. Each class of the ontology is stored as

a graph node with its name as the class name. The node stores information about

which other classes it is linked with through the use of an edge. Each node also has

related instances that are populated as the sensors collect sample readings within the

environment. The edges represent the features of ObjectProperty and DataProperty

for the defined classes and their properties. The process links different classes and

subclasses as specified by the provided ontology.

5.4.2 Converting Sample Readings into RDF Statements

The second phase in semantic annotation converts the sample readings of the sensor

into RDF statements, thus creating instances of the ontology classes. However, the
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Table 5.1: Fields of the Nodes
Variable Description Defined for ontology concept
name node’s name class name
instances null / link to instances instances of this class
edges null / link to edges links the other classes
next node null / link to next nodes

Table 5.2: Fields of the Edges
Variable Description Defined for ontology concept
name edge’s name property name
parent link to parent class domain of the property
child link to child class range of the property
property type property description object property / data property
next node null / link to next egde

Table 5.3: Fields of the Instances
Variable Description Defined for ontology concept
number instance number auto-generated instance number
value instance value value of this instance
next_instance null / link to next instance

sensors need to have their characteristics defined. This is done manually by the

user. The sensor descriptions contain the metadata defining the sensor characteristics.

Sensor characteristics metadata are described for each sensor following a predefined

schema. Table 5.4 shows a description of the WaterpH sensor in SEPSen.

Table 5.4: Sensor Description in SEPSen
Characteristics Value
hasID 25
isa WaterpHSensor
hasUnit pH

Following the characteristics defined for the sensors, when a sensor senses the

environment, the raw sensor reading obtained is converted into RDF triplets (fields

as described in Table 5.5). The subject of each triplet corresponds to the instances of

parent classes, whereas the object of the triplet corresponds to the instances of the

child classes. The predicate in the triplet links the subjects to the predicates through

property instances defined in the edges.
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Table 5.5: Fields of Triples in SEPSen
Variable Description
id triple unique id
subject link to instances of parent of the edges
predicate link to edges name
object link to instances of child of the edges

Figure 5.6 shows an example of RDF encoding of observations made by the

WaterpH sensor during a given interval (note that epa and wqo correspond to the

prefixes for the epa and Water Quality ontology).

No. Subject Predicate Object

1 wqo:WaterpHSensor_21 is_a wqo:WaterpHSensor

2 wqo:WaterpHSensor_21 wqo:hasID “21”

3 wqo:WaterpHSensor_21 wqo:hasUnit “pH”

4 wqo:WaterpHSensor_21 wqo:hasValue “4.0”

n wqo:WaterpH_1 wqo:observedBy wqo:WaterpHSensor_21

Figure 5.6: Triples for water pH sensor data

These triplets of the instances of various classes are represented in N3 format. The

reason for using N3 format is its compactness compared to other formats. This saves

bandwidth during transmission between sensor nodes in the sensor network.

5.5 Event Detection Process

The event detection process is performed by the Rule Engine component of SEPSen

based on the facts and rules gathered from the Knowledge Base component. The

fact triplets obtained through the annotation process along with the user-specified

rules are part of the Knowledge Base (KB). In SEPSen, the rules are specified in a

SWRL-like language [40]. The syntax for specifying the rule in SEPSen is:

antecedent→ consequent
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The antecedent is the conjunction of conditions (c1...cn) and the consequent

consists of a single condition that is the conclusion of the rule. For example, a

rule asserting that the composition of WaterpH sensor values that exceed a certain

threshold imply the nutrient pollution condition would be written as:

wqo:WaterProperty(?p) & wqo:observedBy(?p, ?q)

& wqo:WaterpHSensor(?q) & epa:hasValue(?q, ?r)

& lessThan(?r, 7.0) -> wqo:NutrientPollution(?p)

The variables in the rule conditions are assigned by following the standard conven-

tion of prefixing them with a question mark (e.g., ?p as shown in the rule above) [40].

This assists in associating various conditions of the antecedent together for rule pro-

cessing. The implemented rule engine gathers these rules and forms a rule network

(i.e. Rete network). It evaluates the rules and triggers specific actions when the

conditions are met. Actions are not explicitly specified as discard, share or send, as

complete matches are always sent to the gateway without further processing (see

Section 5.5.2 for details). Partial matches are always shared amongst the sensor

nodes (see Section 5.5.2 for details) and non-matches are always discarded by the

sensor nodes.

The prototype of SEPSen in this thesis implements the Rete algorithm for the

pattern matcher component. The original Rete algorithm is well explained in [27].

The implemented Rete algorithm can be understood by dividing it into two major

steps: (i) constructing the Rete network and (ii) the matching process. The construc-

tion step is generally executed only once (except when the rules are updated). The

matching process is executed repeatedly as and when new sensor data is received or

updated.

5.5.1 Constructing a Rete Network

The construction of a Rete network is based on the patterns of the specified rules.

Following the patterns of the rule, three types of nodes are constructed for a Rete

network i.e. alpha nodes, beta nodes and rule nodes. Alpha nodes are one-input
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nodes that are created for each atomic condition occurring in the left-hand side of

each rule. Beta nodes are two-input nodes that correspond to the conjunction of

conditions in the left-hand side of each rule. Rule nodes are the terminal nodes

having one input and correspond to the right-hand side of each rule.

A node in Rete is a data structure with fields as described in Tables 5.6, 5.7 and

5.8 for alpha, beta and rule nodes respectively. All the fields of alpha, beta and

rule nodes are filled with values in the construction of the Rete network, with the

exception of the memory field. The memory field is empty after the construction

phase and is filled with values in the matching process (see Section 5.5.2 for details)

of the Rete algorithm.

Table 5.6: Fields of the alpha nodes
Variable Description
formula atomic formula in LHS of the rule
memory null / link to matching triples
children null / link to beta nodes

Table 5.7: Fields of the beta nodes
Variable Description
id beta node id
memory null / link to matching triples
child null / link to other beta or rule nodes

Table 5.8: Fields of the rule nodes
Variable Description
formula atomic formula in RHS of the rule
memory null / link to matching triples

To illustrate the construction phase of the rule engine, thermal pollution and

oxygen depletion are used as examples. Temperature varies naturally on a seasonal

basis; however, many activities (such as the use of water as a coolant by industrial

power plants) have the ability to change the temperature of bodies of water. This

causes an increase in the water temperature, thereby resulting in thermal pollution.

The elevated temperature mostly affects dissolved oxygen levels. With an increase
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A2: observedBy(?p, ?q)A1: WaterProperty(?p)

B:123

R1: ThermalPollution(?q)

A3: TemperatureSensor(?q)

B:12

A4: hasValue(?q, 25)

B:1234

Figure 5.7: Rete network construction for thermal pollution

in temperature, dissolved oxygen decreases and this greatly affects the ecological

balance [23].

To detect events of thermal pollution and oxygen depletion, the rules in the sensor

nodes measuring temperature and dissolved oxygen of water bodies are used. For

example, a rule for detection of thermal pollution in a temperature sensor node can

be expressed as4:

wqo:WaterProperty(?p) & wqo:observedBy(?p, ?q)

& wqo:TemperatureSensor(?q) & epa:hasValue(?q, 25)

-> wqo:ThermalPollution(?q)

Figure 5.7 shows the partial Rete network constructed for the thermal pollution

rule described above. Each condition pattern gets its own alpha node. The beta nodes

are linked together with child links and perform joins on the conditions of the alpha

nodes. The formula field of the alpha node links to the corresponding condition,

while the rule node has a link to the resultant action specified in the RHS of the rule.

The portion of the network in Figure 5.7 represented by the nodes A1, A2, A3

and A4 corresponds to the simple conditions in the structure of the rule body.

Similarly, the portion of the network represented by the nodes B12, B123, and B1234
4 While temperature above a certain threshold, such as a temperature of above 25◦ C, is used to

detect thermal pollution [23], a fixed value is used here for brevity and compactness.
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corresponds to the conjunction of these conditions. Finally, node T1 corresponds to

the right hand side of the rule.

Now, we consider a rule for detecting decreased levels of dissolved oxygen (DO)

in bodies of water due to elevated water temperature. This oxygen depletion rule

depends on the thermal pollution event generated by the temperature sensor node and

is detected in conjunction with decreased DO levels by the sensor node measuring

the DO of the water. It can be expressed in a rule as5:

wqo:WaterProperty(?p) & wqo:observedBy(?p, ?q)

& wqo:DissolvedOxygenSensor(?q) & epa:hasValue(?q, 7)

& wqo:ThermalPollution(?r) -> wqo:OxygenDepletion(?q)

Figure 5.8 shows the partial Rete network constructed for the oxygen depletion

rule described above. Note that the portion of the network in Figure 5.8 represented

by the alpha nodes also consists of the thermal pollution condition. The result of all

the conditions for reduced DO values are then merged with this condition at the beta

node B:12345, which outputs the results to the rule node T1.

5.5.2 The Matching Process

After the construction of the Rete network, triplets (i.e. facts) from the knowledge

base (KB) are inserted into the Rete network to perform matching of the facts against

the specified rules. The triplet is first sent to all the alpha nodes where the match

operation filters only those triplets that match the pattern associated with the alpha

nodes. Selected triplets from the alpha nodes are then forwarded down to the beta

nodes if they satisfy the conjunction condition of the beta nodes. This process is

repeated until it reaches the rule node. When the fact reaches the rule node, it has

passed the matching test for a rule body and represents an instantiation of the rule

head and its associated action.

The examples for the thermal pollution and oxygen depletion rules presented in

5 While dissolved oxygen (DO) below a certain threshold, such as DO below 7 mg/L, is used to
detect oxygen depletion [23]; a fixed value is provided here for brevity and compactness.
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A2: observedBy(?p, ?q)A1: WaterProperty(?p)

B:123

T1: OxygenDepletion(?q)

A3: DissolvedOxygenSensor(?q)

B:12

A4: hasValue(?q, 7)

B:1234

A5: ThermalPollution(?r) B:12345

Figure 5.8: Rete network construction for oxygen depletion

pages 72 and 73 respectively are revisited. The thermal pollution rule can be stated

in an IF-THEN expression as6:

Rule ThermalPollution :

IF

"p" IS A wqo:WaterProperty

AND "p" wqo:observedBy "q"

WHERE "q" IS A wqo:TemperatureSensor

AND "q" HAS VALUE "25" FOR epa:hasValue

THEN

"q" IS A wqo:ThermalPollution

Suppose that the temperature sensor node has the following 10 facts stored in its

KB.

Asserted Facts:

F1: wqo:P1 is_a wqo:WaterProperty

F2: wqo:P2 is_a wqo:WaterProperty

F2: wqo:P1 wqo:observedBy wqo:T1

F3: wqo:P1 wqo:observedBy wqo:T2

F4: wqo:P2 wqo:observedBy wqo:S1

F5: wqo:T1 is_a wqo:TemperatureSensor

F6: wqo:T2 is_a wqo:TemperatureSensor

F7: wqo:S1 is_a wqo:PhosphorusSensor

6 http://protegewiki.stanford.edu/wiki/Axiomé
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F8: wqo:T1 epa:hasValue "25"

F9: wqo:T2 epa:hasValue "18"

F10: wqo:S1 epa:hasValue "25"

An illustration of the matching process for the thermal pollution example is

provided in Figure 5.9. The facts that match the alpha node conditions are placed

in the respective alpha node memories. It can be seen from Figure 5.9 that the fact

F7 does not match the condition “where q is_a wqo:TemperatureSensor”, thus, it is

not stored in the memory of the alpha node checking for this condition. These facts

are then forwarded to the beta nodes where they are checked for the conjunction

conditions, and facts that satisfy its condition are then stored in the beta memory.

After the successful matching of all the conditions, a fact is passed to the rule node

which then activates the action part of the rule. In this scenario, the temperature

sensor node shares this event with the dissolved oxygen (DO) sensor node (see

Section 5.6 for communication details).

Recall the oxygen depletion scenario from Section 5.5.1 on page 73. The rule

states that an increase in the water temperature and a decrease in the dissolved

oxygen levels in the bodies of water constitute an oxygen depletion event. The

A2: observedBy(?p, ?q)A1: WaterProperty(?p)

B:123

R1: ThermalPollution(?q)

A3: TemperatureSensor(?q)

B:12

A4: hasValue(?q, 25)

B:1234

T1

P1
P2

P1
P1

T1
T2

P2 S1

T1
T2

T1
S1

25
25

P1
P1

T1
T2

P2 S1

P1
P1

T1
T2

T1 25

Figure 5.9: Rete matching process for thermal pollution
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specified rule for this event can be rephrased in an IF-THEN expression as7:

Rule OxygenDepletion:

IF

"p" IS A wqo:WaterProperty

AND "p" wqo:observedBy "q"

WHERE "q" IS A wqo:DissolvedOxygenSensor

AND "q" HAS VALUE "7" FOR epa:hasValue

AND IF

"r" IS A wqo:ThermalPollution

THEN

"q" IS A wqo:OxygenDepletion

Again, suppose that the DO sensor node has the following 13 facts stored in its

KB. Note that the DO sensor node has now also received the thermal pollution event

(represented as a fact) from the temperature sensor nodes.

Asserted Facts:

F1: wqo:P1 is_a wqo:WaterProperty

F2: wqo:P2 is_a wqo:WaterProperty

F2: wqo:P1 wqo:observedBy wqo:D1

F3: wqo:P1 wqo:observedBy wqo:D2

F4: wqo:P2 wqo:observedBy wqo:H1

F5: wqo:D1 is_a wqo:DissolvedOxygenSensor

F6: wqo:D2 is_a wqo:DissolvedOxygenSensor

F7: wqo:H1 is_a wqo:WaterpHSensor

F8: wqo:D1 epa:hasValue "7"

F9: wqo:D2 epa:hasValue "10"

F10: wqo:H1 epa:hasValue "7"

F11: wqo:T1 is_a wqo:TemperatureSensor

F12: wqo:T1 epa:hasValue "25"

F13: wqo:T1 is_a wqo:ThermalPollution

Figure 5.10 shows the matching process for the oxygen depletion event. The alpha

memories discard facts F7, F9, F11 and F12 as they do not match the alpha node

conditions. The remaining facts are further pruned at the beta nodes and only when

all the conditions are matched is a fact passed to the rule node. The rule node then

notifies the gateway node of this event (see Section 5.6 for communication details).

7 http://protegewiki.stanford.edu/wiki/Axiomé
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A2: observedBy(?p, ?q)A1: WaterProperty(?p)

B:123

T1: OxygenDepletion(?q)

A3: DissolvedOxygenSensor(?q)

B:12

A4: hasValue(?q, 7)

B:1234

A5: ThermalPollution(?r) B:12345
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Figure 5.10: Rete matching process for oxygenation

5.6 Communication Process

Communication of partial and complete results is done by the Transmitter and

Receiver component of SEPSen. The communication process is performed using

Publish/Subscribe (pub/sub) messaging systems [26]. Pub/Sub systems are well-

known examples of data-centric communication. The communication model of

pub/sub consists of three phases. Initially, the nodes in the network advertise

their characteristics or the kind of data that is produced by the sensor nodes (e.g.,

temperature and humidity). The advertised messages are then sent throughout the

network node in a multi-hop fashion. Next, the interested nodes in the network select

the desired phenomena to be monitored. These subscription messages are then sent

down to the relevant sensor nodes from which this kind of data is requested. After

receiving the subscription messages, sensor nodes publish matched events to the

subscriber nodes in the network. The generic publish/subscribe system thus can be

modelled in terms of these operations:

• Advertise operation: adv(e)

• Subscribe operation: sub(e)

• Publish operation: pub(d,e)
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Where ‘e’ represents an event topic that a particular sensor can produce and ‘d’

represents the actual data against the event topic subscription for the published events.

Similarly, different behaviours can be considered with respect to communication

models i.e. unicast (u) and broadcast (b). These are:

• u: sensor node sending its data directly to a destination sensor node, and

• b: sensor node sending its data to all the sensor nodes in the network.

The three publish/subscribe operations (i.e. advertisement,subscription, and publi-

cation) as used in this scenario are discussed in the following sections.

5.6.1 Advertisement

The advertisement operation is performed by every sensor node in the WSN to

announce the availability of a certain kind of data that this sensor node can produce.

In the present scenario, the sensor nodes’ advertisement is based on the sensor

description (see Section 5.4.2) referring to event types i.e. this sensor node can

provide events of type e. The advertised operation is performed before the actual

data is produced by the advertising sensor nodes to let other sensor nodes subscribe

to this sensor and hence its data. Thus, the advertise operation is mapped in the

following way:

advb: As the sensor nodes are unaware of any network topology at this stage, the

sensor nodes broadcast the advertisement to all the other sensor nodes in the WSN.

When subscribers initially connect to the WSN, they will not be aware of any prior

advertisements. The sensor nodes therefore perform this operation once at the start

of network setup and also whenever an advertisement message is received by other

sensors.

Figure 5.11 shows the advertisement process for sensor nodes A to F. Sensor nodes

receiving the advertisements will forward this adv message in the network until it

reaches the gateway node. The sensor nodes en route will also store information

from sensor nodes in their routing tables during the advertisement process.
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Figure 5.11: Example advertisement process

Figure 5.12 shows the advertisement message frame format. The message type

identifies the type of operation as advertisement, subscription or publication. Source

ID is the address of the sensor node from which this message is received. Originator

ID is the address of the originator of this message (note that initially source and

originator ID’s will be the same). Sequence No. is the packet unique ID that is used

to suppress redundant messages sent by a particular sensor node. Path Energy is

the energy of the path selected for packet transmission. Hop count is the number of

hops this packet has travelled and meta-data contains the sensor description of the

originator sensor node.

Message Type
Source ID
Orig. ID

Seq. Number
Path Energy
Hop Count
Meta data

Figure 5.12: Advertisement message frame format

Sensor nodes en route will update Source ID, path energy and hop count fields

when propagating the adv message in the network. Sensor nodes receiving the

advertisements will check whether they are interested in this sensor event. This sets

up the subscription process.

5.6.2 Subscription

Sensor nodes interested in a particular event will subscribe to this kind of event

data produced by other sensor nodes. The subscribe operation is performed in the
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following way:

subu: Since the sensor nodes develop a routing tree in the network during the

advertisement process, the subscription message is sent by subscriber sensor nodes

in a unicast manner directly towards the producer sensor nodes.

Figure 5.13 shows the subscription process for sensor node C. After receiving

the advertisements, the nodes will perform a match to check if they are interested

in the available data. This match is based on the rule patterns in the rule engine.

An interested sensor node then sends a subscription message to the source node to

notify it of the interest. The source node stores the subscription information in its

subscription table and notifies the interested nodes of events when they occur.

A

B

D

C

E

F

sub
sub

Figure 5.13: Example subscription process

Figure 5.14 shows the subscription message frame format. The message format is

similar to the advertisement message format except that the message type field will

contain subscription as a message type identifier. Source ID contains the subscriber

node’s address. Destination ID is the address of the advertiser sensor node, events of

which are being subscribed to. The next hop is the address of the neighbouring node

through which the subscription message is sent to the advertiser.

Message Type
Source ID
Dest. ID
Next Hop

Seq. Number
Path Energy
Hop Count
Meta data

Figure 5.14: Subscription message frame format
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5.6.3 Publication

The publish operation is used by a sensor to publish data, d, to all the subscribers

with meta-data, e. This operation is done in the following way:

pubu: the producer sensor nodes send the event data directly in a unicast manner

toward the subscribing sensor nodes in the WSN.

Figure 5.15 shows the publication process from sensor node A to C. The source

node notifies the interested destination node by sending a publication of the matched

events.

A

B

D

C

E

F

pub
pub

Figure 5.15: Example publication process

Figure 5.16 shows the publication message frame format. The message format

is similar to the subscription format except that here the actual data are sent. Here

the message type field contains the publication identifier, specifying the publication

of an event. Source ID is the address of the publisher. Destination ID contains

the subscribers’ addresses. The next hop is the chosen neighbour’s address for

forwarding the publication to the subscriber.

Message Type
Source ID
Dest. ID
Next Hop

Seq. Number
Path Energy
Hop Count

Data

Figure 5.16: Publication message frame format
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5.6.4 Energy-aware Routing

Sensor nodes are also provided with energy context-awareness for event routing.

This enables the sensor nodes to take the energy levels of different routes into

account when selecting energy-efficient paths for communication. The process of

path calculation and path recalculation for altering routes efficiently is described in

the following sections.

Path Calculation

Energy-aware path selection is performed by the destination sensor nodes during the

advertisement process. This process is performed in the following way:

1. At the originator node (No), initially the path energy (pe) field is set to zero.

i.e.

pe(No) = 0

2. Before forwarding a message to other nodes, the originator node adds its

residual energy (re(No)) to the path energy. Thus, the path energy becomes:

pe(No) = pe(No) + re(No)

3. On receiving a message from the originator, the receiving nodes (Nr) en route

to the gateway node then add their residual energies to the path energy received

from the neighbouring nodes (Nn). The nodes (Nr) calculate the mean energy

of this path and set the path energy for this node to reach the originator node

through a neighbouring node as:

pe(Nr, No, Nn) =
1

2
· (pe(Nn) + re(Nr))

Note that nodes (Nr) that are 1 hop away from the originator (i.e., direct neigh-

bors of the originator node) will calculate the path energy for the originator
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node (No) as:

pe(Nr, No, No) =
1

2
· (pe(No) + re(Nr))

4. Each node en route then selects the best neighbour (in terms of more residual

energy along the path) for communicating with the originator node. This is

done by calculating the best route (br) to the originator through one of its

neighbours. The selection of the best route through a particular neighbour is

based on the highest path energy along the route to the originator. In case of

a node having multiple neighbours (Nni
, Nnj

) having routes with the same

path energy to the originator, i.e. pe(Nr, No, Nni
) = pe(Nr, No, Nnj

), the

node selects the best route through a neighbour with the least number of hop

counts (hc). [Note that in the equation below pe(Nr, No, Nni
) is denoted vi

and pe(Nr, No, Nnj
) as vj in the condition part].

br(Nr, No, Nn) =

max (pe(Nr, No, Nni
), pe(Nr, No, Nnj

)) if vi 6= vj

min (hc(Nr, No, Nni
), hc(Nr, No, Nnj

)) if vi = vj

However, the 1-hop neighbours of the originator will always have the best route

value for the originator node as:

br(Nr, No, No) = pe(Nr, No, No)

5. In case of multiple routes to the originator (see step 4 of path calculation), the

node also stores the second best route value i.e. alternate route (ar) value for

the originator. This serves as a threshold for path recalculation to alter the

paths for balanced energy depletion and uniform network usage.

T (No) =

0 if no alternate route is available

ar(Nr, No, Nn) otherwise
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6. Each of the nodes en route then forwards this message to its neighbours (except

the one it received the message from) until it reaches the gateway node. The

message is forwarded only if the path energy received through the other node

is more than the existing path energy for that particular originator. Nodes that

are 1 hop away from the originator discard the advertisement messages of

originators from other nodes.

Once the path has been selected, the destination and originator sensor node will

use it for subscriptions and publications. However, this might deplete one segment of

the network’s node energy, therefore path recalculation will be used (see description

later in Section 5.6.4).

A small example is provided to illustrate initial path calculation. The small

example network is shown in Figure 5.17. Each step corresponds to one network

sketch.

(a) The first image shows the topology of a small example network with six nodes.

Each sensor node’s residual energy is indicated next to the individual nodes.

Node A is assumed to be the source and node F is the destination.
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Figure 5.17: Path calculation example
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(b) Node A broadcasts the advertisement message to all its neighbours. The path

energy is set to the originator node’s residual energy.

(c) Nodes receiving the advertisement message will further propagate it to their

neighbours with updated path energy. Nodes within one hop of the originator

will store the originator node’s information in their neighbour tables.

(d) Nodes receiving the advertisement will only re-broadcast the message if the

originator is not in their neighbour table or the calculated path energy is higher

than the existing path energy for that originator.

(e) Nodes receiving multiple advertisement messages for the same originator will

update the alternate route value. This value is used as a threshold to alter the

route for balanced energy depletion.

(f) Node F receives two advertisement messages about node A from nodes C and E.

It calculates the best and alternate routes (see further details in Section 5.6.4)

for node A in its forwarding table.

(g) Node F sends a subscription message using the neighbour with the best route

value. The path energy is updated for every sent packet. Node A, receiving the

subscription, will place Node F information in its subscription table.

(h) Node A sends the publication to Node F using the path information from its

forwarding table for Node F.

Path Recalculation

Once the path has been selected, the destination and originator sensor nodes will

use it for subscriptions and publications. However, this might deplete one segment

of the network’s node energy. To ensure graceful degradation and balanced energy

depletion, path recalculation is used. The path recalculation is based on the concept

that the sensor nodes know that there is an alternate route available that can be used
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(step 6 of the original routing process introduces above) for packet transmission.

This process is performed in the following way:

1. Each node will adjust the threshold value (T ) (i.e. alternate route value) for the

originator as obtained in Step 5 of path selection. That is:

T ′(No) = T (No) · α

Since the sensor nodes do not keep the complete information of alternate routes

in their routing tables (not feasible due to limited sensor storage), a weighting

factor α is added to normalize the threshold value to the initial calculations of

the alternate route. This is necessary as the nodes have no idea of any change

in the path energy that may have occurred on alternate routes once they select

the best route for a particular originator and use it for communicating with the

originator node. The value of α is predefined for all the alternate routes, where

0 ≤ α ≤ 1.

2. After normalizing the threshold value, the node monitors path energy received

from the events published by the originator to this node. Whenever the path

energy (pe) for a particular originator decreases below that of the normalized

threshold (T ′):

pe(Nr, No, Nn) < T ′(No),

the receiver node Nr modifies the best route value and threshold value for that

originator as:

br(Nr, No, Nn) = T ′(No) & T (No) = pe(Nr, No, Nn),

and sends a request for path recalculation.
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3. Path recalculation is performed by the receiver node (Nr) to notify the origina-

tor to use an alternate path, as the best route is no longer feasible for publishing

events. Thus, the receiver node sends a path recalculation message through all

the nodes in the path to the originator node. All the nodes involved in this recal-

culation process will follow the same path selection process discussed earlier.

That is, now the receiver node will broadcast a request through its neighbours

by following steps 1 and 2 of the path selection process. The neighbours en

route will send this request further by forwarding it to their neighbours until it

reaches the originator. All the nodes en route will perform steps 3, 4, 5 and 6

of the path selection process. The originator node (No) then selects the best

route and publishes events using the updated path.

4. The receiver node (Nr) then puts this newly obtained best route value in its best

route value for that originator. It then continues to repeat the path recalculation

steps to recalculate the routes whenever necessary.
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Figure 5.18: Path recalculation example
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The previous example is revisited and the recalculation steps are shown in Fig-

ure 5.18. Again, each of the following steps refers to one network sketch.

(a) The first figure shows the latest residual energies of the individual nodes. Again,

node A is the source and F is the destination.

(b) Node A sends the publication to Node F using the path information from

its forwarding table for Node F. Node F monitors the path energy from the

neighbour it receives the publication from.

(c) The path energy for Node A through neighbour Node C decreases below that of

the adjusted threshold for Node A (recall Figure 5.17f), thus Node F sends a

request for path recalculation.

(d) The request for path recalculation is performed in the same manner as the

original path calculation was performed.

(e) Node A receives two path energy values for Node F through Nodes B and D. It

calculates the best and alternate route for Node F in its forwarding table.

(f) Node B receives a better path energy value through Node D. It sets its new best

route through neighbour D and an alternate route through Node C to Node

F. Node B also forwards the updated best route value to C and A. Node C

discards the message as it is one hop away from the originator of the message

i.e. Node F.

(g) Node A updates the alternate route value for Node F in its forwarding table.

(h) Node A applies the original path selection process and uses the best neighbour

for sending the publication to node F. Node F then updates the best route value

for Node A in its forwarding table.
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5.7 Limitations of the Implemented Architecture

The semantic technologies used for annotation and transmission of events in SEPSen

are based on the standards suggested by the Semantic Web community. Representa-

tions produced by the Semantic Web community, such as Notation 3 (N3), Turtle,

and N-Triples, have good semantic expressive power and are easy to be interpreted.

This allows for easy adaptation as new networks can be added without requiring any

transformation of the existing knowledge representation.

We acknowledge that different binary data formats, such as ASN.1, might be

beneficial in terms of storage and processing [70]. However, they cannot be trans-

formed into any knowledge representation in a straightforward manner. Another

alternative would have been to compile down the ontology into an executable form

and distribute it in the sensor network. Since byte code is much smaller compared

to the compiled binary code, updates in the systems can be easily distributed. This

way, however, interpreted execution would be slower and some resources would be

always used by the virtual machine.

The prototypical implementation of SEPSen, however, has several limitations,

such as:

• Triplets in semantic webs generally use URIs to name things and their re-

lationships. However, due to space restrictions in each node, the present

implementation does not use full URIs but only prefixes in triplets. At the

gateway node, post-processing can be used to include the URIs for further

communication towards the end-user.

• Different variants of web ontology languages (OWL) provide different levels

of expressivity. A subset of OWL-Lite is implemented for the reasoner and

therefore it cannot fully utilize the expressivity of other more expressive OWL

variants such as OWL-DL and OWL-full.

• The SWRL rule language supports a range of built-in operations which greatly
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expand its expressive power (e.g., subtract, lessThanOrEqual), whereas the

current implementation only supports basic equality and inequality comparison

operators (i.e. greaterThan and lessThan).

• Since the focus of this thesis is to perform in-network data processing of

complex events in a heterogeneous WSN, automatic infusion of ontology

fragments into the sensor nodes was not performed. Rather, the ontology

fragments were manually infused into the sensor nodes and used for semantic

annotation and event detection purposes.

However, these limitations of the implemented prototype do not limit the overall

functionality and viability of the concept introduced in this thesis.

5.8 Summary

This chapter contributes further to answering the second research question identified

in Section 1.4.2, i.e., how can complex event detection be performed in a resource-

constrained sensor node? by introducing and implementing the conceptual design

described in the previous chapter.

This study focuses on the event detection of water pollutants in a river. Thus an

ontology, called Water Quality Ontology (WQO), was developed that relates to water

quality monitoring. The developed ontology extends an existing ontology called

TWC-SWQP by adding concepts for water quality parameters observed by the sensor

nodes.

The prototype implementation (SEPSen) divides the overall complex event detec-

tion into three processes, namely annotation, event detection and communication.

In the annotation process, the sensor data is semantically annotated to be provided

for event detection and communication of events. The semantic annotation of the

sensor data is based on the ontology fragments of WQO. The annotation of sensor

data allows the sensor nodes to collaborate with each other and perform detection of

events within the sensor network.
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Event detection using SEPSen is based on the rule engine that builds a pattern

network of the rules (water regulations) gathered from the knowledge base and

matches the facts (sensor data) against it. Facts that match the rules are then shared

or forwarded to the relevant sensor nodes or the gateway nodes respectively. This

communication is performed using the data and energy context-awareness of the

sensor nodes in the network.

This prototype implementation, however, uses limited SWRL constraints for

defining rules. Moreover, a subset of OWL-Lite features are used to reason over the

provided facts, and the triplets use only prefixes for names and their relationships.

However, these limitations do not hamper the functionality and viability of the

conceptual design for the purposes of the objective mentioned in Section 1.3. The

next chapter evaluates the performance of the implementation. The evaluation is

based on the simulation results in various scenarios.

91



Chapter 6

Performance Evaluation

The previous two chapters described the conceptual design and a prototypical imple-

mentation of the SEPSen architecture. The goal of this architecture, following the

objective of the thesis, is to perform complex event detection at the sensor node level

for energy benefits. To determine whether the architecture reaches this goal, it needs

to be evaluated.

The third research question in Section 1.4.3 asks about energy benefits obtained

by processing complex events at the sensor node level. This chapter contributes to

answering this question by evaluating the architecture based on how much energy is

consumed by different architectures, i.e., SEPSen versus a centralized architecture.

This chapter is structured as follows. Section 6.1 describes the simulation environ-

ment used for the evaluation of the architecture. Section 6.2 provides a comparison

of total energy consumption by different architectures. Section 6.3 evaluates the

overall network lifetime based on the energy distribution at the sensor nodes. Section

6.4 provides insight into the memory usage by various components of the sensor

node. Section 6.5 presents the implications, in terms of time consumption, for pro-

cessing events at the sensor node level. The chapter concludes with a summary in

Section 6.6.

Early parts of Sections 6.2 and 6.3 have been published previously in [47] and [46],

respectively.
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6.1 Simulation Environment

Simulations of the SEPSen prototype were done using PowerTOSSIM [77]. Pow-

erTOSSIM is based on the TinyOS [55] operating system and the TOSSIM [54]

simulation environment. The specified energy model for the simulations was based

on Mica2 sensor nodes.

The filters for simple events in the SEPSen architecture are based on water quality

guidelines mentioned in [11] and [24]. These guidelines provide a “trigger” value for

various water quality parameters (such as pH, DO and temperature) and thus these

triggers act as a filtering condition for the generation of simple events. The filters

for complex events are based on strong positive or negative correlations amongst

various water quality parameters mentioned in [1, 11, 23, 72]. Examples of such

events are oxygen depletion due to high temperature values and the ratio of total

nitrogen to total phosphorus for nutrient limitation conditions. In addition, the filters

for complex events are also based on multiple water quality parameters to determine

the primary and secondary symptoms of existing water conditions. An example of

this is the assessment of high chlorophyll a as a primary symptom and depleted

dissolved oxygen as a secondary symptom for determining eutrophic conditions in a

body of water [11].

Four sets of tests were performed, the results of which are reported in the fol-

lowing sections. The first two tests (i.e. Test 1 and Test 2), compared the new

architecture against a centralized approach (shown in Figure 6.1) and analyses the

energy consumption at the sensor nodes in each architecture and its effects on the

overall network lifetime. In the centralized approach, sensor nodes forward the raw

sensor data to the gateway nodes and all processing for simple and complex events

is performed at the gateway nodes. In contrast, in the new architecture (SEPSen),

sensor nodes process the sensor data at their own level. SEPSen is characterised

as operating within two modes i.e. simple and context-aware. In the simple mode

of SEPSen, sensor nodes annotate the sensed data and apply filters for detection
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Figure 6.1: Processing for centralized approach vs SEPSen

of simple events. The events of interest are then sent to the gateway nodes. This

mode does not, however, perform the detection of complex events and does not use

context-aware routing as sensor nodes only share events with a single destination i.e.

gateway nodes. The gateway nodes then perform the detection of complex events at

their level. In the context-aware mode of SEPSen, detection of simple and complex

events, with the help of context-aware routing, is performed at the sensor nodes and

only results are provided to the gateway nodes (explained earlier in Chapters 4 and 5).

The other two tests (i.e. Test 3 and Test 4) analysed only the memory usage and

processing time of the SEPSen architecture. This gave a measure of the limitations

of the implemented SEPSen prototype.

6.2 Test 1: Total Energy Consumption

The purpose of this test was to evaluate the total energy consumption for both the

centralized architecture and the SEPSen architecture in simple and context-aware

modes. These experiments show the total amount of energy consumed due to sensing,
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processing and communication by the sensor nodes in both the architectures and

also provide an extension to it by showing the amount of energy consumed in the

individual tasks of sensing, processing and communication by the sensor nodes in

these architectures. It also provides threshold analysis for the SEPSen architecture

by measuring the energy consumption for varying filtering ratios. These results

were then compared with the cost-analysis for in-network complex event processing

presented in Section 4.3, to provide proof of the assumptions made in the cost

analysis.

Table 6.1: Parameters for energy consumption experiment
Setting Value
No. of Nodes 25-200
Energy Model Mica2 [77]
Sample Period 1024 ms
Simulation Time 60 virtual seconds

Figure 6.2 shows the total energy consumption for varying numbers of sensor nodes

in various architectures according to the experiment settings shown in Table 6.1. It

can be seen from the Figure 6.2 that the centralized architecture consumed more

energy for all network sizes than either the simple or the context-aware modes of the

SEPSen architecture. This is because the sensor nodes send events to the gateway

node at regular intervals in the centralized architecture. The SEPSen architecture

in simple mode reduces transmission of unnecessary events by filtering the events

at the sensor node level. In addition, in the context-aware mode of the SEPSen

architecture, the sensor nodes were also able to process complex events, resulting in

better performance than others for all network sizes. In fact, energy conservation

of about 46% against centralized and 15% against the SEPSen simple mode was

observed in the context-aware mode of the SEPSen architecture.

An extension of Figure 6.2 is presented, analysing the energy consumed on dif-

ferent tasks (such as sensing, processing and communication) by the sensor nodes

in both the architectures. Figure 6.3 presents the amount of energy consumed by

95



Chapter 6 Performance Evaluation

25 50 75 100 125 150 175 200
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Nodes

T
o

ta
l 
E

n
e

rg
y
 C

o
n

s
u

m
p

ti
o

n
 (

m
J
)

Centralized

SEPSen (simple)

SEPSen (context−aware)

Figure 6.2: Total energy consumption for different approaches. Simulations were run for
60 virtual seconds with one message per second for an increasing number of
sensor nodes.

the sensor nodes for the sensing task. In both the architectures, the sensor nodes

sample their sensors at regular intervals for an equal amount of time, thus the energy

consumed in sampling events in both the architectures is the same1. This reiterates

the claim made on page 56 of Section 4.3.1 that the same amount of energy is spent

on sensing events for all architectures and therefore sensing does not play a major

role in the total energy consumption of the sensor nodes.

Figure 6.3 also presents the amount of energy consumed by the sensor nodes in

processing the events. It is evident that the amount of energy spent on processing

events is higher in the SEPSen architecture than the centralized architecture. As

events are being processed at the sensor node level, the sensor nodes have to perform

computations to detect events of interest before they are forwarded to the gateway

nodes. This results in higher processing energy consumption compared to the cen-

tralized architecture. The sensor nodes in the centralized architecture only perform

analog-to-digital (ADC) conversion of the sampled events and routing table lookup

1 Each sensor node is equipped with a single sensor to observe environmental phenomena such as
nitrogen, phosphorus and temperature.
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Figure 6.3: Energy consumption on different tasks at the sensor nodes for different ap-
proaches. Simulations were run for 60 virtual seconds with one message per
second over the 25-node topology.

for forwarding sample data to the gateway nodes. However, the energy spent on

processing tasks in the centralized architecture is not very much lower compared to

the SEPSen architecture, because the sensor nodes often have to process received

data through other sensor nodes to relay it in the sensor network until it reaches

the gateway nodes. This frequent communication increases the energy expended

on processing at the sensor nodes in the centralized architecture. It is also clear

that SEPSen in context-aware mode spent more energy on computation than did

SEPSen in simple mode. Again, this is attributed to the extra processing for detection

of complex events compared to simple events, and the routing table lookup for

communicating the events to the relevant sensor nodes in the sensor network. This

also validates the assumption in the cost-analysis of the processing cost shown in

Equation (4.4) in Section 4.3.1.

The next step is examination of the energy consumption at the sensor nodes

for the communication task. Figure 6.3 shows the radio energy consumption for

each simulated node in both the architectures. The sensor node in the centralized

architecture consumed nearly twice as much radio energy as the SEPSen architecture
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in both modes of operation. In both the SEPSen architecture modes, the number of

transmissions was greatly reduced, resulting in reduced radio energy consumption

at the sensor nodes. Since, in the context-aware mode of SEPSen, complex events

are reported by the sensor nodes, this further reduces the communication of events

and the energy spent on communication tasks. The cost analysis demonstrated a

threshold (see Equation (4.7) at Page 59), indicating that for in-network processing

to be advantageous for energy consumption, the costs for processing in additional

nodes have to be less than or equal to the improvements in communication cost. The

results shown in Figure 6.3 clearly show the improvement in communication costs

and thus an overall reduced energy consumption at the sensor nodes in the SEPSen

architecture.

In addition, Figure 6.4 evaluates the cost-benefit for in-network processing of

events. For this experiment, the sensor nodes in the SEPSen are modelled to filter

(by limiting the communication) a certain percentage of sampled and received events.

As it can be seen from the figure, no filtering at the sensor nodes in SEPSen would

incur higher energy consumption than the centralized architecture. This is because,

the sensor nodes in SEPSen, are functioning with a higher computation cost and

since communication is not restricted by filtering the events at the sensor nodes

thus it incurs high energy cost at the sensor nodes. The benefit of processing events

in-network appears when each of the sensor node filters around 7% of incoming

events. This provides as a threshold for the improvement in the communication cost

against the higher processing cost and resulted in better energy conservation at the

sensor nodes.

Experiments on energy consumption at the sensor nodes, as shown in Figure 6.2,

Figure 6.3 and Figure 6.4, clearly indicate that distributing the event detection tasks

to the sensor nodes, as is done in SEPSen’s complex mode, helps in conserving the

sensor nodes. The reduced energy consumption can be attributed to the reduced

radio energy consumption by the sensor nodes in the SEPSen architecture. Moreover,
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Figure 6.4: Energy consumption for different filtering ratios in SEPSen.

as the increase in energy consumption in processing the events is less than the energy

consumed on communication, energy benefits are obtained.

6.3 Test 2: Overall Network Lifetime

The purpose of this test was to evaluate the effects of routing between the sensor

nodes and gateway node on the sensor network lifetime. Network lifetimes are

compared for the centralized and SEPSen architectures. In addition to the frequency

of event generation, another important factor that affects network lifetime is the path

selection for routing sensor events to the gateway nodes. Since the sensor nodes rely

on the other nodes in the network to propagate their data to the gateway nodes, path

selection plays an important role in the distribution of communication load at the

sensor node level in the sensor network.

This experiment simulated a network of sensor nodes uniformly distributed in a

100m×100m area. The number of sensors in the network was fixed to 100 nodes

with one gateway node. The transmission range for all the sensors in the network was

set to 10 meters. Each sensor node had an initial energy of 10 Joules and the gateway

was located at (50, 50). The results shown in Figure 6.5 compare the network lifetime
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Table 6.2: Parameters for network lifetime experiment
Setting Value
No. of Nodes 100
Energy Model Mica2 [77]
Sample Period 1024 ms
Initial Energy 10 Joules
Network Topology 100m×100m area
Gateway Location (50,50)
Transmission Range 10m

of the SEPSen context-aware routing described in Section 5.6 to that of shortest-

path-first multi-hop (i.e. MIN-HOP) routing [3] provided in TinyOS. As described

in [25], the network lifetime can be described by the time the first sensor node fails

(in terms of remaining energy) or when a certain percentage of sensor nodes fail.

The following experiment compared the network lifetime of various architectures by

finding both when the first sensor node failed and also when a certain percentage i.e.

5% and 25% of the sensor nodes failed.

Figure 6.5 shows the network lifetime for the centralized and the SEPSen archi-

tecture in simple and context-aware modes. In the centralized architecture and the

simple mode of SEPSen (i.e. SEPSen(simple)), the MIN-HOP routing protocol was

used. For the SEPSen architecture in context-aware mode (i.e. SEPSen(context-

aware)), the context-aware routing mentioned in Section 5.6 was applied. It is

important to note that the sensor nodes in all the architectures initially use a broad-

cast mechanism to find routes to other sensor nodes and gateway nodes. The sensor

nodes then use this information for routing (in a unicast manner) the sensor events

to the gateway nodes. In the MIN-HOP routing protocol once the best route (i.e.

the shortest path) is found, the sensor nodes then use it for communication towards

the gateway nodes for the lifetime of the sensor nodes. Thus, no routes updates are

performed. In contrast, in the context-aware SEPSen, paths are updated based on

information on the alternate routes to other sensor nodes and the gateway nodes (see

path re-calculation in Section 5.6.4). This path re-calculation is based on a threshold
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Figure 6.5: Network lifetime for different approaches. Simulations were run until 1%, 5%
and 25% of sensor nodes fail over the 100-node topology.

value which is normalized according to the value of α. As explained earlier (see

Page 85) the value of α can be adjusted between 0 and 1.

As can be seen from the results shown in Figure 6.5, the value of α has a sig-

nificant effect on the network lifetime. Firstly, the two extreme cases of path re-

calculation and its effects on the sensor nodes energy and hence the network lifetime

are explained. The context-aware routing performs worse than the centralized and

SEPSen(simple) when α is set to 1. This is due to the fact that initially all the sensor

nodes have the same residual energies and since the threshold value for the alternate

route is almost same as the best route value, frequent path re-calculation requests

are sent by the sensor nodes. Similar results were obtained when path re-calculation

was performed based on α=0.75. This overshadows any advantage that is obtained

through filtering events at the sensor nodes.

Another case of poor performance of context-aware routing is when α is set to 0.

In this case, the sensor nodes will never update the paths and will use the initially

obtained best route for routing the sensed data to the sensor nodes and the gateway

nodes. As the initial route (i.e. best route) is selected based on the maximum available

energy along the path, the sensor data may have to traverse more hops to reach the
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destination. Thus, it performs worse than SEPSen(simple), which uses MIN-HOP

routing. The better performance in this case against the centralized architecture (also

using MIN-HOP routing) is only because of event filtering at the sensor nodes.

The network lifetime is considerably extended by using context-aware routing

when the value of α is between 0.25 and 0.75. When α is set to 0.25, it performs

better than the MIN-HOP routing used in the centralized and SEPSen(simple) ar-

chitecture. This is because of the route updates based on the path re-calculation

mechanism. However, since the path updates take place after a considerable delay, it

only marginally improves the network lifetime by altering the routes for balanced

energy depletion. The network lifetime is greatly increased when α is set to 0.50. In

fact, the network lifetime is extended by a factor of 2 for first sensor node failure

and a factor of 3 for 25% of sensor node failure through context-aware routing. This

provides a balanced approach, avoiding both too-frequent updating of the routes

and significant delays in updating. Experiments on the distribution of sensor nodes’

residual energies (shown in Figure 6.6) further highlighted this advantage.

Figure 6.6 shows the distribution of the sensor nodes’ remaining energy for all

the approaches. This is a qualitative metric, rather than quantitative one. This

metric measures how evenly the energy dissipation is distributed. The distribution

of energy consumption at the sensor nodes considerably affects the lifetime of the

overall sensor network (see Figure 6.5). In this test, since MIN-HOP routing was

used in both the centralized and SEPSen(simple) architecture, similar results were

obtained for network energy distribution (see Figure 6.6a). The differences in those

architectures have been highlighted earlier in Figure 6.5: in SEPSen (simple), events

are filtered, thus less energy is consumed at the sensor nodes and the network lifetime

is extended.

However, the distribution of energy is still variable for the sensor nodes and the

sensor nodes that are selected to route the events to the gateway nodes incur high

energy consumption. SEPSen context-aware routing, shown in Figure 6.6b, with no
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Figure 6.6: Distribution of sensor node energy consumption for (a) Centralized and SEPSen
(simple) using the MIN-HOP routing algorithm and (b to f) SEPSen (context-
aware) using the context-aware routing algorithm for α = 0.00, α = 0.25,
α = 0.50, α = 0.75, and α = 1.00 respectively.
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Figure 6.7: 2D analysis for min-hop algorithm
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Figure 6.8: 2D analysis for context-aware algorithm (α = 0)
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Figure 6.9: 2D analysis for context-aware algorithm (α = 0.25)
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Figure 6.10: 2D analysis for context-aware algorithm (α = 0.5)
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Figure 6.11: 2D analysis for context-aware algorithm (α = 0.75)
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Figure 6.12: 2D analysis for context-aware algorithm (α = 1)
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route updates (i.e. when α is set to 0), provides similar results as shown in Figure 6.6a

but at the cost of possibly higher hop counts to the destination. Also, the energy

distribution shown in Figure 6.6c shows a low energy balancing performance but

relatively better performance than the results shown in Figure 6.6b. Moreover, it

can be seen in Figure 6.6d, that the context-aware routing balances the routing load

very well. This benefits the overall network lifetime, as shown earlier in Figure 6.5.

However, Figures 6.6e to 6.6f show that while frequent path re-calculations improves

the distribution of energy depletion, it incurs high overhead at the sensor nodes and

thus reduces the network lifetime. This has been highlighted earlier in Figure 6.5.

Figures 6.7 – 6.12 show the quantitative analysis of the six 3D energy plots shown

in Figure 6.6. The plots are analysed based on the energy consumption at the sensor

nodes along the x-axis and y-axis of the underlying grid. Figure 6.7 shows the

average energy consumption along the x-axis and the y-axis for the Min-Hop routing

algorithm. It can be seen that the average energy consumption for Min-Hop routing

algorithm is 75.817. In addition, it also shows the average variance in the energy

consumption of the sensor nodes at different locations. It can be seen from the above

stated figures that the average variation in the energy consumption for Min-Hop

is relatively high at 7.992 and 9.5053 for x-axis and y-axis of the underlying grid,

respectively.

Our context-aware routing shows similar behaviour (see Figure 6.8) when alpha is

set to 0 as the variance of energy consumption amongst the sensor nodes along the

x-axis and y-axis is found to be at 10.009 and 8.131 respectively; but with a slightly

higher average energy consumption of 75.991. The context-aware routing shows

improvement in reducing the variance of energy consumption at the sensor nodes

when the alpha is set to values above 0.25. A gradual improvement is observed when

alpha is set to 0.25 (see Figure 6.9), where the variance for sensor nodes energy

consumption at x-axis and y-axis is 8.957 and 8.158, respectively. Similar results

were observed when alpha value is set to 0.5, as the variance along the axis and y-axis
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was found to be 10.213 and 6.483, respectively (see Figure 6.10). A considerable

improvement is observed when alpha is between 0.75 and 1, when the variance is as

low as 4.902 (see Figure 6.11) and 6.589 (see Figure 6.12). However, in such cases,

the sensor nodes consumed more energy due to frequent updates and this reflects

in the average energy consumption of 82.161 (see Figure 6.11) and 84.521 (see

Figure 6.12) for alpha values of 0.75 and 1 respectively.

Experiments on overall network lifetime (shown in the Figure 6.5) and distribution

of remaining sensor nodes energies (shown in Figures 6.6b to 6.6f) clearly show

that if path re-calculation is set properly, the context-aware routing approach can

distribute the network energy uniformly and this can result in an extended lifetime

for the network.

6.4 Test 3: Memory Usage

Sensor nodes have limited storage capacity. In fact, Mica2 sensor nodes have only

few kilobytes (i.e. 4 KiB) of working memory (i.e. data size) available to them. Thus,

the memory consumption for an application must be within the limits of available

data size.

In SEPSen, memory is consumed in storing the: i) ontology fragment concept that

is used for annotation of sensor data; ii) rules provided by the user for filtering the

sensed data and building pattern networks of matching rules against the sensor data;

iii) facts generated and shared by the sensor nodes; and iv) routing table entries in the

sensor nodes for communication purposes. In the memory usage test, the memory

usage of a single SEPSen node with different configuration parameters is analysed

as shown in Table 6.3.

Figure 6.13 shows the memory usage for a SEPSen sensor node with different

numbers of rules in it. The number of rules was increased from 5 to 25 for the

ontology fragment consisting of 10 classes, 7 properties and 50 triplets. The network

size was set to 50 nodes. It can be seen that the application can be run on a sensor
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Table 6.3: Parameters for memory usage experiments
Figure No. No. of Rules No. of Facts Network Size Ontology Size

6.13 — 50 50 10/7
6.14 5 — 50 10/7
6.15 5 50 — 10/7
6.16 5 50 50 —

node with varying numbers of conditions for up to 10 rules. However, as the number

of rules increases beyond 10, in most cases, all of the memory resource is consumed,

thus blocking other processes from being performed.

In the experiment whose results are shown in Figure 6.14, the memory usage was

analysed for varying numbers of facts (i.e. triplets) with the network configuration as

shown in Table 6.3. It was observed that the application can be run on a sensor node
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Figure 6.13: Memory usage for varying
number of rules with conjunction of 2, 3,
4 and 5 conditions.
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Figure 6.14: Memory usage for varying
number of facts.
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with varying numbers of facts until it reaches 150 facts per sensor node. Similarly,

the experiments on network sizes shown in Figure 6.15 provide the limitations of

sensor nodes for the number of entries stored in their routing tables. The nodes can

store routing entries for a network size of up 100. Any number of facts or routing

entries beyond these limits blocks the sensors’ operations.

Figure 6.16 shows memory usage for the different ontology sizes with the network

configuration as shown in Table 6.3. It can be seen that the application can be run

on a sensor node with varying numbers of classes and properties, up to 13 and 25

respectively. However, as the number of classes and properties increases beyond

13 and 25 respectively, all the memory resource is consumed, thus blocking other

processes from being performed.

The experiments on memory usage indicate that the rules and ontology fragments

consume major chunks of sensor nodes’ data memory. The rules require memory for

pattern network construction and matching of events to the rules: higher numbers of

rules cannot be supported by the sensor nodes. However, this is not a major limiting

factor for monitoring water quality parameters as the event filters mentioned in [11]

and [24] for the sensor nodes are well within the limits of the sensor nodes’ storage

requirements. The ontology fragments also consumed a major chunk of data memory,

due to the fact that sensor nodes require space for annotating and processing the

sensor data. This might be a limiting factor as some domain ontologies might not

provide enough flexibility in terms of fragmentation that could be kept in the sensor

nodes. However, for the work described in this thesis, the ontology fragments fit

well within the limits of sensor node storage.

The experiments also showed the limits on the number of facts the sensor node

can store and the network size that it can support. The facts in SEPSen are updated

as and when they arrive and old entries on the same sensor nodes are discarded. As

already noted, only a limited number of rules are supported by the sensor nodes, thus

only the facts related to those rule conditions are kept. This helps in keeping the
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number of facts within the limits of the sensor nodes. For support of large networks,

most real world deployments (such as SmartCoast [68] and GlacsWeb project [62])

also employ a limited number of sensor nodes to monitor the environment. Thus,

this limit on the network size is also reasonable for real-world deployments of the

sensor network.

6.5 Test 4: Latency

The latency tests aimed to analyse the time the new architecture took for various

activities such as ontology parsing, knowledge base loading and rule parsing for pat-

tern network construction. Since some applications have strict latency requirements

and are highly time critical, such as surveillance systems, it is necessary to know the

time required to process data locally at the sensor nodes. The experiment used three

different test scenarios with parameters set as shown in Table 6.4.

The results of the tests, shown in Figure 6.17 indicate that ontology parsing

consumes a minimal time compared to knowledge base loading and pattern network

construction for reasoning at the sensor nodes. It was observed that the reasoning

process is the most time intensive as it has to process the rules for creating a pattern

network to check the rules against the loaded knowledge base facts. It must be

also noted that all these activities are done once at start-up and later execution for

reasoning does not require ontology parsing or rule processing. However, any update

of the rules or the ontology fragments will require the same time limits for these

activities and thus, for later executions, they can induce latency in overall processing

events at the sensor nodes.

Table 6.4: Parameters for processing time tests
Test No. No. of Rules No. of Facts Ontology Size

1 3 25 9/5
2 5 50 9/5
3 7 50 10/7
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Figure 6.17: Ontology parsing, Knowledge Base loading and Overall reasoning time.

6.6 Summary

This chapter presented a performance analysis of the SEPSen architecture as com-

pared to traditional centralized architecture. The analysis was conducted to observe

the energy benefits of processing events at the sensor node level and also to highlight

the processing capabilities of the SEPSen architecture. It answers the third research

question of “how much energy benefit could be gained by performing complex event

detection tasks at the sensor node level?”

SEPSen works on a flat network architecture where it forms a multi-hop route

from each node to neighbouring nodes and the gateway. Each node performs periodic

estimations of the routing cost to its neighbours and attempts to select a neighbour

node that will maximize the probability of its messages reaching the gateway by se-

lecting energy-efficient paths. Each node samples its sensor and generates a message

once events are detected. Therefore, relay nodes will relay both the messages of their

neighbours as well as their own messages.

This topology has been used in several real-world deployments, such as [33, 91,

62]. The simulation results shown in this thesis were performed for varying number

of sensor nodes (network sizes) and hop counts. We selected realistic parameter

settings according to various real-world deployments with network sizes ranging
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from few sensor nodes (e.g., [91]) to few hundred sensor nodes (e.g., [33]). We

acknowledge that the radio range in most of the real-world applications (e.g.,[62, 15])

would be higher than the simulation radio parameters, the increase in the radio range

would result in higher transmission cost at the sensor nodes (see [32, 12]). However,

this would be same for both the centralized and the SEPSen architecture and therefore

does not invalidate the results.

Moreover, we performed our simulation tests on PowerTOSSIM. PowerTOSSIM is

demonstrated to accurately estimate the energy consumption of the simulated sensor

node, with an average error of just 4.7% compared to the actual sensor node. Some

of this difference between simulated energy and measured energy can be attributed

to voltage fluctuations, noise and rounding error in the experimental setup [77]. We

believe it therefore provides a good estimate of the overall energy consumption for

the actual deployment of the sensor network in an environment.

Four tests were performed. The first test established the energy benefits of our

architecture in terms of total energy consumption. It also measured the energy

consumption of sensing, processing and communication tasks at the sensor nodes.

The results confirmed that by distributing the processing tasks to the sensor nodes, as

is done in the SEPSen architecture, energy consumption can be significantly reduced

at the sensor nodes in a WSN. The threshold for effectiveness of SEPSen in terms of

energy benefits was also investigated under a controlled communication environment.

It was observed that the energy benefits in SEPSen can be achieved only if they filter

and limit the communication of events by 7% against the centralized architecture.

The second test measured the overall network lifetime for both centralized and

SEPSen architectures in terms of number of dead sensor nodes in the network. A

significant improvement in the overall network lifetime was observed in the SEPSen

architecture due to energy-aware routing, as compared to traditional shortest-path-

first multi-hop routing. However, in certain cases, the energy-aware routing in

SEPSen does not perform well. This is due to the high overhead produced by
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frequent path re-calculations at the sensor nodes.

The third test assessed the storage limitations of sensor nodes in the SEPSen

architecture. Analysis was conducted on storage requirements for storing rules, facts,

ontology concepts and routing table entries. The experiments performed in this test

presented different configuration setups that can be used in the SEPSen architecture

within the limited storage capacity of the sensor nodes. For the example application

of this thesis (i.e. water quality management), the presented storage consumption is

reasonable and well within the limits of the sensor nodes.

The fourth test calculated the amount of time required for various processing tasks

(i.e. ontology parsing, knowledge base loading and overall reasoning) in the SEPSen

architecture. The results show that overall reasoning produces considerable latency

as compared to ontology parsing and knowledge base loading. However, for most

of the environmental applications (such as water or air quality monitoring) this is

not an issue since data transmission rates can be delayed or reduced in order to

improve overall network lifetime. This might be a problem for applications (such as

surveillance) that require operations to be performed within strict latency bounds.

Overall, the findings from the experiments demonstrate that SEPSen achieves

its objective (see Section 1.3) of utilizing sensor nodes’ processing capabilities

for energy conservation in a heterogeneous WSN. The sensor nodes stored and

processed heterogeneous events within its limited storage capacity and reasonable

latency bounds for the example application area respectively. Moreover, the sensor

nodes filtered the events which resulted in the reduced energy consumption at the

sensor nodes. This reduction in the communication of unnecessary events along with

the context-aware routing prolonged the overall networks’ lifetime.

The next chapter concludes the research. It presents a summary of the thesis. The

contributions and limitations of the research work are discussed and future research

directions are suggested.
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Conclusions and Future Work

This thesis proposed a new method of processing heterogeneous sensor data within

WSNs. Its objective was to minimise the energy consumption of the severally

constrained sensor nodes. It explored the following central hypothesis (Section 1.3):

If the sensor nodes: i) semantically annotate the sensed data, ii) collab-

orate with the surrounding sensor nodes, and iii) perform filtering and

integration of events on the gathered knowledge, then they will be able to

detect complex events locally in heterogeneous sensor networks, thereby

resulting in reduced overall energy consumption of the WSN.

The research reported in this thesis confirms this hypothesis and shows that the

combination of the three factors of semantic annotation, context-awareness and filter-

ing of events at the sensor nodes reduces the energy consumption in heterogeneous

WSNs.

This chapter is structured as follows. Section 7.1 gives a summary of this thesis

and describes the steps that were undertaken to address the research objective and

to answer the research questions derived from the objective. Section 7.2 outlines

the contributions of this thesis. Section 7.3 discusses the limitations of the work

described in the thesis. Section 7.4 gives directions for future work and the chapter

concludes with a summary of the overall outcome of this research in Section 7.5.
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7.1 Summary

This thesis analysed research on the applications and constraints of wireless sensor

networks to derive requirements for the design of energy-efficient event processing

in a heterogeneous WSN (Chapter 2). The operation of WSNs in environmental

monitoring, surveillance and health care applications was surveyed. Since a motivat-

ing force for this thesis was water quality monitoring, the demands for successful

operation of a WSN for environmental applications were presented. The constraints

of WSNs with respect to those application demands were highlighted, along with

a description of the existing techniques for mitigating those constraints in WSNs.

Three major requirements were defined that are crucial to energy-efficient event

processing in a heterogeneous sensor network: semantic annotation, filtering and

context-aware sharing of events at the sensor nodes.

Analysis of approaches addressing these three requirements in related areas re-

vealed the strengths of such approaches that could be built upon, as well as short-

comings that needed to be avoided (Chapter 3). Three main research areas were

covered in the analysis i.e. in-network data processing, semantic data integration

and context-aware sensor networks. A gap was identified in the combination of

these aspects, as none of the approaches met all of the requirements for annotation,

filtering and context-aware communication of events at the sensor node level.

A new conceptual design was proposed for energy-efficient event processing

in a heterogeneous wireless sensor network that takes all these requirements into

account (Chapter 4). It bridges the gap identified in existing approaches and in-

corporates all the aspects (i.e. semantic annotation, filtering and context-aware

communication) needed for event detection at the sensor node level. The design

for the sensor node architecture (i.e. SEPSen node) consists of five components:

receiver, semantic annotator, knowledge base, rule engine and transmitter. The

receiver component is designed to collect sensed or incoming data from the sensor

nodes. The sensed data is then provided to the semantic annotator component for
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annotation of the raw sensed data. The annotation is based on the ontology fragments

available to the sensor nodes. The annotated data from the sensor nodes (either

sensed or received through other nodes) along with the specified rules, are placed

into the knowledge base component of the SEPSen node. The rule engine gathers the

annotated data (facts) from the knowledge base and performs matching of these facts

against the specified rules. Whenever the facts match the criteria of the specified

rule, they are shared with other sensor nodes or forwarded to the gateway nodes by

the transmitter component of the SEPSen node. The design fulfils the recommenda-

tions by providing support for semantic annotation, in-network event detection and

context-awareness for communicating at the sensor nodes within a heterogeneous

WSN.

The SEPSen architecture was implemented to achieve energy-efficient event pro-

cessing in a WSN (Chapter 5). All three requirements of semantic annotation,

filtering and context-aware sharing were dealt with in the implementation. An exist-

ing ontology (TWC-SWQP [88, 89]) was extended to be used in the sensor nodes

for annotation and processing of the sensor data. The prototype implementation (i.e.

SEPSen) divides the overall energy-efficient event detection into three processes:

annotation, event detection and communication. During the annotation process, the

sensed data is converted into RDF triplets (i.e. facts). These facts and rules from

the knowledge base component are then processed for event detection by a pattern-

matcher which filters the events at the sensor node level. The pattern-matching is

performed by first constructing a network of patterns based on the specified rules.

Facts are then matched to the patterns and when a match is found, it is shared with

other sensor nodes or forwarded to the gateway nodes. The sharing of events is per-

formed by using context-aware communication. The context-aware communication

in SEPSen is based on both the data and the energy context. It enables sharing of

the sensor nodes’ knowledge bases for collaboration in an energy-efficient manner.

The SEPSen implementation provides efficient filtering at the sensor node level and

effective routing using data and energy-related context information.
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The implementation of the SEPSen architecture was evaluated by performing

various experiments in a simulation environment (Chapter 6). The experiments

evaluated SEPSen’s effectiveness in terms of energy consumption at the sensor

node level and also its effects on the overall network lifetime. The results from the

experiments clearly indicate that distributing the event detection task to the sensor

nodes helps in conserving the sensor nodes’ energy. The network lifetime was also

considerably extended through context-aware routing when optimized properly. The

evaluation also tested adverse cases for cost-benefit threshold analysis of the SEPSen,

and discussed restrictions of the SEPSen system in terms of memory usage and

latency introduced due to processing events at the sensor nodes.

7.2 Contributions

This section summarizes the contributions made by this thesis to the research area of

in-network event processing in heterogeneous sensor networks.

Requirements for energy efficient event processing in heterogeneous WSN.

The literature review of the research into the applications of the wireless sensor

network (WSN) and its constraints contributed a thorough understanding and

clear definition of the problems faced in environmental applications of WSNs.

This is important because approaches to related problems in the past have ne-

glected this perspective. The review yielded three requirements (i.e. semantic

annotation, filtering at the sensor nodes, and context-aware communication) for

the design of energy-efficient heterogeneous WSN. These requirements clarify

the choices to be made when designing a WSN and are helpful in conserving

sensor nodes’ energy.

Synthesis of work in related domains. The analysis of existing approaches en-

ables future research in the area of event processing in heterogeneous WSN

to build on the strengths and avoid the shortcomings of existing work. The
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approaches selected for analysis are either designed for homogeneous WSNs or

perform processing tasks at the powerful gateway nodes. No existing approach

combines energy and adaptation in routing with processing at the sensor nodes.

Most approaches thus suffer from a narrow focus on the technical issues.

Conceptual design for an energy efficient event processing in heterogeneous

WSN. The conceptual design of an architecture that supports event processing

at the sensor node level for energy efficiency in sensor networks applied the

understanding of the problem and the analysis of the related work in a new

solution. The design integrated techniques such as semantic annotation, rule-

based filtration and context-awareness at the sensor nodes to enable processing

of sensor events at their own level. A version of this has been presented earlier

in [46] and [47].

Prototype implementation of the design. The implementation of the conceptual

design, SEPSen, further clarified the design by providing a realisation of

the selected aspects of annotation, event processing and communication. To

annotate the sensed data, an existing ontology was extended and used in the

sensor nodes. This enabled the sensor nodes to annotate the sensed readings

to be used for event detection in heterogeneous sensor networks. For event

processing, a well-known pattern matching algorithm, Rete, was adapted to

filter and match the interests of subscribers to that of the publishers. The

context-aware communication was introduced to efficiently disseminate the

events between the sensor nodes. This enabled the sensor network to uniformly

distribute the energy consumption among the sensor nodes. A version of this

has been presented earlier in [46].

Theoretical cost analysis of the architecture. The cost model for complex event

processing in a heterogeneous sensor network described in this thesis shows

how to evaluate a WSN designed for in-network processing of heterogeneous
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events. It provides a threshold of circumstances under which the processing

of events at the sensor level is beneficial for energy conservation in the sensor

networks. This cost model can be used in evaluation of other approaches

targeting in-network processing in heterogeneous WSNs. A version of this has

been presented earlier in [48].

Simulation-based analysis of the architecture. Experiments on the simulation-

based environment of the architecture evaluated the performance and effec-

tiveness of the design and implementation of the SEPSen. The experiments

showed that the SEPSen approach performs significantly better in terms of

energy benefits in WSNs than the traditional approaches. They also showed

the limits of the architecture in the form of memory and latency bounds. The

findings from the analysis can be used as a guidance and reference for the

future experimental work.

7.3 Limitations

This section discusses the choices made in the direction of research presented in this

thesis that led to a number of limitations.

Design Choices. The design choices were mainly determined by the sensor nodes’

limited storage capacity. The design focused on support for detection of events

in an instantaneous manner. This is due to the fact that history-sensitive

event detection requires sensor nodes to provide extra storage for the detection

of historical events. This design therefore limited the application user to

monitoring events without taking into account the temporal aspects of the

monitored events.

Implementation Choices. The implementation of SEPSen includes support for

semantic annotation, rule processing and context-aware communication. Of

these factors, semantic annotation was found to be effective, but open questions
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remain regarding the automatic infusion of ontology fragments into the sensor

nodes. Rule processing was found to be most effective in conserving the sensor

nodes’ energy by limiting the communication of irrelevant events and detecting

both simple and complex events at the sensor node level in a heterogeneous

sensor network, but more expressiveness in rules and event processing is

desirable. Sharing the knowledge using context-aware routing was found to

be effective in prolonging the network lifetime, however, in certain situations

the mechanism for fair distribution of energy depletion incurs high energy

overheads and thus it decreases the network lifetime.

Evaluation Choices. Implementation of the SEPSen prototype was done on an

extension of the TOSSIM simulator, called PowerTOSSIM. It is designed to

emulate the behaviour of applications based on the TinyOS operating sys-

tem. Thus sensor nodes based on the MICA-family are the only sensor node

platforms that it can simulate. Moreover, as the architecture is evaluated in

a simulation-based environment in perfect conditions, many real-world de-

ployment issues such as degradation in performance of the sensor nodes and

anomalous sensor data are not considered.

7.4 Future Work

There are a number of promising points that could be pursued to address the limita-

tions and extend this work further. This section describes the directions in which this

research can be extended.

Support for history-sensitive event detection. An important aspect of this work

that needs further investigation is the expansion of the SEPSen architecture to

accommodate history-sensitive event detection both locally and in a distributed

manner. While the lightweight approach demonstrates the general feasibility

of event detection in an instantaneous manner, many applications require
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support for history-sensitive event detection. The challenge in supporting

history-sensitive events is the allocation of additional memory for data samples

involved in the recognition of events. Such an extension would therefore

require a support for managing limited memory resources of the sensor nodes.

Automatic Ontology Infusion and Rule update. The current implementation of

the architecture assumes that the ontology fragments have been infused into

each sensor node that can be used for annotating sensor data. Future work could

focus on the automatic infusion of ontology fragments into the sensor nodes

for classifying events. Also, since SEPSen does not support automatic rule

changing during run-time, future work could examine the implementation of a

small scale rule adaptation at run-time for the sensor devices. The associated

challenges with remote automatic updates are the management of increased

latency and energy consumption at the sensor nodes.

Improvement in reasoning capabilities. While the prototype implementation of

SEPSen provides the capability to detect events at the sensor nodes, there

is an opportunity to provide support for more comparison operators in order

to increase the expressive power of the reasoner. This may not provide any

significant contribution to the design and implementation of the architecture,

but such an extension is likely to have an impact on the performance and

effectiveness of the architecture.

Improvement in energy-aware routing. The energy-aware routing in SEPSen

provides the capability to alter routes based on the energy awareness, at the

sensor nodes, of different routes. However, the performance evaluation showed

that in certain cases, it performed worse than the traditional shortest-path-

first multi-hop (MIN-HOP) routing. This performance degradation is mainly

attributed to the path re-calculation process. Future work could aim to in-

corporate more advanced means of path re-calculation in order to assess the
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energy state of the sensor nodes and make necessary amendments in the path

re-calculation process.

Other application domains. The experiments suggest that this approach is on the

right track, however, the results are specific to one domain i.e. water quality

management. Further work could be conducted in other domains (such as

monitoring air pollution or rain-forests) to determine the actual capability of

the system in different scenarios and conditions. Such an extension would

require domain specific ontologies and rules for filtering events at the sensor

node level in a heterogeneous WSN.

7.5 Final Words

The key contribution of this research in the area of WSNs is to detect heterogeneous

sensor events at the sensor node level. An architecture was introduced to provide

support for semantic annotation, filtering and context-aware communication at the

sensor node level. The sensed data is annotated, filtered and communicated in a

context-aware manner to detect events of interest at the sensor nodes. This results in

energy benefits at the sensor nodes and prolonged network lifetime.

This work is an initial step towards the realization of processing event at the sensor

nodes for energy benefits. A number of steps for extending this work have been

suggested.
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Water Quality Ontology

This appendix list the Water Quality Ontology (WQO) that is referred to in the

SEPSen design and implementation. The ontology defines vocabulary to specify

water pollutants and sensor observations related to the water quality monitoring. All

OWL and RDF is presented in Notation 3 format1.

@prefix body: <http://sweet.jpl.nasa.gov/2.1/realmHydroBody.owl#> .

@prefix chem: <http://sweet.jpl.nasa.gov/2.1/matr.owl#> .

@prefix comp: <http://sweet.jpl.nasa.gov/2.1/matrCompound.owl#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix elem: <http://sweet.jpl.nasa.gov/2.1/matrElement.owl#> .

@prefix epa: <http://tw2.tw.rpi.edu/zhengj3/owl/epa.owl#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix wqo: <http://www.co-ode.org/ontologies/wqo.owl#> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

@prefix pmlp: <http://inferenceweb.stanford.edu/2006/06/pml-

provenance.owl#> .

@prefix protege: <http://protege.stanford.edu/plugins/owl/protege#> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix repr: <http://sweet.jpl.nasa.gov/2.1/repr.owl#> .

@prefix ssn: <http://purl.oclc.org/NET/ssnx/ssn#> .

@prefix time: <http://www.w3.org/2006/time#> .

1 http://www.w3.org/TeamSubmission/n3/
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@prefix xml: <http://www.w3.org/XML/1998/namespace> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

@prefix xsp: <http://www.owl-ontologies.com/2005/08/07/xsp.owl#> .

<http://www.co-ode.org/ontologies/wqo.owl#> a owl:Ontology ;

rdfs:comment "Proposed upper ontology for WQO"^^xsd:string ;

body:BodyOfWater a owl:Class ;

rdfs:subClassOf wqo:SpaceTimeRegion .

geo:Site a owl:Class ;

rdfs:comment "Potential uses of a particular site"^^xsd:string ;

rdfs:subClassOf wqo:SpaceTimeRegion .

epa:WaterMeasurementSite a owl:Class ;

rdfs:comment "A site where water quality was measured."

^^xsd:string ;

rdfs:subClassOf [ a owl:Restriction ;

owl:allValuesFrom epa:WaterMeasurement ;

owl:onProperty epa:hasMeasurement ],

body:BodyOfWater,

geo:Site .

epa:hasMeasurement a owl:ObjectProperty ;

rdfs:comment "Links an object to a measurement taken of it."

^^xsd:string ;

rdfs:domain epa:WaterMeasurementSite ;

rdfs:range epa:WaterMeasurement .

epa:WaterMeasurement a owl:Class ;

rdfs:comment "A measurement about a water sample."^^xsd:string ;

rdfs:subClassOf repr:Measurement .

wqo:Water_Contaminant a owl:Class ;

rdfs:comment "A situation in which hazardous materials pollute a

source of water."^^xsd:string ;

rdfs:subClassOf wqo:AbstractObject .

wqo:WaterProperty a owl:Class ;

rdfs:comment "An observable property in the body of water."
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^^xsd:string ;

rdfs:subClassOf wqo:ObservedProperty ;

owl:equivalentClass [ a owl:Restriction ;

owl:onProperty epa:hasMeasurement ;

owl:someValuesFrom epa:WaterMeasurement ] .

epa:PollutedWaterSource a owl:Class ;

rdfs:comment "A facility that has violated regulatory requirements

on pollution"^^xsd:string ;

rdfs:subClassOf epa:PollutedThing,

geo:Site ;

owl:equivalentClass [ a owl:Class ;

owl:intersectionOf ( [ a owl:Restriction ;

owl:onProperty wqo:hasProperty ;

owl:someValuesFrom wqo:WaterProperty ]

body:BodyOfWater ) ] .

epa:ExceededThreshold a owl:Class ;

rdfs:subClassOf repr:Measurement .

epa:Threshold a owl:Class ;

rdfs:subClassOf epa:HealthEffect .

epa:hasSite a owl:ObjectProperty ;

rdfs:comment "Links a site to potential uses for it."^^xsd:string

;

rdfs:range epa:WaterMeasurementSite .

epa:hasSymptom a owl:ObjectProperty ;

rdfs:domain epa:HealthEffect ;

rdfs:range epa:Symptom .

epa:hasUnit a owl:DatatypeProperty ;

rdfs:domain ssn:Sensor .

epa:hasValue a owl:DatatypeProperty,

owl:FunctionalProperty ;

rdfs:domain ssn:Sensor .

xsd:nonNegativeInteger a rdfs:Datatype .
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time:Interval a owl:Class ;

rdfs:subClassOf repr:Measurement .

wqo:ObservedBy a owl:ObjectProperty ;

rdfs:comment "Links Sensor to a Property that the sensor can

observe."^^xsd:string ;

rdfs:domain wqo:WaterProperty ;

rdfs:range ssn:Sensor .

wqo:ObservedProperty a owl:Class ;

rdfs:comment "ObservedProperty is a process in which a Sensor has

been used to estimate or calculate a value of a property."

^^xsd:string ;

rdfs:subClassOf [ a owl:Restriction ;

owl:onProperty wqo:ObservedBy ;

owl:someValuesFrom wqo:PhysicalObject ],

owl:Thing .

wqo:hasProperty a owl:ObjectProperty ;

rdfs:comment "Links a measurement to the characteristic measured."

^^xsd:string ;

rdfs:domain epa:WaterMeasurement ;

rdfs:range wqo:WaterProperty .

epa:PollutedThing a owl:Class ;

rdfs:comment "The set of all things that are polluted."

^^xsd:string ;

rdfs:subClassOf wqo:SpaceTimeRegion .

epa:Symptom a owl:Class ;

rdfs:subClassOf epa:HealthEffect .

owl:Thing a owl:Class .

wqo:PhysicalObject a owl:Class .

wqo:AbstractObject a owl:Class .

wqo:SpaceTimeRegion a owl:Class .
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repr:Measurement a owl:Class ;

rdfs:comment "Measurement class is imported from SWEET 2.1"

^^xsd:string ;

rdfs:subClassOf wqo:AbstractObject .

epa:HealthEffect a owl:Class ;

rdfs:subClassOf wqo:AbstractObject .

ssn:Sensor a owl:Class ;

rdfs:comment "Sensors are the physical devices that observe some

Property."^^xsd:string ;

rdfs:subClassOf wqo:PhysicalObject .

wqo:Acidification a owl:Class ;

rdfs:subClassOf wqo:Water_Contaminant .

wqo:AlkalinitySensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:Ammonia a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:AmmoniaSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:Nitrate a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:NitrateSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:BODSensor a owl:Class ;

rdfs:comment "Biochemical Oxygen Demand Sensor"^^xsd:string ;

rdfs:subClassOf ssn:Sensor .

wqo:BiochemicalOxygenDemand a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .
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wqo:Chlorine a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:ChlorineSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:ChlorophyllSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:Chlorophyll_a a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:ConductivitySensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:Depleted_DO a owl:Class ;

rdfs:subClassOf wqo:Water_Contaminant .

wqo:DissolvedOxygen a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:DissolvedOxygenSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:Eutrophic_Condition a owl:Class ;

rdfs:comment "moderate-to-highly productive waters are called

eutrophic"^^xsd:string ;

rdfs:subClassOf wqo:Water_Contaminant .

wqo:Fluoride a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:FluorideSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:Nitrogen a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:Nutrient_Condition a owl:Class ;
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rdfs:subClassOf wqo:Water_Contaminant .

wqo:Oligotrophic_Condition a owl:Class ;

rdfs:comment "waterbodies with low productivity are called

oligotrophic"^^xsd:string ;

rdfs:subClassOf wqo:Water_Contaminant .

wqo:Pathogens a owl:Class ;

rdfs:subClassOf wqo:Water_Contaminant .

wqo:Phosphorus a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:Poor_optical a owl:Class ;

rdfs:comment "Species composition/ abundance"^^xsd:string ;

rdfs:subClassOf wqo:Water_Contaminant .

wqo:PrecipitationRate a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:PrecipitationSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:RHSensor a owl:Class ;

rdfs:comment "Relative Humidity Sensor"^^xsd:string ;

rdfs:subClassOf ssn:Sensor .

wqo:RelativeHumidity a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:Salinity a owl:Class ;

rdfs:subClassOf wqo:Water_Contaminant .

wqo:SpecificConductance a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:TDSSensor a owl:Class ;

rdfs:comment "Total dissolved solids (TDS) Sensor"^^xsd:string ;

rdfs:subClassOf ssn:Sensor .
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wqo:TSSSensor a owl:Class ;

rdfs:comment "Total suspended solids (TSS) Sensor"^^xsd:string ;

rdfs:subClassOf ssn:Sensor .

wqo:TemperatureSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:Thermal_Pollution a owl:Class ;

rdfs:subClassOf wqo:Water_Contaminant .

wqo:TotalAlkalinity a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:TotalDissolvedSolids a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:TotalNitrogenSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:TotalPhosphorusSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:TotalSuspendedSolids a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:ToxicContaminants a owl:Class ;

rdfs:subClassOf wqo:Water_Contaminant .

wqo:Turbidity a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:TurbiditySensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:WaterLevel a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:WaterLevelSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .
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wqo:WaterTemperature a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:WaterpH a owl:Class ;

rdfs:subClassOf wqo:WaterProperty .

wqo:WaterpHSensor a owl:Class ;

rdfs:subClassOf ssn:Sensor .

wqo:hasID a owl:DatatypeProperty ;

rdfs:domain ssn:Sensor ;

rdfs:range xsd:int .

wqo:hasLatitude a owl:DatatypeProperty ;

rdfs:domain geo:Site .

wqo:hasLocation a owl:DatatypeProperty ;

rdfs:domain ssn:Sensor ;

rdfs:range xsd:string .

wqo:hasLongitude a owl:DatatypeProperty ;

rdfs:domain geo:Site .

Listing A.1: Water Quality Ontology in N3 format
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