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Biomarker Detection in Association Studies: Modeling
SNPs Simultaneously via Logistic ANOVA

Yoonsuh Jung, Jianhua Z. Huang, Jianhua Hu

Abstract

In genome-wide association studies, the primary task is to detect biomarkers in the form

of Single Nucleotide Polymorphisms (SNPs) that have nontrivial associations with a disease

phenotype and some other important clinical/environmental factors. However, the extremely

large number of SNPs comparing to the sample size inhibits application of classical methods

such as the multiple logistic regression. Currently the most commonly used approach is still

to analyze one SNP at a time. In this paper, we propose to consider the genotypes of the SNPs

simultaneously via a logistic analysis of variance (ANOVA) model, which expresses the logit

transformed mean of SNP genotypes as the summation of the SNP effects, effects of the disease

phenotype and/or other clinical variables, and the interaction effects. We use a reduced-rank

representation of the interaction-effect matrix for dimensionality reduction, and employ theL1-

penalty in a penalized likelihood framework to filter out the SNPs that have no associations.

We develop a Majorization-Minimization algorithm for computational implementation. In ad-

dition, we propose a modified BIC criterion to select the penalty parameters and determine the

rank number. The proposed method is applied to a Multiple Sclerosis data set and simulated

data sets and shows promise in biomarker detection.

KEYWORDS: BIC, GWAS, MM Algorithm,L1-penalty, Penalized Bernoulli Likelihood, Si-

multaneous Modeling of SNPs
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1 Introduction

The area of genome-wide association studies (GWAS) has been growing rapidly in recent years.

This type of study is designed to explore the associations between genetic markers, disease phe-

notypes, and other clinical/environmental factors. Particularly, GWAS focuses on identification of

susceptible Single Nucleotide Polymorphisms (SNPs) as biomarkers of a disease. The promise of

this technology has been shown in various biomedical studies (Egan et al., 2011; Festen et al., 2011;

Shete et al., 2009). For example, Egan et al. (2011) identified susceptible variants in malignant

gliomas-deadly brain tumors in a case-control study. They used multinomial logistic regression to

evaluate genotype associations for glioma subtypes.

One of the challenges in analyzing GWAS data is the presence of extremely large number

of SNPs (often at the magnitude of hundreds of thousands), which hinders applying systematic

approaches to search for nontrivial associations. Currently, a commonly taken approach is to

examine the association between a phenotype and one SNP at a time (Shete et al., 2009; Chen

et al., 2011) by using some classical statistical methods (e.g., Pearson’s chi-squared test and logistic

regression). To consider several SNPs jointly, one usually takes a traditional regression approach

(e.g., Li et al., 2012), in which the disease phenotype are treated as the response variable and the

SNPs as the covariates. To further study the interactions among disease, SNPs, and other clinical

factors, the corresponding interaction terms have been included as additional covariates (Chatterjee

et al., 2006; Maity et al., 2009; Kooperberg et al., 2009), which introduces even more parameters.

However, the contrast between the number of SNPs (or the number of the covariates) and that of

the subjects (at most several thousands) makes it infeasible to interrogate the association between

the phenotype and many SNPs simultaneously via a single regression model. A common strategy

is to disregard many SNPs through a screening process prior to conducting the formal analysis,

which could filter out important SNPs that only jointly reveal the genetic risk of a disease (Philips,

2008). Alternatively, multiple logistic regression with theL1-penalty (Friedman et al., 2010) can

be considered, which carries the same challenge in the case of sample size much smaller than the
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number of parameters.

In this paper, we develop a novel logistic Analysis of Variance (ANOVA) model for association

study that treats the genetic locations, the disease phenotype, and other clinical variables as fac-

tors and uses these factors to explain the variability in the logit transformation of the minor allele

frequency. Our model expresses the logit transformation as the summation of the SNP effects, ef-

fects of the disease phenotype and/or other clinical variables, and the interaction effects. To reduce

the number of parameters, we adopt a reduced-rank representation of the matrix of interaction ef-

fects. A further reduction of the number of parameters is achieved by assuming that, among the

extremely large number of SNPs, only a relatively small number of SNPs have true association

with the disease phenotype. Since this is a sensible assumption, it is reasonable to make most

of the interaction parameters to be zero when fitting model. We achieve this desired sparsity of

parameter vector by employing anL1-penalty on the SNP association parameters. For determina-

tion of the penalty parameters, we propose a modified Bayesian information criterion (BIC) with

an extra term included to reflect importance of the interactions that point to associations between

SNPs and disease phenotype. The classical BIC (Schwarz, 1978) usually selects a model that is

too parsimonious and fails to detect any association under our logistic ANOVA model in GWAS

studies (see Figure 1).

In practice, researchers often use an analytical tool to identify several SNPs as the potential

biomarkers for further study in biological and clinical validation experiments. The estimated

interaction parameters from our logistic ANOVA model can be used to rank the SNPs and the

top-ranked SNPs are identified as potential biomarkers. In simulation studies to be reported in

Section 3, we found that our method can detect more true biomarkers than the logistic regression.

The logistic ANOVA model is general enough to incorporate multi-category phenotype. It can

also be used to study associations of several categorical phenotypes with SNP genotypes through

forming one multi-category phenotype by considering all combinations of these phenotypes (see

Section 4.2).

Our logistic ANOVA model provides a framework for study a phenotype and a large number
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of SNPs simultaneously. The reduced-rank representation of the interaction effects in the model

can substantially reduce the number of parameters and thus improve statistical efficiency. The idea

of dimensionality reduction through a low-rank matrix has been used in the literature in differ-

ent context for modeling interactions; see e.g., Snee (1982) and Hu et al. (2009). Our proposed

model also shares some similarity with the bilinear model described in Hoff (2005). However,

fundamental distinctions exist. The goal of Hoff is to model pairs of objects corresponding to a

common variable (e.g., measurements of similarity between two units) with the bilinear term mod-

eling the errors, while our goal is to model how two sets of different variables (phenotype and SNP

locations) influence the frequency of a binary variable (SNP genotype).

The rest of paper is organized as follows. In Section 2, we introduce the proposed logistic

ANOVA model and present details of method. In particular, we define the penalized likelihood and

discuss several implementation issues including computational algorithm, selection of the penalty

parameters and rank number, and missing data handling. Results of a simulation study are pre-

sented in Section 3. In Section 4 we present application of the proposed method to a Multiple

Sclerosis data set. Section 5 concludes the paper. The Appendix gives the details of the computa-

tional algorithm.

2 Methodology

2.1 The logistic ANOVA model for simultaneously modeling SNPs

We dichotomize the SNP genotype as typically done in the literature (e.g., Cantor et al., 2010).

Specifically, we code the genotype as 0 if the original genotype contains only the minor allele;

and 1 otherwise. ConsiderI categories for a discrete phenotype andJ SNPs. Letyi jki denote

the genotype of the SNP at thejth position (j = 1, ∙ ∙ ∙ , J) on a chromosome in thekth
i subject

(ki = 1, ∙ ∙ ∙ ,Ki) of theith phenotype (i = 1, ∙ ∙ ∙ , I ). Note that the subscript ofKi indicates that there

may be different number of observations for different phenotypes. The mean of the binary variable
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yi jki is written as

E(yi jki ) = p(ηi j ), (1)

whereηi j is the canonical parameter of the Bernoulli distribution, andp(η) = (1 + exp(−η))−1 is

the inverse logit link function. The canonical parameterηi j has the following Analysis of Variance

(ANOVA) decomposition,

ηi j = μ + αi + β j + γi j , (2)

whereμ is the grand mean,αi is the main effect of theith phenotype,β j is the main effect of the

jth SNP, andγi j corresponds to the interaction between theith phenotype and thejth SNP. For

identifiability, we impose the following constraints on the parameters
∑I

i=1αi = 0,
∑J

j=1 β j = 0,
∑I

i=1 γi j =
∑J

j=1 γi j = 0. We use the interaction termsγi j to study the association between the

phenotypes and SNPs.

The interaction degrees of freedom, (I − 1)(J − 1), becomes very large when the number of

phenotype categoriesI gets large. To reduce the interaction degrees of freedom, we employ a

reduced-rank representation of the matrix of interaction terms (e.g., Johnson and Graybill, 1972;

Hu et al., 2009) so thatγi j =
∑D

d=1 uidvjd for D ≤ min(I −1, J−1). This reduced-rank representation

is directly related to the singular value decomposition of the matrix. The ANOVA decomposition

(2) then becomes

ηi j = μ + αi + β j +

D∑

d=1

uidvjd. (3)

For model identifiability, we impose the restrictions on the parameters as
∑I

i=1αi = 0,
∑J

j=1 β j = 0,
∑I

i=1 uid = 0,
∑J

j=1 vjd = 0, and
∑J

j=1 v2
jd = J − 1. For D > 1, the additional restrictions of

∑I
i=1 uiduid′ = 0 and

∑J
j=1 vjdvjd′ = 0 are required ford , d′. In (3), the interaction effect is

decomposed as the summation ofD multiplicative termsuidvjd, whereuid andvjd can be interpreted

as the contributions to the interaction effect from phenotypei and SNPj, respectively.

We usevjd to identify the SNPs that contribute the most to the phenotype-SNP interaction

effect. Specifically, we define the SNP associate index for SNPj as the largest absolute value of

{vjd}, d = 1, . . . ,D, and rank the SNPs according to this index.
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We refer to our model specified by (1) and (3) as the logistic ANOVA model. WhenI = 2,

there are only two choices ofD, D = 0 (corresponding to no interaction) andD = 1. WhenI > 2,

use ofD < I − 1 reduces the number of parameters from (I − 1)(J − 1) of the full model (2) to

D(I + J − D − 2). This is a substantial reduction when the number of phenotypesI is large andD

is small, making it possible to simultaneously explore the association of thousands of SNPs with

the phenotypes.

Under model (1), the individual data generating probability is

Pr(Yi jki = yi jki ) = p(ηi j )
yi jki (1− p(ηi j ))

1−yi jki = p(qi jkiηi j ), (4)

with qi jki = 2yi jki − 1, which equals−1 if yi jki = 0 and 1yi jki = 1. Notice thatp(−η) = 1 − p(η).

The log likelihood can be expressed as

l =
I∑

i=1

J∑

j=1

Ki∑

ki=1

log p(qi jkiηi j ).

Denoten+
i j = #{ki : qi jki = 1} andn−i j = #{ki : qi jki = −1}. The log likelihood then can be rewritten

as

l =
I∑

i=1

J∑

j=1

{n+
i j log p(ηi j ) + n−i j log p(−ηi j )}. (5)

Denote the intercept matrixμ = μ1I1>J , α = (α1, ∙ ∙ ∙ , αI )>, β = (β1, ∙ ∙ ∙ , βJ)>, ui = (ui1, ∙ ∙ ∙ ,uiD)>,

and v j = (vj1, ∙ ∙ ∙ , vjD)>. According to (3), the canonical parameter matrixH = (ηi j ) has the

representation

H = μ + A+ B+ UV>, (6)

whereAI×J = α1>J , BI×J = 1Iβ
>, UI×D = (uid), andVJ×D = (vjd). Using these notations, we write

the log likelihood as

l(μ,A, B,U,V) =
I∑

i=1

J∑

j=1

[
n+

i j log p(μ + αi + β j + u>i v j) + n−i j log p{−(μ + αi + β j + u>i v j)}
]
. (7)

Given the large number of SNPs, it is reasonable to assume that only a relatively small number

of SNPs have true association with the phenotype. In our model (3), ifvjd is zero ford = 1, . . . ,D,
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then SNPj plays no role in explaining the phenotype-SNP interaction. We thus borrow the idea

from the LASSO regression (Tibshirani, 1996) and introduce a sparsity-inducing penalty to help

identify those zeros when maximizing the likelihood function. Similar to LASSO, theL1-penalty

has the form

Pλ(V) =
D∑

d=1

λd ‖ ṽd ‖1= λ1

J∑

j=1

|vj1| + ∙ ∙ ∙ + λD

J∑

j=1

|vjD |, (8)

whereṽd is thedth column ofV andλd is the corresponding penalization parameter. We estimate

the model parameters via maximizing the penalized log likelihoodl(μ,A, B,U,V) − n ∙ Pλ(V) with

n = J
∑

i Ki. Equivalently, we minimize the following objective function

S(μ,A, B,U,V) = −l(μ,A, B,U,V) + n ∙ Pλ(V) (9)

subject to the identifiability constraints.

The logistic ANOVA model specified by (1) and (3) is more general than it appears. The

phenotype can be a binary or multi-category phenotype. The multi-category phenotype can be

constructed by considering all combinations of possible levels of several factors. In Section 4.2,

we present an example that the phenotype is formed by combining a disease status (MS) and

a clinical variable (hypertension). When we consider the combination of several factors as the

phenotype, the number of categories easily gets large. In such cases, the dimensionality reduction

feature of (3) helps significantly reduce the number of parameters to be estimated and makes the

model estimation feasible.

2.2 Comparison with logistic regression for the case-control study

The case-control study can be handled as a special case of our logistic ANOVA model. In this case,

I = 2 andD = 1. Taking into account the identifiability constraints, our model (3) reduces to

logit(p1 j) = μ + α1 + β j + u1vj

logit(p2 j) = μ − α1 + β j − u1vj ,

6
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which implies that the log-odds ratio at thejth SNP is logit(p1 j) − logit(p2 j) = 2(α1 + u1vj). A

typical logistic regression model of the SNP effect on a phenotype for a case-control study has the

form

logit(p1 j) = μ + 2v′j ,

logit(p2 j) = μ

(the constant 2 is used to simplify notations in later presentation), which gives the log-odds ratio

logit(p1 j) − logit(p2 j) = 2v′j. Recall that thevj ’s have the sample mean 0 and the sample standard

deviation 1, since they satisfy the constraints
∑

j vj = 0 and
∑

j v2
j = J − 1. When no penalty is

used for the maximum likelihood estimation, the two models give the same log-odds ratio whenvjs

are the standardized versions ofv′js. Indeed, if we letα1 andu1 be the sample mean and standard

deviation of thev′js, standardization ofv′js by centering atα1 and scaling withu1 givesvj.

There are two main differences of the two methods: 1). Different quantities are used to rank

the SNPs: While the logistic ANOVA uses the standardized log-odds ratios, the logistic regression

uses the raw log-odds ratios. Note that standardization does change the ordering of the SNPs. For

example, assume there are three SNPs withv′1 = 1, v′2 = 2, v′3 = 4, thenα1 = 2.33, u1 = 1.53,

and the standardized values arev1 = −0.87, v2 = −0.22, v3 = 1.09. The ordering of the original

numbers is|v′1| < |v
′
2| < |v

′
3|, but after standardization is|v2| < |v1| < |v3|. The standardization can

be considered as a kind of background adjustment. 2). By using the same penalty parameter for

simultaneously estimation of the SNP effects, our logistic ANOVA model allows direct comparison

of all SNPs in one framework. These two differences help the logistic ANOVA detect more true

biomarkers than the simple logistic regression, as confirmed by the simulation results in Section 3.

However, more significant advantage of the logistic ANOVA method over logistic regression is

observed in the case of multi-category phenotype, which can be attributed to the dimensionality

reduction feature of the reduced-rank model.
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2.3 Computational algorithm

Since the penalized log likelihood criterion (9) is not differentiable, the gradient-based methods

are not applicable for its minimization. We propose to apply the Majorization-Minimization (MM)

algorithm (Hunter and Lange, 2004) to sequentially minimize a quadratic surrogate objective func-

tion. A functiong(x|y) is said toma jorizea function f (x) at y if

g(x|y) ≥ f (x) for all x and g(y|y) = f (y). (10)

To minimize f (x), the MM algorithm starts from an initial guessx(0) of x and iteratively minimizes

g(x|x(m)) until convergence, wherex(m) is the estimate ofx at themth iteration. The theory for the

MM algorithm suggests that the objective function decreases along the iterations and the algorithm

is guaranteed to converge to a local minimum.

We develop two functions which majorize the log likelihood term and the penalty term sepa-

rately as follows. For the log likelihood term− log p(x), we use the following result of Jaakkola

and Jordan (2000) and de Leeuw (2006):

− log p(x) ≤ − log p(y) +
1
8

[x− y− 4{1− p(y)}]2 − 2(1− p(y))2. (11)

where the equality holds whenx = y. Substitutingx andy with qi jηi j andqi jη
(m)
i j respectively in

(11) yields

− log p(qi jηi j ) ≤ − log p(qi jη
(m)
i j ) +

1
8

(ηi j − x(m)
i j )2 − 2{1− p(qi jη

(m)
i j )}2, (12)

whereqi j = ±1 and

x(m)
i j = η(m)

i j + 4qi j {1− p(qi jη
(m)
i j )}

=





η(m)
i j + 4(1− p(η(m)

i j )) ≡ x+(m)
i j for qi j = 1

η(m)
i j − 4(1− p(−η(m)

i j )) ≡ x−(m)
i j for qi j = −1.

(13)

Ignoring a constant term which does not depend on unknown parameters, the quadratic upper

bound of the negative log likelihood is

1
8

I∑

i=1

J∑

j=1

{n+
i j (ηi j − x+(m)

i j )2 + n−i j (ηi j − x−(m)
i j )2} (14)
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whereηi j = μ + αi + β j + u>i v j. To find a majorizing function of the penalty term, we utilize the

following majorization relation (Hunter and Li, 2005)

|x| ≤
x2 + y2

2|y|
, y , 0, (15)

from which we obtain

Pλ(V) ≤ λ1

J∑

j=1

v2
j1 + v(m)2

j1

2|v(m)
j1 |

+ ∙ ∙ ∙ + λD

J∑

j=1

v2
jD + v(m)2

jD

2|v(m)
jD |

(16)

Combing (14) and (16) yields the following quadratic upper bound of (9) (up to a constant)

g(μ,A, B,U,V|μ(m),A(m), B(m),U (m),V(m))

=
1
8

I∑

i=1

J∑

j=1

[
n+

i j {x
+(m)
i j − (μ + αi + β j + u>i v j)}

2

+ n−i j {x
−(m)
i j − (μ + αi + β j + u>i v j)}

2] +
J∑

j=1

v>j W(m)
λ, j v j ,

(17)

whereW(m)
λ, j is a diagonal matrix with the diagonal elementsnλd/(2|v

(m)
jd |) for d = 1, ∙ ∙ ∙ ,D. The

above quantity majorizes (9) at (μ(m),A(m), B(m),U (m),V(m)). The MM algorithm iteratively mini-

mizes the majorizing function until convergence. At the (m+ 1)th iteration of the MM algorithm,

we sequentially minimize the majorizing function given in (17) with respect toμ, αi, β j, ui and

v j. Luckily, each step is a quadratic optimization and has a closed-form solution. Details of the

complete MM algorithm are given in the Appendix.

2.4 Choice of the penalty parameters

The penalty parametersλd’s are used to control the degrees of penalization. We choose these

parameters by minimizing the following modified BIC criterion

BICm({λd}) = −2 l(μ,A, B,U,V) + m({λd}) logn− J ∙mD(UV>), (18)

wherem(λD) is a measure of the model degrees of freedom. Following Zou et al. (2007), we define

m(λD) = (I + J − D − 1)(D + 1) − |V(λD)|, where|V(λD)| is the number of zero elements inV.
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Finally, mD(UV>) is the summation of the singular values ofUV>, also called the nuclear norm.

The modified BIC criterion is also used for selectingD, the number of multiplicative components

in (3).

Note that the ordinary BIC criterion is defined without the rightmost term in (18). Shen and Ye

(2002) indicates that the BIC criterion performs poorly for models with a large number of parame-

ters. Our experiments also suggest that the BIC does not work well in our setting. Specifically, we

observed that the BIC often chooses the no-association model (D = 0), as opposed to the existing

results of presence of strong association between disease and SNPs in some published association

studies. For this reason, we modify the BIC criterion by introducing the additional term of the

nuclear normmD(UV>). It is designed to stress the importance of the interaction terms which

point to possible associations between the phenotype and SNPs. Our empirical results shown later

demonstrate the good performance of this modified BIC criterion.

2.5 Handling missing data

In real application, missing observations of SNP genotypes are often encountered. We take the fol-

lowing approach to handle a missing genotype observationyi jki . LetM = {(i, j, ki)|yi jki is missing}

be an index set of missing values. In the presence of missing data, we minimize the following

modified version of (9)

Sobs(μ,A, B,U,V) = −lobs(μ,A, B,U,V) + n ∙ Pλ(V), (19)

where

lobs(μ,A, B,U,V) =
∑

(i, j,ki )<M

log p{qi jki (μ + αi + β j + u>i v j)}. (20)

With some slight modifications, the MM algorithm developed in Section 2.3 still applies to mini-

mize the penalized likelihood criterion (19). When the data are complete, we haven+
i j + n−i j = Ki

for all j; this does not hold any more when there are missing data. Details of the modification of

the MM algorithm are presented in the Appendix.
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3 Simulation studies

We conducted some simulation studies to assess performance of the proposed method in terms of

accuracy of biomarker detection. We report the results for binary phenotypes and multi-category

phenotypes separately in two subsections.

3.1 Binary phenotype

We considered two simulation setups with binary phenotypes. The first setup generated the data

from the logistic ANOVA model, the second setup generated the data by sub-sampling the MS data

set in Section 4.

Simulation Setup 1. To allow correlation in the generated data, we first generate random

numbers from multivariate normal distribution and then dichotomize them to get binary phenotype

data. The steps for generating data are

1. Set the canonical parameters asηi j = μ + αi + β j + uivj.

2. Fori = 1, . . . , I andk = 1, . . . ,K, independently generate the vector (Xi jk , j = 1, . . . , J) from

MVN(0,ΣI×I ).

3. Assignyi jk = 1 if Φ(Xi jk) < eηi j /(1 + eηi j ), and 0 otherwise, fori = 1, . . . , I , k = 1, . . . ,K,

whereΦ(∙) is the c.d.f. of a standard normal distribution.

We usedI = 2, J = 10,000, K = 500, and set the parameters asμ = 0, (α1, α2) = (−1,1), and

(u1,u2) = (−0.3,0.3); β j were randomly drawn from the standard normal distribution andvj were

randomly drawn fromN(0,1/3) where the 50 largest values of|vj | were regarded as significant

biomarkers. The correlation matrixΣ was set to mimic the real data in Section 4. Specifically, we

set the diagonal elements ofΣ to be all 1’s, and set the off-diagonal element at (i, j) position to be

ρ|i− j| if |i − j| ≤ 7, and 0 if otherwise. We considered two settings ofρ, ρ = 0.3 and 0.5.

To each simulated data set, we applied our logistic ANOVA method, fitting with and without

penalization. The modified BIC criterion suggested selection ofD = 1. We used the absolute val-
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ues of the fittedvj1 to rank the SNPs and count the number of times that the significant biomarkers

are identified. We also applied the simple logistic regression, which deals with the biomarkers one

at a time, and theL1-penalized logistic regression (Friedman et al., 2010). For both regression

approaches, we ranked the SNPs based on the estimated regression coefficients. We checked the

top 50 SNPs selected by each method and counted how many of them are the significant biomark-

ers. The summary statistics of the results based on 500 simulation runs is given in Table 1. We

observe that the logistic ANOVA outperforms the logistic regression approach for both settings of

the correlation coefficient. The reason thatL1-penalized logistic regression does not work better

than the simple logistic regression is that it tends to select models that are too parsimonious.

Simulation Setup 2. In this setup we generated data by suitably subsetting the MS data in

Section 4.1, which contains 1,803 subjects with 34,282 SNP locations. We randomly selected

1,000 out of all subjects as the samples in the simulation study. We used the values of|v̂j | obtained

by fitting the logistic ANOVA as in Section 4.1 to decide which SNPs to include in the data set. We

fixed 10,000 “null” SNPs which correspond to the small values of|v̂j |. We then randomly selected

50 “null” SNPs and replaced them with the top 50 SNPs (corresponding to the largest values of

|v̂j |), which was treated as the true biomarkers in this simulation study. This sub-sampling scheme

from the MS data set generated a “simulated” data set containing 1,000 subjects with 10,000 SNP

locations. We noticed that many adjacent SNPs are contained in the set of 10,000 SNPs, thus to

some extent the dependency structure among the SNPs is preserved. For example, in one simulated

data set, the first 10 among the 10,000 SNPs are located at the positions of 1, 2, 5, 9, 10, 11, 12,

13, 14, and 16 in the MS data set, which are in close vicinity of each other.

The four methods considered in Setup 1 were applied to each of the 500 data sets simulated

according to the scheme described in the previous paragraph. The BICm criterion suggestedD = 1

for the logistic ANOVA model for all data sets. An example of the BICm curve for a simulated

data set is shown in the lower right panel of Figure 1. It is obvious that a minimum value of

BICm shown in this panel is achieved at log(λ) = −14 andD = 1, as opposed to BIC, shown

on the lower left panel, which fails to identify any associations since it suggestsD = 0. We
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identified top 50 SNPs based on each of the four methods, and recorded the number of detected

true biomarkers. The ranking of the SNPs was determined in the same way as in simulation Setup

1. The summary statistics of the correct detection based on 500 simulation runs are summarized

in Table 2. The logistic ANOVA with penalization performs the best, while the logistic ANOVA

without penalization and the simple logistic regression have similar performance. TheL1-penalized

logistic regression with the penalty parameter determined by the commonly used 10-fold cross

validation yields the least accuracy of biomarker detection. We also considered the BIC criterion

for theL1-penalized logistic regression and obtained even worse results than the cross validation.

For this simulation setup, the estimatedα1 value from the real data is 0.00085, which is close

to 0. According to the discussion giving in Section 2.2, we expect that the results by the logistic

ANOVA without penalty and the simple logistic regression should be similar. This is indeed the

case: For 500 simulated data sets, the average number of overlapping SNPs selected by both

methods is 46.78 among top 50 SNPs with a standard error of 0.07.

3.2 Multi-category phenotype

We modify the two simulation setups in Section 3.1 to generate data sets with multi-category

phenotypes.

Simulation Setup 3.This setup is the same as Setup 1 with some slight modifications to make

I = 6 categories. The parametersα andu are not six-dimensional vectors. We set their true values

to beα = (−1,−0.6,−0.3,0.3,0.6,1), andu = (−0.5,−0.3,−0.1,0.1,0.3,0.5). We also changed

the number of subject for each category to beK = 300. The other parameters are unchanged. We

generated 500 data sets for this setup.

To each simulated data set, we applied our logistic ANOVA method, fitting with and without

penalization. We used the absolute values of the fittedvj1’s to rank the SNPs and count the number

of times that the significant biomarkers are identified. We also applied simple multinomial logis-

tic regression, which deals with the biomarkers one at a time, and theL1-penalized multinomial
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logistic regression. The six-category multinomial logistic regression yields five coefficients per

SNP location, and we used the maximum of the absolute values of the coefficients as a measure

for that location when ranking the SNPs. We also applied theL1-penalized multinomial logistic

regression but found that it frequently failed to fit the data due to many fitted values of exact 0’s or

1’s and thus we did not include it in our comparison. We checked the top-ranked 50 SNPs by each

method and counted how many of them are the significant biomarkers. The summary statistics of

the results based on 500 simulation runs is given in Table 3. We observe that the logistic ANOVA

outperforms the logistic regression approach for both settings of the correlation coefficient.

Simulation Setup 4. In this setup we generated data by suitably subsetting the MS data as

we did in simulation Setup 2. We created a phenotype using combinations of hypertension sta-

tus and MS status. For hypertension status, we merged the “normal” and “pre-hypertension” into

a common category because they were shown to be alike according to Section 4.2. This leads

to a 4-category phenotype. For each simulation run, we randomly selected 500 subjects con-

sisting of 150 “non-MS and non-hypertension”, 100 “non-MS and hypertension”, 150 “MS and

non-hypertension”, and 100 “MS and hypertension” cases. Similar to simulation Setup 2, we con-

sidered 10,000 SNPs, among which 50 are the true biomarkers.

We applied four methods used in simulation Setup 3 to each data set and identified top-ranked

50 SNPs by each method. Table 4 reports the summary statistics of the number of detected true

biomarkers by each of the methods, based on 500 simulation runs. We observe that the logistic

ANOVA with penalty detects the true biomarkers substantially more than the other methods. It is

also clear from the table that penalization indeed benefits biomarker detection, since the logistic

ANOVA without penalty performs much inferior to its penalized version.

It is interesting to compare the results in Setup 2 and the current simulation setup to find out

differences when a binary phenotype is changed to a multi-category phenotype. We observe that

the improvement of the logistic ANOVA over the simple logistic regression is more substantial

for the 4-category phenotype case (Table 4) than the binary phenotype case (Table 3). This is

not surprising: In the binary phenotype case, we show in Section 2.2 that the two methods are
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closely related to each other and thus we do not expect they give substantial different results. For

the multi-category case, the dimensionality reduction introduced by the reduced-rank model can

make a difference. Compared with the binary phenotype case, the fitted logistic ANOVA model

for the 4-category case needs only four additional parameters—two forαi ’s and two forui ’s. In

contrast, the simple multinomial logistic regression requires triple additional number of parameters

in comparison to the simple logistic regression for Setup 2. We also observe that theL1-penalized

multinomial logistic regression in Setup 4 suffers less from the problem of low detection as theL1-

penalized binary logistic regression in Setup 2. This may be due to using the maximum absolute

value of multiple coefficients for each SNP as the final association index. However, its number of

detections is still less than half of that by penalized logistic ANOVA.

3.3 Zero-Mean log odds ratios

The observed significant difference in performance of the logistic ANOVA (without penalization)

and the simple logistic regression for Setup 1 may be explained by the fact that the log odds ratios

do not have mean zero in the simulation model. We ran a simulation study that modifies Setup 1

by lettingαi = 0 so that the log odds ratios have mean zero. Similar to Table 1, Table 5 reports the

summary of results for detecting the true biomarkers by three different methods.

As explained in Section 2.2, the logistic ANOVA model (without penalization) and the simple

logistic regression model are identical but use different parametrizations. The simple logistic re-

gression ranks the SNPs using the absolute values of the log odds ratios, while the logistic ANOVA

using the absolute values of the standardized log odds ratios. Sinceαi = 0, it seems that standard-

ization of the log odds ratios is not necessary and one wonders whether it may hurt the performance

of logistic ANOVA. Table 5 shows that the logistic ANOVA without penalization performs slightly

better than the simple logistic regression (i.e., standardization does not have a negative effect), but

the difference is very small and statistically not significant. On the other hand, introducing sparsity

regularization in the logistic ANOVA has a bigger effect than the standardization of the log odds
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ratios.

Table 5 also gives the results for a simulation study that modifies Setup 3 by letting allαi = 0.

We observe that for this case of multi-category phenotype, logistic ANOVA model clearly shows

better performance than the simple multinomial logistic regression. This significant improvement

can be contributed to the dimensionality reduction feature of the logistic ANOVA.

4 A Multiple Sclerosis study

We studied a Multiple Sclerosis (MS) data set obtained from the National Institute of Neurologi-

cal Disorders and Stroke (NINDS) to demonstrate the applicability of the proposed methodology.

The data set contains 1,803 subjects (864 controls and 939 cases) and is available through dbGaP

accession number phs000171.v1.p1. The genotyping data were generated using Illumina Human-

Hap 550 BeadChip platform. MS is a disease that affects the brain and spinal cord. This disease

is commonly triggered by the attack of a virus or due to genetic defects. Some existing studies

(Ramagopalan et al., 2009; McElroy et al., 2010) pointed out that a region known as the Ma-

jor Histocompatibility Complex (MHC) on chromosome 6 is believed to be highly susceptible to

MS. Thus, we focus our study on chromosome 6 which contains 34,282 SNPs to search for the

biomarkers that are possibly associated with the phenotype of MS.

4.1 The association of SNPs with Multiple Sclerosis status

We first investigated the association between SNPs and the MS disease using our proposed method.

For this case-control study,I = 2 in our logistic ANOVA model and there are two possible choices

of D, D = 0 andD = 1. To deal with the missing values in the data set, we used the procedure

described in Section 2.5. The values of the modified BIC defined in (18), BICm, are plotted against

the log-transformed values of the penalty parameterλ for D = 0,1 in the upper right panel of

Figure 1. Since there is no interaction term forD = 0, the values of BICm is a constant in this

case. It is clear from the plot thatD = 1 is preferred toD = 0. For comparison, we also show a
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similar plot of BIC in the upper left panel. We see that BICm selectsD = 1 with a clear minimum

at log(λ) = −15. In contrast, BIC identifiesD = 0 which points to no interactions between the

phenotype and SNPs. The bottom two panels of Figure 1 present the BIC and BICm plot for two

simulated data sets generated using the logistic ANOVA model specified by (1) and (3) with an

interaction term. We observe that the BIC and BICm for the simulated data behave similarly as for

the real data. Our method withD = 1 obtained theui estimates of the controls and the cases as

(û1, û2) = (−1.1603,1.1603).

In the ANOVA model (3),vjd represents the association of SNPj with the phenotype, which is

the MS status in this study. We ranked the SNPs according to the absolute values ofvj1 (D = 1).

The top-ranked SNPs are identified by our method as highly associated with the MS status. We

compared our results with existing results of MS related association studies available in a web-

based NIH database, Phenotype-Genotype Integrator (PheGenI) (http://www.ncbi.nlm.nih.gov/

gap/PheGenI). This facility merges the results from GWAS catalog data with several databases

housed at the National Center for Biotechnology Information, including Gene, dbGaP, OMIM,

GTEx and dbSNP. According to this database, 138 SNPs were identified to be significantly related

to MS by ten research papers using the p-value threshold of 10−6, but only 3 SNPs were commonly

detected by any two publications, and none were commonly detected by more than two publica-

tions. Moreover, six out of ten publications detected only one SNP, while one other paper detected

about 100 SNPs. This large variation among published work indicates the difficulty of the problem

and lack of stability across existing methods. Nonetheless, we tried to position our top candidate

SNPs in the database for comparison purpose. The top 50 SNPs ranked by our method have 9 in

common with the significant SNPs (p-value< 10−6) chosen by the databasePheGenI, while the

top 100 and 150 SNPs by our method have respectively 16 and 25 in common with the significant

SNPs inPheGenI. Table 6 shows that the minor allele frequencies of the top 50 SNPs spread out

between 15% and 50% except for one lower than 15%.

We compared our logistic ANOVA method with the simple logistic regression that examines

one SNP at a time. We obtained two sets of SNPs, each of which consists of the top 50 ranked
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SNPs by one method. For the simple logistic regression, there are typically two ways to define

the association index for ranking SNPs, one is the absolute value of the regression coefficient, the

other is the p-value for testing if the coefficient is zero or not. The top and middle panels of Figure

2 show respectively the ˆvj1 produced by the logistic ANOVA and the negative log-10 transformed

p-values obtained by the simple logistic regression, against the SNP locations. The detected 50

SNPs are represented by the circles in blue for both methods. We observe that 41 SNPs are shared

by the two sets. On the other hand, if the regression coefficient from the logistic regression is used

to rank the SNPs, the set of top 50 SNPs is identical to that selected by the logistic ANOVA.—This

is only a coincidence, the ranking of these 50 SNPs are not exactly the same by the two methods,

indicating that the two sets are different if a different number (say, 40) of top SNPs are considered.

A clear common feature of the two panels is that most of the top biomarker candidates cluster

around the 8000th location index. As the most distinction, the logistic ANOVA identifies 6 SNPs

to the right side of this cluster. To see if these 6 SNPs have any real interpretations or implications

of the biological association with MS, further biological validations are required.

A primary goal of biomarker detection is to construct a classifier for making predictions of the

disease phenotype that can be potentially useful for facilitating medicine prevention and treatment.

We evaluated the performance of using detected SNPs to predict MS status. The details of our

evaluation procedure is as follows. We divided all the subjects into two sets, one training set

and one test set. The training set consisted ofnt randomly chosen subjects and was used for SNP

selection and for training a classification method. The test set consisted of the remaining (1803−nt)

subjects and was used for calculating the prediction error. On the training set, we first selected 50

SNPs that are most associated with MS status using either the logistic ANOVA or the simple

logistic regression (using the absolute value of the regression coefficient), then used the genotype

of the selected 50 SNPs as the predictors for a classification method. We used the “random forest”

method implemented in R packagerandomForest as our classification method. The prediction

error rate is defined as the proportion of the test subjects that have incorrect prediction of the MS

status comparing to the known true disease status.
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We considered three settings of random split of data into training and test sets, consisting

respectivelynt = 600, 1000, 1400 training subjects. For each setting, we repeated the above

described procedure 300 times. Figure 3 shows the scatterplot of prediction error rates when the

simple logistic regression and logistic ANOVA are used for SNP selection. For all three settings

of the training set size, the average prediction error of the logistic ANOVA is smaller than that of

the simple logistic regression; the paired-t test gives a p-value less than 10−15 when the training set

size is 600 and 1000, and less than 10−5 when the training set size is 1400.

We notice that the average prediction error rate for the logistic ANOVA model is about 0.38

for all three training set size. The fairly high error rate is in concordant with the current medical

finding that the disease of MS is difficult to diagnose and test, according to the statement posted

by National Multiple Sclerosis Society at their website (www.nationalmssociety.org) and by Poser

and Brinar (2001).

4.2 Association among SNPs, MS, and hypertension

Recent work (e.g., Platten et al., 2009) made some interesting discovery of the linkage of hyperten-

sion and MS such that treatment of the former could obstruct the development of the latter. Thus,

we include the hypertension information in our study to detect possible interactions among MS,

hypertension, and SNPs, and to investigate if the identified biomarkers via incorporating hyperten-

sion information can potentially improve disease diagnosis.

To apply the proposed method, we need to categorize the numerical valued blood pressure mea-

surements. Following the standard guideline of classifying hypertension stages based on systolic

blood pressure, we defined a nominal variable taking the values of “normal”, “pre-hypertension”

(with a systolic pressure from 120 to 139), and “hypertension”. We then created a categorical phe-

notype with 6 categories consisting of all possible combinations of the MS status and 3 hyperten-

sion stages. With this categorization of the MS status and hypertension stages, the data set contains

379 cases of non-MS and normal blood pressure (NN), 354 cases of non-MS and pre-hypertension

19
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

ai
ka

to
] 

at
 1

2:
51

 1
2 

N
ov

em
be

r 
20

14
 



ACCEPTED MANUSCRIPT

(NP), 131 cases of non-MS and hypertension (NH), 436 cases of MS and normal blood pressure

(MN), 378 cases of MS and pre-hypertension (MP), and 125 cases of MS and hypertension (MH).

When applying the proposed method, the missing values were handled using the method de-

scribed in Section 2.5. The modified BIC defined in (18) was used to select the penalty parameters

and it also suggestedD = 1. We display the plot of the SNP association indexvj1’s along with

the location indexes in the bottom panel of Figure 2, in which the top-ranked 50 SNPs are again

represented by the blue circles. The locations of the top-ranked 50 SNPs associated with the 6-

category phenotype are quite distinct from those for binary phenotype of MS status; only two

SNPs are shared by the two sets of 50 SNPs. We also applied the proposed method to study the

association of SNPs with hypertension status (treated as a 3-category phenotype) and identified a

quite different set of SNPs. There are four common SNPs shared by the SNP set for hypertension

and the set for MS and hypertension. These results are not necessarily surprising because MS and

hypertension are two different diseases, wherein the former is much more difficult to diagnose than

the latter.

For comparison purpose, we also ranked the SNPs using the regression coefficients from fitting

the simple multinomial logistic regression for the 6-category phenotype. The ranking is based on

the maximum of the absolute values of the 5 regression coefficients for the 6-category multinomial

distribution. We found that the set of top-ranked 50 SNPs using multinomial logistic regression

is very different from that using the logistic ANOVA—there are only 12 SNPs shared by the two

sets.

Table 7 shows the estimated values ofui1’s, contributions of the 6 categories to the interaction

effect. We observe that large absolute values ofui1 are present only for NH and MH, while the

trivial values are shown for all the other four categories of the phenotype. The results immediately

suggest possible three-way interactions between SNPs, MS, and hypertension stages as elaborated

below. Note that the interaction effect in the fitted model is represented by the multiplicative term

ui1vj1, which is trivial when one of the two multiplicative terms is close to 0. From Table 7,

the estimates ofui1 corresponding to NN, NP, MN, and MP are rather small (in absolute value),
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suggesting that there is weak association between SNPs and MS in the presence of normal blood

pressure and pre-hypertension. On the contrary, the clear contrast between NH (with large negative

ui1) and MH (with large positiveui1) indicates the existence of nontrivial association between SNPs

and MS only in the presence of hypertension. Interestingly, this finding is consistent with the

biological results obtained by Platten et al. (2009), which point out that the association between

autoimmunity (exemplified by MS) and genetic factors tends to more likely occur for hypertension

patients.

We also did a prediction exercise that uses only the genotype information of the top-ranked

50 SNPs. We created a binary response variable whose value is set to 1 if a patient has both MS

and hypertension, and 0 otherwise. We used both the logistic ANOVA and the simple multinomial

logistic regression to select the SNPs. The genotypes corresponding to the 50 selected SNPs were

used as predictors. As in Section 4.1, we randomly split the data into a training and a test set,

used the training set for SNP selection and to train the “random forest”, and used the test set for

computing the prediction error. We considered three settings of the training set size, namely 600,

1000, and 1400. For each setting, we repeated the procedure 300 times. The scatterplots of the

prediction error rates by the two methods for the 300 random splits are presented in Figure 4. We

observed that using the logistic ANOVA to select SNPs gives smaller average prediction error rate

than using the simple multinomial logistic regression; the paired-t test has a p-value less than 10−15

for all three settings of the training set size.

The error rate for predicting MS and hypertension is smaller than that for predicting MS alone

(comparing previous subsection). However, this smaller error rate might be explained by the small

proportion of cases of MS and hypertension in the data set. We did another experiment in which

we have balanced samples from each of the six phenotype. Specifically, we subsampled 150 cases

from each of the six phenotypes to compose a data set of 750 subjects. Then, we randomly took

600 subjects as training data, the rest 150 subjects as test data, and repeated the same prediction

exercise described in the previous paragraph. For 500 runs, the average test set prediction error for

predicting MS and hypertension is 12.9% with a standard error less than 0.15%. This error rate
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cannot be entirely explained by the proportion of MS and hypertension subjects in the data, which

is 16.7%.

5 Concluding remarks

In this paper we propose a novel method for studying the association between a categorical phe-

notype and genotypes of a large number of SNPs. The core of our framework is an ANOVA

decomposition of the logit transformation of the minor allele frequency of the SNPs, where we

treat the categorical phenotype (such as disease status and other important clinical variables) and

the SNP locations as two factors for explaining the variability present in the logit transformation.

By permitting a reduced-rank representation of the interaction effect for dimensionality reduction

and SNP selection through theL1-penalized maximum likelihood estimation, our logistic ANOVA

model can simultaneously deal with a large number of SNPs in one framework. Our simulation

studies and real data analysis demonstrated that the logistic ANOVA outperforms alternative meth-

ods in capturing the true associations between SNPs and a phenotype, and it has more promise in

the multi-category case than in case-control studies.

The proposed logistic ANOVA method can handle multi-category disease phenotype in addi-

tion to a binary phenotype in case-control studies. In this paper, our focus has been on ranking

the SNPs for the association of their genotype with a disease phenotype and some other important

clinical factors. One future research direction is to develop a formal procedure to assess the sta-

tistical significance of the associations under the proposed model. Another direction is to consider

extensions of the proposed method to handle the continuous phenotype such as survival time which

is often of interest in real applications. Moreover, the proposed method can be modified to handle

three-categorical genotype data by using the multinomial logit link function instead of the binary

logit link, for which model formulation and estimation require substantial further investigation.
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Appendix: The MM algorithm

Defineη(m)
i j = μ(m) + α(m)

i + β(m)
j + u(m)>

i v(m)
j . The updates ofμ, αi, andβ j at the (m+ 1)th iteration of

the MM algorithm are given by certain weighted averages:

μ(m+1) =

I∑

i=1

J∑

j=1

[
n+

i j {x
+(m)
i j − η(m)

i j + μ(m)} + n−i j {x
−(m)
i j − η(m)

i j + μ(m)}
]/(

J
I∑

i=1

Ki

)
(21)

α(m+1)
i =

J∑

j=1

[
n+

i j {x
+(m)
i j − η(m)

i j + α(m)
i } + n−i j {x

−(m)
i j − η(m)

i j + α(m)
i }

]/
(JKi) (22)

β(m+1)
j =

I∑

i=1

[
n+

i j {x
+(m)
i j − η(m)

i j + β(m)
j } + n−i j {x

−(m)
i j − η(m)

i j + β(m)
j }

]/ I∑

i=1

Ki . (23)

When there are missing data, the denominators in (21)–(23) should be replaced respectively by
∑I

i=1

∑J
j=1(n

+
i j + n−i j ),

∑J
j=1(n

+
i j + n−i j ), and

∑I
i=1(n

+
i j + n−i j ).

Let x∗±(m)
i j = x±(m)

i j − μ(m) − α(m)
i − β

(m)
j and letx∗±(m)

i = (n±i1x∗±(m)
i1 , ∙ ∙ ∙ ,n±iJ x∗±(m)

iJ )>. From (17),

u(m+1)
i minimizes w.r.t.ui the following

J∑

j=1

[
n+

i j {x
∗+(m)
i j − u>i v(m)

j }
2 + n−i j {x

∗+(m)
i j − u>i v(m)

j }
2]. (24)

Setting to zero the derivatives w.r.t.ui yields

u(m+1)
i = (V(m)>V(m))−1V(m)>(x∗+(m)

i + x∗−(m)
i )/Ki , (25)

whereV(m) is the matrix whose columns arev(m)
j ’s. When there are missing data, the updating

formula foru(m+1)
i is

u(m+1)
i = (V(m)>ΩiV

(m))−1V(m)>(x∗+(m)
i + x∗−(m)

i ), (26)

whereΩi is the diagonal matrix whosejth diagonal element isn+
i j + n−i j , j = 1, . . . , J.

Let x†±(m)
j = (n±1 j x

∗±(m)
1 j , ∙ ∙ ∙ ,n

±
I j x
∗±(m)
I j )>. Then,v(m+1)

j minimizes w.r.t.v j

1
8

I∑

i=1

{n+
i j (x

†+(m)
i j − u(m)>

i v j)
2 + n−i j (x

†−(m)
i j − u(m)>

i v j)
2} + nλd

J∑

j=1

v2
jd

2|v(m)
jd |
. (27)
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Setting to zero the derivatives w.r.t.v j gives

v(m+1)
j =

(
U (m)>ΛU (m) + W(m)

λ, j

)−1

U (m)>(x+†(m)
j + x−†(m)

j ), (28)

whereU (m) is the matrix whose columns areu(m)
i , Λ is the diagonal matrix with the diagonal

elementsKi, andW(m)
λ, j is the diagonal matrix with the diagonal elements 4nλd/(|v

(m)
jd |) for d =

1, ∙ ∙ ∙ ,D. When there are missing data, theith diagonal element ofΛ should replaced byn+
i j + n−i j ,

i = 1, . . . , I .

The steps of the complete MM algorithm are given below.

1. Initialize μ(1), α(1) = (α(1)
1 , ∙ ∙ ∙ , α

(1)
I )>, β(1) = (β(1)

1 , ∙ ∙ ∙ , β
(1)
J )>, u(1)

i = (u(1)
i1 , ∙ ∙ ∙ ,u

(1)
iD )>, and

v(1)
j = (v(1)

j1 , ∙ ∙ ∙ , v
(1)
jD)>. Setm= 1.

2. Computen+
i j andn−i j as in (5) and computex+(m)

i j andx−(m)
i j from (13).

3. Computex+∗(m)
i , x−∗(m)

i , x+†(m)
j , andx−†(m)

j in (25) and (28).

4. Updateμ to μ(m+1) using (21).

5. Updateαi to α(m+1)
i using (22). Thenαi ’s are centered to 0 fori = 1, ∙ ∙ ∙ , I .

6. Updateβ j to β(m+1)
j using (23). Thenβ j ’s are centered to 0 forj = 1, ∙ ∙ ∙ , J.

7. Updateui to u(m+1)
i using (25). Then each column ofU (m+1) = (ũ(m+1)

d ) is centered to 0 for

d = 1, ∙ ∙ ∙ ,D.

8. Compute the QR decomposition ofU (m+1) = QR. ResetU (m+1) to Q so that the orthogonal

constraints are satisfied.

9. ComputeW(m)
λ, j and updatev j to v(m+1)

j using (27). Then each column ofV(m+1) = (ṽ(m+1)
d ) is

centered to 0 ford = 1, ∙ ∙ ∙ ,D, and‖ṽ(m+1)
d ‖2 =

√∑
j{v

(m+1)
jd }2 is computed.

10. Compute the QR decomposition ofV(m+1) = QR. To satisfy the orthogonal constraints,

V(m+1) is replaced byQ, and then each of thedth column ofQ is multiplied by‖ṽ(m+1)
d ‖2.
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11. Repeat steps 2 through 10 withm replaced bym+ 1 until convergence.

12. After convergence, multiplyu(m+1)
id by the scaling factor‖ũ(m+1)

id ‖2 =

√∑
i{u

(m+1)
id }2, and also

multiply v(m+1)
jd by

√
J − 1/‖ṽ(m+1)

d ‖2.

In this algorithm, we use the QR decomposition to rotateU andV such that the orthogonal

constraints are satisfied whenD > 1. Steps 7 and 9 are used to satisfy
∑

i uid = 0 and
∑

j vjd = 0.

Step 12 is used to re-normalizeuid’s andvjd’s such that
∑

j v2
jd = J − 1. Notice that we choose to

center and scalevjd’s while only centeruid’s. This strategy enables us to obtain data-dependent

estimates ofuids.

We suggest the following scheme for obtaining the initial values for the algorithm. Use the logit

transformation of the overall mean of the observations{yi jk}’s for μ(1). Define byY the I × J matrix

whose (i, j)-element is the average of the genotype observations for theith phenotype and thejth

SNP. We letα(1) andβ(1) to be the logit transformation of the row means and column means ofY.

The initial values ofU (1) andV(1) are obtained respectively as the left and right singular vectors

obtained from the singular value decomposition of the element-wise logit transformedY after

subtracting the main effects. Our experiments showed that using this initialization scheme requires

fewer iterations and the algorithm converges to an empirically more reasonable local minimum of

the objective function than using random initialization.

Our algorithm implementation using the programming language R is reasonably fast. For ex-

ample, applying the algorithm to a simulated data containing 1,000 subjects and 10,000 SNPs takes

about 5 minutes to obtain parameter estimates in the standard system of Dell CPU 3.0 GHz, RAM

4GB.
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Table 1: Simulation Setup 1. The average number (its standard error) of detected true biomarkers
by the logistic ANOVA (ANOVA) with and without penalization, simple logistic regression (re-
gression), andL1-penalized logistic regression (penalized regression). Results are based on 500
simulated data sets.

ANOVA ANOVAw/o penalty regression penalized regression
ρ = 0.3 9.29 (0.11) 9.22 (0.12) 6.39 (0.09) 6.54 (0.10)
ρ = 0.5 9.31 (0.12) 9.21 (0.12) 6.23 (0.09) 6.31(0.09)

Table 2: Simulation Setup 2. The average number (its standard error) of detected true biomarkers
by the logistic ANOVA (ANOVA) with and without penalization, simple logistic regression (re-
gression), andL1-penalized logistic regression (penalized regression). Results are based on 500
simulated data sets.

ANOVA ANOVAw/o penalty regression penalized regression
17.72 (0.120) 16.90 (0.117) 16.76 (0.114) 5.59(0.07)

Table 3: Simulation Setup 3. The average number (its standard error) of detected true biomarkers
by the logistic ANOVA (ANOVA) with and without penalization, and simple multinomial logistic
regression (regression). Results are based on 500 simulated data sets.

ANOVA ANOVAw/o penalty regression
ρ = 0.3 19.17 (0.135) 18.95 (0.132) 8.18 (0.10)
ρ = 0.5 18.90 (0.129) 18.78 (0.129) 7.99(0.10)
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Table 4: Simulation Setup 4. The average number (its standard error) of detected true biomark-
ers by the logistic ANOVA (ANOVA) with and without penalization, simple multinomial logistic
regression (regression), andL1-penalized multinomial logistic regression (penalized regression).
Results are based on 500 simulated data sets.

ANOVA ANOVAw/o penalty regression penalized regression
8.87 (0.27) 1.65 (0.16) 2.56 (0.13) 4.03(0.14)

Table 5: The average number (its standard error) of detected true biomarkers by the logistic
ANOVA (ANOVA) with and without penalization, and simple logistic regression (regression) in
the cases of zero-mean log odds ratios. Results are based on 500 simulated data sets.

Binaryphenotype
ANOVA ANOVAw/o penalty regression

ρ = 0.5 12.536 (0.137) 12.142 (0.127) 12.082(0.133)

Multi-categoryphenotype
ANOVA ANOVAw/o penalty regression

ρ = 0.5 20.612 (0.141) 20.552 (0.140) 15.066(0.132)

Table 6: Summary of minor allele frequencies (MAF) of the top 50 SNPs in the the association
study of SNPs with MS status.

MAF 5% to 15% 15% to 25% 25% to 35% 35% to 45% 45% to50%
count 1 10 8 24 7

Table 7: Estimate ofui1’s (multiplied by 10) corresponding to the 6-category phenotype for the MS
study. NN stands for non-MS and normal blood pressure, NP for non-MS and pre-hypertension,
NH for non-MS and hypertension, MN for MS and normal blood pressure, MP for MS and pre-
hypertension, and MH for MS and hypertension.

NN NP NH MN MP MH

-0.7691 -1.1666 -9.5172 0.3718 0.430110.6511
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Figure 1: Plots of BIC and BICm against log-transformed values of the penalty parameterλ in a
Multiple Sclerosis study data set and a simulated data set.
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Figure 2: Plots of the SNP association indexes obtained bylogistic ANOVA(top) andsimple logistic
regression(middle) for the MS study. The plot in the bottom is for the association among SNPs,
MS and Hypertension presented in Section 4.2. The detected 50 SNPs are indicated by the circles
in blue.
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Figure 3: Scatterplot of the prediction error rates for predicting the MS status when the logis-
tic ANOVA (ANOVA) and the simple logistic regression (regression) are used for SNP selection.
Based on 300 random splits of data into training and test sets. The training set size is 600, 1000,
and 1400, from the left to the right.
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Figure 4: Scatterplot of the prediction error rates for predicting “both MS and Hypertension” and
“otherwise”, when the logistic ANOVA (ANOVA) and the simple logistic regression (regression)
are used for SNP selection. Based on 300 random splits of data into training and test sets. The
training set size is 600, 1000, and 1400, from the left to the right.
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