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Abstract

This research presents three works all related by the subject of third-order distor-

tion reduction in nonlinear circuits. Each one is a novel extension to previous

work in that branch of electronics literature. All three follow the procedure of

presenting a novel algebraic proof and following up with simulations and/or

measurements to confirm the theoretical result. The works are generally themed

around nonlinear low-frequency bipolar transistor circuits.

Firstly, an investigation is conducted into a well documented effect in bipolar-

junction transistors (BJTs) called inherent third-order distortion nulling. This

effect is shown to be a fundamental result of the transistor’s transfer function

acting upon an input signal. The proof of a single BJT emitter-follower amplifier’s

inherent null is examined which is well documented in the literature. This

forms the basis for a novel extension in Darlington transistors where theory

suggests the third-order null occurs at double the collector current of a single

BJT. Discrete measurements of a CA3083 transistor array are undertaken and

compared with theory and simulation data. These measurements confirm theory

with reasonable accuracy.

A temperature and process variation independent bias circuit is developed to

solve one issue with using third-order distortion nulling. This work is interesting

in that it branches into series resistance compensation for translinear circuits

and stands as a useful circuit in its own right. Using stacks of matched forward-

biased semiconductor junctions which conform to translinear conditions, a

bias current can be generated which theoretically removes temperature and

series resistance dependence on the particular BJT used. This proves useful

for the previous work in distortion nulling, but also allows direct and accurate

measurement of series resistance. Again, simulation and measurement data is
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obtained from discrete measurements of the proposed circuit, and the results

conform with theory to a reasonable degree.

Lastly, this work presents the analysis of a cascoded-compensation (Cas-

comp) amplifier. It presents the first fully non-linear derivation of the Cascomp’s

transfer function and its associated harmonic and intermodulation distortion

components. The derivation reveals an interesting characteristic in which the

third-order intermodulation distortion has multiple local minima. This charac-

teristic has not yet been presented in the literature, and allows better optimisa-

tion of Cascomp amplifiers in any application. Again, this characteristic and its

potential benefits are confirmed with simulation and discrete measurements.

Observations of the presented works are discussed and built upon in the last

chapter. This leads to suggestions on future research topics branching on from

these works.
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1
Outline

All electronic circuits are inherently nonlinear. Both passive and active compo-

nents are often assumed linear because their nonlinearity is extremely subtle

and goes unnoticed. However, due to rising demands on technologies where

bandwidth is at a premium, circuit component’s subtle nonlinearity can start

to become significant. As more sophisticated telecommunications systems are

developed, increased performance is required from their amplifying stages. Un-

fortunately, nonlinearity degrades the performance of these systems. Engineers

therefore follow strict guidelines defining the levels of linearity and efficiency

that an amplifying stage needs to achieve. Power amplifier design has a heavy

focus on these two parameters.

Some relevant applications where the reduction of nonlinearity is paramount

include Doherty power amplifiers for use in wireless communication networks

[1] and heterojunction bipolar transistor (HBT) power amplifiers for use in wire-

less communications networks [2]. Both examples aim to increase linearity

and efficiency through optimising the topology and the semiconductor device’s

transfer characteristics. Of course, nonlinearity is an important parameter in

1
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many other fields of amplifier design. An example is analog-to-digital converters

where voltage level shifts due to distortion [3]. The work in this thesis mainly

focuses on nonlinearity in amplifiers and techniques to reduce distortion.

Common methods of distortion reduction in amplifiers generally fall into

three categories; feedback, feedforward, and predistortion. Each offers its own

advantages and disadvantages. A designer will generally consider all specifica-

tions imposed on the amplifier design, and choose the most suitable method. In

modern radio-frequency applications, predistortion techniques dominate ampli-

fier design in wireless communication systems due to its relative simplicity and

low-cost. This is also partly due to power amplifiers operating close to compres-

sion. Predistortion excels at canceling distortion due to the compression effects

of a semiconductor device and power amplifiers typically press this boundary

[4]. However, predistortion still has its disadvantages so modern designs tend to

combine and synergise different methods of distortion reduction.

This thesis presents a number of ideas and experiments related to the reduc-

tion of nonlinearity in different topologies of bipolar transistor amplifiers. The

distortion of interest is weakly nonlinear which is a major focus in engineering

literature surrounding modern radio-frequency and microwave amplifier design.

Strong distortion components such as clipping are neglected in this work. Each

of these ideas is expected to be a useful and novel contribution to their respec-

tive literature. Distortion reduction techniques for bipolar technologies are not

as popular due to the heavy use of field-effect devices in industry. However,

heterojunction transistors find use in many applications where distortion is

required to be minimised. Because bipolar device models translate accurately

into heterojunction devices models, these ideas translate well into the literature.

1.1 Thesis Motivation

The three major works in this thesis are tied together under the general theme

of distortion in amplifiers and circuit techniques which reduce it. However, the

motivation for each is rather distinct and not necessarily related to the other

works. This section describes the motivation for the three works in chapters 3, 4,

and 5 respectively and then defines the specific aims and goals of each.
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1.1.1 Third-Order Distortion Null

A long-known characteristic that occurs in single bipolar transistor amplifiers is a

minima or null appearing in its third-order distortion component. This has been

addressed in the literature for a long time, but due to the characteristic occurring

at low bias currents, the effect isn’t useful in many cases. Amplifier designers

often want to push bias current as high as possible, for example to increase

the frequency performance of the device. Unfortunately, this is in conflict with

utilising the distortion null for increased linearity, hence the characteristic is

generally not useful.

One could make the characteristic useful if it could be made to occur at higher

bias currents. This work focuses on analysing the characteristic in a different

configuration of bipolar transistors, such that the third-order distortion null

occurs at a higher bias current.

1.1.2 Translinear Extraction

Following on from the previous work in utilising the distortion null in bipolar

devices, it is observed that a limitation of using this null is its dependence on

temperature and series resistance variation. A method is required for removing

these dependencies from a bias current that is driving a bipolar device. The

literature shows few practical entries on methods related to this.

Temperature dependence can be dealt with by invoking the translinear prin-

ciple, for example the bandgap voltage reference circuit that produces a tem-

perature independent voltage [5]. Based on this principle, one can develop a

bias circuit to fit the criteria required for the distortion null. This work focuses

on developing a bias circuit that rejects temperature dependence and series

resistance variation by utilising the translinear principle.

1.1.3 Cascoded Compensation

Agilent Technologies has expressed interest in understanding a cascoded com-

pensation (Cascomp) amplifier and exploring techniques to increase its perfor-

mance. The company produces many commercial HBT amplifier products for

use in wide-band applications, and they are considering an HBT Cascomp ampli-
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fier as an alternative topology. Unfortunately, the conventional Cascomp setup

does not meet the gain and linearity requirements to justify further research, but

an analysis and implementation which shows better gain and linearity perfor-

mance would be valuable to them.

In this work, a more rigorous method of analysing the nonlinearity of the

Cascomp amplifier is explored. This leverages the fact that the current literature

on the Cascomp amplifier does not consider all sources of nonlinearity.

1.1.4 Aims and Goals

Here, the initial goals of the three novel pieces of work are summarised. These

are:

1. Extend an analysis of bipolar transistor nonlinearity to the Darlington

configuration.

2. Develop a biasing technique that compensates for temperature and series

resistance variation.

3. Develop a full nonlinear analysis of a cascoded compensation amplifier.

Leading on from these goals, each chapter may explore some topics such as pa-

rameter optimisation, impact of second-order effects and practical application.

1.2 Thesis Outline

This work is divided into six chapters:

Chapter 2 describes the associated background knowledge the work has used.

It focuses on general concepts related to all works in this thesis. This includes

the basis of distortion and the different types that manifest in amplifiers. The

different measures of these distortion types are also defined. Bipolar transistor

models are necessary to theoretically predict distortion. Hence, the two most

common device models are described and are used for the majority of this

work. The parameters of the bipolar models which describe the nonideality of a

transistor are defined and discussed. Common distortion reduction techniques

are also identified and explained.
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Chapter 3 introduces the concept of an inherent third-order intermodu-

lation null in a single bipolar transistor amplifier. This concept is reasonably

well established in the literature, however we re-define this concept using a

proposed derivation method. It is shown that this method agrees with existing

derivations. This method is then used to theoretically show the inherent null

occurs in Darlington transistors. The effect is confirmed with simulations and

measurements.

Chapter 4 presents the concept of the translinear principle. Following on

from the last chapter, third-order distortion nulling requires a bias circuit which is

independent of temperature and of process variation in the transistor’s intrinsic

and extrinsic resistances. The translinear principle is utilised to develop a circuit

which can accurately bias a common-emitter amplifier in its inherent third-order

null. The theory of this bias circuit is presented and it is shown how different

emitter-ratios can be used to cancel series resistance effects. A circuit design is

developed and investigated based on a BiCMOS technology. Measurements and

simulations are presented regarding its operation.

A Cascomp circuit is investigated in Chapter 5. A leading RF amplifier design

company has expressed interest in understanding this circuit to a higher degree.

Up until this point, the literature has assumed a linear relationship between the

main and error amplifiers of the Cascomp. This chapter describes a new method

for deriving the transfer function of a Cascomp amplifier. A new nonlinear trans-

fer function is presented and it is shown that new characteristics of the Cascomp

arise in the third-order distortion components. This was previously masked

by the linear assumption used in the literature. These new characteristics are

analysed with simulations and measurements. Conclusions are drawn regarding

the newly found characteristic and the amplifier transfer function’s accuracy.

The research is concluded in Chapter 6. Observations are made on potential

future work regarding all three of the presented circuit techniques.

1.3 Original Work

The work presented in this thesis resulted in a number of publications. Two con-

ference papers where presented and published; one national, one international.

A contribution was made to a further conference paper as well. A journal paper
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regarding the Cascomp work has also been accepted for publication.

List of Publications:

• Balsom, T., Scott, J. & Redman-White, W.. (2011). “Third–order nulling

effect in Darlington transistors”. In Proceedings of the 18th Electronics

New Zealand Conference, ENZCon 2011, Massey University, Palmerston

North, 21-22 November 2011, pp. 82-86.

• Balsom, T., Redman-White, W., & Scott, J. (2012). “Bipolar amplifier bias

technique for robust IM3 null tracking independent of internal emitter

resistance”. 2012 IEEE 55th International Midwest Symposium on Circuits

and Systems, vol 55, pp. 606-609.

• Jull, H., Balsom, T. & Scott, J. (2012). Cascomp BJT Amplifier vs. traditional

configurations. Paper 97, Proceedings of The 19th Electronics New Zealand

Conference (ENZCon), Dunedin, New Zealand, 10-12 December, 2012.

• [Accepted for Publication] Balsom, T., Redman-White, W., & Scott, J. (2012).

“Analysis of Circuit Conditions for Optimum Intermodulation and Gain in

Bipolar Cascomp Amplifiers with Non-Ideal Error Correction” (2014) IET

Circuits, Devices & Systems.



2
Introduction

Three novel works are described in this thesis, tied together under the com-

mon theme of distortion reduction. Hence, each three works in the following

three chapters contain their own literature reviews and background information

that is directly relevant to its work. This introductory chapter is structured such

that it acts as a linking chapter, giving context and background for the following

novel works. It defines the fundamental concepts around distortion reduction

for those unfamiliar with the topic. It also presents a general literature review

on modern distortion techniques that are not directly relevant in each of the

following chapters.

To begin, this chapter introduces a base definition for distortion and de-

scribes why it is an important research topic in modern electronics. This is

followed by definitions of common measures of distortion which are used in

the following chapters. The chapter then outlines the fundamental transistor

models and their application. Also discussed are the non-idealities of BJTs and

their impact on distortion through the device models. The chapter then presents

a review of modern literature associated with distortion in amplifiers.

7
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No distortion  

Linear distortion  

Linear distortion  

Nonlinear distortion  

Nonlinear distortion  

Figure 2.1: Linear and Nonlinear distortion waveforms. The right-hand col-
umn is the result of passing a pure square/sine wave through the common
electronic transfer functions represented in the middle column. Waveform
1 shows no distortion. Waveform 2 and 3 show linear distortion through a
high-pass and low-pass filter respectively. Waveform 4 and 5 show nonlinear
distortion through nonlinear transfer functions.

2.1 Definition of Distortion

As a signal passes through any electronic component it has some transfer func-

tion imposed on it, modifying the output signal from its original state. This is the

definition of distortion in its simplest form. In order to give this definition any

practical meaning we separate distortion into two categories, linear and non-

linear. Nonlinear distortion of a signal is identified by an event which adds new

frequency components into the output signal. Linear distortion does not add

new frequency components, but rather changes the size or ratio of the original

frequency components. Graphical representations of both types are shown in

Fig. 2.1.

Nonlinear distortion can further be separated into two sub-categories, strong

and weak nonlinear distortion. Strong nonlinear distortion arises from gross

changes to the output frequency spectrum, namely clipping or device saturation.

This area has been well covered in the literature [6]. Weak nonlinear distortion

arises from slight changes to the output frequency spectrum, generally produced
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by the transfer function of active devices. The generated distortion tones are

orders of magnitude smaller than the input signal’s fundamental frequency, but

not so small as to have an insignificant impact on the system. The following

works have a major focus on this category of distortion. So for simplicity the

general term of distortion will refer to weak nonlinear types of distortion.

Distortion is a major focus when it comes to amplifiers in modern electron-

ics. Power amplifiers (PA) are regularly used in modern telecommunication

systems with the purpose of amplifying a signal to be transmitted through an

antenna. Examples of major driving technologies for this type of system are

wireless local area networks (WLAN), cellular devices, and global positioning

systems (GPS). When designing PA’s the biggest design consideration can be the

trade-off between power efficiency and linearity of the output signal. High power

efficiency is required as a PA generally has to drive an antenna at high power lev-

els, resulting in large amounts of power being drawn from the supply. Increasing

efficiency reduces operating costs and extends performance capabilities of the

wireless device. Nonlinearity effectively causes transmission error in the system.

Typically a system operates in a limited transmission band and a decrease in

linearity causes the distortion components of a signal to spread into neighboring

transmission channels. Most systems will attempt to filter signal nonlinearity

out before transmission but filters are not perfect and fail to filter frequency

components close to the source frequency. Hence, to achieve optimal linearity

in the system while not trading off other desired characteristics of transmission

system, other techniques must be used to minimise distortion. This gives rise to

much of the amplifier designs today, which aim to reduce an amplifier’s weak

nonlinear distortion inherently in the circuit design.

2.2 Measures of Distortion

To accurately evaluate an amplifying stage we employ different measures of

distortion. Each distortion measure is useful for specific applications but may

not be useful in others. All measures are grounded by Taylor’s Theorem, which

states that any function can be represented as an infinite sum of the function’s

derivatives. In electronics, we often use the Maclaurin Series (a Taylor series

centered around zero) to describe nonlinear devices as we are interested in
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alternating current (AC) centered around a direct current (DC) bias. In weakly

nonlinear distorting systems we can assume that the DC bias is the center of

the input and output signals, therefore making our series expansion derivatives

centered around zero. This makes the use of a Maclaurin series valid. We also

assume that the system is operating in steady-state to avoid complex analysis

of the start-up characteristics. This allows the less complex analysis of system

transfer characteristics.

Let us consider a general transfer function, y , to be some function of x ,

y = f (x ). (2.1)

Taylor’s theorem allows us to replace the function applied to x with the following

form,

y (a ) = f (a )+ f 1(a )(x −a )+
f 2(a )

2!
(x −a )2 +

f 3(a )

3!
(x −a )3 + ... (2.2)

where f (x ) is expanded around the point x = a . Note that the series is truncated

to the third-order for simplicity. Using a Maclaurin series allows us to simplify

this to be

y (0) = f (0)+ f 1(0)x +
f 2(0)

2!
x 2 +

f 3(0)

3!
x 3 + ... (2.3)

Since the derivatives are now constants with x going to zero, they can be treated

as such. One more step of simplification allows the description of a transfer

function to be written as

y = a0 +a1x +a2x 2 +a3x 3 + ... (2.4)

where an is the nth-order constant describing the magnitude of each term. These

are often called the coefficients of the expansion. This form allows the coeffi-

cients to describe the magnitude of each term in a simple manner with an con-

taining the factorial along with the derivative term. Note that if the coefficients

a2 and higher are zero, then the system is linear.

Each coefficient can be obtained using

an =
1

n !
d n y

d x n

�

�

�

�

�

x=0

(2.5)
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where again y = f (x ) is the transfer function.

Due to the fundamental nature of signal transmission, sinusoidal waves are

almost always used as an input to amplifying systems. Using Fourier theory, we

know that any sinusoidal signal can be represented by a power series of pure sine

or cosine signals. This law, combined with Taylor’s theorem allows an accurate

description of distortion in all systems.

2.2.1 Harmonic Distortion

A fundamental result of distortion in nonlinear circuits is the generation of

frequency components in the output signal which occur at integer multiples

(harmonics) of the input frequency. This is called harmonic distortion, occurring

due to a single sinusoidal input frequency.

Let a time-variant input function for an amplifier, x (t ), be defined as a pure

sinusoidal wave

x (t ) = A1 cos(ω1t ). (2.6)

Substituting this function into Eq. 2.3 for a generalised transfer function will yield

a series of coefficients describing the magnitude of the harmonic distortion terms

in the output signal. In the interest of simplicity, this is commonly truncated

after the third-order term and higher order terms are assumed negligible. This

derivation yields the following,

y = a0 +
a2A2

1

2
(2.7)

+

�

a1A1 +
3a3A3

1

4

�

cos(ω1t )

+

�

a2A2
1

2

�

cos(2ω1t )

+

�

a3A3
1

4

�

cos(3ω1t ).

Eq. 2.7 shows the fundamental output tone (occurring atω1), and the second

and third-order harmonic components (occurring at 2ω1 and 3ω1 respectively).

The bracketed term associated with each harmonic component is the term which

describes the magnitude of that frequency component. This is dictated by the
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transfer function the input signal is driven through, which set the coefficients, an .

These bracketed terms can be observed individually to obtain the magnitude of

any harmonic component that is of interest1. The two remaining terms describe

the DC component in the output signal.

A simple way to characterise the components of harmonic distortion in a

system is total harmonic distortion (THD). It is the ratio of the sum of harmonic

component powers compared with the fundamental component’s power. THD

is expressed as a percentage of distortion relative to the fundamental tone or in

decibels (dB). Mathematically, it is expressed as

T H D =

∑

PH D n

PF und
, (2.8)

where PH D n is the power of the nth-order harmonic, and PF und is the power

of the fundamental tone.

THD is a common measurement in high resolution data acquisition systems

and high-fidelity audio equipment. For such systems it is important that all

frequency components have minimal distortion, as it is not practical to filter the

output [7]. Hence, THD is used to give an average of the distortion contribution

of all harmonic components.

2.2.2 Intermodulation Distortion

Intermodulation distortion (IMD) is the distortion that occurs due to two or more

sinusoidal input frequencies. This measure is employed where the fundamental

tones of the input signal are required to be linear and the remaining spectrum

can be filtered upon receiving the signal. Unfortunately, the third-order inter-

modulation distortion components appear adjacent to the fundamental tones.

In telecommunication systems, transmission bands can be closely neighboring

each other in the frequency spectrum. Thus, third-order distortion components

can leak over into neighboring transmission bands causing unwanted interfer-

ence. As previously mentioned, this is difficult to filter because the components

occur close to the fundamental tones.

1Of interest to this work is the magnitudes of distortion components in transistor ampli-
fiers. The full derivation of the single tone distortion components using the Ebers-Moll transfer
function can be found in Appendix A.
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Figure 2.2: Frequency spectrum of harmonic and intermodulation tones
generated by a two input signal through a generic transfer function.

Consider an input created by two sinusoidal tones,

x (t ) = A1 cos(ω1t )+A2 cos(ω2t ). (2.9)

Again, substituting this into Eq. 2.3 yields second and third-order coefficients2.

Fig. 2.2 summarises the output signals frequency components (again truncated

to the third-order) for a generalised transfer function. The harmonic terms are

2The full derivation of the two tone distortion components in a transistor amplifier using the
Ebers-Moll transfer function can be found in Appendix A. This will make the coefficients specific
to the Ebers-Moll function compared with the generalised form in Fig. 2.2
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labeled as H Dn and the intermodulation terms I Mn for the nth-order power.

Again, the series expansion coefficients are an for the nth-order power. Each

coefficient shows the magnitude for each respective frequency component.

The intermodulation tones appear at different combinations of sums and

differences of the fundamental frequencies. Of particular interest are the third-

order components 2ω1 −ω2 and 2ω2 −ω1 which occur adjacent to the fun-

damental tones. As mentioned previously, these components are particularly

difficult to filter due to their position. For this reason, circuit techniques which

reduce third-order intermodulation distortion component are sought-after in

amplifier design.

2.2.3 Third-Order Intercept Point

Analysis of distortion performance in RF amplifiers is commonly measured by

the “intercept point” of the important frequency component relative to the fun-

damental component. When addressing the third-order distortion, this measure

is called the third-order intercept point (IP3). It is a purely theoretical position

in the amplifier’s operating state, where the third and fundamental components

become equal in terms of output power. Typically, the third-order frequency

component is used however the second and fifth order components are used in

some applications. This is due to the third-order component’s intermodulation

property where it manifests close to the fundamental tones, making it the most

significant distortion component in many cases. The benefit of this measure

is it gives a value which is independent of compression that begins to occur

due to device saturation. Therefore, system distortion characteristics can be

compared without the need to model compression characteristics. Figure 2.3

shows a graphical example of an IP3 point, where the dashed lines indicate the

gradients of the linear regions of each component. The intercept point of these

gradient lines indicate the IP3 point.

IP3 can be calculated by assuming that the linear region of the third or-

der component has a gradient of 3, and the linear region of the fundamental

component has a gradient of 1. These gradients are the result of plotting func-

tions of the form y = k x n on a log-log scale. When a log function is applied,

using basic logarithmic identities one can form the straight line equation as

log(y ) = k log(x )+ log(a ). Considering the form of a Taylor series expansion
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Figure 2.3: Graphical representation of third-order intercept point (IP3) on
a input power vs. output power plot for a generic amplifier.

describing the third-order component, one can see it matches the form y = k x n ,

hence n will be the gradient.

This means that an estimate can be made directly from a spectral analysis

of the output. Often, the IP3 is referred to the input or output power level.

Input-referred third-order intercept point (IIP3) uses the input power of the

fundamental tone. Output-referred third-order intercept point (OIP3) uses the

output power of the fundamental tone. OIP3 and IIP3 can be calculated using

the equations below,

O I P 3 = PF und +
∆P3

2
, (2.10)

I I P 3 = (PF und −G )+
∆P3

2
, (2.11)

where PF und is the magnitude of the output fundamental tone, G is the gain of

the amplifier, and∆P3 is the difference in magnitude between the fundamental

and the third-order components at the output.

Care must be used when using this measure. Eq. 2.10 assumes the power

measurements are taken at a position where the gradients are close to 1 and 3

respectively. This only occurs at lower input powers. At higher input powers, 5th

and higher order terms begin to affect the third-order component resulting in a

skewed gradients [8].



16 CHAPTER 2. INTRODUCTION

2.3 Distortion in BJT Circuits

The models commonly used to describe a BJTs transfer function are described

in this section. In particular, the focus is on how distortion is generated through

these models. This work is based around low-frequency input signals, however

we will also explore how these models change with higher frequencies. This

section aims to justify why low frequency will extend rather well into higher

frequency works. This is based on the heterojunction bipolar transistor (HBT)

and its close relationship to BJT operation.

2.3.1 BJT Models

In order to predict how a transistor circuit will operate, theoretical models are

used to describe the transfer of voltage or current from the input node to the

output node. Ebers and Moll invented the first practical large-signal model for a

BJT [9]. This was followed up by Gummel and Poon who extended the model to

include more subtle characteristics of a BJTs transfer function [10]. In modern

electronics, a further improved version of the Gummel-Poon model is used for

circuit simulation software, generally labeled as SPICE Gummel-Poon (SGP).

The classic mathematical model used for BJTs is the Ebers-Moll model. In its

simplest form, it is written as

IC = α f IS e
VB E
VT (2.12)

where IC is the collector current, VB E is the input signal, IS is the base-emitter

reversed biased saturation current, α f is the unity gain factor, and VT is the

thermal voltage (written as VT = nk T
q ).

The commonly used equivalent circuit for the Ebers-Moll model is shown

in Fig. 2.4. The equations which further describe this equivalent circuit can be

found readily in electronics literature.

The Gummel-Poon model extends the Ebers-Moll model to account for other

important phenomena in the transistor. For example, the transistor’s current-

gain being dependent on collector current, base-width modulation and high

level-injection [11]. It is more comprehensive than the Ebers-Moll model and

hence is used as the basis for most electronic simulation software like SPICE
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Figure 2.4: Large signal equivalent circuit for the Ebers-Moll model.
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Figure 2.5: Large signal equivalent circuit for the Gummel-Poon model.

(Simulation Program with Integrated Circuit Emphasis) [12].

The large-signal equivalent circuit used in the Gummel-Poon model is shown

in Fig. 2.5. Two extra diodes, with the currents IR E and IR C , show the reverse

currents when the transistor is under reverse-bias conditions. This model also

includes junction capacitances which will be covered later in the chapter.

The Gummel-Poon collector current for a forward-biased transistor is defined

as

IC =
IS

qb
e

VB E
VT −

IS

qb
e

VB C
VT (2.13)

where qb is the base charge to zero-bias base charge ratio. This ratio is described

by more complex equations (containing modeling for temperature and current
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Figure 2.6: Gummel plot showing the nonlinear variation of collector cur-
rent, IC , relative to base current, IB . This leads to the nonlinearity of current
gain and higher and lower collector currents.

gain non-linearity) which can be found in the original paper [10].

With the definition of the Gummel-Poon model stated, we now explore one

important phenomenon that the model considers over the Ebers-Moll model.

The current gain dependence on collector current is elegantly displayed by a

Gummel plot, which shows base-emitter voltage versus current for a BJT device.

This is seen in Fig. 2.6, which shows as collector current increases we observe a

nonlinear difference in the ratio of collector to base current.

Note that the region at mid-range currents is rather linear, and this is a fair

assumption for most BJT devices as the current gain will have minimal variation

in this region. This allows the use of simplified models when deriving distortion

theoretical products. In the Ebers-Moll model this is considered to be a linear

relationship. In some cases this nonlinearity in current gain must be considered

to achieve accurate operation in a BJT amplifier.

Of course, the two presented models only describe the saturation region

of operation while other equations are used to describe both the active and

cutoff regions. For this thesis, we are only interested in the saturation region of

amplification. There are also other more complex models that are used heavily

in industry. Such examples are the vertical bipolar inter-company model (VBIC)

and the MEXTRAM model. These models further account for the very subtle
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Figure 2.7: A typical single BJT transistor common-emitter amplifier used
for transfer analysis.

characteristics of a bipolar transistor.

2.3.2 BJT Distortion Characteristics

Combining the presented Ebers-Moll model with the previously presented dis-

tortion theory allows the prediction of BJT circuit distortion characteristics. Let

us consider the most simple BJT amplifier in the form of a common-emitter

amplifier, seen in Fig. 2.7.

The input signal contains both AC and DC components as in Eq. 2.14. This

is substituted into the Ebers-Moll model in Eq. 2.15.

VI N = A1c o s (ωt )+VD C , (2.14)

iC = IS e
A1c o s (ωt )+VD C

VT . (2.15)

The DC component of the input signal is separated out by simplifying Eq. 2.15

to be

iC = IC Q e
A1c o s (ωt )

VT , (2.16)

where IC Q equals the DC portion of the input signal (given by IC Q = IS e
VD C

VT ).

Using Eq. 2.4, a Taylor expansion is applied to Eq. 2.16 which yields the series
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expansion3 of the transfer function as

iC = I C Q + IC Q
A2

1

4V 2
T

(2.17)

+ IC Q

�

A1

VT
+

A3
1

8V 3
T

�

c o s (ωt )

+
1

4
IC Q

�

A1

VT

�2

c o s (2ωt )

+
1

24
IC Q

�

A1

VT

�3

c o s (3ωt ).

This equation describes the output distortion as a function of the input signal,

for a fundamental input tone occurring atω. The second and third harmonic

occur at 2ω and 3ω respectively and higher order terms have been truncated.

It is important to note that the distortion component’s position in frequency

is only dependent on the input signal frequency, while the magnitude of the

component is dependent on temperature, DC bias, and input signal magnitude.

It also depends on subtle BJT characteristics such as base-width modulation

which will be discussed later in the chapter. This derivation gives a good repre-

sentation of how distortion components are derived and how one can analyse

an amplifier’s transfer characteristics.

2.3.3 Effects of Frequency

A BJT’s physical structure contains parasitic capacitances which are created be-

tween the different structural layers of the device. From basic theory, it is known

that a capacitor’s impedance decreases with increased frequency. Therefore,

as input signal frequency increases, so does the effect of these capacitances

upon the device’s transfer characteristics. To understand this effect, consider

the updated Ebers-Moll equivalent circuit in Fig. 2.8, including the important

parasitic junction capacitances. C J E is the capacitance from the base node to

the emitter node, and C J C is the capacitance from the base node to the collector

node.

Consider the impedance looking into the base connection. If the impedance

3The full derivation of the single tone coefficients for a BJT can be found in Appendix A.
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Figure 2.8: Ebers-Moll large signal equivalent model of a BJT, now including
the two parasitic junction capacitances.

of these capacitances is low, then the input signal leaks through to the emitter/-

collector node, decreasing the effective input signal level. From fundamental

electronics theory we know that as frequency increases the gain of the amplifier

will decrease. At some point the gain of an amplifier will reach unity; a current

gain of 1 is reached. This is called the cutoff frequency, fT , and can be calculated

through Eq. 2.18. General purpose transistors have a fT of roughly 50MHz to

1 GHz.

fT =
1

2πCi e re
(2.18)

where Ci e is the capacitance seen looking into the input node, and re is the

resistance seen looking into the emitter [13].

Junction capacitances are also inherently non-linear. They can be described

by the functions below and a general plot is shown in Fig. 2.9.

C J E =
C J E 0

(1−VB E /φE )mE
, (2.19)

C J C =
C J C 0

(1−VB C /φC )mC
, (2.20)

where C J E 0 and C J C 0 are the capacitance values at zero-bias across the respective

junction,φE andφC are the base-emitter and base-collector barrier potentials,

and mE and mC are the base-emitter and base-collector gradient factors related

to the doping of the junction [11]. The non-linearity of the capacitances make
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Figure 2.9: Plot of junction capacitance versus junction voltage, showing
the nonlinearity of the capacitance at higher voltages.

the algebraic derivations of distortion far more complex at high frequencies and

hence it is ignored in a lot of cases. This includes most SPICE simulators which

instead approximate the capacitor’s nonlinear function to a simpler form.

In this work we focus on low-frequency application, so input signals used are

well below the cutoff frequency of a standard transistor. Applications requiring

distortion reduction still exist at low frequencies such as audio applications,

low-noise amplifiers (LNAs) and mixers. There also exists different transistor

structures which have far higher cutoff frequencies than a standard BJT, allowing

low-frequency distortion analysis to be sufficiently accurate and insightful.

2.3.4 Heterojunction Bipolar Transistors

The performance of BJT devices can be increased through modifications to the

base junction of the device. The base substrate can be built using differing

materials from the emitter and collector, such as silicon-germanium, indium-

phosphide or indium-gallium-arsenide. During manufacture, the base substrate

is graded with these materials such that the device’s bandgap is narrower at

the collector than the emitter. This has the effect of increasing the switching

speed, increasing current gain and increasing cut-off frequency of the device.

The resulting device is called a heterojunction bipolar transistor (HBT).

HBTs are an attractive technology for use in radio-frequency (RF) applica-

tions. Among other reasons, this is due to their extremely high frequency cutoff,

with literature confirming values well into the hundreds of GHz range [14, 15].
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Practically, a BJT and a HBT operate under extremely similar theoretical laws.

The Ebers-Moll equation will accurately describe the transfer function up until

the junction capacitances become non-negligible. Because of the high cutoff

frequency, distortion analysis is accurate up to very high frequencies [16]. Base-

width modulation and high level injection effects also have a decreased impact

in HBTs [17].

One drawback of using HBTs is the increased manufacture complexity and

cost. This is due to the multiple layers of diffusion required to fabricate the

devices base junction. HBTs are only used in IC technologies and are rarely

found as a discrete device.

2.4 BJT Non-idealities

Non-idealities of a BJT are characteristics of the device which skew the transfer

function away from the idealised Eq. 2.12. Sometimes, a circuit design can force

some system-wide condition in which a nonideality has a negligible impact, for

example a bandgap voltage reference rejects changes in temperature. However,

this is not always possible. It then becomes important to account for the impact

of nonidealities in a system.

Here we will summarize five specific non-idealities that can skew the transfer

function and affect distortion in a BJT device. Each one needs to be considered

in order to make accurate predictions of distortion levels in amplifiers.

2.4.1 Temperature

Temperature is a fundamental factor in the operation of a semiconductor de-

vice. This stems from the semiconductor physics of a PN junction, in which

the junction’s built-in barrier voltage is a function of temperature [6]. It has a

direct impact on the Ebers-Moll model in Eq. 2.1 through the thermal voltage,

VT , which increases proportionally with temperature. Second-order effects also

occur due to device parameters having a dependence on the barrier junction volt-

ages. This impacts model parameters such as the saturation current IS , junction

capacitors, and the current gain [11].

There is little one can do to minimise temperature variations in a single
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Figure 2.10: Ebers-Moll large signal equivalent model of a BJT, now includ-
ing parasitic resistances.

semiconductor component. However, some circuit design techniques lessen

the impact of temperature, and in some cases make it negligible for a certain

parameter. For example, using integrated transistors on an IC as opposed to dis-

crete transistors, minimises the temperature difference between each transistor.

This occurs because the displacement between each semiconductor junction is

minimised in an IC therefore the junctions will experience a smaller temperature

difference relative to each other. Consequently, the transistors are very close

in terms of their temperature dependent parameters (current gain, saturation

current etc) and a temperature resistant circuit can be designed around this

relationship. One example is the centroid circuit layout [18].

2.4.2 Parasitic Resistance

The imperfect structure of a BJT device means that there are some unwanted

resistive components between the terminals of the device. This can be caused by

the resistivity of the semiconductor material or the bonding and connections of

the device package. These are often termed the parasitic or extrinsic resistances

of the transistor and can be modeled by the inclusion of extra base, collector,

and emitter resistances. Fig. 2.10 shows the Ebers-Moll equivalent circuit model

adjusted to include parasitic resistances.

If parasitic resistances are large enough, they can change the operation of an
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amplifier. Consider an applied DC base-emitter voltage for the device in Fig. 2.10.

This voltage must now be divided between the base-emitter junction and the

emitter and base resistors. This changes the DC operating point of the amplifier.

The emitter resistor has the effect of degenerating the amplifier (commonly

called emitter degeneration in the literature) which linearises the amplifier and

reduces its gain. As shown later in the chapter, this is the implementation of

feedback inside the packaged device.

Other BJT parameters depend on these parasitics. For example, at high

frequencies, rB , sets the input noise current which is important for low-noise

applications [16]. Other parasitic resistances also exist in a BJT device. However

for the purposes of this work they will have a negligible impact and therefore

can be excluded.

2.4.3 Base-width Modulation

Base-width modulation is the name given to the dependence of collector current

on collector-emitter voltage. It is also commonly called the Early effect. The

impact of this dependence is perhaps best represented as an IC vs. VC E plot,

shown in Fig. 2.11. Ideally, a transistor should maintain a constant collector

current IC for any value of collector-emitter voltage VC E while it is operating in

the active region. However, as VC E increases, the reverse-bias voltage across the

collector-base junction also increases. In turn, this increases the junction’s deple-

tion region and decreases the effective base width of the device. We know from

semiconductor physics that saturation current (and therefore collector current)

will increase proportionally with base width [6]. Hence, the collector current will

vary proportionally with collector-emitter voltage in the active region.

The effect can be modeled by including a term in Eq. 2.12. This is seen below

in Eq. 2.21

IC = IS e
VB E
VT

�

1−
VC E

VA

�

, (2.21)

where VA is the Early voltage (shown on Fig. 2.11). Generally, discrete transistors

have an Early voltage of roughly -50 V to -100 V. The effect can become negligible

as the Early voltage increases and VC E decreases.

Following from the series expansion of a common-emitter amplifier in Eqs.

2.15-2.17, we can include base-width modulation resulting a new term bound to
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Figure 2.11: Graphical representation of base-width modulation, show-
ing the dependence of collector current on collector-emitter voltage for a
number of different VB E values.

the distortion components. The DC quiescent current now contains the base-

width modulation effect.

iC = I C Q + IC Q
A2

1

2
(2.22)

+ IC Q
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3A3
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T
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s i n(3ωt ),

where IC Q is now defined as

IC Q = IS e
VD C

VT

�

1+
VC E

VA

�

. (2.23)

From this derivation, we see the base-width modulation effect can be considered

as a scale factor to the DC current, therefore having the effect of scaling the

generated distortion components. It is commonly modeled as a resistor in

parallel with the device output ports.

Consequently, due to the scaling of IC Q from base-width modulation, the
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Figure 2.12: Graphical representation of the nonlinear variation in current
gain.

current gain of a transistor is also scaled. This is modeled by Eq. 2.24 below.

β = β0

�

1+
VC E

VA

�

. (2.24)

In some cases the entire effect is simply ignored and its impact assumed

negligible due to a sufficiently high Early voltage. Good examples of this are

many of the upcoming references [19, 20, 21, 22].

2.4.4 Nonlinear Beta

Previously, Fig. 2.6 introduced a Gummel plot which shows a generalised rela-

tionship between base and collector current in a BJT. The ratio of the two currents

represents the current gain, β . Observing this plot shows a clear nonlinear re-

lationship between the two currents. If current gain is plotted, the result is a

nonlinear curve as shown in Fig. 2.12. This nonlinearity stems partly from low

and high current effects in the semiconductor junctions.

At low base currents, we observe a deviation from the expected log-linear base

current. This is observed in Fig. 2.6 at the bottom end of the base current trace.

This is caused partly by a recombination process occurring in the base region. As

electrons travel into the base junction, some combine with the majority carriers

of the region (holes for a NPN device). Usually, the base is thin and lightly doped



28 CHAPTER 2. INTRODUCTION

so the impact of base recombination is small. However, at low base currents the

effect becomes non-negligible. This results in a nonlinear current gain at low

base/collector currents [6] [11].

At high current levels, both the base and collector come under the effect

called current crowding. Bipolar devices generally have a very thin base layer

and a current will experience an intrinsic non-negligible base resistance as it

travels through this region. This causes a non-uniform distribution of current-

density in the emitter region, resulting in current crowding at the edges of the

emitter junction. As current increases to high levels, the effect manifests as a

decrease in the log-linear trend of collector current, and hence a nonlinear beta

at higher currents.

Finally, both currents are modified by high-level injection and by base-width

modulation [11]. High level injection effects can be assumed negligible if the

devices are not operated at high currents.

This current gain nonlinearity is important to consider when devices in the

same circuit are operating at different bias currents. This introduces error into

output of the circuit due to the discrepancy in current gain between the two

devices.

2.4.5 Process Variation

Unfortunately, transistor fabrication processes are imperfect and result in semi-

conductor devices having slightly different structural parameters. In particular,

the current gain and saturation current parameters can vary due to mismatches

in the emitter-area ratios [23]. Generally, smart fabrication techniques are em-

ployed to minimise the mismatch between devices in each fabrication run. This

is a fundamental reason why integrated BJT circuits are more accurate compared

to discrete circuits. In an IC, each transistor is fabricated on the same wafer

under the same conditions, resulting in minimal variation of emitter-area ratios.

This intra-wafer variation is called mismatch variation, and generally results in

no more than 1-2% variation in modern processes4.

The parameters of all devices on an entire wafer can also vary from that ex-

4These values are the authors estimates based on various references [24, 25, 26] and personal
communication with the project supervisors [27, 28]. Exact process variations are dependent on
factors such as the total area of the circuit layout.



2.4. BJT NON-IDEALITIES 29

pected from the fabrication process. Commercial devices state fixed parameter

values on their respective datasheets and SPICE models. Therefore, measure-

ments can have some variation from what theory and simulation predict, due

to entire fabrication runs varying slightly from their stated norms. This inter-

wafer variation is called absolute variation, and generally results in no more

then 20% variation in modern processes. Note that the percentages for both

variation types are dependent on the specific fabrication process, and the size of

the device being fabricated.

Both types of process variations can have varying degrees of impact depend-

ing on the application. For example, in translinear bias circuits both can result

in non-negligible errors in the circuit [29]. A bias current is required to be a

certain value, and both types of variations can shift the current. Conversely, in

an differential amplifier circuit fabricated on a single wafer, absolute variation is

not impactful in terms of input offset voltages. This offset is only determined by

the mismatch between specific devices, and hence only the mismatch variation

[23].

Consideration of both process variations is important for making a circuit

design commercially viable. Indeed, any circuit can be trimmed or adjusted

post-production to compensate for process variation. However, this results in a

less cost-effective product, or more complex implementations for the consumers.

Considering process variation during the design of a circuit is good engineering

practice.

2.4.6 Summary of Non-idealities

This section summarises what are considered the main non-idealities involved

with the following works. Indeed, there is a large amount of literature based

around the subtleties of transistor transfer characteristics which is not covered

here. The presented theoretical models only account for the most basic non-

idealities. Furthermore, the SGP model does not account for all BJT effects such

as self-heating [17]. So it is possible works based on these models have small

inaccuracies.

We justify the use of these models by using a process of theoretical predic-

tion, simulation, and physical measurement. By comparison of measurement

and simulation back with theory, the total inaccuracy of theory in inherently
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Technique Linearisation Bandwidth Efficiency Complexity

Feedback Good Narrow Medium Medium

Feedforward Good Wide Low High

Predistortion Medium Medium High Low

Table 2.1: Comparison of linearisation techniques in amplifiers.

quantified as a whole. This process follows three steps:

• Theoretical prediction using the Ebers-Moll model. This gives a general

idea of what to expect from a circuit.

• Simulation using an advanced model like SGP. This gives an accurate eval-

uation of the circuit characteristics.

• Measurement of the circuit. This confirms the accuracy of the theoretical

and simulated predictions.

If each step matches the other steps to a reasonable degree, we can be sure the

unaccounted non-idealities have a negligible impact on the system.

2.5 Linearisation Techniques

By understanding the models of the semiconductor devices, one can develop

techniques which manipulate the characteristics of the models in order to lin-

earise the amplifier’s transfer function. This section briefly describes three com-

mon methods used in modern BJT amplifiers. Each technique has certain ad-

vantages and disadvantages [30]. These are summarised in Table. 2.1.

2.5.1 Feedback

Feedback can broadly be defined as the act of taking a portion of the output

signal and adding it back into the input signal. This can have a positive effect

of correcting the input signal such that the output signal has smaller distortion

components. In terms of amplifiers there are four common types of feedback
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Figure 2.13: Left: Bode plot for a generic amplifier. Solid line shows open-
loop gain of a generic amplifier (no feedback). Dashed line shows feedback
added to the generic amplifier, decreasing gain and increasing bandwidth.
Right: General configuration of a feedback topology using a feedback ele-
ment to adjust the input dependent on the output.

amplifiers; current, voltage, transconductance and transresistance. These are

defined as such based on what they sample at their output and sum at their input

(more detailed explanations of these types is readily found in the literature [6]).

When considering BJT amplifiers, feedback is commonly separated into

two categories; series and shunt feedback. One common technique is to use

series feedback in the input loop of a common-emitter amplifier. This is also

called resistive emitter degeneration in the literature. By adding a resistor in

series with the active junction of a transistor, the input signal voltage is divided

between the nonlinear junction and the linear resistor. This can be thought

of as a current sample of the output current which is then fed back into the

input signal as a voltage. This has the effect of reducing the magnitude of all

frequency components in the output spectrum up until the corner frequency of

the amplifier. Effectively it is a trade-off in gain for decreased output distortion

components. One other beneficial effect is the small increase in bandwidth of

the amplifier, due to the global compression of all frequency components. Fig.

2.13 shows the effects of feedback.

At high frequencies, the amplifier’s loop gain must remain low enough to

maintain stability in the amplifier. For this reason, feedback is only used in

small amounts in some broadband and RF amplifiers. Often a filter is used at

the amplifier input to maintain stability which further reduces the amplifier

operational bandwidth.
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Figure 2.14: General configuration of a feedforward topology using both a
main and error amplifier stage.

Feedback amplifiers suit applications where gain is not important or in ex-

cess. A circuit design can then trade it off for increased linearity or bandwidth.

However, sometimes gain is important so designers look for other methods of

distortion reduction. Compared to other techniques, feedback still results in a

rather narrow band of stable operation which is another drawback of feedback

[4].

2.5.2 Feedforward

Feedforward can broadly be defined as the act of comparing the input and

output signals of an amplifier, modifying a portion of it to have a complementary

distortion characteristic, and recombining it with the main amplifier’s output

signal. The error correction occurs after amplification of an input signal. A

generic circuit setup will include two stages, a main amplifier and an error

amplifier. The main amplifier is optimised for gain while the error amplifier is

optimised towards canceling the main amplifier’s distortion tones. A general

configuration of feedforward linearisation is shown in Fig. 2.14. This figure

shows the important stages in the distortion characteristics in both the main

and error amplifier. Note that the time delays and signal couplers can change

depending on the amplifier topology.

Ideally, this technique does not reduce gain and is unconditionally stable

leading to its operational bandwidth being high. This makes it an attractive
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technique when compared with feedback systems. Unfortunately, this method

suffers from some drawbacks. Amplifier designs are more complex and con-

tain multiple components and amplifying stages. Therefore power efficiency is

low due to the need for multiple amplifiers. The design must also account for

gain and phase shift issues due to the input splitting of the signal. Finally, this

technique can be sensitive to mismatches between the two amplifying stages

potentially resulting in sub-optimal distortion and gain [4].

2.5.3 Predistortion

Predistortion is the creation of a complementary distortion characteristic to

that of the main amplifier’s distortion characteristic, without sampling the main

amplifier’s output. Consider two amplifying stages operating in series. The

distortion components of each stage will constructively interfere. By inverting

the phase of one of the amplifiers these distortion components now destructively

interfere, resulting in reduction of the overall distortion component.

Predistortion has become a fundamental building block in PAs in the telecom-

munications industry. Designers aim to operate the PA with an optimal compro-

mise between linearity and efficiency. Using predistortion allows a PA to operate

at a higher power efficiency while maintaining close to the same linearity levels

because they can operate close to the amplifier’s compression point. Hence a

predistorter stage is generally used to cancel distortion arising from compres-

sion, not distortion inherent to the amplifier topology. The effect is shown in Fig.

2.15.

This linearisation technique is relatively simple, requiring fewer components

in its implementation and therefore lowering manufacturing costs. It easily trans-

lates into higher frequencies and can maintain a wide linearisation bandwidth.

Predistortion is best employed after the amplifier has been designed and its

distortion characterised. The predistorter circuit can then be tuned to cancel the

amplifier’s distortion. The disadvantages of predistortion include having only a

modest improvement compared with other techniques, and having problems

reducing multiple orders of distortion components. However, modern systems

employ complex techniques to reduce the impact of these disadvantages [4].

Commonly both a predistorting stage and feedforward are used together. For

this reason, definitions of predistortion can become blurred with that of feedfor-
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Figure 2.15: Left: Power input vs. power output plot for a generic amplifier.
Shows the original amplifier third-order relative to the fundamental. Right:
Shows the stages of predistortion. The three frequency spectrums show each
stages contribution leading to cancellation of the third-order components
in the final output.

ward. One example is implementing an extra control loop to adaptively adjust

the predistorter. The predistorter samples the output distortion components of

the main amplifier and adjusts the predistorter accordingly. This is the dominant

method of linearisation in modern RF PAs. Adaptive control of the predistorter

can be employed such that variation in the main amplifiers operating conditions

can be accurately compensated [31].

2.5.4 Harmonic Termination

Since distortion components occur at differing frequencies, they can also ex-

perience different impedances at an amplifier output. This means amplifiers

can be terminated on their load or source ends such that their harmonic output

components are suppressed. This is essentially filtering or bandpassing the

output signal such that the higher frequency components experience a higher

impedance path. This method is generally employed at higher frequency levels

where source and load impedances require impedance matching regardless of

distortion reduction.

Utilizing this requires a process called load pull. This process consists of

tuning the source and load impedances at each individual harmonic frequency

and mapping the performance of the device. The correct optimisation between
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source and load impedances can then be selected.

This process is generally employed on most RF amplifiers, alongside other

distortion reduction methods, however it is not specifically a linearisation tech-

nique of interest to this work. Nevertheless, it is commonly used in RF amplifiers

and hence is worth identifying.

2.6 General Literature Review

Due to the structure of this project, where three works are loosely related under

the theme of distortion, parts of the literature review are contained within each

chapter. Therefore, the reviewed literature that is specific to a certain work is

located in that chapter. Specifically, this section reviews the theoretical and

mathematical basis for describing linearity and techniques to increase linearity

while maintaining gain. The need for optimisation between these two parame-

ters demands a strong understanding of its fundamental causes and the methods

used to model distortion components in amplifying stages.

Academic literature yields many insights into describing linearity in transistor

devices. One well-known contribution to the literature is [32]who first presents a

Volterra series as a method of analysis for amplifier circuits. He further develops

this theory in a later paper [33]. This method follows a similar procedure to the

common Maclaurin series expansion. Furthermore, it allows signal delay to be

accounted for which is beneficial for amplifier systems with memory. Another

recent well-known work in understanding bipolar device distortion is [21]who

eloquently describes a mathematical basis for distortion in bipolar and MOS

devices, and also extends into distortion in differential amplifier topologies. This

work is often cited in literature when dealing with linearity.

High frequency distortion has also been well researched. Poon in [34] first

proposed grading the width of the collector in a bipolar device to increase lin-

earity at higher frequencies. Transistor layout techniques for low distortion at

high frequencies are presented in [35]which describes device parameters that

affect distortion and gain. In particular, the parasitic capacitance from base to

collector must be minimised for low distortion at higher frequencies. This is

done by optimising the epitaxial layer characteristics, to influence parameters

such as the Kirk effect, breakdown voltage, collector depletion region, and device
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gain. More modern work in [36] shows it is possible to link a device’s distortion

characteristics to its cutoff frequency. This work describes the underlying math-

ematics for high-frequency harmonic cancellation effects due to feedback from

distortion currents also acting upon the input impedance.

In recent times within area of distortion in bipolar devices, there has been

a significant amount of work regarding linearity in HBT devices. As shown in

[16, 17] these devices outperform BJTs to a significant degree. Hence these

devices get more attention in the literature regarding their inherent distortion

characteristics and distortion reduction methods in HBT amplifiers. One well-

known analysis is [37]which describes a fundamental basis for intermodulation

distortion in HBT devices. This follows the well-known Volterra series expansion

presented previously in [32] and derives the coefficients (kernels) for the second

and third-order distortion components based on HBT transfer functions. It

is noted in this work that distortion cancellation effects arise due to a HBT’s

base-emitter junction capacitance interacting with junction resistances. It is

expanded on in detail in [38]which describes the distortion components while

considering many extra device non-idealities.

Distortion reduction techniques which take different approaches in bipolar

devices also appear in the literature. Yoshimasu presents a linearizing bias circuit

for a HBT power amplifier [39]. This utilizes a second diode-connected HBT as

bias circuitry that slightly increases DC bias voltage as RF input power increases.

This results in a decreased gain compression as the DC bias adjusts dynamically

with input power. Other authors expand on this bias technique [40].

Today, there exists a wide variety of commercial amplifiers, all designed to

fit specific applications. Generally, the trade-off between gain and linearity is

always optimised, alongside frequency range, noise and other parameters. A

good example of a two products optimising for gain and linearity is the Maxim

MAX2601 [41] and MAX2232 [42]. The MAX2601 is a silicon bipolar transistor

aimed at delivering 1 Watt of RF power with a high degree of linearity for 900MHz

cellular applications. The topology is a single bipolar device with simple bias

circuitry used to control temperature variation. To contrast, a topology can

become vastly more complex when further specifications are required. The

Maxim MAX2232 is a narrow-band nonlinear 250mW linear power amplifier with

gain/thermal control, aimed at higher power gain for the 900MHz cellular range.
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The output amplifier stage is still a single silicon bipolar transistor, however the

package now contains three amplifying and conditioning stages with additional

circuitry to maintain the transistors bias conditions.





3
Third-Order Distortion Null

An interesting characteristic of the exponential transfer function of BJTs is a

local minima (or null) occurring in its third-order distortion product. The phe-

nomenon has been well documented by several authors and is described as

interesting, but not many references identifying its use in a practical application

have been found. The most probable reason for this is that the emitter resistance,

defined by device manufacturing considerations, positions the null at low bias

currents in comparison with those possible for a given device. This deprecates its

usage in most applications in favour of some other alternative. If one can force

the minima to occur at higher bias currents, then this characteristic becomes

more feasible as a distortion reduction technique. This is the motivation for this

chapter.

On a fundamental level, this characteristic extends into HBT devices as well.

This is based on the fact that the device physics of an HBT mimic BJTs rather

precisely up until device capacitances start to have a non-negligible impact [17].

HBTs operating frequency can easily reach 1-10 GHz before this starts to occur.

Because of these two factors, one can safely assume that low-frequency analysis

39
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Figure 3.1: A simple BJT amplifier showing the combination of intrinsic
and extrinsic resistances associated with series resistance.

is useful in the literature, up until extremely high frequencies are needed.

In this chapter the circuit conditions for a single transistor’s third order distor-

tion minima are outlined. Firstly, a review of the current literature surrounding

third-order distortion minima in bipolar devices is presented. The currently

accepted mathematical proof of a single BJT common-emitter amplifier is de-

scribed, and then this is extended to propose a novel proof of the same phenom-

ena in Darlington transistors. The new theory allows a prediction to be made

about Darlington common-emitter amplifiers, in that its distortion null occurs

at double that of a single BJT. The new theory is applied to a discrete amplifier

design to review its performance in a practical situation. Measurement data

are presented which confirm the relationship between a single BJT null and a

Darlington null.

3.1 Introduction

The third-order distortion null of a single BJT amplifier is a position in the tran-

sistor’s DC bias where the magnitude of third-order harmonics and distortion

products tend towards zero. The exact physical mechanism as to why the null

occurs is not clear in the literature. However the mathematical theory is rather
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rigorous. Detailed insight is provided by Reynolds [43], one of the first authors

of the phenomena, who states;

“An insight can be obtained, however, if one lets vr = ie r1. This

voltage appears across the emitter-base junction in series with, but

in opposition to vs . It appears that when the nonlinearities are acted

on by these two voltages they produce two components of third-

order diffusion currents which are opposed to one another. When

r1 is properly adjusted these two currents cancel. With r1 above or

below this critical value one component or the other dominates.”

In other words, when a series resistance voltage component, vr , (created by the

emitter current, ie , across the series resistance r1) matches a condition related

to the input source voltage, vs , acting across the transistor input impedance

(represented in the text as admittance, y12), a cancellation of the two resulting

third-order currents occurs. Generally, the series resistance is defined as the

resistance seen by the emitter current, which includes parasitic resistances and

the base resistance reflected through the base current of the transistor. An

equivalent circuit is represented in Fig. 3.1 where the series resistance is defined

as

RE E = RE (1+
1

β
)+

RB

β
(3.1)

where RE = re + r ′e and RB = rb + r ′b . These show the intrinsic parasitic resistor

combined with external resistors in the circuit. β is the mid-range current gain

of the transistor.

Reynolds is stating that, by analysing the third-order intermodulation prod-

ucts and including intrinsic resistances, it becomes clear a distortion null occurs

and is dependent on the transistor’s series resistance. Practically this means it

is possible to make single BJT amplifiers with reduced third-order distortion

components by either varying the emitter or base resistances.

3.2 Literature Review

From the prior introduction, we see that the theoretical third-order null is proven

to exist in early electronics literature such as [43]. This effect was actually cited
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earlier in time by [44] and [45]. However, these were brief analytical derivations

and did not go into depth as Reynolds did. There has been little research into

this characteristic until recently. [46] is the only other literature entry found in

that time period. This paper examines the same characteristic and its effects on

cross-modulation.

More recently, [21] presents an elegant review of distortion characteristics

where the nulling effect is again unveiled from analytical mathematics of distor-

tion in a bipolar device. Practical usage of the characteristic are presented in [47]

and [19]. The first shows analytical and simulated data of intermodulation char-

acteristics in bipolar common-emitter amplifiers. This is done at a frequency

of 100MHz and shows at higher frequencies, more error is introduced into the

null position in terms of collector current. The second paper shows similar work

done at a frequency of 50 MHz. The third-order intercept point of the amplifier

was shown to increase by more than 10dB in theory, and 7dB in experiment.

Aside from using the null as a distortion reduction method, there has also

been interest in using it as an accurate technique to measure the emitter resis-

tance of a BJT. One of the common methods requires forcing base current into

a single BJT, and measuring the collector voltage while holding the collector

current at zero [48]. This is commonly called the DC flyback method. It is a

simple and quick method of measuring emitter resistance, but can suffer from

temperature related errors in some transistor devices due to the high currents

required to make the measurement. The common alternative to the DC Flyback

method is high-frequency measurements of the H-parameters of the device,

which requires a more complex setup to make the measurements [49, 50, 51].

Estimating the series resistance using a bipolar device’s third-order null has been

shown to be accurate to one-tenth of an ohm [52], when compared with a more

complex impedance measurement using VNA extraction technique [37].

Considering the drawback of a distortion null requiring a low DC bias current,

a technique which increases the null to occur at higher bias currents would

be interesting and potentially valuable in designing an amplifier with optimal

linearity.
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3.3 Theoretical Proof

The proof for a null in a single BJT amplifier’s third-order distortion current can

be obtained by simple algebraic manipulation, which is reflected many times in

the literature [43]-[19]. From these works we find the condition for nulling can

be stated as

IC =
VT

2RE E
(3.2)

where IC is the DC collector current, VT is the thermal voltage and RE E is the

equivalent series resistance of the transistor. This can be approximated to not

include the source resistance RB if the current gain β of the BJT is large, lead-

ing to the RB
β term being removed from the series resistance in Eq. 3.1. Using

a transistor’s bias position as a distortion reduction technique is rarely used

practically in the literature, most probably because the null in a BJT occurs at a

small collector current. Modern amplifiers focus on efficiency as well as linearity,

leading to the DC bias current having a strictly defined value for maximum power

transfer to the load, or for maximum conversion efficiency for the amplifying

device. As an example, most commercial discrete BJTs have an emitter resistance

around 1 ohm. Taking VT as 0.0258 V we can calculate the IM3 null to occur at

an approximate collector current of 13 mA. This is too low for many applications

which will benefit from distortion reduction. Another obvious drawback is the

null condition’s dependence on temperature through the parameter, VT .

The upcoming novel work is heavily based on the mathematics of the single

BJT null. It seems appropriate to cover this proof in depth, such that it elegantly

leads into the following work. To begin the derivation, we define the circuit in

Fig. 3.2. The goal is to prove a local minima occurs in the third-order component

of the transistor’s transfer function. The general method is to use the transfer

function of the transistor, apply a power series expansion, and view the harmonic

coefficients which directly relate to the harmonic magnitudes in the output

signal. Note that all resistors contain both the internal and external components

of resistance for these derivations.

Firstly, a Kirchoff’s voltage loop is performed around the base-emitter loop
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Figure 3.2: A typical single BJT transistor common-emitter amplifier used
for transfer analysis. Each shown resistor is the total combination of internal
and external resistances.

of the circuit in Figure 3.2 such that,

VI N =
IC

β
(RB +RE )+VB E + IC RE , (3.3)

VI N = IC (
RB +RE

β
+RE )+VB E . (3.4)

It is known from the Ebers-Moll model that,

VB E = VT l n(
IC

IQ
) (3.5)

From our previous definitions, the base-width modulation effect is considered

to be contained inside IC . Substituting Eq. 3.5 into Eq. 3.4 and rearranging gives

VI N

VT
=

IC RE E

VT
+ ln(

IC

IQ
) (3.6)

where the series resistance term is defined as RE E = RB+RE
β +RE .

Using Eq. 3.6, one can rearrange to create a form suitable for deriving the

series coefficients of the transfer function. Placing an
IQ
IQ

term into the RE term
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allows us to define the equation W as a function of X,

W {X }= F X + ln(X ) (3.7)

where W = VI N
VT

, F =
IQ RE E

VT
and X = IC

IQ
. This transfer function for the BJT amplifier

is now in a form where we can compute the condition for first, second and

third order distortion components. Differentiating Eq. 3.7 gives these distortion

components as coefficients for a Maclaurin series. The series is of the form below,

up to the third order only as we assume that fourth order and higher terms are

negligible.

f {X }= A1X +A2X 2 +A3X 3. (3.8)

A1, A2, and A3 are the first, second and third order current gain coefficients

respectively. By differentiating Eq. 3.7 and inverting to make VI N (contained in

X ) the subject, the coefficients are found to be

d X

d W
→

1
1
X +F

(3.9)

d 2X

d W 2
→

X

X 2( 1
X +F )3

(3.10)

d 3X

d W 3
→

X (1−2X F )

(1+X F )5
. (3.11)

This inversion is required to make the derivatives of the form I
V , making them

transconductance terms. By considering each transconductance term as the

magnitude factor of each distortion component, one can evaluate any interesting

features of the distortion. The third order term in Eq. 3.11 contains (1−2X F ),

and clearly if 2X F = 1, a theoretical condition is reached in which the third order

distortion term equals zero. This is the cancellation condition that leads to the

third-order null occurring in BJT devices. One can manipulate the term in Eq.

3.2 to arrive at the condition commonly stated in the literature. Substituting in

the parameters for X and F results in Eq. 3.14, the nulling condition of interest.

2X F = 1, (3.12)
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2
IQ RE E

VT

IC

IQ
= 1, (3.13)

IC =
VT

2RE E
. (3.14)

It is important to note that this condition is temperature dependent through

VT , and is process variation dependent through the parasitic resistances con-

tained in RE E . This is addressed in the next chapter. Other circuit effects that can

change the null position are base-width modulation and the non-linear current

gain at high or low operating currents. We have assumed these negligible in this

derivation and are quantified later in the text. Including separating base-width

modulation from IC modifies the condition to be

IC =
VT

2RE E

�

1−
VC E

VA

�

. (3.15)

Justification for the assumption that base-width modulation is negligible is

based on the large value of Early voltage for general transistors. The bracketed

term added in Eq. 3.15 shows the effect base-width modulation will have on

the null position. For commercial general-purpose BJTs the value of VA is in

the range of 75-100V. A good example is the CA3083 [53] which claims VAF =

−100 V. The value of collector-emitter voltage, VC E varies with the supply voltage,

amplifier topology and device type. For an amplifier operating with a 5V supply,

a conservative estimate of VC E is 2.5V. Using these two values one would obtain

an error of 2.5% in the null position in terms of collector current compared with

the ideal case. Furthermore, specialised devices tend to have better performance.

A good example is the NXP BFU580G silicon RF transistor which claims VAF =

−184 V [54]. This would decrease the null position in terms of collector current

to have an error of 1.3% compared with the ideal case.

3.4 Darlington BJT Null

One idea to increase the bias current at which this null occurs is to use a Darling-

ton transistor. A Darlington is essentially two cascaded transistors in an emitter

follower configuration. It can be proven mathematically that a Darlington oper-

ates effectively the same as a single transistor, but with increased current gain
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Figure 3.3: Typical single Darlington transistor amplifier circuit used for
small signal analysis. Each shown resistor is the total combination of inter-
nal and external resistances.

traded for higher base-emitter voltage and lower switching speed [55].

Figure 3.3 shows a Darlington configuration which will, once again, be used as

the definition for a derivation. The derivation of the Darlington nulling condition

follows the same method. Firstly, the currents through the transistors are defined

as

IC = IC 1 + IC 2, (3.16)

IC 2 = (IC 1 +
IC 1

β1
)β2 = IC 1(β2 +

β2

β1
), (3.17)

IB 2 = IC 1(1+
1

β1
), (3.18)

where βn , IB n and IC n refer the the current gain, base current and collector

current of the n t h transistor respectively. These equations describe and account

for the base currents of each device. Due to this complexity, it makes the defini-

tion of series resistance more complex in a Darlington as the base and emitter

currents differ greatly as they travel through each node and the associated circuit

resistance.
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Kirchoff’s voltage law can be applied around the input loop to derive the

following equation

VI N = IC RE E +Vπ1 +Vπ2 (3.19)

where

RE E = RE 2(1+
1

β2
)+RE 1

1+ 1
β1

β2 +
β2
β1

+
RB 2

β2
+

RB 1

β1(β2 +
β2
β1
)

. (3.20)

Note that the first term RE 2 is the significant term and all other terms are sup-

pressed by a factor related to 1
β . Using the Ebers-Moll equation for transistors

and the same steps presented for the single BJT case, we obtain the following

transfer function for a Darlington amplifier.

W {X }= F X + ln(X 2) (3.21)

where W = VI N
VT

, F =
IQ RE E

VT
and X = IC 2

IQ
. RE E is defined above in Eq. 3.20.

Again, differentiation is used to find the current gain terms, for the first,

second, and third order coefficients.

d X

d W
→

1
2
X +F

, (3.22)

d 2X

d W 2
→

2X

(2+X F )3
, (3.23)

d 3X

d W 3
→

4X (1−X F )

(2+X F )5
. (3.24)

Observing Eq. 3.24, one can see that the third order term will cancel completely

if XF = 1, which can be written in the form below.

X F = 1 (3.25)

IQ RE E

VT

IC 2

IQ
= 1 (3.26)

IC 2 =
VT

RE E
(3.27)
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Figure 3.4: Theoretical plot of third-order magnitude vs. collector current
for a single BJT/Darlington common-emitter amplifiers.

Eq. 3.27 gives a third-order nulling condition equation for a Darlington amplifier.

This condition doubles the total collector current at the point of nulling for a

given BJT, or equivalently permits twice the series resistance, RE E , for a given

operating current when in the third-order distortion null. To the best of the

author’s knowledge, this is a novel result which has yet to be published in the

literature. The full derivation can been seen in Appendix B.

3.4.1 Theoretical Plotting

The single BJT and Darlington third-order coefficients can be plotted to indicate

where the minima occur relative to each other. This is shown in Fig. 3.4. The

data for this graph is obtained through python scripts incrementally plotting

data points using Eq. 3.11 for the single BJT and Eq. 3.24 for the Darlington. This

script can be seen in Appendix B. In this case the position is the only point of

interest as the magnitude depends on many other factors such as input signal

level, load conditions, etc. The magnitude data in these plots is abstract and

scaled for graphical aesthetics only. The minima positions will be useful to

compare with measurements in the next section. This theoretical data uses the

assumptions that VT = 0.0258V (occurring at 300.15 Kelvin) and RE E= 1.2Ω.

RE E is chosen as such because this value is used later on in measurements.
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Figure 3.5: Simulated third-order magnitude vs. collector current for a
single BJT/Darlington common-emitter amplifiers.

3.5 Simulation

The single BJT and Darlington common-emitter amplifiers are now simulated

using LTSpice. These follow the same circuit specifications as measurements

to keep the results consistent. SPICE models are used from the Intersil CA3083

datasheets [53]. The input tones are set to 15 kHz and 17 kHz, and 0.005 mV peak

respectively.

Unfortunately, the CA3083 SPICE model does not state any value for emit-

ter resistance [53], hence it was necessary to measure emitter resistance. This

transistor’s internal emitter resistance was measured as 1.2Ω, using the Flyback

method [51]. Error in this measurement is accounted for by considering the

measurement instrumentation in the measurement setup. Error calculation

suggests the worst case potential error of the emitter resistance is ±0.2Ω. While

this is rather large, the goal of this chapter is a proof that the nulling charac-

teristic is positioned approximately where the new proof suggests it should be.

We can tolerate this error given the measured null positions fall within these

bounds. Further measurement methods exist which would also account for the

base resistances, allowing the measurement of series resistance [56]. However,

it requires further unavailable transistor parameters, such as the intrinsic base

resistance, RB I , to obtain the measurement values.
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Figure 3.6: Measured third-order magnitude vs. collector current for a
single BJT/Darlington common-emitter amplifiers.

Figure 3.5 shows the simulated null positions in terms of IM3 for a given

collector current range. The exact current values for the null position are 11.2mA

and 22.1mA for the single and Darlington configurations respectively. These two

null position have a worst case error of ±0.2mA.

3.6 Measurement

In order to confirm theory and simulation, measurements are made using a

common CA3083 transistor array. The integrated array allows the devices to

be matched when a Darlington configuration is tested, meaning current gain,

saturation current and internal resistances should all be well-matched. An Agi-

lent E5270 is used to supply and measure the circuit currents and voltages for

the circuit. A two-tone input signal is produced by a function generator and an

Agilent 3561A Signal Analyzer is used to measure the harmonic components of

the output signal for each amplifier. These are set to 15kHz and 17kHz, and

0.005 mV peak respectively..

This setup allows the measurement of IM3 components created by both

a single BJT and Darlington amplifiers. Figure 3.6 shows the measured null

positions in terms of IM3 for a given collector current range.
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3.7 Discussion

The errors of the theoretical, simulated and measured stages are summarised in

Tables 3.1 and 3.2. ’Theoretical Ideal’ is the null position calculated using the

idealised null condition in Eq. 3.14 and 3.27 for the single BJT and the Darlington

respectively. ’Theoretical Corrected’ is found from the same equations, adjusted

for second-order effects. The single BJT is adjusted for base-width modulation

and in the Darlington case, base-width modulation and base current loss due to

Eq. 3.28. ’Simulated CA3083 Model’ is the simulated null position and ’Measured’

is the found from the measured data.

We observe in the measured data that the Darlington null indeed occurs

at close to double the measured single BJT null position (22.3mA and 11.6mA

respectively). There is some error in these values due to the dynamic range being

limited in the test setup and hence the resolution of a more exact null position is

masked by the noise floor in the IM3 measurements. However, the measured null

position is accurate enough to conclude that the presented theory accurately

matches measured results.

We also observe an absolute offset in null position from that predicted by

theory. Theory predicts the nulls should occur at approximately 21.5mA and

10.8mA for the Darlington/single BJT respectively for an emitter resistance of

1.2Ω. In the measured cases these are shifted positively. This is not a surpris-

ing result as the theory still does not account for base resistance effects. The

measurement of the 1.2Ω emitter resistance also introduces inaccuracy into the

comparison. Considering the previously stated emitter resistance error of±0.2Ω,

we find the measurements fall well within these limits. The measured collector

currents 22.3mA and 11.6mA suggest a series resistance of 1.16Ω and 1.11Ω

respectively. This suggests a 3.7% and 7.4% error respectively in the measured

values compared with the theoretical ideal values.

While this technique with a Darlington transistor makes third-order distor-

tion nulling look more appealing, other factors should be considered such as

the drawbacks of second-order effects. The transistor datasheets state this pa-

rameter, VAF= -100 V, which can have a minor impact on the measurements. If

we assume the VC E in the amplifier is 2.5V, the Early effect will have an impact

of +2.5% on the null positions in terms of collector current. A small current gain
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Single BJT Uncertainty Comparative Error
Theoretical Ideal 10.8 mA - 0%

Theoretical Corrected 11.1 mA - 2.5%
Simulated CA3083 Model 11.2 mA ±0.2mA 3.7%

Measured 11.6 mA ±0.5mA 7.4%

Table 3.1: Summary of error calculations and measurements for the single
BJT configuration. Comparative error percentage is relative to ’Theoretical
Ideal’.

Darlington Uncertainty Comparative Error
Theoretical Ideal 21.5 mA - 0%

Theoretical Corrected 22.2 mA - 3.3%
Simulated CA3083 Model 22.1 mA ±0.2mA 2.8%

Measured 22.3 mA ±0.5mA 3.7%

Table 3.2: Summary of error calculations and measurements for the Darling-
ton configuration. Comparative error percentage is relative to ’Theoretical
Ideal’.

value will also effect the null positions through the base currents of the BJTs.

This is stated to be reasonably high in the device SPICE model, approximately

112.8, but it is still worthwhile to consider because on the non-linearity of the

beta at higher currents. Using Eqs. 3.16-3.18 a correction factor can be applied

to the null condition. Including this factor and the Early effect modifies the null

condition to be

IC =
VT

2RE E

�

1−
VC E

VA

��

1+
1

β +1

�

. (3.28)

Beta effects introduce error in Eq. 3.15 through RE E , where RE E was defined

in Eq. 3.1. Normally a transistor will have a large beta, for example the CA3096

SPICE model claims that β = 467 [53]. Like these general transistors, specialised

RF transistors will vary depending on many factors. The NXP BFU580G silicon

RF transistor states β = 134 [54]. Conservatively, one could take a beta value of

100 as a nominal value for a transistor. One can take this value and quantify its

impact on series resistance RE E . In a BFU580G device, this beta value would

account for 0.0088Ω of a total of 0.304Ω (2.8%) of the total series resistance

(where the BFU590G SPICE model states RE = 0.295Ω and RB = 0.585Ω).

Absolute variation of the beta is due to process variation in differing fabrica-
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Figure 3.7: Typical single Darlington transistor amplifier circuit used for
small signal analysis. Each shown resistor is the total combination of inter-
nal and external resistances.

tion runs. For a conservative absolute beta variation of ±50% (hence the worst

case is β = 67 in the BFU580G), these numbers would shift to 0.0176Ω of a total

of 0.3126Ω or 5.6% of the total series resistance. With this vastly overestimated

beta mismatch variation the null position will still only experience a 5.6% shift

in collector current. Considering process variation of the beta is more important

when a practical circuit is being prepared for a commercial product. Firstly, one

can make an assumption that the transistor devices are well matched, such that

current gain and thermal voltage coefficients are equal in each semiconductor

device. This is justified by assuming the amplifier is built using on an integrated

circuit, in which the mismatch variation between devices is minimised. In this

work, we are focused on proving the condition for the particular null holds,

given reasonable circuit conditions such as accurately knowing the current gain.

Hence, we have not included further analysis of the process variation of beta.
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3.7.1 Practical implementation

It is well known that a Darlington cell has a slow switching speed due to the

second transistor’s collector-base capacitance having no direct discharge path

to ground. Hence, a Darlington is almost always used with a ’flushout’ resistor

from the first emitter connection to ground. Usage of this resistor turns the

configuration into a common-collector–common-emitter cascade amplifier and

hence it can be analysed as such [55]. This can been seen in Fig. 3.7 where R1

is the flushout resistor. The value of this resistor is a direct trade-off in overall

current gain for increased switching speed.

In-depth theoretical analysis of the impact that this resistor will have on the

Darlington configuration is beyond the scope of this chapter, however one can

make qualitative observations as to its effect on the position of the null. The

resistor, R1, is in parallel with the second transistor in the Darlington and its

associated resistances. If R1is infinitely high, it has no impact. As R1 decreases,

it reduces the base-emitter junction voltage of the second transistor. In turn,

this reduces the collector current, IC 2, while increasing the collector current

IC 1. Hence, the series resistance would become more reliant on the first stage

resistances, RE 1 and RB 1. R1 also begins to act as a partial series resistor for the

first stage through the base current, IB 1. As R1 approaches zero, the amplifier

turns into a single BJT common-emitter amplifier, as the base junction of the

second transistor is now grounded.

From these observations, it appears as the null condition for a Darlington

will approach the single BJT null condition as the value of R1 is reduced from a

high impedance.

3.8 Conclusions

The chapter outlines a case study into a single BJT third-order distortion null,

presenting the general proof already established in the literature. This proof is

expanded upon to predict that the distortion null will occur at double the bias

current in an Darlington amplifier. This is assuming the transistors used are

matched. The prediction is proven mathematically and then confirmed with

simulation and measurements made on a CA3083 transistor.
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By comparing the simulated null positions with theoretical null positions

corrected for second-order effects, we obtain an error of 1.2% and <1% error in

the single BJT and Darlington cases respectively. By comparing measurements

with the corrected theoretical null positions the error obtained is 6.9% and <1%

in the single BJT and Darlington cases respectively. These errors are small enough

to conclude second-order effects do not have a significant impact, and confirm

the new null position model is accurate.

While the extended model of distortion nulling for a Darlington does dou-

ble the null position in terms of bias current, this still occurs at a low current

compared to the complete range of DC bias points available in a bipolar de-

vice. As mentioned previously, an amplifier designer will often be required to

push the DC current as high as possible in order to maximise parameters like

cutoff frequency. Therefore, the characteristic will still find little application in

most amplifiers. However, the work is interesting as it could form a basis for

analysis of the characteristic in more complex topologies. The nulling effect

could also prove useful for low-frequency applications which do not require high

bias currents. For example, distortion reduction in audio amplifiers, low-noise

amplifiers, or mixers.

Two limitations that are not addressed in this work are the temperature and

series resistance variation of the bias current, which will shift the true null posi-

tion away from the predicted null position. These variations provide motivation

for the following chapter, leading to investigation into maintaining a constant

bias current in a transistor over temperature and series resistance circuit varia-

tions which can shift the bias current.



4
Translinear Extraction

As shown in the previous chapter, distortion cancellation using a transistor’s

series resistance (defined in the previous chapter) is limited by temperature

and series resistance variation. If a large variation occurs, a transistor’s inherent

third-order null is shifted to a different position in bias current. This means

the technique does not provide rigorous distortion cancellation. A method of

suppressing the temperature and series resistances effects is required.

In this chapter, a method for extracting the series resistance of a BJT is pre-

sented. This method is based on invoking the translinear principle in a structure

of bipolar transistors and extracting currents which are directly related to the

series resistance. This method leads to the description and design of a bias cir-

cuit which can theoretically be used to bias a single BJT amplifier independent

of temperature and parasitic emitter resistance. We develop a standalone circuit

to achieve this goal, describing its operation through theory and simulations.

Measurements are presented to support the theoretical and simulated data.

57
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Q1

IC2

Q2

IC1

Figure 4.1: Simple current mirror circuit, showing the transistor’s base-
emitter junctions in closed loop.

4.1 Translinear Principle

The translinear principle is a fundamental law that addresses a simplified rela-

tionship between multiple semiconductor junctions in a closed loop. This was

first introduced by Gilbert in 1975 [57]. A very simple example of a common

translinear circuit is the current mirror where a closed loop is formed through

the two base connections of the transistors. Consider Fig. 4.1 which is a simple

current mirror. If Kirchoff’s voltage law (KVL) is applied around the base-emitter

loop created by Q1 and Q2 we find that

VB E 1−VB E 2 = 0. (4.1)

By considering these base-emitter voltages and their fundamental relationship

to collector current through the Ebers-Moll model, and assuming the semicon-

ductor devices are identical, their junction currents must be equal as well. This

leads to the conclusion that the collector currents of each transistor must be

equal in this circuit (assuming non-idealities of the transistors are negligible)

due to the base-emitter voltages being forced equal. A current mirror circuit

has the well-known idealistic property that IC 1 = IC 2, which agrees with the

translinear principle. Of course there are other circuits in which the translinear

principle describes useful relationships between base-emitter junctions such as

current multipliers, current dividers, and current conveyors.
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VBE1

VBE2

VBE3

VBE4

Figure 4.2: Fundamental circuit used to describe the translinear principle.

To describe the principle more comprehensively, the translinear principle

is a specific application of Kirchoff’s voltage law (KVL) for multiple transistor

elements in a closed loop. It states that in a closed loop containing an even

number of transistor elements, the product of the currents calculated clockwise

through the closed loop is equal to the product of the currents calculated anti-

clockwise through the closed loop. This can be described more practically as the

sum of the base-emitter junction voltages anti-clockwise (ACW) around a closed

loop is equal to the sum of the base-emitter junction voltages clockwise (CW)

around the closed loop, assuming the relative transistor sizes are accounted for

and that the transistors are otherwise identical.

This law is represented by Eq. 4.2 below,

∑

VB E j−a c w=
∑

VB E k−c w . (4.2)

If a simple translinear loop with two NPN base-emitter junctions is considered,

as seen in Fig. 4.2, the translinear principle can be stated as

t o p
∏

h

I j−c w

A j−c w
=
∏ Ik−a c w

Ak−a c w
(4.3)

where I is the current through the junction and A is the unit area of the junction.

This principle can be used to implement multiplication, division and power-law

circuits using the exponential current-voltage relationship in a BJT.
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4.1.1 Nonideal Translinear Principle

The definition of the translinear principle can be modified to include the major

sources of nonideality that affect the operation of a translinear circuit. Firstly,

area mismatch will directly add error into the translinear circuit. This is caused

by the process error of the technology when creating the emitters of the tran-

sistors. Integrated circuit layout techniques can minimise this process error.

Symmetrical and common centroid layouts are good examples of this [18].

Beta effects will also introduce error to a translinear circuit. This is caused by

the base current in the bipolar transistor junction being taken out of the main

junction current resulting in an error through the translinear loop. This error

can be avoided by certain circuit designs which either replace or cancel the lost

base current from the main junction current. Because of the finite beta value,

the error then manifests itself in the exponential current-voltage relationship as

an extra voltage at the base junction of the transistor. This is stated as

VB E = VT ln(
Ic

Is
)+ rb b (

Ic

β
) (4.4)

where VT is the thermal voltage, Ic is the junction current, Is is the transistor

saturation current, rb b is the intrinsic base resistance and β is the current gain.

One last error consideration is base-width modulation. Using the standard

exponential current-voltage equation coupled with the Early voltage component,

the effect can be modeled as a second area mismatch, γ. Using Eq. 54 above this

can be stated as

VB E = VT ln(
Ic

γIs
)+ rb b (

Ic

β
) (4.5)

where γ= 1+ Vc e
VA

, VA is the Early voltage and Vc e is the collector-emitter voltage.

So far the presented non-idealities can generally be neglected if they are

present. Modern process errors and logical circuit design techniques can push

these error limits to be negligible. However, resistances in the translinear loop

can have a large impact. Resistive components added externally into the circuit

can be used to control and measure voltages in the translinear loop. Since

the value of an external resistor is known it can be theoretically accounted for.

Parasitic resistance in the transistor is usually not known, as it varies moderately

between fabrication runs. It presents the largest challenge in producing accurate
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currents from translinear circuits. This is generally known as log-conformance

error [58, 22].

4.2 Literature Review

The third-order null at a particular bias condition is a fundamental property of a

degenerated BJT amplifier structure as discussed in the previous chapter. Recall

that a third-order null requires a constant collector current to be applied with

minimum variation over temperature and or circuit variations. The condition

governing this is given by Eq. 3.15. Maintaining a bias current for an amplifier

independent of series resistance variations has been established in the literature,

albeit only sparingly.

In an integrated circuit process, modern process variation limits for series

resistances can be cited as 20% for absolute process variation, and 2% for mis-

match process variation [27, 28]. These are the variations one would expect to

occur in the null position parameters and the bias circuitry.

Klimovitch briefly describes a bias circuit which maintains a constant bias

current for a single BJT amplifier [19]. This is done using a current mirror with

base current compensation. It is stated the bias current is independent of tem-

perature and component variations. However it does not account for parasitic

resistance variation, which will shift the actual null position in the amplifying

transistor.

Huang utilises the translinear principle in CMOS devices to develop a loga-

rithmic amplifier [59]. The translinear principle is invoked using an embedded

resistive element, allowing the cancellation of temperature effects and resis-

tive nonlinearities. One drawback is the complexity required to implement this

cancellation.

The sensitivity of a BJT’s third-order null to the parasitic resistances is large

enough that it can be used as a sensitive method for extracting the resistance

value for a particular device layout [52]. This work shows the sensitivity, and

implies that tracking is required to utilise this IM3 characteristic.

Series resistance compensation in BJT circuits is more common in the litera-

ture as it finds use in other applications. The paper by Opris [22] forms a basis

for this chapter’s research. It shows that series resistance effect is proportional
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to absolute temperature (PTAT) and bandgap translinear circuits can be com-

pensated for by manipulating the transistor ratios in a translinear loop. This is

based in the general field of log-conformance error and has been understood in

the literature for some time [58].

Considering these literature entries, it appears one can manipulate the inher-

ent relationship between resistive elements and the semiconductor junctions in

a translinear loop. The following work builds on this idea, attempting to resolve

a model which identifies an unknown resistive element in a translinear loop. If

an unknown resistive element can be found, it becomes possible to account for

and compensate unwanted effects from said unknown resistive elements.

4.3 Series Resistance Compensation

A useful property of translinear circuits is their suppression of temperature

variation effects which otherwise contribute error into a measurement system.

This suppression comes from the cancellation of the thermal voltage, VT , due to

its equal and opposite effect in the translinear loop of a circuit. This makes use of

the assumption that the BJTs are monolithic and co-located so their temperature

is identical. This leads to many useful circuits such as temperature sensors and

band-gap references.

Certain translinear circuit configurations also allow compensation of the ef-

fect of base and emitter resistances intrinsic to the BJT structure. This combined

with the inherent translinear circuit property of non-dependence on temper-

ature variations can lead to more useful circuits and new applications. One

example is the translinear circuit presented by [22], which produces an out-

put temperature-independent current, along with any series resistance effects

removed from the output.

To understand this technique, a unique version of a translinear circuit is

presented. Consider the circuit in Fig. 4.3. In this circuit we impose a translinear

condition by forcing equal voltages across the top of each branch of diode-

connected transistors. This is done using current sources driven by a high-

gain op amp, which forces the equal currents in each branch. This allows the

translinear principle to be invoked around the loop containing the four BJT

base-emitter junctions. Therefore, a series of equations describing the current
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VR1R1
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Figure 4.3: A two-transistor translinear stack circuit with the translinear
condition forced around the two branches.

through the loop can be stated based on this principle.

Since we are interested in removing the effects of series resistance and tem-

perature, the following maths aims to describe the voltages in the circuit with

these variables in mind. Firstly, the voltages around the loop are summed as

VB E 1 +VB E 2 + I
�

RE

M1
+

RE

M2

�

= VB E 3 +VB E 4 + I
�

RE

M3
+

RE

M4

�

+ I R1 (4.6)

where RE is the intrinsic emitter resistance, Mn is the unit area size for transistor

n , and I is the current through the stack (equal in each branch). Note that

practically, this translinear condition can be forced by using other configurations

at the top of the branches. For example, by sweeping the current sources and

measuring the voltage until they converge on a single value. By substituting

the Ebers-Moll model for the base-emitter voltages, one can expand and collect

terms to give

nk T
q ln

�

I
Is M1

�

+ nk T
q ln

�

I
Is M2

�

− nk T
q ln

�

I
Is M3

�

− nk T
q ln

�

I
Is M4

�

= I R1 + I RE

�

1
M3

+ 1
M4
− 1

M1
− 1

M2

�

,
(4.7)
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nk T

q
ln
�

M3M4

M1M2

�

= I R1 + I RE

�

1

M3
+

1

M4
−

1

M1
−

1

M2

�

. (4.8)

For simplicity the substitutions below can be made.

A =
M3M4

M1M2
. (4.9)

x =
1

M3
+

1

M4
−

1

M1
−

1

M2
. (4.10)

These substitutions lead to a final descriptive equation for the presented translin-

ear stack circuit. This is stated as

VR 1 = I R1 =
nk T

q
ln A + I RE x . (4.11)

The terms A and x allow for some interesting observations regarding Eq.

4.11. The I RE term can be canceled by setting x to zero while l n A is non-zero.

This particular condition means all series resistance effects associated with the

transistors are canceled from the voltage measurements across R1, assuming

theoretically ideal circuit conditions. Example values for this condition are

M1 = 4, M2 = 6, M3 = 3, M4 = 12. This gives A = 1.5 and x = 0, and simplifies

the describing equation to be

VR 1 = I R1 =
nk T

q
ln A. (4.12)

This derivation shows that it is possible to cancel the effects of series resistance

from the translinear stack itself. However temperature effects still remain and

more importantly the magnitude of series resistance still remains unknown.

4.3.1 Expansion of the Translinear Loop

By studying the practicality of Eq. 4.11 one can see that certain A and x combina-

tions will give very small current and voltage values. This could lead to limitations

in measuring the circuit or using it for another purpose. More flexibility in the

transistor ratios can be obtained by increasing the number of transistors used in

the stack. Fig. 4.4 shows three transistors used in the each branch of the stack.
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Figure 4.4: A three-transistor translinear stack circuit with the translinear
condition forced around the two branches.

Hence the equation for the voltage across R1 becomes

VR 1 = I R1 (4.13)

=
nk T

q
ln
�

M4M5M6

M1M2M3

�

−I RE

�

1

M4
+

1

M5
+

1

M6
−

1

M1
−

1

M2
−

1

M3

�

,

with the A and x terms becoming

A =
M4M5M6

M1M2M3
, (4.14)

x =
1

M4
+

1

M5
+

1

M6
−

1

M1
−

1

M2
−

1

M3
. (4.15)

This results in Eq. 4.11 holding true for the expanded translinear loop, but

with A and x modified to be Eq. 4.14 and 4.15 respectively.
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Figure 4.5: Two three-stack translinear circuits which allow series resistance
to be resolved, due to the known difference in emitter area ratios.

4.3.2 Series Resistance Extraction

When using only one stack we can compensate series resistance, but not quantify

it. Temperature effects also still remain in the describing equations. This section

shows that manipulating two translinear stacks allows the series resistance to

be measured and temperature effects to be suppressed, by using one stack as a

reference. This original result forms the basis for a bias circuit which will solve

series resistance and temperature variation issues as previously described.

This is achieved by using two translinear stacks which are identical, expect for

different x values. Choosing one to have a non-zero x value and the other to have

x equal to zero while both stacks have the same A value, allows the derivation of

the following equations describing the transistor’s series resistance.

Now, an equation which describes the difference in the current through

each circuit is required. Firstly, two stacks in Fig. 4.5 are presented showing

the proposed dual stacks arrangement. A voltage difference between the two

external resistors is defined as V3, seen below in Eq. 4.18. These resistors are set
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as R1 = R1A = R1B such that

VR 1A = I1R1A =
k T

q
ln A, (4.16)

VR 1B = I2R1B =
k T

q
ln A− x I2RE . (4.17)

V3 = VR 1A −VR 1B = x I2RE . (4.18)

Further manipulation shows the series resistance RE is calculated using

RE =
R1(I1− I2)

x I2
=

R1(V1−V2)

x V2
(4.19)

Eq. 4.19 presents an equation which provides the magnitude of the series

resistance. This requires measurements of the current or voltage from both

stacks operating at their respective equilibrium points (equal voltages at the top

of each pair of transistor branch).

4.3.3 Application to Amplifier Biasing

As mentioned beforehand, the biasing in the natural IM3 null of a single BJT

amplifier is set by the series resistance through the transistor’s base-emitter junc-

tion, and is susceptible to process variation of the internal resistances. Extracting

the emitter resistance using the translinear technique described in Eq. 4.19 offers

a solution to process variations in the apparent emitter resistance. By extracting

the value from accurately matched transistors, a bias current can be created

and maintained to accurately bias in the amplifier’s IM3 null independent of

temperature and process variations. To implement this technique, the equations

which describe the required amplifier bias current must be derived.

Firstly, a reference current is defined which can later be scaled to the appro-

priate value. In the interest of simplicity, an already existing current I1 is used,

defined below as

I1 =
1

R1

k T

q
ln A. (4.20)

The condition for the IM3 null is defined back in Eq. 3.14 which requires

VT /2 dropped across the total series resistance. Hence, the following mathe-

matics aims to develop a set of equations which will apply exactly VT /2 across
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the amplifying transistor’s series resistance. Using this we define the required

reference current as

IB i a s =
VT

2R1
=

I1

2 ln A
, (4.21)

where the total emitter resistance only consists of R1. This needs to be scaled by

the magnitude of the effect RE has on the voltage dropped across the emitter

resistance. This is achieved by looking at the ratio of R1 to RE . This is represented

mathematically below in Eq. 4.23, with IB i a s now scaled by Eq. 4.22 which

applies the correction for series resistance.

R1

Re +R1
=

x I2

x I2 + I1− I2
. (4.22)

IB i a s =
I1

2 ln A

x I2

x I2 + I1− I2
. (4.23)

For simplicity, the bias current is defined below using IOU T to represent the

scale for the current as

IB i a s =
IOU T

2 ln A
, (4.24)

IOU T = I1
x I2

x I2 + I1− I2
. (4.25)

IOU T now describes the theoretical bias current that will position a transistor

in its IM3 null, assuming it also has R1 as an emitter resistor. It does this while

canceling series resistance effects and being independent of any temperature

variables in the describing equation.

4.4 Extraction Circuit Design

To utilize this technique, a three-stage design is developed in order to extract

the series resistance value and then bias a common-emitter amplifier in its IM3

null. The circuit blocks can be seen in Fig. 4.6. The first stage contains the

two translinear stack circuits used for compensation and extraction. The two

equilibrium currents from stack A and B are fed into the second stage where alge-

braic operations occur to create a scaled bias current. The third stage combines

the scale current and reference current and uses it to bias the single transistor

amplifier.
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A = 2
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Output Bias
Loop

Stack B
x = 0.5
A = 2

Figure 4.6: Bias circuit blocks showing the three main stages of the circuit.

4.4.1 Translinear Stack Ratios

Under further investigation, the selection of parameters A and x become rather

complex. The two fundamental conditions for this Eq. 4.23 to hold are:

1. ln A must be equal in both stacks and be non-zero.

2. x must be zero in one stack and non-zero in the other stack.

The stacks can break condition two and have two different non-zero x values at

the cost of more complex algebra to describe the bias currents, but in the interest

of simplicity this is not utilised.

Python scripts were used to calculate all possible combinations of transistor

area ratios, along with the associated A and x values. The code can be seen in

Appendix C. This approach shows area ratios that give x = 0 values are quite rare

with approximately 1002 combinations for a 3 stack translinear circuit with unit

transistors sizes ranging between 1 and 16 (with a total of 2.9 million possible

combinations). Again, in the interest of simplicity we choose A = 2 and with

x = 0, x = 0.5 in the first and second stack respectively. This is formed by the

combinations below.

St a c k 1→M1−6 = 2, 2, 2, 1, 4, 4 (4.26)

St a c k 2→M1−6 = 4, 4, 8, 1, 16, 16 (4.27)

The numerical computations done in Python show that this combination is

the smallest collective transistor array size which allows a x = 0.5 scale factor in
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x I2 xI2 + I1 - I2 I1 IOUT =
x I1 I2 / (xI2 + I1 - I2)

I0

Figure 4.7: Translinear multiplier used to perform algebraic operations
required by the second circuit block.

Stack B. This factor is appealing as it allows the design of scaled current mirrors

with the simple task of dividing a current by half.

4.4.2 Multiplier Divider design

In order to create the scale current IOU T , a translinear multiplier configuration

is used, as presented by [60]. The circuit can be seen in Fig. 4.7 showing how its

operation fits in well with the required operations of Eq. 4.25. It is a conventional

multiplier/divider circuit modified to produce smaller error between the output

and input currents, due to the base current compensation by the PMOS device.

4.4.3 Bias Driver Circuit

The bias driver scheme can be seen in Fig. 4.8. The main amplifying transistor

Q1 has R1 added to its emitter resistance. Both sides of the current mirror are

balanced with the same resistances. R2A and R2B isolate the signal from the input

side of the current mirror. The input current to the mirror is driven through R1

giving a voltage of

VR 1 =
VT

2
−VR E , (4.28)



4.5. SIMULATION 71

Q2

RE

R1R1

VSIGNAL

IOUT / 2 ln (A)
RL

R2AR2B
Q1

RE

R1

Figure 4.8: Output bias loop used to set the bias current in the output
transistor such that it operates at the third order null.

and consequently the current mirror forces VT /2 across the total emitter resis-

tance of the single BJT amplifier.

The input to the driver circuit comes from a scaled current mirror attached

between the multiplier circuit’s output and the driver circuit’s input. This current

mirror applies the scale of 1/2 l n(A) to the current IOU T .

4.5 Simulation

The complete system has been simulated using parameters from a commer-

cial 0.5µm 27GHz BiCMOS process [61], typical for such applications, with a

nominal 3.3V supply. Note that the system implementation is not specific to

this technology, but the availability of NMOS and PMOS transistors is useful

in the construction of the amplifiers and mirroring functions needed. Hence,

the target application is this BiCMOS process. Simulations are done in SPICE

with nominal circuit values chosen as R1 = 60.000Ω, ambient temperature =

27 °C, and supply voltage = 3.3 V. The theoretical target bias current required in

the amplifier is 134µA. This is calculated using Eq. 3.14 where RE= 32.376Ω +

60.000Ω + 3.7200Ω, contains both the external and internal emitter resistances.

The full circuit can be seen in Appendix C.
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Stack A Stack B Series Resistance % Error
Calculated 298.63µA 229.20µA 36.1Ω 0%

Ideal Model 298.30µA 229.30µA 36.1Ω <1%
BiCMOS Model 298.15µA 226.02µA 38.3Ω 5.36%

Table 4.1: Initial simulations of the translinear stack output currents versus
the calculated values. This shows the simulated current values and the
resulting series resistances when using these values. The percentage error
is the error when compared with theoretical series resistance values.

Error sensitivity is a major consideration in this design for two reasons. Firstly,

the IM3 null is sharply defined so a small change in the target emitter voltage

can lead to a large change in the IIP3 magnitude and secondly it is a moderately

large circuit in which there is the potential for errors to accumulate.

SPICE simulation data is shown in Table 4.1 which defines the nominal values

of equilibrium current expected in the translinear stacks. The translinear stack

ratios are kept the same as stated in Eqs. 4.26–4.27 from the previous section.

’Calculated’ shows the currents expected using Eq. 4.19, and the expected series

resistance. ’Ideal Model’ shows the error in simulation when using an idealised

transistor model. This shows negligible error compared with the expected theo-

retical result in ’Calculated’. ’BiCMOS Model’ outlines the error in simulation

using practical BiCMOS transistor models, and the data shows this impact. This

larger error stems from beta mismatches between the different transistor sizes

in each branch, something which can potentially be minimized with the op-

timization of the parameters A and x. The base-width modulation effect also

contributes to this error through the limited VAF of the practical transistor model

used.

4.5.1 Multiplier Output Error

Analysis of the error at the multiplier output is done to quantify the total error

from the first two circuit blocks (the translinear stacks and current multiplier).

The error from the input stage to the amplifier can then be quantified as well.

Table 4.2 shows the calculated and simulated currents expected from the mul-

tiplier output. Again, ’Calculated’ shows the current calculated by using the

theoretical values from Table 4.1 with Eq. 4.23. The ’Simulated’ values shows the
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Output Current Series Resistance % Error
Calculated 134.61µA 0%

Simulated Ideal Model 139.05µA 3.68%
Simulated BiCMOS Model 136.59µA 1.85%

Table 4.2: Calculations of multiplier output current with ideal and non-ideal
circuit models. This shows the simulated current values and the resulting
series resistances when using these values. The percentage error is the error
when compared with theoretical series resistance values.
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Figure 4.9: Bias current vs. temperature variation compared with the ideal
bias current, at the multiplier output.

same current obtained from simulations in SPICE with a non-ideal and idealized

transistor model. Note the error is still small in all cases.

Fig. 4.9 shows the variations of temperature as well as the resulting percent-

age error compared to the ideal calculated bias current, and it suggests the entire

circuit is relatively unaffected by temperature variation. The data shows that

in the temperature range of 0-100 °C the expected variation in bias current is

≤0.8%. The error increases steadily at values higher than 100 °C, e.g. 3.5% at 120

°C.

Similar data for the supply voltage shows the worst case sensitivity is ≤3.1%,

obtained by varying the supply by ±20%, seen in Fig. 4.10. Note that the bottom

limit is the saturation of the transistors in the multiplier as the supply voltage

gets too low.
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Figure 4.10: Bias current vs. supply voltage variation compared with the
ideal bias current at the multiplier output.

4.5.2 Amplifier Bias Current Error

Fig. 4.11 shows the simulated IM3 null of the amplifier with the full BiCMOS

model. The bias current through the emitter of the BJT is swept and the output

signal’s third-order component is captured at 13kHz. This shows the approximate

placement of the IM3 null in the simulation with the BiCMOS model, which

occurs at 140.5µA.

4.5.3 IM3 Null Error

We can simulate the impact of these accumulated errors on the IM3 null tracking

in the amplifier. Fig. 4.12 shows the position of the simulated circuit relative to

the simulated IM3 null in the amplifier. This null is shown by varying both R1

and RE within the amplifier circuit (not globally in the complete tracking circuit),

which gives a good visual representation of how the null position varies due to

process errors in the tracking circuit. It also gives a good indication of where the

circuit biases relative to the centre of the IM3 null. This data shows, as expected,

the simulation has some error associated with it and therefore the amplifier is

not placed directly in the IM3 null.

The effect of absolute and mismatch process error on the IIP3 of the amplifier,

in the resistors R1 and RE , is shown in Fig. 4.13. These simulations also show
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Figure 4.11: Simulated IM3 null of the amplifier showing the null position
in bias current. Simulation uses the full BiCMOS transistor models.
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Figure 4.13: Absolute and mismatch process variations of RE and R1 and
their impact on the current position in the IM3 null.

Component Error Limits
Absolute (±20%) R1 -1.90%, -0.63%

RE +0.42%, -1.95%
Mismatch (±2%) R1 <0.1%, -1.97%

RE -0.42%, -1.5%

Table 4.3: Summary of process error impact on position in the IM3 null, at
the amplifier output.

minimal variation of the position in the null relative to the instantaneous bias

position, showing the circuit is tracking the selected position in the null over

these process errors. These errors are summarised in Table 4.3.

4.6 Measurements

This project does not have the resources available to manufacture an IC and test

the circuit using a BiCMOS process. However, the bias circuit has been built and

verified using transistor arrays. This circuit will obviously suffer from a much

higher error due to beta and parasitic mismatches between transistor arrays

and temperature differences. However this work does yield a modest result and

hence adds some value to this research.

The circuit was built using Ferranti 2G004E/1U004E BJT transistor arrays.
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These arrays are rare in the fact that they contain 8 transistor cells with varying

sizes which accommodate for the selection of A and x in the translinear stacks.

The datasheets can be seen in Appendix C. The datasheets do not state the

emitter resistance size for comparison with the translinear circuits output so

further measurements were undertaken to detail the magnitude of the series

resistance. Each translinear stack was driven by an Agilent E5270 DC analyzer

which forced equal voltages on the top of each branch, allowing the translinear

condition to hold. This removes the need for high-gain amplifiers at the top of

each branch. The E5270 also allowed accurate reading of the current sourced

into each stack, and measurement of the voltage drop across R1. The available

transistors in the arrays still limit the choice of combinations of transistor sizes,

hence the setup is restricted to only a few different area combinations. The

values used for A and x are chosen to be 2 and 0.5 respectively, using the sizes (6,

8, 4, 24) and (1, 4, 2, 4) for Stack 1 and 2 respectively. As mentioned previously,

large transistor size differences lead to beta differences in the transistors and

hence error in the measurements. The sizes used are the best available using

this setup. Measurements showed the current in the stacks 1 and 2 converged

at 1.468V, 899µA and 1.572V, 1.189mA respectively. Using these values gives the

series resistance as 26.9Ω. This has a worst case measurement error of ±2.7Ω.

4.6.1 Series Resistance Measurements

The first method used to clarify the series resistance of the Ferranti transistors

was the flyback method [51]. This method only measures the emitter resistance,

rather than the series resistance. The Agilent E5270 was used to force a base

current into a single 1 unit-sized transistor, while the collector current was held at

zero amperes. These measurements resulted in an average emitter resistance of

13.7Ωwith a worst case measurement error of±0.2Ω. Note that this is a measure

of emitter resistance only, and gives no indication of base resistance effects.

The second method used was the method proposed by [52], which is essen-

tially a measurement of the transistor’s IM3 null position as a function of series

resistance. An HP 3561A Digital Signal Analyzer was used to analyze an output

signal’s third-order component, as the bias current was swept using a Agilent

E3849A DC supply. These measurements resulted in an average series resistance

of 16.9Ωwith a worst case measurement error of±0.3Ω. This measurement is ex-
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pected to be higher than the flyback measurement as it measures the total series

resistance rather than just emitter resistance, hence it contains base resistance

effects.

One issue with these measurements is that there is still no solid reference to

compare this measurements with, or known parameters like RB I such that base

resistance can be disentangled. Therefore, no solid conclusions can be made

about their accuracy or error. However, they give the only comparative resistance

measurement that the stack measurements can be compared against. A second

issue which affects this comparison, is the nature of the stack measurements.

These were done under unmatched circuit conditions, where the transistor arrays

aren’t contained to one integrated circuit. Hence, there is an unquantified device

mismatch error in the measurement.

4.7 Discussion

The primary goal of this work is to obtain a method of guaranteeing the bias of

an amplifier in the device’s distortion minima over process, supply variations,

and temperature (PVT) and so the sensitivity of the complete system to IM3

is a critical measure. This sensitivity is reflected in the presented simulations

and plots. From the nominal IIP3 value set by the nominal component values,

these variations lead to a maximum IIP3 variation of±6.0 dBV, reflecting the bias

current error of where the circuit sits in the IM3 null. Including temperature

and supply variations of 20% (based on the same percentage variations justified

previously), the maximum IIP3 variation increases to approximately ±9.5 dBV.

These simulations show good agreement with theory and the error is within the

bounds expected from parasitics and transistor process errors.

The discrete measurements show a weak agreement with theory as they

vary approximately 10Ω from the stack resistance measurement. When the

measurement circuit is considered, we expect a large error to be introduced into

the equilibrium current of the stack circuits. Most notably the transistor arrays

used are not necessarily suited for the application, only in the fact that they

allow for the transistor size ratios. We can further quantify this error by directly

measuring the non-ideal parameters of the Ferranti devices. In this case using a 1

unit-sized Ferranti transistor, measurements result in VAF = -27.65 V, β = 75, and
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IK F = 5.0mA. Re-simulating a BiCMOS modeled circuit with VAF , β , and IK F

adjusted to these values shows a large increase in the measured series resistance.

These parameter values give a much closer measured series resistance value

of 23.9Ω. This aids in showing how the non-ideal parameters of the Ferranti

transistors will drastically increase the equilibrium current in the stacks, and

hence the measured series resistance will be different from the alternative series

resistance measurements.

Unfortunately, we cannot make strong conclusions from these stack measure-

ments. The project requires either better transistor arrays, or more practically,

access to an integrated circuit process. Nevertheless, the theory and simulations

give a strong indication that this circuit will be accurate in measuring series

resistance.

One further limitation associated with this work is the intermediate circuitry

between the stack circuits and the amplifier. As seen in Fig. 4.10, the error

due to low supply voltage becomes large. This is due to a transistor saturating

from a lack of supply voltage. This saturation point is not a direct error source

in this work as the target supply voltage and supply variation is chosen to not

include the effects of this saturation point. However, this is an important point

to note as it could limit future work. The intermediate circuitry also includes

multiple current mirrors. These areas of the circuit were not analysed in depth,

and some insight into their contribution to bias current error would be valuable

information.

4.8 Conclusion

This work has derived a translinear proof for a bias circuit which produces a

temperature-independent current with series resistance compensation. The

series resistance is quantified inherently in the translinear stack circuits and can

be used to either measure the parameter, or produce a bias current. The IM3 null

of a single BJT (which is series resistance dependent) is used as a test case for the

implementation of the translinear stack circuit. Results of simulations confirm

that the translinear stack circuit along with a multiplier circuit can track the IM3

null with an accuracy of ±6.0dBV when realistic process and circuit variations

are considered. Hence, the circuit accurately tracks changes in series resistance
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of a BJT process. While measurements do not perfectly confirm theoretical and

simulated data, they show to the limit possible with monolithic arrays, that the

theory and simulations can be transferred to practical circuits.

This circuit largely solves two major limitations with the work presented in

Chapter 3, namely temperature and series resistance variation which moves the

null position in terms of collector current. The bias circuit performs this task to

an acceptable standard with the figures shown above. Further work on the bias

circuit’s limitations could decrease this IM3 variation even further.

One interesting outcome of this research is the technique of extracting and

quantifying series emitter resistance. Similar techniques are required in device

fabrication for commercial products, where a process control monitor (PCM) is

used to measure and compare device parameters from wafer to wafer. Common

parameters monitored for a BJT device include series resistance. Hence, the

technique presented in this work offers a solution to parameter monitoring in

device fabrication.



5
Cascoded Compensation

A Cascomp circuit (shorthand for Cascoded Compensation) is a differential

amplifier configuration which offers theoretically-perfect distortion cancellation.

The term ‘Cascomp’ is perhaps more generally encompassed by the ‘emitter-

coupled’ or ‘cross-coupled’ differential pair configuration and operates based

on similar principles.

The authors originally became interested in this amplifier through contact

with Agilent Technologies, who were interested in improving its performance.

Agilent have a particular focus on designing wide-band HBT amplifiers for use

up to 20GHz. A performance increase of a few dB in gain or IP3 in the Cascomp

circuit would be valuable enough for Agilent to investigate developing an HBT

Cascomp amplifier. However, their designers could not achieve this with their

current analysis of the amplifier’s nonlinearity.

In this chapter, the mathematical theory of this circuit’s transfer characteris-

tics will be explored. Firstly the literature’s mathematical theory to date along

with relevant background on the topic is presented. The current theory is then

improved upon to include the non-idealities of the error amplifier by analysing

81
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Figure 5.1: Cascomp circuit with an ideal transconductance error amplifier,
GM E .

transfer functions of both stages in the Cascomp. This improvement leads to

the revelation of more effective bias points that maximise gain and linearity in

the Cascomp. Simulation and measurement data is presented that confirms

these new bias points exist and an optimum bias point is presented to take ad-

vantage of the new theory. Furthermore, the circuit’s limitations in a practical

situation are discussed, most notably the circuit parameter variations due to

process errors. This chapter is not focused on any specific application for a

Cascomp circuit but rather a generalised improvement for the topology which

can be used where it is beneficial.

5.1 Background

A major theme of this work so far has been distortion reduction in amplifiers

and the Cascomp amplifier does not deviate from this topic. Thus far, literature

has shown that an idealised circuit model cancels all harmonic distortion at its

output. The Cascomp employs feedfoward error correction, where the output

signal is amplified and added back into the output again.
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The classic depiction of a Cascomp circuit is seen in Figure 5.1. The outside

differential pair, formed by Q1 and Q2, is referred to as the main amplifier. The

inside amplifier is referred to as the error amplifier, in this case represented

by an ideal transconductance amplifier, GM E . In practice, the error amplifier

is usually another differential pair. Ignoring circuit mismatches which cause

each transistor’s VC E to be unequal, any distortion components created across

the bases of transistors Q1 and Q2 are replicated across the respective transis-

tors Q3 and Q4. This occurs due to transistors sharing collector current in each

side of the amplifier. The error amplifier senses and amplifies the main am-

plifier’s output signal. It is then inverted by the error amplifier’s cross-coupled

collectors and subtracted from the Cascomp’s total output signal. This leads to

theoretically-perfect third-order harmonic and intermodulation cancellation

(which is the type of distortion reduction we are focused on) but also thermal

distortion cancellation as well. The latter is sufficiently covered in the literature

and is not analysed in-depth in this work.

5.2 Literature Review

The Cascomp amplifier first appeared in the literature in a patent filing in 1977

[20], followed by the first technical report in 1981 [62]. Both of these publica-

tions used a basic algebraic proof to show non-linearity in the main amplifier

was canceled due to the replication of the input signal (across transistors Q1−4)

and summation of currents at the output. The first reviews did not cover non-

idealities in detail but suggested that beta effects and base currents losses would

remove the amplifier from its cancellation bias point. Other effects considered

are thermal mismatch of the transistors and uncompensated phase delays in

the error amplifier compared to the main amplifier [63].

Many improvements to the topology followed, including thermal mismatch

distortion correction [64], and simple corrections for beta effects using base

resistors on the cascoded pair [65]. Development of the error amplifier to more

complex topologies also appear in patent filings. One shown in [66] allows control

of frequency response of the error amplifier, so it can be tuned correctly without

losing gain and dynamic range. Practical designs also appeared in the literature,

such as [67], showing a Cascomp amplifier working at 600MHz as a 2-stage



84 CHAPTER 5. CASCODED COMPENSATION

CRT amplifier. More recent literature shows the circuit technique being used

in CMOS circuits under the title ‘cross-coupled pairs’. One example, [68, 69],

shows a basic Cascomp topology used in ultra-wideband distributed CMOS

amplifier. It achieves a 20 dB reduction in IM3 distortion, or -78 dBc IM3 at 1 GHz

at optimum bias conditions. Another example, [70], shows a basic Cascomp

topology manufactured in a 0.18µm TSMC RF CMOS process. It achieves a 6.6 dB

improvement in IIP3 at approximately 2 GHz. Similar results are achieved by [71]

and [72], showing a manufactured Cascomp in CMOS processes.

One early patent, filed in 1989 by Garuts [73], presents an interesting analysis

of a similar topology to the Cascomp. The major difference is the error amplifier’s

inputs are taken from the same input as the main amplifier. In the Cascomp

topology the error amplifier input is taken from the main amplifier output. This

patent presents an elegant derivation of the amplifier’s overall transconductance

and helps form a foundation for the derivation methods used in this text.

5.3 Current Theory

The original Cascomp papers by Quinn [20, 62], show a simple proof for distor-

tion cancellation in a Cascomp circuit as seen in Figure 5.1. Here, this proof is

replicated as a starting point for this work. From this circuit, the small-signal

input voltage loop is defined as

VI N (m) = VB E 1−VB E 2 +2VRM
, (5.1)

where VI N (m) is the applied input signal, VB E 1 and VB E 2 are the base-emitter

voltages of Q1 and Q2 respectively, and VRM
is the voltage across each emitter

degeneration resistor of the main amplifier. This equation expresses the linear

portion of the input voltage being across RM and the non-linear portion being

across the base-emitter junctions. As expected from basic theory, increasing RM

increases the voltage across this resistance, and hence the amplifier output signal

becomes more linear. Compensation of the non-linear portion occurs when a

term is introduced to cancel the non-linear term4VB E 12 = VB E 1−VB E 2. Indeed

this is what Quinn states, showing the error amplifier senses this cancellation

term by using the replicated non-linear term across Q3 and Q4, stated as4VB E 34
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Figure 5.2: Cascomp amplifier with a differential pair used as the non-ideal
error amplifier.

(such that ideally4VB E 12 =4VB E 34). This is amplified by the GM E of the error

amplifier and added to the amplifier output to create the corrected output current

as

4i01 =
VI N

2RM
−
4VB E 12

2RM
+4VB E 34GM E . (5.2)

This transfer function makes it obvious that, in order for cancellation of the

non-linear term to occur, the transconductance of the error amplifier must be

GM E =
1

2RM
. (5.3)

In practice, the error amplifier is not an ideal transconductance amplifier, and

will not only amplify the4VB E 34 term but will also add its own distortion through

its own transfer function. Quinn’s condition for cancellation is reliant on the

error amplifier being highly linear, meaning its own distortion must be assumed

negligible. This assumption means information is lost regarding the cancella-

tion points the Cascomp can use. To study this in the following subsections,

a practical bipolar Cascomp amplifier is established in Figure 5.2. This figure
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defines the output differential current of both amplifiers, i1 and i2 for the main

and error amplifiers respectively, as well as the input voltage loops for the main

and error amplifiers, VI N (m) and VI N (e ) respectively, such that

4i01 = i1− i2 (5.4)

4i02 = i2− i1 (5.5)

VI N (m) =4VB E 12 +2RM i1. (5.6)

Equation 5.6 can be considered a simple transfer function for the main amplifier’s

contribution to the output current in terms of VI N (m). One can find a similar

transfer function for the error amplifier contribution in terms of the VI N (m).

Equation 5.7 shows the input voltage loop summation for the error amplifier.

VI N (e ) =4VB E 34 =−4VB E 56−2RE i2. (5.7)

With the assumption that non-idealities are negligible, the transistor pairs (Q12

and Q34) must share the same collector-emitter currents, such that

4VB E 12 =4VB E 34. (5.8)

A transfer function for the entire circuit defining VI N (m) in terms of i2 and i1

using Eq. 5.8 and Eq. 5.7 is found as,

VI N (m) = 2RM i1−4VB E 56−2RE i2. (5.9)

To analyse the output distortion of the amplifier, we need to use a series expan-

sion but this equation is multi-variable, making this format significantly more

complex to expand. It contains linear terms with i1 and i2, as well as the term

4VB E 56 which is a function of transistors Q5−6 and Q1−2, making separation of

the amplifier distortion components complex. Instead we employ an elegant

solution that first appeared in [73]. Here, the separate distortion contributions

from the main and error amplifiers are calculated, and then added together after

a series expansion.
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5.4 Full Theory

This section aims to analyze the coefficients of a series expansion of the transfer

functions for the main and error amplifiers respectively. This leads into a full non-

ideal proof of the Cascomp transfer function. Firstly however, since the literature

has never shown a full proof of the Cascomp transfer function with an ideal error

amplifier, we derive this case and prove Quinn’s theory. This derivation ignores

circuit non-idealities, which are addressed later in the chapter.

5.4.1 Main Amplifier

Again using the circuit in Fig. 5.2, the input voltage loop for this amplifier can be

taken as Eq. 5.6 and the VB E terms for transistors Q1 and Q2 can be substituted

for the Ebers-Moll equation such that

VB E = VT ln
iD C + i1

i0
, (5.10)

where VT is the thermal voltage, iD C is the emitter bias current (equal to IM
2

for this differential topology), and i0 is the saturation current of the transistors.

Substituting this into Eq. 5.6 gives

VI N (m) = VT ln
iD C + i1

i0
−VT ln

iD C − i1

i0
+2RM i1. (5.11)

The logarithmic terms are collected and simplified to

VI N (m) = 2RM i1 +VT ln

 

1+2 i1
IM

1−2 i1
IM

!

. (5.12)

This describes VI N (m) as a function of i1. It is the inverted form of the common

tanh transfer function for a single differential pair. In the literature it is commonly

presented with i1 as the subject of the equation [23].

The Cascomp output current is the summation of the main and error ampli-

fier’s current through the connected and cross-coupled collectors. This means a

similar equation for the ideal error amplifier case is required, such as VI N (m) as

a function i2.
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5.4.2 Ideal Error Amplifier

The ideal error amplifier is essentially modeled as an ideal transconductance

GM E , as seen in Fig. 5.1, with i2 being the output current from the error amplifier.

The input transfer function for the ideal error amplifier is defined as,

i2 =GM E VI N (e ). (5.13)

Eq. 5.8 and Eq. 5.7 can be used to form a substitution for VI N (e ), the goal being

to find VI N (e ) in terms of i2. Using this, the error amplifier input voltage is

VI N (e ) =4VB E 12 =4VB E 34. (5.14)

Substituting Eq. 5.14 and the Ebers-Moll equation into Eq. 5.13 gives,

i2 =GM E VT ln

�

IM
2 + i1

IM
2 − i1

�

. (5.15)

By rearranging this equation we can find i1 as a function of i2, and this then is

substituted into Eq. 5.12 to obtain an equation describing the error amplifier

transfer function. Eq. 5.15 is rearranged to be

i1 =
IM

2





e
i2

VT GM E
−1

e
i2

VT GM E
+1



 , (5.16)

and substitute into Eq. 5.12 to obtain the ideal error amplifier transfer function,

VI N (m) = 2RM
IM

2





e
i2

VT GM E
−1

e
i2

VT GM E
+1



+VT ln











1+

�

e
i2

VT GM E
−1

e
i2

VT GM E
+1

�

1−

�

e
i2

VT GM E
−1

e
i2

VT GM E
+1

�











. (5.17)

5.4.3 Amplifier Coefficients

Eq. 5.12 and Eq. 5.17 describe the Cascomp’s total output current. Performing

a series expansion on both yields the respective harmonic components. For
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these expansions we make the assumption that higher order terms are negligible.

It is important to note that, because Eq. 5.12 and Eq. 5.17 are non-invertible

for i1 or i2, instead the first derivative of the series expansion is inverted which

allows the coefficients to describe transconductance terms ( i
VI N

). This is the

elegant solution to non-invertible functions suggested by [73]. The main and

error amplifier series expansions will be

i1 = Am0 +Am1VI N (m)+Am3V 3
I N (m), (5.18)

i2 = Ae 0 +Ae 1VI N (m)+Ae 3V 3
I N (m), (5.19)

where Amn and Ae n describe the nth-order derivative of the transfer function

with respect to VI N . The output of both amplifiers are summed together, out of

phase at their respective collectors, so it follows that the gain coefficients of the

Cascomp output are,

i1− i2 = (Am0−Ae 0)+(Am1−Ae 1)VI N (m)+(Am3−Ae 3)V 3
I N (m). (5.20)

From basic circuit theory we expect the second-order term (Am2−Ae 2) to be zero,

as an inherent property of differential amplifiers is the cancellation of second-

order terms [6]. This leaves the overall fundamental gain term (Am1−Ae 1), and

the overall third-order gain term (Am3−Ae 3). To find the coefficients one can

differentiate and invert the transfer functions with the use of the chain rule for

the second and third-order calculations. Equating i1 and i2 to zero for each

respective differentiated function gives us the particular expansion coefficient.

For the main amplifier we obtain the coefficients

Am1 =
IM

2RM IM +4VT
, (5.21)

Am2 = 0, (5.22)

Am3 =
−2IM VT

(IM RM +2VT )
4 . (5.23)
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As expected, the second-order gain term is zero. Similarly for the error amplifier,

using Eq. 5.17, the coefficients of the gain terms can be derived as

Ae 1_I d e a l =
2GM E VT

RM IM +2VT
, (5.24)

Ae 2_I d e a l = 0, (5.25)

Ae 3_I d e a l =
2GM E IM RM VT

(IM RM +2VT )
4 . (5.26)

By using the third-order coefficients along with the summation in Eq. 5.20, a

condition can be found which will lead to the third-order term equating to zero.

This is derived to be

Am3−Ae 3_I d e a l =−
2IM VT

(IM RM +2VT )
4 −

2GM E IM RM VT

(IM RM +2VT )
4 . (5.27)

Rearranging and canceling terms results in the condition in Eq. 5.28. This is the

same condition presented by Quinn and hence confirms his theory under ideal

error amplifier assumptions. Note the GM E is negative due to the cross-coupled

collectors.

GM E =−
1

2RM
. (5.28)

5.4.4 Non-Ideal Error Amplifier

The same mathematical process is applied for the error amplifier, but now with

a non-ideal transfer function. A differential amplifier with resistive degeneration

can be accurately described by the tanh function [23]. Note that this is the same

result obtained from inverting, Eq. 5.12, which is the transfer function for a

differential amplifier. In terms of the error amplifier, this can be expressed as

i2 =−IE tanh

�

VI N (e )−RE i2

2VT

�

, (5.29)

where i2 is again the error amplifier’s differential current, and VI N (e ) is the input

voltage to the error amplifier. We apply the same process, finding VI N 1 = f (i1)

and VI N 1 = f (i2), noting that the main amplifier case has not changed as it

is only a function of i1. However, the latter requires finding i1 = f (i2) and
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substituting into VI N 1 = f (i1), giving VI N 1 = f (i2). Substituting in the general

differential amplifier equation gives i1 = f (i2) as

i2 =−IE tanh







VT ln
� IM

2 +i1
IM

2 −i1

�

−RE i2

2VT






, (5.30)

i1 =
−IM

2

(2i2− IE )+(2i2 + IE )e
�

2i2RE
VT

�

(−2i2 + IE )+(2i2 + IE )e
�

2i2RE
VT

� . (5.31)

Eq. 5.31 can be substituted into Eq. 5.12 to give an equation of the form VI N 1 =

f (i2) as,

VI N (m) = 2RM X2 +VT ln











1+2
X2

IM

1−2
X2

IM











, (5.32)

where X2 is the full expression for i1 = f (i2) given by Eq. 5.31. The same

method of differentiation is followed as in the ideal case, to find the non-ideal

gain coefficients. The main amplifier gain coefficients remain the same in Eq.

5.21 - 5.23. The non-ideal error amplifier gain coefficients are calculated as,

Ae 1 =−
IE VT

(RE IE +2VT ) (RM IM +2VT )
(5.33)

Ae 2 = 0 (5.34)

Ae 3 =−
2IE VT RM

�

I 3
E IM R 3

E +6I 2
E IM R 2

E VT +12IE IM RE V 2
T −

16V 4
T

RM

�

(IE RE +2VT )
4 (IM RM +2VT )

4 . (5.35)

These gain coefficients are proportional to the magnitude of their respective

output harmonic components. Therefore, any coefficient minima show condi-

tions for IM3 cancellation. Of course, Eq. 5.35 is reasonably complicated and

further algebra will not be helpful. We instead will rely on describing any minima

graphically in the next section. Note that full derivations of all gain coefficients

can be found in Appendix D.
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5.5 Cascomp Biasing

In this section the proposed theory is used to find bias points that maintain

overall gain while maximizing linearity. The overall fundamental and third-order

gain coefficients are expressed graphically and these are varied with respect to

circuit variables. Generally, the main amplifier variables RM and IM are held

constant for this section, and the error amplifier variables RE and IE are varied

to express the coefficient relationships. Note that this research focuses on these

resistors and currents but we could also just as easily vary the transconductance

of each amplifier and show similar results. However, this would mask some

subtle differences that RM and IM have on the BJT Cascomp amplifier.

5.5.1 Fundamental Gain

The first-order gain coefficients of the full Cascomp amplifier can be plotted.

This will show the relative size of fundamental gain of the Cascomp, for both

ideal and non-ideal error amplifier cases. The ideal overall fundamental gain

coefficient is given by,

A1_I d e a l = Am1−Ae 1_I d e a l =
�

IM

2RM IM +4VT

�

−
�

2GM E VT

RM IM +2VT

�

. (5.36)

For the ideal error amplifier case, a small-signal approximation for GM E is made

as

GM E =
1

�

VT
IE

+RE

� . (5.37)

This approximation is utilised in order to draw a strong comparison between

the ideal and non-ideal cases of the Cascomp amplifier (Fig. 5.1 and Fig. 5.2

respectively). These equations produce traces showing how sweeping IE and

RE affects the output signal’s fundamental gain A1_I d e a l relative to static IM

and RM values. Both cases use set values of IM = 20mA and RM = 10Ω, for

varying values of IE with RE swept. The equation to describe the non-ideal

overall fundamental gain coefficient A1 is given by

A1 = Am1−Ae 1 =
�

IM

2RM IM +4VT

�

−
�

−IE VT

(RE IE +2VT ) (RM IM +2VT )

�

. (5.38)
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Figure 5.3: Ideal theoretical fundamental coefficient cancellation of a Cas-
comp amplifier for fixed RM and IM . RE is swept for values of IE . The y-axis
reflects the magnitude of the gain.
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Figure 5.4: Non-ideal theoretical fundamental coefficient cancellation of a
Cascomp amplifier for fixed RM and IM . RE is swept for values of IE . The
y-axis reflects the magnitude of the gain.
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In the ideal and non-ideal error amplifier case, both graphs (and equations)

are equivalent as we have assumed higher order effects on first-order compo-

nents are negligible. Hence Fig. 5.3 and 5.4 represent both fundamental output

cases. The fundamental gain is improved when RE tends to zero and IE tends

towards large values, but the amplifier becomes more nonlinear. This is in agree-

ment with circuit theory which states degenerating a differential amplifier will

reduce gain while increasing linearity [23]. We can confirm similar effects with

IM and RM through the same theoretical simulations. Increasing IM will de-

crease the peak gain value the plot approaches (where RE tends to zero), but

does not drastically change gain values when RE is high. Increasing RM will

decrease the surface’s overall gain across the surface for any given error amplifier

variables. This is analysed with more depth later in the chapter.

5.5.2 Third-Order Gain

The same process is applied to the third-order gain coefficients for the ideal

and non-ideal cases. In this case, the theoretical third-order cancellation occurs

when the amplifier’s overall third-order coefficient (A3) equals zero. Firstly, the

ideal case equation is given in Eq. 5.39, where GM E is again substituted by the

approximation given in Eq. 5.37 below. This is expressed graphically in Figure

5.5 showing how the single null positions change with the circuit variables.

A3_I d e a l = Am3−Ae 3_I d e a l =

�

2IM VT

(IM RM +2VT )
4

�

−
�

4GM E IM RM VT

(IM RM +2VT )
4

�

. (5.39)

The non-ideal case is given by

A3 = Am3−Ae 3 =

�

2IM VT

(IM RM +2VT )
4

�

−





−2IE VT RM

�

I 3
E IM R 3

E +6I 2
E IM R 2

E VT +12IE IM RE V 2
T −

16V 4
T

RM

�

(IE RE +2VT )
4 (IM RM +2VT )

4



 . (5.40)

Fig. 5.6 shows a significant variation in shape of the overall third-order com-

ponent from the ideal case and hence a change in the possible IM3 cancellation
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Figure 5.5: Ideal theoretical third-order coefficient cancellation of a Cas-
comp amplifier for fixed RM and IM . RE is swept for values of IE . The y-axis
reflects the magnitude of the total IM3 product and the nulls indicate IM3
cancellation.
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Figure 5.6: Non-ideal theoretical third-order coefficient cancellation of a
Cascomp amplifier for fixed RM and IM . RE is swept for values of IE . The
y-axis reflects the magnitude of the total IM3 product and the nulls indicate
IM3 cancellation.
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points. In the ideal case the cancellation points are singular for a given IE value.

In the non-ideal case two cancellation points occur at certain variable combina-

tions. A new null now appears at lower values of RE for given IE values (herein

referred to as the ‘second’ null or minima). As shown previously, lower values

of emitter degeneration lead to higher fundamental gain and the second null

position is occurs at lower RE values. This insight is potentially very useful as it

will increase IP3 in the amplifier. This bifurcation of the non-ideal IM3 minima

is exposed because the proposed non-ideal theory now considers the error am-

plifier transfer function to be a function of the main amplifier transfer function.

The main amplifier third-order distortion is now considered to be amplified

through the error amplifier as well.

5.6 Simulation

In order to bridge this new theory with a real world circuit, this section presents

SPICE simulations of a Cascomp circuit using NPN bipolar transistor models

from an IBM 0.5µm BiCMOS process. These simulations aim to validate the

proposed theoretical model and prove the newly observed IM3 nulls exist in

practice. The bipolar models used can be seen in [61], and it assumed they can

be scaled to give reasonably low parasitic resistances.

5.6.1 Circuit Schematic

LTspice was used to build the SPICE netlist and NGSpice was used to simulate

the circuit through Python scripts. Fig. 5.7 below shows the LTspice schematic.

Circuit values were kept consistent with theory calculations with RE and IE

swept, with RM= 10Ω and IM= 20 mA. Fig. 5.8 shows the circuit’s IM3 magnitude.

This data yields a result consistent with the non-ideal theoretical third-order

plot. For the same circuit values, a cancellation locus is obtained equivalent to

the non-ideal theoretical third-order gain plot predicted by Eq. 5.23 - 5.35 and

implied by Fig. 5.6. As an example, theory predicts at IE = 20 mA when RE equal

to 7Ω and 0.5Ω, IM3 nulls will occur. Simulation results show nulls occurring at

approximately 6Ω and 1Ω. This variation is expected due the parasitic resistance

(approximately 1.0Ω for the used scaled transistors) of the bipolar models which
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Figure 5.7: Cascomp circuit as built in LTspice.

effectively shifts the RM value. The result of both RE and RM being shifted by

this parasitic resistance is that the cancellation locus is ‘squeezed’, and the two

nulls occur closer together in RE . This is largely due to RM being shifted rather

than RE .

5.6.2 Optimisation

Fig. 5.8 shows that circuit components RE , IE set the bias point of the circuit.

It is obvious that RE and IE optimal values are those which set the circuit in an

IM3 null. However, there is now a choice between IM3 nulls that fall at higher or

lower RE values. Furthermore, varying RM also shifts these nulls and changes

the overall fundamental gain of the circuit. This makes the circuit values which

give an optimal bias point (in terms of gain and IM3) less obvious. To analyse the

effects of RM simulations are run similar to those done in the previous section,

but instead varying RM instead of IE . IE is now fixed at 20 mA.

Fig. 5.9 shows the simulated OIP3 of a Cascomp amplifier with RE and RM

swept, while IE and IM are fixed are at 20mA each. Note that the observed

locus of cancellation in this plot is not comparable to the IM3 plot in Fig. 5.8.

Observation of this plot data suggests that as RM increases it both shifts the nulls
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Figure 5.8: Simulated third-order output (dBV) of a non-ideal Cascomp
amplifier for fixed RM and IM over a 56Ω load. Note that the z-axis values
have been clipped (at -105 dBV) in the null positions to allow for readability.

to occur at lower values of IE , but it also separates the two nulls (on any given IE

value) to occur further apart in terms of RE and vice versa. This suggests we can

optimise the shape of the cancellation locus. By decreasing RM the two nulls can

be moved closer together in terms of RE and potentially make IP3 larger and/or

make a more robust bias point in terms of circuit variation.

The proposed optimum bias point for the circuit conditions IE = IM = 20 mA

are shown in Fig. 5.10. Three different RM values are chosen around this point.

At RM = 8.4Ω, the region between the two nulls produces a minimum OIP3 of

30dBV for the simulated circuit. This bias point maximises IP3 in terms of the

degeneration resistors and may be of use if process variation is a problem. Fig.

5.11 shows the same optimum bias point except with IE = 30 mA and hence the

optimum cancellation occurring at lower RM values.

Fig. 5.12 compares the proposed optimum bias point (where RM has been
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Figure 5.9: Simulated OIP3 of a Cascomp circuit with RE and RM swept. IE

and IM are fixed are at 20 mA each. Note the peaks are points that fall deep
into the IM3 null.

increased to move the two nulls very close together) with a bias point where RM

is smaller (and therefore its nulls are further separated). This clearly shows the

benefit of the optimised case as the region between the two nulls has relatively

low IM3 compared with each null of the nominal case. This results in a wide range

in which IM3 is consistently very small. To provide some form of benchmark, this

figure also includes the simulated IM3 of a differential pair. These simulations

were performed such that the fundamental output levels are as close as possible

as well as the emitter current densities being equal in each circuit. While this

is still not a completely fair comparison because of the differences in topology

and emitter degeneration between the Cascomp and differential pair, it does

highlight the improvement in IP3 when using a Cascomp and the benefit of

optimising RM in a Cascomp circuit.
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Figure 5.10: Optimum bias point for a Cascomp circuit with RE swept with
RM varied.
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Figure 5.11: Optimum bias point for a Cascomp circuit with RE swept with
smaller RM values for comparison.
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Figure 5.12: Optimum bias point in RE compared against a conventional
Cascomp (Nominal) and differential pair.

5.7 Process Errors

The Cascomp topology is susceptible to variations in circuit parameters which

shift the circuit’s operation from the optimal bias point. This section shows the

effects of all the major circuit parameters and components in the circuit.

The data presented in this section is obtained from SPICE simulations using

Monte-Carlo simulations to find the worst case variations in the circuit. Variation

percentages for a BJT process are assumed to be ±20% for absolute process

variation from wafer to wafer, and±2% mismatch variation in each wafer [27, 28].

These limits are chosen to get greater than what we expect from commercial

processes.

5.7.1 Transistor Parameters

The transistor parameter with the largest effect on the null position is the current

gain, β . If we assume absolute process variation to be 20% for transistor parame-

ters, the bias point can be completely removed out of the IM3 null. However this
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Figure 5.13: Simulated third-order output (dBV) of a non-ideal Cascomp
amplifier. ‘Nominal’ is the normal circuit parameters. ‘±20% beta’ show
absolute process variation of β parameters in the circuit. RE is swept for
fixed RM , IM and IE .

can effectively be corrected by using a cascoded transistor pair at the output.

Fig. 5.13 shows the worst case effects of absolute 20% variation of current

gain and early voltage (VAF ) on the normal circuit presented in Fig. 5.2, and

the circuit with an extra cascoded pair at the Cascomp output. We observe a

significant improvement due to absolute variation in these parameters, and its

null position shift is no longer significant. Other transistor parameters including

saturation current, IS , have relatively minimal impact with absolute variation.

Mismatch process errors in the transistor parameters are assumed to be 2% at

worst. Simulations show these again have minimal impact.

Mismatch process errors in the transistor parameters β , VAF , and IS are as-

sumed to be ±2% at worst. Monte-Carlo simulations (done over 1000 iterations)

showed that in general, these transistor parameter variations were not a signifi-

cant problem compared with absolute variations. These results are seen in Fig.

5.14.

In general, these simulations showed transistor parameter variations were

not a significant problem with the exception of absolute current gain variation.

Furthermore, if β is large then its effects are significantly reduced. These obser-
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Figure 5.14: Simulated third-order output (dBV) of a non-ideal Cascomp
amplifier. ‘Nominal’ is the normal circuit parameters. ‘Mismatch’ show the
±2% mismatch process variation of β , VAF , and IS parameters in the circuit.
RE is swept for fixed RM , IM and IE .

vations also indicate that the assumption of4VB E 12 =4VB E 34 in the derivation

of the non-ideal theory is indeed reasonable provided β is large.

The greatest variations in the null positions are due to process errors affecting

the total degeneration resistance at the emitters of the main and error amplifiers.

Fig. 5.15 shows the impact on distortion nulls with absolute variations of ±5% in

the emitter resistors RM . When RM varies both nulls move to occur at different

RE values. In comparison to variations inβ , there is a much larger shift in the null

positions. In high precision applications manufacturing tolerances are a com-

mon problem. There are many well established techniques for post-fabrication

circuit trimming to address these problems, (usually after packaging to min-

imise stress effects) involving some form of programming to select incremental

component elements or injecting small currents [74][75]. Externally trimming

the bias current IE would allow for full correction back into the distortion null.

The need for trimming would clearly be dependent on the application, but the

author considers it a reasonable solution to address resistance variations in a

Cascomp.
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Figure 5.15: Simulated third-order output (dBV) of a non-ideal Cascomp
amplifier. ‘Nominal’ is the normal circuit parameters. ‘±5% RM ’ indicates
respective 5% absolute variation of the main amplifier emitter resistance.
RE is swept for fixed RM , IM and IE .

5.8 Experimental Results

Measurements were made to confirm this theory using the circuit shown in Fig.

5.2. While they are done using discrete devices, each differential pair is contained

in the same IC, which minimises process and temperature variations between

paired transistors. Therefore, the measurements should be comparable to what

would be expected in a single IC.

5.8.1 Measurements

The circuit was constructed using discrete components and CA3083 transistor

arrays. The values IE and RE in the error amplifier were swept and the output

current of the circuit was captured using an Agilent 3561A. Current sources were

controlled and swept using an Agilent E5270. The main amplifier’s current IM

was held at 20 mA (10 mA per side) and measurements were taken at three values

of RM at 5.6Ω , 10.4Ω and 15.2Ω respectively. The amplifier was driven with a

two-tone signal at 11 kHz and 13 kHz at input levels of -22.25 dBV per tone. The
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load resistors were chosen to be 56Ω, meaning the amplifier was operated well

below compression. The results can be seen in Figs. 5.16a–5.16f which show

the cancellation loci created at each RM –IM point. As RM is increased, the loci

changes, following what would be expected from theory. As RM increases, smaller

distortion components are required from the error amplifier for cancellation,

so the distortion nulling starts to occur at lower values of IE . When RM is at low

values there are no cancellation points for the shown IE range (Fig. 5.16b) but

rather they are occurring at much higher IE values. A locus of cancellation is

produced when RM is increased (Fig. 5.16d). When RM is further increased, this

locus moves further to lower IE values at higher RE values (Fig. 5.16f).
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(a) Fundamental output for
RM=5.6Ω and IM=20 mA

(b) Third-order output for
RM=5.6Ω and IM=20 mA

(c) Fundamental output for
RM=10.4Ω and IM=20 mA

(d) Third-order output for
RM=10.4Ω and IM=20 mA

(e) Fundamental output for
RM=15.2Ω and IM=20 mA

(f ) Third-order output for
RM=15.2Ω and IM=20 mA

Figure 5.16: Measured experimental results of the Cascomp circuit’s funda-
mental and third-order outputs.
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In these measurements cancellation occurs at larger than expected values of

RM . Theory and simulation both predict cancellation loci will begin to appear at

IE = 20 mA, at approximately RM = 3Ω. These measurements show cancellation

still has not occurred when RM = 5.6Ω. This is attributed to the value of internal

emitter resistances in the transistors used. The derived theory does not separate

the internal versus the external emitter resistor contributions, but this should

not affect the nulling effects and actual shape of the cancellation loci. Figs. 5.16a,

5.16c and 5.16e show improved overall fundamental gain at lower values of RM

which is to be expected. All of these surfaces follow theory showing further

increased fundamental gain when RE is low and IE is high.

5.8.2 Verification of Optimisation Benefits

Estimates can be made as to how effective this optimisation of a Cascomp circuit

will be. The exact increase in gain and IP3 is dependent on the technology used

and the accuracy of fabricated emitter resistors and/or the parasitic base and

emitter resistances of the specific transistor cell layout, as well as the circuit’s

bias variation with temperature and supply voltage. These are the factors that

can shift third-order cancellation to different bias points if they have significant

impact. As seen from the simulation and measurement plots, cancellation at

smaller values of RE is more sharply defined and variations that change the

effective emitter resistance will move the bias point from the null.

Using the measurement data obtained, if a conventional Cascomp bias point

is taken (the literature assumes IM is about double IE [73]) and is compared

against a bias point chosen with a reasonably small RE and large IE , a measure

of the achievable increase in gain and IP3 is obtained. Referring to the cases

enumerated in Fig. 5.1, the ‘Conventional’ bias point is similar to that cited in

the original literature, which has a large RM and RE . The ‘New’ bias point has

taken the same RM value as the ‘Conventional’ but with optimised RE and IE

to obtain the best gain and IM3 null. The ‘Optimised’ bias point also varies RM

to an estimation of the best possible bias point for the Cascomp circuit derived

from the foregoing theory. This is the proposed optimised bias point shown in a

previous section. The example measurements suggest that this bias point will

yield an improvement of 4 dB in gain and an increase of over 10 dBV in OIP3 in a

practical situation.
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Bias RM RE IE Gain (dB) OIP3 (dBV)

Conventional 15.2Ω 8.0Ω 20 mA 1.50 26.46

New 15.2Ω 2.0Ω 35 mA 2.02 30.18

Optimised 8.0Ω 4.1Ω 40 mA 5.78 38.95

Table 5.1: Comparison of bias points for a Cascomp at IM= 20 mA.

5.9 Conclusion

This chapter presents a novel analysis of a BJT Cascomp amplifier transfer func-

tion and identifies a bias point which yields gain and linearity benefits. Previous

literature on the Cascomp circuit has suggested that the most effective bias

point, in terms of gain and IP3, can be found by assuming its error amplifier

is ideal. This work shows that when an ideal error amplifier is considered, the

equations do not accurately represent the cancellation of distortion components

contributed by the error amplifier. An improved nonlinear analysis of the Cas-

comp circuit is presented, including the non-linearity of the error amplifier. This

analysis has identified a point of bifurcation in the conditions that allow an IM3

null. By analysing the theoretical IM3 coefficients of the non-ideal main and

error amplifiers, theory suggested a more effective bias point at lower values of

RE where gain and IP3 are increased.

Simulation and measurements are presented confirming the theoretical anal-

yses. By considering the plots of the measured variation in the optimum RE

and IE values for a given IM – RM point, the predicted gain and IP3 effects were

observed. Since gain is increased in an amplifier with low degeneration and

high bias current, we are able to find the IM3 null which is at optimum for these

conditions. Using the predicted optimum bias values we can obtain an increase

in gain of 4.3 dB and increase in OIP3 of 12.5 dBV compared with a traditional

Cascomp circuit using the conventional bias point.

This work has revealed performance increases that would warrant further

investigation by Agilent Technologies into developing a HBT Cascomp amplifier.

With a large increase in the gain and linearity of the Cascomp amplifier through
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the new nonlinearity analysis, the original motivation for this work has been

fulfilled.





6
Conclusions and Future Work

Three works related to distortion reduction in bipolar transistor circuits have

been presented in this thesis. Each one includes a novel mathematical proof de-

scribing circuit operation and is confirmed using simulations and measurements.

Important aspects of these analyses result in some original circuit characteristics

which have not appeared in the literature before. This chapter summarises the

findings and explores potential future work in the author’s opinion.

6.1 Third-Order Distortion Null

This chapter presented a theoretical description of a bipolar transistor’s third-

order distortion null. The analysis was extended to Darlington transistors which

showed the nulling effect occurs at double the collector current. Data from

simulations and measurements was gathered and proved consistent with that

predicted by theory.

As discussed previously, third-order distortion nulling in single BJTs is not

common practice in amplifier design because it occurs at inconvenient bias

111
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currents. A Darlington null occurs at double the bias current compared to that of

a single BJT. This opens the possibility for an amplifier which does not trade-off

performance to achieve a third-order distortion reduction through this null. As

previously justified in chapter 2, the models and distortion analyses used will

transfer accurately to HBT device models that are operating below their input

frequency compression point. Using HBTs would allow the work to be directly

comparable to leading commercial products. A good example is the Agilent

TC218 and HMMC5200 Power amplifiers [76, 77], both built using Darlington

configurations. Optimisation of the Darlington configuration’s emitter and bal-

last resistors could prove useful in further increasing the amplifier’s performance.

High frequency analysis of this effect in both single and Darlington transis-

tors is perhaps the most pertinent research to follow on from this work. Both

device types require Volterra analysis applied with appropriate equivalent circuit

models, in order to analyse how the third-order null changes with increasing

frequency. The junction capacitors and device impedances would begin to factor

into the nulling condition. In order for this work to be rigorous at high frequen-

cies, a nulling condition accounting for these high frequency effects needs to be

derived.

Another research path leading from this work is to analyse the nulling condi-

tion of Darlington transistor with an emitter shunt resistor, as discussed previ-

ously. As it stands, in low-distortion amplifiers a shunt resistor is almost always

used to optimise the gain-bandwidth of the amplifier. Describing this shunt

resistor’s effect on a Darlington configuration and its inherent third-order null

would allow a more rigorous prediction when attempting a practical application

of the nulling effect.

As a final point-of-interest, Darlington transistors are not the only type of

compound bipolar device. Sziklai pairs are one example of a different configura-

tion. Another example would be the use of a collector to base feedback resistor

between the Darlington’s output and input terminals. Further configurations

could be explored which may yield previously unknown characteristics.
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6.2 Translinear Extraction

A circuit has been presented that can produce a bias current independent of

temperature and series resistance in a bipolar device. The circuit inherently

measures series resistance and adjusts the bias current accordingly. This circuit

is used with a common-emitter amplifier such that the amplifier is biased in

its third-order IM3 null, accounting for the BJT device’s series resistance and

operating temperature. This means that the amplifier is independent of the

variables that might shift its bias current away from the null. Theoretical analysis

of the circuit is provided, and simulations and measurements help confirm the

operation of the translinear bias circuit.

Perhaps the most interesting phenomena in this circuit is its ability to mea-

sure series resistance of the BJT devices it contains. Foundries which operate

semiconductor fabrication processes require methods of monitoring device pa-

rameters for each fabrication run. So called Process Control Monitors (PCMs)

and pre-process measurements are used to do this. Typically, the stated parasitic

resistances on a bipolar devices datasheet are vague because of absolute process

variation. This technique for series resistance measurement could find some

application as a monitor for semiconductor fabrication. Even general use in

series resistance independent bias circuit design could be a useful contribution

to the literature.

Now that a working bias circuit has been presented, a more rigorous evalu-

ation of an amplifier using the inherent null for distortion reduction could be

undertaken. This would have to tie back in with the work in chapter 3 and con-

sider other things mentioned in the previous section (for instance, considering

the common use of a shunt resistor in a Darlington configuration).

Finally, the translinear bias circuit’s operation is based on a simplified method

of operation. The structure of each stack is such that the application of the

translinear principle is relatively straight-forward. While the presented bias

circuit works well, considering the circuit topologies in other similar work [22], it

appears a more elegant circuit topology could be found. For example, the work

used a external resistor to measure the equilibrium current in each stack. The

resistor presents an issue that it itself contributes to process variation error. A

topology that removed this resistor would perhaps have better performance and
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contribute less error into the output bias current.

6.3 Cascomp

This chapter has presented a new nonlinear analysis for the Cascomp topology.

Previous analyses relied upon an assumption of high linearity in the error ampli-

fier. The analysis revealed a characteristic in the third-order intermodulation

distortion in a Cascomp amplifier that was previously masked by the assumption

of an ideal error amplifier. The new theoretical analysis was confirmed with

simulation and measurements. It was shown that this new characteristic can

improve a Cascomp amplifier’s IP3 and further analysis showed how this can be

optimised for increased performance.

The literature does contain some FET implementations of the Cascomp

circuit accompanied by measurements of IP3 [68, 69]. However, they are vague

in terms of the theory behind a FET Cascomp amplifier and do not explore

the characteristics as this work has. An interesting research path would be to

replicate this work in FETs. Attempting to find similar characteristics using FET

models could potentially yield similar optimisations to the topology as shown in

this work. A theoretical analysis of a FET Cascomp has not been shown in the

literature to the best of the author’s knowledge.

Fabrication of an IC containing a Cascomp would give valuable results. Cou-

pling this with the proposed optimisation in this work would yield an interesting

result for comparison of the Cascomp amplifier with other similar amplifier

topologies. The comparison would give an estimate of how impactful the pro-

posed optimisations have been on a Cascomp amplifier’s performance. Further-

more, this would give good measurements on the impact of process variations in

a Cascomp. One could assess the proposed optimal bias point presented in this

work and conclude on its usefulness in reducing the impact of process variation.



A
Series Expansion Coefficients

This appendix presents the well-known derivations of distortion components for

single and two-tone input signals exciting a BJT’s input junction. The transfer

function used is the Ebers-Moll equation from Eq. 2.12 with the assumption that

unity gain factor, α f = 1. This assumption is made for simplicity, and can be

added into the final derivation at any point.

Single Tone Expansion

Here, the common derivation for a single tone input function exciting a generic

transfer function is presented. Mathematica scripts were used to confirm all

derivations1.

1Overall, this work implemented some very complex derivations, so much so that hand
derivations became near impossible (especially for the Cascomp work). Hence the author
adopted the use of Mathematica scripts early on in the project. They clearly don’t hold the same
elegance that hand-typed latex derivations give but this was deemed a necessary evil by the
author. All scripts can be copied or obtained from the author and run again for confirmation in
Mathematica.
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ClearAll@"Global`*"D

ClearAll@Evaluate@$Context <> "*"DD

H*** Initial definition of a Maclaurin series expanding a function of x,
f@xD, around zero. The fn@0D terms are the series expansion coefficients. ***L

y = Series@f@xD, 8x, 0, 5<D

f@0D + f¢@0D x +
1

2
f¢¢@0D x2 +

1

6
fH3L@0D x3 +

1

24
fH4L@0D x4 +

1

120
fH5L@0D x5 + O@xD6

H*** Here we take the Ebers-

Moll function and expand it using a Maclaurin series. ***L

y = Ic*SeriesB ExpB
vIN

VT
F , 8vIN, 0, 5<F

Ic +

Ic vIN

VT
+

Ic vIN
2

2 VT
2

+

Ic vIN
3

6 VT
3

+

Ic vIN
4

24 VT
4

+

Ic vIN
5

120 VT
5

+ O@vIND6

H*** Applying a defined input signal to
the Maclaurin series yeilds the following. ***L

vIN = A *Cos@wtD

A Cos@wtD

y

Ic +

Ic A Cos@wtD

VT
+

Ic HA Cos@wtDL2

2 VT
2

+

Ic HA Cos@wtDL3

6 VT
3

+

Ic HA Cos@wtDL4

24 VT
4

+

Ic HA Cos@wtDL5

120 VT
5

+ O@A Cos@wtDD6

H*** Analysing each order term individually and separating
out the sinusoidal terms such that they are at multiples of the
fundamental frequency. In order to better compare this with the
generalised versions of the Maclaurin series of an amplifier
Hpresented in Chapter 2L we simplify the above result. The factorial
constant is factored out for each term HThat is constants of 1, 1�2, 1�6,
1�24, 1�120 for first-order through fifth-order respectively. ***L
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second = TrigReduceB
Ic HA Cos@wtDL2

2 VT
2

F

A2 Ic + A2 Ic Cos@2 wtD

4 VT
2

third = TrigReduceB
Ic HA Cos@wtDL3

6 VT
3

F

3 A3 Ic Cos@wtD + A3 Ic Cos@3 wtD

24 VT
3

fourth = TrigReduceB
Ic HA Cos@wtDL4

24 VT
4

F

3 A4 Ic + 4 A4 Ic Cos@2 wtD + A4 Ic Cos@4 wtD

192 VT
4

fifth = TrigReduceB
Ic HA Cos@wtDL5

120 VT
5

F

10 A5 Ic Cos@wtD + 5 A5 Ic Cos@3 wtD + A5 Ic Cos@5 wtD

1920 VT
5

H*** Collecting terms into frequency bins. ***L
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total = CollectB

CollectBCollectBCollectBIc +

Ic A Cos@wtD

VT
+

A2 Ic + A2 Ic Cos@2 wtD

4 VT
2

+

3 A3 Ic Cos@wtD + A3 Ic Cos@3 wtD

24 VT
3

+

3 A4 Ic + 4 A4 Ic Cos@2 wtD + A4 Ic Cos@4 wtD

192 VT
4

+

10 A5 Ic Cos@wtD + 5 A5 Ic Cos@3 wtD + A5 Ic Cos@5 wtD

1920 VT
5

,

Cos@4 wtDF, Cos@3 wtDF, Cos@2 wtDF, Cos@wtDF

Ic + Cos@3 wtD
A5 Ic

384 VT
5

+
A3 Ic

24 VT
3

+

Cos@2 wtD
A4 Ic

48 VT
4

+
A2 Ic

4 VT
2

+ Cos@wtD
A5 Ic

192 VT
5

+
A3 Ic

8 VT
3

+
A Ic

VT
+

A5 Ic Cos@5 wtD

1920 VT
5

+
A4 Ic

64 VT
4

+
A4 Ic Cos@4 wtD

192 VT
4

+
A2 Ic

4 VT
2

H*** Final equation with the separated terms. This shows the fully expanded
collection of series coefficients in front of each frequency term. ***L

y = Ic +

Ic A4

40 VT
4

+

Ic A2

4 VT
2

+

Ic A5

192 VT
5

+

Ic A3

8 VT
3

+

Ic A

VT
Cos@wtD +

Ic A2

4 VT
2

+

Ic A4

48 VT
4

Cos@2 wtD +

Ic A3

24 VT
3

+

Ic A5

384 VT
5

Cos@3 wtD +

Ic A4

192 VT
4

Cos@4 wtD +

Ic A5

1920 VT
5

Cos@5 wtD

H*** These can be made to match
generalised terms Hsuch as those in Equation 2.6L
by factoring out the nth-order factorial term. ***L

DC_ = Ic +

Ic A4

40 VT
4

+

Ic A2

4 VT
2
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fundamental_ =

Ic A5

192 VT
5

+

Ic A3

8 VT
3

+

Ic A

VT
Cos@wtD

second_order =

Ic A2

4 VT
2

+

Ic A4

48 VT
4

Cos@2 wtD

third_order =

Ic A3

24 VT
3

+

Ic A5

384 VT
5

Cos@3 wtD

fourth_order =

Ic A4

192 VT
4

Cos@4 wtD

fifth_order =

Ic A5

1920 VT
5

Cos@5 wtD

Onetone_seriesexpansion_2.nb   9
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Two Tone Expansion

Here, the common derivation for a two tone input function exciting a generic

transfer function is presented. Mathematica scripts were used to confirm all

derivations.



ClearAll@"Global`*"D

ClearAll@Evaluate@$Context <> "*"DD

H*** Initial definition of a Maclaurin series expanding a function of x,
f@xD, around zero. The fn@0D terms are the series expansion coefficients. ***L

y = Series@f@xD, 8x, 0, 5<D

f@0D + f¢@0D x +

1

2
f¢¢@0D x2 +

1

6
fH3L@0D x3 +

1

24
fH4L@0D x4 +

1

120
fH5L@0D x5 + O@xD6

H*** Here we take the Ebers-

Moll function and expand it using a Maclaurin series. ***L

y = Ic*SeriesB ExpB
vIN

VT
F , 8vIN, 0, 5<F

Ic +
Ic vIN

VT
+

Ic vIN
2

2 VT
2

+

Ic vIN
3

6 VT
3

+

Ic vIN
4

24 VT
4

+

Ic vIN
5

120 VT
5

+ O@vIND6

H*** Applying a defined input signal to the Ebers-Moll model and expanding it
using a Maclaurin series. The input signal have amplitude A1 and A2,

and frequencies w1 and w2 respectively. ***L

f@0D + f¢@0D x +

1

2
f¢¢@0D x2 +

1

6
fH3L@0D x3 +

1

24
fH4L@0D x4 +

1

120
fH5L@0D x5 + O@xD6

vIN = A1 *Cos@w1 tD + A2 *Cos@w2 tD

Cos@t w1D A1 + Cos@t w2D A2

121



y

Ic +

Ic HCos@t w1D A1 + Cos@t w2D A2L

VT
+

Ic HCos@t w1D A1 + Cos@t w2D A2L2

2 VT
2

+

Ic HCos@t w1D A1 + Cos@t w2D A2L3

6 VT
3

+

Ic HCos@t w1D A1 + Cos@t w2D A2L4

24 VT
4

+

Ic HCos@t w1D A1 + Cos@t w2D A2L5

120 VT
5

+ O@Cos@t w1D A1 + Cos@t w2D A2D6

H*** Analysing each order term individually and separating
out the sinusoidal terms such that they are at multiples of the
fundamental frequency. In order to better compare this with the
generalised versions of the Maclaurin series of an amplifier
Hpresented in Chapter 2L we simplify the above result. The factorial
constant is factored out for each term HThat is constants of 1, 1�2, 1�6,
1�24, 1�120 for first-order through fifth-order respectively. ***L

second = TrigReduceB
Ic HCos@t w1D A1 + Cos@t w2D A2L2

2 VT
2

F

1

4 VT
2

IIc A1
2

+ Ic Cos@2 t w1D A1
2

+ 2 Ic Cos@t w1 - t w2D A1 A2 +

2 Ic Cos@t w1 + t w2D A1 A2 + Ic A2
2

+ Ic Cos@2 t w2D A2
2M

third = TrigReduceB
Ic HCos@t w1D A1 + Cos@t w2D A2L3

6 VT
3

F

1

24 VT
3

I3 Ic Cos@t w1D A1
3

+ Ic Cos@3 t w1D A1
3

+ 6 Ic Cos@t w2D A1
2 A2 +

3 Ic Cos@2 t w1 - t w2D A1
2 A2 + 3 Ic Cos@2 t w1 + t w2D A1

2 A2 +

6 Ic Cos@t w1D A1 A2
2

+ 3 Ic Cos@t w1 - 2 t w2D A1 A2
2

+

3 Ic Cos@t w1 + 2 t w2D A1 A2
2

+ 3 Ic Cos@t w2D A2
3

+ Ic Cos@3 t w2D A2
3M
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fourth = TrigReduceB
Ic HCos@t w1D A1 + Cos@t w2D A2L4

24 VT
4

F

1

24 VT
4

3 Ic A1
4

8
+

1

2
Ic Cos@2 t w1D A1

4
+

1

8
Ic Cos@4 t w1D A1

4
+

3

2
Ic Cos@t w1 - t w2D A1

3 A2 +

1

2
Ic Cos@3 t w1 - t w2D A1

3 A2 +

3

2
Ic Cos@t w1 + t w2D A1

3 A2 +

1

2
Ic Cos@3 t w1 + t w2D A1

3 A2 +

3

2
Ic A1

2 A2
2

+

3

2
Ic Cos@2 t w1D A1

2 A2
2

+

3

2
Ic Cos@2 t w2D A1

2 A2
2

+

3

4
Ic Cos@2 t w1 - 2 t w2D A1

2 A2
2

+

3

4
Ic Cos@2 t w1 + 2 t w2D A1

2 A2
2

+

1

2
Ic Cos@t w1 - 3 t w2D A1 A2

3
+

3

2
Ic Cos@t w1 - t w2D A1 A2

3
+

3

2
Ic Cos@t w1 + t w2D A1 A2

3
+

1

2
Ic Cos@t w1 + 3 t w2D A1 A2

3
+

3 Ic A2
4

8
+

1

2
Ic Cos@2 t w2D A2

4
+

1

8
Ic Cos@4 t w2D A2

4
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fifth = TrigReduceB
Ic HCos@t w1D A1 + Cos@t w2D A2L5

120 VT
5

F

1

120 VT
5

5

8
Ic Cos@t w1D A1

5
+

5

16
Ic Cos@3 t w1D A1

5
+

1

16
Ic Cos@5 t w1D A1

5
+

15

8
Ic Cos@t w2D A1

4 A2 +

5

4
Ic Cos@2 t w1 - t w2D A1

4 A2 +

5

16
Ic Cos@4 t w1 - t w2D A1

4 A2 +

5

4
Ic Cos@2 t w1 + t w2D A1

4 A2 +

5

16
Ic Cos@4 t w1 + t w2D A1

4 A2 +

15

4
Ic Cos@t w1D A1

3 A2
2

+

5

4
Ic Cos@3 t w1D A1

3 A2
2

+

15

8
Ic Cos@t w1 - 2 t w2D A1

3 A2
2

+

5

8
Ic Cos@3 t w1 - 2 t w2D A1

3 A2
2

+

15

8
Ic Cos@t w1 + 2 t w2D A1

3 A2
2

+

5

8
Ic Cos@3 t w1 + 2 t w2D A1

3 A2
2

+

15

4
Ic Cos@t w2D A1

2 A2
3

+

5

4
Ic Cos@3 t w2D A1

2 A2
3

+

5

8
Ic Cos@2 t w1 - 3 t w2D A1

2 A2
3

+

15

8
Ic Cos@2 t w1 - t w2D A1

2 A2
3

+

15

8
Ic Cos@2 t w1 + t w2D A1

2 A2
3

+

5

8
Ic Cos@2 t w1 + 3 t w2D A1

2 A2
3

+

15

8
Ic Cos@t w1D A1 A2

4
+

5

16
Ic Cos@t w1 - 4 t w2D A1 A2

4
+

5

4
Ic Cos@t w1 - 2 t w2D A1 A2

4
+

5

4
Ic Cos@t w1 + 2 t w2D A1 A2

4
+

5

16
Ic Cos@t w1 + 4 t w2D A1 A2

4
+

5

8
Ic Cos@t w2D A2

5
+

5

16
Ic Cos@3 t w2D A2

5
+

1

16
Ic Cos@5 t w2D A2

5

H*** Collecting terms into frequency bins. For obvious
reasons this is trucated to the third order. However the same
process could be followed to find higher order components. ***L
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total =

CollectBIc +

Ic HCos@t w1D A1 + Cos@t w2D A2L

VT
+ second + third, Cos@t w2DF

Ic + Cos@t w2D
Ic A1

2 A2

4 VT
3

+

Ic A2
3

8 VT
3

+

Ic A2

VT
+

Ic Cos@t w1D A1
3

8 VT
3

+

Ic Cos@3 t w1D A1
3

24 VT
3

+

Ic Cos@2 t w1 - t w2D A1
2 A2

8 VT
3

+

Ic Cos@2 t w1 + t w2D A1
2 A2

8 VT
3

+

Ic Cos@t w1D A1 A2
2

4 VT
3

+

Ic Cos@t w1 - 2 t w2D A1 A2
2

8 VT
3

+

Ic Cos@t w1 + 2 t w2D A1 A2
2

8 VT
3

+

Ic Cos@3 t w2D A2
3

24 VT
3

+

1

4 VT
2

IIc A1
2

+ Ic Cos@2 t w1D A1
2

+ 2 Ic Cos@t w1 - t w2D A1 A2 +

2 Ic Cos@t w1 + t w2D A1 A2 + Ic A2
2

+ Ic Cos@2 t w2D A2
2M +

Ic Cos@t w1D A1

VT

H*** The harmonic content is separated from the intermodulation
content by grouping and collecting terms using the above equation
and varying the second parameter for the frequency component of
interest. One final simplification is made that A = A1 = A2. ***L

H*** HARMONICS ***L

fundamental_w1 =

Ic A

VT
+

3 Ic A3

8 VT
3

Cos@t w1D

fundamental_w2 =

Ic A

VT
+

3 Ic A3

8 VT
3

Cos@t w2D

second_w1 =

Ic A2

4 VT
2

Cos@2 t w1D

second_w2 =

Ic A2

4 VT
2

Cos@2 t w2D

third_w1 =

Ic A3

24 VT
3

Cos@3 t w1D

third_w2 =

Ic A3

24 VT
3

Cos@3 t w2D

H*** INTERMODULATION ***L

Twotone_seriesexpansion_2.nb   5

125



w1 + w2 =

Ic A2

2 VT
2

Cos@t w1 + t w2D

w1 - w2 =

Ic A2

2 VT
2

Cos@t w1 - t w2D

2 w1 + w2 =

Ic A3

8 VT
3

Cos@2 t w1 + t w2D

2 w1 - w2 =

Ic A3

8 VT
3

Cos@2 t w1 - t w2D

w1 + 2 w2 =

Ic A3

8 VT
3

Cos@t w1 + 2 t w2D

w1 - 2 w2 =

Ic A3

8 VT
3

Cos@t w1 - 2 t w2D

H*** These can be made to match generalised terms Hsuch as those in Figure 2.2L
by factoring out the nth-order factorial term. ***L
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B
Transistor Nulling Derivations

This appendix presents the derivations for inherent nulling of third-order dis-

tortion in different transistor configurations. Overall, this work implemented

some very complex derivations, so much so that hand derivations became near

impossible (especially for the Cascomp work). Hence the author adopted the use

of Mathematica scripts early on in the project. They clearly don’t hold the same

elegance that hand-typed latex derivations give but this was deemed a necessary

evil by the author. All scripts can be copied or obtained from the author and run

again for confirmation in Mathematica.
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Single BJT Third-Order Null

Using the configuration in Chapter 2 (presented again below), the full mathe-

matical derivation for a Single BJT amplifier is found. A Mathematica script is

again used to present the derivation.

RB

RE

RC

VIN

Figure B.1: A typical single BJT transistor common-emitter amplifier used
for transfer analysis. Each shown resistor is the total combination of internal
and external resistances.



Remove@"Global`*"D

H*** Using the Equivalent model of a Single BJT Has shown in Chapter 2L
we apply Kirchoff's voltage law on the input loop of the
amplifier. b1 is the current gain for the device. Vbe is the ***L

In[17]:= VIN = VBE + IC* HRE + HHRE + RBL �b1L L

Out[17]= IC RE +
RB + RE

b1
+ VBE

H*** This form allows the substitutioin of the first bracketed term for a
constant REE. This is the series resistance for this Single BJT circuit. ***L

In[3]:= REE = RE +

RB + RE

b1

Out[3]= RE +
RB + RE

b1

H*** Therefore,
one can simply state the following as the transfer function for the Single
BJT amplifier. Also including is the substitution of VBE for the Ebers-

Moll equation describing the voltage across the transistor junction. ***L

In[4]:= VIN = IC2*REE + VT*Log@IC�ISD

H*** Further simplifications are made to make
the derivations of the series coefficients tidy. ***L

W = VIN � VT
X = IC�IS
F = HIS*REEL � VT

W = FX + Log@XD

H*** First derivative of W with respect to X. ***L

In[5]:= D@W = F*X + Log@XD , XD

Out[5]= F +
1

X

H*** We are interested in transconductance terms in our resulting coefficients,
so the first derivative is inverted such that it has the form of Current over
Voltage HdW�dF becomes dF�dWL. This gives the first gain coefficient. ***L

129



In[6]:= 1� F +

1

X

Out[6]=

1

F +
1
X

H*** Second derivative gives the second order
term. Note the chain rule needs to be applied. ***L

In[8]:= DB
1

F +
1
X

, XF

Out[8]=

1

IF +
1
X

M
2
X2

H*** Application of the chain rule ***L

In[11]:=
1

IF +
1
X

M
2
X2

*

1

F +
1
X

Out[11]=

1

IF +
1
X

M
3
X2

H*** Simplifying results in the second-order term ***L

In[12]:= SimplifyB
1

IF +
1
X

M
3
X2

F

Out[12]=

X

H1 + F XL3

H*** The same process is applied again. Derivation of the final second-

order term ® Apply chain rule ® simplify. ***L

In[13]:= DB
X

H1 + F XL3
, XF

Out[13]= -
3 F X

H1 + F XL4
+

1

H1 + F XL3

H*** Application of the chain rule. ***L
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In[14]:= -

3 F X

H1 + F XL4
+

1

H1 + F XL3
*

1

F +
1
X

Out[14]=

-
3 F X

H1+F XL4
+

1

H1+F XL3

F +
1
X

H*** Simplifying. ***L

In[15]:= SimplifyB
-

3 F X

H1+F XL4
+

1

H1+F XL3

F +
1
X

F

Out[15]=

X - 2 F X2

H1 + F XL5

H*** Summary of the coefficients. ***L

First =

1

F +
1
X

Second =

X

H1 + F XL3

Third =

X - 2 F X2

H1 + F XL5
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Darlington Third-Order Null

Using the configuration in Chapter 2 (presented again below), the full mathe-

matical derivation for a Darlington pair without a flushout resistor is found. A

Mathematica script is again used to present the derivation.

RB1

RE1

RC

VIN

RB2

RE2

Vπ1

Vπ2

VBIAS

Figure B.2: Typical single Darlington transistor amplifier circuit used for
small signal analysis. Each shown resistor is the total combination of inter-
nal and external resistances.



In[1]:= Remove@"Global`*"D

Remove::rmnsm : There are no symbols matching "Global`*". �

H*** Using the equivalent model of a Darlington pair Has shown in Chapter 2L
we apply Kirchoff's voltage law on the input loop of the
amplifier. b1 and b2 are the current gains for each device. ***L

VIN = VBE1 + VBE2 + HIC2 + IB2L *RE2 +

IB2*RB2 + IC1* H1 + 1�b1L *RE1 + HIC1�b1L *RB1

IC1 RB1

b1
+ IB2 RB2 + 1 +

1

b1
IC1 RE1 + HIB2 + IC2L RE2 + VBE1 + VBE2

H*** The definitions of each of the currents are listed below,
decribing the currents in the transistors Q1 and Q2. ***L

IB2 = IC1 + IC1�b1
IB2 = IC2�b2
IC = IC1 + IC2

H*** Using these three equations,
one can rearrange and state the following ***L

IC2�b2 = IC1 H1 + 1�b1L
IC1 = HIC2L � Hb2 + b2�b1L
IC = HIC2L � Hb2 + b2�b1L + IC2 H** IC in terms of IC2 **L
IC = IC1 + IC1* Hb2 + b2�b1L H** IC in terms of IC1 **L

In[2]:= Reduce@IC == HIC2L � Hb2 + b2�b1L + IC2 , IC2D

Out[3]= IC2 �
H1 + b1L b2 IC

b1 + b2 + b1 b2

In[7]:= Reduce@IC � IC1 + IC1 * Hb2 + b2 � b1L , IC1D

Out[9]= IC1 �
b1 IC

b1 + b2 + b1 b2

H*** These equations can be replaced into the original
input loop to make VIN depedant on only one current, IC,
which is the main collector current in the Darlington ***L

VIN = VBE1 + VBE2 + HIC2 + IB2L *RE2 +

IB2*RB2 + IC1* H1 + 1�b1L *RE1 + HIC1�b1L *RB1
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In[10]:=

VIN = VBE1 + VBE2 +

H1 + b1L b2 IC

b1 + b2 + b1 b2
+

H1 + b1L b2 IC

b1 + b2 + b1 b2
* H1 � b2L * RE2 +

H1 + b1L b2 IC

b1 + b2 + b1 b2
* H1 � b2L * RB2 +

b1 IC

b1 + b2 + b1 b2
* H1 + 1 � b1L * RE1 +

b1 IC

b1 + b2 + b1 b2
� b1 * RB1

Out[10]=
IC RB1

b1 + b2 + b1 b2
+

H1 + b1L IC RB2

b1 + b2 + b1 b2
+

J1 +
1

b1
N b1 IC RE1

b1 + b2 + b1 b2
+

H1 + b1L IC

b1 + b2 + b1 b2
+

H1 + b1L b2 IC

b1 + b2 + b1 b2
RE2 + VBE1 + VBE2

H*** We simplify by collecting the collector
current terms and reducing the beta terms. ***L

In[13]:=

CollectA
IC RB1

b1 + b2 + b1 b2
+

H1 + b1L IC RB2

b1 + b2 + b1 b2
+

J1 +
1

b1
N b1 IC RE1

b1 + b2 + b1 b2
+

H1 + b1L IC

b1 + b2 + b1 b2
+

H1 + b1L b2 IC

b1 + b2 + b1 b2
RE2 + VBE1 + VBE2, ICE

Out[13]= IC
RB1

b1 + b2 + b1 b2
+

H1 + b1L RB2

b1 + b2 + b1 b2
+

J1 +
1

b1
N b1 RE1

b1 + b2 + b1 b2
+

H1 + b1L RE2

b1 + b2 + b1 b2
+

H1 + b1L b2 RE2

b1 + b2 + b1 b2
+ VBE1 + VBE2

H*** By further simplifying the bracketed term this equation
gives the series resistance of the Darlington amplifier. ***L

In[18]:= SimplifyA
RB1

b1 + b2 + b1 b2
+

H1 + b1L RB2

b1 + b2 + b1 b2
+

J1 +
1

b1
N b1 RE1

b1 + b2 + b1 b2
+

H1 + b1L RE2

b1 + b2 + b1 b2
+

H1 + b1L b2 RE2

b1 + b2 + b1 b2
E

Out[18]=
RB1 + H1 + b1L HRB2 + RE1 + RE2 + b2 RE2L

b1 + b2 + b1 b2

REE =

RB1 + H1 + b1L HRB2 + RE1 + RE2 + b2 RE2L

b1 + b2 + b1 b2

H*** Therefore, one can simply state the
following as the transfer function for the Darlington. ***L

In[19]:= VIN = IC REE + VBE1 + VBE2

Out[19]= IC REE + VBE1 + VBE2

H*** Introducing the Ebers-Moll equations for the base-

emitter junction also introduces different currents IC1 and IC2. This needs to
be simplified to contain only IC terms again using the same process. ***L

In[20]:= VIN = IC*REE + VT*Log@IC1�ISD + VT*Log@IC2�ISD

Out[20]= IC REE + VT LogA
IC1

IS
E + VT LogA

IC2

IS
E
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In[21]:=

VIN = IC*REE + VT*LogB
b1 IC

b1 + b2 + b1 b2
� ISF + VT*LogB

H1 + b1L b2 IC

b1 + b2 + b1 b2
� ISF

Out[21]= IC REE + VT LogA
b1 IC

Hb1 + b2 + b1 b2L IS
E + VT LogA

H1 + b1L b2 IC

Hb1 + b2 + b1 b2L IS
E

a1 =

b1

Hb1 + b2 + b1 b2L

a2 =

H1 + b1L b2

Hb1 + b2 + b1 b2L

H*** We see that each logarithmic term has different constants contained
inside. We use fundamental logarithmic identities to seperate out the
constant portion as its own constant term in the transfer function. ***L

VT LogB
a1*IC

IS
F + VT LogB

a2*IC

IS
F

VT LogB
IC

IS
F + VT LogB

IC

IS
F + VT Log@a1D + VT Log@a2D

VT LogB
IC

IS
F + VT LogB

IC

IS
F + VT Log@a1*a2D

In[30]:=

SimplifyB
b1

Hb1 + b2 + b1 b2L
*

H1 + b1L b2

Hb1 + b2 + b1 b2L
F

Out[30]=

b1 H1 + b1L b2

Hb1 + b2 + b1 b2L2

C = VT LogB
b1 H1 + b1L b2

Hb1 + b2 + b1 b2L2
F

H*** Finally, this results in a transfer function
which is a function of only one current IC. A simple
application of a series expansion is now possible. ***L
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In[31]:= VIN = IC*REE + VT*Log@IC�ISD + VT*Log@IC�ISD + C

Out[31]= C + IC REE + 2 VT LogA
IC

IS
E

H*** Further simplifications are made to make
the derivations of the series coefficients tidy. ***L

W = VIN � VT
X = IC�IS
F = HIS*REEL � VT
C = Log@a1*a2D � VT

W = FX + Log@X^2D + C

H*** First derivative of W with respect to X. ***L

D@W = F*X + Log@X^2D + C, XD

F +
2

X

H*** We are interested in transconductance terms in our resulting coefficients,
so the first derivative is inverted such that it has
the form of Current over Votlage HdW�dF becomes dF�dWL. ***L

1� F +

2

X

1

F +
2
X

H*** Simplifying results in the first order transconductance term,
which is the same thing as our first order gain coefficient. ***L

SimplifyB
1

F +
2
X

F

X

2 + F X

H*** Second derivative gives the second order
term. Note the chian rule needs to be applied. ***L
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DB
X

2 + F X
, XF

-
F X

H2 + F XL2
+

1

2 + F X

H*** Application of the Chain rule ***L

-

F X

H2 + F XL2
+

1

2 + F X
*

1

F +
2
X

-
F X

H2+F XL2
+

1
2+F X

F +
2
X

H*** Simplifying results in the second-order term ***L

SimplifyB
-

F X

H2+F XL2
+

1
2+F X

F +
2
X

F

2 X

H2 + F XL3

H*** The same process is applied again. Derivation of the final second-

order term ® Apply chain rule ® simplify. ***L

DB
2 X

H2 + F XL3
, XF

-
6 F X

H2 + F XL4
+

2

H2 + F XL3

H*** Application of the Chain rule. ***L

-

6 F X

H2 + F XL4
+

2

H2 + F XL3
*

1

F +
2
X

-
6 F X

H2+F XL4
+

2

H2+F XL3

F +
2
X

H*** Simplifying. ***L
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SimplifyB
-

6 F X

H2+F XL4
+

2

H2+F XL3

F +
2
X

F

-
4 X H-1 + F XL

H2 + F XL5

H*** Summary of the coefficients. ***L

First =

X

2 + F X

Second =

2 X

H2 + F XL3

Third =

4 X H1 - F XL

H2 + F XL5
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Theoretical Calculation Scripts

This python script was used to calculate the theoretical data for the single and

Darlington nulls using the theoretical coefficients found in the mathematical

derivation. This is the basis for the theoretical plots shown.

import re

import pylab

from pylab import

import numpy as np

import s t r i n g

def Darl_theoryplot ( ) :

### F i l e handle f o r simulated values of a s i n g l e and Darlington ####

i = open ( ’ Nul ldata3rd_Darlplot . x l s x ’ , ’ r ’ )

### D e f i n i t i o n of v a r i a b l e s

current_steps , IM3_darl , IM3_sing = [ ] , [ ] , [ ]

d a r l _ i c , s i n g _ i c , darl_3rd , sing_3rd = [ ] , [ ] , [ ] , [ ]

### Loop e x t r e c t i n g csv values ###

count = 0

f o r l i n e in i :

i f count > 0 :

line_tmp = l i n e . s p l i t ( ’ , ’ )

d a r l _ i c . append ( line_tmp [ 3 ] )

dar l_3rd . append ( line_tmp [ 5 ] )

s i n g _ i c . append ( line_tmp [ 1 2 ] )

sing_3rd . append ( line_tmp [ 1 4 ] )

count += 1

i . c l o s e ( )

### Console p r i n t ###

p r i n t d a r l _ i c

p r i n t dar l_3rd

p r i n t s i n g _ i c

p r i n t sing_3rd

### Manual X a x i s l a b e l s f o r upcoming t h e o r e t i c a l data

c u r r e n t _ s t e p s = np . l i n s p a c e ( 0 . 0 0 3 , 0 . 0 4 0 , 101)

### T h e o r e t i c a l d e f i n i t i o n s and values f o r use in the IM3 c o e f f c i e n t equations . ###

Vt = ( ( 1 . 3 8 0 6 4 8 e−23 ( 3 0 0 . 1 5 ) ) / (1.6021766 e−19))

iq = 1 0 . 0 ( 1 0 − 9 )

beta = 76

re = 1 . 2

rb = re 1 0

Ree_sing = ( ( re rb )/ beta )+ re

Ree_darl = re ( 1+1 / beta )+ re ( ( 1+1 / beta )/

( beta+1))+( rb/beta )+ rb ( 1 / ( beta beta+beta ) )
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### Loops c a l c u l a t i n g the c o e f f i c i e n t value at each current step value ###

f o r i c in c u r r e n t _ s t e p s [ 1 0 : ] :

F = ( iq Ree_darl )/ Vt

X = i c / iq

IM3_darl . append ( abs ( ( 4 X ( 1 −X F ) )/ ( 2+X F ) 5 ) / 1 3 0 0 )

f o r i c in c u r r e n t _ s t e p s :

F = ( iq Ree_darl )/ Vt

X = i c / iq

IM3_sing . append ( abs ( ( X ( 1 − 2 X F ) )/ ( 1+X F ) 5 ) / 2 6 0 0 )

### Console p r i n t ###

p r i n t Vt

p r i n t Ree_sing

p r i n t Ree_darl

p r i n t c u r r e n t _ s t e p s

p r i n t IM3_sing

p r i n t IM3_darl



C
Translinear Extraction Data

This section presents scripts and files used in the translinear extraction work.

This work was mainly done in Python, and circuit simulations were done in

LTSpice.

Translinear Conditions

This script computes all possible emitter area ratios and hence all possible A and

x values for a translinear stack. This was extremely useful for optimising and

minimising the stack ratios used. The script was built and executed in Python.

import numpy as np

import c o l l e c t i o n s as c l

### Loop computing the A and x values f o r a two−s t a ck t r a n s l i n e a r ###

### loop with emitter area r a t i o s from 1 to 32 ###

def Looptwo ( ) :

### Open f i l e s f o r dump data in ###

f = open ( ’ Loop2data_xgt0 . t x t ’ , ’w’ )

f 1 = open ( ’ Loop2data_xeq0 . t x t ’ , ’w’ )
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### Four loops f o r each of the p o s s i b l e emitter r a t i o s of the ###

### j u n c t i o n s in the loop . ###

f o r i in range ( 1 , 3 2 ) :

m1 = i

f o r j in range ( 1 , 3 2 ) :

m2 = j

f o r k in range ( 1 , 3 2 ) :

m3 = k

f o r l in range ( 1 , 3 2 ) :

m4 = l

### C a l c u l a t i o n of a and A ###

x = (1/ f l o a t (m3) )+ ( 1/ f l o a t (m4)) − (1/ f l o a t (m1)) − (1/ f l o a t (m2) )

A = ( f l o a t (m3 ) f l o a t (m4) ) / ( f l o a t (m1 ) f l o a t (m2) )

m1to3 = m1 + m2

m4to6 = m3 + m4

### F i l t e r i n g of t i n y x and A values ###

i f ( x > 0 . 0 1 ) and (A > 1 ) :

f i l e o u t = repr ( x ) + ’ ’ + repr (A) + ’ ’ + repr ( i ) + ’ ’

+ repr ( j ) + ’ ’ + repr ( k ) + ’ ’ + repr ( l ) + ’\n ’

f . w r i t e ( f i l e o u t )

i f ( −0.000001 < x < 0.000001) and (A != 1 ) :

f i l e o u t 1 = repr ( x ) + ’ ’ + repr (A) + ’ ’ + repr ( i ) + ’ ’

+ repr ( j ) + ’ ’ + repr ( k ) + ’ ’ + repr ( l ) + ’\n ’

f 1 . w r i t e ( f i l e o u t 1 )

### Loop computing the A and x values f o r a three−s t ac k t r a n s l i n e a r ###

### loop with emitter area r a t i o s from 1 to 32 ###

def Loopthree ( ) :

f = open ( ’ Loop3data_xgt0 . t x t ’ , ’w’ )

f 1 = open ( ’ Loop3data_xeq0 . t x t ’ , ’w’ )

f o r i in range ( 1 , 3 2 ) :

m1 = i

f o r j in range ( 1 , 3 2 ) :

m2 = j

f o r k in range ( 1 , 3 2 ) :

m3 = k

f o r l in range ( 1 , 3 2 ) :

m4 = l

f o r m in range ( 1 , 3 2 ) :

m5 = m

f o r n in range ( 1 , 3 2 ) :

m6 = n

x = (1/ f l o a t (m4) )+ ( 1/ f l o a t (m5) )+ ( 1/ f l o a t (m6) )

−(1/ f l o a t (m1)) − (1/ f l o a t (m2)) − (1/ f l o a t (m3) )

A = ( f l o a t (m4 ) f l o a t (m5 ) f l o a t (m6) ) /
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( f l o a t (m1 ) f l o a t (m2 ) f l o a t (m3) )

m1to3 = m1 + m2 + m3

m4to6 = m4 + m5 + m6

i f ( x > 0 . 0 1 ) and (A > 1 ) :

f i l e o u t = repr ( x ) + ’ ’ + repr (A) + ’ ’

+ repr ( i ) + ’ ’ + repr ( j ) + ’ ’

+ repr ( k ) + ’ ’ + repr ( l ) + ’ ’

+ repr (m) + ’ ’ + repr ( n ) + ’\n ’

f . w r i t e ( f i l e o u t )

i f ( −0.000001 < x < 0.000001) and (A != 1 ) :

f i l e o u t 1 = repr ( x ) + ’ ’ + repr (A) + ’ ’

+ repr ( i ) + ’ ’ + repr ( j ) + ’ ’

+ repr ( k ) + ’ ’ + repr ( l ) + ’ ’

+ repr (m) + ’ ’ + repr ( n ) + ’\n ’

f 1 . w r i t e ( f i l e o u t 1 )

### Loop computing the A and x values f o r a three−s t ac k t r a n s l i n e a r ###

### loop with emitter area r a t i o s from 1 to 16 and with the condition ###

### of A equal to 1 ###

def Loopthree_Aequal1 ( ) :

f = open ( ’ Loop3data_Aequal1 . t x t ’ , ’w’ )

f 1 = open ( ’ Loop3data_showBill_xeq0 . t x t ’ , ’w’ )

f o r i in range ( 1 , 1 6 ) :

m1 = i

f o r j in range ( 1 , 1 6 ) :

m2 = j

f o r k in range ( 1 , 1 6 ) :

m3 = k

f o r l in range ( 1 , 1 6 ) :

m4 = l

f o r m in range ( 1 , 1 6 ) :

m5 = m

f o r n in range ( 1 , 1 6 ) :

m6 = n

x = (1/ f l o a t (m4) )+ ( 1/ f l o a t (m5) )+ ( 1/ f l o a t (m6) )

−(1/ f l o a t (m1)) − (1/ f l o a t (m2)) − (1/ f l o a t (m3) )

A = ( f l o a t (m4 ) f l o a t (m5 ) f l o a t (m6) ) /

( f l o a t (m1 ) f l o a t (m2 ) f l o a t (m3) )

m1to3 = m1 + m2 + m3

m4to6 = m4 + m5 + m6

i f (−1 < x < 1) and (A == 1 . 0 ) :

f i l e o u t = repr ( x ) + ’ ’ + repr (A) + ’ ’

+ repr ( i ) + ’ ’ + repr ( j ) + ’ ’

+ repr ( k ) + ’ ’ + repr ( l ) + ’ ’
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+ repr (m) + ’ ’ + repr ( n ) + ’\n ’

f . w r i t e ( f i l e o u t )

# i f ( −0.000001 < x < 0.000001) and (A != 1 ) :

# f i l e o u t 1 = repr ( x ) + ’ ’ + repr (A) + ’ ’

# + repr ( i ) + ’ ’ + repr ( j ) + ’ ’

# + repr ( k ) + ’ ’ + repr ( l ) + ’ ’

# + repr (m) + ’ ’ + repr ( n ) + ’\n ’

# f 1 . w r i t e ( f i l e o u t 1 )

### Loop computing the A and x values f o r a four−s t a ck t r a n s l i n e a r ###

### loop with emitter area r a t i o s from 2 to 16 with condtions

### A > 1 . 5 and x being n e g i t i v e ###

def Loopfour ( ) :

f = open ( ’ Loop4_xgt0 . t x t ’ , ’w’ )

f 1 = open ( ’ Loop4_xeq0 . t x t ’ , ’w’ )

f o r i in range ( 2 , 1 6 ) :

m1 = i

f o r j in range ( 2 , 1 6 ) :

m2 = j

f o r k in range ( 2 , 1 6 ) :

m3 = k

f o r l in range ( 2 , 1 6 ) :

m4 = l

f o r m in range ( 2 , 1 6 ) :

m5 = m

f o r n in range ( 2 , 1 6 ) :

m6 = n

f o r o in range ( 2 , 1 6 ) :

m7 = o

f o r p in range ( 2 , 1 6 ) :

m8 = p

x = (1/ f l o a t (m5) )+ ( 1/ f l o a t (m6) )+ ( 1/ f l o a t (m7) )

+(1/ f l o a t (m8)) − (1/ f l o a t (m1)) − (1/ f l o a t (m2) )

−(1/ f l o a t (m3)) − (1/ f l o a t (m4) )

A = ( f l o a t (m5 ) f l o a t (m6 ) f l o a t (m7 ) f l o a t (m8) )

/ ( f l o a t (m1 ) f l o a t (m2 ) f l o a t (m3 ) f l o a t (m4) )

i f ( x < −0.2) and (A > 1 . 5 ) :

f i l e o u t = repr ( x ) + ’ ’ + repr (A) + ’ ’

+ repr ( i ) + ’ ’ + repr ( j ) + ’ ’

+ repr ( k ) + ’ ’ + repr ( l ) + ’ ’

+ repr (m) + ’ ’ + repr ( n ) + ’\n ’

i f ( −0.000001 < x < 0.000001) and (A != 1 ) :

f i l e o u t 1 = repr ( x ) + ’ ’ + repr (A) + ’ ’

+ repr ( i ) + ’ ’ + repr ( j ) + ’ ’

+ repr ( k ) + ’ ’ + repr ( l ) + ’ ’

+ repr (m) + ’ ’ + repr ( n ) + ’\n ’

f 1 . w r i t e ( f i l e o u t 1 )
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### Loop computing the A and x values f o r a two−s t ac k t r a n s l i n e a r ###

### loop with emitter area r a t i o s from 2 to 1 8 . In t h i s case the ###

### parameters are forced to be considered f l o a t s . ###

def Looptwo_2ndAttempt ( ) :

f = open ( ’ Loop2data_2ndAttempt_xgt0 . t x t ’ , ’w’ )

f 1 = open ( ’ Loop2data_2ndAttempt_xeq0 . t x t ’ , ’w’ )

f o r i in range ( 2 , 1 8 ) :

m1 = i

f o r j in range ( 2 , 1 8 ) :

m2 = j

f o r k in range ( 2 , 1 8 ) :

m3 = k

f o r l in range ( 2 , 1 8 ) :

m4 = l

i f (m3!=0 ) : x3 = (1/ f l o a t (m3) )

e l s e : x3 = 0

i f (m4!=0 ) : x4 = (1/ f l o a t (m4) )

e l s e : x4 = 0

i f (m1!=0 ) : x1 = (1/ f l o a t (m1) )

e l s e : x1 = 0

i f (m2!=0 ) : x2 = (1/ f l o a t (m2) )

e l s e : x2 = 0

x = x3+x4−x1−x2

i f (m3!=0 ) : a3 = ( f l o a t (m3) )

e l s e : a3 = 1

i f (m4!=0 ) : a4 = ( f l o a t (m4) )

e l s e : a4 = 1

i f (m1!=0 ) : a1 = ( f l o a t (m1) )

e l s e : a1 = 1

i f (m2!=0 ) : a2 = ( f l o a t (m2) )

e l s e : a2 = 1

A = ( a3 a4 ) / ( a1 a2 )

m1to3 = m1 + m2

m4to6 = m3 + m4

i f ( x < −0.1) and (A > 1 . 5 ) :

f i l e o u t = repr ( x ) + ’ ’ + repr (A) + ’ ’

+ repr ( i ) + ’ ’ + repr ( j ) + ’ ’

+ repr ( k ) + ’ ’ + repr ( l ) + ’ ’

+ ’\n ’

f . w r i t e ( f i l e o u t )

i f ( −0.000001 < x < 0.000001) and (A > 1 . 5 ) :

f i l e o u t 1 = repr ( x ) + ’ ’ + repr (A) + ’ ’

+ repr ( i ) + ’ ’ + repr ( j ) + ’ ’

+ repr ( k ) + ’ ’ + repr ( l ) + ’ ’

+ ’\n ’



146 APPENDIX C. TRANSLINEAR EXTRACTION DATA

f 1 . w r i t e ( f i l e o u t 1 )

### Loop computing the A and x values f o r a four−s t a ck t r a n s l i n e a r ###

### loop with emitter area r a t i o s from 6 to 3 2 . This removes small r a t i o e d

### junction (M < 6) to evaluate the e f f e c t on the s t a c k s . ###

def Looptwo_MinimizeBeta ( ) :

f = open ( ’ Loop2data_MinimizeBeta_xgt0 . t x t ’ , ’w’ )

f 1 = open ( ’ Loop2data_MinimizeBeta_xeq0 . t x t ’ , ’w’ )

f o r i in range ( 6 , 3 2 ) :

m1 = i

f o r j in range ( 6 , 3 2 ) :

m2 = j

f o r k in range ( 6 , 3 2 ) :

m3 = k

f o r l in range ( 6 , 3 2 ) :

m4 = l

i f (m3!=0 ) : x3 = (1/ f l o a t (m3) )

e l s e : x3 = 0

i f (m4!=0 ) : x4 = (1/ f l o a t (m4) )

e l s e : x4 = 0

i f (m1!=0 ) : x1 = (1/ f l o a t (m1) )

e l s e : x1 = 0

i f (m2!=0 ) : x2 = (1/ f l o a t (m2) )

e l s e : x2 = 0

x = x3+x4−x1−x2

i f (m3!=0 ) : a3 = ( f l o a t (m3) )

e l s e : a3 = 1

i f (m4!=0 ) : a4 = ( f l o a t (m4) )

e l s e : a4 = 1

i f (m1!=0 ) : a1 = ( f l o a t (m1) )

e l s e : a1 = 1

i f (m2!=0 ) : a2 = ( f l o a t (m2) )

e l s e : a2 = 1

A = ( a3 a4 ) / ( a1 a2 )

m1to3 = m1 + m2

m4to6 = m3 + m4

i f ( x > 0 . 0 1 ) and (A > 1 ) :

f i l e o u t = repr ( x ) + ’ ’ + repr (A) + ’ ’

+ repr ( i ) + ’ ’ + repr ( j ) + ’ ’

+ repr ( k ) + ’ ’ + repr ( l ) + ’ ’

+ ’\n ’

f . w r i t e ( f i l e o u t )

i f ( −0.000001 < x < 0.000001) and (A != 1 ) :

f i l e o u t 1 = repr ( x ) + ’ ’ + repr (A) + ’ ’

+ repr ( i ) + ’ ’ + repr ( j ) + ’ ’

+ repr ( k ) + ’ ’ + repr ( l ) + ’ ’
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+ ’\n ’

f 1 . w r i t e ( f i l e o u t 1 )

# F e r r a n t i l o o p ( )

#Looptwo_showBill ( )

#Looptwo_2ndAttempt ( )

# Loopthree_showBill ( )

#Looptwo_MinimizeBeta ( )

Loopfour ( )

Ferranti Datasheets

Here, the Ferranti transistor datasheets are shown. These are discontinued

products and hence the datasheet is not easily available, so they are included

here for convenience.
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Full Translinear Bias Circuit SPICE model

Here, the full SPICE model circuit is shown for the translinear bias circuit devel-

oped. It is large and therefore split between three pages.









D
Cascomp Derivations

This appendix presents the full derivations for the Cascomp circuit and its dis-

tortion products.

Ideal Cascomp Expansion Coefficients

Here, the series coefficients derivation for the Cascomp amplifier with an ideal

error amplifier is shown. Due to the complex nature of the derivations, they

were done using Mathematica scripts to avoid human error in the algebraic

manipulations.
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H*** The derivation in this script begins from the final transfer equation of
an ideal Cascomp amplifierHfound in Chapter 5, section 5.4L. here we aim to
derive the series expansion coefficients using the previously presented method
of differentiating the transfer function. This will result in confirming
current theory Herror amplifier must be gme = -1�rm for cancellationL ***L

H*** Firstly, we state the equation found for a non-ideal differential
amplifier. This is the main amplifier equation stated in Eq. 5.12. ***L

vin == Hrm *2*i1L + vt*Log@H1 + 2*i1�imL � H1 - 2*i1�imLD

vin � 2 i1 rm + vt LogA
1 +

2 i1
im

1 -
2 i1
im

E

H*** We aim to find the series expansion coefficients
for the main amplifier. This equation is differentiated and
inverted to give the transconductance HdVinHmL � di1L. * **L

Simplify@
D@Hrm *2*i1L + vt*Log@H1 + 2*i1�imL � H1 - 2*i1�imLD, 8i1, 1<DD

8 i12 rm - 2 im Him rm + 2 vtL

4 i12 - im2

1�
8 i12 rm - 2 im Him rm + 2 vtL

4 i12 - im2

4 i12 - im2

8 i12 rm - 2 im Him rm + 2 vtL

H*** The first order coefficient is found by making i2 tend to zero leaving
the a term describing the magnitude of the first order transconductance. ***L

SimplifyA
4 i12 - im2

8 i12 rm - 2 im Him rm + 2 vtL
, i1 � 0E

im

2 im rm + 4 vt

H*** To find the second and third order coefficients, we defferentiate,
and apply the Chain rule. We expect the second order to be zero
as this is a well-known property of differential amplifiers� ***L
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SimplifyADA
4 i12 - im2

8 i12 rm - 2 im Him rm + 2 vtL
, i1EE

-
8 i1 im vt

I-4 i12 rm + im Him rm + 2 vtLM
2

H*** Chain rule ***L

SimplifyA -
8 i1 im vt

I-4 i12 rm + im Him rm + 2 vtLM
2

*
4 i12 - im2

8 i12 rm - 2 im Him rm + 2 vtL
E

4 i1 im I-4 i12 + im2M vt

I4 i12 rm - im Him rm + 2 vtLM
3

H*** Second order coefficient. ***L

SimplifyA
4 i1 im I-4 i12 + im2M vt

I4 i12 rm - im Him rm + 2 vtLM
3
, i1 � 0E

0

H*** The third order coefficient is found by the same process again. ***L

SimplifyADA
4 i1 im I-4 i12 + im2M vt

I4 i12 rm - im Him rm + 2 vtLM
3
, i1EE

-
4 im vt I-48 i14 rm + 8 i12 im Him rm - 3 vtL + im3 Him rm + 2 vtLM

I-4 i12 rm + im Him rm + 2 vtLM
4

SimplifyA -
4 im vt I-48 i14 rm + 8 i12 im Him rm - 3 vtL + im3 Him rm + 2 vtLM

I-4 i12 rm + im Him rm + 2 vtLM
4

*

4 i12 - im2

8 i12 rm - 2 im Him rm + 2 vtL
E

I2 im I-4 i12 + im2M vt

I-48 i14 rm + 8 i12 im Him rm - 3 vtL + im3 Him rm + 2 vtLMM �

I4 i12 rm - im Him rm + 2 vtLM
5
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SimplifyAI2 im I-4 i12 + im2M vt

I-48 i14 rm + 8 i12 im Him rm - 3 vtL + im3 Him rm + 2 vtLMM �

I4 i12 rm - im Him rm + 2 vtLM
5
, i1 � 0E

-
2 im vt

Him rm + 2 vtL4

H*** Summary of a differential amplifiers
Hthe main amplifierL series expansion coefficients. ***L

First =
im

2 im rm + 4 vt
Second = 0

Third = -
2 im vt

Him rm + 2 vtL4

H*** The same process is followed for the ideal error amplifier. We
make the assumption that this is a perfect transconductance. Therefore
we can state the following because Using the propety that Vbe12 =

Vbe34 we can find an equation describing i1 in terms of i2.***L

Clear@i2D

H*** Statement of the error amplifiers input transfer function. Solving for i1. ***L

Solve@i2 == gme* Hvt*Log@H1 + 2* Hi1�imLL � H1 - 2* Hi1�imLLDL, i1D

99i1 ®

K-1 + ã
i2

gme vt O im

2 K1 + ã
i2

gme vt O

==

H*** Now the exact same process as before is
applied to find the series expasnion coefficients. ***L
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SimplifyA

DA rm *2*

K-1 + ã
i2

gme vt O im

2 K1 + ã
i2

gme vt O

+ vt*LogA 1 + 2*

K-1 + ã
i2

gme vt O im

2 K1 + ã
i2

gme vt O

� im �

1 - 2*

K-1 + ã
i2

gme vt O im

2 K1 + ã
i2

gme vt O

� im E, 8i2, 1<EE

vt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtL

K1 + ã
i2

gme vt O
2

gme vt

1�
vt + ã

2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtL

K1 + ã
i2

gme vt O
2

gme vt

K1 + ã
i2

gme vt O
2

gme vt

vt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtL

SimplifyA

K1 + ã
i2

gme vt O
2

gme vt

vt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtL

, i2 � 0E

2 gme vt

im rm + 2 vt

H*** The second-

order follows the same processas the main amplifier's second order derivation. ***L

SimplifyADA

K1 + ã
i2

gme vt O
2

gme vt

vt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtL

, i2EE

2 ã
i2

gme vt K-1 + ã
2 i2

gme vt O im rm

Kvt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtLO
2

H*** Chain rule ***L
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SimplifyA

2 ã
i2

gme vt K-1 + ã
2 i2

gme vt O im rm

Kvt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtLO
2

*

K1 + ã
i2

gme vt O
2

gme vt

vt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtL

E

2 ã
i2

gme vt K-1 + ã
i2

gme vt O K1 + ã
i2

gme vt O
3

gme im rm vt

Kvt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtLO
3

SimplifyA

2 ã
i2

gme vt K-1 + ã
i2

gme vt O K1 + ã
i2

gme vt O
3

gme im rm vt

Kvt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtLO
3

, i2 � 0E

0

H*** Third order ***L

SimplifyADA

2 ã
i2

gme vt K-1 + ã
i2

gme vt O K1 + ã
i2

gme vt O
3

gme im rm vt

Kvt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtLO
3

, i2EE

- 2 ã
i2

gme vt K1 + ã
i2

gme vt O
2

im rm Kã
2 i2

gme vt H4 im rm - 6 vtL + vt +

ã
4 i2

gme vt vt - 2 ã
i2

gme vt H2 im rm + vtL - 2 ã
3 i2

gme vt H2 im rm + vtLO �

Kvt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtLO
4

H*** Chain rule ***L
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SimplifyA

- 2 ã
i2

gme vt K1 + ã
i2

gme vt O
2

im rm Kã
2 i2

gme vt H4 im rm - 6 vtL + vt + ã
4 i2

gme vt vt - 2 ã
i2

gme vt

H2 im rm + vtL - 2 ã
3 i2

gme vt H2 im rm + vtLO �

Kvt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtLO
4

*

K1 + ã
i2

gme vt O
2

gme vt

vt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtL

E

- 2 ã
i2

gme vt K1 + ã
i2

gme vt O
4

gme im rm vt Kã
2 i2

gme vt H4 im rm - 6 vtL + vt +

ã
4 i2

gme vt vt - 2 ã
i2

gme vt H2 im rm + vtL - 2 ã
3 i2

gme vt H2 im rm + vtLO �

Kvt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtLO
5
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SimplifyA

- 2 ã
i2

gme vt K1 + ã
i2

gme vt O
4

gme im rm vt Kã
2 i2

gme vt H4 im rm - 6 vtL + vt + ã
4 i2

gme vt vt -

2 ã
i2

gme vt H2 im rm + vtL - 2 ã
3 i2

gme vt H2 im rm + vtLO �

Kvt + ã
2 i2

gme vt vt + 2 ã
i2

gme vt Him rm + vtLO
5

, i2 � 0E

4 gme im rm vt

Him rm + 2 vtL4

H*** Summary of the Cascomps ideal error
amplifiers series expansion coefficients. ***L

First =
2 gme vt

im rm + 2 vt

Second = 0

Third =
4 gme im rm vt

Him rm + 2 vtL4

H*** This can be double checked by taking the
third order coefficient and solving for gm of the error
amplifier. THis should match current ideal-case literature. ***L

SolveA
4 gme im rm vt

Him rm + 2 vtL4
� -

2 im vt

Him rm + 2 vtL4
, gmeE

::gme ® -
1

2 rm
>>

H*** Indeed this matches the Quinn condition for cancellation in a Cascomp circuit ***L
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Nonideal Cascomp Expansion Coefficients

Here, the series coefficients derivation for the Cascomp amplifier with a non-

ideal error amplifier is shown. Due to the complex nature of the derivations,

they were done using Mathematica scripts to avoid human error in the algebraic

manipulations.



H*** The derivation in this script begins from the final transfer equation
of a nonideal Cascomp amplifierHfound in Chapter 5, section 5.4L. here
we aim to derive the series expansion coefficients using the previously
presented method of differentiating the transfer function. ***L

H*** Firstly,
we state the equation found for a non-ideal differential amplifier. ***L

Solve@vine == Hre*2*i2L + vt*Log@H1 + 2*i2�ieL � H1 - 2*i2�ieLD, i2D

H*** Using the propety that Vbe12 =

Vbe34 in Eq. 5.14 we can find an equation describing i1 in terms of i2. ***L

Solve@vt*Log@H1 + 2*i1�imL � H1 - 2*i1�imLD �

Hre*2*i2L + vt*Log@H1 + 2*i2�ieL � H1 - 2*i2�ieLD, i1D

::i1 ®

K2 i2 + 2 ã

2 i2 re

vt i2 - ie + ã

2 i2 re

vt ieO im

2 K-2 i2 + 2 ã

2 i2 re

vt i2 + ie + ã

2 i2 re

vt ieO

>>

SimplifyB

K2 i2 + 2 ã
2 i2 re

vt i2 - ie + ã
2 i2 re

vt ieO im

2 K-2 i2 + 2 ã
2 i2 re

vt i2 + ie + ã
2 i2 re

vt ieO

F

K2 K1 + ã

2 i2 re

vt O i2 + K-1 + ã

2 i2 re

vt O ieO im

2 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO

H*** This equation is substitued into Eq. 5.12 of the main amplifier,
making VinHmL a function of only i2. This equation is then differentiated
and inverted to give the transconductance HdVinHmL � di2L. ***L
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SimplifyBDBKrm *2* KKK2 i2 + 2 ã
2 i2 re

vt i2 - ie + ã
2 i2 re

vt ieO imO �

K2 K-2 i2 + 2 ã
2 i2 re

vt i2 + ie + ã
2 i2 re

vt ieOOOO +

vt*LogBK1 + 2* KKK2 i2 + 2 ã
2 i2 re

vt i2 - ie + ã
2 i2 re

vt ieO imO �

K2 K-2 i2 + 2 ã
2 i2 re

vt i2 + ie + ã
2 i2 re

vt ieOOO � imO �

K1 - 2* KKK2 i2 + 2 ã
2 i2 re

vt i2 - ie + ã
2 i2 re

vt ieO imO �

K2 K-2 i2 + 2 ã
2 i2 re

vt i2 + ie + ã
2 i2 re

vt ieOOO � imOF, i2FF

K2 KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt - 2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

I4 i22 re - ie Hie re + 2 vtLMO �

K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO
2

I4 i22 - ie2M vt

SimplifyB1� K2 KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt -

2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO I4 i22 re - ie Hie re + 2 vtLMO �

K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO
2

I4 i22 - ie2M vt F

K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO
2

I4 i22 - ie2M vt �

K2 KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt - 2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

I4 i22 re - ie Hie re + 2 vtLMO

H*** The first order coefficient is found by making i2 tend to zero leaving
the a term describing the magnitude of the first order transconductance. ***L
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SimplifyB K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO
2

I4 i22 - ie2M vt �

K2 KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt -

2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO I4 i22 re - ie Hie re + 2 vtLMO, i2 � 0F

ie vt

Hie re + 2 vtL Him rm + 2 vtL

H*** The second order term is found by differentiating the first order term,
and applying the chani rule. This is expected to be zero as a well-

known property of differential amplifiers is the rejection of the second-

order component. ***L

SimplifyBDB K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO
2

I4 i22 - ie2M vt �

K2 KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M

Him rm + vtLO I-4 i22 re + ie Hie re + 2 vtLMO, i2FF

K2 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã

4 i2 re

vt H2 i2 - ieL

H2 i2 + ieL2 I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm

Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMOO �

KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt - 2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO
2

I-4 i22 re + ie Hie re + 2 vtLM
2

H*** Chain Rule ***L
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SimplifyB K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO
2

I4 i22 - ie2M vt �

K2 KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt -

2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO I-4 i22 re + ie Hie re + 2 vtLMO *

K2 K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO K-4 i2 H2 i2 - ieL3 ie vt3 +

4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm

Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMOO �

KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M

Him rm + vtLO
2

I-4 i22 re + ie Hie re + 2 vtLM
2

F

K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO
3

I4 i22 - ie2M vt

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã

4 i2 re

vt H2 i2 - ieL

H2 i2 + ieL2 I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm

Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO �

KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt - 2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO
3

I-4 i22 re + ie Hie re + 2 vtLM
3

H*** Simplifcation with i2 going to zero yeilds the second-

order coefficient as zero. ***L
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SimplifyB

K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO
3

I4 i22 - ie2M vt K-4 i2 H2 i2 - ieL3 ie

vt3 + 4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm

Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO �

KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO
3

I-4 i22 re + ie Hie re + 2 vtLM
3
, i2 � 0F

0

H*** The third-order coefficient is found by repeating
the previous steps. Differentiate ® Chain rule ® simplify ***L

SimplifyB

DB K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO
3

I4 i22 - ie2M vt K-4 i2 H2 i2 - ieL3 ie

vt3 + 4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm

Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO �

KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M

Him rm + vtLO
3

I-4 i22 re + ie Hie re + 2 vtLM
3
, i2FF
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K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO
2

vt 24 i2 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO

I4 i22 - ie2M re KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt -

2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO K-4 i2 H2 i2 - ieL3 ie vt3 +

4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm

Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

8 i2 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO KH-2 i2 + ieL2 vt +

ã

4 i2 re

vt H2 i2 + ieL2 vt - 2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

I-4 i22 re + ie Hie re + 2 vtLM K-4 i2 H2 i2 - ieL3 ie vt3 +

4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm

Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

1

vt
6 I4 i22 - ie2M K-vt + ã

2 i2 re

vt H2 i2 re + ie re + vtLO

KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt -

O
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2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO I-4 i22 re + ie Hie re + 2 vtLM

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO -

1

vt
12 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO I4 i22 - ie2M

I-4 i22 re + ie Hie re + 2 vtLM

KH2 i2 - ieL vt2 + ã

4 i2 re

vt H2 i2 + ieL vt H2 i2 re + ie re + vtL -

ã

2 i2 re

vt Him rm + vtL I4 i22 re - ie2 re + 4 i2 vtMO

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO I4 i22 - ie2M

KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt -

2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO
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I-4 i22 re + ie Hie re + 2 vtLM 24 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 re vt2 -

4 H2 i2 - ieL3 ie vt3 - 24 i2 ie H-2 i2 + ieL2 vt3 +

24 ã

6 i2 re

vt i2 ie H2 i2 + ieL2 vt3 + 4 ã

6 i2 re

vt ie H2 i2 + ieL3 vt3 +

ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I64 i23 im re2 rm -

16 i2 ie im re rm Hie re + 2 vtL - 4 ie vt2 H2 im rm + 3 vtLM +

ã

2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL I64 i23 im re2 rm - 16 i2 ie im re

rm Hie re + 2 vtL + 4 ie vt2 H2 im rm + 3 vtLM + 4 ã

4 i2 re

vt H2 i2 - ieL

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM +

2 ã

4 i2 re

vt H2 i2 + ieL2 I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM +

1

vt
4 ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 re

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + 2 ã

2 i2 re

vt

H-2 i2 + ieL2 I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLM -

4 ã

2 i2 re

vt H-2 i2 + ieL H2 i2 + ieL I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
+

4 i2 ie vt2 H2 im rm + 3 vtLM +
1

vt
2 ã

2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

re I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLM �

KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt - 2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO
4

I-4 i22 re + ie Hie re + 2 vtLM
4

H*** Chain rule ***L
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SimplifyB K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO
2

I4 i22 - ie2M vt �

K2 KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt -

2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO I-4 i22 re + ie Hie re + 2 vtLMO *

K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO
2

vt

24 i2 K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO I4 i22 - ie2M re KH-2 i2 + ieL2

vt + ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

8 i2 K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO KH-2 i2 + ieL2 vt +

ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

I-4 i22 re + ie Hie re + 2 vtLM K-4 i2 H2 i2 - ieL3 ie vt3 +

4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM +

ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL +

+ MO +
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ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

1

vt
6 I4 i22 - ie2M K-vt + ã

2 i2 re

vt H2 i2 re + ie re + vtLO

KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt -

2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO I-4 i22 re + ie Hie re + 2 vtLM

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO -

1

vt
12 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO I4 i22 - ie2M

I-4 i22 re + ie Hie re + 2 vtLM

KH2 i2 - ieL vt2 + ã
4 i2 re

vt H2 i2 + ieL vt H2 i2 re + ie re + vtL -

ã
2 i2 re

vt Him rm + vtL I4 i22 re - ie2 re + 4 i2 vtMO

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +
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K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO I4 i22 - ie2M

KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt -

2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO I-4 i22 re + ie Hie re + 2 vtLM

24 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 re vt2 - 4 H2 i2 - ieL3 ie vt3 -

24 i2 ie H-2 i2 + ieL2 vt3 + 24 ã
6 i2 re

vt i2 ie H2 i2 + ieL2 vt3 +

4 ã
6 i2 re

vt ie H2 i2 + ieL3 vt3 + ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I64 i23 im re2 rm - 16 i2 ie im re rm Hie re + 2 vtL -

4 ie vt2 H2 im rm + 3 vtLM + ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

I64 i23 im re2 rm - 16 i2 ie im re rm Hie re + 2 vtL +

4 ie vt2 H2 im rm + 3 vtLM + 4 ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im

rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + 2 ã

4 i2 re

vt

H2 i2 + ieL2 I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM +

1

vt
4 ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 re I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + 2 ã
2 i2 re

vt H-2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLM -

4 ã
2 i2 re

vt H-2 i2 + ieL H2 i2 + ieL I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
+

4 i2 ie vt2 H2 im rm + 3 vtLM +
1

vt
2 ã

2 i2 re

vt H-2 i2 + ieL2

re

�
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H2 i2 + ieL re I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLM �

KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M

Him rm + vtLO
4

I-4 i22 re + ie Hie re + 2 vtLM
4

F

K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO
4

I4 i22 - ie2M vt2 24 i2 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO

I4 i22 - ie2M re KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt -

2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO K-4 i2 H2 i2 - ieL3 ie vt3 +

4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm

Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

8 i2 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO KH-2 i2 + ieL2 vt +

ã

4 i2 re

vt H2 i2 + ieL2 vt - 2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

I-4 i22 re + ie Hie re + 2 vtLM K-4 i2 H2 i2 - ieL3 ie vt3 +

4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm

Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

+ MO +
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ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

1

vt
6 I4 i22 - ie2M K-vt + ã

2 i2 re

vt H2 i2 re + ie re + vtLO

KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt -

2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO I-4 i22 re + ie Hie re + 2 vtLM

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO -

1

vt
12 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO I4 i22 - ie2M

I-4 i22 re + ie Hie re + 2 vtLM

KH2 i2 - ieL vt2 + ã

4 i2 re

vt H2 i2 + ieL vt H2 i2 re + ie re + vtL -

ã

2 i2 re

vt Him rm + vtL I4 i22 re - ie2 re + 4 i2 vtMO

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã

2 i2 re

vt H-2 i2 + ieL2

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +
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K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã

2 i2 re

vt O ieO I4 i22 - ie2M

KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt -

2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

I-4 i22 re + ie Hie re + 2 vtLM 24 ã

6 i2 re

vt i2 ie H2 i2 + ieL3 re vt2 -

4 H2 i2 - ieL3 ie vt3 - 24 i2 ie H-2 i2 + ieL2 vt3 +

24 ã

6 i2 re

vt i2 ie H2 i2 + ieL2 vt3 + 4 ã

6 i2 re

vt ie H2 i2 + ieL3 vt3 +

ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I64 i23 im re2 rm -

16 i2 ie im re rm Hie re + 2 vtL - 4 ie vt2 H2 im rm + 3 vtLM +

ã

2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL I64 i23 im re2 rm - 16 i2 ie im re

rm Hie re + 2 vtL + 4 ie vt2 H2 im rm + 3 vtLM + 4 ã

4 i2 re

vt H2 i2 - ieL

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM +

2 ã

4 i2 re

vt H2 i2 + ieL2 I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM +

1

vt
4 ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 re

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + 2 ã

2 i2 re

vt

H-2 i2 + ieL2 I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLM -

4 ã

2 i2 re

vt H-2 i2 + ieL H2 i2 + ieL I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
+

4 i2 ie vt2 H2 im rm + 3 vtLM +
1

vt
2 ã

2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

re

�
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re I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLM �

2 KH-2 i2 + ieL2 vt + ã

4 i2 re

vt H2 i2 + ieL2 vt - 2 ã

2 i2 re

vt I4 i22 - ie2M Him rm + vtLO
5

I-4 i22 re + ie Hie re + 2 vtLM
5

H**Third non-ideal differential**L

SimplifyB K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO
4

I4 i22 - ie2M vt2

24 i2 K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO I4 i22 - ie2M re KH-2 i2 + ieL2

vt + ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

8 i2 K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO KH-2 i2 + ieL2 vt +

ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

I-4 i22 re + ie Hie re + 2 vtLM K-4 i2 H2 i2 - ieL3 ie vt3 +

4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 + ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

- M +
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I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM +

ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

1

vt
6 I4 i22 - ie2M K-vt + ã

2 i2 re

vt H2 i2 re + ie re + vtLO

KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt -

2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO I-4 i22 re + ie Hie re + 2 vtLM

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO -

1

vt
12 K2 K-1 + ã

2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO I4 i22 - ie2M

I-4 i22 re + ie Hie re + 2 vtLM

KH2 i2 - ieL vt2 + ã
4 i2 re

vt H2 i2 + ieL vt H2 i2 re + ie re + vtL -

ã
2 i2 re

vt Him rm + vtL I4 i22 re - ie2 re + 4 i2 vtMO

K-4 i2 H2 i2 - ieL3 ie vt3 + 4 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 vt3 +

ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

M +
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8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLMO +

K2 K-1 + ã
2 i2 re

vt O i2 + K1 + ã
2 i2 re

vt O ieO I4 i22 - ie2M KH-2 i2 + ieL2 vt +

ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M Him rm + vtLO

I-4 i22 re + ie Hie re + 2 vtLM 24 ã
6 i2 re

vt i2 ie H2 i2 + ieL3 re vt2 -

4 H2 i2 - ieL3 ie vt3 - 24 i2 ie H-2 i2 + ieL2 vt3 +

24 ã
6 i2 re

vt i2 ie H2 i2 + ieL2 vt3 + 4 ã
6 i2 re

vt ie H2 i2 + ieL3 vt3 +

ã
4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 I64 i23 im re2 rm -

16 i2 ie im re rm Hie re + 2 vtL - 4 ie vt2 H2 im rm + 3 vtLM +

ã
2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL I64 i23 im re2 rm - 16 i2 ie im re

rm Hie re + 2 vtL + 4 ie vt2 H2 im rm + 3 vtLM + 4 ã
4 i2 re

vt H2 i2 - ieL

H2 i2 + ieL I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM + 2 ã

4 i2 re

vt

H2 i2 + ieL2 I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
- 4 i2 ie vt2 H2 im rm + 3 vtLM +

1

vt
4 ã

4 i2 re

vt H2 i2 - ieL H2 i2 + ieL2 re I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
-

4 i2 ie vt2 H2 im rm + 3 vtLM + 2 ã
2 i2 re

vt H-2 i2 + ieL2

I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLM -

4 ã
2 i2 re

vt H-2 i2 + ieL H2 i2 + ieL I16 i24 im re2 rm -

8 i22 ie im re rm Hie re + 2 vtL + ie2 im rm Hie re + 2 vtL2
+

M +
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4 i2 ie vt2 H2 im rm + 3 vtLM +
1

vt
2 ã

2 i2 re

vt H-2 i2 + ieL2 H2 i2 + ieL

re I16 i24 im re2 rm - 8 i22 ie im re rm Hie re + 2 vtL +

ie2 im rm Hie re + 2 vtL2
+ 4 i2 ie vt2 H2 im rm + 3 vtLM �

2 KH-2 i2 + ieL2 vt + ã
4 i2 re

vt H2 i2 + ieL2 vt - 2 ã
2 i2 re

vt I4 i22 - ie2M

Him rm + vtLO
5

I-4 i22 re + ie Hie re + 2 vtLM
5
, i2 � 0F

-I2 ie vt Iie3 im re3 rm + 6 ie2 im re2 rm vt + 12 ie im re rm vt2 - 16 vt4MM �

IHie re + 2 vtL4 Him rm + 2 vtL4M

H*** This is the coefficient describing the third order transconductance from
the main amplifier input voltage to the error ampifier output current. ***L

H*** Summary of the coefficients for the non-ideal Error amplifier. ***L

First = -
ie vt

Hie re + 2 vtL Him rm + 2 vtL

Second = 0

Third = -

2 ie vt Iie3 im re3 rm + 6 ie2 im re2 rm vt + 12 ie im re rm vt2 - 16 vt4M

Hie re + 2 vtL4 Him rm + 2 vtL4
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