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Preface

This thesis was made possible by the work of various previous authors. Chap-

ters 2 and 5 provide background for the original work in Chapters 3, 4 and

6.

Chapters 3 and 4 made use of the 2D Fortran code “MHD2D”, first written

by Craig and Watson (1999) and later modified by Heerikhuisen, Craig, and

Watson (2000). To this code I added the Braginskii form of the viscosity

which, after much grief, was found to need an Alternating Direction Implicit

(ADI) solver (written by I.J.D. Craig) for the Poisson equation, in place of

the original Fast Fourier Transform method. The work of Chapter 3 has been

published in Armstrong, Craig, and Litvinenko (2011), and the Tang vortex

results (Chapter 4) appear in Armstrong and Craig (2013) and Armstrong and

Craig (2014).

The work of Chapter 6 has been published in Armstrong, Litvinenko, and

Craig (2012). The Matlab code used for the numerical results in Chapters 5

and 6 was written by myself.

Matlab was used to create the figures for all of the results in this thesis.

XFig was used for the illustrative diagrams. This research has made use of

NASA’s Astrophysics Data System (ADS).
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Abstract

This thesis investigates both the release of energy in solar flares, and the ac-

celeration and transport of particles in various astrophysical situations. While

numerical simulations are central to this thesis, these are always motivated by

analytical arguments.

A review of flare energy release is given in Chapter 2, with results presented

in Chapters 3 and 4. The main goal of the flare work is to investigate the effect

of viscosity on energy release rates. Scaling arguments and exact solutions

of the magnetohydrodynamic equations are used to interpret the results of

two-dimensional numerical simulations of magnetic reconnection. The results

support viscous energy dissipation accounting for a significant fraction of flare

energy release.

Chapter 5 contains an introduction to astrophysical particle acceleration,

using the Fokker-Planck formulation. The theory introduced in this chapter

is used to study electron transport in solar flare loops (Section 5.5). A key

aspect of the analysis is the expression of the Fokker-Planck equation as a

system of stochastic differential equations. A generalisation to the flare loop

hard X-ray emission prediction of Conway et al. (1998) is obtained, giving a

stronger dependence on density for dispersed initial distributions.

Chapter 6 uses the methods of the previous chapter to study the acceler-

ation of cosmic-rays at the heliospheric termination shock. The applicability

of the focused acceleration mechanism of Schlickeiser and Shalchi (2008) is

examined using numerical simulations, which are interpreted using analyti-

cal arguments based on averaging the stochastic equations. The results show

significant limitations in assuming a near-isotropic distribution, a requirement

for the focused acceleration mechanism. In addition, momentum diffusion pro-

vides a significant effect that cannot be neglected. The theory is extended to

include focused deceleration and pure momentum diffusion.
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Chapter 1

Introduction

“The solar system has no anxiety about its reputation.”

Ralph Waldo Emerson

The Sun is a massive ball of electrically neutral ionised gas, or plasma, which

sustains all life on Earth. It contains around 99.9% of all the mass in our

solar system (Woolfson, 2000) and is responsible for a wide range of physical

phenomena. The goal of this thesis is to examine some of these phenomena,

specifically energy release and particle acceleration in the solar atmosphere.

We begin by briefly discussing the structure of the Sun and its atmosphere.

Hydrogen, of which the Sun primarily consists, is fused by the enormous

temperature and gravitational pressure at the Sun’s core to produce helium

and incredible amounts of energy - around 3 × 1033 erg every second (NASA,

2013b). This energy is transported outwards through the Sun’s various layers

(see Figure 1.1).

Initially, due to the high temperature (∼ 107 K in the core) and density

(up to 1026 cm−3) of the inner Sun, thermal radiation is the mode of energy

transport. At a radius of about 0.7R⊙ (the solar radius R⊙ is approximately

106 km), a thin region known as the tachocline signifies the transition between

the radiative and the convective regions. Above the tachocline the pressure is

low enough to allow convection of the plasma - thermal cells of plasma cycle

through a process of heating and expanding, rising to the surface, cooling and
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Figure 1.1: A cross-section representation showing the various layers of the

Sun. The heliosphere is not pictured as it starts at around 20R⊙ from the

Sun’s surface.

dropping back down. The movements of the plasma in the convective region

create constantly varying strong magnetic fields, which are the source of many

of the extraordinary events witnessed throughout the Sun’s atmosphere.

The surface of the sun is known as the photosphere, and is where some of

the Sun’s energy manifests as visible light. The temperature of the photosphere

(5 × 103 K) is significantly lower than the core. Counter-intuitively, however,

the temperature does not initially keep decreasing as the distance from the Sun

increases - the atmospheric plasma actually becomes hotter by several orders

of magnitude.

The chromosphere is the lowest layer of the atmosphere. Visible at the
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beginning and end of a solar eclipse as a reddish flash, it is a very low density

thin (∼ 103 km) region whose temperature varies from ∼ 5 × 103 K at its

base to ∼ 3 × 104 K at its top. Observable solar phenomena from this layer

include filaments - sporadic large gaseous plumes that can extend beyond the

chromosphere - and spicules (fibrils/mottles) - numerous short-lived thin tubes

of plasma that rise to the top of the chromosphere before dissipating.

A narrow transition region separates the optically thick chromosphere from

the optically thin corona. Here the temperature jumps to around 106 K in a

distance of just 100 km. The corona, predominantly consisting of ionised hy-

drogen, extends far into the solar system and can reach temperatures in excess

of 107 K. The reasons for these high temperatures are not well understood,

but they may be related to the most spectacular of the Sun’s phenomena: the

solar flare. A solar flare is a massive explosive event - a modest flare can release

as much energy as one million of the largest nuclear bombs. These events may

be accompanied by a coronal mass ejection (CME), where a large volume of

coronal plasma is thrown out with the blast.

Another prominent phenomenon originating in the corona is the solar wind

- a constant stream of particles, following “open” field lines, that are blown

out from the corona. The final layer of the Sun’s atmosphere, the heliosphere,

begins where these particles become supersonic and ends where they meet the

enveloping interstellar medium - the matter that fills the void between stars.

In and around this region, named the heliosheath, particles are accelerated to

great energies due to the turbulent environment.

1.1 Solar flares and energy release

Observations of the low corona (for example see Priest and Forbes (2000) or

the SOHO satellite website (NASA, 2013a)) show massive magnetic energy

release events, with energies ranging between ∼ 1027–1032 ergs, occurring in a

matter of minutes. These explosions are known as solar flares.
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Figure 1.2: Representation of magnetic reconnection occurring in the corona.

The oppositely directed magnetic field lines of coronal loops are forced together

in the (shaded) reconnection region. Here they break and reconnect into the

configurations of lines (a) and (b).

Solar flares are not simply a curiosity for us. Flare activity has been found,

for example, to disrupt telecommunications on Earth, and represent a signif-

icant hazard to astronauts outside the shelter of the atmosphere (Schwenn,

2006). As an extreme example, on the 13th of March 1989, a solar flare caused

the collapse of the Hydro-Québec power network in Canada, knocking out

power to approximately six million people for nine hours (Kappenman, 2004).

A key process in the release of energy in the solar atmosphere is thought

to be magnetic reconnection. Figure 1.2 shows how the energy stored in the

Sun’s magnetic field may be released via reconnection. Volatile magnetic loops,

created by the convective motions of the plasma within the Sun’s convective

region, extend out into the corona. When oppositely directed field lines are

forced together they can break and reconnect, which changes the topology of

the field and leads to energy release. The equations that govern magnetic

reconnection are known as the magnetohydrodynamic (MHD) equations.

Early models of reconnection focused solely on resistive energy release re-

sulting from the large electric currents generated by reconnection. However

this was found to be insufficient - for one thing the smallness of the resistivity

in the corona means that massive field gradients are required to achieve the
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observed energy dissipation rates. Furthermore, consider the magnetic energy

stored in a typical active region with field strength 100 Gauss. For a large flare

(∼ 1032 ergs), if resistive energy release was the only mechanism, we would

need all the energy in an expansive 1013.5 km3 volume to be released.

These reasons have motivated the inclusion of other physical processes to

explain the observed rapid flare energy release. These include the Hall effect

(e.g. Biskamp et al., 1995; Knoll and Chacón, 2006), turbulence (e.g. Kowal

et al., 2009) and viscous damping (e.g. Hollweg, 1986; Craig et al., 2005).

Of interest to us in this thesis is the effect of viscosity. As we shall see, the

inclusion of viscosity in reconnective models is important for understanding

effective energy release in solar flares.

1.2 Particle acceleration

Energy release in the Sun’s atmosphere can have a number of effects. The most

obvious effect is heating - flare events lead to plasma temperatures in excess

of 107 K (Priest and Forbes, 2000). Analogous to fluid waves, magnetohydro-

dynamic waves can be produced, as can a full spectrum of electromagnetic

radiation. Furthermore, particles can be accelerated to very high energies and

transported across the solar system. It is the last of these effects, particle

acceleration and transport, which will be a focus for this thesis.

In general, accelerated particle distributions are common throughout the

universe (Burbidge, 1956; Parker, 1958). As mentioned previously, accelerated

particles present a serious health risk to astronauts outside the safety of the

Earth’s atmosphere. Satellites can be damaged and their orbits degraded by

collisions with high energy cosmic-rays (Pickel and Blandford, 1980). Further-

more, the solar wind’s interaction with the Earth’s magnetic field cause the

aurora borealis and the aurora australis.

We will take a Fokker-Planck approach to modelling particle acceleration,

which describes motion due to the effects of advection and diffusion. In par-
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ticular we shall exploit the equivalence of the Fokker-Planck equation with a

system of stochastic differential equations. This will be seen to provide both

numerical and analytical advantages over the original Fokker-Planck equation.

One phenomenon that we shall explore in detail will be the production

of cosmic-rays at the heliospheric termination shock. These ultra-high energy

particles are accelerated to high energies (10−100 MeV, Kallenrode, 2004) due

to interactions with turbulent magnetohydrodynamic waves and large scale

variations in the magnetic field (Schlickeiser and Shalchi, 2008).

1.3 Thesis overview

This thesis covers two different but related areas of solar research, magnetic

reconnection and particle acceleration. Throughout, we work in Gaussian

centimetre-gram-second (cgs) units.

The chapters are laid out as follows. Chapter 2 describes the MHD equa-

tions and simplifies them to a planar incompressible formulation. We outline

some early reconnection models and the more recent, inviscid, exact MHD

solution of Craig and Henton (1995), while discussing the implications for

resistive energy release.

We begin Chapter 3 by introducing scaling arguments and exact solutions

of the MHD equations that include viscosity. A series of numerical calculations,

in a simple “head-on” configuration, are performed to study the properties of

a symmetrical reconnection region. Energy release rates and properties of the

reconnection region are calculated and compared with the predictions of the

analytical results.

In Chapter 4 we generalise our simulations by using a less restrictive initial

condition - a modified Orszag and Tang (1979) vortex. Resistive and vis-

cous energy dissipation rates are calculated. We discuss the implications for

viscosity as an effective energy release mechanism.

Chapter 5 gives a description of the Fokker-Planck equation for modelling
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particle acceleration and transport. We adapt the equation for use in the

case of charged particles and discuss its equivalence to a system of stochastic

equations. Numerical and analytical techniques are outlined by applying these

results to a couple of physically motivated examples.

In Chapter 6 we use the results of Chapter 5 to model cosmic-ray particle

acceleration at the heliospheric termination shock. We present analytical solu-

tions for various physical cases and compare them with numerical simulations.

The discussion and conclusions of this thesis are contained in Chapter 7.
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Chapter 2

MHD equations and early

reconnection models

2.1 Introduction

In this chapter we introduce the system that we use to study magnetic re-

connection in coronal plasmas, as well as outlining some early models of re-

connection. Our objective is to lay the mathematical ground work for the

reconnection studies of this thesis.

We take the equations of magnetohydrodynamics (MHD) to be the gov-

erning system for our work on magnetic reconnection. This approach, which

treats the plasma as a fluid, differs from others such as kinetic type particle-

in-cell (where individual particles are tracked) or particle distribution function

(for example see Chapters 5 and 6) methods. While describing the plasma

using MHD means that some plasma phenomena, such as wave-particle inter-

actions (Landau, 1946) or double layers (parallel plasma layers with opposite

electric charge), are not modelled, MHD is generally accepted to be accurate

in a large number of astrophysical situations (Priest and Forbes, 2000).

In Section 2.2.1 we sketch a derivation of the general three-dimensional

equations of MHD by combining Maxwell’s equations of electromagnetism and

the equations of fluid dynamics. These are non-dimensionalised in Section
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2.2.2 using typical coronal values, and we discuss resistive and viscous energy

dissipation mechanisms in Section 2.2.3. To complete our formulation of the

MHD system we simplify to planar geometry, and adopt the incompressible

approximation, in Section 2.3.

Having laid the mathematical groundwork we move on to discussing some

basic models of reconnection in Section 2.4. The Sweet-Parker (Section 2.4.1)

and Petschek (Section 2.4.2) models are discussed, before examining inviscid

2D (Craig and Henton, 1995) and 3D (Craig and Fabling, 1996) reconnection

solutions in Sections 2.4.3 and 2.4.4. Section 2.5 contains our summary.

2.2 Magnetohydrodynamic system

The MHD equations are derived from Maxwell’s equations of electromag-

netism, supplemented by Ohm’s Law, the Navier-Stokes equations of fluid dy-

namics, and the laws of conservation of mass and energy (see Priest and Forbes

(2000) for a detailed review). The plasma is treated as a non-relativistic col-

lisional conductive fluid (Maxwell-Boltzmann ideal gas (Priest, 1982)), where

magnetic fields can induce velocity fields in the plasma and vice-versa. We

begin by outlining the derivation of the MHD equations.

2.2.1 Derivation of the MHD equations

Maxwell’s equations of electromagnetism (in Gaussian cgs units) are

∂E

∂t
= c∇× B − 4πJ, (2.1)

∂B

∂t
= −c∇× E, (2.2)

∇ · E = 4πq̄, (2.3)

∇ · B = 0. (2.4)

They describe the interactions of an electric field E and a magnetic field B.

Here q̄ and J are the charge and current densities and c = 2.998× 1010 cm s−1
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is the speed of light. A non-relativistic plasma must also obey Ohm’s Law

J = σ

(

E +
1

c
v × B

)

, (2.5)

where σ is the electric conductivity. For a fully ionized coronal plasma of

temperature T = 106K, the conductivity is σ ≃ 107T 3/2 s−1 ≃ 1016 s−1 (Priest,

1982).

The displacement current (∂E/∂t) can be neglected due to the plasma being

non-relativistic. Following Priest (1982), a dimensional analysis of equation

(2.2) gives E0 ≈ l0B0/(ct0), where E0, l0, B0 and t0 are typical electric field,

length, magnetic field and time values respectively. The displacement current

magnitude is

∂E

∂t
≈ E0

t0
≈ l0B0

ct20
≈ v2

0

c
|∇ × B|

where v0 = l0/t0 is a typical velocity. Clearly, since v0 ≪ c, the displacement

is small compared to the first term on the right of (2.1). We can therefore

write Ampere’s Law in the form

J =
c

4π
∇× B. (2.6)

Combining Ampere’s and Ohm’s Laws, and taking the curl, gives

−c∇× E = ∇× (v × B) − c2

4πσ
∇× (∇× B).

Substituting equation (2.2) and using ∇× (∇×B) = −∇2B (where we made

use of equation (2.4)) gives the induction equation

∂B

∂t
= ∇× (v × B) + η̄∇2B, (2.7)

where we define the resistivity

η̄ =
c2

4πσ
.

The first term on the right of the induction equation (2.7) accounts for advec-

tion due to the Lorentz force, and the second represents diffusion via resistive

effects.
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Modelling a plasma as a fluid requires the plasma be collisional, in other

words the length scales of the system must be much greater than typical inter-

nal length scales of particle motions (Lifshitz and Pitaevskii, 1981). One such

length scale is the gyro-radius, being the radius of the circular path a charged

particle of mass m and speed v would make in a magnetic field of strength B.

It is (Huba et al., 2009)

r =
cmv

eZB
=

1.099 × 104

ZB

(

mT

mu

)1/2

cm. (2.8)

Here mu = 1.661 × 10−24 g is the unit atomic mass and Z = |q/e|, where q

is the particle charge and e = 4.803 × 10−10 statC is the fundamental charge

unit. Coronal plasma predominantly consists of fully ionised hydrogen (Priest,

1982). Therefore considering a hydrogen plasma with temperature of T =

106 K and average field strength of B = 102 G, both being typical of coronal

active regions, gives gyro-radii of re ≃ 103 cm and rp ≃ 105 cm for electrons

(me = 9.109 × 10−28 g) and protons (mp = 1.673 × 10−24 g) respectively.

Another internal length scale can be found by considering collisional parti-

cle interactions. The mean free path x of a plasma particle when experiencing

collisions with particles of the same type, in a Maxwell-Boltzmann plasma, is

(Spitzer, 1962)

x = 11.4

(

3kB

mu

)1/2
T 2

nZ4λ
= 1.47 × 105 T 2

nZ4λ
cm. (2.9)

Here kB = 1.3803 × 10−16 erg deg−1 is the Boltzmann constant, the Coulomb

logarithm λ generally varies between 5 and 25 in the corona (Priest, 1982),

and n is the particle number density. For a T = 106 K plasma with density

n = 109 cm−3, the mean free paths for electrons and protons are xe = xp ≃

107cm.

Global coronal length scales (a typical coronal active-region loop length is

∼ 109.5 cm (Priest, 1982)) can be at least an order of magnitude greater than

the larger mean free path scales mentioned above, meaning we might expect

to be able to treat the plasma as collisional and apply the equations of fluid

mechanics to our system. We note that smaller structural length scales, such as
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current sheet widths, can cast doubt on the validity of taking an MHD model.

However, within such structures, internal plasma scales may also be smaller.

For instance a current sheet would have higher local magnetic fields leading

to smaller gyro-radii. Furthermore, MHD-like equations can describe particle

interactions perpendicular to magnetic field lines (Chew et al., 1956) and wave

particle interactions impede charged particle motion (Priest and Forbes, 2000).

More generally, MHD encapsulates momentum, mass and energy conservation

principles (Parker, 1996) and has proven to be successful in describing a wide

variety of plasma phenomena.

The equation of mass conservation is

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.10)

where ρ is the plasma density, and the Navier-Stokes (momentum) equations

are

ρ

(

∂v

∂t
+ (v · ∇)v

)

=
1

c
(J × B) −∇p + ∇ · S. (2.11)

The Navier-Stokes equations describe the motion of a fluid element due to the

forces acting on it. The terms on the right of equation (2.11) represent the

Lorentz force due to the magnetic field, the plasma pressure (p) gradient, and

the force due to viscosity, where S is the viscous stress tensor. We have ne-

glected the electric force due to it being proportional to (v0/c)
2 ≪ 1 (Roberts,

1967). The energy per unit volume ξ of a plasma is the sum of the kinetic,

internal and magnetic energy densities

ξ =
ρv2

2
+ ρε +

B2

8π
,

where

ε =
p

(γ − 1)ρ

is the internal energy density per unit mass, with the ratio of specific heats

γ = 5/3 for fully ionised hydrogen (Priest, 1982). By combining the induction

(2.7), mass continuity (2.10) and momentum (2.11) equations we can write the
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equation of energy conservation in the form

∂ξ

∂t
= −∇ ·

[(

ρv2

2
+ p

)

v +
1

4π
B × (v × B) − η̄

c
(J × B) − S · v

]

+p∇ · v +
∂

∂t
(ρε) − 4πη̄

c2
J2 − Sij

∂vi

∂xj

, (2.12)

where (S ·v)j ≡ Sijvi and xj are the spatial coordinates. As usual, summation

over repeated indices is assumed.

The MHD system is not fully specified unless an equation of state, relating

pressure, density and internal energy (p = p(ρ, ε)), is given. As this could take

a number of different forms we leave further discussion of this relation until

Section 2.3, where we introduce the incompressible assumption. To simplify

our analysis, and for consistency with the literature, we non-dimensionalise

the MHD equations: Gauss’s law for magnetism (2.4) and the induction (2.7),

mass conservation (2.10), momentum (2.11), and energy conservation (2.12)

equations.

2.2.2 Non-dimensionalisation

As we will be looking at coronal applications of the MHD equations it makes

sense to non-dimensionalise them using typical coronal parameters: magnetic

field strength Bc = 102 G, length scale lc = 109.5 cm, and number density

nc = 109 cm−3 (mass density ρc = mpnc ≃ 10−15 g cm−3). Velocities are

expressed in units of the Alfvén speed

vA =
B

(4πρ)1/2
, (2.13)

where we have vA ≃ 109 cm s−1 for the above coronal values. Time is expressed

in units of the Alfvén time tA = lc/vA ≃ 3s. Under these normalisations the

MHD equations become

ρ

(

∂v

∂t
+ (v · ∇)v

)

= J × B − 1

2
∇p + ∇ · S, (2.14)

∂B

∂t
= ∇× (v × B) + η∇2B, (2.15)

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.16)

∇ · B = 0, (2.17)
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with the energy equation expressed as (Craig and Litvinenko, 2009)

∂ξ

∂t
= −∇ · P +

p

2
∇ · v +

∂

∂t
(ρε) − ηJ2 − Sij

∂vi

∂xj

, (2.18)

where

P =
1

2

(

ρv2 + p
)

v + B × (v × B) − ηJ × B − S · v

is the Poynting vector and J = ∇×B is the non-dimensional current density.

Here the plasma pressure p has been normalised with respect to the background

magnetic energy density (B2
c /8π) and the stress tensor normalised by a factor

of ρcv
2
c . The non-dimensional resistivity is an inverse Lundquist number given

by

η =
η̄

lcvA

≃ 10−5.5T−3/2
c

(Spitzer, 1962), which is η ≃ 10−14.5 for a Tc = 106 K coronal plasma. The

smallness of this value means that steep gradients in the magnetic field must be

present for effective diffusion of flux. As we shall see, this presents a problem

when trying to explain the observed energy release.

It may seem that the MHD system is over-determined, as there are 12 equa-

tions (equations (2.14-2.18) and J = ∇ × B) for 11 variables (v, B, J, p, ρ).

However, taking the divergence of the induction equation (2.15) results in

∇·B being constant - Gauss’s law (2.17) actually serves as an initial condition

(Priest and Forbes, 2000).

2.2.3 Energy dissipation

To calculate global energy release rates we can integrate the energy equation

(2.18) over a volume V . We define two resulting measures of energy dissipation:

resistive (Ohmic) and viscous dissipation.

Energy dissipation via resistive effects has been considered to be the main

mechanism for energy release in flares. The resistive dissipation is defined as

Wη =

∫

ηJ2 dV. (2.19)
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Reconnection solutions are classified according to how the resistive dissipation

scales with the resistivity, Wη ∼ ηk : k ∈ R. Due to the smallness of the

typical values of resistivity (recall η ≃ 10−14.5 in the corona), a solution with

k ≤ 0 is known as “fast” reconnection, as it corresponds to a high resistive

energy dissipation rate. Care must be taken when interpreting such solutions,

however, as the dissipation tends to infinity for very small values of resistivity;

Craig and Watson (2000) discuss how the dissipation could be limited by the

current sheet magnetic field only building up to a level comparable with the

external pressure. On the other hand “slow” reconnection solutions, for which

k > 0, result in insufficient dissipation to explain flare energy release.

These issues have motivated the inclusion of other physical effects to help

explain the observed dissipation rates. The primary focus for the reconnec-

tion work contained in this thesis is the inclusion of viscosity. Several studies

(e.g. Hollweg, 1986; Craig and Litvinenko, 2009) have pointed out that vis-

cous dissipation has the potential to dominate resistive dissipation in a variety

of astrophysical situations. At the very least, reconnection is unlikely to be

greatly affected by the inclusion of viscosity (Fabling and Craig, 1996). The

dissipation due to viscous effects is given by

Wν =

∫

Sij
∂vi

∂xj

dV. (2.20)

Both the above and equation (2.19) are scaled using Wc = vAB2
c Vc/(4πlc).

Taking a normalising volume of a unit cube (Vc = l3c) results in a dissipation

rate of Wc ≃ 8 × 1030 erg s−1. Considering that a typical flare releases around

1030 erg over a period of about 100 s, we would need an energy dissipation rate

of approximately 10−3 in our non-dimensional units.

We shall make use of two alternate forms of the viscosity tensor Sij. Viscous

effects in a hydrogen plasma are primarily due to proton-proton interactions

(Hollweg, 1985). Classical isotropic viscosity

Sij = ν

(

∂vi

∂xj

+
∂vj

∂xi

− 2

3

∂vk

∂xk

δij

)

, (2.21)

while being commonly employed (e.g. Park et al., 1984, Heerikhuisen et al.,
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2000), becomes inaccurate in the presence of strong magnetic fields (such as

those present in the corona).

A better physical representation is the Braginskii (1965) ion parallel vis-

cosity

Sij = ν

(

3
BiBj

B2
− δij

)(

BkBl

B2

∂vk

∂xl

− 1

3

∂vk

∂xk

)

. (2.22)

This form accounts for anisotropy introduced by the magnetic field. Particles

travelling along a magnetic field line have length scales of the same order

as the collisional proton mean-free path (2.9). However, for particle motion

perpendicular to the field, length scales are of the same order as the proton

gyro-radius (2.8). If the proton gyro-radius is exceeded by the mean-free path

then isotropy breaks down and equation (2.22) is applicable (Hollweg, 1986;

Craig, 2008). Furthermore, due to the smaller length scale, the viscous force

perpendicular to the magnetic field is greatly suppressed (Braginskii, 1965).

Using the typical coronal values of Section 2.2.1 leads to xp/rp ≃ 102 ≫ 1;

in other words the Braginskii viscosity (2.22) should be used in the majority of

coronal applications. We note that the Braginskii viscosity tensor (2.22) cannot

be applied in regions of weak magnetic fields, as there the proton gyro-radius

would exceed the mean-free path. In practice a form that interpolates between

the Braginskii and classical viscosities is required (see equation (2.33)).

The viscosity coefficient (Spitzer, 1962)

ν ≃ 10−19.5T 5/2
c , (2.23)

which is non-dimensionalised using ρcvAlc ≃ 103.5 g cm−1 s−1, is an inverse

Reynolds number defined in terms of the Alfvén speed. In active region plas-

mas where the temperature can vary appreciably (2 × 106 K ≤ Tc ≤ 107K),

the viscous coefficient can vary between 10−4 ≤ ν ≤ 10−2 (e.g. Priest, 1982).

Clearly ν ≫ η (recall η ∼ 10−14 in our non-dimensional units), so we might

naturally expect viscous dissipation to dominate resistive dissipation in the

corona. We will explore this idea in detail in Chapters 3 and 4.
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2.3 Incompressible planar MHD equations

If we wish to analytically and numerically describe viscous reconnection we

need to make some physically motivated simplifying assumptions. We begin

by restricting ourselves to the simplest possible geometry under which recon-

nection can occur, planar (2D) Cartesian geometry. This has the advantage of

being both relatively computationally accessible and well described, for certain

cases, in the literature (see Section 2.4). Under this assumption we can write

the velocity and magnetic fields in terms of stream (φ) and flux (ψ) functions

v = ∇φ(x, y) × ẑ, (2.24)

B = ∇ψ(x, y) × ẑ. (2.25)

Note that Gauss’s law for magnetism (2.17) is now satisfied identically.

We assume that the plasma is incompressible. In this approximation the

density is taken to be a normalised constant (ρ → 1) and thermodynamic prop-

erties of the plasma (e.g. temperature) are not modelled. Inclusion of finite

compressibility will give rise to phenomena not represented in an incompress-

ible formulation, including density inhomogeneities and compressional MHD

waves that travel perpendicular to the magnetic field (Biskamp, 1986). How-

ever, both analytical and numerical results (Rickard and Craig, 1993; Craig

and Litvinenko, 2007) indicate that any effects on the current sheet scalings

arising from compressibility will be relatively minor. That is, the overall en-

ergy dissipation scalings are expected to remain robust (Litvinenko and Craig,

2003).

The MHD equations (2.14-2.18) reduce to the momentum, induction and

energy equations in the form

∂

∂t

(

∇2φ
)

+ [∇2φ, φ] = [∇2ψ, ψ] + G, (2.26)

∂ψ

∂t
+ [ψ, φ] = η∇2ψ, (2.27)

∂E
∂t

= −(Wη + Wν) −
∫

P · dS, (2.28)

where we made use of the curled form of equation (2.14) and we have used the
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divergence theorem to express the Poynting flux term as a surface integral (S

being the surface of the volume V ). The global energy is

E =

∫ (

v2

2
+

B2

2

)

dV. (2.29)

The above Poisson bracket notation is typified by

[ψ, φ] =
∂ψ

∂x

∂φ

∂y
− ∂ψ

∂y

∂φ

∂x
,

viscous effects are represented by

G = − (∇×∇ · S) · ẑ, (2.30)

and the classical and Braginskii viscosity tensors are

Sij = ν

(

∂vi

∂xj

+
∂vj

∂xi

)

, (2.31)

and

Sij = ν

(

3
BiBj

B2
− δij

) (

BkBl

B2

∂vk

∂xl

)

(2.32)

respectively. We recall that the Braginskii viscosity tensor (2.32) is not appli-

cable in the region of fields that are very weak. Furthermore, small values of B2

in the above equation would cause numerical difficulties. Since reconnection

simulations generally involve null points, it is convenient to use a form that ef-

fectively interpolates between the classical and Braginskii viscosities (Hosking

and Marinoff, 1973). For our simulations we adopt the form

Sij = ν

(

∂vi

∂xj
+

∂vj

∂xi
+ θ4 (3BiBj − B2δij) BmBk

∂vm

∂xk

1 + θ4B4

)

, (2.33)

where θ is a parameter that determines the relative weighting of the viscosi-

ties. Equations (2.26-2.33) form the system on which all our analytical and

numerical work will be based. In practice, for a given viscosity tensor, we solve

equations (2.26) and (2.27) for φ and ψ, allowing v and B to be calculated.

It is then straightforward to calculate energy dissipation via equations (2.19)

and (2.20).
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2.4 Early reconnection models

In this section we review some early models of reconnection. While this is by

no means a complete list of early work, the models presented here introduce

some basic concepts relevant to our present study. We start with Sweet-Parker

merging, whose predictions and order of magnitude style arguments have been

at the core of reconnection theory for decades.

2.4.1 Sweet-Parker merging

The first major contribution to the theory of reconnection was the Sweet-

Parker model. Consider the situation shown in Figure 2.1. Oppositely directed

magnetic field lines in an inviscid (S = 0) incompressible (ρ → 1) plasma are

washed in with speed vin to a region of high current density (shaded box,

length l, width xs) known as a current sheet. Here, around the central neutral

point, the topology of the field lines can change through magnetic reconnec-

tion, giving large velocity gradients within the sheet and allowing rapid expul-

sion (with speed vout) of plasma. This steady state configuration is the basis

for the Sweet-Parker model (Parker, 1957, 1963; Sweet, 1958). While this is

not an exact solution of the MHD equations, an order of magnitude analysis

leads to scalings for quantities such as the current sheet thickness and resistive

dissipation rate, which became central to the development of reconnection the-

ory. Note that these scalings are preserved if the incompressible assumption

is relaxed (Parker, 1963); we take ρ → 1 for simplicity.

To derive scalings for the properties of the sheet we need to consider some

basic physical relations. To begin with, mass conservation requires plasma

flow in to and out of the sheet to be balanced

vinl = voutxs. (2.34)

Secondly we assume the inflow speed vin is small compared to the magnetic

field strength Bin, the validity of which will be checked later. Integrating the
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xs

vout

vin vin
l

Figure 2.1: Reconnection via the Sweet-Parker mechanism. Oppositely di-

rected field lines are washed in at speed vin and reconnect in a current sheet

of width xs and length l (shaded region). The plasma is ejected in a jet with

speed vout.

momentum equation (2.14) along the inflow axis gives

ps ≃
B2

in

2
, (2.35)

where ps is the current sheet pressure and we neglect the pressure outside the

sheet. Conversely along the outflow axis the magnetic field is negligible and

the sheet pressure is

ps ≃
v2

out

2
, (2.36)

which, when equated with equation (2.35), gives the relation

vout ≃ Bin. (2.37)

Obviously from equation (2.34) vin ≪ vout, so our earlier assumption of vin ≪

Bs is valid. Finally energy balance in the sheet is given by equation (2.28).

Integrating this and using equations (2.19) and (2.37) we find

η
B2

in

xs

l ∼ vinlB2
in, (2.38)
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where we approximate current density via J ∼ Bin/xs. Substituting the flow

balance equation (2.34) gives

x2
s ∼

ηl

vout

.

Due to the uniformity of the inward flow profile we can keep the length scale

l and the magnetic field Bin fixed, giving

xs ∼ η1/2 (2.39)

as the scaling for sheet thickness. Using equation (2.19) the resistive dissipa-

tion scaling is

Wη ≃ ηB2
in

x2
s

xs l ∼ η1/2. (2.40)

This corresponds to “slow” reconnection (following the classification of Section

2.2.3) and, due to the very small coronal resistivity, the Sweet-Parker model

does not result in sufficient energy release rates for flares. It does, however,

provide a baseline against which other models are measured. In addition the

order of magnitude arguments given here can be adapted to more complex

situations, including those where viscosity is considered (see Section 3.2.1).

2.4.2 The Petschek mechanism

The Petschek (1964) mechanism (Figure 2.2) employs a similar argument to

Sweet-Parker, but assumes that the length of the current sheet is significantly

smaller than the global length scale, and of the same order as the sheet width

(l ≃ xs). One of the key features of this system is the four Alfvénic discon-

tinuities (dashed lines) that act as “separatrices”. The obvious advantages of

this mechanism is its X-point nature - allowing a large angle over which to

expel plasma from the reconnection region.

While the Petschek mechanism can lead to “fast” reconnection, specifically

Wη ∼ η0, the majority of numerical simulations to date result in long, Sweet-

Parker style, current sheets. Exceptions to this (e.g. Heyn and Semenov,

1996) invoke localised enhancement of the resistivity and require very specific

boundary conditions, so it seems unlikely that the Petschek model is a realistic
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vinvin

xs

vout

vout

l

Figure 2.2: Reconnection via the Petschek (1964) mechanism, where the length

of the reconnection region is of the same order as the width. Here the dashed

lines indicate Alfvénic discontinuities.

mechanism for reconnection. We have included it here as it was one of the

first models to examine the reconnection of curved field lines in an X-point

configuration.

2.4.3 Craig and Henton reconnection solution

In the steady state, the planar equations (2.26–2.27) become

[∇2φ, φ] = [∇2ψ, ψ] + G, (2.41)

E + [ψ, φ] = η∇2ψ, (2.42)

where E = ∂ψ/∂t is the magnitude of the uniform electric field aligned to the

negative z axis and G = 0 in the absence of viscosity.
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Craig and Henton (1995) considered a solution of equations (2.41) and

(2.42) in the inviscid case. Taking the stream and flux functions in the form

φ(x, y) = f(x) + αH(x, y),

ψ(x, y) = g(x) + βH(x, y),

where H is a harmonic function, gives

E + (αg′ − βf ′)
∂H

∂y
= ηg′′, (2.43)

αf ′′′ = βg′′′. (2.44)

Equation (2.44) has the solution

f(x) =
β

α
g(x) + q(x),

where q(x) is an arbitrary quadratic function which we can neglect as it only

contributes a linear component to the flow field. Equation (2.43) implies ∂yH

is a function of x only. Remembering that H is harmonic and again neglecting

linear contributions, we get H ∼ xy. Choosing H = −xy for convenience (we

shall show below that this corresponds to inflow along the x axis) results in

the induction equation in the form

g′′ +
µ2

2
xg′ =

E

η
,

where we define

µ2 =
α2 − β2

2αη
. (2.45)

Solving via an integrating factor gives

g′(x) =
E

η

∫ x

0

eµ2(t2−x2) dt,

=
E

η
daw(µx), (2.46)

where the Dawson function is defined

daw(s) =

∫ s

0

eλ2
−s2

dλ. (2.47)

Integrating the result with respect to x gives
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Figure 2.3: Velocity (a) and magnetic (b) fields for the Craig and Henton

solution using parameters α = 1, η = 10−2 and E = 0.07. Here, by setting the

shearing parameter β = 0.6, we have an X-point reconnection configuration.

The dashed lines indicate the separatrices.

ψ(x) =
E

η

x2

2
2F2

(

1, 1,
3

2
, 2, −µ2x2

)

, (2.48)

where 2F2 is a hyper-geometric function (Olver et al., 2010). We therefore

write the stream and flux functions in the form

φ(x, y) = −αxy +
β

α
g(x),

ψ(x, y) = −βxy + g(x),

and the velocity and magnetic fields are given by

v = −αxx̂ +

(

αy +
βE

αµη
daw(µx)

)

ŷ, (2.49)

B = −βxx̂ +

(

βy +
E

µη
daw(µx)

)

ŷ. (2.50)

Equations (2.49) and (2.50) comprise the inviscid, steady state, incompressible

Craig and Henton (1995) solution. Equation (2.49), in contrast to the Sweet-

Parker model, gives a non-uniform divergent flow with a stagnation point at

the origin. The parameter α determines the amplitude of the velocity field and

β controls the level of magnetic shear in the reconnection. Figure 2.3 shows

the solution for sample parameters α = 1, β = 0.6, η = 10−2 and E = 0.07. In

this case the non-zero shearing parameter gives X-point reconnection. Setting

β = 0 corresponds to a head-on “annihilation” solution (Sonnerup and Priest,
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1975) – field lines cancel on the y axis rather than reconnecting (see Section

3.2.2).

The above solution has been extended to both 2.5D (Fabling and Craig,

1996) and 3D (Craig and Fabling, 1996). We consider the 3D solution below.

2.4.4 Spine and Fan solutions

For completeness we briefly describe how the the solution of Craig and Henton

(1995) is extended to three dimensions. The 3D, steady-state, incompressible

MHD equations are

(v · ∇)Ω − (Ω · ∇)v − (B · ∇)J + (J · ∇)B = ∇× (∇ · S), (2.51)

∇× (v × B) + η∇2B = 0, (2.52)

∇ · B = ∇ · v = 0, (2.53)

where Ω = ∇ × v is the vorticity and we made use of the curled form of

equation (2.14). A reconnection solution in the inviscid case can be found by

taking magnetic and velocity fields of the form (Craig and Fabling, 1996)

B =
β

α
P + Q, v = P +

β

α
Q, (2.54)

where P and Q are flow and magnetic disturbance fields respectively.

A generalisation of stagnation point flow profiles is given by the field

P = α(−x, κy, (1 − κ)z), (2.55)

where isotropy is controlled by 0 ≤ κ ≤ 1. As shown in Figure 2.4, plasma

streams inward in a “spine” formation along the x axis to a “fan” plane at

x = 0. Taking κ = 1 corresponds to the planar stagnation point flows of the

previous Section 2.4.3.

Given this flow field, we find two forms of magnetic disturbance that satisfy

the momentum equation. Fan solutions (Craig et al., 1995) have planar current

sheet structures formed around the magnetic null. They are derived assuming

a disturbance field

Q = (0, Y (x), Z(x))



27

spine

fan

Figure 2.4: Representation of the three dimensional spine and fan flow field of

equation (2.55).

that gives a current sheet in the x = 0 plane (the “fan”).

Closely related to these are “spine” solutions (Craig and Fabling, 1996),

which are derived with the form

Q = X(y, z) x̂.

Currents are localised in quasi–cylindrical current tubes (“spines”) about the

x-axis.

Scaling laws for both classes of solution have been found by Craig and

Watson (2000). We simply state the results here; a derivation for planar

viscous solutions is presented in Sections 3.2.2 and 3.2.3. For “fan” solutions

the maximum resistive dissipation rate is

Wη ≃ η1/2B5/2
s ,

where Bs is the current sheet magnetic field strength. Note that, as we will

show in the next chapter, this scaling holds when viscous solutions are consid-

ered. “Spine” solutions, however, have a less effective scaling

Wη ≃ ηB2
s .
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The lower dissipation rate is due to the dissipation region for the “spine”

solution being much smaller than “fan”; a thin cylindrical current structure

around the axis rather than a plane of current surrounding the null point.

2.5 Summary

In this chapter we have presented the equations of MHD that will form the

basis of the analysis of the next two chapters. We have discussed energy

release via resistive and viscous dissipation, and have given both the classical

and Braginskii forms of the viscosity tensor.

In Section 2.4.1 we discussed Sweet-Parker reconnection, a fundamental

model that assumes a uniform flow profile and predicts the resistive dissipation

scaling Wη ∼ η1/2. The Petschek model was briefly presented in Section 2.4.2.

This gave an example of an X-point reconnection configuration and results in

fast energy dissipation; however it appears unlikely to be a physically realistic

mechanism.

We examined exact, steady-state solutions of the inviscid MHD equations

in 2D (Section 2.4.3) and 3D (Section 2.4.4). The 2D solutions arise from a

stagnation point flow profile and include a flux pile-up factor Bs that allows for

greater resistive dissipation Wη ∼ η1/2B
5/2
s when compared to the traditional

Sweet-Parker model. 3D solutions generalise the stagnation point flow concept

while providing spine and fan reconnection configurations.

Having presented the MHD equations and discussed inviscid models of re-

connection, we now turn to studying the effects of viscosity and what they

mean for general flare energy release. In the next chapter we discuss recon-

nection models that include viscosity, and perform a numerical simulation

designed to give a well defined reconnecting current layer.



Chapter 3

Viscous effects in

time-dependent planar

reconnection

3.1 Introduction

In the previous chapter we presented some simple models of resistive recon-

nection as a background to our work. Our present purpose is to examine and

develop models that include viscosity. In this chapter we are going to present

viscous analytical scaling arguments, along with exact solutions of the viscous

MHD equations, and compare them with detailed numerical simulations of a

simple current layer. Specifically we analyse the current sheet thickness (xs)

and inflow (vin) and outflow (vout) speeds, along with calculating resistive (Wη)

and viscous (Wν) dissipation rates.

Both exact solutions (Sonnerup and Priest, 1975; Litvinenko, 2005) and

scaling arguments (Craig and Litvinenko, 2010) for viscous stagnation point

flows predict the scalings for the current sheet properties: thickness xs ≃

η1/2B
−1/2
s , inflow speed vin ≃ η1/2 and outflow speed vout ≃ η0. More impor-

tantly the ratio of viscous to resistive dissipation scales as

Wν

Wη

≃ ν

B
1/2
s η1/2

, (3.1)
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which predicts viscous dissipation dominance for ν > η1/2. As this inequality

holds for coronal values of the parameters (see Section 2.2.3), we might expect

relation (3.1) to apply in various astrophysical situations. These scalings have

been found in recent exploratory simulations of viscous “head-on” reconnection

(Craig, 2010) and relaxation simulations (Craig and Litvinenko, 2012).

However, a different visco-resistive scale is predicted when considering a

Sweet-Parker style uniform flow profile in the presence of classical viscosity.

The scalings for the current sheet properties are xs ≃ (ην)1/4B
−1/2
s , vin ≃

η3/4ν−1/4 and vout ≃ η1/2ν−1/2 (Park et al., 1984). Most significantly the

dissipation rates are significantly slower (Craig and Litvinenko, 2010)

Wη ≃ Wν ≃ η3/4ν−1/4B5/2
s . (3.2)

The visco-resistive scaling has emerged in an analytical model of X-point re-

connection (Titov and Priest, 1997) as well as various numerical models (e.g.

Hassam and Lambert, 1996; Craig et al., 2005; Craig, 2010). In addition,

the study of Craig (2008) suggests it may hold in the presence of Braginskii

viscosity.

The contradictory results of the steady analytical models motivate us to

investigate the structure of a symmetric head-on reconnection region in an

incompressible visco-resistive plasma, using time-dependent numerical simula-

tions. Accordingly we investigate reconnection in a two-dimensional, doubly

periodic reconnection region. Initial conditions are chosen to generate a well

defined current layer in a form as similar to the models of the previous chapter

as possible. Current sheet thickness, inflow and outflow speeds and viscous

and resistive dissipation rates are then able to be easily calculated, and we use

the scaling arguments above to interpret our numerical results.

We begin by discussing viscous reconnection models in Section 3.2, deriving

the scaling arguments given above. In a manner similar to the Sweet-Parker

model (Section 2.4.1), scaling law arguments that include viscosity are pre-

sented in Section 3.2.1. We then touch on the Sonnerup and Priest (1975)

annihilation solution in Section 3.2.2, before discussing the Litvinenko (2005)
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Braginskii viscosity solution in Section 3.2.3.

We describe our numerical model in Section 3.3. We use the numerical

results to obtain scalings for both the current sheet parameters and the global

rates of resistive and viscous dissipation in Section 3.4. We specifically compare

the effects of the classical viscosity and the Braginskii viscosity. An exploratory

analysis of the case of strongly sheared reconnecting fields is presented in

Section 3.5. In Section 3.6 we give our conclusions.

3.2 Viscous reconnection models

The purpose of this section is to describe existing models for viscous reconnec-

tion. We present Sweet-Parker style scaling arguments before discussing exact

solutions that are valid for classical (Section 3.2.2) and Braginskii (Section

3.2.3) viscosity.

3.2.1 Viscous Sweet-Parker style scalings

Several studies have looked to include viscous effects in a Sweet-Parker style

scaling argument, most notably Park et al. (1984) for classical viscosity and

Craig and Litvinenko (2010) for Braginskii viscosity. The resulting energy dis-

sipation scalings depend on the assumed flow profile, as we now discuss. Similar

to Sweet-Parker, the argument is based on mass continuity (2.34), steady flux

transfer (2.38) and pressure balance (2.35-2.36). However the pressure balance

relation is modified by inclusion of viscous effects,

v2
out

2
≃ B2

s

2
− l

2
∇ · S, (3.3)

where l is a global length scale. We consider two different flow profiles. On

the one hand is the uniform flow profile of Sweet-Parker (Figure 2.1), where

velocity gradients are only significant within the current layer. On the other

hand, guided by the forms of recent exact solutions (e.g. Section 2.4.3), the

stagnation point flow of Figure 3.1 has velocity gradients on a global scale.
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Figure 3.1: Schematic representation of a stagnation point flow.

Consider first the stagnation point flow of Figure 3.1. Regardless whether

classical (2.31) or Braginskii (2.32) viscosity is considered, the viscous force can

be approximated by ∇·S ≃ ν(vout/2)/(l/2)2. Substituting this and eliminating

vout and l in favour of xs and Bs gives a quadratic equation in terms of x2
s (Craig

and Litvinenko, 2010)

η2 + 2νηx2
s = B2

sx
4
s.

Solving for xs and taking the physically based assumption that η ≪ ν < 1

results in the scalings

xs ≃
(

η

Bs

)1/2

, (3.4)

vin ≃ η1/2 and vout ≃ η0. Equation (3.4) is of the same general form as the

Sweet-Parker scaling (2.39); however, in contrast to a Sweet-Parker style flow

where the magnetic field strength is constant in the inflow region, the stagna-

tion point flow causes magnetic flux to pile-up at the sheet. The dissipation

scalings (2.19-2.20) become

Wη ≃ η1/2B5/2
s , Wν ≃ νB2

s . (3.5)
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Note here that the viscous dissipation scales independently of resistivity (Wν ∼

η0). An important consequence of this is that, for magnetic field amplitudes

of order unity, we would expect viscous effects to dominate resistive effects for

ν > η1/2.

Now consider a Sweet-Parker flow profile with classical viscosity, where the

viscous force is given by ∇ · S ≃ −νvout/x
2
s. Substituting this in (3.3) and

again eliminating vout and l gives

η2 + 2νη = B2
sx

4
s.

In this case the second term will dominate, giving the visco-resistive scale

xs ≃ (ην)1/4B−1/2
s , (3.6)

vin ≃ η3/4ν−1/4, and vout ≃ η1/2ν−1/2 (Park et al., 1984). The dissipation

scalings (correcting a misprint in equation (20) of Craig and Litvinenko, 2010)

are

Wη ≃ Wν ≃ η3/4ν−1/4B5/2
s . (3.7)

Note that, due to the anisotropy of the magnetic field within the current layer,

a Sweet-Parker flow profile with Braginskii viscosity would result in greatly re-

duced viscous dissipation (Braginskii, 1965). Obviously the dissipation would

be significantly affected by the visco-resistive scale; specifically these scalings

would suggest thicker current sheets and lower dissipation rates. Some studies,

namely an analytical model of slow magnetic reconnection at a two-dimensional

X-point (Titov and Priest, 1997) and numerical studies of X-point collapse for

both classical and Braginskii viscosities (Hassam and Lambert, 1996; Craig

et al., 2005; Craig, 2008), have obtained this visco-resistive scale.

Two salient points have arisen from these scaling arguments. The first

is the possible visco-resistive scale for Sweet-Parker style flows with classical

viscosity. The second is that, for stagnation point flows, the scaling of viscous

dissipation is insensitive to resistivity, and therefore likely to dominate resistive

dissipation in coronal plasmas. This would suggest non-uniform plasma flows

lead to viscous effects playing a significant role in solar flare energy release.
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With these two points in mind, we will now discuss some of the recent exact

models of steady-state viscous reconnection. We will examine their predictions

for the visco-resistive scale and energy dissipation rates, with a goal of having

a solid analytical base with which to compare our numerical results.

3.2.2 Sonnerup and Priest solution

Figure 3.2: Schematic representation of the Sonnerup and Priest (1975) so-

lution. The solid lines are the magnetic field and the dashed lines are the

velocity (flow) field. Note the pile-up of the magnetic field on the edge of the

current sheet.

The simplest form of the Craig and Henton (1995) solution is that in which

the magnetic shear parameter β = 0, resulting in the equations of Sonnerup

and Priest (1975) (see also Besser et al. (1990) and Jardine et al. (1992)

for shear and vortical flow generalisations). The interesting property of the

Sonnerup and Priest solution is that it holds in the presence of both classical

and Braginskii viscosity (Hollweg, 1985).

A stagnation point flow advects straight field lines towards a current layer
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centred on x = 0, as shown in Figure 3.2. The velocity profile corresponds to

inwards flow along the x-axis,

v = −αxx̂ + αyŷ, (3.8)

and the uni-directional magnetic field is given by

B =
E

ηµ
daw (µx) ŷ. (3.9)

We can obtain a scaling for the thickness of the current layer by considering

two properties of the Dawson function (2.47). Firstly, for small s, daw(s) ≃ s.

Secondly, the Dawson function satisfies the Dawson integral

d

ds
(daw(s)) + 2s daw(s) = 1.

By considering that the magnetic field maximum occurs around the edge of

the current sheet we obtain 2µ2x2
s ≃ 1, or

xs ≃
( η

α

)1/2

, (3.10)

as the thickness of the current layer. This result implies that the inflow and

outflow speeds associated with the current sheet are vin ≃ √
αη and vout ≃ α.

Using equations (2.20) and (2.31) the classical viscous dissipation rate in a

volume V is given by

Wν =

∫

Sij
∂vi

∂xj

dV = 4να2 V. (3.11)

Note that considering Braginskii viscosity (2.32) does not change the form of

(3.11) beyond a factor of two reduction.

The resistive dissipation is easy to estimate if the thinness of the sheet is

exploited. The current density is related to the sheet properties via J ≃ Bs/xs,

and we have from equation (2.19) that

Wη =

∫

ηJ2 dV ≃ (αη)1/2B2
s V. (3.12)

The key aspect of these results is the presence of a single small scale xs de-

termined by the resistivity. Although viscous losses do occur, these arise from
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maintaining the global velocity field that drives the merging. By comparing

equations (3.11) and (3.12) and treating α and Bs as parameters of order

unity, we see that viscous dissipation should dominate when ν ≫ η1/2. More

physically, if we assume (as in Sweet-Parker merging) that exhaust speeds are

related to the strength of the current layer, it follows that α ≃ Bs (Litvinenko

and Craig, 2000), and so

Wν

Wη

≃ 4

B
1/2
s

ν

η1/2
, (3.13)

We note that, as predicted by the stagnation point flow scaling arguments of

Section 3.2.1, there is no visco-resistive scale present. Nor does it emerge in

the more recent solutions for classical viscosity with non-zero β described by

Craig and Litvinenko (2012).

Recently exact solutions for different flow profiles have been found for Bra-

ginskii viscosity in both two and three dimensions - we discuss them next.

3.2.3 Litvinenko Braginskii viscosity solution

Analogous to Craig and Henton (1995), Litvinenko (2005) looked for a solution,

in the case of the Braginskii viscosity tensor (2.32), of the form B = B(x) ŷ,

where B(x) = −ψ′(x). As E is a constant and the right hand side of (2.42) is

a function of x only, we have that the Poisson bracket

[ψ, φ] = ψ′
∂φ

∂y
,

must be a function of x, and therefore ∂yφ = f(x). This gives

φ = yf(x) + g(x), (3.14)

where g(x) is a function to be determined. Substituting equations (2.42) and

(3.14) into equation (2.41) results in both terms on the right being zero. We

are left with

[∇2φ, φ] = (f (3)y + g(3))f − f ′′(f ′y + g′) = 0,
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which results in two equations

fg(3) − f ′′g′ = 0, (3.15)

ff (3) − f ′f ′′ = 0. (3.16)

Equation (3.16) can be simplified to

f ′′ = ±ω2f,

where ω is constant. If we assume that no plasma crosses the y-axis (∂yφ|x=0 =

0) then the only possible forms of f are (see also Craig and Henton, 1995):

f = Ax, f = A sin(ωx), f = A sinh(ωx), (3.17)

where A is a constant of integration. Solving equation (3.15) for each of these

forms gives

g =
γx2

2
, g = γ cos(ωx), g = γ cosh(ωx), (3.18)

respectively.

Once φ is specified via a particular choice of f and g, the induction equation

(2.42) can be solved and the magnetic field can be expressed as a quadrature.

We shall examine a simple case in which we assume no plasma crosses the

x-axis (∂xφ|y=0 = 0), allowing us to neglect g. Obviously choosing f = Ax

recovers the Sonnerup and Priest (1975) solution. If we choose the second form

for f with A = α/ sin(ω) then we can write the velocity as

v = −α sin(ωx)

sin(ω)
x̂ +

αωy cos(ωx)

sin(ω)
ŷ. (3.19)

Here the parameter 0 ≤ ω < π determines the velocity gradient on the inflow

boundary. Note that, as ω → 0, the stagnation-point flow of Sonnerup and

Priest (1975) is recovered. Substituting our flow field in the induction equation

(2.42) and solving the first order ODE via an integrating factor results in

B =
E

η
exp

(

α cos(ωx)

ηω sin(ω)

) ∫ x

0

exp

(

−α cos(ωs)

ηω sin(ω)

)

ds ŷ, (3.20)

as the form for the magnetic field.
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Provided that ω does not approach π, the parameters of the current layer

(namely its thickness xs and the inflow vin and outflow vout speeds) and resistive

dissipation are all found to scale as those in the Sonnerup and Priest (1975)

solution. The viscous dissipation rate, however, follows from equations (2.19)

and (2.32):

Wν = 3να2

(

2ω2 + ω sin 2ω

4 sin2 ω

)

V, (3.21)

which reduces to 3να2 V as ω → 0. Once again, assuming that α ≃ Bs, we

recover equation (3.13) within factors of order unity.

It is important to consider what happens in the case of magnetic fields

perpendicular to the flow. Taking a general planar flow profile

v = (X(x, y, z), Y (x, y, z), 0) and an axial magnetic field B = B(x, y, z) ẑ

results in a zero Braginskii viscosity tensor (2.32). This means that, unlike for

classical viscosity, axial fields in the presence of Braginskii viscosity result in no

viscous dissipation (Craig and Litvinenko, 2009). However, realistic merging

is unlikely to be limited to a purely planar flow with axial fields. To consider

this point more thoroughly, we note that a Braginskii viscosity solution has

been derived in three dimensions by Craig and Litvinenko (2009). A sinusoidal

velocity field of the form

v =

(

−α sin(ωx)

sin(ω)
,

αω

2 sin(ω)
(y cos(ωx) + z sin(ωx)),

αω

2 sin(ω)
(z cos(ωx) − y sin(ωx))

)

, (3.22)

and a fan magnetic field of the form

B = (0, Y (x), Z(x)), (3.23)

satisfy equations (2.51-2.53) in the case of Braginskii viscosity, where Y and

Z obey the conditions

ηY ′′ +
α sin(ωx)

sin(ω)
Y ′ +

αω

2 sin ω
(cos(ωx)Y + sin(ωx)Z) = 0, (3.24)

ηZ ′′ +
α sin(ωx)

sin(ω)
Z ′ +

αω

2 sin ω
(cos(ωx)Z − sin(ωx)Y ) = 0. (3.25)

Perhaps unsurprisingly, the dissipation scalings arising from this solution also

give the relation of (3.13). We reiterate that no visco-resistive scale is evident
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from this fully 3D solution of the MHD equations. This result is reinforced by

the recent study of Craig and Lopez (2013) for “spine” reconnection, which

found no evidence for a visco-resistive scale and likewise supports viscous dis-

sipation dominance for realistic coronal parameter values (Wν/Wη ≃ ν/η).

The common feature of all exact solutions we have described thus far is

a stagnation point flow. As we have stated, stagnation point flows predict

relation (3.1), that is viscous dissipation dominating resistive dissipation for

ν > η1/2. However a different visco-resistive scale is predicted when considering

a uniform Sweet-Parker style flow profile with classical viscosity. To begin to

explore this issue we will now consider a simple, head-on, numerical model.

3.3 Visco-resistive simulations of magnetic re-

connection

In this section we describe numerical, flow-driven, reconnection experiments

using the Braginskii and classical viscosities. Typically the viscous coefficient

ν will be fixed at some representative value and scalings are derived by sys-

tematically reducing the resistivity η ≪ ν. To provide a further check on the

results we also will perform a “control” resistive simulation, based on the com-

mon numerical expedient of setting ν = η. That is we would like to compare

the visco-resistive reconnection scalings with those in the case ν = 0 but, due

to the stabilising effect of viscosity, setting ν = 0 is susceptible to numerical

difficulties (Von Neumann and Richtmyer, 1950; Smith, 1985). Accordingly

we set ν = η to approximate the purely resistive case (Biskamp, 1994; Craig

and Litvinenko, 2010).

The results are obtained by numerically solving equations (2.26) and (2.27),

using a version of the doubly periodic code of Craig and Watson (1999), over

the region −1 ≤ x, y ≤ 1. The use of doubly periodic geometry (where, for a

function f(x, y) on the region −1 ≤ x, y ≤ 1, f(−1, y) = f(1, y), f(x, −1) =

f(x, 1)) removes the need for restrictive boundary conditions; simulations per-
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formed using this formulation are effective at describing open geometry models

of reconnection (Craig and Watson, 1999; Heerikhuisen et al., 2000). Initial

conditions are derived by assuming a vortical flow velocity field (clockwise in

the first quadrant) given by

φ(x, y, 0) = −α0

π
sin(πx) sin(πy), (3.26)

where α0 > 0 sets the amplitude of the initial flow. We assume an initial

magnetic disturbance of the form

ψ(x, y, 0) =
β0

π
sin(πx) sin(πy) +

g0

π
cos(πx), (3.27)

where g0 > 0 sets the amplitude of the magnetic disturbance and β0 ≥ 0

controls the level of magnetic shear in the merging. In the simplest case of

head-on (β0 = 0) reconnection, initially straight field lines, washed together

by the inflow, rapidly evolve and form a well defined current layer centred

on the origin. This approach is designed to give a well behaved sheet from

which we can easily calculate sheet properties, such as thickness and inflow

and outflow speeds. Realistic plasmas in coronal active regions are not likely

to be so simple - we examine some less restrictive initial conditions in Chapter

4.

To obtain visco-resistive scalings, the parameters α0, β0 and ν are held fixed

while η and g0 are systematically reduced. Note that simply reducing η while

keeping g0 fixed would lead to high pressure, flux pile-up current sheets that

would feed back on the flow and stall it (Rickard and Craig, 1993; Heerikhuisen

et al., 2000; Craig and Watson, 2000). Accordingly, g0 is adjusted (roughly

as η1/2) to ensure that peak fields Bs in the reconnecting current layers have

magnitudes of order unity. This allows us to obtain scalings at resistivities

that are limited only by numerical resolution in the computation (the lowest

values of resistivity considered here require mesh sizes . 10−3). In practice

we take α0 = 1 and ν = 0.004 (corresponding to an active-region plasma of

6 × 106 K) and allow resistivities in the range 10−4.5 ≤ η ≤ 10−2. Most of
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our simulations apply to head-on reconnection, β0 = 0, but some preliminary

results for sheared reconnection are given in Section 3.5.

As a final point we recall that the Braginskii viscosity tensor (2.32) cannot

be applied to fields that are very weak. We therefore employ the Hosking

and Marinoff (1973) form of equation (2.33) and take θ = 5, corresponding to

classical viscosity becoming significant for B . 0.2.

3.3.1 The reconnecting current sheet

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
v

x

y

Figure 3.3: Arrow plot of v taken at the time of maximum current density at

the origin. The parameters are α0 = 1, β0 = 0 and η = ν = 0.004. For visual

clarity only some selected velocity vectors are displayed.

As an illustrative example of a typical simulation we consider a head-on

Braginskii viscosity simulation with parameters α0 = 1, β0 = 0 and η = ν =

0.004. The initial velocity field of equation (3.26) creates global vortical flows

(Figure 3.3) that push magnetic flux towards the origin along the x axis. The

initially weak current density, as given by equation (3.27), builds up to a strong
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current sheet aligned to the y axis (Figure 3.4) after approximately one Alfvén

time in the present simulation.

J
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Figure 3.4: Contour plot of J taken at the time of maximum current density

at the origin. The parameters are the same as in Figure 3.3, namely α0 = 1,

β0 = 0 and η = ν = 0.004.

There is a good deal of analytical (Heerikhuisen and Craig, 2004) and

numerical (DeLuca and Craig, 1992; Craig and Watson, 1999; Heerikhuisen

et al., 2000) evidence to suggest that the properties of the current layer, when

taken at the time of maximum current, can be accurately described by the

steady merging models such as those discussed in Section 3.2.

More specifically, suppose we use the fields displayed in Figures 3.3 and

3.4 to evaluate the rate of flux transfer E and the inflow velocity amplitude

α0. We can then compare one of our analytical models of Section 3.2, based

on these parameters, alongside a slice of the simulated current sheet.

Figure 3.5 displays such a simulated slice at current maximum slice along-

side the Sonnerup and Priest (1975) head-on analytical solution (3.9). Despite

the fact that this model is for a steady-state plasma in an open topology, we
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Figure 3.5: The y-component of the magnetic field in the current layer in the

case of head-on merging. The parameters are the same as in Figures 3.3 and

3.4. The solid line is the numerical magnetic field and the dashed line is the

analytical solution from (3.9).

see that a good representation of the dynamically evolved field in the current

layer is achieved. The most obvious variations occur in the outer regions dom-

inated by the large-scale vortical flows–the regions not accurately represented

by the analytic, stagnation point flow model of (3.9). The implication is that

viscosity simulations are unlikely to undermine the form of the purely resistive

current layer.

3.4 Head-on magnetic merging simulations

We now turn to quantifying the key parameters vout, vin, and xs of the current

layer, and relating these to the global Ohmic and viscous energy release rates.

As shown in Figure 3.6, where current density J is shown along the x and y

axes, current sheet thickness is measured along the x axis at the level of half
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Figure 3.6: Current density along the x (a) and y (b) axes. The dashed line

shows the level of half current maximum. Inflow and outflow speeds vin and

vout are measured where the lines intersect in panels (a) and (b) respectively.

Current sheet thickness xs is measured between the two points of intersection

in panel (a). The parameters are the same as in Figures 3.3 and 3.4.

current maximum. Inflow and outflow velocities are measured on the x and

y axes respectively at the current half maximum level. Figure 3.7 shows a

comparison of the classical, Braginskii and ν = η control current sheet outflow

speeds, calculated at the time of maximum current. Minor variations are ap-

parent, and the outflow is generally slower in the case of the classical viscosity,

yet the outflow speeds vary by less than a factor of two over a 2.5 order of

magnitude change in η. In particular there is no evidence for a slowdown,

vout ∼ η1/2ν−1/2, which would be caused by a visco-resistive scale in the case

of a Sweet-Parker flow profile with classical viscosity (Section 3.2.1). The an-

alytical scalings of Section 3.2.2 are clearly more accurate. As a general point,

the slowing of the outflows by viscosity in the η ≪ ν regime (when compared

to the purely resistive case) is reinforced by observations of sub-Alfvénic flare

outflows (e.g. McKenzie and Hudson, 1999; McKenzie, 2000; Asai et al., 2004).

The scale of η1/2 for the inflow speeds vin and the current sheet thickness

xs is confirmed by the plots in Figure 3.8. In both cases it is very difficult

to distinguish the Braginskii, classical and ν = η control plots. The classical

shear viscosity provides the thickest current layer but the effect is marginal.

This should be contrasted with the visco-resistive scale xs ∼ (ην)1/4, which
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Figure 3.7: Current sheet outflow speed comparisons. Crosses, diamonds and

circles refer to Braginskii, classical and ν = η control results respectively. The

parameters are α0 = 1 and β0 = 0; ν = 0.004 for classical and Braginskii

viscosity.
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Figure 3.8: Current sheet inflow speed (a) and thickness (b) comparisons.

Crosses, diamonds and circles refer to Braginskii, classical and ν = η control

results respectively. The parameters are α0 = 1 and β0 = 0; ν = 0.004 for

classical and Braginskii viscosity. The dotted line shows the predicted η1/2

scaling.
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Figure 3.9: Viscous dissipation rate comparisons. Crosses, diamonds and cir-

cles refer to Braginskii, classical and ν = η control results respectively. The

dotted line shows the Wν ∼ η3/4 scaling. The parameters are α0 = 1 and

β0 = 0; ν = 0.004 for classical and Braginskii viscosity.

follows from Sweet-Parker style arguments with a uniform flow profile.

The relation xs ∼ η1/2 for the sheet thickness, coupled to the constraint

Bs ≃ 1, leads to flux transfer and Ohmic dissipation rates which also follow

the η1/2 trend. These scalings are confirmed numerically for all three regimes

(the ν = η control, the classical and Braginskii viscosities).

More interesting is the behaviour of the global viscous losses Wν . As indi-

cated in Figure 3.9, the Braginskii and classical viscous losses are effectively

invariant but the ν = η control strongly decreases with η. While the scaling

arguments and exact models of Section 3.2 suggest that we might expect to

see a scaling of Wν ∼ η for the control case, our results show a greater rate of

Wν ∼ η3/4.

This increased rate is due to the enhanced sensitivity of the control cal-

culation to sheet magnetic fields approaching or exceeding unity, known as
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Figure 3.10: Viscous dissipation rate scalings, in the control case, for peak

sheet magnetic fields of Bs = 0.5 (solid line) and Bs = 1 (dot-dashed line).

The dotted line shows the Wν ∼ η scaling. The parameters are α0 = 1 and

β0 = 0.

“saturation” of the current layer. Recall that, to achieve optimal resistive dis-

sipation rates, the simulations of Figures 3.7-3.9 have g0 tuned so that Bs ≃ 1

at the time of measurement. Figure 3.10 shows viscous dissipation in the con-

trol case for the previous simulations (Bs ≃ 1) along with a set of runs with

a weaker peak magnetic field (Bs ≃ 0.5). Obviously the weaker magnetic field

runs recover the expected Wν ∼ η scaling. The Bs ≃ 1 case, however, has high

current layer pressures that are likely stalling the flow (Heerikhuisen et al.,

2000), allowing more energy to be drawn from the velocity field. We point

out that other properties of the control current layer scale as predicted by the

exact models of Section 3.2; vout ∼ η0 (Figure 3.7), vin ∼ xs ∼ η1/2 (Figure 3.8)

and Wη ∼ η1/2 (not pictured). The interesting point is that our results suggest

that saturated current layers can result in increased viscous dissipation. We

explore the effect of saturation of the current layer in more detail in Section
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viscosity. The dotted line shows η−1/2 scaling. The parameters are α0 = 1,

β0 = 0 and ν = 0.004.

4.3.

Figure 3.11 plots the ratio of the viscous and resistive energy dissipation

rates Wν/Wη. As anticipated by equation (3.1) in the case of fixed ν, Wν/Wη

scales as η1/2 as η is reduced. We see that, independent of the form of the

viscosity, Wν exceeds Wη by almost a factor of two at the lowest resistivity

levels η ≤ 10−4.

In summary, all the resistive scalings presented in this section appear con-

sistent with the simple analytical models of Sections 3.2.2 and 3.2.3. That

is, for the flow-driven reconnection simulations considered here, the resistive

scaling laws are effectively identical for both the Braginskii and classical vis-

cosities. The limited role of the Sweet-Parker flow profile scaling arguments

(Park et al., 1984) should be emphasised - there is no sign of a visco-resistive

scale (3.6). Although they provide a reliable description of the reconnecting

current sheet in a non-viscous (ν = η) plasma, they do not give a valid descrip-
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tion of magnetic reconnection in a viscous plasma in the present flow-driven

simulations.

3.5 Sheared reconnection simulations
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Figure 3.12: Current contour plot for sheared reconnection in the Braginskii

case at time of maximum current density at the origin. The parameters are

α0 = 1, β0 = 0.7, η = 0.004, and ν = 0.004.

Guided by the exact resistive solutions of Craig and Henton (1995) we might

expect that, compared with the head-on case, visco-resistive reconnection of

sheared magnetic field lines should occur in thicker current sheets, which would

lead to reduced Ohmic energy dissipation and flux transfer rates. Figure 3.12

shows the current contour plot for a typical Braginskii run with a high value of

shear (β0 = 0.7). As in the head-on case there is a well defined current sheet

in the vicinity of the magnetic null, but there is now significant warping of the

ends of the sheet.

Our numerical results show that, even with relatively high levels of shear-
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ing, the classical viscosity results essentially follow the same scalings as in the

head-on case (xs ∼ η1/2, Wη ∼ η1/2, Wν ∼ η0). Systematic deviations, how-

ever, appear in the case of the Braginskii viscosity for high levels of shearing.

These deviations from the analytical predictions imply that the structure of

the current sheet is significantly modified by the anisotropic Braginskii viscous

forces when the reconnecting magnetic field lines are strongly sheared.

Figure 3.13 illustrates the main new effect of strong magnetic shear (cf.

Figure 3.11). It shows Wν/Wη for the classical and Braginskii viscosities in

the case β0 = 0.7. For the classical viscosity both the resistive dissipation rate

Wη and the viscous dissipation rate Wν agree with the analytical arguments,

leading to equation (3.13). The ratio Wν/Wη for the Braginskii viscosity,

however, appears to follow a different scaling (closer to η−1). Figure 3.14

confirms that this deviation is due to a slow down in the resistive dissipation

rate (this scales closer to η rather than η1/2) in the strongly sheared Braginskii
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simulation.

3.6 Discussion and conclusions

Both analytical and numerical studies suggest that viscous dissipation may

be capable of dominating resistive dissipation under a wide variety of coro-

nal conditions (Hollweg, 1986; Litvinenko, 2005; Craig and Litvinenko, 2009).

However studies of magnetic reconnection in a resistive viscous plasma lead

to contradictory results. Analytical solutions (Park et al., 1984; Titov and

Priest, 1997) predict the formation of a current layer on the visco-resistive

scale ∼ (ην)1/4, with corresponding energy dissipation rates Wη ≃ Wν ≃

η3/4ν−1/4B
5/2
s . Crucially these arguments assume a Sweet-Parker style uni-

form flow profile. Numerical simulations in a tokamak geometry (Park et al.,

1984) and for X-point collapse (Craig et al., 2005; Craig, 2010) support this
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scale.

However, analytic arguments based on a stagnation point flow profile (Craig

and Litvinenko, 2010) and numerical simulations involving large scale stagna-

tion point flows in 3D (Craig and Litvinenko, 2009) result in scalings similar

to Sweet-Parker, Wη ≃ η1/2B
5/2
s and Wν ≃ νB2

s . Significantly these scalings

predict that viscous dissipation would exceed resistive dissipation for ν ≫ η1/2.

In this chapter we attempted to clarify the issue by performing numeri-

cal simulations of planar magnetic reconnection in doubly periodic geometry.

We considered head-on reconnection, driven by large-scale vortical flows in an

incompressible plasma. We used both the classical shear viscosity and the Bra-

ginskii form for the ion parallel viscosity in a magnetised plasma. Somewhat

surprisingly, our numerical results show that the parameters of the reconnect-

ing current sheet (its thickness, the inflow and outflow speeds) are accurately

described by simple analytical scalings of flux pile-up magnetic merging, re-

gardless of the form of the viscous stress tensor. The computed global resistive

and viscous energy dissipation rates also closely follow the relation

Wν

Wη

∼ ν

B
1/2
s η1/2

,

confirming that the current sheet thickness is effectively independent of vis-

cosity for both the classical and Braginskii forms.

We have also made a preliminary study of the properties of the reconnection

region in the case of a strong magnetic shear. It appears that in the Braginskii

case magnetic shearing can modify the dissipation scalings, implying that the

properties of the reconnecting current sheet depend on the form of the viscosity.

To summarise, we find no evidence of the visco-resistive scale ∼ (ην)1/4

or its corresponding energy release rate scalings in our simulations of planar,

head-on, magnetic reconnection in doubly periodic geometry. This finding

contrasts sharply with predictions of some steady analytical models, Sweet–

Parker style scaling arguments, and time-dependent simulations in a closed

X-point geometry. There appears to be no simple criterion for the emergence

of the visco-resistive scale.
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Our results may be partly due to there not being enough time for the

visco-resistive scale to develop: we took the current sheet parameters at the

time of the first current maximum (first implosion), and it may be that the

scale would develop after several implosions (Craig et al., 2005). However, as

in excess of fifty percent of the available energy can be dissipated due to the

first implosion (Craig, 2008), it seems unlikely that the visco-resistive scale

will have significant bearing on explosive flare energy release rates.

The idealised nature of the simulations in this chapter are a useful starting

point for our analysis of solar flare energy release. However, realistic coronal

plasma interactions are unlikely to conform to such simple head-on symmetri-

cal configurations. With this in mind we turn to simulations in a less restrictive

environment.
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Chapter 4

Visco-resistive dissipation

driven by the Orszag-Tang

vortex

4.1 Introduction

Coronal active regions are typically highly non-uniform and unlikely to conform

to such idealised models as those presented in the previous chapters. The

purpose of this chapter is to study the effect of viscosity on reconnection in

a more general simulation framework. In particular, using a less restrictive

initial condition than in the previous chapter, we will calculate viscous (Wν)

and resistive (Wη) dissipation rates and discuss the implications of our results

for solar flare energy release.

In Section 3.2 we outlined the analytically based relation

Wν

Wη

∼ ν

B
1/2
s η1/2

, (4.1)

which holds for stagnation point flow profiles with both Braginskii and clas-

sical forms of the viscosity (Craig and Litvinenko, 2010). Since the viscosity

coefficient ν exceeds the resistivity η by approximately ten orders of magni-

tude in coronal plasmas we would expect that the viscous energy dissipation

rate Wν should dominate the resistive dissipation rate Wη. Global stagnation
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point flows that support localized current layers are generic components in all

exact current sheet reconnection solutions, no matter whether 2D (Craig and

Henton, 1995) or 3D “fan” solutions (Craig and Fabling, 1996) are considered.

However, as the above relation was derived assuming “head-on” reconnec-

tion in an “open geometry” (Craig and Litvinenko, 2010), it cannot be ex-

pected to apply universally. It could break down, for instance, in 3D “spine”

reconnection, where resistive losses occur in quasi-cylindrical current tubes

as opposed to current sheets (Craig and Fabling, 1996). Furthermore, an-

alytical and numerical studies (e.g. Park et al., 1984; Craig et al., 2005;

Craig, 2008; Craig and Lopez, 2013) have found a visco-resistive current sheet

thickness scale xs ≃ (ην)1/4B
−1/2
s that would change the scaling above to

Wν ≃ Wη ≃ η3/4ν−1/4B
5/2
s .

A further area of interest is the effect of “saturation”. As was pointed out in

Section 3.3, saturation occurs when the strength of the current layer is so great

that it feeds back on the driving flow (Rickard and Craig, 1993; Heerikhuisen

et al., 2000). The simulations of the previous chapter varied the strength

of the initial field to keep the sheet right on the edge of saturation, thereby

ensuring optimal resistive dissipation rates. This provided a limit to relation

(4.1) for head-on reconnection that is conservative in terms of viscous losses.

However, realistic active region plasmas are unlikely to have the properties of

the current layer so closely matched to external parameters and could be prone

to saturated effects. In particular it is reasonable to expect that the slowing of

the driving flow by saturation would increase viscous dissipation. Indeed, in

the control (ν = η) simulation of Section 3.4, we have found potential evidence

of this.

To explore the above issues we choose, in the simulations of this chapter,

more general initial conditions that do not have prior assumed symmetries,

with the goal of achieving more physically plausible results. We shall employ

the same incompressible planar simulation framework as Chapter 3 but instead

take as the initial condition a modified Orszag–Tang vortex (Orszag and Tang,



57

1979; Biskamp and Welter, 1989). The Orszag–Tang vortex is well used in the

study of MHD turbulence (e.g. Dahlburg and Picone, 1989; Parashar et al.,

2009) and for validating numerical schemes (e.g. Zachary et al., 1994; Ryu

et al., 1995).

The structure of this chapter is as follows. In Section 4.2, by adjusting the

strength of the magnetic field to match the properties of the external driving,

we examine the applicability of (4.1) in the case of optimal resistive dissipation

(Bs ≃ 1). This is conservative in terms of viscous dissipation and therefore will

provide a robust test of (4.1). We examine first a control (ν = η) simulation

in Section 4.2.1 to provide a check on our diagnostics. Then in Section 4.2.2

we perform classical and Braginskii viscosity simulations to examine (4.1) in

this more general Orszag–Tang vortex formulation.

In Section 4.3 we turn to the question of saturation. Realistic current sheets

are unlikely to have their properties strongly matched to the external driving.

We therefore no longer carefully tune the initial conditions to provide optimal

reconnection rates; instead we let the sheet saturate (Bs > 1) as resistivity

is reduced and examine dissipation rates. A control (ν = η) simulation is

performed in Section 4.3.1 and full classical and Braginskii viscosity saturated

simulations are performed in Section 4.3.2. Our conclusions are summarised

in Section 4.4.

4.2 Optimal reconnection rates

Our goal in this section, while trying to maximise resistive dissipation, is to

calculate visco-resistive dissipation rates and therefore check the validity of

equation (4.1) using a more general set of initial conditions than in Section

3.3.

We employ the same doubly periodic code as in Chapter 3 but here our

initial conditions are based on a modified version of the Orszag and Tang (1979)
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vortex (e.g. Biskamp, 1993a; Biskamp, 1993b; Heerikhuisen et al., 2000)

φ(x, y) =
1

2π
[cos(πx + 1.4) + cos(πy + 0.5)] , (4.2)

ψ(x, y) =
g0

2π
[cos(2πx + 2.3) + cos(πy + 4.8)] , (4.3)

where the phase numbers have no particular significance other than to break

the initial symmetries (Biskamp and Welter, 1989); we have chosen them to

mirror the inviscid calculation of Heerikhuisen et al. (2000).

Analogous to equation (3.27), g0 > 0 is regarded as an external driving

parameter which sets the amplitude of the initial magnetic field. As in Section

3.3, g0 is scaled (roughly as η1/2) to give peak magnetic field strengths Bs of

order unity. This allows us to examine equation (4.1) in the limiting case of

near-maximal resistive dissipation.

Figure 4.1 shows the initial current density (panel a) and the current den-

sity (b), magnetic flux (c) and velocity field (d) at the time of maximum

current for a typical run based on classical viscosity (η = 10−4, ν = 0.004, and

g0 = 0.05). The peak current density of J ≈ 103.3 is achieved at t ≈ 2.819. We

see that well defined current sheets, supported by large-scale vortical flows, are

generated between magnetic island regions. That large-scale shearing flows are

needed to support localized current layers is a common feature of similar mod-

els (as detailed by Biskamp, 1994; Heerikhuisen et al., 2000). No qualitative

differences were observed when similar runs were performed using Braginskii

viscosity, in good accordance with the viscous, stagnation point flow profile

models of Section 3.2. Note that this is in contrast to the X-point, line-tied,

2.5-dimensional study of Craig and Litvinenko (2007), which found significant

differences between the two viscosities. In this study peak viscous dissipa-

tion for Braginskii viscosity, while still physically significant, was lower and

took longer to occur than for classical viscosity. As we pointed out in Section

3.2.3, magnetic fields normal to the flow can strongly affect Braginskii viscous

dissipation. As we do not consider axial fields in our 2D formulation, and

considering the exact solutions of Section 3.2, we therefore might not expect

to find significant differences in our results between the two forms of viscosity.
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Figure 4.1: Typical classical viscosity simulation. Panel (a) shows a contour

plot of current density for the initial distribution (t = 0), and (b), (c), and

(d) show the current density, magnetic flux, and velocity field at the time of

maximum current (t = 2.819) respectively. Both the magnetic and the velocity

field amplitudes are of order unity. The parameters are η = 10−4, ν = 0.004,

and g0 = 0.05. Each spatial unit corresponds to a length scale lc.

To extract dissipation rates consistently over our range of resistivity we

run simulations over several Alfv́en times and compute time averages of Wη

and Wν . We again exploit the fact that current layer properties around the

time of maximum current provide a good model of steady-state reconnection

scalings, such as those described in Section 3.2 (see Figure 3.5). In practice

we average dissipation rates over an interval of one Alfvén time, centred about

the peak resistive dissipation. Figure 4.2 shows a time plot of the dissipation

rates for the simulation of Figure 4.1 (η = 10−4, ν = 0.004, g0 = 0.05), along

with the global energy (2.29) E =
∫

(v2/2 + B2/2) dV . The averaging interval

is indicated by the vertical dashed lines.
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Figure 4.2: Temporal evolution of viscous and resistive dissipation rates in the

case of classical viscosity, along with global energy E =
∫

(v2/2 + B2/2) dV

(divided by seven for comparison). Parameters are the same as Figure 4.1

(η = 10−4, ν = 0.004, g0 = 0.05). The vertical dashed lines show the interval

over which the average is calculated.

4.2.1 Dissipation scalings for ν = η

As a preliminary check on our diagnostics we perform a series of control simula-

tions by setting ν = η for classical viscosity. Since the system is now controlled

by a single small parameter η the computed Ohmic dissipation rate should fall

within the compass of the resistive scaling law

Wη ≃ η1/2 B5/2
s . (4.4)

Recall that the range of resistivities which can be modelled is limited by nu-

merical resolution - the mesh sizes are . 10−3 for the resistivities approaching

η = 10−4.5. It should be remembered, however, that as we are trying to

achieve maximal reconnection rates, the amplitude g0 of the initial field is ad-

justed (roughly as η1/2) to ensure that localized current sheets with peak fields
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Bs ≃ 1 are consistently achieved. With this understanding, the numerical

results can be extrapolated to arbitrarily small η without inhibiting the cur-

rent localization. Figure 4.3, showing the resistive dissipation rate scaling as

∼ η1/2, thus confirms that reconnection occurs via flux pile-up current layers

in accordance with the scaling law derived in Section 3.2. Note that an in-

crease in the control viscous dissipation rate, similar to the control simulation

of Section 3.4, was seen for saturating current layers. As expected, the Wν ≃ η

scaling was recovered when the initial field amplitude g0 was reduced to give

unsaturated sheets. This reinforces our finding in Section 3.4 - that saturation

can result in increased viscous dissipation.

4.2.2 Classical and Braginskii viscosity scalings

Consider now viscous dissipation. In the case of head-on reconnection, with

a stagnation point flow profile, the viscous dissipation scales as Wν ≈ νv2
m,
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Figure 4.4: Viscous and resistive dissipation rates for classical (crosses) and

Braginskii (diamonds) viscosity. The dotted line shows η1/2 scaling. The

viscosity parameter is ν = 0.004.

where vm is the amplitude of the velocity field (Craig and Litvinenko, 2010).

Since reconnection models require Alfv́enic flow amplitudes we can identify

vm ≈ vA ≈ Bs, and so

Wν ≈ ν B2
s (4.5)

defines the global viscous dissipation. Combining equations (4.4) and (4.5),

and taking Bs ≈ 1, leads to the scaling law (4.1).

With this in mind we turn to the behaviour of the system when the viscosity

coefficient is fixed but the resistivity is systematically reduced from η = 10−2

to η = 10−4.5. We take ν = 0.004, corresponding to an active region plasma of

Tc = 6 × 106 K, in all of the results that follow.

Figure 4.4 highlights the weakening resistive losses for both classical and

Braginskii viscosity. A key feature is the domination of the viscous losses

over the weakening resistive losses for η < 10−4. As anticipated by equation
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viscosity. The dotted line shows the asymptotic, predicted, η−1/2 scaling. The

viscosity parameter is ν = 0.004.

(4.5), the viscous dissipation is effectively constant despite reductions in the

resistivity.

The global Braginskii losses in the asymptotic regime (η < 10−3) are

slightly increased when compared to classical losses, but the overall trend

is identical. We speculate that the slightly higher Ohmic losses in the case

of Braginskii viscosity (namely Wη ∼ η0.44 for η < 10−3) may be due to the

stronger driving required to maintain Bs ≈ 1. These results are clearly pre-

dicted by the exact solutions outlined in Section 3.2, and reinforce the point

that viscous damping is likely to play a major role in energetic events such as

the solar flare.

Finally, in Figure 4.5, we plot side by side resistive scalings for the ra-

tio Wν/Wη for both classical and Braginskii viscosities. It is clear that for

sufficiently small η, in both cases, this ratio approximates the η−1/2 scaling

predicted by equation (4.1). Notably, the results are very similar in the asymp-
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totic regime η < 10−3: namely the ratio Wν/Wη scales as η−0.51 and η−0.42 for

classical and Braginskii viscosities respectively.

4.3 Saturated visco-resistive dissipation rates

In contrast to the simulations of the previous section, where the driving param-

eter g0 was “tuned” to provide optimal Ohmic dissipation rates and explore

energy dissipation scalings, in this section we keep g0 fixed. The rationale

behind this is that realistic coronal active region plasmas are highly dynamic,

and the strength of the driving, at least in transient reconnection models, is

unlikely to be strongly tuned to the properties of the current sheet.

Our present aim, therefore, is to investigate the resistive and viscous losses

in strongly driven “saturated” current layers, in which the energy losses can

be severely influenced by the stalling of the reconnection rate (Heerikhuisen

et al., 2000). This effect has been observed in simulations of coalescence of

magnetic islands (Biskamp and Welter, 1980) - high magnetic pressure in the

current layer can reverse the inwards flow of plasma, creating an oscillatory

‘tidal’ motion. As reconnection requires inwards flow of plasma to occur, we

would expect to see a drop in resistive dissipation for strongly driven current

layers. However, due to the feedback on the driving flow, we might expect to

see a corresponding increase in our viscous dissipation rate. Recall we have

seen evidence to support this in the head-on control cases of Sections 3.4 and

4.2.1.

4.3.1 The resistive control computation

We start by setting ν = η to establish a control, and examine resistive dissipa-

tion rates. Classical viscosity is assumed and the magnetic driving amplitude

g0 is held fixed.

As we have previously discussed, the resistive system evolves from the

initial configuration of equations (4.2) and (4.3) into a periodic array of well
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Figure 4.6: Magnetic field intensity |B| around the time of current maximum

for η = 10−2 (a), η = 10−2.5 (b), η = 10−3 (c) and η = 10−3.5 (d). As η

decreases the current layers become increasingly well defined. The magnetic

driving parameter is g0 = 0.3.

defined current layers. Figure 4.6 shows magnetic field intensity around the

time of current maximum for η = 10−2 (a), η = 10−2.5 (b), η = 10−3 (c) and η =

10−3.5 (d). As resistivity reduces, the current layers become increasingly well

defined as typified by panels (a) and (b). However, for the lower resistivities

of panels (c) and (d), we start to see the effects of saturation. In panel (d)

significant warping of the current layer is apparent, along with strong flux

pile-up at the edge of the sheet.

A main concern is the behaviour with resistivity of the Ohmic dissipation

rate for a typical current sheet. Figure 4.7 shows the Ohmic rate Wη plotted

against resistivity for the driving amplitude g0 = 0.3, along with the peak

current sheet magnetic field Bs. Three distinct resistive regimes, predicted by

the flux pile-up models of Section 3.2, are separated by the vertical dashed
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Figure 4.7: Resistive dissipation rate (Wη) for the ν = η control case (classical

viscosity), along with peak magnetic field (Bs - divided by ten for compari-

son). The driving amplitude parameter is g0 = 0.3. The dotted lines show

saturated (η1/2) and pre-saturation (η−1/2) dissipation scalings. The three re-

gions, separated by the vertical dashed lines, indicate the pre-saturation (1),

optimal reconnection (2) and saturation (3) regimes. The horizontal dashed

line indicates Bs = 1.

lines.

In regime (1), when η is sufficiently large and Bs < 1, the current sheet

strengthens with reductions in η and the sheet thickness xs systematically

reduces (xs ∼ η1/2). This behaviour leads to an Ohmic dissipation rate that

builds up roughly as η−1/2.

In regime (2) the amplitude of the field in the current layer begins to satu-

rate (Bs = 1). Saturation occurs when the field amplitude in the sheet becomes

comparable to the external hydromagnetic pressures driving the merging. This

occurs for η ≃ 10−3 at the present level of driving (g0 = 0.3) and corresponds

to a peak in the Ohmic dissipation rate. By choosing a smaller driving param-

eter g0 the “fast” scaling of Wη ∼ η−1/2 (regime (1)) can be extended, in which
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case the maximum reconnection rate occurs at progressively lower values of η.

However, the maximum “saturated” dissipation rate of regime (2), as given by

equation (4.4), always exists for any sensible choice of the driving parameter

g0.

Finally, in regime (3), when the field amplitude is fully saturated (Bs > 1),

the dissipation rate falls off as Wη ∼ η1/2 as the resistivity is further reduced.

The increasing current density is now solely due to the thinning of the current

layer and significant warping of the sheet is observed (Figure 4.6, panel (d)).

It should be noted that equation (4.4) does not imply that the merging

can be described by Sweet-Parker modelling (Section 2.4.1). Although the

dissipation rate Wη ∼ η1/2 mimics the Sweet-Parker rate–at least when the flux

pile-up factor Bs is ignored–the flow topology outside the current layer is highly

non-uniform and therefore prone to viscous losses on a global scale. These

additional losses are not represented realistically in the control simulation due

to the constraint ν = η.

Finally we stress that, although regimes (1) and (2) are generally well de-

scribed by existing analytic reconnection models, the fully saturated regime (3)

is rather poorly understood. Saturation is repeatedly witnessed computation-

ally, for instance during coalescence merging (Biskamp and Welter, 1980), and

may well involve chaotic behaviour (Craig and Watson, 1999). With this in

mind we turn our attention to whether complications arising from saturation

affect the dissipation scalings of the current layer.

4.3.2 Resistive versus viscous energy dissipation

We now repeat the control simulation of Section 4.3.1, but fix the viscous

coefficient ν as well as the driving parameter g0. It is important to contrast

this approach with that of Section 4.2, where we “tuned” g0 (roughly as η1/2)

to maintain optimal Ohmic dissipation rates across the range of resistivities.

That is, to avoid saturation as η is reduced, increasingly weak fields were

washed into the reconnection regions to keep the simulation on the edge of
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Figure 4.8: Viscous and resistive dissipation rates for classical (crosses) and

Braginskii (diamonds) viscosity. The dotted lines show saturated (η1/2) and

pre-saturation (η−1/2) scalings. The viscosity parameter is ν = 0.004 and the

magnetic driving parameter is g0 = 0.3.

saturation (regime (2)). The motivation in that case was to compare viscous

losses with the maximum achievable Ohmic losses (4.4) for physically based

values. In contrast, by fixing g0, our present concern is the saturated regime

(regime (3)) where resistive losses are weaker. In this case the strength of

the magnetic field, external to the current layers, will be comparable to the

strength of the velocity field. Due to the symmetry between the magnetic and

velocity fields we would not, in general, expect one field to dominate the other.

The equipartition between the fields attained by fixing g0 therefore presents a

more physically robust picture of a reconnecting environment.

Figure 4.8 shows the results of fixing the viscosity parameter at the level

ν = 0.004, for both classical and Braginskii viscosities. Two key observations

can be made. Firstly, saturation of the sheet appears to amplify viscous dis-

sipation compared to pre-saturation levels. This is accompanied by a slight
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Figure 4.9: The ratio Wν/Wη for classical (crosses) and Braginskii (diamonds)

viscosity. The dotted lines show the saturated η−1/2 and the pre-saturation

η1/2 scalings. The viscosity parameter is ν = 0.004 and the magnetic driving

parameter is g0 = 0.3.

decrease in resistive dissipation when compared to the resistive control (Figure

4.7). We speculate that the decrease in classical Wη in the saturated regime,

when compared to the Braginskii model (in which viscosity is suppressed nor-

mal to the field), is due to the increased effectiveness of classical viscosity at

dissipating energy from the velocity field. Secondly, the predicted scalings of

equations (4.4) and (4.5) provide a reasonable guide to the dissipation scalings

even when the current sheet is fully saturated.

This behaviour is reinforced in Figure 4.9, where side by side scalings are

plotted for the ratio Wν/Wη for both forms of viscosity. In particular, while

the inclusion of large fixed viscosity causes some variation in dissipation rates,

the scaling Wν/Wη ∼ ν/η1/2 remains a conservative estimate as far as viscous

losses are concerned. We are led to conclude that viscous losses, even in

strongly driven reconnection simulations, are likely to remain robust to the
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presence of saturated current layers.

4.4 Discussion and conclusions

In this chapter we have considered resistive and viscous dissipation driven

by the Orszag–Tang vortex. In the present formulation, the Orszag–Tang

vortex generates flux pile-up current layers controlled by three parameters,

the resistive and viscous coefficients η and ν and the strength of the driving

vortex g0. The key advantage of the vortex is that it allows the system to

evolve from a situation free from the assumed prior symmetries of the head-on

simulations of the previous chapter.

Of central concern is the analytically-based scaling law (4.1)

Wν

Wη

≈ ν

B
1/2
s η1/2

.

In Section 4.2 we performed a series of simulations aimed at exploring whether

the above relation holds in the limiting case where resistive dissipation is max-

imised by tuning the driving parameter g0. We began by verifying that, by

the customary expedient of setting ν = η, expected Sweet-Parker scalings are

recovered, namely Wη ∼ η1/2. Then, by fixing the viscosity parameter ν at a

physically based level, we found that equation (4.1) holds even in the limit of

maximal resistive dissipation.

It remained unclear, however, whether these scalings would be preserved

in more physically realistic situations. In Section 4.3, therefore, no attempt

was made to tune the driving g0 to provide current sheets with optimal Ohmic

dissipation rates. Computations performed in this way have the advantage of

maintaining equipartition, that is comparable global strengths in both velocity

and magnetic fields. Our results therefore extended into the saturated regime

where peak fields in current sheets are naturally limited by the strength of the

driving. As in Section 4.2 we obtained resistive scalings for the control case of

ν = η. It was shown that the scalings were in good agreement with the flux

pile-up reconnection solutions of Section 3.2. Secondly, the results of Section
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4.3.2 were obtained by fixing ν as well as the driving amplitude g0. Once again

equation (4.1) was shown to hold true in the asymptotic case ν ≫ η.

The present results suggest that the scaling of equation (4.1) is not limited

to specialized symmetries or merging geometries, but is generic to all current

sheet magnetic reconnection models. Our main conclusion is that the global

viscous losses for both classical and Braginskii forms of the viscosity are almost

invariant with resistivity, even in the presence of relatively weak reconnective

merging. More physically, given that ν ≫ η in coronal plasmas, the present

analysis suggests that viscous dissipation is likely to dominate resistive dis-

sipation in dynamic active-region plasmas where Alfvénic vortical flows are

expected.

It is important to underline the distinction between traditional models of

energy release and the viscous picture we have presented. Much of the focus

of traditional models has been on finding a “fast” resistive dissipation rate to

release energy on the short flare time scales (∼ 100 s), with little attention paid

to viscous effects. In our model fast energy dissipation comes from viscosity

acting on the large scale, non-uniform, velocity fields supporting the reconnec-

tion. Magnetic energy is transferred to the velocity field and dissipated via

viscosity, while also dissipating via resistive effects at a slower (Wη ∼ η1/2) rate.

The key point is that global viscous losses can easily account for a significant

fraction of the flare energy budget on flare time scales.

This concludes the reconnection part of this thesis. We have studied visco-

resistive energy release mechanisms which can account for substantial energy

liberation from the Sun’s magnetic field. One of the resultant effects of this

energy release will be particle acceleration, which can occur due to the strong

electric fields within current layers. In general, accelerated particle distribu-

tions are common throughout the universe – studying particle acceleration is

the subject of the remainder of this thesis.
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Chapter 5

Particle acceleration and

transport

5.1 Introduction

Particle distributions accelerated to energies above the thermal background are

a common occurrence across the universe. Synchrotron radiation is produced

by strong plasma jets in radio galaxies (Burbidge, 1956), supernovae remnants

are known to be a source of acceleration for cosmic-rays (Ackermann et al.,

2013), and the solar wind (Parker, 1958) is a constant stream of accelerated

particles blown out by the Sun. Furthermore, up to a third of the energy

release from a solar flare may manifest in the form of accelerated particles

(Priest, 1982). Large electric fields in current layers, turbulent outflow jets

and MHD shock waves all provide mechanisms for particle acceleration due to

flare events (Priest and Forbes, 2000).

Our goal in this chapter is to describe the Fokker-Planck stochastic ap-

proach to modelling non-relativistic particle acceleration and transport. To

this end we employ the Fokker-Planck equation, first derived by Adriaan

Fokker and Max Planck (Fokker, 1914). This second order partial differen-

tial equation, which models both advective and diffusive transport effects, can

also be found in areas as diverse as population dynamics (Goudon and Saad,
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1998) and financial modelling (Friedrich et al., 2000). One of the advantages of

the Fokker-Planck approach is that it allows multiple numerical and analytical

avenues for extracting information. A key technique which we shall use is the

expression of the Fokker-Planck equation as a system of stochastic differential

equations (Itô, 1944, 1951).

The structure of this chapter is as follows. In Section 5.2 we outline the

derivation of the Fokker-Planck equation and state the form of the equation

we shall use. We show how the Fokker-Planck equation can be written as a

system of stochastic equations in Section 5.3, and examine the equivalence

of the Fokker-Planck and stochastic formulations using numerical simulations

of a simple model of particle transport in Section 5.4. In Section 5.5, as an

illustrative application, we consider the scattering of electrons by Coulomb

collisions in flare loops. Section 5.6 contains our summary.

5.2 Fokker-Planck equation

We use the Fokker-Planck equation for our study of particle acceleration. It

describes the time evolution of a distribution function. We shall outline the

derivation of the general Fokker-Planck equation below, but first we briefly

discuss phase space and distribution functions.

To explore the evolution of a system of particles we need to track their po-

sition and momentum. We therefore work in “phase space”, this being the six

dimensional space consisting of all possible position (x) and momentum (p)

values. A distribution function gives the probability that a random variable

of a system takes on a given value. For example, consider the particle number

phase space distribution function f0(x,p, t), which gives the number of parti-

cles at a phase space point (x, p) at time t. The total number of particles n

in the system at a time t is found by integrating the distribution function over

position and momentum

n(t) =

∫

p

∫

x

f0(x, p, t) d3x d3p.
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The initial distribution function is therefore normalised via

n(t = 0) =

∫

p

∫

x

f0(x, p, t = 0) d3x d3p. (5.1)

Expressions for mean values (moments) of different quantities of the model

can be easily expressed. For example, in Cartesian coordinates, the mean of

the momentum in the x direction px is

〈px〉 =
1

n

∫

p

∫

x

pxf0 d3x d3p.

The Fokker-Planck equation governs the evolution of the distribution func-

tion. Following Chandrasekhar (1943) we sketch a derivation. For simplicity

we assume no creation or annihilation of particles or other extra physical ef-

fects. Consider the particle number distribution function f0(x,p, t), describing

the number of particles with mass m at a phase space point (x, p) at time t.

The number of particles at the same point a short time later t + ∆t is given

by

f0(x, p, t + ∆t) =

∫

∞

−∞

∫

∞

−∞

f0(x − ∆x,p − ∆p, t)

×P (x − ∆x, p − ∆p; ∆x, ∆p) d∆x d∆p, (5.2)

where P (x − ∆x, p − ∆p; ∆x, ∆p) is the probability that a particle at po-

sition x − ∆x with momentum p − ∆p increments its position by ∆x and

its momentum by ∆p after time ∆t. For sufficiently small ∆t the position

increment is given by ∆x = ∂tx∆t = p∆t/m (p = mv for non-relativistic

particles). We can remove the ∆x dependence from the right of equation (5.2)

by means of delta functions. Using

P (x − ∆x, p − ∆p; ∆x, ∆p) = P (x − ∆x, p − ∆p; ∆p) δ
(

∆x − p

m
∆t

)

,

we can re-write equation (5.2) as

f0(x, p, t + ∆t) =

∫

∞

−∞

f0

(

x − p

m
∆t, p − ∆p, t

)

×P
(

x − p

m
∆t, p − ∆p; ∆p

)

d∆p,
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or by relabelling the x coordinate (x → x + p∆t/m),

f0

(

x +
p

m
∆t, p, t + ∆t

)

=

∫

∞

−∞

f0(x, p − ∆p, t) P (x, p − ∆p; ∆p) d∆p.

Expanding both sides in a Taylor series and using the summation convention

we have

f0 +

(

∂f0

∂t
+

pi

m

∂f0

∂xi

)

∆t =

∫

∞

−∞

[

f0 −
∂f0

∂pi

∆pi +
1

2

∂2f0

∂pi∂pj

∆pi∆pj + . . .

]

×
[

P − ∂P

∂pi

∆pi +
1

2

∂2P

∂pi∂pj

∆pi∆pj + . . .

]

d∆p

+O(∆t2), (5.3)

where the indices i, j ∈ {x, y, z}. To simplify this we can consider the mo-

mentum change averages:

〈∆pi〉 =

∫

∞

−∞

∆pi P d∆p, (5.4)

and

〈∆pi∆pj〉 =

∫

∞

−∞

∆pi∆pj P d∆p. (5.5)

Substituting the above in equation (5.3) gives

(

∂f0

∂t
+

pi

m

∂f0

∂xi

)

∆t = − ∂

∂pi

(〈∆pi〉f0) +
1

2

∂2

∂pi∂pj

(〈∆pi∆pj〉f0)

+O(〈∆pi∆pj∆pk〉) + O(∆t2),

where the O(〈∆pi∆pj∆pk〉) term involves averages of the quantities that are

third order or higher in their momentum displacements. Taking the limit

∆p, ∆t → 0 and neglecting the third order components (Rosenbluth et al.,

1957) we can define the coefficients

Di = lim
∆p, ∆t→0

〈∆pi〉
∆t

, (5.6)

Dij = lim
∆p, ∆t→0

〈∆pi∆pj〉
∆t

, (5.7)

and obtain the Fokker-Planck equation for six dimensional phase space

∂f0

∂t
+ vi

∂f0

∂xi

= − ∂

∂pi

(Dif0) +
1

2

∂2

∂pi∂pj

(Dijf0) . (5.8)
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Of interest in this thesis is the application of this equation to the prop-

agation and acceleration of plasma particles in a magnetic field. A natural

coordinate system to use for this case is spherical polars; we discuss how to

write the Fokker-Planck equation in terms of this coordinate system next.

5.2.1 Fokker-Planck equation for high-energy plasma

particles

φ zθ
v

Figure 5.1: The propagation of a charged particle in a magnetic field which is

aligned to the z axis. The particle, with speed v, spirals around the field line

with an angle of θ to the axis.

Due to the effect of the Lorentz force, charged particles travelling through

a magnetic field spiral around and along the field lines. A common approach,

when considering the acceleration and transport of charged particles, is to

assume a “guide” magnetic field along which the particles propagate. Parti-

cles travelling along the guide magnetic field may be subject to superimposed

physical effects, such as collisions with a “cold” (thermal) background plasma

of passive particles or interactions with magnetic and electric fields generated

by turbulent plasma motions.

A natural formulation for charged particles propagating along a field line

is to consider the field aligned to one of the spatial coordinates (z axis), and

work in spherical coordinates for the momentum (Figure 5.1). Analogous to

the relationship between Cartesian and spherical polar positional coordinates
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(specified by x = r cos φ sin θ, y = r sin φ sin θ, z = r cos θ, where r is dis-

tance from the origin), the Cartesian momentum components px, py and pz

are related to the momentum magnitude p, pitch angle cosine µ = cos θ and

azimuthal angle φ by

px = p cos φ
√

1 − µ2,

py = p sin φ
√

1 − µ2,

pz = µp,

where 0 ≤ φ ≤ 2π, −1 ≤ µ ≤ 1 (0 ≤ θ ≤ π), and the momentum space volume

element is

d3p = p2 dp dµ dφ.

We now seek to express the Fokker-Planck equation (5.8) in these coordinates.

Using the chain rule we can write, for example,

∂

∂px

=
∂p

∂px

∂

∂p
+

∂µ

∂px

∂

∂µ
+

∂φ

∂px

∂

∂φ
,

and obtain

∂

∂px

=
√

1 − µ2 cos φ
∂

∂p
− µ

√

1 − µ2 cos φ

p

∂

∂µ
− sin φ

p
√

1 − µ2

∂

∂φ
, (5.9)

∂

∂py

=
√

1 − µ2 sin φ
∂

∂p
− µ

√

1 − µ2 sin φ

p

∂

∂µ
+

cos φ

p
√

1 − µ2

∂

∂φ
, (5.10)

∂

∂pz

= µ
∂

∂p
+

1 − µ2

p

∂

∂µ
. (5.11)

For reference, second order operators are given in Appendix A.

By defining the spherical polar advection and diffusion coefficients

Dp =
√

1 − µ2 cos φDx +
√

1 − µ2 sin φDy + µDz, (5.12)

Dµ = −µ
√

1 − µ2 cos φ

p
Dx −

µ
√

1 − µ2 sin φ

p
Dy +

1 − µ2

p
Dz, (5.13)

Dφ = − sin φ

p
√

1 − µ2
Dx +

cos φ

p
√

1 − µ2
Dy, (5.14)
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Dpp =
1

2
(1 − µ2) cos2 φDxx +

1

2
(1 − µ2) sin2 φDyy +

µ2

2
Dzz

+µ
√

1 − µ2 cos φDxz + µ
√

1 − µ2 sin φDyz

+(1 − µ2) sin φ cos φDxy, (5.15)

Dµp = −µ(1 − µ2) cos2 φ

2p
Dxx −

µ(1 − µ2) sin2 φ

2p
Dyy +

µ(1 − µ2)

2p
Dzz

+
(1 − 2µ2)

√

1 − µ2 cos φ

2p
Dxz +

(1 − 2µ2)
√

1 − µ2 sin φ

2p
Dyz

−µ(1 − µ2) sin φ cos φ

p
Dxy, (5.16)

Dµµ =
µ2(1 − µ2) cos2 φ

2p2
Dxx +

µ2(1 − µ2) sin2 φ

2p2
Dyy +

(1 − µ2)2

2p2
Dzz

−µ(1 − µ2)3/2 cos φ

p2
Dxz −

µ(1 − µ2)3/2 sin φ

p2
Dyz

+
µ2(1 − µ2) sin φ cos φ

p2
Dxy, (5.17)

Dφφ =
sin2 φ

2p2(1 − µ2)
Dxx +

cos2 φ

2p2(1 − µ2)
Dyy −

sin φ cos φ

p2(1 − µ2)
Dxy, (5.18)

Dφp = −sin φ cos φ

2p
Dxx +

sin φ cos φ

2p
Dyy −

µ sin φ

2p
√

1 − µ2
Dxz

+
µ cos φ

2p
√

1 − µ2
Dyz +

sin2 φ − cos2 φ

2p
Dxy, (5.19)

Dφµ =
µ sin φ cos φ

2p2
Dxx −

µ sin φ cos φ

2p2
Dyy −

√

1 − µ2 sin φ

2p2
Dxz

+

√

1 − µ2 cos φ

2p2
Dyz +

µ(sin2 φ − cos2 φ)

2p2
Dxy, (5.20)

we may write the Fokker-Planck equation (5.8) as

∂f0

∂t
= −vi

∂f0

∂xi

− 1

p2

∂

∂p
(p2Dpf0) −

∂

∂µ
(Dµf0) −

∂

∂φ
(Dφf0)

+
1

p2

∂

∂p

[

p2

(

Dµp
∂f0

∂µ
+ Dpp

∂f0

∂p
+ Dφp

∂f0

∂φ

)]

+
∂

∂µ

(

Dµµ
∂f0

∂µ
+ Dµp

∂f0

∂p
+ Dφµ

∂f0

∂φ

)

+
∂

∂φ

(

Dφµ
∂f0

∂µ
+ Dφp

∂f0

∂p
+ Dφφ

∂f0

∂φ

)

. (5.21)

If the gyro-radius (2.8) is small compared to magnetic field variations then we

can assume axial symmetry (Schlickeiser and Jenko, 2010). This allows us to

remove the dependence on the azimuthal coordinate φ from the distribution

function. We likewise assume negligible particle transport perpendicular to

the field, allowing us to ignore the x and y spatial coordinates and write
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vz = µv. We define the spatially averaged gyrotropic particle number density

distribution function

f0 = f0(z, p, µ, t) (5.22)

which, from equation (5.1), obeys the normalisation

∫

z

∫

µ

∫

p

f0(z, p, µ, t = 0) p2 dp dµ dz =
n

2π
. (5.23)

Here n is the number of particles in a volume with unit cross-section aligned

to the z axis and extending to z → ±∞. Assuming the coefficients Di and Dij

are independent of φ and integrating equation (5.21) over φ leads to

∂f0

∂t
= −µv

∂f0

∂z
− 1

p2

∂

∂p
(p2Dpf0) −

∂

∂µ
(Dµf0)

+
1

p2

∂

∂p

[

p2

(

Dµp
∂f0

∂µ
+ Dpp

∂f0

∂p

)]

+
∂

∂µ

(

Dµµ
∂f0

∂µ
+ Dµp

∂f0

∂p

)

, (5.24)

where coefficients become

Dp = µDz, (5.25)

Dµ =
1 − µ2

p
Dz, (5.26)

Dpp =
1

4
(1 − µ2)Dxx +

1

4
(1 − µ2)Dyy +

µ2

2
Dzz, (5.27)

Dµp = −µ(1 − µ2)

4p
Dxx −

µ(1 − µ2)

4p
Dyy +

µ(1 − µ2)

2p
Dzz, (5.28)

Dµµ =
µ2(1 − µ2)

4p2
Dxx +

µ2(1 − µ2)

4p2
Dyy +

(1 − µ2)2

2p2
Dzz. (5.29)

The form of condition (5.23) suggests a natural change to the distribution

function. Defining

f(z, p, µ, t) = 2πp2f0 (5.30)

leads to the normalisation

∫

z

∫

µ

∫

p

f(z, p, µ, t = 0) dp dµ dz = n, (5.31)
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and the Fokker-Planck equation

∂f

∂t
= − ∂

∂z
(µvf) − ∂

∂µ

[(

Dµ +
∂Dµµ

∂µ
+

1

p2

∂

∂p

(

p2Dµp

)

)

f

]

− ∂

∂p

[(

Dp +
∂Dµp

∂µ
+

1

p2

∂

∂p

(

p2Dpp

)

)

f

]

+
∂2

∂µ2
(Dµµf) +

∂2

∂µ∂p
(2Dµpf) +

∂2

∂p2
(Dppf). (5.32)

Equation (5.32) represents the starting point for much of the remaining

work of this thesis. However, this second order partial differential equation in

variables z, t, µ and p can only be solved analytically in very restrictive cases.

In addition, solving this Fokker-Planck equation directly using numerical meth-

ods can be problematic due to the large number of mesh points required for

four dimensional simulations. In many cases, however, progress can be made

by expressing the Fokker-Planck equation as a system of stochastic differential

equations. We now discuss the underpinning theory of the equivalence of the

Fokker-Planck and stochastic equations.

5.3 Stochastic calculus

To demonstrate the stochastic approach to solving the Fokker-Planck equation,

let us first examine how considering probability density fluctuations on a small

scale can lead to both the Fokker-Planck equation and a set of stochastic

equations.

We follow the argument as laid out in Schulman (1996). Consider a simple

discrete system on a one dimensional mesh, where u(j, n) is a particle position

probability at a mesh point x = j∆x and time t = n∆t (∆x and ∆t are the

space and time steps respectively). Suppose the particle has a probability p of

moving to the right and q of moving to the left. For a particle, which started

at x = 0 at time 0, to get to a position x requires k steps to the right and l

steps to the left, where k− l = j and k + l = n. The probability of the particle
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reaching the point is given by

u(j, n) =











n!
k!(n−k)!

pkql n − j even,

0 n − j odd.

Using the exponential limit

ex = lim
n→∞

(

1 +
x

n

)n

,

Stirling’s approximation

n! ∼
√

2πn
(n

e

)n

,

and assuming j and n are large, we may write the probability

u(j, n) =

√

2

nπ
exp

(

−(j − n(p − q))2

2n

)

.

Consider the particle probability density f(x, t) = u(j, n)/(2∆x). Here the

factor of two comes from the observation that, for a give time index n, u is

only non-zero for n− j even. Writing in terms of x and t, and taking the limit

of ∆x, ∆t → 0, gives

f(x, t) =

√

1

2πDxxt
exp

(

−(x − Dxt)
2

2Dxxt

)

(5.33)

where we have defined, similar to equations (5.6-5.7),

Dx = lim
∆x,∆t→0

∆x

∆t
(p − q), (5.34)

Dxx = lim
∆x,∆t→0

∆x2

∆t
. (5.35)

Equation (5.33) is simply a Gaussian function for x with mean Dxt and vari-

ance Dxxt. A particular particle will therefore update its position according

to the relation

dx = Dx dt +
√

Dxx W (t),

where W (t), known as a Wiener process (Hopf and Wiener, 1932), is a function

with mean 0 and variance t that simulates random noise – it is essentially a

representation of Brownian motion (Einstein, 1905). Additionally, it is also

straightforward to verify that (5.33) satisfies the Fokker-Planck equation

∂f

∂t
= − ∂

∂x
(Dxf) +

1

2

∂2

∂x2
(Dxxf).
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In general we can express the equivalence of the Fokker-Planck equation

to equations detailing the changes in the variables of the system as prescribed

by Itô calculus (Itô (1944, 1951); see also Gardiner (2004) for a review). The

general Fokker-Planck equation in variables si,

∂

∂t
(f(s, t)) = − ∂

∂si

[Di(s)f(s, t)] +
1

2

∂2

∂si∂sj

[Dijf(s, t)] , (5.36)

is completely equivalent to the system of stochastic equations

ds(t) = D(s) dt + B(s) dW(t), (5.37)

where Dij = (B(s, t)BT (s, t))ij, W is a vector of Wiener processes each with

mean 0 and variance t (Lemons, 2002; Gardiner, 2004) and summation over

repeated indices is assumed.

This stochastic method is commonly used to study the Fokker-Planck equa-

tion both analytically (e.g. Conway et al., 1998, Litvinenko, 2012b) and nu-

merically (e.g. MacKinnon and Craig, 1991, Zhang, 1999, Strauss et al., 2011).

This method is distinguished from other Monte Carlo techniques (e.g. Earl,

1992) by the explicit introduction of a system of stochastic ordinary differen-

tial equations (see also Earl et al., 1995 for a comparison of various numerical

approaches).

We have discussed how a Fokker-Planck equation, often used to model par-

ticle distribution evolution, can be expressed as a system of stochastic differen-

tial equations. The next section demonstrates this equivalence by numerically

examining a physically-based example problem of particle diffusion (as might

occur, for example, with electrons in solar flare current sheets).

5.4 Diffusive charged particle transport

We consider the Fokker-Planck equation for the diffusion of charged particles

along a guiding magnetic field. We follow the formulation of Earl (1974) (see

also Earl, 1992) in which particles are elastically scattered due to interactions

with turbulent magnetic fields propagating along the guiding field.
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Specifically we assume that there is no momentum change of particles due

to collisions (∂p = 0), that there are no drift forces on the system (Dz = 0)

and that diffusion is isotropic and spatially invariant (Dxx = Dyy = Dzz = D,

where D is a constant which controls the strength of the scattering). The

Fokker-Planck equation (5.32) becomes

∂f

∂t
= − ∂

∂z
(µvf) − ∂

∂µ

(

∂Dµµ

∂µ
f

)

+
∂2

∂µ2
(Dµµf), (5.38)

where the scattering coefficient is given by

Dµµ =
D

2p2
(1 − µ2).

Non-dimensionalising equation (5.38) using the variables t = p2t∗/D and z =

vp2z∗/D allows us to write

∂f

∂t
= − ∂

∂z
(µf) − ∂

∂µ
(−µf) +

1

2

∂2

∂µ2

(

(1 − µ2)f
)

, (5.39)

where we have dropped the asterisk notation in the final equation. Using

equations (5.36) and (5.37) we can write the Fokker-Planck equation (5.39) as

the system of stochastic differential equations

dz = µ dt, (5.40)

dµ = −µ dt + (1 − µ2)1/2 dW (t), (5.41)

where W is a Wiener process (with mean 0 and variance t).

The dual formulations of the system, being the Fokker-Planck equation

(5.39) and the stochastic system equations (5.40-5.41), each have different

numerical methods of solution. We will now compare both approaches.

5.4.1 Comparison of numerical treatments

We will consider the solution of the Fokker-Planck system for a Gaussian initial

condition

f(z, µ, t = 0) =
1

I
exp

(

−(µ − 〈µ〉)2

2σ2
µ

)

exp

(

−(z − 〈z〉)2

2σ2
z

)

,
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where the distribution is centred around the point (〈z〉, 〈µ〉) and has standard

deviations σz and σµ for the z and µ directions respectively. The normalisation

factor I is given, from equation (5.31), by

I =

∫

∞

−∞

∫ 1

−1

exp

(

−(µ − 〈µ〉)2

2σ2
µ

)

exp

(

−(z − 〈z〉)2

2σ2
z

)

dµ dz

= πσzσµ

(

erf

(

1 − 〈µ〉√
2σµ

)

+ erf

(

1 + 〈µ〉√
2σµ

))

.

Note that we have chosen to represent f as a probability density (n = 1) for

the sake of simplicity. Here the error function is defined by

erf(x) =
2√
π

∫ x

0

e−λ2

dλ,

and we made use of the Gaussian integral
∫

∞

−∞
e−λ2

dλ =
√

π. We calculate

the solution over the area |µ| ≤ 1, |z| ≤ 3 for time 0 ≤ t ≤ 2.5. As we are

representing both advective and diffusive effects the time step ∆t in our sim-

ulations is chosen to obey both the advective Courant-Friedrichs-Lewy (CFL)

(Courant et al., 1928) and diffusion restrictions. For an advection-diffusion

equation of the form

∂f

∂t
= a

∂f

∂x
+ b

∂2f

∂x2
,

the CFL and diffusion conditions are

∆t ≤ ∆x

a
, (5.42)

and

∆t ≤ (∆x)2

b
, (5.43)

respectively. These conditions lead to timestep limits of ∆t ≤ ∆x and ∆t ≤

(∆x)2 for the present simulation. In practice, simulations are repeated, with

the timestep halved, to check the consistency and convergence of the solution.

We begin our comparison of numerical techniques by solving equation

(5.39) directly using a standard finite difference method on a 401 × 401 point

mesh in variables µ and z. For simplicity the condition on the |z| = 3 bound-

ary was taken to be f = 0, with the simulation run for such time as the

distribution did not interact significantly with z limit.
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Figure 5.2: Finite difference solution of equation (5.39) at t = 0 (a), t = 0.5

(b), t = 1.5 (c) and t = 2.5 (d) on a 401 × 401 point mesh in variables µ and

z. The initial parameters are 〈µ〉 = σz = σµ = 0.1, 〈z〉 = 0.
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The |µ| = 1 boundary requires a more subtle approach as fixing the value of

the solution on this boundary or taking a constant flux condition would be non-

physical. We evaluate it by calculating the solution excluding the boundary

and then interpolating the boundary points from the internal mesh.

Figure 5.2 shows the evolution (t = 0, 0.5, 1.5, 2.5) of a distribution func-

tion that begins with parameters 〈µ〉 = σz = σµ = 0.1, 〈z〉 = 0. This initial

distribution corresponds to a closely clumped population of particles travelling

slowly along the positive z direction. The distribution quickly spreads in pitch

angle space (panel b) which leads to spacial diffusion (panels c and d).

5.4.2 Stochastic solution

A stochastic solution of equations (5.40) and (5.41) involves using an explicit

Euler-Maruyama scheme (for a discussion see Higham., 2001) to model a large

enough number of particles so that we obtain an adequate representation of

the distribution function. Explicitly, we iteratively calculate (from equations

(5.40-5.41)):

zi+1 = zi + µi ∆t, (5.44)

µi+1 = µi − µi ∆t + (1 − µ2
i )

1/2 ∆W (t), (5.45)

where i denotes the level of iteration and ∆t is the timestep. The Wiener

process is modelled as

∆W (t) = N(t)
√

∆t,

where N(t) is a normally distributed pseudo-random number with mean 0 and

variance 1 (Gardiner, 2004; Strauss et al., 2011).

We use an array of 41 × 41 bins of uniform width to record the number

of particles within a coordinate range at a certain time. Using this approach

only one boundary condition needs to be considered, that of |µ| = 1. While

the 1 − µ2 dependence of equation (5.41) prohibits any particle nearing the

boundary from reaching it, in practice for discrete time steps there is a chance

that a particle may end up with a pitch angle |µ| > 1. We therefore take
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Figure 5.3: Stochastic solution of equations (5.40) and (5.41) at t = 0, 0.5, 1.5

and 2.5. The initial condition is the same as in Figure 5.2. The distribution

was generated using 106 particles distributed across an array of 41 × 41 bins

of uniform width.

the simplest approach to particles crossing this boundary - they retain their

previous pitch angle. The simulation is found to be largely insensitive to this

or other sensible choice of boundary condition. A possible alternative would

be reflection whereby, for example, a particle reaching µ = 1 + δ is given the

value µ = 1 − δ.

A stochastic simulation of 106 particles using the same initial conditions as

Figure 5.2 is shown in Figure 5.3. As can be seen we recover the distribution of

Figure 5.2 with some small variations. We stated above that the representation

of the distribution depends on the number of particles used - more precisely the

variance of a measurement is inversely proportional to the number of particles

used (Lemons, 2002). This is illustrated in Figure 5.4, where the standard

deviation (σ) of 〈z〉 and 〈µ〉 at time t = 2.5 is shown for varying particle
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Figure 5.4: Comparison of standard deviation (σ) of 〈z〉 (panel a) and 〈µ〉
(panel b) at t = 2.5 for increasing particle numbers. For each data point the

simulation was repeated ten times and the standard deviation of the average z

and µ values was calculated over these runs. The initial condition is the same

as in Figure 5.2.

numbers. For each data point the simulation was repeated ten times and the

standard deviation of the average z and µ values was calculated over these

runs. The expected σ ∼ n−1/2 scaling is clear in both cases.

Finally the equivalence between the Fokker-Planck and stochastic formu-

lations is demonstrated in Figure 5.5, where the finite difference solution av-

eraged over pitch angle at time t = 2.5 is compared to normalised stochastic

solutions for 103, 5 × 103, 2 × 104 and 106 particles. We see that as particle

numbers are increased we recover the finite difference solution.

This section allowed us to discuss how we can easily numerically model

Fokker-Planck systems using a stochastic formulation. In the next section

we demonstrate how analytic arguments based on a stochastic approach can

readily lead to useful results by considering a model of electron propagation

in a coronal loop.

5.5 Electron transport in solar flare loops

Observations by the Japanese satellite Yokoh and the Reuven Ramaty High

Energy Solar Spectroscopic Imager (RHESSI) have shown some solar flare
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Figure 5.5: Comparison of pitch angle averaged finite difference (solid line)

and normalised stochastic (bars) solutions at t = 2.5. The stochastic solutions

were generated with (a) 103, (b) 5 × 103, (c) 2 × 104 and (d) 106 particles

distributed in 41 bins.
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loops have hard X-ray sources at the looptop and footpoints (Masuda et al.,

1995; Krucker et al., 2008). These hard X-rays are believed to be produced

by bremsstrahlung emission (Holman et al., 2011). That is to say, accelerated

electrons scatter off thermal electrons and ions in the background plasma and

release high energy X-rays. Studies such as Wheatland and Melrose (1995)

showed that much of the observed phenomena can be explained by electron

collisional transport (see also Fletcher and Martens, 1998; Conway et al., 1998;

Holman et al., 2011).

In this section we use the flare loop situation as a platform from which to

demonstrate various useful analytical techniques for Fokker-Planck systems.

Firstly, we formulate a Fokker-Planck electron scattering model. Then, by

taking a mean scattering approach, we will consider the implications on the

energy spectrum of the distribution. In addition, by expressing the Fokker-

Planck equation in stochastic form and calculating moments, we obtain a gen-

eralisation to the hard X-ray emission prediction of Conway et al. (1998). We

will compare this with a diffusion approximation and check the validity of the

results using a numerical simulation.

5.5.1 Coulomb collision model

Consider the coronal loop of Figure 5.6, where a population of n electrons,

potentially accelerated due to a reconnection event, is injected in the top of a

coronal loop before streaming towards the foot-points. These particles undergo

Coulomb collisions with the “background” hydrogen ions in the loop. Based

on this simple model we consider a guide magnetic field Fokker-Planck model

where the coefficients represent Coulomb interactions.

Rosenbluth et al. (1957) demonstrated that the Fokker-Planck coefficients

(5.4) and (5.5) for Coulomb collisions between “test” particles (signified by

index a) and a background distribution (b) can be written

Di = maD
′
∂Hab

∂vi

, Dij = m2
aD

′
∂2Gab

∂vi∂vj

, (5.46)
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Injection
point

Footpoints

Figure 5.6: A model coronal loop. Here electrons are injected in the top of the

loop, where they undergo Coulomb interactions with the loop plasma while

propagating towards the foot-points.

where the Rutherford scattering coefficient is given by

D′ =
4π(ZaZbe

2)2λab

m2
a

. (5.47)

Here e = 4.803× 10−10 statC is the electron charge, Za and Zb are the charges

of particles of type a and b in units of e, and ma is the mass of particles of

type a. The Coulomb logarithm λab generally varies between 5 and 25 in the

corona (Priest, 1982). The Rosenbluth potentials are

Hab(va) =
ma + mb

mb

∫

fb(v
′

b)

|va − v′

b|
dv′

b, (5.48)

Gab(va) =

∫

fb(v
′

b)|va − v′

b| dv′

b, (5.49)

where we have followed the notation of Ljepojevic and Burgess (1990).

Converting (5.46) to spherical polar coordinates (similar to Section 5.2.1),
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and integrating over φ leads to the coefficients

Dp = D′ma
∂Hab

∂v
, (5.50)

Dµ = D′
1 − µ2

v2

∂Hab

∂µ
, (5.51)

Dpp = D′m2
a

∂2Gab

∂v2
, (5.52)

Dµp = D′ma
1 − µ2

v2

(

∂2Gab

∂µ∂v
− 1

v

∂Gab

∂µ

)

, (5.53)

Dµµ =
D′

v2

(

(1 − µ2)2

v2

∂2Gab

∂µ2
+

1 − µ2

v

∂Gab

∂v
− µ(1 − µ2)

v2

∂Gab

∂µ

)

.(5.54)

We are considering the case of a population of electrons colliding with back-

ground hydrogen ions. If we expand equations (5.48-5.49) to first order in

Legendre polynomials, assume that the electron speed is large and assume

that the ion speed is small compared to the electron speed, we may write the

Rosenbluth potentials as (Ljepojevic and Burgess, 1990)

Hei =
me + mi

mi

n

v
, Gei = nv.

Here n is the background number density and the electron mass has the value

me = 9.110 × 10−28 g. Additionally assuming me + mi ≃ mi the coefficients

reduce to Dµ = Dµp = Dpp = 0,

Dp = −Dme

v2
, (5.55)

and

Dµµ =
D(1 − µ2)

v3
, (5.56)

where the scattering parameter is

D =
4πe4λein

m2
e

. (5.57)

Therefore, for Coulomb collisions, the axi-symmetric Fokker-Planck equation

(5.32) becomes (e.g. MacKinnon and Craig, 1991, Conway et al., 1998)

∂f

∂t
= − ∂

∂z
(µvf) − ∂

∂v

(

−D

v2
f

)

− ∂

∂µ

(

−2Dµ

v3
f

)

+
∂2

∂µ2

(

D(1 − µ2)

v3
f

)

,

(5.58)
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where we have written it in terms of v for consistency with the literature.

Equation (5.58) can be non-dimensionalised with respect to some characteristic

speed v0 by substituting v = v0v
∗, z = v4

0z
∗/D and t = v3

0t
∗/D. Dropping the

non-dimensional asterisk notation we can write

∂f

∂t
= − ∂

∂z
(µvf)− ∂

∂v

(

− f

v2

)

− ∂

∂µ

(

−2µf

v3

)

+
1

2

∂2

∂µ2

(

2

v3
(1 − µ2)f

)

. (5.59)

This is the form of the Fokker-Planck equation we will use for the work of this

section. We begin by considering the evolution of a population of particles

which have a power law energy spectrum as their initial condition.

5.5.2 Coronal energy spectra

Energy spectra in the corona typically follow a power law F (E) ∝ E−γ, where

F (E) is the number of particles at energy E and γ is a positive spectral index.

Distributions with proportionally more particles at higher energies than lower

energies (γ small) are described as “hard” (and conversely, proportionally more

particles at lower energies (γ large) are called “soft” distributions).

Observations of flare electron energetics put the hardest spectral index

around γ = 3/2 (Lin et al., 1982; Miller et al., 1997; Holman et al., 2003).

Recent work (e.g. Heerikhuisen et al., 2002; Wood and Neukirch, 2005; Drake

et al., 2013) has attempted to simulate particle acceleration in a reconnection

framework. We take a much simpler approach here and demonstrate how the

method of characteristics can be used on a simplified, mean scattering, form of

the Fokker-Planck equation to calculate the evolution of the energy spectrum.

Assuming mean scattering, whereby the second order derivative in pitch

angle is neglected, the Fokker-Planck equation (5.59) becomes

∂f

∂t
+ µv

∂f

∂z
− 1

v2

∂f

∂v
− 2µ

v3

∂f

∂µ
= 0. (5.60)

The method of characteristics (see Craig et al., 1985) gives the characteristic
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equations

dz = µv dt, (5.61)

dv = − 1

v2
dt, (5.62)

dµ = −2µ

v3
dt, (5.63)

df = 0. (5.64)

Solving equations (5.61 - 5.63) will give an individual particle’s trajectory,

based on its initial position in phase space. Consider, for instance, a particle

with initial coordinates vi, zi and µi. Equations (5.61 - 5.63) give

v = (v3
i − 3t)1/3, (5.65)

µ =
µi

v2
i

(v3
i − 3t)2/3, (5.66)

z = zi +
µi

6v2
i

(

v6
i − (v3

i − 3t)2
)

, (5.67)

which completely specify the particle’s behaviour. Equation (5.64) results in a

constant distribution function along a characteristic f(z, µ, v, t) = F (zi, µi, vi).

This allows us, by inverting equations (5.65-5.67), to find the distribution func-

tion based on some given initial distribution F .

To examine the energy spectrum evolution, however, we need only consider

equation (5.65). We can write it in the form

E(Ei, t) =
(

E
3/2
i − 3t

)2/3

, (5.68)

where E is the kinetic energy for a particle (non-dimensionalised by the factor

mev
2
0/2) at some time t and Ei is the initial energy. Suppose now that we have

a spatially averaged power law initial energy spectrum of the form

F (Ei, t = 0) = n(γ − 1)Eγ−1
0 E−γ

i ,

where n is the number of electrons in the distribution, E0 is a background

“cutoff” energy and the spectral index is bounded by γ > 1. The cutoff

parameter E0 prevents the normalisation integral

n =

∫

∞

E0

F (Ei, t = 0) dEi
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Figure 5.7: Energy spectrum distribution F at times t = 0 (solid line), t = 1/3

(dot-dashed line) and t = 2 (dashed line). The initial parameters are n = 1,

E0 = 0.1 and γ = 2. An energy spectrum of the form F ∼ E−3/2 (dotted line)

is shown for comparison.

from diverging – physically it represents the energy at which electrons rejoin

the background plasma. We can rearrange equation (5.68) for Ei and substi-

tute to give the time-dependent energy spectrum

F (E, t) = n(γ − 1)Eγ−1
0

(

E3/2 + 3t
)−2γ/3

. (5.69)

To examine what our simple model means for flare particle energetics we con-

sider the evolution of an electron distribution with initial spectral index γ = 2.

Figure 5.7 shows the energy spectrum distribution at times t = 0, 1/3 and 2,

for sample parameters n = 1, E0 = 0.1 and γ = 2. As time progresses lower en-

ergy electrons are decelerated and absorbed by the background plasma, while

high energy particles are largely unaffected. For comparison we have plotted

a spectrum with index γ = 3/2, representing the physically observed hard

spectrum limit (Holman et al., 2003). Clearly the current analysis predicts
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hardening of the electron spectrum past observed limits, and is therefore too

simplistic to describe realistic flare particle energetics. The extra turbulent

effects of the full Fokker-Planck equation may help to soften the spectrum

somewhat. We note that the recent study of Drake et al. (2013) predicts a

F ∼ E−3/2 spectrum resulting from a multi-island reconnecting system, as long

as the characteristic electron energy loss time is larger than the acceleration

time.

Further examination of flare particle spectra is outside the scope of this the-

sis – the above example is purely an illustration of one mathematical approach

towards extracting information from a Fokker-Planck system. While the full

equation may only be solvable via a numerical simulation, we now show that

considering the Fokker-Planck equation as a system of stochastic differential

equations can quickly provide moment equations. These give valuable insight

into the system’s properties and how it will evolve.

5.5.3 Hard X-ray emission

A stochastic analysis of the Fokker-Planck equation (5.59) by Conway et al.

(1998) gave a prediction for the dependence on density of hard X-ray pro-

duction in coronal loops. While our goal is to illustrate how the stochastic

equations can quickly lead to useful moment equations, we also obtain a gen-

eralisation of the Conway result.

Consider the coronal loop as shown in Figure 5.6 and take the spatial

coordinate z to be zero at the injection point. The hard X-ray emission rate

R in this region will be proportional to nML, where ML is number of electrons

in the loop top. The number of electrons in the region will evolve according to

∂ML

∂t
= I − ML

τL

,

where I is the rate of injection and τL is the time for an electron to leave the

loop top. Assuming a steady state situation with a constant rate of injection
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(ML, I constant) we can express the hard X-ray emission rate via

R ∝ nτL. (5.70)

To obtain an expression for τL we need to consider how the distribution will

spread from the point of injection. In other words, we need to calculate the

variance V ar(z) = 〈z2〉 − 〈z〉2. Conway et al. (1998) gave an expression for

the variance for small times

V ar(z) ∼
(

nv3
0

6Ns

)

t3, (5.71)

where Ns(v0) = m2
ev

4
0/16πe4λei is the column depth that is required to reduce

an electron’s speed to zero. This result assumes the simple initial condition

(corresponding to a population of n electrons injected with speed v = v0 at

z = 0, all with pitch angle µ = 0)

f(z, µ, v, t = 0) = n δ(µ) δ(z) δ(v − v0). (5.72)

In our dimensionless notation (5.71) becomes

V ar(z) ∼ 2

3
t3. (5.73)

By taking V ar(z) = L2 at t = τL, and using equation (5.70), equation (5.71)

leads to a hard X-ray emission dependence on density of R ∝ n2/3. We gener-

alise this result by using the (dimensional) initial condition

f(z, µ, v, t = 0) = nM(µ) δ(z) δ(v − v0), (5.74)

where M(µ) is an arbitrary function, with mean µ0 and variance σ2
0, subject

to the condition (from equation (5.31))

∫ 1

−1

M(µ) dµ = 1. (5.75)

The non-dimensionalised form of our initial condition is

f(z, µ, v, t = 0) = n
v5

0

D
M(µ) δ(z) δ(v − 1),

and we note that taking the initial distribution

F (z, µ, v) = nM(µ) δ(z) δ(v − 1), (5.76)
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and solving equation (5.59) allows solutions with arbitrary initial velocities to

be generated (MacKinnon and Craig, 1991).

We use equations (5.36) and (5.37) to convert the Fokker-Planck equation

(5.59) to a series of stochastic equations, giving

dz = µv dt, (5.77)

dv = − 1

v2
dt, (5.78)

dµ = −2µ

v3
dt +

√

2
1 − µ2

v3
dW (t). (5.79)

To calculate the moment equations we make use of Ito’s formula (e.g., Gar-

diner, 2004 Chapter 4). A stochastic system of the form in equation (5.37)

can be written in terms of some arbitrary function h = h(s) via

dh =

[

Di(s, t)∂ih +
1

2
[B(s, t)BT (s, t)]ij∂i∂jh

]

dt

+Bij(s, t)∂ih dWj(t). (5.80)

Using equations (5.77-5.79) we can write

dh =

[

µv
∂h

∂z
− 1

v2

∂h

∂v
− 2µ

v3

∂h

∂µ
+

1 − µ2

v3

∂2h

∂µ2

]

dt +

√

2
1 − µ2

v3

∂h

∂µ
dW. (5.81)

The first order moments are found by substituting µ and z in to (5.81) and

averaging. Solving the resultant equations we obtain

〈µ〉 = µ0(1 − 3t)2/3, (5.82)

〈z〉 = µ0

(

t − 3t2

2

)

. (5.83)

Calculation of 〈z2〉 requires 〈µ2〉 and 〈µz〉. Some algebraic manipulation leads

to

〈

µ2
〉

=
1 − (1 − 3(σ2

0 + µ2
0))(1 − 3t)2

3
, (5.84)

〈µz〉 =
(1 − 3t)2/3

3

[

−1

2
(1 − 3t)2/3 +

1

8
(1 − 3(σ2

0 + µ2
0))(1 − 3t)8/3

+
3

8
+

3

8
(σ2

0 + µ2
0)

]

, (5.85)

〈

z2
〉

=
3(σ2

0 + µ2
0) − 1

168
(1 − 3t)14/3 +

1

24
(1 − 3t)8/3

+
1

4
(1 + σ2

0 + µ2
0)

(

t − 3t2

2

)

− (σ2
0 + µ2

0)

56
− 1

28
. (5.86)
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Using equations (5.83) and (5.86) we can now write the variance

V ar(z) =
3(σ2

0 + µ2
0) − 1

168
(1 − 3t)14/3 +

1

24
(1 − 3t)8/3

+
1

4
(1 + σ2

0 + µ2
0)

(

t − 3t2

2

)

− (σ2
0 + µ2

0)

56
− 1

28

−µ2
0

(

t − 3t2

2

)2

, (5.87)

which, when Taylor expanded for small t, gives

V ar(z) ≈ σ2
0t

2 +
1

3
(2 − 2µ2

0 − 11σ2
0)t

3. (5.88)

Equations (5.87) and (5.88) are new results - the expression of Conway et al.

(5.73) is recovered for µ0 = σ0 = 0. An important consequence of our result

is that, for non-zero dispersion in the initial pitch angle distribution (σ0 6= 0),

the first term in equation (5.88) will dominate at small times. If we express

this in our dimensional variables we obtain

V ar(z) ∼ σ2
0v

2
0t

2, (5.89)

which leads to a stronger hard X-ray emission rate density dependence of

R ∝ n than in Conway et al. (R ∝ n2/3). This result seems to be consistent

with what one might expect from binary particle collisions - the emission rate

would purely depend on the amount of target background particles.

This result helps to emphasise the convenience of working with the stochas-

tic equations rather than the full Fokker-Planck equation – for one thing it

allows us to go beyond the first order equations of the mean scattering ap-

proach. To further reinforce our result Figure 5.8 shows a comparison of the

moment equations (5.82-5.84, 5.87) with a numerical simulation of equations

(5.77-5.79), using 10000 particles and initial parameters σ0 = 0 and µ0 = 0.5

(M(µ) = δ(µ− 0.5)). Obviously there is good agreement between the analyti-

cal and numerical results – in particular the numerical results for variance are

virtually indistinguishable from the analytical solution (5.87). The diffusion in

pitch angle of the distribution is shown in Figure 5.9. The initial delta function

spreads out until the distribution is completely diffuse and the particles have

effectively rejoined the background plasma.
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Figure 5.8: Comparison of simulation moments (〈z〉 , 〈µ〉 , V ar(z), 〈µ2〉) (solid

line) and the moment solutions of equations (5.82-5.84, 5.87) (dashed lines)

versus t. The simulation was run using 10000 particles and the initial param-

eters are σ0 = 0 and µ0 = 0.5.

To complete our discussion of analytical techniques we briefly examine the

diffusion approximation. For weakly anisotropic distributions, a diffusion equa-

tion can be obtained by integrating the Fokker-Planck equation with respect

to pitch angle (Hasselmann and Wibberenz, 1970). Equally, if the particle dis-

tribution relaxes to a steady state, i.e. the pitch angle scattering time is much

shorter than other characteristic time-scales, we should be able to set dµ ≈ 0

in the stochastic equations (e.g. Litvinenko, 2012a; Litvinenko, 2012b).

To demonstrate this, by setting dµ ≈ 0 in equation (5.79), we calculate the

variance of our current example for an isotropic initial distribution. Combining

equations (5.77) and (5.79) gives

dz = v3

√

1 − µ2

2v
dW (t). (5.90)
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Figure 5.9: Pitch angle distribution (number of particles vs pitch angle cosine

µ) at times t = 0, 0.1, 0.2, 0.33. The parameters are the same as in Figure

5.8 and the particles are distributed across 41 bins of uniform width.

This is equivalent to the diffusion equation

∂F

∂t
=

v5

6

∂2F

∂z2
,

where F = F (z, t) is the corresponding distribution function and we have

integrated over pitch angle. We can multiply the diffusion equation by z2 and

integrate, giving

∂ 〈z2〉
∂t

=
v5

3
. (5.91)

An expression for v is found by integrating equation (5.78); substituting the

result in (5.91) leads to a simple integral for 〈z2〉 in terms of t. The variance

V ar(z) = 〈z2〉−〈z〉2 can then be found by integrating and noting that 〈z〉2 = 0,

giving

V ar(z) =
1

24

(

1 − (1 − 3t)8/3
)

. (5.92)

Figure 5.10 shows a comparison of equation (5.92) with a simulation of equa-

tions (5.77-5.79) using an isotropic (σ2
0 = 1/3, µ0 = 0) initial distribution



103

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

 V
ar

(z
)

 t

 

 

 Simulation

 Diffusion Approximation

Figure 5.10: Comparison of Coulomb collision simulation V ar(z), and the

diffusion approximation prediction of equation (5.92), versus t. The simulation

was run using 30000 particles and the initial parameters are for an isotropic

initial distribution (σ2
0 = 1/3, µ0 = 0).

(M(µ) = S(1 + µ)S(1 − µ)/2 where S is the Heaviside step function). The

distribution stays isotropic throughout its evolution – particle density remains

evenly spread across the range of pitch angle. Note that the difference between

the simulated variance and that predicted by equation (5.87) was found to be

virtually indistinguishable – hence only the simulation results are displayed.

Clearly the diffusion approximation is not a good representation of the

variance of our current example – it predicts far greater spatial spreading of

the distribution. While the diffusion approximation is useful in, for example,

cosmic-ray transport where momentum diffusion is neglected (Schlickeiser and

Shalchi, 2008; Artmann et al., 2011; Litvinenko, 2012a,b), it appears in our

case that energy loss time-scales are of the same order as pitch angle scattering

times. Obviously care must be taken when applying the diffusion approxima-

tion to some astrophysical situations.
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5.6 Summary

In this chapter we have presented the equation we use to study particle ac-

celeration and transport in the solar atmosphere, the Fokker-Planck equation.

We have examined the equivalence of the Fokker-Planck and stochastic formu-

lations and applied the results to two models of particle transport.

We outlined the Fokker-Planck equation and its form for charged particles

in Section 5.2. Section 5.3 discussed the equivalence of the Fokker-Planck

equation with a system of stochastic differential equations. Using a simple

turbulent scattering model as a basis we numerically examined the equivalence

of the Fokker-Planck and stochastic approaches in Section 5.4.

Section 5.5 examined electron transport in a coronal loop using several dif-

fering analytical approaches. In particular, using the stochastic formulation

to calculate moment equations, we gave a generalisation to the result of Con-

way et al. (1998), which predicts a stronger hard X-ray emission rate density

dependence.

We have seen that a stochastic formulation of a Fokker-Planck system pro-

vides attractive avenues for extracting useful information from the system. In

the next chapter we shall use some of the analytical and numerical techniques

discussed here to study cosmic-ray particle acceleration at the heliospheric

termination shock.



Chapter 6

Modelling focused acceleration

of cosmic-ray particles by

stochastic methods

6.1 Introduction

The edge of the solar system is marked by the heliopause, where the constantly

out-flowing solar wind meets the surrounding interstellar medium. While

ionised particles from the interstellar medium are deflected by the far-reaching

solar magnetic field, neutral gas flows through the turbulent boundary into the

inner solar system (Isenberg, 1997; Reames, 1999). Here the gas can be ionized

(either by interaction with a photon or with a solar wind ion) and the resulting

“pick-up ions” are transported back outward along the solar magnetic field to

the heliospheric termination shock, where the solar wind is slowed to sub-sonic

speeds (Figure 6.1). It is what happens to the pick-up ions in the vicinity of

the termination shock that serves as the setting for this chapter. In this re-

gion the pick-up ions are accelerated to great energies and become anomalous

cosmic-rays. These particles are then flung out and can be detected through

the shield of the Earth’s atmosphere.

The primary mechanism for acceleration of the pick-up ions has long been
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Figure 6.1: Anomalous cosmic ray acceleration. Neutral interstellar gas that

flows into the solar system is ionised and picked up by the solar interplanetary

magnetic field. These pick-up ions are transported to the termination shock,

where they are accelerated to cosmic-ray energies.

believed to be diffusive shock acceleration (also known as first order Fermi

acceleration - see Blandford and Eichler, 1987 for a review). Ionised parti-

cles are stochastically accelerated due to resonant interactions with turbulent

magnetic fields at a shock. However, observations by the spacecraft Voyager in

the vicinity of the termination shock have shown that, in contrast to the pre-

dictions of diffusive shock acceleration theory, anomalous cosmic-ray intensity

does not peak at the shock itself (Stone et al., 2008). This has necessitated

more detailed models of cosmic-ray acceleration.

One of the physical effects that has been largely overlooked until recently is

that of the force produced by a spatially varying magnetic field. In space, large

scale guide fields are often significantly non-uniform. The Parker (1958) spiral,

due to the rotation of the Sun, describes the solar interplanetary magnetic field
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(Figure 6.1). Large scale spatial variations are also present in the galactic guide

magnetic field perpendicular to the galactic plane (Sofue et al., 1986). Spatial

variations in a guide magnetic field have been shown to introduce an adiabatic

focusing effect, whereby diverging or converging field lines induce a magnetic

mirror force on propagating particles (Roelof, 1969).

Adiabatic focusing, coupled with the effect of scattering by the turbulent

magnetic field, results in enhanced Fermi acceleration or deceleration of parti-

cles (Schlickeiser and Shalchi, 2008; see also Litvinenko and Schlickeiser, 2011).

Whether this mechanism results in acceleration or deceleration of particles de-

pends on the sign of the quantity HCL. Here HC is the magnetohydrodynamic

wave cross helicity and L is the guide magnetic field focusing length (see Sec-

tion 6.2.1 for full definitions). This mechanism has a number of potential

astrophysical applications, including explaining the cosmic-ray distribution in

the heliospheric termination shock region (Litvinenko and Schlickeiser, 2011)

and in the interstellar medium (Schlickeiser, 2009).

A key result, derived by Schlickeiser and Shalchi (2008), is the prediction

of the acceleration rate in terms of HC and other parameters. This is based

on several assumptions, however, and is only valid for a restricted parameter

range (see Section 6.3 for details). A detailed examination of this result pro-

vides a central motivation for the present chapter. In particular, we explore

the Fokker-Planck description of focused acceleration using a combination of

analytical and numerical techniques.

We begin by presenting the Fokker-Planck equation and formulating it as a

system of stochastic differential equations in Section 6.2.1. We then, in Section

6.2.2, specialise to a simplified case of the Fokker-Planck coefficients, and use

arguments based on averaging to extend the Schlickeiser and Shalchi (2008)

theory for the particular choice of the transport parameters in Section 6.3.

Section 6.4 contains numerical simulations of the stochastic system, which are

used to determine the distribution function in some indicative cases and to

examine the analytical predictions and their limitations. Finally, in Section
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6.5, we discuss our results and their implications for the focused acceleration

mechanism in astrophysics.

6.2 Formulation of the stochastic system

6.2.1 Fokker-Planck equation and stochastic equations

The Fokker-Planck equation needs to model both scattering of particles due

to waves and adiabatic focusing. To begin with we will outline the adiabatic

focusing effect, which is due to spatially varying magnetic fields.

We start from the Boltzmann equation for the averaged distribution func-

tion f0(x, p, t),

∂f0

∂t
= −v · ∇xf0 −

∂p

∂t
· ∇pf0, (6.1)

where, due to cosmic-ray particles being much higher in energy than back-

ground plasma, we have neglected particle-particle collisional effects (Kennel

and Engelmann, 1966; Schlickeiser, 1989). Here ∇x and ∇p denote spatial and

momentum gradient operators respectively. In a magnetic field B the particles

will be influenced by the Lorentz force

∂p

∂t
= Ze

(

E +
1

c
v × B

)

, (6.2)

where Z is the particle charge in units of e and E is the electric field.

We consider the Boltzmann equation (6.1), subject to the Lorentz force

(6.2), in the absence of an external electric field E. We assume that the

gyro-radius is small compared to magnetic field variations, resulting in axial

symmetry for the magnetic field and distribution function (Schlickeiser and

Jenko, 2010). Furthermore, neglecting density variations perpendicular to the

field direction and using, for convenience, cylindrical polar coordinates for the

momentum (e.g. pz, pr =
√

p2
x + p2

y and tan(pφ) = py/px) allows us to write

(Luhmann, 1976)

∂f0

∂t
= −vz

∂f0

∂z
− ZeBr

c

(

vφ
∂

∂pz

− vz
∂

∂pφ

)

f0. (6.3)
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Here f0(z, pz, pφ, t) is the spatially averaged gyrotropic distribution function.

By considering Gauss’s law for magnetism ∇·B = 0 in cylindrical coordinates

we get the relation

∂

∂r
(rBr) = −r

∂Bz

∂z
.

If we assume that changes in the magnetic field B occur on scales far greater

than the particle gyro-radius then we can treat ∂Bz/∂z as constant in the

above integration, resulting in

Br = −r

2

∂Bz

∂z
. (6.4)

Recalling equation (2.8) for the gyro-radius and substituting the above in (6.3)

gives

∂f0

∂t
= −vz

∂f0

∂z
+

vφ

2Bz

∂Bz

∂z

(

pφ
∂

∂pz

+ pz
∂

∂pr

)

f0. (6.5)

Defining the focusing length L(z)

1

L
= − 1

Bz

dBz

dz
, (6.6)

and writing the momentum in terms of spherical coordinates (e.g. pz = µp,

pφ =
√

1 − µ2 p) results in

∂f0

∂t
= −µv

∂f0

∂z
− v

2L
(1 − µ2)

∂f0

∂µ
. (6.7)

The second term on the right of equation (6.7) accounts for the effects of

adiabatic focusing due to a spatially varying magnetic field. It arises from the

adiabatic invariance of the magnetic moment

M =
mv2

2B
(1 − µ2), (6.8)

and is closely related to the magnetic mirror mechanism, where particles can be

reflected when encountering strong magnetic fields (Priest and Forbes, 2000).

For simplicity we will assume that the focusing length L is a positive constant

- this assumption is robust as long as L is much larger than scattering length

scales (Earl, 1976).
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The adiabatic focusing term on the right of equation (6.7) modifies the full

Fokker-Planck equation (5.24) to

∂f0

∂t
= −µv

∂f0

∂z
− v

2L
(1 − µ2)

∂f0

∂µ

+
1

p2

∂

∂p

[

p2

(

Dµp
∂f0

∂µ
+ Dpp

∂f0

∂p

)]

+
∂

∂µ

(

Dµµ
∂f0

∂µ
+ Dµp

∂f0

∂p

)

. (6.9)

The forms of the Fokker-Planck wave scattering coefficients Dµµ, Dµp and

Dpp are presented in Section 6.2.2; we first seek to express (6.9) as a series of

stochastic equations.

Similar to the simplification of equation (5.30), we may rewrite equation

(6.9) in terms of the gyrotropic differential particle number density f(z, p, µ, t).

This is related to f0 by

f0(z, p, µ, t) =
e−z/L

2πp2
f(z, p, µ, t). (6.10)

The Fokker-Planck equation (6.9) can then be expressed in the form (Schlick-

eiser, 2011; Litvinenko and Schlickeiser, 2011)

∂f

∂t
= − ∂

∂z
(µvf) − ∂

∂µ

[(

v

2L
(1 − µ2) +

∂Dµµ

∂µ
+

1

p2

∂

∂p
(p2Dµp)

)

f

]

− ∂

∂p

[(

∂Dµp

∂µ
+

1

p2

∂

∂p
(p2Dpp)

)

f

]

+
∂2

∂µ2
(Dµµf) +

∂2

∂µ∂p
(2Dµpf) +

∂2

∂p2
(Dppf). (6.11)

Using equations (5.36) and (5.37) with equation (6.11) we identify s = (z(t), µ(t), p(t)),

D =













µv

v
2L

(1 − µ2) + ∂Dµµ

∂µ
+ 1

p2

∂(p2Dµp)

∂p

∂Dµp

∂µ
+ 1

p2

∂(p2Dpp)

∂p













and

B =













0 0 0

0
√

2Dµµ 0

0
√

2D2
µp

Dµµ

√

2Dpp − 2D2
µp

Dµµ












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as long as Dµµ > 0 and Dpp ≥ D2
µp/Dµµ. Thus equation (6.11) is replaced by

the stochastic system

dz = µv dt, (6.12)

dµ =

[

v

2L
(1 − µ2) +

∂Dµµ

∂µ
+

1

p2

∂

∂p
(p2Dµp)

]

dt

+
√

2Dµµ dW2(t), (6.13)

dp =

[

∂Dµp

∂µ
+

1

p2

∂

∂p
(p2Dpp)

]

dt +

√

2D2
µp

Dµµ

dW2(t)

+

√

2Dpp −
2D2

µp

Dµµ

dW3(t). (6.14)

We now turn to the form of the Fokker-Planck coefficients under some simpli-

fying assumptions.

6.2.2 Fokker-Planck coefficients and simplifying

assumptions

The Fokker-Planck scattering coefficients account for turbulence due to for-

ward and backward travelling transverse Alfvén waves. These waves may be

either left- or right-hand polarised and may have differing intensities. The

forms of the coefficients are obtained by using quasi-linear theory (Kennel and

Engelmann, 1966; Jokipii, 1966; Luhmann, 1976), where the magnetic field

(along with the electric field and distribution function) is separated into an

averaged guide field component (e.g. B) and a rapidly fluctuating turbulent

component (e.g. δB). The coefficients are (see Schlickeiser, 1989 or Schlick-

eiser, 2002 for a review)

Dµµ = D̃(1 − µ2)N, (6.15)

Dµp = ǫpD̃(1 − µ2)M, (6.16)

Dpp = ǫ2p2D̃(1 − µ2)R, (6.17)

D̃ =
π

2
(q − 1)vkq−1

minr
q−2
g

(

δB

B

)2

. (6.18)

Here rg is the gyroradius, kmin is the minimum wavenumber, and ǫ = vA/v,

where vA is the Alfvén speed, is typically small (Litvinenko and Schlickeiser,
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2011). The parameter q, being the spectral index of the assumed power law

form of the power spectrum, governs the anisotropy of the scattering; q → 1

corresponds to weakly anisotropic scattering. The functions N, M and R are

given by (Luhmann, 1976; Schlickeiser, 1989; Dung and Schlickeiser, 1990)

N(µ) = (1 + HC)(1 − ǫµ)2|µ − ǫ|q−1

×
(

(1 + σ+) S[Z(ǫ − µ)] + (1 − σ+) S[Z(µ − ǫ)]
)

+(1 − HC)(1 + ǫµ)2|µ + ǫ|q−1

×
(

(1 + σ−) S[−Z(ǫ + µ)] + (1 − σ−) S[Z(ǫ + µ)]
)

, (6.19)

M(µ) = (1 + HC)(1 − ǫµ)|µ − ǫ|q−1

×
(

(1 + σ+) S[Z(ǫ − µ)] + (1 − σ+) S[Z(µ − ǫ)]
)

−(1 − HC)(1 + ǫµ)|µ + ǫ|q−1

×
(

(1 + σ−) S[−Z(ǫ + µ)] + (1 − σ−) S[Z(ǫ + µ)]
)

, (6.20)

R(µ) = (1 + HC)|µ − ǫ|q−1

×
(

(1 + σ+) S[Z(ǫ − µ)] + (1 − σ+) S[Z(µ − ǫ)]
)

+(1 − HC)|µ + ǫ|q−1

×
(

(1 + σ−) S[−Z(ǫ + µ)] + (1 − σ−) S[Z(ǫ + µ)]
)

. (6.21)

We recall that S is the Heaviside step function. The magnetic helicities σ+ and

σ− indicate the polarization state of the forward and backward propagating

Alfvén waves (Matthaeus and Goldstein, 1982). For multiple waves travelling

in the positive direction, the magnetic helicity is given by σ+ = (I+
L − I+

R )/I+

where I+
L and I+

R are the intensities of the left- and right-handed polarised

waves respectively and I+ = I+
L + I+

R is the total intensity. Similarly for waves

travelling in the opposite direction σ− = (I−

L − I−

R )/I−. The cross helicity is

HC =
I+ − I−

I+ + I−
, (6.22)

which is a measure of the net directional intensity of the Alfvén waves.

Particles will be accelerated by “head-on” interactions with Alfvén waves,

and slowed by “overtaking” interactions (Fermi, 1949). The addition of adia-

batic focusing serves to enhance the effect of the acceleration if the particles are
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focused towards the oncoming waves. If L > 0, as we have assumed, negative

cross helicity will result in focused acceleration, while positive cross helicity will

result in focused deceleration (Schlickeiser and Shalchi, 2008; Litvinenko and

Schlickeiser, 2011). The greatest acceleration rates are due to large negative

values of cross helicity (HC → −1, see Section 6.3.3 for details).

To achieve analytical progress, we make some physically motivated sim-

plifying assumptions. As mentioned previously, one of the regions in which

adiabatic focusing effects may be significant is the heliospheric termination

shock region (Litvinenko and Schlickeiser, 2011). The Alfvén speed (2.13)

is approximately vA ≃ 5 × 106 cm s−1 both at 1 AU (Barnes, 1979) and at

the termination shock (Li et al., 2008). We therefore exploit the expedient

of using a constant Alfvén speed, which is equivalent to the adoption of the

background gas density partition scaling n(z) ∝ B2(z) (e.g. Litvinenko and

Schlickeiser, 2011). We consider speeds in the range vA ≪ v ≪ c and as-

sume non-relativistic momenta, p = mv, so that the parameter ǫ = vA/v ≪ 1.

Finally Shalchi et al. (2009) argue that pitch angle scattering is isotropic for

sufficiently strong turbulence, so we take q → 1.

Taking the limit ǫ → 0 in N, M and R, and setting σ+ = σ− = 0 (no

net polarisation), we may rewrite the Fokker-Planck coefficients in the non-

relativistic limit as

Dµµ = D0(1 − µ2), (6.23)

Dµp = mvAHCD0(1 − µ2), (6.24)

Dpp = m2v2
AD0(1 − µ2), (6.25)

where D0 = 2D̃ is a constant that represents the strength of the scattering.



114

The stochastic equations (6.12-6.14) become

dz =
µp

m
dt, (6.26)

dµ =

[

p

2mL
(1 − µ2) + 2D0

(

mvAHC
1 − µ2

p
− µ

)]

dt

+
√

2D0(1 − µ2) dW2(t), (6.27)

dp =

[

2D0mvA

(

mvA
1 − µ2

p
− HCµ

)]

dt

+mvA

√

2D0H2
C(1 − µ2) dW2(t)

+mvA

√

2D0(1 − µ2)(1 − H2
C) dW3(t). (6.28)

We now non-dimensionalise the system using the parameters vA and L.

6.2.3 Non-dimensionalisation

Substituting z = Lz∗, v = vAv∗ (p∗ = p/mvA = v∗), D0 = vAD∗

0/L and

t = Lt∗/vA in equations (6.26-6.28) results in

dz∗ = µp∗ dt∗, (6.29)

dµ =

[

p∗

2
(1 − µ2) + 2D∗

0

(

HC
1 − µ2

p∗
− µ

)]

dt∗

+
√

2D∗

0(1 − µ2) dW2(t
∗), (6.30)

dp∗ =

[

2D∗

0

(

1 − µ2

p∗
− HCµ

)]

dt∗ +
√

2D∗

0H
2
C(1 − µ2) dW2(t

∗)

+
√

2D∗

0(1 − µ2)(1 − H2
C) dW3(t

∗). (6.31)

The equation set (6.29-6.31) is the dimensionless stochastic system that forms

the basis of our analytical and numerical investigations. In the next section we

analyse the system in some limiting cases using simple averaging arguments.

The veracity of these arguments will be explored numerically in Section 6.4.

6.3 Analytic approximations based on the

stochastic system

Initial analysis of the focused acceleration mechanism by Schlickeiser and

Shalchi (2008) gave a prediction for the focused acceleration time scale
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tac = −3L/(HCvA), which in our dimensionless notation becomes

t∗ac = − 3

HC

. (6.32)

This result applies in the case where the distribution remains almost isotropic

and the focusing is weak. If, additionally, momentum diffusion can be ne-

glected then the average momentum grows exponentially,

1

〈p∗〉
d 〈p∗〉
dt∗

= −HC

3
, (6.33)

with the greatest acceleration rates resulting from large negative values of

cross helicity (HC → −1). The corresponding parameter range where these

assumptions should hold is given by (Litvinenko and Schlickeiser, 2011)

1

p∗
≪ (1 − µ2)p∗

D∗

0

≪ 1. (6.34)

We will proceed to determine a correction to equation (6.33) for the particular

set of parameters in Section 6.2 (q = 1, σ+ = σ− = 0, ε ≪ 1) using simple

averaging arguments. The averaged form of equations (6.30) and (6.31) are

d 〈µ〉
dt∗

=
1

2

〈

p∗(1 − µ2)
〉

+ 2D∗

0

(

HC

〈

1 − µ2

p∗

〉

− 〈µ〉
)

, (6.35)

d 〈p∗〉
dt∗

= 2D∗

0

(〈

1 − µ2

p∗

〉

− HC 〈µ〉
)

, (6.36)

where, due to them having zero mean, the terms involving Wiener processes

have disappeared. We now examine this system for various values of cross

helicity HC , corresponding to momentum diffusion, focused acceleration and

focused deceleration.

6.3.1 Zero cross helicity, diffusive acceleration

In the case of zero cross helicity (HC = 0), equation (6.36) results in

d 〈p∗〉
dt∗

= 2D∗

0

〈

1 − µ2

p∗

〉

.

Assuming the distribution is isotropic (f ≃ f(p∗, z∗, t∗)) gives 〈µ2〉 = 1/3.

Further, if we assume that 〈(1 − µ2)/p∗〉 ≈ 〈1 − µ2〉 〈1/p∗〉 ≈ 2/(3 〈p∗〉) for
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small dispersion in momentum, the average momentum will evolve according

to

〈p∗〉 ≃
(

8D∗

0

3
t∗

)1/2

+ 〈p∗〉0 , (6.37)

with 〈p∗〉0 the initial average momentum. Physically this result represents

particle diffusion in momentum space (Schlickeiser and Shalchi, 2008).

6.3.2 Positive cross helicity, focused deceleration

For a distribution with 〈µ〉 ≈ 0, equation (6.36) will result in an initial ac-

celeration phase governed by pure momentum diffusion (equation (6.37)). In

the case of positive cross helicity (HC > 0), focused deceleration should even-

tually balance momentum diffusion, leading to a finite momentum 〈p∗〉 such

that the right hand side of equation (6.36) vanishes. We therefore look for an

equilibrium solution of equations (6.35) and (6.36). These combine to give

〈

p∗(1 − µ2)
〉

= 4D∗

0 〈µ〉 (1 − H2
C).

If we again assume near isotropy and 〈p∗(1 − µ2)〉 ≈ 〈p∗〉 〈1 − µ2〉 ≈ 2/3 〈p∗〉

then we get

〈p∗〉 = 6D∗

0 〈µ〉 (1 − H2
C).

Now we eliminate 〈µ〉, using equation (6.36) together with 〈1/p∗〉 ≈ 1/ 〈p∗〉,

and obtain an expression for the equilibrium momentum

〈p∗〉e =

(

4D∗

0

HC

(1 − H2
C)

)1/2

. (6.38)

A measure of the time of transition to equilibrium can be obtained by substi-

tuting equation (6.38) in equation (6.37). This results in

t∗tr =
3

8D∗

0

(〈p∗〉e − 〈p∗〉0)
2 . (6.39)

Physically, equation (6.38) gives the steady state average momentum of a near

isotropic distribution of particles that have been subject to focused decelera-

tion. Note that large positive values of cross helicity (HC → 1) in equation

(6.38) result in steady state average momentum less than the Alfvén momen-

tum, where our assumption of v ≫ vA becomes invalid.
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6.3.3 Negative cross helicity, focused acceleration

If particle speed is significantly larger than the Alfvén speed then 1/p∗ → 0

and equations (6.35) and (6.36) become

d 〈µ〉
dt∗

=
1

2

〈

p∗(1 − µ2)
〉

− 2D∗

0 〈µ〉 , (6.40)

d 〈p∗〉
dt∗

= −2HCD∗

0 〈µ〉 . (6.41)

If we search for a solution of the form

〈p∗〉 = 〈p∗〉0 exp(αt∗), (6.42)

where α is a constant, we get

〈µ〉 = − α 〈p∗〉0
2HCD∗

0

exp(αt∗) (6.43)

from equation (6.41). For strong scattering (D∗

0 ≫ 1) an initially isotropic dis-

tribution should remain isotropic for some period. Again assuming a weakly

anisotropic distribution and 〈p∗(1 − µ2)〉 ≈ 2/3 〈p∗〉, substituting our solutions

in equation (6.40) and considering the physically interesting case of accelera-

tion (i.e. take positive root and HC < 0) gives

α = D∗

0

(

(

1 − 2HC

3D∗

0

)1/2

− 1

)

= −HC

3
− H2

C

18D∗

0

+ . . . (6.44)

where the terms of order H2
C and higher provide a correction to equation (6.33).

If scattering is strong, this correction is small.

An interesting question is how long it would take for the distribution to

become anisotropic and, therefore, for the exponential acceleration solution

to cease. Considering the exponential in equation (6.43) gives the timescale

t∗ac = 1/α ≃ −3/HC (assuming a large value of D∗

0), the same result as the

acceleration time scale (6.32).

Equations (6.42) and (6.44) represent the focused acceleration effect in

Schlickeiser and Shalchi (2008) with a small correction. However the exponen-

tial increase in average pitch angle (equation (6.43)) will result in the distri-

bution losing its isotropy. We now consider what happens in the case of large

anisotropy for t∗ > t∗ac = 1/α.
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6.3.4 Negative cross helicity, particle beaming

The exponential growth of 〈p∗〉 and 〈µ〉 in the case of HC < 0 cannot continue

unabated; the pitch angle is bounded by |µ| ≤ 1 and the distribution will

become strongly anisotropic. Physically, as particles are accelerated, we might

expect that after time t∗ac & −3/HC the particles will have aligned to the field,

〈µ〉 ≃ 1, and d 〈µ〉 /dt∗ ≃ 0. This gives a large time momentum evolution

equation of the form

〈p∗〉 = −2HCD∗

0t
∗ + 〈p∗〉0 , (6.45)

resulting in linear growth in momentum.

It is important to note how an initially isotropic distribution would evolve

in the case of large negative values of cross helicity (HC → −1), corresponding

to the greatest acceleration rates. The majority of particles will be acceler-

ated by the mechanism of equation (6.42), and then at some later time beam

along the direction of the guide magnetic field. However, the particles initially

travelling opposite to the direction of acceleration will be decelerated before

their direction of propagation reverses. These particles would not satisfy the

requirement of our model v ≫ vA for this turn-around period. We therefore

choose lower values of cross helicity (HC = −0.3) in our simulations. This de-

creases the amount of deceleration experienced and thus simplifies comparison

with the analytical predictions.

To summarise the analytical arguments, Schlickeiser and Shalchi (2008)

predict exponential growth of average momentum, assuming that momentum

diffusion and rate of change of average pitch angle can be neglected and that

the distribution is almost isotropic. We have obtained a correction to their

prediction in a particular case of isotropic scattering. However, in the case

of strong scattering, this correction is small. We have also given additional

solutions in the cases of momentum diffusion, deceleration and acceleration.

These predictions are now examined using a stochastic numerical treatment.
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6.4 Stochastic simulations of cosmic-ray par-

ticle acceleration

6.4.1 Numerical simulation

Our aim is to examine the validity of the analytical predictions of Section 6.3

by solving equations (6.29-6.31) using an explicit Euler-Maruyama integration

scheme (for a discussion see Higham., 2001). The code used is the same in

operation as that described in Section 5.4.2. Specifically we want to explore the

stochastic system in the following three cases: diffusive acceleration (HC = 0),

focused deceleration (HC > 0) and focused acceleration (HC < 0).

The parameters of the simulation are HC and D∗

0. A number of particles are

tracked by the code, each starting with coordinates z∗0 , p∗0 and µ0; however,

as there is no z∗ dependency in our equations, and we are only interested

in spatially averaged quantities, we can effectively ignore z∗. The particles

are assumed to have initial speed equal to the Alfvén speed (p∗0 = 1) and

to be isotropically distributed in pitch angle. This corresponds to the initial

distribution

f0(z
∗

0 , p
∗

0, µ0) = δ(z∗0) δ(p∗0 − 1) S(1 + µ0) S(1 − µ0),

where for simplicity, due to the linearity of the Fokker-Planck equation, we

have ignored the normalisation constant and we recall that S is the Heaviside

step function.

We take the non-relativistic condition v ≪ c to correspond to a non-

dimensional upper limit of p∗ = v/vA < 1000. For an Alfvén speed of

vA ≃ 5×106 cm s−1 this limit restricts speeds to v ≃ c/6, with a corresponding

relativistic Lorentz factor γ ≃ 1.01. A typical simulation may run for 30 − 60

Alfvén times without exceeding the relativistic limit, and averaged momentum

is measured at regular intervals.

As in Section 5.4 the time step is chosen to obey both the standard CFL

and diffusion time step restrictions (e.g. equations (5.42) and (5.43)), result-
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ing in the scale ∆t∗ ∼ 1/D∗

0. In practice the physical fidelity of the system is

checked by repeating the simulation with half the original timestep, until con-

sistency and convergence of solution is reached. We choose particle numbers to

maintain an adequate description of the distribution function, with numbers

of order 104 found to provide a satisfactory representation (see Figure 6.8).

Typically we use 50, 000 particles in the simulations presented below.

The stochastic nature of the simulation means that fluctuations in the

calculated temporal derivative are inevitable. To alleviate the effect of this

numerical artefact, a moving average smoothing algorithm (which averages

across 9 data points) is applied to the underlying stochastic data. The simu-

lated curves in Figures 6.2, 6.3, 6.6, 6.7 and 6.9 have been “smoothed” in this

manner; however, as repeating the data analysis with other filters has shown,

the results obtained are insensitive to the choice of algorithm.
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Figure 6.2: Comparison of simulation average momentum (Simulation) and the

momentum diffusion solution of equation (6.37) (Prediction) versus t∗. The

parameters are HC = 0 and D∗

0 = 10.



121

6.4.2 Zero cross helicity: momentum diffusion

Figure 6.2 shows evolution of average momentum in the case of zero cross he-

licity (HC = 0) with the diffusion parameter value of D∗

0 = 10, compared with

the momentum diffusion theoretical prediction of equation (6.37). Note that,

even with a smoothing algorithm applied to the underlying stochastic data,

fluctuations in the calculated temporal derivative are apparent. However, this

does not change the qualitative result: the theoretical line is followed closely

despite it being based on a number of simplifying assumptions, confirming the

momentum diffusion prediction (6.37).

6.4.3 Positive cross helicity: focused deceleration
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Figure 6.3: Comparison of simulation average momentum (Simulation) and the

momentum diffusion solution of equation (6.37) (Prediction) versus t∗. The

parameters are HC = 0.3 and D∗

0 = 10.

The case of HC > 0 corresponds to focused deceleration of the particles.

Figure 6.3 shows an early time comparison of a simulation run with the mo-
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Figure 6.4: Comparison of simulation average momentum (Simulation) and the

equilibrium solution of equation (6.38) (Prediction) versus t∗. The parameters

are the same as in Figure 6.3.

mentum diffusion prediction of equation (6.37) for the diffusion parameter

value of D∗

0 = 10. The cross helicity parameter was chosen to be HC = 0.3 for

demonstrative purposes; values approaching HC = 1 result in deceleration to

the point where the particle speed can become lower than the Alfvén speed,

which cannot be described by the model (see Section 6.3.2). While the initial

(t∗ < 2) agreement of the results with the momentum diffusion prediction is

very good, non-zero positive cross helicity soon acts to decelerate the particles.

This eventually results in an equilibrium state for the distribution. The close

agreement of the simulation average momentum (〈p∗〉 → 12.6) and the predic-

tion of equation (6.38) (〈p∗〉e ≃ 11) is shown in Figure 6.4. The transition time

scale from equation (6.39) is t∗tr ≃ 5, at which time 〈p∗〉 (t∗tr) ≃ 10. While this

estimate is based on the additional assumption that pure momentum diffusion

would continue until equilibrium is reached, it still gives a very good guide for

the time of transition.
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6.4.4 Negative cross helicity: focused acceleration
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Figure 6.5: Comparison of simulated average momentum (Simulation) and the

beaming solution of equation (6.45) (Prediction) versus t∗. The parameters are

HC = −0.3 and D∗

0 = 10.

Simulations with values of cross helicity approaching HC → −1 resulted in

a large proportion of particles being initially decelerated (see Section 6.3.4).

This imposes significant restrictions on the upper limit of the time step. Ad-

ditionally, the result of Schlickeiser and Shalchi assumes weak anisotropy; for

these reasons HC = −0.3 was chosen to provide the best opportunity to test

the analytical predictions. Variation of this value only resulted in a scale factor

difference, therefore we expect the behaviour for HC → −1 to be qualitatively

the same.

Figure 6.5 shows the average momentum of the particle distribution as it

evolves for the cross helicity value HC = −0.3, compared with the particle

beaming analytic prediction of equation (6.45). Note that after an initial

quasi-exponential acceleration phase (t∗ . 20) the average momentum increase
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Figure 6.6: Comparison of average momentum evolution (Simulation) with

the exponential focused acceleration solution of equation (6.42) (Prediction 1

- straight line) and the combined momentum diffusion and focused acceleration

solutions of equations (6.37) and (6.42) (Prediction 2). The parameters are

the same as in Figure 6.5.

becomes linear, with the simulation slope (d 〈p∗〉 /dt∗ ≃ 5.5) approaching the

predicted slope of equation (6.45) (d 〈p∗〉 /dt∗ = −2HCD∗

0 = 6). The transition

time prediction of equation (6.32) can be seen to be of the same order as the

time taken for the simulation to switch to particle beaming (t∗ac = 10 for

HC = −0.3). To examine the dependence on the diffusion parameter we

performed a similar run with D∗

0 = 30 and found the transition time to be

insensitive to D∗

0, consistent with equation (6.32). The measured acceleration

rates reinforced the beaming prediction of equation (6.45).

For the diffusion parameter value of D∗

0 = 10 we might expect to see

the exponential focused acceleration effect of equation (6.33) in the range

5 . 〈p∗〉 . 15. This is found, from the numerics, to roughly correspond to

the time interval 1 . t∗ . 5. Figure 6.6 shows the initial acceleration phase,
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Figure 6.7: Comparison of simulated −2HCD∗

0 〈µ〉 (Simulation) with the ex-

ponential focused acceleration solution of equation (6.42) (Prediction). The

parameters are the same as in Figure 6.5.

compared with the focused acceleration prediction of equation (6.42) and the

combined results of momentum diffusion (6.37) and focused acceleration (6.42).

Obviously momentum diffusion has a large effect on the distribution, with the

small time (t∗ < 3) evolution well described by the combined effects of mo-

mentum diffusion and focused acceleration. Within the approximate interval

where focused acceleration should be evident it is clear that this effect alone

is not sufficient to describe the behaviour.

To pin down the focused acceleration mechanism we attempted to isolate its

effect. The focused acceleration term of equation (6.36), −2HCD∗

0 〈µ〉, is cal-

culated independently of the momentum diffusion term (as in equation (6.41))

for the diffusion parameter value of D∗

0 = 10, and then integrated numerically

to give 〈p∗〉 (Figure 6.7). This expedient is not completely satisfactory, as re-

moving the momentum diffusion term from the momentum equation will not

stop similar effects being present in the pitch angle equation (6.35). For this
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Figure 6.8: Pitch angle distribution (number of particles vs pitch angle cosine

µ) at times t = 0, 2, 4, 60. The parameters are the same as in Figure 6.5 and

the particles are distributed across 41 bins of uniform width.

reason we would expect the prediction of exponential growth (equation (6.42))

to be only approximately reached and indeed this appears to be the case, as

evidenced by Figure 6.7.

Figure 6.8 illustrates how quickly the distribution becomes anisotropic. It

shows the pitch angle distribution at times t∗ = 0, 5, 10 and 60. By t∗ = 5

we already have more than a factor of four difference between the number

of forward and backward moving particles. By t∗ = 10 this has grown to a

factor of ten and by the end of the simulation effectively all of the particles

are aligned to the positive z direction and 〈µ〉 ≃ 1.

Figure 6.9 shows the complete evolution. The initial acceleration phase

(t∗ < 3), described by the combined effects of momentum diffusion (6.37) and

exponential focused acceleration (6.42), rapidly gives way to a transitional

phase (3 < t∗ < 20) as the distribution becomes anisotropic. The particles then

continue to align themselves to the field, resulting in behaviour approaching
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Figure 6.9: Comparison of average momentum evolution (Simulation) with the

combined momentum and exponential focused acceleration solutions of equa-

tions (6.37) and (6.42) (Prediction 1), the beaming solution of equation (6.45)

(Prediction 2) and the exponential focused acceleration solution of equation

(6.42) (Prediction 3). The parameters are the same as in Figure 6.5.

the beaming solution of equation (6.45).

To sum up, the theory of Schlickeiser and Shalchi (2008) gives an accurate

estimate for the focused acceleration rate when two conditions are satisfied.

First, t∗ (and hence p∗) is large enough to neglect momentum diffusion. Sec-

ond, t∗ is small enough to neglect anisotropy. We established that the second

condition is very restrictive, since the anisotropisation time scale is of the same

order as the acceleration time scale, and so the exponential growth in 〈p∗〉 can

only occur for a few Alfvén times. Focused acceleration induces particles to

align to the magnetic field, resulting in beaming behaviour and a much slower

linear increase in average momentum. Finally, in considering the case of fo-

cused deceleration (HCL > 0), we found reasonable quantitative agreement of

the extended theory with the numerics. This reinforces the validity of both



128

our stochastic analytical and numerical treatments of the focused acceleration

model.

6.5 Discussion and conclusions

The mechanism of acceleration via adiabatic focusing as described by the

Fokker-Planck equation has been proposed by Schlickeiser and Shalchi (2008).

In particular, the mechanism has been identified as having several potential

astrophysical applications, including explaining the cosmic-ray distribution in

the heliospheric termination shock region (Litvinenko and Schlickeiser, 2011)

and in the interstellar medium (Schlickeiser, 2009). Notably, Schlickeiser and

Shalchi (2008) derived the focused acceleration term for particle acceleration

and gave a prediction for an acceleration time scale (equation (6.32)) using a

diffusion approximation. In the case where momentum diffusion is neglected

a simplified treatment predicts an exponential increase in average momentum

(Litvinenko and Schlickeiser, 2011).

In this chapter we examined the mechanism of focused acceleration in two

ways. Firstly, by using analytic arguments, based on representing the Fokker-

Planck equation as a system of stochastic equations, we extended the theory of

focused acceleration of cosmic-ray particles in the case of isotropic scattering

and vanishing net magnetic helicity. Secondly we examined the veracity of

the analytic predictions by computing the distribution function directly, us-

ing detailed numerical simulations. We again note that stochastic differential

equations can be more convenient to work with than the original Fokker-Planck

equation.

Our analysis shows that there is an interplay of momentum diffusion and

focused acceleration, especially at small times, that cannot easily be separated

(Figure 6.6). Momentum diffusion provides a significant effect over the range

where focused acceleration might be expected to be the dominant mechanism.

Additionally, we demonstrated the limitations of assuming a near isotropic
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pitch angle distribution (e.g. Litvinenko and Schlickeiser, 2011). Acceleration

inevitably leads to strong anisotropy: the acceleration timescale of Schlick-

eiser and Shalchi is found to be of the same order as the timescale leading to

anisotropy. Effectively this means that any exponential type growth in mo-

mentum will take place over a short period of a few Alfvén times. Later on

the particle distribution will align to the guide magnetic field, resulting in a

slower, linear, increase in average momentum (equation (6.45)). Within the

significant limitations of the analysis presented in Section 6.3, our numerical

results show reasonable quantitative agreement with the analytical predictions

(e.g. Figure 6.4).

Our results lead us to speculate that, in order for the mechanism of Schlick-

eiser and Shalchi (2008) to be viable in astrophysical situations, some addi-

tional strong pitch angle scattering mechanism must be present to prevent the

distribution from becoming anisotropic. On physical grounds it is reasonable

to expect that the beamed particle distribution will quickly become unstable,

creating waves that can scatter the particles. The Fokker-Planck equation

would need to be supplemented with a wave equation, and the system solved

self-consistently, to describe the resultant wave-particle interaction.
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Chapter 7

Conclusions

7.1 Summary

In this thesis we set out to explore various physical phenomena of the solar

atmosphere. In particular, we have focused our attention on the areas of solar

flare energy release and particle acceleration.

Viscous energy dissipation has largely been overlooked as a substantial

contributor to flare energy release. However, several studies have shown that

viscous dissipation has the potential to exceed resistive dissipation in the active

corona (e.g. Hollweg, 1986; Craig and Litvinenko, 2009).

An important issue with existing viscous models is that energy dissipa-

tion scalings predicted by simple, steady-state, scaling arguments are different

depending on the assumed plasma flow profile. If a stagnation point flow pro-

file is considered in Sweet-Parker style scaling arguments then, regardless of

whether classical or the more physically relevant Braginskii (1965) ion parallel

viscosity is included, a current sheet width scale consistent with Sweet-Parker

(xs ≃ (η/Bs)
1/2) is achieved (Craig and Litvinenko, 2010). Here the peak

sheet magnetic field strength Bs is a parameter of order one. The above cur-

rent sheet scale leads to the resistive dissipation scaling Wη ≃ η1/2B
5/2
s and,

more significantly, constant (with resistivity) viscous dissipation Wν ≃ νB2
s .

It is important to note that optimal resistive dissipation occurs for Bs ≃ 1; if



132

the peak sheet magnetic field is allowed to build up (Bs > 1) then it will feed

back on the plasma flow and stall the reconnection (saturation). The ratio of

the dissipation rates

Wν

Wη

≃ ν

B
1/2
s η1/2

, (7.1)

predicts that viscous dissipation will dominate resistive dissipation for ν >

η1/2. Considering that the viscous coefficient ν is up to ten orders of magnitude

larger than the classical resistive coefficient η in the corona (Spitzer, 1962;

Priest, 1982), equation (7.1) suggests that viscous dissipation can account for

a significant fraction of the energy release of a solar flare. These scalings are

backed up by existing exact solutions of the steady-state MHD equations in

two and three dimensions (Sections 3.2.2 and 3.2.3) and recent 3D stagnation

point time-dependent simulations (Craig and Litvinenko, 2009).

However, if a uniform Sweet-Parker style flow profile is assumed then a

visco-resistive scale for the sheet width (xs ∼ (ην)1/4) is the result. This leads

to the significantly slower dissipation rates

Wη ∼ Wν ∼ η3/4ν−1/4. (7.2)

This visco-resistive scale has been found in time-dependent numerical simula-

tions of tokamaks (Park et al., 1984) and 2D X-point collapse (Craig et al.,

2005; Craig, 2010).

To clarify this issue and generally examine the properties of a viscous re-

connecting current sheet, we performed a series of time-dependent planar sim-

ulations of reconnection that gave well-defined symmetric current layers in

Chapter 3. A defining feature of the model is that the current sheets are sup-

ported by large scale vortical flows. Current layer thickness (xs), inflow (vin)

and outflow (vout) speeds, and viscous and resistive dissipation rates were cal-

culated for simulations across a range of resistivities.

To robustly explore the significance of viscous effects, the amplitude of

the magnetic disturbance was scaled to ensure optimal resistive dissipation

rates (Bs ≃ 1). To provide a check on the results a control simulation was
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performed, where the viscous parameter was scaled with resistivity to approx-

imate a purely resistive situation. Then, for the main results, the viscous

parameter was held fixed at a physically-based value using both the classi-

cal and Braginskii viscosity forms. Additionally, some exploratory runs for a

sheared current layer were performed.

Our results were consistent with stagnation point flow profile scalings - we

did not find any evidence of a visco-resistive scale. Somewhat surprisingly, the

dissipation relation (7.1) was found to hold good regardless of the form of the

viscosity used.

The scaling arguments and exact solutions detailed in Chapter 3 were de-

rived assuming “head-on” reconnection in an “open geometry” (Craig and

Litvinenko, 2010). Furthermore, the simulations of Section 3.3 were designed

to give well defined, symmetrical, current layers with which the analytical

models could be readily compared. In general, however, reconnecting coronal

plasmas are likely to be highly non-uniform; it is not clear to what extent

the relation (7.1) will hold. With this in mind, in Chapter 4, we endeavoured

to explore viscous effects using a more general initial condition - a modified

Orszag–Tang vortex (Orszag and Tang, 1979; Heerikhuisen et al., 2000). De-

spite the less restrictive initial condition, the simulations produced long thin

current sheets supported by stagnation point flows. To explore the applicabil-

ity of relation (7.1) we performed a set of simulations where the amplitude of

the magnetic disturbance was again scaled to ensure optimal resistive dissipa-

tion rates (Bs ≃ 1). Our results reinforced the results of the previous chapter

- viscous dissipation was found to dominate resistive dissipation for ν ≫ η1/2.

No evidence was found of the visco-resistive scale.

We then turned to the question of the effect of saturation on dissipation

scalings. Unlike our previous simulations, we no longer scaled the amplitude

of the magnetic disturbance. As a result the sheet magnetic field was able to

build up and feed back on the velocity field (Bs > 1). As realistic reconnec-

tion regions are unlikely to have their sheet strengths closely matched to the
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external plasma properties, this approach provided a more physically robust

test of the dissipation rate scaling (7.1).

Again, viscous dissipation was found to dominate resistive dissipation in

the physically realistic limit ν ≫ η1/2. While the feedback of the current sheet

on the driving flow resulted in decreased resistive dissipation (and therefore

small reconnection rates), the viscous dissipation rate increased. Relation (7.1)

was again found to be a good predictor of energy release behaviour.

Unlike traditional models of resistive dissipation, where energy in the mag-

netic field can only be liberated by reconnection, our model draws significant

energy from the velocity field that supports the reconnection. Overall, our

results suggest that (7.1) provides a conservative limit for energy dissipation

from current sheet reconnection driven by stagnation point flows. Further-

more, viscous energy dissipation is likely to make a significant contribution to

the total solar flare energy budget.

Chapter 5 began our examination of plasma particle acceleration and trans-

port. Accelerated particle distributions are common throughout the universe

(e.g. Ackermann et al., 2013) and are a natural consequence of solar flares

(Priest and Forbes, 2000). To model particle acceleration we used the Fokker-

Planck equation (Fokker, 1914), which models both particle advection and

diffusion. One of the key techniques we used was the expression of the Fokker-

Planck equation as an equivalent set of stochastic equations.

We numerically examined the equivalence of the Fokker-Planck and the

stochastic methods in Section 5.4 using a simple turbulent particle scattering

model. Using several different approaches we then examined electron transport

in a coronal loop. An existing result was that particle distributions with no

initial dispersion lead to a Hard X-Ray emission rate R with a dependence

on background plasma density n of R ∝ n2/3 (Conway et al., 1998). We

generalised this to non-zero dispersion in the initial distribution and found

that Hard X-Ray emission rates are directly proportional to density (R ∝ n).

Physically, this result seems to be indicative of what we would expect from
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binary particle interactions - given an accelerated distribution, the emission

rate should purely depend on the number of particles with which the electrons

can collide.

In Chapter 6 we addressed the acceleration of anomalous cosmic-rays. In

our model, ionised particles are accelerated via the dual effects of diffusive

interactions with small-scale turbulent magnetic fields and adiabatic focusing

due to the spatially varying guide magnetic field. The motivation for this

chapter was provided by the analysis of Schlickeiser and Shalchi (2008) who

gave a prediction for the (non-dimensional) acceleration timescale

t∗ac = − 3

HC

, (7.3)

where the cross helicity HC indicates the net strength and direction of the

turbulent magnetic waves. If, additionally, momentum diffusion is neglected

then this results in exponential growth in averaged particle momentum (〈p∗〉)

1

〈p∗〉
d 〈p∗〉
dt∗

= −HC

3
. (7.4)

By expressing the Fokker-Planck equation as a system of stochastic equa-

tions we were able to give predictions for averaged momentum evolution in

the cases of diffusive acceleration (HC = 0), focused deceleration (HC > 0)

and focused acceleration (HC < 0). In particular, we obtained a correction to

equation (7.4)

1

〈p∗〉
d 〈p∗〉
dt∗

= D∗

0

(

(

1 − 2HC

3D∗

0

)1/2

− 1

)

, (7.5)

where D∗

0 represents the scattering strength. Equation (7.4) is recovered for

strong scattering (D∗

0 large). These results were then used to interpret numer-

ical simulations of the various cases.

Two important points were evident from our study. The first was that

the effect of momentum diffusion cannot be disregarded in the initial stages

of acceleration - it provides a significant contribution during the times when

focused acceleration might be expected to dominate. The second point was

that the distribution can quickly become anisotropic. In the case of focused
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acceleration this results in slower, linear, growth in momentum. For focused

acceleration to be a viable particle acceleration mechanism, therefore, some

additional strong scattering mechanism must be present to prevent the distri-

bution becoming anisotropic.

7.2 Suggestions for further work

The work of this thesis could be extended in several areas. To better under-

stand the effects of saturation it could be informative to return to the head-on

simulation of Chapter 3. By allowing the sheet to saturate we could better ex-

amine the properties of the current layer, in addition to the energy dissipation

rates.

The reconnection simulations could be extended to include axial fields

(Craig and Litvinenko, 2007, performed this type of calculation in an X-point

geometry) for both forms of the viscosity. We might expect to see signifi-

cant differences in more than two dimensions due to the anisotropy of the

Braginskii tensor; depending on the orientation of the merging fields, Bragin-

skii viscosity may have a negligible effect (Craig and Litvinenko, 2009). Fully

three dimensional studies are also obviously an important next step. Recent

examinations of fan (Craig and Litvinenko, 2009) and spine (Craig and Lopez,

2013) reconnecting systems have shown strong viscous dissipation rates, even

in the presence of weak reconnection. Some exploratory work on the effect of

saturation on fully 3D current layers could be useful.

The addition of turbulent or compressible effects could have significant

effect on dissipation scalings, so the inclusion of these in theory and simulations

would be of interest. From an observational standpoint, identifying whether

large-scale non-uniform flows are a signature of flaring plasmas would help

lend weight to the idea that viscous dissipation is a significant contributor in

solar flare energy release.

Finally, the work of Chapter 6 lends itself to extension in a couple of ways.
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An anisotropic particle distribution may quickly become unstable, creating

waves that would cause further scattering. Supplementing the Fokker-Planck

equation with a wave equation and solving the system self-consistently may

therefore clarify whether focused acceleration is a viable mechanism for particle

acceleration. In addition, generalising to non-isotropic pitch-angle scattering,

non-isotropic initial distributions, or non-vanishing net magnetic helicity may

have significant impact on acceleration rates. As a general comment the ex-

pression of the Fokker-Planck equation as a series of stochastic equations is

likely to be useful in many physical situations where a Fokker-Planck descrip-

tion is appropriate; stochastic equations allow for relatively simple calcula-

tion of moment equations that may not otherwise be obtainable from the full

Fokker-Planck equation, and can be very accessible numerically.
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Appendix A

Second order spherical polar

partial derivatives

Second order Cartesian momentum (px, py, pz) partial derivatives in terms of

spherical polars (p, µ, φ) are given by

∂2

∂px
2

= (1 − µ2) cos2 φ
∂2

∂p2
+

µ2 cos2 φ + sin2 φ

p

∂

∂p

+
µ2(1 − µ2) cos2 φ

p2

∂2

∂µ2
+

µ(3 cos2 φ(1 − µ2) − 1)

p2

∂

∂µ

+
sin2 φ

p2(1 − µ2)

∂2

∂φ2
+

2 sin φ cos φ
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∂
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−2µ(1 − µ2) cos2 φ
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∂2

∂µ∂p
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2µ sin φ cos φ

p2
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−2 sin φ cos φ

p

∂2

∂φ∂p
, (A.1)
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µ2 sin2 φ + cos2 φ

p

∂

∂p

+
µ2(1 − µ2) sin2 φ
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p
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, (A.3)
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