
Progger: An Efficient, Tamper-Evident Kernel-Space
Logger for Cloud Data Provenance Tracking

Ryan K. L. Ko
Cyber Security Lab

The University of Waikato
Hamilton, New Zealand

Email: ryan@waikato.ac.nz

Mark A. Will
Cyber Security Lab

The University of Waikato
Hamilton, New Zealand

Email: maw41@waikato.ac.nz

Abstract—Cloud data provenance, or “what has happened to
my data in the cloud”, is a critical data security component which
addresses pressing data accountability and data governance issues
in cloud computing systems. In this paper, we present Progger
(Provenance Logger), a kernel-space logger which potentially
empowers all cloud stakeholders to trace their data. Logging from
the kernel space empowers security analysts to collect provenance
from the lowest possible atomic data actions, and enables several
higher-level tools to be built for effective end-to-end tracking of
data provenance. Within the last few years, there has been an
increasing number of proposed kernel space provenance tools but
they faced several critical data security and integrity problems.
Some of these prior tools’ limitations include (1) the inability
to provide log tamper-evidence and prevention of fake/ manual
entries, (2) accurate and granular timestamp synchronisation
across several machines, (3) log space requirements and growth,
and (4) the efficient logging of root usage of the system. Progger
has resolved all these critical issues, and as such, provides high
assurance of data security and data activity audit. With this in
mind, the paper will discuss these elements of high-assurance
cloud data provenance, describe the design of Progger and its
efficiency, and present compelling results which paves the way for
Progger being a foundation tool used for data activity tracking
across all cloud systems.

Index Terms—Cloud Computing; Data Provenance; Data Se-
curity; Accountability; Tamper-evident logging; Time Synchro-
nisation.

I. INTRODUCTION

Data is arguably the most important asset in cloud com-
puting [1], [2]. This holds especially true because the nature
of cloud computing’s business model requires us to rely on
a third party to process, store or manage our data. Such a
reliance also involves a reliance on a trust relationship. This
trust relationship can be enhanced by an increased level of
confidence. One clear obstacle to a high-level of confidence in
a third-party cloud computing service provider is the inability
for cloud users to know “what has happened to my data in your
cloud?” [3], [4], [5]. This question in itself, embodies the gist
of the problem this paper is attempting to solve – cloud data
provenance. We define cloud data provenance as the meta-data
describing the derivation history of data in a cloud computing
environment. We argue that provenance information should not
only be collected from the most atomic data activities in the
kernel, but also maintain a high level of log data integrity, time
accuracy and efficient space requirements. In Section II, we

will review related work and paradigms and discuss why their
gaps present a strong case for the development of Progger.

II. RELATED WORK

A. Missing the Point – Traditional System-Centric Tools

Typically, there are system-centric logs and there are data-
centric logs [3]. Many existing cloud systems are deploying
out-of-date, system-centric loggers which log events accessing
or utilising systems, and were useful for a ‘perimeter defence’
security mindset. However, they do not treat data as a first-
class citizen and are unable to track each datum’s life cycle
(which is relevant to today’s needs). Clearly a rethink is needed
in terms of logging the evolution of data in systems such as
clouds. Current system-centric logs are insufficient to address
the end-to-end tracking needs of data across several systems
within and outside of a cloud [6] due to the following reasons.

Firstly, current monitoring tools [7], [8], [9] (e.g. HyTrust
[10]) are only monitoring utilisation and performance, over-
looking the flow of data in the cloud. As such, users concerns
such as “where is my data in your cloud?” or “who has
touched my data?” are not addressed directly [1]. Secondly,
while most clouds adopt file-integrity checking systems (FICS)
(e.g. TripWire [11]) to detect file intrusions, a serious loophole
exists. If a file was accessed n times, only the nth change is
reflected in FICSs while the provenance of the 1st to (n-1)th

file intrusions are missed out.

B. Critical Gaps Identified in Related Provenance Techniques

To our best knowledge, Hewlett-Packard TrustCloud’s [5]
Flogger [12] was the first data-centric logger for cloud
data provenance tracking. Flogger was eventually integrated
with HP ArcSight’s SIEM (Security Information and Event
Management) tools to detect data changes. While it was
a breakthrough and much more effective way of logging
provenance compared to file-system dependent PASS [13] or
LASAGNE [14] and earlier data provenance works prior to the
notion of cloud computing [15], [16], [17], [18], [19], some
limitations exist. Improvements to the provenance concepts
Flogger introduced were made. For example, DataPROVE
[20] was proposed to cater to the causality issue identified
and S2Logger [21] was proposed to solve the scalability and
visualisation challenges in end-to-end data activity tracking

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Progger
Kernel Module

Printk: Kernel
Circular Buffer

Rsyslog

VM 1 Progger Log

Printk: Kernel
Circular Buffer

Progger
Kernel Module

Rsyslog

VM N
Progger Log

Progger
Kernel Module

Printk: Kernel
Circular Buffer

Phy Progger Log
Collector

Physical Machine

Virtual Machine 1 Virtual Machine N. . .

Fig. 1. Progger deployment in the Cloud.

in the cloud. However, all of them still were unable to
maintain the authenticity and integrity of provenance logs
(e.g. ensuring tamper-evident features, restricting the chance
of fake/ malicious entries to a very minute percentage). They
were also unable to ensure that timestamps for provenance
logs collected from several different machines still observe a
causal integrity when the logs are joined together in a database.
For example, the above techniques, by themselves, are unable
to assure the integrity of causal sequences such as “event A
(on machine 1) → event B (machine 2) → event C (machine
1)”. It is easy for a microsecond difference in the timestamp
to disrupt the integrity of the order of the log entries when
the logs from several machines are combined together. Lastly,
they did not ensure that the logs are recorded with minimal
clutter and wastage of storage sizes.

III. PROGGER - DESIGN OVERVIEW &
KEY BREAKTHROUGHS

These gaps established a strong need to release a brand-
new tool, Progger (Provenance Logger), which inherently
addressed these gaps – setting the stage for high assurance data
accountability in clouds and a proliferation of tamper-evident,
time-accurate and space efficient data provenance loggers and
analysis tools.

A. Basic Architecture

While Progger is built as a Linux kernel module which is
inserted into every machine within the cloud infrastructure,
both virtual and physical, its concepts can also be easily
adopted into other operating systems such as the Unix or
Windows environment.

For a VM, the Progger log file can be stored on the virtual
disk, or stored on the physical host using a virtual serial device
as shown in Figure 1. Because of the rate of growth of the log
file, storing it on the VM is not ideal. Storing on the physical
machine allows for easier collection and size trimming.

When loaded, the module modifies the addresses of certain
system calls in the system call table allowing Progger to create
logs when these calls are accessed. The base address of the
system call table varies with each different kernel version, but
it can be found by searching /boot/System.map for the system
call table entry. Progger finds this address dynamically on
insertion. By default the kernel does not allow the system call

table to be modified, so page protection needs to be disabled
before Progger saves the original address and adds the custom
system calls; after which, page protection is enabled again.
Temporally disabling page protection can be seen as a security
risk, even though it is for a very short period of time. To
reduce this risk, local interrupts can be disabled while the
page protection is disabled, which minimises the chance of
another program being able to modify the table in the very
short time period.

In order for Progger to create logs, a technique was required
for the kernel module to write log data to a file. The simplest
would be to open the file directory from within the kernel,
however this is not recommended practice [22]. There are file
systems (e.g. /proc/) which allow for direct kernel access, but
they are designed for small configurations or statistics, and not
for log files. Also for VMs, this would mean the log would
have to be on the virtual disk and not piped through to the
physical machine.

A common way of dealing with this problem is to have
the kernel pass the information to a user-space process which
handles the log file access. There are many ways of achieving
this, most of which involves having the kernel copy data to a
buffer which can be then be accessed by a user-space process.
The technique chosen for Progger was printk because it is
robust, i.e. the kernel doesn’t directly perform file access, and
is a default logging mechanism for the kernel [23]. It also
performs well with large outputs because it is copying memory
to the kernel’s built-in circular log buffer and maintains
relatively constant performance (this is futher discussed in the
Section IV). This is an important attribute for Progger because
it records all data being written and read.

When Progger uses printk, a low priority is used so they are
not shown on screen, and with the log entries by default going
into the standard log file for the system. To allow Progger to
have its own log file, rsyslog was used because it allows kernel
log messages to be filtered into files, and many Linux distros
use rsyslog as their default kernel logger daemon. Rsyslog
also handles the timestamp insertion for each entry into the
Progger log file which keeps the events ordered by time. Other
information can also be added to Progger logs by using rsyslog
to redirect certain events, such as IP address changes.

B. Addressed the Time Synchronisation Issue

Within a cloud environment, tracking an event across mul-
tiple machines relies on the log files to contain accurate
timestamps. This is so that they can be joined together to
replicate the actual sequence of events. However keeping the
system time on a virtual machine in sync with the rest of the
cloud is a challenge. This is because virtual machines share
the resources of the physical machine and therefore do not
have knowledge of the period where they were not running.
Operating systems typically keep time by counting ticks,
which are from a hardware interrupt, or via a tickless approach
where some hardware device tracks the time from when the
system booted. Tickless timekeeping is easier to support within
the virtual infrastructure however can still experience drift.

There are a few solutions to this problem, such as reading
the time periodically from the physical machine to correct
drift. However it becomes important to make sure this system
does not ‘travel back in time’ during the bid to correct drift.
Often, the Virtual Infrastructure has mechanisms in place to
try and keep VMs in sync with the physical machine, e.g.
VMware’s tools provide a synchronization feature [24]. If this
is not reliable enough, the other main solution is to use the Net-
work Time Protocol (NTP). For a large virtual infrastructure,
a high performance NTP server would be required to be able
to serve every machine, especially if the VMs are requesting
time frequently to reduce the amount of drift experienced.

This issue will differ with each cloud environment and the
severity will vary depending on each day’s load. Therefore,
for Progger to handle time drift by itself would be incred-
ibly difficult. However it does provide a means for joining
logs together and correctly without disrupting time sequences
within the joined log file. This is possible because Progger runs
on every machine, meaning if an event occurs between two
machines in the cloud infrastructure, the machines time may
differ by minutes. But because Progger logs other events such
as the creation of sockets and the acceptance of connections,
analysing these entries in the two machines log files allows
the time difference to be known and eventually corrected,
during the joining of VM log files to a physical machines.
The physical machines’ log times should be accurate so that
they can be used to correct time as well. It is important to
note that it is recommended that the software processing the
Progger logs handles this, not Progger.

C. Reducing Clutter and Log Sizes

The currently implemented system calls and their basic
definitions can be found in Figure 2 along with their output
log formats. The size of each log entry has been kept to a
minimum and further optimisations could be made to make
them even smaller if desired. For example, once the informa-
tion about a process has been logged, it would be possible to
just log the data that is specific to the type of call. Progger
has kept the logs simplistic for easier initial analysis, while
maintaining a relatively smaller log size.

D. Preventing Log Tampering

Preventing log tampering is another important feature that
needs to be implemented for a security logger such as Progger.
This is a very complex and difficult requirement. By default,
access to the log file requires root privileges. However, this
does not stop a user with sudo access from tampering with
the log. Progger stops log tampering by only allowing the
rsyslog process access to the file within the system calls
themselves. Therefore, if a user tries to open the log file,
Progger will return a permission error even if they actually
do have permissions. For Progger to know if rsyslog is trying
to access the log file, there are two methods which can be used:
(1) pass the process ID of rsyslog to Progger on insertion, or
(2) check the process name. Passing the process ID is more
secure because another process can be also named ‘rsyslog’.

Because the log file on a VM is actually a pipe to the
physical machine, the log can still be read by some analyser
or collector process. For the physical machine’s log file, the
analyser/collector process ID would also have to be passed to
Progger on insertion. It is still possible for a malicious user to
kill this collector process and spawn a process with the same
process ID as the collector had. However, this is extremely
unlikely. If Progger wanted to protect against this attack, it
would have to prevent the termination of the collect process
ID, for example by intercepting the kill system call. However,
we acknowledge that adding fake entries into the Progger log
is still possible with this method by a user (with superuser
access) creating and inserting another kernel module. This
other module can call the printk function with the Progger tag
at the start of the output, eventually leading to it being used
by rsyslog to write to the Progger log file instead of a generic
one. Currently Progger cannot prevent this due to performance
or implementation issues. For example one solution would
be to use the write system call to check that the data going
into the Progger file came from Progger itself, however this
would dramatically impact performance. It is also important
to realise that such an ability to insert a kernel module would
have also shown that the root of the machine has already been
compromised, i.e. leaving the owner of the system with not
much further options.

Another solution would be to sign the entries but this would
make Progger harder to setup and maintain. This translates to
a need to manage all the signatures for all entries on every
machine. Alternatively, log entry values can be used to create
a hash, thus ‘signing’ the entry. Unfortunately this would
not stop entries being added because Progger is open source,
making it easy to find out how the hash is calculated. There is,
however, a way around this problem, instead of outputting the
current entries signature, output the previous entries signature,
or create a signature using a hash chaining approach, where
the current signature contains a cryptographic digest of the
previous log entry [25], [26].

To make both techniques more secure, instead of using the
previous entries’ signature, we use the previous signature of
the last entry with the same operation, e.g. an ‘open’ system
call entry would include the signature of the last open entry.
This technique makes it very hard to change or add a log
entry because to get the information needed to generate the
signature of the previous entry, the Progger log file needs to
be read, and access to it is blocked. Even if the malicious
user knew the correct signature, say from accessing memory
directly, when Progger outputs more log entries, a log entry
will have the same signature as the malicious entry as shown in
Figure 3, allowing the collector/analyser to detect tampering.
If only one entry was added, it would be easy to tell which was
the malicious entry, therefore the malicious user would have
to be either constantly adding entries to the log so that it’s
not possible to tell which branch is fake, or editing memory
directly to correct the signature of the next log entry that
has the same operation type. Even then, if hash chaining
was used, the malicious user would have to be constantly

System Call Description Log Format
NR open Opening and creating files. Type,User,PID,PPID,SID,PSID,Program,File,WD,Flags,Mode,FD
NR close Closing a file descriptor. Type,User,PID,PPID,SID,PSID,FD
NR rename Rename a file. Type,User,PID,PPID,SID,PSID,Program,OldFile,NewFile,Path
NR unlink Remove a file. Type,User,PID,PPID,SID,PSID,Program,File,Path)
NR unlinkat Remove a file. Type,User,PID,PPID,SID,PSID,Program,File,Path,DirFD,Flags
NR read Reading data from a file descriptor. Type,User,PID,PPID,SID,PSID,FD,Offset,HexData
NR write Writing data to a file descriptor. Type,User,PID,PPID,SID,PSID,FD,Offset,HexData
NR pwrite64 Writing data to a file descriptor with an offset. Type,User,PID,PPID,SID,PSID,FD,Offset,HexData
NR dup Duplicate a file descriptor. Type,User,PID,PPID,SID,PSID,FD,FD
NR dup2 Duplicate a file descriptor. Type,User,PID,PPID,SID,PSID,FD,FD
NR mkdir Create a directory. Type,User,PID,PPID,SID,PSID,Name,Path,Mode
NR rmdir Remove a directory. Type,User,PID,PPID,SID,PSID,Name,Path
NR symlink Create a symbolic link. Type,User,PID,PPID,SID,PSID,Path1,Path2,WD
NR link Link a file to an existing file. Type,User,PID,PPID,SID,PSID,Path1,Path2,WD
NR linkat Link a file to an existing file. Type,User,PID,PPID,SID,PSID,Path1,Path2,Dir1,Dir2,Flags
NR chown Change file owner and group. Type,User,PID,PPID,SID,PSID,Program,File,Owner,Group
NR fchown Change file owner and group. Type,User,PID,PPID,SID,PSID,Program,FD,Owner,Group
NR lchown Change file owner and group. Type,User,PID,PPID,SID,PSID,Program,File,Owner,Group
NR fchownat Change file owner and group. Type,User,PID,PPID,SID,PSID,Program,File,DirFD,Owner,Group,Flags)
NR chmod Change file permissions. Type,User,PID,PPID,SID,PSID,Program,File,Mode
NR fchmod Change file permissions. Type,User,PID,PPID,SID,PSID,Program,File,Mode
NR fchmodat Change file permissions. Type,User,PID,PPID,SID,PSID,Program,File,DirFD,Mode,Flags
NR sendfile Transfer data between two file descriptors. Type,User,PID,PPID,SID,PSID,OutFD,InFD,Offset,Count
NR socket Create a socket. Type,User,PID,PPID,SID,PSID,Program,SockFD,sType,sProtocol,sFamily
NR connect Connect to a remote host. Type,User,PID,PPID,SID,PSID,SockFD,IP,Port
NR accept New socket from incoming connection. Type,User,PID,PPID,SID,PSID,SockFD,IP,Port
NR sendto Transmit a message on a socket. Type,User,PID,PPID,SID,PSID,SockFD,Flags,Len,DestIP,HexData
NR recvfrom Receive a message from a socket. Type,User,PID,PPID,SID,PSID,SockFD,Flags,Len,DestIP,HexData
NR sendmsg Transmit a message on a socket. Type,User,PID,PPID,SID,PSID,SockFD,Flags,Len,HexData
NR recvmsg Receive a message from a socket. Type,User,PID,PPID,SID,PSID,SockFD,Flags,Len,HexData
NR pipe Data channel between two processes. Type,User,PID,PPID,SID,PSID,FDRead,FDWrite,Flags
NR pipe2 Data channel between two processes. Type,User,PID,PPID,SID,PSID,FDRead,FDWrite,Flags

Fig. 2. System Calls implemented by Progger.

fixing the signatures before rsyslog outputted them, or edit
the Progger processes memory to change the variable were the
previous entries signature is stored to make Progger output the
malicious signature branch.

Finally once root is compromised, it is very difficult to
100% guarantee that the log has not been altered. The pro-
posed techniques make it very hard to tamper with logs, but
with the right access and skill level, it is still possible.

Open 1, sign(Open 0)

Open 2, sign(Open 1)

Open 3 sign(Open 2) Open 3 sign(Open 2)

Open 4 sign(Open 3)

Fig. 3. Example of a malicious log entry with signing of the last entry.
E. Logging Root Usage

Logging the data actions and actual identities of the users
running the sudo command is very important for keeping track
of all users data. When a logged system call is called via a
sudo, it is usually recognised as root, not the real user. This
is a problem when tracking access to files and data, because
when analysing the logs we need to know who was running
with root privileges.

There are a few solutions to solving this problem. One
would be a custom version of the sudo program which would
be able to log the real user and information on the process
being executed, and using the default Linux authentication log.
For example. Red Hat based systems’ /var/log/secure contains
the authentication logs and tracks the user and command that
sudo executed.

Progger takes a different approach by logging when the
user initially runs the sudo program, because sudo will open
supporting files like /etc/passwd. This allows Progger to log
if a user runs the sudo command. However it then needs to
know what operations where performed when the real user
was elevated to root privileges. Progger accomplishes this by
logging the current tasks session, which is unique for each
user login and will remain the same for the duration of the
session. This means that if multiple users were running sudo
commands at the same time, the Progger logs still show which
root action belongs to which user. The Session ID also allows
Progger to keep track of a user if they are logged into the
system multiple times. For example if they are connected to
a machine twice using ssh, Progger can differentiate between
the two connections.

IV. PERFORMANCE

(All performance results were recorded on a VM with 2 x
2.6GHz Intel Xeon E312xx (Sandy Bridge) cores, 4GB RAM,
8GB harddisk with 27kB read/s and 4kB write/s.)

If any generic logger logged all the operations of the root
user, the system may become very slow and unresponsive.
Therefore in order for Progger to log all sudo operations
performed by a user, it checks the effective user id of the
current tasks session to see if it is a real user or root. This
allows all actions of the user to be logged, while not logging
the systems root actions to maintain performance.

In Progger’s logging of data system calls, extra operations
are performed every time the system call is used, which will
impact the performance of the system. Thus logging code for
each system call needs to be kept at a minimum, but should
still be able to dump all the required information. However
the code collecting the data is not the main overhead, it is the
actual process of dumping the data from the kernel. Because

0 2 8 32 128
0

1,000

2,000

Number of Bytes

M
ic

ro
se

co
nd

s
(µ
s)

Fig. 4. printk performance for varying byte sizes.

2 8 32 128
0

10

20

30

40

Number of Bytes

M
ic

ro
se

co
nd

s
(µ
s)

Fig. 5. printk cost per byte for varying byte sizes.

Progger uses printk to output logs, the data is copied to the
kernels circular log buffer. It is this copy which impacts the
performance of the system the most. Figure 4 shows how
printk scales with varing byte sizes in terms of time. The test
system call with printk printing 0 bytes, takes 3.21 µs, were
printing 1 byte completes in 42.025 µs on average, which is
over 10 times slower. However 2 bytes takes 60.926 µs, which
shows there is a setup cost of using printk because adding 1
byte only increased the time by 18.901 µs. Therefore adding
more bytes does increase the time, however the cost of each
byte decreases slightly as shown in Figure 5.

The performance of the open, close, read and write system
calls will now be evaluated individually, with the results shown
in Figure 6. The ‘Default’ column shows the time taken
running the test program without Progger logging that call,
and the ‘Progger’ column is where the call is logged. The
Progger log file for these performance tests was located on
the VM’s disk.

The same test program was used for both the open and
close system call, where a file was opened then closed again
in a large loop to allow for the time for one call to be
calculated more accurately. These results show that because
the log format for open is more verbose than close, the printk
operation takes longer, i.e. the call itself takes longer. For the
read system call test, a file was opened, 15 bytes were read,
then it was closed and repeated in a loop. With Progger only
logging the read system call, the time was still consistent with
the printk results. The test for write was the same as read
except it wrote 15 bytes to the file, and the results by default
were far larger than the other three calls tested. Subsequently,
when Progger was logging the write system call, the time was
dramatically higher even though it should be similar to read.
This comes down to the performance of the VM, as the disk

I/O has clearly effected the results with the limited write speed,
with both rsyslog and the test program writing to disk at once.
Also with the read test, because of the large loop, it is possible
that it getting a lot of disks cache hits, which would have
improved the timings. The results described in this section
clearly show that the performance of Progger is primarily that
of printk and can be heavily impacted by the performance of
the actual machine, like the disk. With the performance of the
write system call, it is clear that having the log file not stored
on the primary disk, or having it piped through to the physical
host is very important.

System Call Default Progger
Open 3.54 µs 758.7 µs
Close 3.54 µs 401.5 µs
Read 6.118 µs 673.8 µs
Write 299.06 µs 2072.08 µs

Fig. 6. Four common system calls’ performance.

V. EXAMPLE SCENARIOS

Note that the actual log entry types are numerical values
(refer to Figure 7), but have been replaced with a description
for readability. Many unrelated log entries have also been
removed so only the key entries for files are shown in this
paper to make them easier to follow. Finally, time values have
been removed to make the logs concise. The following is a
non-exhaustive list of the capabilities of Progger.

A. Detecting a File Creation

Alice first creates an empty file, then edits this file using
the Vim text editor to add one line. After which, she reopens
this file and adds another line before saving and closing the
file again. Only actions related to the file are shown, other
actions by Vim for libraries and swap files have been removed.

Command: alice@host$ touch file1.txt
Log:
1 Create,alice,11140,11002,11002,11001,

touch,file1.txt,/home/alice/,2369,438,3
2 Duplicate,alice,11140,11002,11002,11001,

3,0
3 Close,alice,11140,11002,11002,11001,3
4 Close,alice,11140,11002,11002,11001,0

Process 11140 creates the file “file1.txt” in the directory
“/home/alice/”, and returns a file descriptor with the value 3.
This file descriptor is then duplicated to 0, which is stdin.
Finally both file descriptor 3 and 0 are closed. This is a simple
scenario, and Progger gives a lot of information on the created
file. The file was created by Alice using the touch program in
her home directory. The flags and mode are also logged. This
log output is interesting because the duplicate to stdin is not
needed, which requires extra system calls.

Command: alice@host$ vim file1.txt (Enters “one”, saves file,
then closes)
Log:
1 Move,alice,11205,11002,11002,11001,vim,

file1.txt,file1.txt∼,/home/alice/
2 Create,alice,11205,11002,11002,11001,vim,

file1.txt,/home/alice/,577,436,3
3 Write,alice,11205,11002,11002,11001,3,0,

6F6E650A
4 Close,alice,11205,11002,11002,11001,3
5 Chmod,alice,11205,11002,11002,11001,vim,

file1.txt,33204
6 Remove,alice,11205,11002,11002,11001,vim,

file1.txt∼,/home/alice/

Vim is running with a process id of 11205, and the first
operation to the users file is it moves the original file “file1.txt”
to a backup “file1.txt∼”, before recreating “file1.txt” which
returns file descriptor 3. Then once Alice types “one” in Vim
and writes the change, 0x6F6E650A(one\n) is written to file
descriptor 3. Alice then quits the file resulting in the file
descriptor 3 being closed. Finally Vim fixes the permissions
of the newly created file and removes the backup. Every time
Vim writes to the file, it moves the original file to a backup,
creates a new file and rewrites everything, even if only one
character is replaced.

Command: alice@host$ vim file1.txt (Appends “two”, saves
then closes)
Log:
1 Open,alice,11313,11002,11002,11001,vim,

file1.txt,/home/alice/,0,0,3
2 Read,alice,11313,11002,11002,11001,3,0,

6F6E650A
3 Close,alice,11313,11002,11002,11001,3

...
4 Move,alice,11313,11002,11002,11001,vim,

file1.txt,file1.txt∼,/home/alice/
5 Create,alice,11313,11002,11002,11001,vim,

file1.txt,/home/alice/,577,436,3
6 Write,alice,11313,11002,11002,11001,3,0,

6F6E650A74776F0A
7 Close,alice,11313,11002,11002,11001,3
8 Chmod,alice,11313,11002,11002,11001,vim,

file1.txt,33204
9 Remove,alice,11313,11002,11002,11001,vim,

file1.txt∼,/home/alice/

This time because “file1.txt” is not empty, Vim as process
11313 reads the data from the file, then closes it. The backup
and new file are created like before. When Alice adds the new
line and writes the change, Vim writes the whole file again
(0x6F6E650A74776F0A = “one\ntwo\n”). This actually hap-
pens every time Vim writes to the file, it moves the original
file to a backup, creates a new file and rewrites everything,
even if only one character is replaced.

B. Detection of a DNS query and Pinging a Server

Command: bob@host$ ping www.google.co.nz
DNS Query Log:

1 Socket,bob,11426,11409,11409,11408,ping,
4s,2050,0,2

2 Connect,bob,11426,11409,11409,11408,4s,
55682,13568

3 SendTo,bob,11426,11409,11409,11408,4s,
16384,34,0,78C50100000100000000000003777
77706676F6F676C6502636F026E7A0000010001

4 RecvFrom,bob,11426,11409,11409,11408,4s,
0,1024,55682,
78C58180000100030007000C0377777706676F6F
...
00102001067C101000130000000000000053497F

5 Close,bob,11426,11409,11409,11408,4s

Ping creates a socket with the descriptor 4. Then it connects
to the DNS server 130.217.X.X:53, note the values for the IP
address and port need to be byte reversed. The following data
is then sent as a DNS query:
78C5 = ID, 0100 = Flags, 0001 = Questions, 0000 =
Answer RRs, 0000 = Authority RRs, 0000 = Additional
RRs, 0377777706676F6F676C6502636F026E7A00 = Name
(www.google.co.nz), 0001 = Type (A), 0001 = Class (In)
The query result is then received from 130.217.X.X, before the
socket is closed. Progger can therefore easily track network
activity on a machine, which would allow for the detection of
certain malware.

Ping Log:
1 Socket,bob,11426,11409,11409,11408,ping,4s,

2,0,2
2 Connect,bob,11426,11409,11409,11408,4s,

-655524534,260
3 Close,bob,11426,11409,11409,11408,4s

Ping creates a new socket, connects to 74.125.237.216, then
closes the socket.

C. Detecting the Use of ‘echo’ to Create a File

Another scenario for Progger is where Bob saves his wifi
password to a text file in his root directory. Then Alice views
this file by using the cat program. By default Alice does not
have access to open the file, however she has permissions to
run cat as root using the sudo command.

Command: bob@host$ echo “mywifipassword” >wifi.txt
Log:
1 Create,bob,10444,10443,10444,10443,bash,

wifi.txt,/home/bob/,577,438,3
2 Duplicate,bob,10444,10443,10444,10443,3,1
3 Close,bob,10444,10443,10444,10443,3
4 Write,bob,10444,10443,10444,10443,1,0,

6D797769666970617373776F72640A

The file “/home/bob/wifi.txt” is created in Bob’s home
directory with file descriptor 3 returned. The file descriptor
is then duplicated in 1 (stdout), before being closed. There-
fore instead of echo writing to terminal, the output actually
goes into “wifi.txt” (0x6D797769666970617373776F72640A
= mywifipassword\n). Stdout was not closed in this test, it
was just linked to another file descriptor.

Command: alice@host$ sudo cat /home/bob/wifi.txt
Log:
1 Open,alice*,11026,11020,11002,11001,cat,

/home/bob/wifi.txt,/home/alice/,0,
3396397472,3

2 Read,alice*,11026,11020,11002,11001,3,0,
6D797769666970617373776F72640A

3 Write,alice*,11026,11020,11002,11001,1,0,
6D797769666970617373776F72640A

4 Close,alice*,11026,11020,11002,11001,3
...

5 Open,alice,11101,11002,11002,11001,ls,.,
/home/alice/,67584,1,3

The file “/home/bob/wifi.txt” is opened by root. However
because Alice is the effective user of the session, her username
is shown with an asterisk to show it was performed as root.
The data is then read from the file and written to stdout. Then
the file is closed. After a few more log entries, Alice runs the ls
command as herself, this shows that her session id (11002) is
the same for both the root actions and her own. When the sudo
command is run, there are also other entries in the Progger log
for the authentication stage however these have been removed
for this paper.

D. Detecting a File Received From Outside the Cloud

Bob on a remote machine outside of the cloud copies a file
onto a machine in the cloud using SCP.

Command: scp somefile.txt bob@130.217.X.X:∼/file2.txt
Log:
1 Accept,root,1490,1,1490,1,3s,55682,

2962
2 Open,root,11684,1490,1490,1,sshd,

/proc/self/oom_score_adj,/,577,438,10
...

3 Open,bob,11688,11684,11684,1490,sshd,
/proc/self/task/2076/attr/exec,/,0,0,6

4 Open,bob,11688,11684,11684,1490,sshd,
/proc/self/task/2076/attr/current,/,2,0,6
...

5 Create,bob,11689,11688,11689,11688,scp,
/home/bob/file2.txt,/home/bob/,65,420,3

6 Read,bob,11689,11688,11689,11688,0,0,
6F6E650A74776F0A

7 Write,bob,11689,11688,11689,11688,3,0,
6F6E650A74776F0A
...

8 Close,bob,11689,11688,11689,11688,3s

The ssh daemon accepts a connection from 130.217.X.X
(IP partially masked for security reasons). The name of the
daemon is obtained by the process id 1490, and that the second
entry logs the program name. Then entries three and four show
that a new session has been created (11688) and is running as
Bob. Another new session was created (11689) which creates
the file “file2.txt” in Bob’s home directory. Data is then read
from stdin, and written to “file2.txt”. After skipping over some
entries, the socket is closed.

Linking the session id 11689 to the remote host
130.217.X.X is not straight forward. Many session and process

ids need to be known in order to trace it back to the ssh
daemon. An important detail to understand is that the ssh
daemon will have the same process id for multiple connec-
tions, which leads to a problem of which IP address is the
session actually linked to, since all sessions trace back to
the process 1490 in this case. However when the ssh daemon
accepts a connection, it has to create a new process to handle
that connection before it can listen for new connections. This
means of the ssh daemons child processes which are remote
sessions like 11684, the child with the lowest process ID will
be the first accept log entry, because it had to be created before
any more accepts could occur.

E. Detecting File Transfers to a Machine Outside the Cloud

Similar to the last scenario, Bob is sending the file from
within the cloud. If the remote machine is within the cloud
also, the machines Progger log would be the same as before.
So for this scenario, the remote machine is outside the cloud.

Command: scp file1.txt bob@130.217.X.X:∼/file1.txt
Log:
1 Pipe,bob,1635,1591,1591,1590,5,6,0
2 Pipe,bob,1635,1591,1591,1590,7,8,0
3 Close,bob,1635,1591,1591,1590,5
4 Close,bob,1636,1635,1591,1590,6
5 Close,bob,1636,1635,1591,1590,7
6 DUP2,bob,1636,1635,1591,1590,5,0
7 DUP2,bob,1636,1635,1591,1590,8,1
8 Close,bob,1636,1635,1591,1590,5
9 Close,bob,1636,1635,1591,1590,8
10 Close,bob,1635,1591,1591,1590,8

...
11 Connect,bob,1636,1635,1591,1590,3s,55682,

5632
...

12 DUP,bob,1636,1635,1591,1590,0,4
...

13 Open,bob,1635,1591,1591,1590,scp,file1.txt,
/home/bob/,2048,0,3
...

14 Write,bob,1635,1591,1591,1590,6,0,
433036363420382066696C65312E7478740A

15 Read,bob,1636,1635,1591,1590,4,0,
433036363420382066696C65312E7478740A

16 Write,bob,1636,1635,1591,1590,3s,0,
0F........C8E5
...

17 Read,bob,1635,1591,1591,1590,3,0,
6F6E650A74776F0A

18 Write,bob,1635,1591,1591,1590,6,0,
6F6E650A74776F0A

19 Read,bob,1636,1635,1591,1590,4,0,
6F6E650A74776F0A

20 Write,bob,1636,1635,1591,1590,3s,0,
DC........B469

Before SCP creates a new thread for handling the network
socket, it creates some pipes for communication between the
two processes. The two processes close unneeded descriptors,
resulting in one pipe for 1635 to 1636 and the other for
1636 to 1635. The read end of the [5,6] pipe is set to stdin,

and the write end of the [7,8] pipe is set to stdout. Then
the unneeded descriptors are closed. Now process connects
to 130.217.X.X:22 resulting in the socket descriptor 3 being
returned. Next, in the child process stdin gets duplicated to
descriptor 4, which is actually the read end of the pipe. The
file “file1.txt” is then opened by the parent process before the
data “C0664 8 file1.txt\n” gets written to the pipe. This data
is then read from the pipe in the child process and written to
the socket to be sent to 130.217.X.X. Now the data is read
from the file and written to the pipe. Then the child process
reads this data from the pipe and sends it to 130.217.X.X. The
file and socket are eventually closed.

F. MySQL Monitoring

Alice has a MySQL daemon running and connects to it
using the local client. She views all the values in the fruit
table then adds an entry.

Command: mysql>use food db;
Log:
1 Write,alice,2217,1682,1682,1681,3s,0,

0800000002666F6F645F6462
2 Read,mysql,2218,2038,1682,1681,29s,0,

08000000
3 Read,mysql,2218,2038,1682,1681,29s,0,

02666F6F645F6462
...

4 Open,mysql,2218,2038,1682,1681,mysqld,
./food_db/fruit_tb.MYD,/var/lib/mysql/,
2,432,31

The MySQL client sends the command to the daemon
through the socket descriptor pair 3 and 29. The dae-
mon first reads the command type, then the parameters
(0x666F6F645F6462 = food db). The client is given infor-
mation about the database selected, which results in the
fruit db.MYD database file being opened, returning 31.

Command: mysql>select * from fruit tb;
Log:
1 Write,alice,2217,1682,1682,1681,3s,0,1700

00000373656C656374202A2066726F6D206672756
9745F7462

2 Read,mysql,2218,2038,1682,1681,29s,0,
17000000

3 Read,mysql,2218,2038,1682,1681,29s,0,
0373....66727569745F7462

4 Read,mysql,2218,2038,1682,1681,31,0,03000
709FE054170706C65000000000000000000030008
08FE0642616E616E6100000000000000000300080
8FE064F72616E67650000000000000000

5 Write,mysql,2218,2038,1682,1681,29s,0,
0100....000007FE00002200

6 Read,alice,2217,1682,1682,1681,3s,0,
0100....000007FE00002200

7 Write,alice,2217,1682,1682,1681,1,0,
2B2D2D2D2D2D2D2D2D2B0A

8 Write,alice,2217,1682,1682,1681,1,0,
7C204E616D652020207C0A
...

The client sends the command to the daemon, then the
daemon reads the data from the database file descriptor 31.
The entries in the table are Apple, Banana and Orange. The
query result is sent back to the client which then writes
to standard out in a the text table format, for example
0x4E616D65 = Name, which is the header cell of the table.
The actual output is shown below:

Command: mysql>insert into fruit tb values(‘Mango’);
Log:
1 Write,alice,2217,1682,1682,1681,3s,0,2500

000003696E7365727420696E746F2066727569745
F74622076616C75657328274D616E676F2729

2 Read,mysql,2218,2038,1682,1681,29s,0,2500
0000

3 Read,mysql,2218,2038,1682,1681,29s,0,0369
.....6616C75657328274D616E676F2729

4 PWrite,mysql,2218,2038,1682,1681,31,60,03
000709FE054D616E676F000000000000000000

5 Write,mysql,2218,2038,1682,1681,29s,0,070
0000100010002000000

6 Read,alice,2217,1682,1682,1681,3s,0,07000
00100010002000000

7 Write,alice,2217,1682,1682,1681,1,0,51756
57279204F4B2C203120726F772061666665637465
642028302E303120736563290A

As before, the command is sent to the daemon from the
client. Then the value Mango (0x4D616E676F) is written to
the database along with some other data. The daemon sends
back a response to the client which informs the user that the
query was okay, and how many rows were affected.

G. Real Log Outputs

Fig. 7. Screen shot of a Progger log file.

A sample of a real Progger log is shown in Figure 7, where
Alice echoed some text into a new file. The format used by
rsyslog is a precise timestamp with time zone information,
host name, then the Progger message.

VI. TESTED SYSTEMS & FUTURE WORK

Progger has been developed the 2.6.32 kernel with CentOS
6.4 as the test operating system. Other kernel versions above
2.6.32 have been tested however because Progger is open
source, if it does not compile with a certain kernel version, it
will only require minor changes. For example if the method
for getting the user ID changes, there should only be one line
which needs to be edited for it to be fixed.

In the future, we would like to include support for IPv6
for Progger. With Progger logs, we can provide cloud data
accountability and data tracking information on different levels
of granularity and levels of detail. For example, we can
envision dashboards with data provenance visualisations which
empower administrators to understand the status and derivation
history of certain data. Auditing interfaces can also be created
on top of Progger to empower data governance audits.

VII. CONCLUSION

We presented Progger, a kernel-space data activity logging
tool which address prior provenance tools’ limitations by
providing log tamper-evidence, prevention of fake or manual
entries, an accurate timestamp synchronisation across sev-
eral machines, efficient log space growth, and the accurate
logging of root usage of the system. Resolving all these
critical issues enables Progger to provide high assurance of
data security and data activity audit. The trust relationships
between data owner and cloud service providers will also
be enhanced. We described Progger’s design, implementation,
data-centric system calls tracked, efficiency, and compelling
results which paves the way for it to be a foundation for
cloud data provenance tracking. Progger can be accessed at
https://github.com/CROWLaboratory/Progger

VIII. ACKNOWLEDGEMENTS

This research was supported by the 2013 University of
Waikato Research Trust Contestable Fund. The authors would
also like to thank Brad Cowie, Alan Tan and Kang Du for
their feedback on Progger.

REFERENCES

[1] R. K. L. Ko, G. Goh, T. Mather, S. Jaini, and R. Lim, “Cloud Consumer
Advocacy Questionnaire and Information Survey,” Cloud Security Al-
liance Cloud Data Governance Working Group, Cloud Security Alliance,
Tech. Rep., 2011.

[2] R. K. L. Ko, “Data Accountability in Cloud Systems,” in Security,
Privacy and Trust in Cloud Systems. Springer-Verlag, 2013.

[3] R. K. L. Ko, M. Kirchberg, and B. S. Lee, “From System-centric
to Data-centric logging - Accountability, Trust and Security in Cloud
Computing,” in Defense Science Research Conference and Expo, 2011.

[4] R. K. L. Ko, B. S. Lee, and S. Pearson, “Towards Achieving Account-
ability, Auditability and Trust in Cloud Computing,” in Advances in
Computing and Communication, 2011.

[5] R. K. L. Ko, P. Jagadpramana, M. Mowbray, S. Pearson, M. Kirchberg,
Q. Liang, and B. S. Lee, “TrustCloud: A Framework for Accountability
and Trust in Cloud Computing,” in Proceedings of IEEE World Congress
on Services (SERVICES’11), 2011.

[6] Y. S. Tan, R. K. L. Ko, P. Jagadpramana, C. H. Suen, M. Kirchberg,
T. H. Lim, B. S. Lee, A. Singla, K. Mermoud, D. Keller, and H. Duc,
“Tracking of Data Leaving the Cloud,” in Proceedings of IEEE 11th
International Conference on Trust , Security and Privacy in Computing
and Communications (TrustCom’12), 2012.

[7] CloudKick. (2011) Cloudkick - cloud monitoring and management.
Https://www.cloudkick.com/.

[8] S. E. Hansen and E. T. Atkins, “Automated system monitoring and
notification with swatch,” Proc. of the 7th Systems Administration
Conference (LISA VII) (USENIX Association, CA), p. 145, 1993.

[9] VMware. (2011) Performance monitoring for cloud services.
Http://www.hyperic.com/products/cloud-status-monitoring.

[10] HyTrust. (2010) Hytrust appliance.
Http://www.hytrust.com/product/overview/.

[11] G. H. Kim and E. H. Spafford, “Tripwire: A case study in integrity
monitoring,” in Internet Besieged: Countering Cyberspace Scofflaws,
D. E. Denning and P. J. Denning, Eds. New York: ACM Press /
Addison-Wesley, 1998, pp. 175–210.

[12] R. K. L. Ko, P. Jagadpramana, and B. S. Lee, “Flogger: A File-
centric Logger for Monitoring File Access and Transfers with Cloud
Computing Environments,” in 3rd IEEE International Workshop on
Security in e-Science and e-Research (ISSR’11), in conjunction with
IEEE TrustCom’11, 2011.

[13] K.-K. Muniswamy-Reddy, D. A.Holland, U. Braun, and M. Seltzer,
“Provenance-aware Storage Systems,” in Proceedings of the Conference
on USENIX’06 Annual Technical Conference (ATEC’06), 2006.

[14] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko,
D. Maclean, D. Margo, M. Seltzer, and R. Smogor, “Layering in
Provenance Systems,” in Proceedings of the Conference of USENIX
Annual Technical Conference (USENIX’09), 2009.

[15] P. Buneman, S. Khanna, and W. C. Tan, “Why and Where: A Char-
acterization of Data Provenance,” in Proceedings of 8th International
Conference on Database Theory (ICDT’01), 2001.

[16] U. Braun and A. Shinnar, “A Security Model for Provenance,” Harvard
University Computer Science, Tech. Rep. TR-04-06, 2006 (Accessed:
1/07/2013).

[17] C. F. Reilly and J. F. Naughton, “Exploring Provenance in a Distributed
Job Execution System,” Provenance and Annotation of Data, Journal,
pp. pp 237–245, 2006.

[18] P. Reynolds, C. Killian, J. L. Wiener, J. C.Mogul, M. A.Shah, and
A. Vahdat, “Pip: Detecting the Unexpected in Distributed Systems,”
in Proceedings of 3rd Symposium on Networked Systems Design and
Implementation (NSDI’06), 2006.

[19] Y. S. Tan, R. K. L. Ko, and G. Holmes, “Security and data accountability
in distributed systems: A provenance survey,” in Proceedings of the 15th
IEEE International Conference on High Performance Computing and
Communications(IEEE HPCC13). ZhangJiaJie, China: IEEE Computer
Society, 2013.

[20] O. Q. Zhang, M. Kirchberg, R. K. L. Ko, and B. S. Lee, “How to Track
Your Data: The Case for Cloud Computing Provenance,” in Proceedings
of IEEE 3rd International Conference on Cloud Computing Technology
and Science (CloudCom’11), 2011.

[21] C. H. Suen, R. K. L. Ko, Y. S. Tan, P. Jagadpramana, and B. S.
Lee, “S2Logger: End-to-End Data Tracking Mechanism for Cloud Data
Provenance,” in Proceedings of 12th IEEE International Conference
on Trust, Security and Privacy in Computing and Communications
(TrustCom’13), 2013.

[22] G. Kroah-Hartman, Driving Me Nuts - Things You Never Should Do in
the Kernel. Linux Journal (Issue No. 133), May, 2005.

[23] O. P. Peter Jay Salzman, Michael Burian, The Linux Kernel Module
Programming Guide, 2007 (ver 2.6.4).

[24] VMWare, “Timekeeping in vmware virtual machines,” VMware, Tech.
Rep., 2011.

[25] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters, “Building an
encrypted and searchable audit log.” vol. 4, pp. 5–6, 2004.

[26] D. Sandler, K. Derr, S. Crosby, and D. S. Wallach, Finding the evidence
in tamper-evident logs, 2008.

