
‘Time’ for Cloud?
Design and Implementation of a Time-Based Cloud Resource Management System

Ryan K. L. Ko, Alan Y. S. Tan, Grace P. Y. Ng
Cyber Security Lab, Dept. of Computer Science

University of Waikato
Hamilton, New Zealand

Email: ryan@waikato.ac.nz, {yst1, pygn1}@students.waikato.ac.nz

Abstract—The current pay-per-use model adopted by public
cloud service providers has influenced the perception on how a
cloud should provide its resources to end-users, i.e. on-demand
and access to an unlimited amount of resources. However, not
all clouds are equal. While such provisioning models work for
well-endowed public clouds, they may not always work well
in private clouds with limited budget and resources such as
research and education clouds. Private clouds also stand to be
impacted greatly by issues such as user resource hogging and
the misuse of resources for nefarious activities. These problems
are usually caused by challenges such as (1) limited physical
servers/ budget, (2) growing number of users and (3) the
inability to gracefully and automatically relinquish resources
from inactive users.

Currently, cloud resource management frameworks used for
private cloud setups, such as OpenStack and CloudStack, only
uses the pay-per-use model as the basis when provisioning
resources to users. In this paper, we propose OpenStack Café, a
novel methodology adopting the concepts of ‘time’ and booking
systems’ to manage resources of private clouds. By allowing
users to book resources over specific time-slots, our proposed
solution can efficiently and automatically help administrators
manage users’ access to resource; addressing the issue of
resource hogging and gracefully relinquish resources back to
the pool in resource-constrained private cloud setups. Work
is currently in progress to adopt Café into OpenStack as a
feature, and results of our prototype show promises. We also
present some insights to lessons learnt during the design and
implementation of our proposed methodology in this paper.

Keywords-Cloud computing; OpenStack Café; user-centric;
time-based cloud resource management; cloud provisioning;
cloud management systems; private clouds; resource hogging;

I. INTRODUCTION

A. ‘Time’ for a Rethink

If one observes the spectrum of cloud computing [1]
provisioning models today, there is a high chance that he
or she will repeatedly come in touch with the traditional
pay-per-use model [2]. This is especially so in public cloud
service providers such as Amazon Web Services, Rackspace,
GoGrid, etc, and it has undoubtedly influenced common
perception on how a cloud should provide its resources
to end-users: on-demand and access to unlimited amount
of resources (if you can pay for the usage). However, this
model hinges on a critical assumption: the assumption that

Figure 1. Illustration of potential resource wastage scenario

the cloud service provider has the ability and sufficient
underlying hardware resources to support a potentially ever-
growing demand.

This assumption does not usually hold true for private
clouds, which may be hosted by institutions whose core
business is not in providing cloud services. Often, private
clouds such as the ones used in research and education,
face limitations such as budget and resources. With a limited
physical resource pool, a growing number of users and an
inability to gracefully and automatically relinquish resources
from inactive users, private clouds stand to be impacted
greatly by issues such as user resource hogging and the
nefarious misuse of resources. Worse, current cloud resource
management frameworks used in private cloud setups, such
as OpenStack [3] and CloudStack [4], only uses the pay-
per-use model as the basis when provisioning resources to
users.

Data reported by Chaisiri et al. [5] and Vogels [6] have
shown that typical actual demands for computing resources
do not sustain over long period of times, even in well
established clouds or high performance servers such as those
in Amazon and Google. Users often request for access to
resources for a time period longer than the actual required
amount of time needed for their experiments. One such
scenario is when researchers request for compute resources
to run their experiments. The normal behaviour is to run
their experiments, obtain and analyse their results before
running their experiments again. During the period of result

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202501?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


analysing, the resources are usually left idling. Figure 1
illustrates such typical resource utilisation versus resource
provisioned behaviour. In private clouds where resources are
limited, the unused resources during the analysis period can
be put to better use: serving other users’ demand for re-
sources. Hence, a solution that can automatically relinquish
unused resources gracefully is needed to tackle the issue of
resource hogging.

B. Objectives and Contributions of Paper

In this paper, we propose a novel concept of ‘time’ in
managing resources provisioned to users. We also demon-
strate its feasibility and user-centricity through our proto-
type, Café, which has been acknowledged by the global
community and will be integrated into the OpenStack open
source project.

Just like an Internet café business model, users of Open-
Stack Café can request from cloud administrators resource
usage for a predefined period of time. When the time is up,
the resources booked will be relinquished and returned to
the resource pool. Our proposed solution can efficiently and
automatically help administrators manage users’ access to
resource by specifying fixed time-slots.

The main contribution of Café addresses the issue of re-
source hogging in resource-constrained private cloud setups.
An overview of the list of contributions of our proposed
methodology include:

• A time-slot approach to manage user access to re-
sources.

• An automatic resource clearing mechanism for cloud
resource management frameworks like OpenStack.

• A novel user access management tools for cloud ser-
vices (which contrasts typical admin-centered manage-
ment tools).

• User access based on a “request and use model”
where users request/purchase timeslots for accessing
resources.

• Eases administrators’ need to keep track and plan the
capacity of the cloud infrastructure [7].

• Flexibility on the users’ part as they can schedule their
usage and monitor their usage too.

• On the administrator part, Café is useful in keeping
track of both current and future utilisation rate of the
cloud.

• Helps in resource planning, in terms of expansion and
maintenance.

• The system works automatically, hence reducing the
effort required to monitor and maintain the infrastruc-
ture’s capacity.

In short, Café ensures fair sharing of resources, and is
very suitable for education and research environments. The
implementation is also a contribution to the OpenStack
global community. In the course of developing this, we
also received feedback mentioning that this model would

be relevant and useful for research clouds such as those
in CERN and NECTaR. Insights to lessons learnt during
the design and implementation of the Café prototype on
OpenStack will be presented in Section III and IV.

II. RELATED WORK

Management of user access to resources and resource of
a computing system is a well-studied field in distributed
systems [8] (e.g.grid systems). However, many focus on
resource allocation and not resource deallocation (for higher
utility of the cloud). Frameworks such as Globus toolkit
[9] and Grid Cafe [10] help connect distributed resources
from systems across the world and allowing users to access
them through a single interface. While these systems use
various established methods, including time-based methods,
in managing resources and user access to the underlying
resources, they are based on the concept of grid systems.

It is perhaps common knowledge that grid systems lack
the flexibility and scalability found in cloud systems. As
compared to grid users, cloud users are able to modify their
setup (e.g. install new operating systems, modify applica-
tions and etc) without affecting other users and even easily
scale up or down the number of ‘machines’ required so
as to suit their needs, through virtualisation, the foundation
of cloud systems. The flexibility and scalability offered by
cloud systems are exactly the traits we required to cater to
our needs for a system that caters to our user base: academic
researchers and students in a educational institution.

Since cloud computing became popular from 2006 with
the introduction of Amazon’s Elastic Compute Cloud, EC2,
many cloud resource management frameworks and services
since been made available to users on the Internet, both
commercially and non-commercially. On the commercial
side: Google Cloud [11, 12], Amazon EC2 [13], Microsoft
Azure [14], VMWare vSphere [15] and Citrix XenServer
[16]; while on the non-commercial side: Open CIRRUS
[17], OpenStack [3], Cloudstack [4], Eucalyptus [18] and
OpenNebula [19], are some examples of cloud resource
management frameworks.

As our cloud testbed needed to cater to computing re-
source demands from researchers and students in an ed-
ucational institution. Hence, in the context of our work,
the evaluation of cloud resource management frameworks
is done based on the following criteria:

• Cost of using the framework - it is to our benefit to
reduce cost as much as possible as we work in the
context of a non-profit educational institution.

• Scalability of virtual machines (VMs) - whether the
framework can support a large number of concurrently
running VMs.

• Access to physical server - this is a requirement as our
research work may sometimes require deployment of
softwares onto the physical host server.



Table I
COMPARISON OF CLOUD RESOURCE MANAGEMENT FRAMEWORKS

Framework Cost Model Highly Scalable
(>1000 VMs)

Physical
machine access Customisable Time-centric user access

management features
Google Compute Per unit 3 7 7 7

Amazon EC2 Per unit 3 7 7 no full features
Microsoft Azure Per unit 3 7 7 7
VMware vSphere Annual Licence 3 3 7 7
Citrix XenServer Annual Licence 3 3 7 7
Open CIRRUS Free 3 7 3 7

OpenStack Free 3 3 3 7
CloudStack Free 3 3 3 7
Eucalyptus Free 3 3 3 no full features

OpenNebula Free 3 3 3 7

• Customisable - in terms of source code. this is similar to
having access to physical server, our work may require
modification to the management framework.

• A time-centric model for user access management - as
mentioned earlier, our user base consists of groups of
users with different requirements. Researchers typically
requires long term access to computing resources, for
conducting their experiments. On the other hand, stu-
dents only require short term access to computing re-
sources. As our servers have finite amount of resources,
it is crucial for us to limit access to users only to the
time period in which they require the use of computing
resources.

We compared the various cloud resource management
frameworks in Table I based on the criteria laid out above.
Our review of these frameworks revealed the absence of
a time-centric user access control features in current day
cloud resource management frameworks. Out of the ten
cloud solutions surveyed, only Amazon EC2 and Eucalyptus
provided some form of time-based resource access control
but neither provided the full functionality required for this
project due to not having support for administrative approval
of user access requests [20, 21].

OpenStack is also currently developing a resource reser-
vation feature called Climate which has a similar concept to
Café. Climate has a different focus however as it focuses on
creating the infrastructure upon which more specific capacity
leasing services can be built and has resource-based access
control [22].

III. REQUIREMENTS OF A TIME-BASED USER ACCESS
MANAGEMENT

In this section, we first present the requirements and
rationale for our system. As highlighted in Section I and
II, unlike in public clouds, private clouds do not assume
unlimited amount of resources. Hence, resource capacity
management of cloud infrastructure is crucial [7], especially
if there is a large user base. Inadequate capacity management
can lead to failure in meeting users’ expectation, in terms
of performance, or in some cases, impact other applications
and users in the same environment.

Our private cloud testbed is setup to cater primarily to
research and education purposes. Hence it has to handle
groups of users with different requirements, be it time
of access or amount of resources required. For example,
researchers require flexible on-demand access to their VMs,
while students only access their VMs during their laboratory
sessions or project sessions. While cloud frameworks such
as OpenStack [3] are designed for virtual resource provi-
sioning, these frameworks lack the ability to control user’s
access to resources automatically (i.e. grant access to users
for a period of time only). Also, the system should be able
to handle large number of users. With these considerations,
we designed our proposed resource management system, to
be usable with any cloud setup with finite resources, with
the following requirements:

1) Ability to handle multiple groups of users, with each
group having different access requirements. (e.g. time
of access, period of access, resource quota)

2) Automatically manage user’s access to resources.
3) Infrastructure resource capacity management.
4) Automatic management of unused resources.

Based on the above, we proposed a time-based resource
management system. Much like booking a tennis court or
renting a PC for web surfing in an Internet café, our proposed
system uses a time-slot approach in managing user’s access
to resources. The basic idea is:

1) Users book a ‘time-slot’ through the management
system to indicate the desired session and duration
of access to virtual resource.

2) Administrator approves booking request and assigns a
resource quota to user.

3) Upon the scheduled time, system automatically grants
user access to the virtual resources. User can then
freely provision VMs, within their assigned resource
quota.

4) Once the user session ends, system automatically
revokes user access rights to the virtual resources and
frees up the resources used by the user.

By requiring the administrator to approve booking requests,



it enables the administrator to keep track of the utilisation
rate of the cloud infrastructure.

Using a time-slot approach in managing user access helps
to ease user access management. Firstly, it helps predefine
the duration in which users have access to the virtual
resources. This help ensure fair-share usage of resources
across multiple groups of users. While users can book
consecutive time-slots, bookings are subject to administrator
approvals. Secondly, by having a fix predefined time period,
it helps ease management of user sessions from the system
perspective. (e.g. A fixed duration for time slots allow
regular polling to be implemented easily. Allowing users
to specify their own time period is more complex, from an
implementation perspective.) Thirdly, confining user access
to fixed time-slots help prevent resource hogging in private
cloud. By having a clear and predefined end to user access
duration, the system can automatically ‘terminate’ users’
access to the virtual resources. Lastly, a time-slot approach
naturally involves resource reservations. This helps admin-
istrators in resource utilisation monitoring and planning. It
also gives the administration an idea of the current and future
utilisation rate of the infrastructure.

IV. DESIGN AND IMPLEMENTATION OF OPENSTACK
CAFÉ

In this section, we present a conceptual model of our
proposed time-based user access management system in Sec-
tion IV-A, followed by our implementation of the model on
OpenStack [3], an open source cloud resource management
framework in Section IV-B.

A. Conceptual Model

Our proposed conceptual model is illustrated in Figure 2.
An additional layer for managing users’ access to virtual
resources in a time-based manner is built on top of a cloud
resource management frameworks. The user interface acts
as the portal between users and the management system.
Users perform tasks such as booking time-slots to indicate
the period of access desired, view or edit booking details
and delete bookings through the user interface. The interface
also acts as a portal where administrators can monitor the
current and future utilisation rate of the cloud infrastruc-
ture; by looking at the amount of time-slots and resources
being reserved. Administrators also approve and reject user
requests, set user resource quota limits and perform other
administrative functions here.

The booking manager illustrated in Figure 2 serves as
the main component in the model. Its main role is to
coordinate users’ access to the underlying cloud resource
management framework. The booking manager retrieves
detail of booking requests made by users and ensures that
users can gain access only at the stipulated approved time-
slots. This includes granting and removing permission to
access the underlying virtual resources from the users.

Figure 2. Illustration of the conceptual model

The novelty of our proposed system is not in the model
itself, but rather the concept of a time-based approach to
managing cloud resources in clouds. This was explained in
Section III.

B. Prototype

We implemented a prototype of our time-based resource
management system on OpenStack. The OpenStack version
used was Grizzly. Figure 3 below illustrates how our proto-
type system, Café, interacts with the underlying OpenStack,
which acts as the cloud resource management framework.
Café components are denoted by a solid border while
original OpenStack components are denoted with a dash
border.

In line with the service oriented architecture of Open-
Stack, we implemented another additional module, the re-
source API, to allow service orchestration. (e.g. other ser-
vices or modules of OpenStack can also access modules in
Café through the APIs.)

Users first book through Waiter, Café’s web interface, the
time-slots that they desire for accessing virtual resources.
Administrators are then notified by Waiter and the request
is either approved or rejected. In our prototype, we managed
to link Waiter’s interface to Horizon, OpenStack’s web in-
terface, so that users and administrators can switch between
the two interfaces seamlessly.

Using the API module, Barista, Waiter updates user’s
booking details into the database. From this database, Café’s
main management engine, Manager, will retrieve booking
details at regular intervals. The time between intervals is
synchronised with the time period allocated for each time
slot (i.e. If one time slot is one hour, Manager will retrieve
booking details from the database at an hourly interval).
Based on booking details, Manager will revoke or grant
users’ rights to access the virtual resources managed by
OpenStack. This is achieved though user access-list managed
by OpenStack’s authentication service, Keystone. Manager
is also in-charge of suspending all running VMs belonging
to user whose session has ended. This prevents users from
accessing their resources even without using the web inter-
face (e.g. secure-shell access to VMs). Suspending running



Figure 3. Interaction between OpenStack modules and our time-based resource management system - Café

VMs also frees up resources for the next batch of users and
prevents hogging of unused resources.

For more details on Café’s implementation,
we invite readers to visit Café’s wiki page at
https://wiki.openstack.org/wiki/Café [23].

V. DISCUSSIONS AND LESSONS LEARNED

During Café’s design and implementation, a few lessons
and issues surfaced:

• Not all Clouds have infinite resources - While public
clouds are perceived as having ‘infinite’ resources (i.e.
one can keep requesting for resources from service
providers such as Dropbox or Amazon’s EC2), private
clouds are often constrained by the amount of invest-
ments from their owners (e.g. the amount of money
invested by companies into purchasing hardware for
their cloud infrastructure). This issue was the main
problem that motivated this project. Resource manage-
ment between different groups of user with different
needs: students that require short term and at different
time period of access and researchers whom requires
long term access to resources.

• Automation of resource allocation and deallocation is
required for a large number of users - In our case,
the user base for our testbed was expected to be large
(i.e. greater than 1000). This makes managing users a
laborious task for the administrators. Imagine having

Figure 4. Benchmark results on VMs and physical host server when
number of CPU intensive VMs running on the host server is increased

to grant and remove permissions from 40-50 students
every hour! We designed the system to automatically
manage user access to virtual resources. This frees up
the manual labour time required from the administrator
for other tasks, such as monitoring and maintaining the
health of the infrastructure.
Our initial testing of Café also showed that the man-



agement of user access, on top of managing users
of such magnitude is an extremely time consuming
task. (e.g. account creation for a whole batch of new
students and staff) This was simplified later on by
getting Café to leverage on OpenStack’s authentication
service, Keystone, for account creation. When it comes
to designing usable systems, one should also consider
the size of the system’s user base.

• Many institutions are facing similar issues - During
the development of Café, we were in contact with
fellow OpenStack developers. They have also brought
to our notice that institutions such as NECTaR [24]
and CERN [25] might also benefit from such a time-
based resource management system. This spurred us
to put developing Café as an independent resource
management system for cloud resource management
frameworks in our future work pipeline.

• Workload on VMs are also important - We are currently
testing and overloading our cloud testbed with different
kinds of workload on VMs. The aim is to understand
how our testbed would perform under stress from dif-
ferent types of workload (e.g. CPU intensive or disk I/O
intensive workloads.). Our initial experimental results
showed that intensive workloads running on VMs can
also affect user experience and performance on other
VMs that are hosted on the same cloud infrastructure.
Figure 4 shows one of the results from our load
testing experiment. In that experiment, we increased the
number of VMs running CPU intensive workloads and
benchmark the CPU performance on both VM running
on the physical server hosting the VMs and on the
physical server. The performance of the virtual CPU
on VMs can be seen to decrease rapidly as the number
of VMs with CPU intensive workload increases.

VI. FUTURE WORK

While Café addresses several issues, it still has room for
further work.

Firstly, we can further expand the range/ type of resources
managed by Café. Currently, Café manages only CPU and
RAM resources. Control of other resources such as storage,
are not implemented yet. The end result of Café should be
a system that can fully automate the management of user
access to all underlying virtual resources made accessible
to user by the deployed cloud resource management frame-
works (e.g. OpenStack).

Secondly, we can further optimise user bookings and
resource capacity management with automated scheduling
and planning. Current implementation of Café requires ad-
ministrator to manually determine whether the amount of
resources user requests for, can be met based on other users’
bookings (capacity level of resources) at the stated time slot.
However, this can be a taxing task as the number of request

increases. Hence, we plan to investigate on the use of sched-
ulers for automated resource planning and scheduling, based
on knowledge of the resource capacity of the infrastructure
and the bookings that have been made. Resource planning
and scheduling is a well-studied field in both distributed
systems [8] and cloud computing [26]. We believe that by
automating resource planning and allocation, we can reduce
the workload required to manage user requests.

Thirdly, a mechanism that allows administrators to moni-
tor the utilisation rate of booked resources, is required to
better address the issue of resource hogging. While the
time-slot approach adopted by Café prevents user from
hogging resources for an infinite amount of time, it does
not prevent users from booking resources but not use them.
Mechanisms, such as Ganglia [27] and Mochi [28], that
monitor and report the utilisation of resources in cloud
infrastructures, is required to help administrators identify
users who booked but not utilise cloud resources. Once
identified, administrators can choose to either revoke the
resources assigned to those users or to approach them to
discuss alternate booking plans.

Lastly, we believe that real-time workload and capacity
monitoring is required [7]. We are beginning work on
proposing a utility meter, which takes into consideration the
different types of workload running on VMs, the capacity
of each resource type on the cloud infrastructure and etc
information, and reports an estimate of how many VMs
can the infrastructure support before user experience can be
affected.

VII. CONCLUDING REMARKS

In this paper, we proposed a novel concept of using
‘time’ in managing resources provisioned to users. Just
like an Internet café business model, users of OpenStack
Café can request from cloud administrators resource usage
for a predefined period of time. When the time is up,
the resources booked will be relinquished and returned to
the resource pool. Our proposed solution can efficiently
and automatically help administrators manage users’ access
to resource by specifying fixed time-slots. Such elegant
resource deallocation reduces wastage/ idling of resources.
This is a situation which would benefit most private clouds.
We also compared the various cloud resource management
frameworks and revealed their current inabilities to meet
the actual needs of private cloud resource management. Our
review of these frameworks revealed the absence of a time-
centric user access control features in current day cloud
resource management frameworks. Café was designed to
address these gaps.

The main contribution of Café addresses the issue of
resource hogging and potential ‘unlimited’ nefarious usage
of allocated cloud resources in typical resource-constrained
private cloud setups. We demonstrated our proposed con-
cept’s feasibility and user-centricity through our prototype,



Café, which has been acknowledged by the OpenStack
community and is on track to being integrated into the
OpenStack Project. Details of Café can be found at the
OpenStack wiki pages: https://wiki.openstack.org/wiki/Café
[23].

ACKNOWLEDGMENT

The authors would like to acknowledge the University of
Waikato’s Faculty of Computing and Mathematical Sciences
CAPEX 2013 Fund for supporting our large-scale cloud test
bed: Cloud8 (https://www.crow.org.nz/projects cloud8.html)
and this project. We would also like to thank Brad Cowie,
Clint Dilks, Mike Vallabh, Raja Naeem Akram and Geoff
Holmes for their advice during the setup of Cloud8.

REFERENCES

[1] R. K. L. Ko, “Cloud computing in plain English,” ACM
Crossroads, vol. 16, no. 3, pp. 5–6, 2010.

[2] C. Verstraete, “What really is pay-per-use in cloud?”
urlhttp://h30499.www3.hp.com/t5/Grounded-in-
the-Cloud/What-really-is-pay-per-use-in-cloud/ba-
p/2407093#.UsykmfQW0vk (Accessed: 8/01/14).

[3] OpenStack, “Openstack - Open source software
for building private and public clouds,”
http://www.openstack.org/ (Accessed: 17/12/12013).

[4] Apache CloudStack Community, “Apache
CloudStack,” http://cloudstack.apache.org/ (Accessed:
19/12/2013).

[5] S. Chaisiri, R. Kaewpuang, B.-S. Lee, and D. Niyato,
“Cost Minimization for Provisioning Virtual Servers in
Amazon Elastic Compute Cloud,” in Modeling, Analy-
sis & Simulation of Computer and Telecommunication
Systems (MASCOTS), 2011 IEEE 19th International
Symposium on, 2011, pp. 85–95.

[6] W. Vogels, “Beyond Server Consolidation,” Queue,
vol. 6, no. 1, pp. 20–26, 2008.

[7] B. Semple, “Five Capacity Management Challenges
for Private Clouds,” http://datacenterpost.com/
2011/07/five-capacity-management-challenges-for.
html(Accessed: 16/12/2013), July 2011.

[8] B. Neuman and S. Rao, “Resource Management for
Distributed Parallel Systems,” in Proceedings of 2nd
International Symposium on High Performance Dis-
tributed Computing, 1993.

[9] I. Foster and C. Kesselman, “Globus: a Metacomput-
ing Infrastructure Toolkit,” International Journal of
High Performance Computing Applications, vol. 11,
pp. 115–128, 1997.

[10] “Grid Cafe,” http://www.gridcafe.org/EN/globus-
toolkit.html (Accessed: 19/12/2013).

[11] “Google Cloud Storage Access Control,”
https://developers.google.com/storage/docs/accesscontrol
(Accessed: 19/12/2013).

[12] “Google Compute Engine,” https://cloud.google.com/
products/compute-engine (Accessed: 19/12/2013).

[13] “AWS Cloud Formation,” http://aws.amazon.com/
cloudformation/(Accessed: 19/12/2013).

[14] “Windows Azure,” http://www.windowsazure.com/en-
us/ (Accessed: 19/12/2013).

[15] “VMware vSphere,” http://www.vmware.com/
products/vsphere/(Accessed:19/12/2013).

[16] “Citrix XenServer,” http://www.citrix.com/products/
xenserver/overview.html(Accessed: 19/12/2013).

[17] A. Avetisyan, R. Campbell, I. Gupta, M. Heath, S. Ko,
G. Ganger, M. Kozuch, D. O’Hallaron, M. Kunze,
T. Kwan, K. Lai, M. Lyons, D. Milojicic, H. Y. Lee,
Y. C. Soh, N. K. Ming, J.-Y. Luke, and H. Namgoong,
“Open Cirrus: A Global Cloud Computing Testbed,”
Computer, vol. 43, no. 4, pp. 35–43, 2010.

[18] “Eucalyptus: Open Source Private Cloud Software,”
http://www.eucalyptus.com/eucalyptus-cloud/iaas (Ac-
cessed: 19/12/2013).

[19] “OpenNebula,” http://opennebula.org/about:keyfeatures
(Accessed: 19/12/2013).

[20] “AWS Identity and Access Management,”
http://docs.aws.amazon.com/IAM/latest/UserGuide/
AccessPolicyLanguage\ EvaluationLogic.html\
#policy-eval-reqcontext (Accessed: 19/12/2013).

[21] “Eucalyptus - Sample policies,” http://www.eucalyptus.
com/docs/eucalyptus/3.2/ag/policies\ samples.html\
#policies\ samples (Accessed: 19/12/2013).

[22] J. Danjou, “Announcing Climate, the Openstack
capacity leasing project,” http://julien.danjou.info/blog/
2013/openstack-climate-capacity-leasing (Accessed:
19/12/2013).

[23] “Cafe - a time-based cloud resource management
system for Openstack,” https://wiki.openstack.org/wiki/
Cafe (Accessed: 18/12/2013).

[24] “Known issues at NECTAR research cloud,” https:
//support.rc.nectar.org.au/support/known\ issues.html
(Accessed:18/12/2013).

[25] A. Tselishchev, P. Tedesco, E. Ormancey, and C. Is-
nard, “CERN Computing Resources Lifecycle Man-
agement,” Journal of Physics:Conference Series, vol.
331, 2011.

[26] R. Pal and P. Hui, “Economic models for cloud service
markets: Pricing and capacity planning,” Theoretical
Computer Science, Journal, Elsevier, vol. 496, pp.
113–124, 2013.

[27] B. University of California, “Ganglia Monitoring Sys-
tem,” http://ganglia.info/ (Accessed: 12/4/2014).

[28] J. Tan, X. Pan, S. Kavulya, R. Gandhi, and
P. Narasimhan, “Mochi: Visual Log-analysis Based
Tools for Debugging Hadoop,” in Proceedings of the
2009 Conference on Hot Topics in Cloud Computing,
ser. HotCloud’09. Berkeley, CA, USA: USENIX
Association, 2009.


