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Abstract

The motivation for this paper comes from a recent study which indicated that the
influence of environmental filtering should increase with decreasing soil fertility, based
on the premise that individuals will employ a resource-retentive strategy in a less pro-
ductive ecosystem. Mean annual temperature (MAT) is one indicator of the productivity
of the ecosystem. We aim to build a more accurate model of environmental filter and
want to statistically test whether the environmental filter is stronger when the MAT is
lower compared to when it is higher. Our findings throw an interesting insight into how
the trait variability changes as a function of MAT and how it could be better modelled.

Keywords: Bayes factors, Likelihood ratio test, Environmental filter, Markov Chain
Monte Carlo, Trait based community assembly.

1 Introduction
Community assembly theory suggests that individuals are sorted along environmen-
tal gradients as their functional traits influence their fitness and performance (Keddy
(1992)). Species with similar functional traits will more likely be found in similar envi-
ronments, leading to convergence of trait values within communities (Shipley (2010)).
The motivation for this paper comes from a recent study by Mason et al. (2012), which
indicated that the influence of environmental filtering should increase with decreasing
soil fertility, based on the premise that individuals will employ a resource-retentive
strategy in a less productive ecosystem, and that small differences in competitive abil-
ity will not have disproportionate effects on the outcome of competition (Lambers et al.
(2008)). Mean annual temperature (MAT) is one indicator of the productivity of the
ecosystem. We aim to build a more accurate model of environmental filter and want
to statistically test whether the environmental filter is stronger when the MAT is lower
compared to when it is higher.

2 Data and Models
We re-analyse the data used by Laughlin et al. (2012). They measured three different
functional traits - bark thickness, specific leaf area (SLA) and wood density. The three
functional traits were measured on individual trees from nine different species across
several sites in Arizona, USA. The sites had a 10◦C range in MAT. The traits were cho-
sen to represent key spectrums of plant strategies, and are not strongly correlated with
each other. Laughlin et al. (2012) modelled the environmental filters (for each trait)
by using generalised linear models with a log-link function and polynomial regression
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Figure 1: Scatterplots for each trait versus Mean Annual Temperature, vertical lines show the
partitions for each trait.

equations with constant variance. The models of the three functional traits were as
follows:

log(bark) = β0 + β1t+ β2t
2 + ε

log(SLA) = β0 + β1t+ β2t
2 + ε

log(wood) = β0 + β1t+ β2t
2 + β3t

3 + ε

where, t denotes the MAT, and ε was assumed to follow a normal distribution, with
E(ε) = 0 and V ar(ε) = σ2I. The log-link function was used to ensure the prediced
trait values were positive, and the polynomial equations were used to ensure the curved
relationship of each trait versus temperature were accounted for.

A stronger environmental filter implies that the variance will be smaller. If the
theory is true then the variability in the trait values should be significantly smaller for
lower values of MAT than for the higher values. We test the theory by partitioning the
data and refitting the above models assuming unequal variances for each partition. The
bark and wood data were partitioned at 4◦C to distinguish between lower and higher
MAT. SLA was partitioned at 4◦C and 7◦C . We take a conservative approach and
test weather the variances are equal or not. Thus, we have the following two-sided
hypotheses for the three traits:

H0 : σ1
2 = σ2

2 versus H1 : σ1
2 6= σ2

2 for bark and wood,
and H0 : σ1

2 = σ2
2 = σ3

2 versus H1 : σ1
2 6= σ2

2 6= σ3
2 for SLA,

where σ2
1 denotes the variance for the lowest partition ( MAT < 4◦C). Testing these

hypotheses involves model fitting under each of the hypotheses.

3 Statistical Inference
Parameter estimation under H0 is straightforward under both the classical as well as
the Bayesian paradigm. Under H1, we first take the Bayesian approach and employ
an MCMC based method, namely, a blockwise MH algorithm with random walk pro-
posals. Flat priors were used for objective estimation. MCMC chains converged satis-
factorily. Under H1, no closed form analytical solution exists for the MLE, however,
iterative procedures have been proposed. We find the MLE using the two-stage esti-
mator of Rao and Fuller (1978). Both these methods yield nearly identical estimates
(Table 1).



Table 1: Parameter estimates using the two-stage estimator (2st) and the posterior means (MCMC)
along with the 95% credible intervals for the posteriors. Note these are in the natural log-scale.

The results in Table 1 show that for all traits, the standard deviations had non-
overlapping 95% credible intervals indicating that P (H0|data) < 0.05. This would
suggest that the variances are significantly different in each partition of MAT for each
trait. More formally, we test using both the Bayes factors and the likelihood ratio test.

Bayes factors offer a way of evaluating evidence in favour of a null hypothesis
(Kass and Raftery (1995)), a Bayesian alternative to the frequentists p-value. However,
derivation of the Bayes factor is not obvious when the H0 or the H1 correspond to
probability 0 events, as in this case, where the H0 is a singleton. We derive in the
appendix, the expression for the Bayes factor:

B01 =
σ̂c
−n exp(− 1

2σ2
c
(y −Xβ)′(y −Xβ))

1
(b−a)ρ

∏ρ
i=1 exp(− 1

b )(ni2 !)
∑ni

2

k=0
b−k

k! − numerator
, (1)

where σ̂c is the MCMC estimate for standard deviation assuming constant variance, ρ
is the number of partitions, and a and b are the parameters of the uniform priors used.
The resulting Bayes factors (Table 2) for all three models turned out to be extremely
small (≈ 0), implying that the data offers almost no evidence in favour of H0 which
agrees with our previous test.

The likelihood ratio is defined as:

λ =
supH0

L(y, σ2
c )

supθ∈ΩL(y,Σ)
(2)

The numerator is the likelihood function evaluated under H0 with constant variance
σ2
c , and denominator evaluates the likelihood function under the parameter space Ω

with non-constant variance Σ. This ratio of variances follows a chi-square distribution
with (ρ−1) degrees of freedom. The p-values for each trait (Table 2) confirm that there
is extremely strong evidence againstH0, verifying our earlier results.

Table 2: Hypothesis test results for the Bayes factor and likelihood ratio tests.

These results are not surprising since Figure 1 clearly shows that the variances
are not constant. Point estimates for SLA confirm that σ1 < σ2 < σ3, in line with



theory we set out to test. However, for bark thickness and wood density, the estimates
contradict the theory, i.e. they indicate that σ1 > σ2. In order to reconfirm that this
was indeed the case, we derived Bayes factors (derivation not included) to test the
hypotheses:

H0 : σ1
2 = σ2

2 versus H1 : σ1
2 > σ2

2 for bark and wood.

Bayes factors for both the traits turned out to be extremely small (≈ 0) indicating that
the data has strong support in favour of theH1 : σ1

2 > σ2
2. So what do these findings

mean? Do they indicate that the environmental filter is in fact weaker for lower values
of MAT?

4 Discussion
A closer look at Figure 1 reveals that firstly, for wood density, the scatter plot, in fact,
does show more variation in the lower partition than in the upper and therefore the re-
sult (σ1

2 > σ2
2) is not surprising given the data, although it does appear to contradict

the premise we set out to test. Secondly, it can be seen that for bark thickness, the data
is much more skewed (skewness = 1.4) in the lower partition compared to the upper
partition (skewness = 0.6). It is important to note that the data follows a log-normal
distribution, and hence the variance will increase with skewness.

Figure 2: Estimated variance as a function of MAT for each functional trait

Also, note that σi’s represent the variance of the log transformed data, but it is the
variance of the original data (lets denote it by s2) that should be examined in order to
test the theory. If log(X) ∼ N(µ, σ2) then var(X) = s2 is given by

s2 = (eσ
2

− 1)e2µ+σ2

. (3)

Based on the estimates of the regression equation and the σi’s, it is possible to estimate
the variance of the trait data. These estimates of trait variances are plotted against the
MAT in Figure 2. It can be seen that the variance of bark thickness in fact increases
with increase in MAT and so does the variance of SLA. Variance of wood density, how-
ever, shows an increase towards the extreme MAT values on both sides.

The rise in variance of SLA with increasing MAT makes intuitive sense given that
only species with low SLA would persist at low temperatures, whereas a greater range
of SLA can persist at high temperatures. The rise in the variance of bark thickness
with increasing MAT makes intuitive sense given that at low temperatures, fires are
much less frequent, and therefore investing resources in thick bark to resist fire is not
advantageous. At higher temperatures, a broader range of fire regimes occurs, and



therefore a broader range of bark thickness allows for greater species coexistence across
the landscape. The U -shaped response of wood density variance is more difficult to
interpret. The high variance at low temperatures is likely due to one species (Pinus
aristata) at the highest elevations that has dense wood, since most other species have
very light wood at that elevation. The low variance at intermediate temperatures reflects
strong filtering for less dense wood at moderately cold temperatures where drought-
induced cavitation is less likely than at treeline.

5 Conclusions and Further Work
Prediction of species abundance through the development of mathematical models of
trait-based community assembly has seen a renewed interest in recent times (McGill
(2006), Shipley et al. (2006), Laughlin et al. (2012)). Accruate modelling of the en-
vironmental filter is likely to improve the predictions of such models. This study has
given an insight into how the variability of functional trait values changes as a function
of MAT. Results for SLA and bark thickness conform to the premise that individuals
will employ a resource retentive strategy in a less productive eco-systems. We suspest
that the results for wood density are skewed by the presence of one species (Pinus aris-
tata) with unusual characteristics.

It is important to characterise the environmental filter for a wide range of trait values
and against several environmental gradients. Figure 2 indicates that modelling the vari-
ance as a continuous process (instead of partitioning) is likely to result in more realistic
modelling of the environmental filter. This possibility needs to be further explored.

Appendix: Derivation of the Bayes factor
The null hypothesis is a singleton, i.e. of measure zero under any continuous distribu-
tion. The prior distribution is therefore defined as: π(σ1, σ2) = ρ0×IΩ0

(σ1, σ2)+(1−
ρ0)×g(σ1, σ2), where ρ0 = 0.5 and g(., .) is the uniform distribution over (a, b]×(a, b].
This ensures that

∫
π(σ1, σ2) dσ1 dσ2 = 1. After simplification, the Bayes factor B01

reduces to:

B01 =
f(x, σc)∫

Ω1
f(x, σ1, σ2)g(σ1, σ2) dσ1 dσ2

, (4)

where, f(x, σc) = (
√

2πσc)
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−
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2(σc)2
), and the denominator is

(
√
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2 exp(
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where the integral is expressed in terms of precision νi = σ−2
i . The intergrands in the

denominator are incomplete gamma functions and for n1/2 and n2/2, both integers,
the integrals have a closed form solution. Using these along with some simplification
yeilds Equation(1).
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