
An Algorithm for Compositional Nonblocking

Verification of Extended Finite-State Machines

Sahar Mohajerani ∗ Robi Malik ∗∗ Martin Fabian ∗

∗ Department of Signals and Systems,
Chalmers University of Technology, Göteborg, Sweden,

(e-mail: {mohajera,fabian}@chalmers.se)
∗∗ Department of Computer Science, University of Waikato, Hamilton,

New Zealand, (e-mail: robi@waikato.ac.nz)

Abstract: This paper describes an approach for compositional nonblocking verification of
discrete event systems modelled as extended finite-state machines (EFSM). Previous results
about finite-state machines in lock-step synchronisation are generalised and applied to EFSMs
communicating via shared variables. This gives rise to an EFSM-based conflict check algorithm
that composes EFSMs gradually and partially unfolds variables as needed. At each step,
components are simplified using conflict-equivalence preserving abstraction. The algorithm
has been implemented in the discrete event systems tool Supremica. The paper presents
experimental results for the verification of two scalable manufacturing system models, and shows
that the EFSM-based algorithm verifies some large models faster than previously used methods.

Keywords: Discrete event systems, extended finite-state machines, compositional verification,
nonblocking, abstraction.

1. INTRODUCTION

Many discrete event systems are safety-critical, where
failures can result in huge financial losses or even human
fatalities. Logical correctness is a crucial property of these
systems, and formal verification is an important part of
guaranteeing it. This paper focuses on the verification of
the nonblocking property (Ramadge and Wonham, 1989).

Formal verification requires a formal model, and finite-
state machines (FSM) are widely used to represent dis-
crete event systems (Ramadge and Wonham, 1989). FSMs
describe the behaviour of a system using states and tran-
sitions between these states. Yet, data driven systems
are more naturally modelled as extended finite-state ma-
chines (EFSM), which communicate through bounded dis-
crete variables. EFSMs have been similarly defined by
several researchers (Chen and Lin, 2000; Yang and Go-
hari, 2005; Sköldstam et al., 2007; Zhaoa et al., 2012; Tei-
xeira et al., 2013).

While variables simplify the modelling of discrete event
systems, the verification of large systems remains a chal-
lenge due to the state-space explosion problem. Verifica-
tion must take all possible variable values into account,
which can result in a large state space. To overcome state
space explosion, various approaches including symbolic
model checking (Baier and Katoen, 2008; McMillan, 1993)
and abstraction (Graf and Steffen, 1990; Dams et al., 1994)
have been proposed. Another method is compositional
verification using conflict equivalence, which has shown
impressive results for large FSM models (Flordal and Ma-
lik, 2009; Su et al., 2010; Malik and Leduc, 2013).

To apply FSM-based compositional methods to systems
modelled as EFSMs, the model is first converted to a set
of FSMs (Sköldstam et al., 2007). While the conversion

preserves the modular structure, making it possible to
apply FSM-based methods directly, it has the drawback
of significantly increasing the number of events. In some
cases, the conversion takes longer than the verification.

Recently, an adaptation of compositional verification to
EFSM models was proposed (Mohajerani et al., 2013a),
which removes the need to convert EFSMs to FSMs. In
that work, symbolic observation equivalence is used as the
only abstraction method. While observation equivalence
reduces the state space significantly, it is not the best
possible equivalence for nonblocking verification (Malik
et al., 2006). Several conflict-preserving abstraction rules
for FSMs are known (Flordal and Malik, 2009; Malik and
Leduc, 2013) that extend beyond observation equivalence.

This paper applies the compositional framework (Flordal
and Malik, 2009) to systems modelled as EFSMs commu-
nicating via shared variables. In addition to partial unfold-
ing, which removes variables from the system, and selfloop
removal, which removes transitions, the paper provides
a general framework to apply every conflict-preserving
FSM abstraction rule (Flordal and Malik, 2009; Malik and
Leduc, 2013) directly to EFSMs. The proposed EFSM-
based compositional algorithm is implemented in Suprem-
ica (Åkesson et al., 2006), and has been used successfully
to verify two scalable manufacturing systems.

This paper is structured as follows. Sect. 2 introduces the
notation and concepts for EFSMs. Sect. 3 presents the idea
of compositional nonblocking verification of EFSMs and
shows how an EFSM can be simplified without converting
it to an FSM. Afterwards, Sect. 4 describes the algorithm
for compositional nonblocking verification of EFSM sys-
tems, Sect. 5 presents the experimental results, and Sect. 6
adds some concluding remarks.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. PRELIMINARIES

2.1 Finite-State Machines

The standard means to model discrete event systems
(Ramadge and Wonham, 1989) are finite-state machines
(FSM), which synchronise on shared events (Hoare, 1985).
Events are taken from a finite alphabet Σ. The special
silent event τ /∈ Σ is not included in Σ unless explicitly
mentioned using the notation Στ = Σ ∪ {τ}. Further, Σ∗

is the set of all finite traces of events from Σ, including the
empty trace ε. The concatenation of two traces s, t ∈ Σ∗

is written as st.

Definition 1. A finite-state machine (FSM) is a tuple G =
〈Σ, Q,→, Q◦, Qω〉, where Σ is a finite set of events, Q is a
finite set of states, → ⊆ Q×Στ ×Q is the state transition
relation, Q◦ ⊆ Q is the set of initial states, and Qω ⊆ Q is
the set of marked states.

The transition relation is written in infix notation x
σ
→ y,

and is extended to traces in Σ∗
τ by x

ε
→ x for all x ∈ Q,

and x
sσ
→ z if x

s
→ y and y

σ
→ z for some y ∈ Q. The

transition relation is also defined for state sets X,Y ⊆ Q,

for example X
s
→ y means x

s
→ y for some x ∈ X.

Definition 2. Let G1 = 〈Σ1, Q1,→1, Q
◦
1, Q

ω
1 〉 and G2 =

〈Σ2, Q2,→2, Q
◦
2, Q

ω
2 〉 be two FSMs. The synchronous com-

position of G1 and G2 is

G1‖G2 = 〈Σ1 ∪ Σ2, Q1 ×Q2,→, Q◦
1 ×Q◦

2, Q
ω
1 ×Qω

2 〉 (1)

where

(x1, x2)
σ
→ (y1, y2) if σ ∈ Σ1 ∩ Σ2, x1

σ
→1 y1, x2

σ
→2 y2 ;

(x1, x2)
σ
→ (y1, x2) if σ ∈ (Σ1 \ Σ2) ∪ {τ}, x1

σ
→1 y1 ;

(x1, x2)
σ
→ (x1, y2) if σ ∈ (Σ2 \ Σ1) ∪ {τ}, x2

σ
→2 y2 .

This paper concerns verification of the nonblocking prop-
erty, which is commonly used in supervisory control theory
of discrete event systems (Ramadge and Wonham, 1989).

Definition 3. An FSM G = 〈Σ, Q,→, Q◦, Qω〉 is nonblock-

ing if, for every s ∈ Σ∗
τ and every x ∈ Q such that Q◦ s

→ x,

there exists t ∈ Σ∗
τ such that x

t
→ Qω.

2.2 Extended Finite-State Machines

Extended finite-state machines (EFSM) are similar to
conventional finite-state machines (FSM), but augmented
with updates associated to the transitions (Chen and
Lin, 2000; Sköldstam et al., 2007). Updates are predicates
containing variables.

A variable v is an entity associated with a finite do-
main dom(v) and an initial value v◦ ∈ dom(v). Let V =
{v0, . . . , vn} be the set of variables with domain dom(V) =
dom(v0) × · · · × dom(vn). An element of dom(V) is also
called valuation and denoted by v̂ = (v̂0, . . . , v̂n) with
v̂i ∈ dom(vi). The initial valuation is v̂◦ = (v◦0 , . . . v

◦
n).

A second set of variables, called next-state variables and
denoted by V ′ = { v′ | v ∈ V } with dom(V ′) = dom(V), is
used to describe how variables are updated by transitions.

For example, let x be a variable with domain dom(x) =
{0, . . . , 5} and initial value x◦ = 0. A transition with
update x′ = x + 1 changes the variable x by adding 1 to
its current value, if it currently is less than 5. Otherwise
(if x = 5) the transition is disabled and no updates are

performed. Another possibility is to write the formula x′ =
min(x+1, 5), in which case the transition remains enabled
when x = 5. The update x = 3 disables a transition unless
x = 3 in the current state, and the value of x in the next
state is not changed. Differently, the update x′ = 3 always
enables its transition, and the value of x in the next state
is forced to be 3.

The set of all update predicates using variables in V and V ′

is denoted by ΠV . For an update p ∈ ΠV , the term vars(p)
denotes the set of all variables that occur in p, and vars′(p)
denotes the set of all variables modified by p. For example,
if p ≡ x′ = y+1 then vars(p) = {x, y}, and vars′(p) = {x}.
An update p with vars′(p) = ∅ is called a pure guard. Its
execution leaves all variables unchanged.

Definition 4. An extended finite-state machine (EFSM) is
a tuple E = 〈V,Q,→ , Q◦, Qω〉, where V is a finite set of
variables, Q is a finite set of locations, → ⊆ Q × ΠV ×Q
is the conditional transition relation, Q◦ ⊆ Q is the set of
initial locations, andQω ⊆ Q is the set ofmarked locations.

The expression x
p
→ y denotes the presence of a transition

in E, from location x to location y with update p ∈ ΠV .
On the occurrence of such a transition, the EFSM changes
its location from x to y while updating the variables
in vars′(p) in accordance with p; variables not contained
in vars′(p) remain unchanged.

Usually, reactive systems are modelled as several compo-
nents interacting with each other. An EFSM system is a
collection of interacting EFSMs,

E = {E1, . . . , En} . (2)

The behaviour of such a system is expressed using inter-
leaving semantics (Baier and Katoen, 2008). Synchronisa-
tion is achieved indirectly through the variables.

Definition 5. Given two EFSMs E = 〈VE , QE ,→E , Q
◦
E ,

Qω
E〉 and F = 〈VF , QF ,→F , Q

◦
F , Q

ω
F 〉 the composition of

E and F is

E ‖F = 〈VE∪VF , QE×QF ,→, Q◦
E×Q◦

F , Q
ω
E×Qω

F 〉 , (3)

where

• (xE , xF)
pE
→ (yE , xF) if xE

pE
→E yE ;

• (xE , xF)
pF
→ (xE , yF) if xF

pF
→F yF .

To apply the nonblocking property to EFSMs, they are
interpreted as FSMs. The standard approach to do this is
flattening, which introduces states for all combinations of
locations and variable values (Baier and Katoen, 2008).

Definition 6. Let E = 〈V,Q,→ , Q◦, Qω〉 be an EFSM.
The monolithic flattened FSM of E is U(E) = 〈∅, QU ,
→U , Q

◦
U , Q

ω
U 〉 where

• QU = Q× dom(V),

• (x, v̂)
τ
→U (y, ŵ) if x

p
→ y and p(v̂, ŵ) = true,

• Q◦
U = Q◦ × {v̂◦}

• Qω
U = Qω × dom(V).

The domain of variables and the initial valuation v̂0 are
determined by variables as they are properties of variables.
The variable values ensure the correct sequencing of transi-
tions in the flattened FSM. The flattened FSM of an EFSM
system E = {E1, . . . , En} is U(E) = U(E1‖· · ·‖En). Using
these definitions, the nonblocking property is also defined
for EFSMs and EFSM systems.

2

Definition 7. An EFSM system E is nonblocking if the
flattening U(E) is nonblocking.

3. EFSM-BASED COMPOSITIONAL VERIFICATION

The straightforward approach to check whether a modular
system

E = {E1, E2, . . . , En} (4)

is nonblocking, is to explicitly construct the monolithic
representation of the system and check for each reach-
able state whether it is possible to reach a marked state.
Clearly, this technique is limited by the state space explo-
sion problem. In an attempt to alleviate state-space explo-
sion, compositional verification (Flordal and Malik, 2009)
seeks to repeatedly rewrite individual system components
and, for example, replace E1 in (4) by an abstraction E′

1,
to analyse the simpler system

E ′ = {E′
1, E2, . . . , En} . (5)

The abstraction steps to simplify the individual compo-
nents Ei must satisfy certain conditions to guarantee that
the verification result is preserved. One equivalence to
support nonblocking verification is conflict equivalence.

Definition 8. (Malik et al., 2006) Two EFSMs or FSMs
E1 and E2 are conflict equivalent, written E1 ≃conf E2, if
for any component T , it holds that E1 ‖ T is nonblocking
if and only if E2 ‖ T is nonblocking.

Due to the congruence properties of conflict equivalence
(Malik et al., 2006), FSM components in a composition
can be replaced by conflict equivalent components while
preserving the nonblocking property. It is straightforward
to lift this result to EFSMs.

Proposition 1. Let E = {E1, . . . , En} and F = {F1, E2,
. . . , En} be EFSM systems such that E1 ≃conf F1. Then
U(E) is nonblocking if and only if U(F) is nonblocking.

If no component in a system (4) can be simplified indi-
vidually, then either some EFSMs components must be
composed or some variables must be expanded into lo-
cations. These operations result in new EFSMs that are
abstracted again, and the procedure continues until the
system is simple enough to be verified directly.

In the following, Sect. 3.1–3.3 describe the methods of par-
tial composition, update simplification, and partial unfold-
ing of variables. Afterwards, Sect. 3.4 and 3.5 propose two
methods to simplify EFSMs. Formal correctness proofs of
the key results can be found in (Mohajerani et al., 2013b).

3.1 Partial Composition

Composition is the simplest step in compositional verifi-
cation. It is always possible to replace some components
of an EFSM system by their composition. This operation
does not reduce the state space, but it is necessary when
all other means of simplification have been exhausted. The
following result follows directly from the definitions. The
flattened FSMs before and after partial composition are
not only equivalent with respect to nonblocking, but also
identical up to isomorphism.

Proposition 2. Let E = {E1, . . . , En} be an EFSM system,
and F = {E1 ‖E2, E3, . . . , En}. Then U(E) is nonblocking
if and only if U(F) is nonblocking.

3.2 Update Simplification

An important aspect to reasoning about EFSM systems
is the symbolic manipulation of updates, in order to keep
the formulas as simple as possible.

Proposition 3. Let E = 〈V,Q,→E , Q
◦, Qω〉 be an EFSM

with x
p
→E y, let p̃ be an update logically equivalent to p

such that vars′(p) = vars′(p̃), and let F = 〈V,Q,→F , Q
◦,

Qω〉 such that →F = (→E \ {(x, p, y}) ∪ {(x, p̃, y)}. Then
E ≃conf F .

An update in an EFSM can always be replaced by a
logically equivalent update, provided that both updates
contain the same next-state variables. The condition on
the next-state variables is necessary to ensure that the set
of unchanged variables, i.e., variables not occurring primed
in an update, is preserved.

3.3 Partial Unfolding

Partial unfolding (Mohajerani et al., 2013a) is the process
of removing a variable from an EFSM and expanding its
values into locations.

Definition 9. Let E = 〈V,Q,→ , Q◦, Qω〉 be an EFSM,
and let z ∈ V . The result of partially unfolding z in E is
the EFSM E \ z = 〈V \ {z}, Q × dom(z),→\z, Q

◦ × {z◦},
Qω × dom(z)〉 where

(x, a)
∃z∃z′(p∧z=a∧z′=b)
−−−−−−−−−−−−−→\z (y, b) (6)

for all a, b ∈ dom(z) such that x
p
→ y, and such that

z /∈ vars′(p) implies a = b.

A variable is called local in an EFSM system, if it appears
in only one component. Since local variables are not
needed for interaction with any other component, they
can be removed by partial unfolding. The following result
confirms that partial unfolding of a local variable preserves
the nonblocking property of an EFSM system. Similar to
partial composition, the flattened FSMs before and after
partial unfolding are identical up to isomorphism.

Proposition 4. Let E = {E1, . . . , En} be an EFSM system,
z ∈ vars(E1)\

⋃n
i=2 vars(Ei), and F = {E1\z, E2, . . . , En}.

Then U(E) is nonblocking if and only if U(F) is nonblock-
ing.

After partially unfolding a local variable z, the resulting
updates ∃z∃z′(p ∧ z = a ∧ z′ = b) can be simplified using
Prop. 3. It is enough to replace z and z′ in the update p
by the constants a and b, respectively, and simplify the
resulting update. In this way, partial unfolding removes
local variables at the price of an increase in the number of
locations. Its application may be deferred in favour of other
operations. On the other hand, partial unfolding often
simplifies or removes some updates, making it possible to
apply the abstraction methods following below.

3.4 Selfloop Removal

In compositional verification of FSM systems, selfloop
transitions labelled by silent events are immediately re-
moved because no state change is possible by these tran-
sitions. In EFSM models, selfloop transitions labelled by
pure guards have the same property.

3

Proposition 5. Let E = 〈V,Q,→E , Q
◦, Qω〉 be an EFSM.

Let F = 〈V,Q,→F , Q
◦, Qω〉 such that

→F =→E \ { (x, p, x) ∈ →E | x ∈ Q and vars′(p) = ∅ } .

Then E ≃conf F .

In combination with Prop. 1, it is clear that selfloops
labelled by pure guards can be removed without affecting
the nonblocking property of an EFSM system. This simple
abstraction step can increase the applicability of other
abstraction methods.

3.5 FSM-Based Conflict Equivalence Abstraction

Several abstraction methods for ordinary FSMs have been
proposed (Flordal and Malik, 2009). The approach sug-
gested here is to use the methods developed for FSMs to
abstract EFSMs directly without flattening.

Definition 10. Let E = 〈V,Q,→ , Q◦, Qω〉 be an EFSM.
The FSM form of E is ϕ(E) = 〈Σ, Q,→ϕ, Q

◦, Qω〉, where

Σ = { p ∈ ΠV \ {true} | x
p
→ y for some x, y ∈ Q } ;

→ϕ = { (x, p, y) ∈ → | p 6= true } ∪ { (x, τ, y) | x
true
−−→ y } .

The FSM form is obtained by reinterpreting all updates
of an EFSM as simple events, except for true updates,
which are replaced by silent τ -transitions. Unlike in the
flattened FSM, there is no need to evaluate and expand the
variable values. The conversion to FSM form and back is
a straightforward operation that does not incur any blow-
up, yet it makes it possible to apply FSM simplification to
EFSMs.

Proposition 6. Let E and F be two EFSMs with FSM
forms ϕ(E) and ϕ(F). If ϕ(E) ≃conf ϕ(F) then E ≃conf F .

Prop. 6 provides a general method to abstract an EFSM
while preserving conflict equivalence, which in combina-
tion with Prop. 1 guarantees that the nonblocking prop-
erty of an EFSM system is unchanged.

Example 1. Consider EFSM E in Fig. 1, where initial
locations have an incoming arrow and marked locations
are coloured black. Assume that dom(x) = dom(y) =
{0, 1, 2, 3} and x◦ = y◦ = 0, and y is a local variable.
Partial unfolding of y followed by update simplification
results in E\y, shown in Fig. 1. Here, x < 2 is a pure guard,
so the selfloop labelled by this update can be removed,
resulting in E′ in Fig. 1. The FSM form ϕ(E′) of E′, also
shown in Fig. 1, has the events

Σ = {x′ = 1, x′ = 2} (7)

in addition to a τ -transition replacing the true update.
States (a, 0) and (b, 1), and states (c, 3) and (d, 2) in ϕ(E′)
can be merged using the conflict-preserving abstraction
methods of observation equivalence and the Active Events
Rule (Flordal and Malik, 2009). The resultant FSM is

converted back to the EFSM Ẽ shown in Fig. 1. It follows

from Props. 5 and 6 that E\y ≃conf Ẽ. Note that, since the
Active Events Rules requires equal sets of enabled events,
states (c, 3) and (d, 2) can only be merged after selfloop
removal.

4. ALGORITHM

Algorithm 1 shows how to verify the nonblocking property
of an EFSM system using the above results. The algorithm

repeatedly either chooses a local variable to be partially
unfolded or two EFSMs to be composed, and simplifies the
resultant EFSMs, until only one EFSM is left.

Algorithm 1 EFSM-based compositional verification

1: input E = {E1, E2, . . . , En}, V = {v1, v2, . . . , vm}
2: while |E| > 1 ∨ |V | > 0 do
3: if there are local variables then
4: (v,E)← selectLocalVariable(E)
5: V ← V \ {v}, E ← E \ {E}
6: E ← partialUnfold(v,E)
7: else
8: pair ← selectPair(E)
9: E ← E \ pair

10: E ← composition(pair)
11: end if
12: E ← simplify(E)
13: E ← E ∪ {E}
14: end while
15: monolithicVerification(E)

Partial unfolding is preferred over composition, as the
potential for simplification afterwards is greater. If pos-
sible, line 4 selects a local variable v together with the
EFSM E containing it. The choice of what variable to
unfold significantly affects the performance. In some cases,
it is better to unfold a variable with a small domain as this
gives smaller EFSMs, while in some cases it is better to
unfold a variable that appears frequently as this allows
for more simplification. The presented implementation is
based on the following heuristics.

maxO selects the local variable that occurs in the largest
number of updates in its EFSM.

maxS selects the local variable that appears in the largest
number of selfloops.

maxES selects the local variable with smallest product of
its domain and number of locations of its EFSM.

While maxO simplifies more updates, which potentially
results in more abstraction, maxS attempts to increase
the performance of selfloop removal, which may also lead
to more abstraction. After some experimentation, the
order given above was determined the most effective, and
therefore the heuristics are applied in this order. If a
heuristic gives equal preference to two variables, the next
one is used to break the tie.

After selection of a local variable, the variable is partially
unfolded and removed from the system in lines 5 and 6.
The resultant EFSM is simplified later in line 12.

If there is no local variable, the selectPair method in line 8
selects a pair of EFSMs, which are removed from E and
composed in lines 9 and 10. To select the two EFSMs to
compose, another set of heuristics is used. The following
heuristics attempt to keep the number of locations or the
number of shared variables as small as possible.

minV gives preference to EFSM pairs with the smallest
number of non-local variables used in the EFSMs to be
composed.

minF chooses a pair of EFSMs with the smallest number
of other EFSMs it shares variables with.

minSynch gives preference to pairs with the smallest
number of locations in their composition.

4

E E \ y E′ ϕ(E′) Ẽ

a

b

c d

e f

x′ = 2 x′ = 2

y′ = 3 ∧

x′ = 1

y′ = 2 ∧

x′ = 1
x < y ∧

y′ = 2

y′ = 1

(a, 0)

(b, 1)

(c, 3) (d, 2)

(e, 3) (f, 2)

x′ = 1 x′ = 1

x′ = 2 x′ = 2

x < 2

true

(a, 0)

(b, 1)

(c, 3) (d, 2)

(e, 3) (f, 2)

x′ = 1x′ = 1

x′ = 2x′ = 2

true

(a, 0)

(b, 1)

(c, 3) (d, 2)

(e, 3) (f, 2)

x′ = 1x′ = 1

x′ = 2x′ = 2

τ

e f

ab

cd

x′ = 1

x′ = 2 x′ = 2

Fig. 1. Automata for Example 1.

minV and minF select a pair of EFSMs the composition
of which increases the possibility of having local variables,
whileminSynch attempts to keep the number of locations
as small as possible. Since unfolding local variables was
found to produce more abstraction, the heuristics are used
in the above order to break ties.

The resultant EFSM from partial unfolding or composition
is simplified in line 12. The first abstraction rule applied
by the simplify method is the removal of selfloops labelled
by pure guards according to Prop. 5. Next, the EFSM is
converted to FSM form, and based on Prop. 6, conflict-
preserving abstractions (Flordal and Malik, 2009) are
used to simplify the FSM. Then the abstracted FSM is
converted back to an EFSM and added to E in line 13.

The loop terminates when E contains only one EFSM and
all the variables are unfolded. The final EFSM is passed
to standard nonblocking verification in line 15. Based on
Props. 1-6, the result is nonblocking if and only if the
original system is nonblocking.

5. EXPERIMENTAL RESULTS

The EFSM-based compositional nonblocking verification
has been implemented in the discrete event systems tool
Supremica (Åkesson et al., 2006). This section shows some
experiments to compare this algorithm with two other
methods for nonblocking verification. Subsection 5.1 de-
scribes the models used for the experiments, subsection 5.2
briefly outlines the two alternative methods considered in
the comparison, and subsection 5.3 presents the results.

5.1 Examples

The experiments are set up to verify the nonblocking
property of the two manufacturing systems described
below. Both systems have a regular structure and can be
scaled up to give arbitrarily large EFSM systems that test
the algorithms to their limits.

Transfer Line The model is a scalable version of the
transfer line with rework cycles (Teixeira et al., 2013).
The system consists of N serially connected cells linked
by buffers. Each cell n for 1 ≤ n ≤ N has two machines
Mn,1, Mn,2, a test unit TUn, and three buffers Bn,1, Bn,2,
and Bn,3 of capacity 1. Initially workpieces are picked up
by machine M0 and placed in buffer B1,1 to enter cell 1.
Within cell n, machine Mn,1 takes workpieces from Bn,1,
manufactures, and places them in Bn,2, from where they
are picked up by Mn,2 and placed in Bn,3. Then they go to
the test unit TUn, which either approves a workpiece and
sends it to the next cell via Bn+1,1, or rejects it and puts

. . .
M0 M1,1 M1,2 TU1B1,1 B1,2 B1,3

B2,1

M0 Mn,1 Mn,2

true
b1,1 = 0 ∧

b′1,1 = 1

bn,1 6= 0 ∧

b′n,1 = 0 ∧

m′

n,1 = bn,1

bn,2 = 0 ∧

m′

n,1 = 0 ∧

b′n,2 = mn,1

bn,2 6= 0 ∧

b′n,2 = 0 ∧

m′

n,2 = bn,2

bn,3 = 0 ∧

m′

n,2 = 0 ∧

b′n,3 = mn,2

TUn 0 < bn,3 < W ∧
tu′

n = bn,3 ∧ b′n,3 = 0
bn,3 = W∧

tu′

n = bn,3 ∧ b′n,3 = 0

bn+1,1 = 0 ∧ tu′

n = 0 ∧
b′n+1,1 = 1

bn+1,1 = 0 ∧ tu′

n = 0 ∧
b′n+1,1 = 1

bn,1 = 0 ∧ tu′

n = 0 ∧

b′n,1 = tun + 1

tu′

n = 0

U

b′N+1,1 = 0

Fig. 2. Transfer line system.

..

.
..
.

..

.

. . .

..

.

M1,1

M1,2

M1,M

MN−1,1

MN−1,2

MN−1,M

L1

L2

LM

UL1

UL2

ULM

B1 B2 BN−1 BN

Lm

t0 +
∑

M

i=1
b1,i < C ∧

t′0 = t0 + 1

t′0 = t0 − 1 ∧

b′1,m = b1,m + 1

Mn,m

tn +
∑

M

i=1
bn+1,i < C ∧

t′n = tn + 1 ∧

b′n,m = bn,m − 1

t′n = tn − 1 ∧

b′n+1,m = bn+1,m + 1

ULm

b′n,m = bn,m − 1

true

Fig. 3. Parallel manufacturing lines system.

it back in Bn,1. Workpieces can be put back in Bn,1 up to
W − 1 times; on the W -th cycle they are either approved
or scrapped. The last cell N places its accepted workpieces
in a final buffer BN+1,1, from where they are removed by
an unloader U . Fig. 2 shows the overview of the first cell
and the EFSM model of the system.

The model uses variables bn,i, mn,i, and tun with domain
{0, . . . ,W} to represent the contents of the buffers, ma-
chines, and test units. A value of 0 indicates that there
is no workpiece in the corresponding unit, while a value
of k > 0 indicates the presence of a workpiece that has
entered the corresponding cell k times. The model thus
has two parameters: N ≥ 1 is the number of serially
connected cells, and W ≥ 1 is the maximum number of
work cycles. The experiments use the presented model,
which is nonblocking, and a blocking version obtained by
removing the unloader U .

5

Parallel Manufacturing Lines The system consists of
M parallel manufacturing lines each processing workpieces
of a particular type. Each line m consists of N +1 serially
connected machines Mn,m. The first machines in each line
are called loaders Lm, and the last machines are called
unloaders ULm. The parallel lines share N buffers Bn,
which can store workpieces of different type, but never
more than C workpieces at a time. Fig. 3 shows the system
layout and the EFSM model of the system.

Each buffer is represented bym variables bn,m with domain
{0, . . . , C}, representing the number of type m workpieces
in buffer Bn. The system is controlled such that, for each n,
the number of workpieces in the machines Mn,m and the
following buffer Bn+1 never exceeds the buffer capacity C.
This control is facilitated by variables tn with domain
{0, . . . ,M}, which hold the total number of workpieces
currently processed in the machines numbered n.

The model has three parameters: M ≥ 1 is the number
of parallel lines, N ≥ 1 is the number of buffers, and
C ≥ 1 is the capacity of the buffers. It is nonblocking
for all parameter values.

5.2 Other Methods

The performance of the EFSM-based compositional veri-
fication algorithm is compared to the following methods.

BDD The BDD-based algorithm converts the EFSM
model to a symbolic representation in the form of Binary
Decision Diagrams (BDDs) and explores the full state
space symbolically (McMillan, 1993).

FSM The FSM-based compositional algorithm converts
the EFSM model to a set of FSMs and then applies the
compositional algorithm (Flordal and Malik, 2009). The
EFSM model is modularly flattened by creating a collec-
tion of location FSMs and variable FSMs (Mohajerani et
al., 2013a). Location FSMs use the EFSM locations as
states but replace the updates with events. Variable FSMs
use the domain of a variable as their states space and keep
track of the value of that variable. The flattened FSM
system has events of the form (E; v̂; ŵ) for each update p
in EFSM E and all valuations v̂ ∈ dom(vars(p)) and
ŵ ∈ dom(vars′(p)) such that p(v̂, ŵ) = true. In the worst
case, the number of events created for an update is the
product of the size of the domains of its variables. For
example, the events created for the update tu′ = 0 in the
EFSM TU in the Transfer Line model with W = 3 work
cycles are (TU, 0, 0), (TU, 1, 0), (TU, 2, 0), and (TU, 3, 0).

An update such as t0 +
∑M

i=1 b1,i < C in the Parallel
Manufacturing Lines model can produce up to M · CM

events.

5.3 Evaluation

Figs. 4–6 show experimental results for the Transfer
Line and the Parallel Manufacturing Lines, with differ-
ent parameter values, using the symbolic (BDD), FSM-
based compositional (FSM) and EFSM-based composi-
tional (EFSM) algorithms.

The experiments were run on a standard desktop computer
using a single core 2.67GHz CPU. Memory usage was
limited to 2GB, and runtime was limited to 50 minutes: if
a verification attempt took more resources, it was aborted.

0 100 200 300
0

50

100

150

200

BDD
FSM
EFSM

T
im

e
[s
]

Number of cells N

W = 4

Fig. 4. Runtimes for Transfer Line, nonblocking version.

0 100 200 300
0

50

100

150

200

250

T
im

e
[s

]

BDD

FSM

EFSM

Number of cells N

W = 4

Fig. 5. Runtimes for Transfer Line, blocking version.

Figs. 4 and 5 show runtimes for the nonblocking and
blocking versions of the Transfer Line example withW = 4
work cycles for an increasing number N of cells. The
runtime increases linearly for the EFSM and quadratically
for the FSM algorithm, with FSM being slightly faster for
small values of N . Because of the simplicity of the updates
in this model, the number of events in the flattened FSM
system grows linearly inN. In this case, the FSM algorithm
achieves the same abstractions as the EFSM algorithm,
and it is faster initially as it avoids time-consuming update
manipulations. However, the FSM-based compositional
algorithm is quadratic in the number of events because of
the way heuristics are evaluated, and when the number of
cells is increased beyond 180 in the nonblocking version or
21 in the blocking version, the EFSM algorithm becomes
faster. The BDD method cannot solve this problem for
more than N = 2 cells, probably due to difficulties finding
a workable ordering of the variables.

Fig. 6 shows runtimes for the Parallel Manufacturing
Lines example with M = 3 parallel lines, for increasing
manufacturing line lengths N and buffer capacities C. Due
to the more complex updates in the model, the number of
events in the flattened FSM system grows in O(N ·CM−1):
at M = 3, it grows linearly in N and quadratically
in C. The diagram shows a quadratic runtime increase
in N , because the FSM-based compositional algorithm is
quadratic in the number of events. When C is increased,
this quadratic growth causes the FSM method to fail
quickly.

In contrast, the BDD algorithm copes well with an increase
in C, as this only causes a moderate increase in the
complexity of the symbolic model. However an increase
in the number N of buffers causes a rapid increase in
BDD runtimes, mainly because of a quadratic growth in
the number of iterations.

6

0 20 40 60 80 100
0

200

400

600

800

BDD
FSM
EFSM

Number of buffers N

T
im

e
[s
]

C = 6
M = 3

0 5 10 15 20 25 30
0

500

1000

1500

BDD
FSM
EFSM

Buffer capacity C

T
im

e
[s
]

N = 10
M = 3

Fig. 6. Runtimes for Parallel Manufacturing Lines.

The EFSM-based compositional algorithm handles the
growth in both parameters well. As the model has a
simpler structure than the Transfer Line, it only needs
to compose very few EFSMs at a time, and the problems
associated with large event numbers are avoided thanks to
partial unfolding and update simplification.

6. CONCLUSIONS

A general framework for compositional nonblocking ver-
ification of discrete event systems modelled as extended
finite-state machines (EFSM) is presented. The framework
makes it possible to apply the abstraction methods devel-
oped for ordinary finite-state machines to EFSMs, without
the need to flatten the system and the associated overhead.
The algorithm has been implemented and its performance
compared with two other well-developed algorithms. The
experimental results suggest that the EFSM-based algo-
rithm can outperform FSM-based and BDD-based method
for large systems with complex update formulas on their
transitions.

Future work includes generalising the method for systems
modelled as extended finite-state automata, which commu-
nicate via variables and shared events. In addition, extend-
ing the method to support supervisor synthesis (Ramadge
and Wonham, 1989) for EFSMs is interesting.

REFERENCES

Åkesson, Knut, Martin Fabian, Hugo Flordal and Robi
Malik (2006). Supremica—an integrated environment
for verification, synthesis and simulation of discrete
event systems. In: Proc. 8th Int. Workshop on Dis-
crete Event Systems, WODES ’06. IEEE. Ann Arbor,
MI, USA. pp. 384–385.

Baier, Christel and Joost-Pieter Katoen (2008). Principles
of Model Checking. MIT Press.

Chen, Y. and F. Lin (2000). Modeling of discrete event
systems using finite state machines with parameters.
In: Proc. 2000 IEEE Int. Conf. Control Applications
(CCA). Anchorage, AK, USA. pp. 941–946.

Dams, Dennis, Orna Grumberg and Rob Gerth (1994). Ab-
stract interpretation of reactive systems: Abstractions
preserving ∀CTL∗, ∃CTL∗ and CTL∗. In: Proc. IFIP
WG2.1/WG2.2/WG2.3 Working Conf. Programming
Concepts, Methods and Calculi (PROCOMET) (E.-R.
Olderog, Ed.). IFIP Transactions. Elsevier.

Flordal, Hugo and Robi Malik (2009). Compositional
verification in supervisory control. SIAM J. Control
and Optimization 48(3), 1914–1938.

Graf, Susanne and Bernhard Steffen (1990). Composi-
tional minimization of finite state systems. In: Proc.
1990 Workshop on Computer-Aided Verification. Vol.
531 of LNCS. Springer. New Brunswick, NJ, USA.
pp. 186–196.

Hoare, C. A. R. (1985). Communicating Sequential Pro-
cesses. Prentice-Hall.

Malik, Robi and Ryan Leduc (2013). Compositional non-
blocking verification using generalised nonblocking ab-
stractions. IEEE Trans. Autom. Control 58(8), 1–13.

Malik, Robi, David Streader and Steve Reeves (2006).
Conflicts and fair testing. Int. J. Found. Comput. Sci.
17(4), 797–813.

McMillan, K. L. (1993). Symbolic Model Checking. Kluwer.
Boston, MA, USA.

Mohajerani, Sahar, Robi Malik and Martin Fabian
(2013a). Compositional nonblocking verification for
extended finite-state automata using partial unfold-
ing. In: Proc. 9th Int. Conf. Automation Science
and Engineering, CASE2013. Madison, WI, USA.
pp. 942–947.

Mohajerani, Sahar, Robi Malik and Martin Fabian
(2013b). Partial unfolding for compositional nonblock-
ing verification of extended finite-state machines.
Working Paper 01/2013, Dept. of Computer Science,
University of Waikato, Hamilton, New Zealand.

Ramadge, Peter J. G. and W. Murray Wonham (1989).
The control of discrete event systems. Proc. IEEE
77(1), 81–98.

Sköldstam, M., K. Åkesson and M. Fabian (2007). Mod-
eling of discrete event systems using finite automata
with variables. In: Proc. 46th IEEE Conf. Decision
and Control, CDC ’07. pp. 3387–3392.

Su, Rong, Jan H. van Schuppen, Jacobus E. Rooda and
Albert T. Hofkamp (2010). Nonconflict check by using
sequential automaton abstractions based on weak
observation equivalence. Automatica 46(6), 968–978.

Teixeira, Marcelo, Robi Malik, José E. R. Cury and
Max H. de Queiroz (2013). Variable abstraction and
approximations in supervisory control synthesis. In:
2013 American Control Conf.. Washington, DC, USA.
pp. 120–125.

Yang, Y. and R. Gohari (2005). Embedded supervi-
sory control of discrete-event systems. In: Proc.
1st Int. Conf. Automation Science and Engineering,
CASE2005. Edmonton, AB, Canada. pp. 410–415.

Zhaoa, Junhui, Yi-Liang Chen, Zhong Chen, Feng Lin,
Caisheng Wang and Hongwei Zhang (2012). Modeling
and control of discrete event systems using finite
state machines with variables and their applications

7

in power grids. Systems & Control Letters 61(1), 212–
222.

8

