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ABSTRACT
Estimation of distribution algorithms (EDA) are a major
branch of evolutionary algorithms (EA) with some unique
advantages in principle. They are able to take advantage of
correlation structure to drive the search more efficiently, and
they are able to provide insights about the structure of the
search space. However, model building in high dimensions
is extremely challenging and as a result existing EDAs lose
their strengths in large scale problems.

Large scale continuous global optimisation is key to many
real-world problems of modern days. Scaling up EAs to large
scale problems has become one of the biggest challenges of
the field.

This paper pins down some fundamental roots of the prob-
lem and makes a start at developing a new and generic
framework to yield effective EDA-type algorithms for large
scale continuous global optimisation problems. Our concept
is to introduce an ensemble of random projections of the
set of fittest search points to low dimensions as a basis for
developing a new and generic divide-and-conquer method-
ology. This is rooted in the theory of random projections
developed in theoretical computer science, and will exploit
recent advances of non-asymptotic random matrix theory.

Categories and Subject Descriptors
G.1.6 [Optimization]: unconstrained optimization; I.2.6
[Learning]: Parameter Learning

General Terms
Algorithms, Theory

Keywords
large scale optimisation, estimation of distribution algorithms,
random projections, random matrix theory
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Estimation of distribution algorithms (EDAs) are population-
based stochastic black-box optimisations methods that have
been recognised as a major paradigm of Evolutionary Com-
putation (EC) [21]. Contrary to the majority of traditional
EC that takes no advantage of any correlation structure of
the fittest sample, there is no crossover or mutation in EDAs
– instead, EDAs guide the search for the global optimum by
estimating the distribution of the fittest sample and drawing
new candidates from this distribution.

However, as the search space dimensionality increases EDA
type methods decline very quickly. Indeed, attempts to use
the full power of continuous EDA are scarce when the search
space exceeds 50-100 dimensions. Current practice of EDA
most often resorts to independence models or models with
some pre-defined limited dependency structure [29, 6, 11, 24]
in exchange for feasibility even in moderate scale problems.
Some authors employ heavy tail search distributions, for ex-
ample [29] propose a univariate EDA (UMDAc) with Gaus-
sian and Lévy search distribution for large scale EDA. While
this improves the exploration ability to some extent, a uni-
variate model unfortunately means that non-separable prob-
lems cannot be tackled adequately – fact both proved theo-
retically [20, 21] and shown experimentally [10]. A method
that goes beyond this is sep-CMA-ES [24]. It imposes a di-
agonal constraint on the covariance in a different way than
UMDAc – therefore by construction it is designed for rotated
separable problems. Note, however, that rotated separable
problems are not equivalent to nonseparable problems in
general.

Large scale continuous optimisation problems are one of
the most important concerns in EC research in the recent
years because they appear in many real-world problems such
as computational vision, data mining, bio-computing, at-
mospheric sciences, and robotics. Many optimisation meth-
ods suffer from the curse of dimensionality and deteriorate
quickly when dimension d > 100. The state of the art
best performers are EC methods that use cooperative co-
evolution [30], multi-level co-evolution [31], and hybrid meth-
ods that include local searches [22].

2. THE CHALLENGES
In order to appreciate the issues involved with estimating

a high dimensional distribution (e.g. a Gaussian) we must
build on their intrinsic properties, which defeat the intuition
rooted in low dimensional experiences. There are several
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fundamental reasons for the failure of EDA in large scale
problems, including the following:

(1) Estimation problems: The sample size required to pro-
duce a reliable estimate of the distribution of high fitness
individuals grows exponentially with the dimension of the
search space [15]. If sample size is insufficient, the eigen-
values of the covariance are misestimated [27] and bogus
correlations appear in the maximum likelihood covariance
estimates.

(2) Geometric problems: When dimension d is large, the
contrast between pairwise distances may vanish [4, 12]. This
is exemplified by the data piling problems in high dimen-
sional space observed in [14].

(3) Computational problems: The computation cost of
sampling from a full d-dimensional Gaussian distribution is
O(d3) [9] and this becomes prohibitive when d is very large.
In addition, the problem characteristics may often change
with the dimensionality [25].

2.1 Reachability of the global optimum
Let x∗ ∈ R

d denote the global optimum and let B(x∗, ǫ)
be the d-dimensional ball with radius ǫ around it. Consider
the multivariate Gaussian search distribution. By definition,

Prx∼N (µ,Σ)[‖x − x∗‖ 6 ǫ] =

Z

x∈B(x∗,ǫ)

N (x|µ, Σ)dx (1)

is the probability that a draw from the search distribution
parametrised by µ and Σ falls in the ǫ-neighbourhood of the
global optimum.

In current practice, the parameters µ ∈ R
d and Σ ∈ R

d×d

are maximum likelihood estimates (MLE) from Ñ selected
search points of the population. Hence Σ is a matrix valued
random variable, i.e. a random matrix. It can be analysed
with the existing tools of Random Matrix Theory (RMT)
that were also useful in analyses of covariance estimation
[27, 23].

Further,by the mean value theorem for multivariate defi-
nite integrals ([3],pp. 401), there exists a point x̃ ∈ B(x∗, ǫ)
s.t. eq.(1) equals:

= Volume(B(x∗, ǫ))N (x̃|µ, Σ) (2)

= Volume(B(x∗, ǫ))
d

Y

i=1

N (Ui(x̃ − µ)|0, λi) (3)

where Ui denotes the i-th eigenvector of Σ and λi is its asso-
ciated eigenvalue. Among the things to notice from this, by
computing the partial derivatives of (3) w.r.t. the eigenval-
ues λi one can find that the optimal value of the i−th eigen-
value of Σ is the square length of the projection of x̃−µ onto
the corresponding eigendirection, i.e. λopt

i = ‖Ui(x̃ − µ)‖2.
When ‖Ui(x̃ − µ)‖2 > λi then the probability (1) of draw-
ing a point in the ǫ-neighbourhood of x∗ can be increased
by increasing λi. When ‖Ui(x̃ − µ)‖2 < λi then (1) can be
increased by decreasing λi. Hence the eigenvalues of Σ play
the role of learning rates in Gaussian EDA.

Now, it is known from RMT that in small sample con-
ditions the smallest eigenvalue is severely underestimated
while the largest eigenvalue is overestimated. An example
is shown in Figure 1. The extent of this misestimation is
well understood in RMT, and based on this new methods
have been developed (including most recent results [13], see
also [19]) that are able to remedy the problem effectively
even when Σ is singular, using an ensemble of random pro-
jections of the covariance estimate.

The recent RMT-based methods to covariance estimation
in small sample conditions [19, 13] also have several advan-
tages over other statistical methods such as sparsity con-
straints and various other regularisation approaches in the
given context: First, they do not impose unjustified con-
straints; secondly, they were found to outperform the op-
timal Ledoix-Wolf estimator in terms of approximating the
true covariance [19] and in data classification [13]; thirdly,
they lend themselves to parallel implementation that fits
well with the algorithmic structure of population based search.

3. APPROACH
The main goal of this paper is to develop a radically new

approach to large scale stochastic optimisation in applica-
tion to EDA. Building on recent results in other areas, our
concept is to introduce an ensemble of random non-adaptive
dimensionality reducing projections of the fittest high di-
mensional search points as a basis for developing a new and
generic divide-and-conquer methodology rooted in the the-
ory of Random Projections and exploiting recent advances of
non-asymptotic Random Matrix Theory and related fields.

At a high level, the rationale is as follows:
1. Random matrices that satisfy the Johnson-Lindenstrauss

Lemma (JLL) [7] are approximate isometries. Hence, with
appropriate choice of the target dimension, important struc-
ture such as Euclidean distances and dot products are ap-
proximately preserved in the reduced space. This makes it
possible to capture correlations between the d-dimensional
search variables in the k << d-dimensional space.

2. In the reduced space the distribution becomes ‘more
Gaussian’, in a sense made precise in [8]. Also, both param-
eter estimation and sampling become feasible and computa-
tionally affordable, so there is no need to overly restrict the
parametric form of the search distribution.

3. There is a natural smoothing effect that emerges when
appropriately combining the ensemble of estimates from sev-
eral random subspaces [18, 19, 13]. This will ensure that the
exploration ability of the search distribution can be main-
tained even with small population sizes.

Random projections have been used in approximation the-
ory since the 1970s [17]. In computer science, information
theory, signal processing and more recently in machine learn-
ing, random matrices provide a mechanism for dimension-
ality reduction while preserving the essential information in
the data [26]. Compared with other methods in that con-
text, they lead to (1) faster algorithms that are (2) simpler
to analyse, (3) lend themselves to parallel implementation,
and (4) exhibit robustness (see [18] for a recent review). We
aim to port and exploit these characteristics to high dimen-
sional optimisation.

3.1 New search operators for EDA
Let R ∈ R

k×d a random matrix with entries drawn i.i.d.
from a Gaussian N (0, σ2). When d is large, the rows of this
matrix are almost orthogonal. So if we choose σ2 = 1/d
then R well approximates a projection matrix from R

d to
R

k where k may be chosen much lower than d.
Further let x0 ∈ R

d a point. Denote by SR
x0

the subspace
defined by R that passes through x0. We define new search
operators as follows:
Project: takes an R ∈ R

k×d, an x0 ∈ R
d, and a sam-

ple Pfit = (xi ∈ R
d)i=1:Ñ , and orthogonally projects Pfit
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Figure 1: Eigenvalue misestimation from Ñ = 100 points in d = 100 dimensions.

onto the subspace defined by R that passes through x0, i.e.
returns PR = (RT R(xi − x0) + x0)i=1:Ñ .
sEstimate: takes a sample PR that lives in a subspace

and computes the ML parameter estimates θ̂R of its dis-
tribution DR w.r.t. the restriction of the Lebesgue mea-
sure to the k-dimensional affine subspace defined by R, e.g.
θ̂R = (µ̂R, Σ̂R).

sSample: takes parameter estimates θ̂R obtained by sEs-

timate and returns a sample of N k-dimensional points
drawn i.i.d. from DR with parameters θ̂R.
Combine: takes populations from several k-dimensional

subspaces SRi
x0

, i = 1, ..., M and returns a population that

lives in the full search space R
d.

Using these operators, the high level outline of our meta-
algorithm is as follows.

1. Initialise population P by generating N individuals uni-
formly randomly.

2. Let Pfit be the fittest Ñ < N individuals from P.

3. For i = 1, ..., M (M > 1) randomly oriented (affine) k < d-
dimensional subspaces Sx0

Ri

(a) Project Pfit onto Sx0

Ri

(b) Produce N new individuals on the subspace Sx0

Ri
using

the sequence sEstimate; sSample.

4. Create the new population P using Combine.

5. If stopping criteria is met then Stop; else Goto 2.

We will instantiate this by taking the translation vector
x0 of the consecutive set of subspaces (in consecutive gen-
erations) to be the mean of Pfit in the previous generation.
Further, in this work we instantiate the Combine operator
as a scaled1 average of the individuals produced on the indi-
vidual subspaces (which may be done even without appeal
to fitness evaluation within subspaces).

3.2 Algorithm
Denote by Pfit = [x1, ..., xÑ ] the set of Ñ selected fit

individuals, and let N be the population size.
The following is an instantiation of the module for creating
the new generation (steps 3-4 of the above).

1Orthogonal projection from R
d to R

k shortens the lengths
of vectors by a factor of

p

k/d and averaging M i.i.d. points

reduces their std by a factor of
√

M , hence a scaling factor
of

p

(dM)/k is needed to recover the original scale. This
is the case when the entries of R were drawn with variance
σ2 = 1/d – equivalently, the scaling required otherwise is
p

M/(kσ2).
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Figure 2: Illustration of the use of random projec-
tions for sampling the new population.

1. Inputs: Pfit, M, k // where M > ⌈d/k⌉
2. Estimate µ := mean(Pfit)

3. Generate M independent random projection matrices
Ri, i = 1, ..., M .

4. For i=1,...,M

(a) Project the centred points into k-dimensions:

YRi := [Ri(xn − µ); n = 1, ..., Ñ ].

(b) Estimate the k × k sample covariance ΣRi .

(c) Sample N new points yRi
1 , ..., yRi

N ∼i.i.d. N (0, ΣRi).

5. Let the new population P :=
q

dM
k

[ 1
M

PM
i=1 RT

i yRi
1 , ..., 1

M

PM
i=1 RT

i yRi
N ] + µ.

6. Output : P

The working of this method is illustrated in Figure 2 –
of course with the caveat that high dimensional geometry
is hard to capture on a 2D figure – and should be read as
follows. In large scale problems the number of fit points Ñ
is always smaller than the dimension of the search space d,
hence the fit individuals live in the Ñ -dimensional subspace



of the search space determined by their span. The leftmost
subplot illustrates a situation where some Ñ points live in
a subspace (here 1D) of the overall space (here 2D). Hence,
the maximum likelihood (ML) covariance estimate of the fit
points is singular. Sampling points from a distribution with
a singular covariance means that the next generation is con-
fined in the same subspace. The middle upper subplot illus-
trates this. Now, if we impose a diagonality constraint, the
diagonal covariance estimate is no longer singular in general.
So the next generation is allowed in the full search space, al-
though the directions in which it can spread is quite limited.
This is seen in the middle second subplot. The remaining fig-
ures show what happens when we use a RP-ensemble. The
first one shows a case where the number of random sub-
spaces is the smallest that still spans the full search space,
while the second one shows a case where a large number of
random subspaces are used. In both cases, the fit points
are projected onto each of the random subspaces, and a new
generation is sampled within each subspace. The new indi-
viduals from these multiple worlds are then averaged, to give
the ultimate new population shown on the rightmost plots.
We see that the ML covariance estimate of this new popula-
tion has a tendency to respect the orientation of the density
of the parent population while it eliminates degeneracy.

3.3 Analysis of the algorithm to create the new
generation

To understand the effect of the Algorithm in Sec. 3.2, we
analyse it in the full search space by assembling a new search
distribution in the original search space.

Fix the set of selected fit individuals Pfit, and denote by
Σ the maximum likelihood estimate of their sample covari-
ance. This covariance estimate is never computed explicitly
throughout the algorithm, but it is useful for the theoretical
analysis of this section.

Now, it is not too difficult to show that, by construction,
the new population, P, obtained by the Algorithm in Sec.
3.2, is distributed i.i.d. as N (µ, d

k
[ 1
M

PM
i=1 RT

i RiΣRT
i Ri]).

However, while Σ is singular due to Ñ being much smaller
than d, the matrix d

k
[ 1
M

PM
i=1 RT

i RiΣRT
i Ri] is positive def-

inite a.s. for M > ⌈d/k⌉. Furthermore, we can analyse this
matrix as a sum of positive semi-definite random matrices
that concentrates around its expectation, d/kE[RT RΣRT R],
which is also the limit of the sum when M → ∞.

3.3.1 Infinitely many random projections
Recall that the random projections Ri are drawn i.i.d.

Therefore, by the law of large numbers, the ensemble may
be thought as a finite approximation of the following expec-
tation:

1

M

M
X

i=1

RT
i RiΣRT

i Ri −→
M→∞

ER[RT RΣRT R] (4)

and we can understand the effect of the RP-ensemble by
computing this expectation.

Denote ρ = rank(Σ). By the rotation-invariance of the
random Gaussian matrix R, and denoting by Σ = UΛUT the
SVD decomposition of Σ. it is easy to rewrite E[RT RΣRT R] =
UE[RT RΛRT R]UT – hence we see that the overall effect is
an operation on the eigenvalues of the traditional EDA’s Σ,

and it is enough to analyse E[RT RΛRT R]. This is:

ER[RT RΛRT R] =

ρ
X

i=1

λi

2

4

E[(rT
1 ri)

2] ... E[(rT
1 ri)(r

T
i rd)]

... ...

E[(rT
d ri)(r

T
i r1)] ... E[(rT

d ri)
2]

3

5

(5)

The diagonal elements have the form E[(rT
j ri)

2]. There are
two cases:

Case j = i:

E[(rT
i ri)

2] = E[(
k

X

j=1

r2
ji)

2] =
k

X

j=1

k
X

j′=1

E[r2
jir

2
j′i] (6)

=
k

X

j=1

k
X

j′=1,j′ 6=j

E[r2
ji]E[r2

j′i] +
k

X

j=1

E[r4
ji]

= σ4 + 3σ4 = σ4(k2 + 2k) (7)

Case j 6= i:

E[(rT
i rj)

2] = E[(
k

X

ℓ=1

rℓirℓj)
2] =

k
X

ℓ=1

k
X

ℓ′=1

E[rℓirℓjrℓ′irℓ′j ]

=

k
X

ℓ=1

k
X

ℓ′=1,ℓ′ 6=ℓ

E[rℓi]E[rℓj ]E[rℓ′i]E[rℓ′j ] + ...

+
k

X

ℓ=1

E[r2
ℓir

2
ℓj ] = σ4. (8)

Finally, the off-diagonal elements have the form E[(rT
j ri)(r

T
i rℓ)]

with j 6= ℓ, and these evaluate to zero:

E[(rT
j ri)(r

T
i rℓ)] = E[(

k
X

m=1

rmirmj)(
k

X

m′=1

rm′irm′ℓ)] (9)

=
k

X

m=1

k
X

m′=1

E[rmi]E[rmj ]E[rm′i]E[rm′ℓ] = 0

by the independence of the entries of R.
Hence,

E[RT RΛRT R] =

ρ
X

i=1

λiDi (10)

where Di is a diagonal matrix having its (i, i)-th element
equal to σ4(k2 + 2k) and all other diagonal elements equal
to σ4k. After some algebra, this may be further rewritten
as:

E[RT RΛRT R] = σ4k (Trace(Λ)Id + (k + 1)Λ) (11)

where Id is the d-dimensional identity matrix.
To sum up, for the choice σ2 = 1/d we get that:

E[RT RΛRT R] =
k

d

„

Trace(Λ)

d
Id +

k + 1

d
Λ

«

(12)

so by implication, we obtained a regularised version of the
sample covariance estimate:

E[RT RΣRT R] =
k

d

„

Trace(Σ)

d
Id +

k + 1

d
Σ

«

(13)

In consequence, in the limit of M → ∞ our new population
P returned by the Algorithm in Sec. 3.2 will be distributed

i.i.d. as N
“

µ, Trace(Σ)
d

Id + k+1
d

Σ
”

. Of course, when M is

finite the covariance obtained will concentrate around its



expectation hence it will be close to the estimate computed
above. This can be quantified precisely using matrix-valued
tail bounds [23, 28, 2]. However, the finite M implementa-
tion can be run in parallel on M separate cores, and so the
net effect is to get samples from the regularised covariance
without ever computing the maximum likelihood estimate,
and without the need to explicitly sample from a d × d co-
variance (which would be an O(d3) opreation).

3.3.2 Finitely many random projections
Here we bound the deviation of the assembled covariance

with finite M from its expectation computed above. This is
summarised in the following result.

Theorem 1. Let Σ be a positive semi-definite matrix of
size d× d and rank ρ, and Ri, i = 1, ..., M independent ran-
dom projection matrices, each having entries drawn iid from
N (0, 1/d), and denote by ‖ · ‖ = λmax(·) the spectral norm
of its argument.

Pr

(

‖
1

M

M
X

i=1

R
T
i RiΣR

T
i Ri − E[R

T
RΣR

T
R]‖ > ǫ‖E[R

T
RΣR

T
R]‖

)

6 d exp

(

−ǫ
2
M

1

3
‖E[RT

RΣR
T

R]‖

4K̃

)

+ 2M exp

8

<

:

−
M

1

3

2

9

=

;

where K̃ = ‖Σ‖

„

1

M1/6
(1 +

q

k
d ) + 1√

d

«

2
„

1

M1/6
(
q

ρ
d +

q

k
d ) + 1√

d

«

2

is bounded w.r.t. M.

Proof. We will use the following result from random ma-
trix theory about sums of independent random matrices:

Theorem 2. [28, 2] Let Xi d-dimensional independent
random positive-semi-definite matrices satisfying ‖Xi‖ 6 1

a.s. Let SM =
PM

i=1 Xi, and Ω =
PM

i=1 ‖E[Xi]‖. Then
∀ǫ ∈ (0, 1) we have:

Pr (‖SM − E[SM ]‖ ≥ ǫΩ) 6 d exp(−ǫ2Ω/4) (14)

Observe, ‖RT
i RiΣRT

i Ri‖ is not bounded a.s., so we cannot
apply this result directly. However, this condition can be
satisfied by exploiting concentration, as the following.

First, we note that this random variable has the same dis-
tribution as ‖RT

i RiΛRT
i Ri‖ where Λ is the diagonal matrix

of eigenvalues of Σ. Here we used the rotation invariance of
the Gaussian. Now, denote by Λ the ρ × ρ sub-matrix of Λ
that contains the non-zero diagonals, and by Ri the k × ρ
sub-matrix of Ri that are not wiped out by the zeros of Λ.
Then we can write ‖RT

i RiΛRT
i Ri‖ = ‖RT

i RiΛRT
i Ri‖, and

we can bound this with high probability (w.r.t. the random
draws of Ri):

‖RT
i RiΛRT

i Ri‖ 6 ‖Σ‖ · ‖RT
i Ri‖ · ‖RT

i Ri‖ 6 ...

‖Σ‖ · (1 +
p

k/d +
η√
d
)2(

p

ρ/d +
p

k/d +
η√
d
)2 =: K(η)

with probability 1−2 exp(η2/2), for any η > 0. Here we used
twice the bound on the largest singular value of a Gaussian
matrix with i.i.d. entries [27] (Corollary 5.35), applied to Ri

and Ri that have entries drawn from N (0, 1/d).

Now, let Xi(η) := RT
i RiΣRT

i Ri/K(η). Then we have:

‖Xi(η)‖ 6 1 w.p. 1 − 2 exp(−η2/2) (15)

Hence, by union bound, ‖Xi(η)‖ 6 1 w.p. 1−2M exp(−η2/2)
uniformly for all i = 1, ..., M . This holds for any choice of
η > 0, and we will eventually choose η to kill the factor of

M as well as to (approximately) tighten the bound on the
deviation bound we will derive.

We now apply the Theorem 2 conditionally on the event
that ‖Xi(η)‖ 6 1, ∀i = 1, ..., M , and use the bound on the
probability that this condition fails. It is easy to see that
Ω(η) = M

K(η)
‖E[RT RΣRT R]‖, and

E[SM (η)] = M · E[Xi(η)] = M
K(η)

E[RT RΣRT R], and so we
get:

Pr
n

‖ 1
K(η)

PM
i=1 RT

i RiΣRT
i Ri − M

K(η)
E[RT RΣRT R]‖

> ǫ M
K(η)

‖E[RT RΣRT R]‖
o

=

Pr
n

‖ 1
M

PM
i=1 RT

i RiΣRT
i Ri − E[RT RΣRT R]‖ > ǫ‖E[RT RΣRT R]‖

o

6 d exp
n

−ǫ2 M
4K(η)

‖E[RT RΣRT R]‖
o

+ 2M exp
n

− η2

2

o

Finally, we choose η = M1/6 and denote K̃ := K(M1/6),
which yields the statement of Theorem 1.

This analysis shows that we can use a finite number of ran-
dom subspaces since we have control over the spectral dis-
tance between the resulting finite average of the d-dimensional
rank-k covariances and the infinite limit of this sum. Hence,
we may expect a similar behaviour from a finite ensemble,
which is pleasing. The practical implication, as we already
mentioned earlier, is that a parallel implementation can be
realised where the estimation and sampling within each sub-
space is run on a separate core.

In closing, we should mention that, although we used the
truncation method here in this section, a more direct route
might exists if the a.s. boundedness condition could be re-
laxed in the original Theorem 2.

4. EXPERIMENTS

4.1 Benchmark test functions
To test the potential of our idea and the ability of our

algorithm to find a near-optimal solution in large-scale set-
tings, we tested it on the suite of benchmark functions from
the CEC’2010 competition on Large-Scale Global Optimisa-
tion [25]. This test suite consists of twenty 1000-dimensional
functions of four different types:

1. Separable functions

2. Partially-separable functions, in which a small number
of variables are dependent while all the remaining ones
are independent (m=50)

3. Partially-separable functions that consist of multiple
independent sub-components, each of which is m-non-
separable (m=50) – this category includes two sub-
types: d/(2m)-group m-nonseparable, and d/m-group
m-nonseparable functions

4. Fully nonseparable functions

See [25] for more details on these functions.
Of these, 12 functions are multimodal and 8 are unimodal.

We will focus on the multimodal functions, as this is the
category where we expect our methodology to be most ben-
eficial – especially nonseparable multimodal functions.

We use a simple averaging combination of RP-EDAs as in
the algorithm described in Section 3.2. We take the random
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Figure 3: Comparison of a variant of our new RP-Ensemble EDA algorithm with the CEC’10 large scale
optimisation competition winner [22] on 12 multi-modal functions, after 6× 105 function evaluations. Results
of other state of the art co-evolutionary based MLCC and DECC-CG are also shown for reference; these are
quoted from [22] and use 3 × 106 function evaluations.

subspace dimension to be k = 3 and the number of subspaces
is set to M = 4 · ⌈d/k⌉ = 1334. The population size was set

to N = 300 and Ñ = 75, and we used truncation selection
with elitism. We have set the number of function evaluations
to 6 × 105.

Figure 3 summarises our results obtained on these 12 mul-
timodal functions in terms of the average of the best fitness
from 10 independent runs. Further, we include results from
10 independent runs of the limiting version k = 3, M = ∞,
which we implemented using the analytic expression com-
puted in Sec. 3.3.1, eq. (13) (with sampling done in the
full d-dimensional space). We compare these results with
the CEC’2010 winner algorithm [22] – a fairly sophisticated
memetic algorithm based on local search chains – and two
other state of the art co-evolutionary methods referenced on
the competition’s page, namely DECC-CG [30] and MLCC
[31]. The results of the latter three methods are quoted from
[22], these represent the average fitness over 25 independent
runs. For DECC-CG and MLCC we only had access to re-
sults produced with 3 × 106 function evaluations, that is
considerably more than our budget had been set to. Nev-
ertheless, we see that our results still compare well to these
too.

Thus, we see that our simple RP-Ensemble based EDA
algorithm is highly competitive with the best state of the
art methods for large scale optimisation – and even slightly
outperforms the CEC’2010 competition winner on 8 out of
these 12 multimodal benchmark functions. Furthermore, the
version with largish but finite M is nearly indistinguishable
from that with infinite M .

In order to gain more insights about the behavour of our
RP-Ensemble based EDA algorithm it is useful inspect the
evolution of the best fitness accross generations. In Figure 4
we plotted these comparatively with UMDAc. We included

the Sphere function as a representative of easy functions, as
well as one representative from the three most non-separable
categories from the CEC’2010 benchmarks. We compare
UMDAc, and four variations of our algorithm: k = 3, M =
1000, k = 3, M = ⌈d/k⌉, k = 15, M = ⌈d/k⌉ – that is,
the latter two versions use the smallest number of random
subspaces that still span the full search space a.s. – and
k = 3, M = ∞. As before, we use population sizes of N =
300, Ñ = 75. A study of how best to set these parameters
remains for future research.

From Figure 4 we can see a clear tendency of our RP-
Ensemble-EDA algorithms to escape early convergence that
is typical of UMDAc, and reach at better fitness values. The
premature convergence of UMDAc is not surprising, and was
indeed noted previously in the literature – the imposition of
a diagonal covariance limits the exploration ability of UM-
DAc. In turn, our RP-Ensemble-EDA algorithms display a
better ability to explore the search space for all variations of
k and M settings tested here. It is particularly pleasing that
the versions with finite number of random subspaces are also
performing well and are indeed not far from the performance
we observe for infinite number of random subspaces.

4.2 Application to mislabelled gene array clas-
sification

Optimisation underpins many areas of science and engi-
neering. Efficient specialised algorithms only exist for cer-
tain types of problems. In data modelling and data mining,
for example, data sets become increasingly complex, and
new tasks need new models to be optimised using the data.
Large scale black-box optimisation can be enabling in such
domains.

Here we consider the problem of classification with la-
belling errors for gene microarrays. Previous studies re-
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Figure 4: Behaviour of our new RP-Ensemble EDA
methods versus UMDAc on 1000-dimensional test
functions. We see the RP-Ensemble based EDAs
with finite number of random subspaces are close
to the performance observed for infinite number of
random subspaces.

RP-Ens k=3 UMDAc Method from [5]
14.63±2.68 20.02 ±2.62 18.75±1.1

Table 1: Classification of mislabelled colon cancer
gene arrays. The average and standard error is given
from 10 repeated runs on a random split into 50
training points and 12 test points.

ported that labelling errors are not uncommon in microar-
ray data sets [5]. In such cases the training set may become
misleading, and the ability of classifiers to make reliable in-
ferences from the data is compromised. Yet, very few meth-
ods are currently available in the bioinformatics literature
to deal with this problem. A model based approach was re-
cently developed to counter the effects of labelling errors [5].
Although the approach builds on a logistic regression with
Lasso penalty – which is a convex objective – the inclusion
of a model of label noise transforms this into a non-convex
multimodal objective.

We apply our RP-Ens-EDA algorithm to colon cancer
classification in the presence of label noise. The task aims
to distinguish between normal tissue and tumour. The data
is 2000-dimensional and contains 62 points (40 tumour, 22
normal). Our search space, i.e. the parameter space is,
thus, 2000-dimensional. According to [1] there is biological
evidence that the samples T2, T30, T33, T36, T37, N8, N12,
N34, N36 may be mislabelled.

We define the fitness function to be the likelihood of the
label-robust classifier of [5] (section 2.1). This function is
both non-convex, and non-smooth at the origin.

We split the data into 80% training points and 20% test
points randomly, we train our classifier on the training points
by optimising the model likelihood using RP-Ens-EDA (or

a competing optimiser) with population size N = 100, Ñ =
10, using 105 function evaluations (re-estimating the label
flipping probabilities after each 2000 generations). Table 1
presents the mean and standard errors of misclassification
rates from 10 independent trials. Although these are pre-
liminary results, and a larger number of trials will need to
be run in order to determine if the differences are statisti-
cally significant, we nevertheless can see that RP-Ens is a
promising new method with better performance on average.
The last column gives for reference the result using a spe-
cialised optimiser we developed in [5], tested here under the
same conditions as our RP-ENS based EDA and UMDAc.

5. OUTLOOK AND FUTURE WORK
We presented a new framework for designing and devel-

oping EDA-type methods for large scale optimisation. Our
approach is to employ multiple random projections of the
fit individuals, and carry out the estimation and sampling
operations in low dimensional spaces, where these are both
efficient and reliable – as opposed to working in the original
high dimensional space. We derived some theoretical anal-
ysis that show the effect of our divide-and-conquer method-
ology when re-assembled and understood in the full high-
dimensional search space. Finally, we presented empirical
results using a very simple instantiation of our proposed
framework, which demonstrated its effectiveness. On a bat-
tery of 12 multimodal test functions from the large scale
CEC’10 competition we obtained results that are competi-
tive to the best state of the art. We also presented a real-



world application to the problem of high dimensional gene
array classification in the presence of labelling errors. We
believe these results may give a new perspective to research
on EDA-type model building optimisation algorithms, and
future work is aimed at better understanding and exploiting
its potential.
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