

Working Paper Series
ISSN 1177-777X

FULLY SUPERVISED TRAINING OF
GAUSSIAN RADIAL BASIS

FUNCTION NETWORKS IN WEKA

Eibe Frank

Working Paper: 04/2014
July 2014

© 2014 Eibe Frank
Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202419?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fully Supervised Training of Gaussian Radial

Basis Function Networks in WEKA

Eibe Frank
Department of Computer Science

University of Waikato

July 2, 2014

1 Introduction

Radial basis function networks are a type of feedforward network with a long
history in machine learning. In spite of this, there is relatively little literature
on how to train them so that accurate predictions are obtained. A common
strategy is to train the hidden layer of the network using k-means clustering
and the output layer using supervised learning. However, Wettschereck and
Dietterich [2] found that supervised training of hidden layer parameters can
improve predictive performance. They investigated learning center locations,
local variances of the basis functions, and attribute weights, in a supervised
manner.

This document discusses supervised training of Gaussian radial basis func-
tion networks in the WEKA machine learning software. More specifically, we
discuss the RBFClassifier and RBFRegressor classes available as part of the
RBFNetwork package for WEKA 3.7 and consider (a) learning of center loca-
tions and one global variance parameter, (b) learning of center locations and
one local variance parameter per basis function, and (c) learning center loca-
tions with per-attribute local variance parameters. We also consider learning
attribute weights jointly with other parameters.

2 Models and Optimization Methods

We tackle both classification and regression problems. RBFClassifier trains a
model for classification problems, RBFRegressor trains a regression model. In
both cases, penalised squared error, with a quadratic penalty on the non-bias
weights in the output layer, is used as the loss function to find the network pa-
rameters. As the two methods share a substantial amount of code, this common
code has been extracted out into a super class called RBFModel.

1

The Gaussian radial basis function model learned by the RBFRegressor class
is

f(x1, x2, ..., xm) = g(w0 +

b∑
i=1

wi exp(−
m∑
j=1

a2j (xj − ci,j)2

2σ2
i,j

)), (1)

where x1, x2, ..., xm is the vector of attribute values for the instance concerned,
g(.) is the activation function, b is the number of basis functions, wi is the weight
for each basis function, a2j is the weight of the jth attribute, and ci,. and σ2

i,. are
the basis function centers and variances respectively. The activation function
g(.) is the identify function in the regression case.

In the classification case, for RBFClassifier, there is one output unit per
class value, and the model learned for the lth output unit (i.e., class value) is:

fl(x1, x2, ..., xm) = g(wl,0 +

b∑
i=1

wl,i exp(−
m∑
j=1

a2j (xj − ci,j)2

2σ2
i,j

)), (2)

where the activation function g(.) is the logistic function.
The above models are the most complex ones that the implementations

can learn, with attribute weights as well as attribute-specific per-basis-function
variances σ2

i,j . By choosing appropriate parameter settings, simplifications of
this model can be used instead. By default, attribute weights are not used,
i.e., all a2j are fixed at 1, and there is just one global variance parameter, i.e.,

σ2
i,j = σ2

global. Instead of using one global variance parameter or m× b variance
parameters, it is also possible to use a different variance parameter per basis
function that is the same for all attributes, i.e., σ2

i,j = σ2
i . In this case, there

are only b variance parameters.
Appropriate settings for the parameters w(l,)i, a

2
j , ci,j , and σ2

i,j are found
by identifying a local minimum of the penalised squared error on the training
data. In the regression case, this error function is:

LSSE = (
1

2

n∑
i=1

(yi − f(~xi))
2) + (λ

b∑
i=1

w2
i), (3)

where yi is the actual target value for training instance ~xi, and the first sum
ranges over all n training instances. The parameter λ is the “ridge” parameter
that determines the size of the penalty on the weights and can be specified by
the user to control overfitting.

In the classification case, assuming k classes, the error function becomes:

LSSE = (
1

2

n∑
i=1

k∑
l=1

(yi,l − fl(~xi))2) + (λ

k∑
l=1

b∑
i=1

w2
l,i), (4)

where yi,l = 0.99 if instance ~xi has the lth class value, and yi,l = 0.01 otherwise.
The values 0.99 and 0.01 are used instead of 1.0 and 0.0 to aid the optimisation
process. Additionally, the RBFClassifier implementation divides LSSE by

2

n, the number of training instances, as this was found empirically to improve
convergence with the optimisation methods employed. This was not necessary
in the regression case.

The gradients of the error functions with respect to the network parameters
consist of the corresponding partial derivatives, which can be found using stan-
dard calculus. Calculating the partial derivatives involves error backpropagation
in the same manner as in multilayer perceptrons.

In the implementations, two gradient-based methods are available for op-
timising the parameters so that the error functions are minimised: the quasi-
Newton method using BFGS updates implemented in WEKA’s Optimization

class, and a non-linear conjugate gradient descent method, implemented as a
new ConjugateGradientDescentOptimization subclass of the Optimization

class. This new class implements the hybrid conjugate gradient descent method
specified by Equation 1.25 in Dai and Yuan [1]. This method has been shown
to be globally convergent when used with a weak Wolfe line search such as the
one implemented in the Optimization class.

Before training begins, all numeric attributes in the data are normalized to
the [0, 1] interval, including the target attribute in the regression case (which
is projected back into the original space when predictions are made). Missing
values are replaced by the mean (for numeric attributes) or mode (for nominal
ones). Constant attributes are removed and nominal attributes are binarised.
The same steps are performed for new instances when predictions are to be
made.

Another important aspect of the learning process concerns the initialisa-
tion of the network parameters. In the classification case, the initial weights
of the output layer are sampled from N (0, 0.1). In the regression case, these
initial weighs are sampled from U(−0.25, 0.25). These sampling strategies were
determined empirically based on the well-known heuristic of choosing small,
randomly distributed initial weights.

A more complex process is used to initialise the hidden unit centers and
variances. More specifically, as k-means is frequently used to train the hidden
layer of an RBF network in an unsupervised manner, and because it is very
fast, WEKA’s k-means implementation SimpleKMeans is used to establish ini-
tial hidden unit centers, i.e., the cluster centers found by k-means are used to
initialise the ci,j . Moroever, the initial value of all variance parameter(s) σ2

i,j

in the network is set to the maximum squared Euclidean distance between any
pair of cluster centers. In this manner, is is ensured that the initial value of the
variance parameter(s) is not too small. This strategy was found empirically to
yield a robust learning process in practice. Note that, when attribute weights
a2j are used, these are initially set to 1.0.

To speed up the learning process on multi-core computers, the calculation
of the error function and its gradient in the implementations is parallelised by
employing a user-specified number of threads. The user can also set the number
of threads available in the thread pool. The parallel implementation is achieved
by splitting the data into equal-size chunks and calculating the error function
and gradients separately for each chunk. These are subsequently aggregated.

3

To further improve speed of the classification method, an approximate ver-
sion of the logistic function is used instead of the exact expression. Moreover,
in both the classification and the regression method, if any delta value occuring
in backpropagation—i.e., when calculating the gradient—is smaller in absolute
terms than a user-specified threshold (the default is 10−6), then the delta value
is treated as zero and corresponding further calculations are skipped.

3 Conclusions

Given the excellent performance of kernel-based classifiers such as support vector
machines, which are often applied with an RBF kernel that corresponds to
a Gaussian basis function with a fixed global variance, it is likely that per-
unit variance parameters—and even more so—per-attribute per-unit variance
parameters as provided by the RBF network implementations discussed here,
become less important as larger numbers of hidden units are used. Nevertheless,
work on attribute selection for support vector machines indicates that attribute
weights may be useful for downweighting less relevant attributes even in the
case when many basis functions are employed. Moreover, in some applications,
it may be important to have very compact predictors with few basis functions,
and these can be learned using the implementations of RBF networks presented
in this document.

References

[1] Y.H. Dai and Y. Yuan. An efficient hybrid conjugate gradient method for un-
constrained optimization. Annals of Operations Research, 103:33–47, 2001.

[2] Dietrich Wettschereck and Thomas Dietterich. Improving the performance
of radial basis function networks by learning center locations. In NIPS,
volume 4, pages 1133–1140, 1991.

4

