
Supervisory Control with Progressive Events

Simon Ware Robi Malik

Abstract— This paper investigates some limitations of the
nonblocking property when used for supervisor synthesis in
discrete event systems. It is shown that there are cases where
synthesis with the nonblocking property gives undesired results.
To address such cases, the paper introduces progressive events as
a means to specify more precisely how a synthesised supervisor
should complete its tasks. The nonblocking property is mod-
ified to take progressive events into account, and appropriate
methods for verification and synthesis are proposed.

I. INTRODUCTION

In supervisory control theory [1], it is common to use
the nonblocking property to ensure liveness when automat-
ically synthesising supervisors. A discrete event system is
nonblocking if, from every reachable state, all involved
components can cooperatively complete their common tasks.
It is not required that task completion is achieved on every
possible execution path, only that there exists an execution
path to a terminal state. For finite-state systems, the non-
blocking property is equivalent to termination under the fair-
ness assumption that events that are enabled infinitely often
will be taken eventually [2]. This weak liveness condition
ensures the existence of least restrictive synthesis results and
has been used successfully in many applications [1], [3].

On the other hand, the nonblocking property is weaker
than a guarantee of termination, and it is not always expres-
sive enough to give the intended results. Several alternatives
and extensions to the standard nonblocking property have
been proposed. Multi-tasking supervisory control [4] allows
the specification of multiple nonblocking requirements that
must be satisfied simultaneously. The generalised nonblock-
ing property [5] restricts the situations in which nonblocking
is required, which is useful in hierarchical interface-based su-
pervisory control [6]. Nonblocking under control [7] changes
the fairness assumption of standard nonblocking by making
the assumption that controllable events can preempt uncon-
trollable events when completing tasks, facilitating reasoning
about supervisor implementations. Finally, the authors of [8]
replace the nonblocking property by the requirement of true
termination and perform synthesis using ω-languages.

This paper proposes a different generalisation of the non-
blocking property. It introduces progressive events, which
are the only events that can be used in traces towards task
completion when checking the nonblocking property. Sect. II
introduces the definitions for discrete event systems and
supervisory control theory. Sect. III shows two examples of
discrete event systems, for which the standard nonblocking
property fails to give a useful synthesis result. Sect. IV

The authors are with the Department of Computer Science, University of
Waikato, Hamilton, New Zealand, {siw4,robi}@waikato.ac.nz

introduces progressive events to model these examples more
appropriately, and shows how nonblocking verification and
synthesis are adapted for progressive events. Afterwards,
Sect. V compares nonblocking with progressive events to the
other nonblocking properties mentioned above, and Sect. VI
adds some concluding remarks.

II. PRELIMINARIES

A. Events and Languages

The behaviour of discrete event systems is modelled using
events and languages [1]. Events represent incidents that
cause transitions from one state to another and are taken from
a finite alphabet Σ. For the purpose of supervisory control,
this alphabet is partitioned into the set Σc of controllable
events and the set Σuc of uncontrollable events. Control-
lable events can be disabled by a supervising agent, while
uncontrollable events cannot be disabled. Independently of
this distinction, the alphabet Σ is also partitioned into the
set Σo of observable events and the set Σuo of unobservable
events. Observable events are visible to the supervising agent,
while unobservable events are not. In this paper, it is assumed
that all unobservable events are also uncontrollable.

Given an event alphabet Σ, the term Σ∗ denotes the set
of all finite traces of the form σ1σ2 · · ·σn of events from Σ,
including the empty trace ε. The concatenation of two traces
s, t ∈ Σ∗ is written as st. A subset L ⊆ Σ∗ is called a
language. A trace s ∈ Σ∗ is a prefix of t ∈ Σ∗, written
s ⊑ t, if t = su for some u ∈ Σ∗. The prefix-closure of a
language L ⊆ Σ∗ is L = { s ∈ Σ∗ | s ⊑ t for some t ∈ L },
and L is prefix-closed if L = L.

For Ω ⊆ Σ, the natural projection PΣ→Ω : Σ∗ → Ω∗ is
the operation that removes from traces s ∈ Σ∗ all events
not in Ω. Its inverse image P−1

Σ←Ω : Ω∗ → 2Σ∗

is defined
by P−1

Σ←Ω(t) = { s ∈ Σ∗ | PΣ→Ω(s) = t }. If the source
alphabet is clear from the context, these functions are also
written as PΩ = PΣ→Ω and P−1

Σ = P−1
Σ←Ω.

The synchronous composition of two languages L1 ⊆ Σ∗1
and L2 ⊆ Σ∗2 is L1 ‖ L2 = P−1

Σ1∪Σ2
(L1) ∩ P−1

Σ1∪Σ2
(L2).

B. Discrete Event Systems

In this paper, discrete event systems are modelled as pairs
of languages or as finite-state automata.

Definition 1: Let Σ be a finite set of events. A discrete
event system over Σ (Σ-DES) is a pair L = (L,Lω) where
L ⊆ Σ∗ is a prefix-closed language, and Lω ⊆ L. These
languages are also denoted by L(L) = L and Lω(L) = Lω .

The prefix-closed behaviour L(L) contains possibly in-
complete system executions. The (not necessarily prefix-

2014 11th IEEE International
Conference on Control & Automation (ICCA)
June 18-20, 2014. Taichung, Taiwan

978-1-4799-2836-1/14/$31.00 ©2014 IEEE 1466

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

closed) sublanguage Lω(L) ⊆ L(L) is the so-called marked
behaviour and contains traces representing completed tasks.

Language operations are applied to discrete events systems
by applying them to both components. For example, if Li =
(Li, L

ω
i) for i = 1, 2, then L1 ‖ L2 = (L1 ‖ L2, L

ω
1 ‖ Lω

2),
and the same notation is used for ∪. Discrete event systems
form a lattice with inclusion, L1 ⊆ L2, defined to hold if
and only if L1 ⊆ L2 and Lω

1 ⊆ Lω
2 .

Alternatively, it is common to model discrete event sys-
tems as finite-state machines or automata.

Definition 2: A (nondeterministic) automaton is a tuple
G = 〈Σ, Q,→, Q◦, Qω〉 where Σ is a finite set of events,
Q is a set of states, → ⊆ Q ×Σ×Q is the state transition
relation, Q◦ ⊆ Q is the set of initial states, and Qω ⊆ Q is
the set of marked states.

G is finite-state if the state set Q is finite, and G is
deterministic if |Q◦| ≤ 1 and x

σ
→ y1 and x

σ
→ y2 always

implies y1 = y2. Here, the transition relation is written in
infix notation, x

σ
→ y, and extended to traces in Σ∗ in

the standard way. Also, G
s
→ x means x◦

s
→ x for some

x◦ ∈ Q◦. The prefix-closed and marked languages of an
automaton G are

L(G) = { s ∈ Σ∗ | G
s
→ y for some y ∈ Q } ; (1)

Lω(G) = { s ∈ Σ∗ | G
s
→ yω for some yω ∈ Qω } . (2)

Using these definitions, an automaton G is also considered
as the Σ-DES G = (L(G),Lω(G)).

C. Supervisory Control

Given a plant L and a specification K, supervisory control
theory [1] is concerned about the question whether and
how the plant can be controlled in such a way that the
specification is satisfied. This is dependent on the conditions
of controllability, normality, and nonblocking.

Definition 3: Let K be a ΣK-DES, L a ΣL-DES, and let
Σ = ΣK ∪ ΣL. Then K is controllable with respect to L if

P−1
Σ (L(K))Σuc ∩ P−1

Σ (L(L)) ⊆ P−1
Σ (L(K)) . (3)

Definition 4: Let K be a ΣK-DES, L a ΣL-DES, and let
Σ = ΣK ∪ ΣL. Then K is normal with respect to L if

P−1
Σ (PΣo∩ΣK

(L(K))) ∩ P−1
Σ (L(L)) ⊆ P−1

Σ (L(K)) . (4)

Controllability expresses that a supervisor cannot disable
uncontrollable events, and normality expresses that a super-
visor cannot detect the occurrence of unobservable events.
Every controllable and normal behaviour can be implemented
by a supervisor that only uses observable events as input and
only disables controllable events.

In addition to the safety properties of controllability and
normality, it is common to require the nonblocking property
to ensure some form liveness.

Definition 5: A Σ-DES L is called standard nonblocking
(or simply nonblocking) if, for every trace s ∈ L(L), there
exists a trace t ∈ Σ∗ such that st ∈ Lω(L).

If a given system behaviour K is not controllable, normal,
or nonblocking, then this behaviour cannot be implemented
through control or is undesirable due to livelock or dead-
lock. The question then arises whether K can somehow be

modified to satisfy the requirements. A key result from super-
visory control theory states that every DES K has a largest
possible sub-behaviour K′ ⊆ K that exhibits the desired
properties of controllability, normality, and nonblocking.

Theorem 1: [1] Let K and L be two DES. There exists
a unique supremal sub-behaviour supCN(K) ⊆ K that is
controllable, normal, and nonblocking:
supCNL(K) =

⋃
{K′ ⊆ K | K′ is controllable

and normal with respect to L, and
K′ ‖ L is nonblocking } .

(5)

Furthermore, if K and L are represented by finite-state au-
tomata, a finite-state representation of the supremal control-
lable, normal, and nonblocking sub-behaviour supCN

L
(K)

can be computed using a fixpoint iteration. This computation
is called supervisor synthesis, and its result can be used to
implement an appropriate supervisor [1].

III. APPLICATIONS

This paper is concerned about the nonblocking property
and its use in synthesis. In the following, two examples are
discussed where the synthesis of a least restrictive supervisor
using the standard nonblocking property from Def. 5 gives
unexpected and probably undesirable results.

A. Computer-Controlled Board Game

A board game is to be controlled, where a computer player
and an opponent are taking moves in turn [5]. The control
objective it to prevent the computer player from losing, while
it is always possible for the game to end, either by the
computer player winning or by a draw being declared. This is
achieved by marking all states where the computer player has
won, or the game is over without a winner. A least restrictive
nonblocking supervisor can be synthesised to ensure that the
game can always end in the desired way.

To complicate the example slightly, a reset feature is
added: an additional event reset is introduced, which can
always be executed by the environment and resets the
game to its initial state. With this addition, the standard
nonblocking property is much less expressive. Now, a least
restrictive supervisor may allow the game to enter states
where defeat for the computer player is inevitable, however
due the omnipresent possibility of reset, the system is still
nonblocking as long as there is some way of ending the game
from its initial state. A synthesised supervisor may exploit
this and make bad moves, knowing it is always possible to
restart. In this modified model, it is much more interesting to
synthesise a supervisor to ensure that “the game can always
end, even if reset is not used.”

B. Manufacturing Cell

Fig. 1 shows a modified version of a manufacturing cell
proposed in [9], which consists of a robot, a machine, two
conveyors, two buffers, and a switch. The machine (plant
machine) can manufacture two types of products. Event
start[k] initiates the manufacturing of a type k product
(k = 1 or k = 2) from a workpiece in input buffer inbuf ,
which upon completion is placed in output buffer outbuf ,

1467

outbufinbuf machine

robot

incon outcon

unload_o[2]
unload_o[1]

switch
!select[1]
!select[2]

!advance_i !advance_o[1]
!advance_o[2]

start[1]
start[2] !finish[2]

!finish[1]

unload_i
load_o[1]
load_o[2]

load_i

inbuf spec machine outbuf spec switch

start

unload_i start[2]

!finish[1] !finish[2]

start[1] !finish[2]

load_o[1] load_o[2]

!finish[1]

!select[2]

!select[1]

incon robot outcon switch spec

load_i

!advance_i load_o[2]

load_iunload_i

unload_o[1]

load_o[1]

unload_o[2]

unload_o[2]

!advance_o[1] !advance_o[2]

unload_o[1]

unload_o[1]

!select[2]

!select[1]
unload_o[1]
unload_o[2]

!select[1]

!select[2]

unload_o[2]

unload_o[2]

unload_o[1]

Fig. 1. Manufacturing cell example. Uncontrollable events are prefixed with !, and all events are observable.

load_i start[1]

unload_o[2]
unload_o[2]

unload_o[1]

load_o[2]

load_i

unload_i
load_o[1]

unload_o[1]

load_o[2]

unload_i start[2]

load_o[1]

Fig. 2. Synthesised manufacturing cell supervisor.

indicated by the uncontrollable event !finish[k]. The robot
(plant robot) takes workpieces from the input conveyor
(plant incon) on event load i and puts them in inbuf on
event unload i, and it takes type k products from outbuf

on event load o[k] and puts them on the output conveyor
(plant outcon) on event unload o[k]. The conveyors can
be advanced to bring in new workpieces (!advance i), or to
remove completed products (!advance o[k]). Specifications
inbuf spec and outbuf spec request a supervisor that
prevents overflow and underflow of two one-place buffers.

In addition, there is a switch (plant switch) that allows
the user to choose the type of products to be delivered.
Specification switch spec requires that, when the user
changes the desired output type to k (!select[k]), at most
one product of the other type may be released from the cell;
after that only type k products may be released (unload o[k])
until the switch is operated again.

The model in Fig. 1 is not controllable and blocking. Stan-
dard synthesis [1] with supervisor reduction [10] gives the
least restrictive supervisor in Fig. 2. This supervisor correctly
prevents buffer overflow by not allowing the machine to start
before the output buffer is empty, and prevents deadlock by
restricting the number of workpieces in the cell to two.

The supervisor does not distinguish between start[1] and
start[2], always allowing both types of products to be manu-
factured. This works because specification switch spec can
be satisfied by disabling the controllable event unload o[k]
when the robot holds a workpiece of an undesired type k, de-
laying delivery until the user changes the switch with another
!select[k] event. While this is the least restrictive controllable
and nonblocking behaviour, it seems unreasonable to delay
delivery and override the user’s choice in this way. A more
reasonable supervisor would respect the user’s choice when
starting the machine, instead of relying on the user to request
delivery of what has already been produced.

unload_i

load_i

load_o[1]

load_o[2]

start[2]

!select[1]

unload_o[2]

!select[1]

load_i

unload_o[1]

load_o[2]load_o[1]

!select[2]
unload_o[1]

unload_i

start[2]

unload_o[2]

!select[1]

!select[1]

start[1]

!select[2]

load_i
!select[2]

unload_i

!select[1]

start[1]
unload_o[1]

start[2]
unload_i

!select[2]

unload_o[2]

!select[2]

unload_i

load_o[1]

start[1]

!select[1]

unload_i

load_i

load_o[1]

load_iload_o[2]

load_i

unload_o[1]

!select[1]

!select[2]
unload_o[2]

load_o[2]

!select[2]

Fig. 3. Synthesised manufacturing cell supervisor with progressive events.

IV. NONBLOCKING WITH PROGRESSIVE EVENTS

A. Progressive Events

To provide a better way of modelling examples such as
those in Sect. III, this section proposes to distinguish events
that can be used to establish the nonblocking property from
other events. Independently of controllability and observ-
ability, the event set Σ is partitioned into the sets Σp of
progressive events and Σnp of non-progressive events.

Definition 6: Let L be a Σ-DES, and let Σp ⊆ Σ. Then L

is Σp-nonblocking if, for every trace s ∈ L(L), there exists
a trace t ∈ Σ∗p such that st ∈ Lω(L).

Nonblocking with progressive events requires that, from
all reachable states, it is possible to reach a marked state
using only progressive events. Non-progressive events are
assumed to occur only occasionally or as external input, and
a supervisor should not rely on them for task completion.

Definition 7: Let K and L be two DES, and let Σp be a
set of progressive events. The least restrictive controllable,
normal, and Σp-nonblocking sub-behaviour of K with re-
spect to L is

supCNL,Σp
(K) =

⋃
{K′ ⊆ K | K′ is controllable and

normal with respect to L, and
K′ ‖ L is Σp-nonblocking } .

Def. 7 redefines the objective of synthesis to use the
modified nonblocking property. It follows from Prop. 2
below that the definition is sound in that it indeed defines a
controllable, normal, and Σp-nonblocking behaviour.

1468

P

p0 p1
Σnp

τ

Fig. 4. The DES P to express Σp-nonblocking as standard nonblocking.
The selfloop marked Σnp stands for transitions with all events in Σnp, and
τ /∈ Σ is a new event that does not appear elsewhere in the system.

In Sect. III, events reset and !select[k] would be non-
progressive. Then a Σp-nonblocking supervisor ensures task
completion even if the game is not reset, or the manufac-
turing cell user never changes the requested workpiece type.
Fig. 3 shows a least restrictive reduced supervisor for the
manufacturing cell subject to the !select[k] events being non-
progressive. In addition to preventing buffer overflow and
deadlock, this supervisor prevents the machine from produc-
ing a second workpiece while another is being delivered.

B. Relationship to Standard Nonblocking

Clearly, standard nonblocking is a special case of non-
blocking with progressive events as Defs. 5 and 6 coincide
when Σp = Σ. If there are non-progressive events, then
nonblocking with progressive events is a stronger condition.

Yet, nonblocking with progressive events can be expressed
using standard nonblocking by means of an additional
DES P as shown in Fig. 4, which uses a new event τ that
disables all non-progressive events. Initially, non-progressive
events are possible, but τ may be executed at any time, taking
P to state p1 where only progressive events can occur. When
P is composed with a system to be analysed, all states remain
reachable, yet standard nonblocking can only hold if marked
states can be reached using progressive events only.

Proposition 2: Let L be a Σ-DES with Σ = Σp ∪̇ Σnp.
Then L is Σp-nonblocking if and only if L ‖P is nonblock-
ing, where P = (Σ∗npτ ,Σ∗npτ) is the (Σnp ∪ {τ})-DES in
Fig. 4.

Proof: First assume that L is Σp-nonblocking, and
let s ∈ L(L ‖ P). Then PΣ(s) ∈ L(L), and as L is Σp-
nonblocking, there exists t ∈ Σ∗p such that PΣ(s)t ∈ Lω(L),
This implies stτ ∈ P−1

Σ∪{τ}(L
ω(L)). Since t ∈ Σ∗p, it holds

that PΣnp∪{τ}(stτ) = PΣnp∪{τ}(s)τ ∈ Lω(P), and thus
stτ ∈ P−1

Σ∪{τ}(L
ω(P)). Therefore, stτ ∈ Lω(L ‖ P), i.e.,

L ‖ P is nonblocking.
Conversely assume L‖P is nonblocking, and let s ∈ L(L).

Then sτ ∈ L(L ‖P). As L ‖P is nonblocking, there exists
t ∈ Σ∗ such that sτt ∈ Lω(L ‖ P). Then PΣnp∪{τ}(sτt) ∈
Lω(P), which by construction of P implies PΣnp∪{τ}(t) =
ε, i.e., t ∈ Σ∗p. Since furthermore st = PΣ(sτt) ∈ Lω(L), it
follows that L is Σp-nonblocking.

Prop. 2 shows that any nonblocking verification task with
progressive events can be reduced to a standard nonblocking
verification task. However, composition with the additional
automaton P doubles the state space and verification time.

The extra effort is not necessary. Standard nonblocking
can be checked by searching backwards from marked states
to see whether all states are reached. By changing the
backward search to use progressive events only, nonblocking
with progressive events can be checked on the original

system state space, exploring less transitions than a standard
nonblocking check.

Prop. 2 is of theoretical interest, because it shows that
progressive events do not add to the expressive power of
standard nonblocking, and it can be of practical use, because
it shows that a wide variety of nonblocking verification
algorithms, particularly compositional verification [11], can
also be used with progressive events.

It is not immediately clear whether the additional DES P

can also be used to express synthesis with progressive events
as standard synthesis. Indeed, if there are uncontrollable non-
progressive events, then P used as an additional plant will
disable some uncontrollable events, and a supervisor could
wait for the auxiliary event τ to occur in order to avoid
controllability problems.

This is avoided if τ is unobservable. Then the supervisor
cannot distinguish the states of P, so it has to enable
uncontrollable events enabled in p0 and at the same time
ensure task completion from p1. Lemma 3 shows for unob-
servable τ that controllability and normality are preserved
by the addition of P, which together with Prop. 2 implies
the preservation of synthesis results as shown in Prop. 4.

Lemma 3: Let K and L be Σ-DES with Σ = Σp ∪̇ Σnp,
and let P = (Σ∗npτ ,Σ∗npτ) be the (Σnp∪{τ})-DES in Fig. 4
where τ /∈ Σ is an uncontrollable and unobservable event.

(i) K is controllable with respect to L if and only if K

is controllable with respect to L ‖ P.
(ii) K is normal with respect to L if and only if K is

normal with respect to L ‖ P.

Proof: (i) First assume that K is controllable with
respect to L ‖P, and let sυ ∈ L(K)Σuc ∩L(L). Then sυ ∈
Σ∗, and PΣnp∪{τ}(sυ) ∈ L(P) by construction of P, and
thus sυ ∈ P−1

Σ∪{τ}(L(K))Σuc ∩ L(L ‖P) ⊆ P−1
Σ∪{τ}(L(K))

as K is controllable with respect to L ‖ P. It follows that
K is controllable with respect to L. The converse inclusion
holds by Prop. 3 in [12].

(ii) First assume that K is normal with respect to L, and let
s ∈ P−1

Σ∪{τ}(PΣo
(L(K)))∩L(L ‖P). Then clearly PΣ(s) ∈

P−1
Σ (PΣo

(L(K))) ∩ L(L) ⊆ L(K) as K is normal with
respect to L. Thus, K is normal with respect to L ‖ P.

Conversely assume K is normal with respect to L ‖ P,
and let s ∈ P−1

Σ (PΣo
(L(K))) ∩ L(L). Then s ∈ Σ∗ and

PΣnp∪{τ}(s) ∈ Σ∗np ⊆ L(P) and s ∈ P−1
Σ∪{τ}(PΣo

(L(K)))∩
L(L ‖P) ⊆ L(K), since K is normal with respect to L ‖P.
This shows that K is normal with respect to L.

Proposition 4: Let K and L be Σ-DES with Σ = Σp ∪̇
Σnp, and let P = (Σ∗npτ ,Σ∗npτ) be the (Σnp ∪ {τ})-DES in
Fig. 4 where τ /∈ Σ is an uncontrollable and unobservable
event. Then supCNL,Σp

(K) = PΣ(supCNL‖P(K)).
Proof: Consider an arbitrary sub-behaviour K′ ⊆ K.

In Lemma 3 it has been shown that K′ is controllable and
normal with respect to L if and only if K′ is controllable
and normal with respect to L ‖P, and in Prop. 2 it has been
shown that K′‖L is Σp-nonblocking if and only if K′‖L‖P
is nonblocking. As this holds for all sub-behaviours K′ of K,
the least restrictive sub-behaviours must also be equal.

1469

Thus, synthesis with progressive events can be achieved
using standard synthesis methods. However, the introduced
automaton P includes the unobservable event τ , making it
necessary to use the more complex synthesis algorithm with
unobservable events [1], even if the original model only has
observable events.

C. Direct Synthesis Algorithm

This section proposes a direct synthesis algorithm with
progressive events, which avoids the unobservable event τ
in the case of total observation, i.e., when all events are
observable. The following synthesis objective is considered.

Definition 8: Let K and L be Σ-DES, and let Σp ⊆ Σ.
The least restrictive controllable and Σp-nonblocking sub-
behaviour of K with respect to L is
supCL,Σp

(K) =
⋃

{K′ ⊆ K | K′ is controllable with
respect to L, and K′ ‖ L is Σp-
nonblocking } .

(6)

Def. 9 defines an operator on the sub-behaviours of L,
which afterwards is shown to have the above supCL,Σp

(K)
as its greatest fixpoint [13].

Definition 9: Let L be a Σ-DES, and let Σp ⊆ Σ. The
operator ΘL,Σp

on the lattice of Σ-DES is defined by

ΘL,Σp
(K) = (θL,Σp

(K), θL,Σp
(K) ∩ Lω(K)) ; (7)

θL,Σp
(K) = θcont

L,Σp
(K) ∩ θcont

L,Σp
(K) ; (8)

θcont
L,Σp

(K) = { s ∈ L(K) | for all r ⊑ s and υ ∈ Σuc such
that rυ ∈ L(L), it holds that rυ ∈ L(K) } ;

θnonb
L,Σp

(K) = { s ∈ L(K) | for all r ⊑ s there exists t ∈ Σ∗p
such that rt ∈ Lω(L ‖ K) } .

Proposition 5: Let L and K be a Σ-DES such that K ⊆
L, and let Σp ⊆ Σ. Then K ⊆ ΘL,Σp

(K), if and only if K is
controllable with respect to L and L‖K is Σp-nonblocking.

Proof: First assume K ⊆ ΘL,Σp
(K). To see that K is

controllable with respect to L, let s ∈ L(K) and υ ∈ Σuc

such that sυ ∈ L(L). As s ∈ L(K) and K ⊆ ΘL,Σp
(K),

it holds that s ∈ θcont
L,Σp

(K), which implies sυ ∈ L(K). It
follows by Def. 3 that K is controllable with respect to L.
To see that K‖L is Σp-nonblocking, let s ∈ L(K‖L). Then
s ∈ L(K) ⊆ θnonb

L,Σp
(K), i.e., there exists t ∈ Σ∗p such that

st ∈ Lω(L ‖ K). Thus, K ‖ L is Σp-nonblocking.
Conversely, assume that K is controllable with respect

to L and L‖K is Σp-nonblocking, and let s ∈ L(K). Let r ⊑
s and υ ∈ Σuc such that rυ ∈ L(L). As K is controllable
with respect to L, it follows that rυ ∈ L(K) and thus s ∈
θcont
L,Σp

(K). Further, as L ‖ K is Σp-nonblocking, for r ∈
L(K) ⊆ L(L), there exists t ∈ Σ∗p such that rt ∈ Lω(L ‖
K), i.e., s ∈ θnonb

L,Σp
(K). Thus s ∈ θL,Σp

(K), and it follows
from (7) that K ⊆ ΘL,Σp

(K).
Proposition 6: Let L, K1, and K2 be Σ-DES and Σp ⊆

Σ. If K1 ⊆ K2 then ΘL,Σp
(K1) ⊆ ΘL,Σp

(K2).
Proof: Assume K1 ⊆ K2. Considering Def. 9, it is

enough to show θcont
L,Σp

(K1) ⊆ θcont
L,Σp

(K2) and θnonb
L,Σp

(K1) ⊆

θnonb
L,Σp

(K2). Firstly, for s ∈ θcont
L,Σp

(K1), it holds that s ∈
L(K1) ⊆ L(K2) and for all r ⊑ s and all υ ∈ Σuc such

that rυ ∈ L(L) it holds that rυ ∈ L(K1) ⊆ L(K2), and
thus s ∈ θcont

L,Σp
(K2). Secondly, for s ∈ θnonb

L,Σp
(K1) it holds

that s ∈ L(K1) ⊆ L(K2) and for all r ⊑ s there exists
t ∈ Σ∗p such that rt ∈ Lω(L ‖K1) ⊆ Lω(L ‖K2), and thus
s ∈ θnonb

L,Σp
(K2).

Prop. 6 shows that ΘL,Σp
is a monotonic operator on

the lattice of Σ-DES, so it follows by the Knaster-Tarski
theorem [13] that ΘL,Σp

has a greatest fixpoint, which
by Prop. 5 is the least restrictive controllable and Σp-
nonblocking sub-behaviour of L. To compute the fixpoint
in a finite number of steps, Def. 11 introduces an iteration
on the state set of L ‖ K, which in Prop. 7 is shown to be
equivalent to the above ΘL,Σp

.
Definition 10: The restriction of G = 〈Σ, Q,→, Q◦, Qω〉

to X ⊆ Q is G|X = 〈Σ,X,→|X , Q◦ ∩ X,Qω ∩ X〉 where
→|X = { (x, σ, y) ∈ → | x, y ∈ X }.

Definition 11: Let L = 〈Σ, QL,→L, Q◦L, Qω
L〉 and K =

〈Σ, QK ,→K , Q◦K , Qω
K〉 be two deterministic finite-state au-

tomata, and let Σp ⊆ Σ. The synthesis step operator
Θ̄L,K,Σp

: 2QL×QK → 2QL×QK for L and K is defined by

Θ̄L,K,Σp
(X) = θ̄cont

L,K,Σp
(X) ∩ θ̄nonb

L,K,Σp
(X) ; (9)

θ̄cont
L,K,Σp

(X) = { (xL, xK) ∈ QL × QK | for all υ ∈ Σuc

such that xL
υ
→L yL there exists yK ∈ QK

such that (xL, xK)
υ
→ (yL, yK) ∈ X } ;

θ̄nonb
L,K,Σp

(X) = { (xL, xK) ∈ QL × QK | (xL, xK)
t
→|X

(yL, yK) for some t ∈ Σ∗p, yL ∈ Qω
L, and

yK ∈ Qω
K } .

Proposition 7: Let L = 〈Σ, QL,→L, Q◦L, Qω
L〉 and K =

〈Σ, QK ,→K , Q◦K , Qω
K〉 be two deterministic finite-state au-

tomata, let S = L ‖ K, and let Σp ⊆ Σ. For every state set
X ⊆ QL × QK , it holds that ΘL,Σp

(S|X) = S|Θ̄L,K,Σp (X).
Proof: Based on Def. 1, Def. 10, and (2), it is enough

to show L(ΘL,Σp
(S|X)) = L(S|Θ̄L,K,Σp (X)).

First let s ∈ L(ΘL,Σp
(S|X)) = θcont

L,Σp
(S|X)∩θnonb

L,Σp
(S|X).

Then s ∈ L(S|X), so there exists a path S|X
s
→ (xL, xK) ∈

X . It will be shown that (xL, xK) ∈ Θ̄L,K,Σp
(X). First, for

υ ∈ Σuc such that xL
υ
→L yL, it holds that sυ ∈ L(L),

and since s ∈ θcont
L,Σp

(S|X) it follows that sυ ∈ L(S|X).
As L and K are deterministic, this implies (xL, xK) ∈
θ̄cont
L,K,Σp

(X). Second, as s ∈ θnonb
L,Σp

(S|X), there exists t ∈ Σ∗p
such that st ∈ Lω(S|X), which by determinism of L and K

implies (xL, xK)
t
→|X (yL, yK) ∈ Qω

L × Qω
K . This shows

(xL, xK) ∈ θ̄cont
L,K,Σp

(X) ∩ θ̄nonb
L,K,Σp

(X) = Θ̄L,K,Σp
(X). As

the same can be shown for all prefixes r ⊑ s, it follows that
s ∈ L(S|Θ̄L,K,Σp (X)).

Conversely, let s ∈ L(S|Θ̄L,K,Σp (X)), and let r ⊑ s. Then

S|Θ̄L,K,Σp (X)
r
→ (xL, xK) ∈ Θ̄L,K,Σp

(X). If rυ ∈ L(L) for

υ ∈ Σuc, then as L is deterministic also xL
υ
→L yL for some

yL ∈ QL, which given (xL, xK) ∈ θ̄cont
L,K,Σp

(X) implies
rυ ∈ L(S|X). Thus s ∈ θcont

L,Σp
(S|X). Further, as (xL, xK) ∈

θ̄nonb
L,K,Σp

(X) there exists t ∈ Σ∗p such that (xL, xK)
t
→|X

(yL, yK) ∈ Qω
L × Qω

K , and thus s ∈ θnonb
L,Σp

(S|X). Therefore,
s ∈ θcont

L,Σp
(S|X) ∩ θnonb

L,Σp
(S|X) = L(ΘL,Σp

(S|X)).

1470

G S1 S2

!u

c
c d

d

!u !u

c d
d

!u !u

c
c d

!u

Fig. 5. A DES G that has no least restrictive supervisor that is nonblocking
under control. Events c and d are controllable, while !u is uncontrollable.

By Prop. 7, a language-based step of ΘL,Σp
gives the

same result as a state-based step of Θ̄L,K,Σp
. To synthesise

the least restrictive controllable and Σp-nonblocking sub-
behaviour of specification K with respect to plant L, one
first constructs the composition S = L‖K. Then the iteration

X0 = QL × QK Xi+1 = Θ̄L,K,Σp
(Xi) (10)

converges against a greatest fixpoint Xn in a finite number
of n steps, which by Prop. 7 satisfies S|Xn = supCL,Σp

(K).

V. RELATED WORK

This section relates nonblocking with progressive events
to other nonblocking conditions studied in the literature.

Multi-tasking supervisory control [4] requires a synthe-
sised supervisor to be nonblocking with respect to several
sets of marked states at the same time. Generalised non-
blocking [5] uses a second set of marked states to specify
a subset of the states, from which marked states must be
reachable. Both conditions are amenable to synthesis and
can be combined with progressive events to further increase
modelling capabilities.

The condition of nonblocking under control [7] is more
similar to that of nonblocking with progressive events. When
modelling a supervisor implementation, it is assumed that
an implemented supervisor or controller sends controllable
events as commands to the plant. Typically, the controller
can generate several controllable events in quick sequence,
and it is considered unlikely that uncontrollable events occur
during such a sequence. Then it makes sense to require the
system to complete its tasks using Σc-complete traces.

Definition 12: [7] Let G = 〈Σ, Q,→, Q◦, Qω〉 and Σc ⊆
Σ. The path x0

σ1→ x1
σ2→ · · ·

σn→ xn is Σc-complete, if for
each i = 1, . . . , n it holds that either σi ∈ Σc or there do
not exist σ ∈ Σc and y ∈ Q such that xi−1

σ
→ y.

Definition 13: [7] Let G = 〈Σ, Q,→, Q◦, Qω〉 and Σc ⊆
Σ. Then G is nonblocking under Σc-control if for all paths
G

s
→ x, there exists a Σc-complete path x

t
→ yω such that

yω ∈ Qω .
Nonblocking under control is similar to nonblocking with

progressive events, in that it considers uncontrollable events
as non-progressive in states where a controllable event is
enabled. However, it depends on the state whether an event
is progressive or not, and this dependency means that in
general there do not exist least restrictive supervisors that
are nonblocking under control.

For example, Fig. 5 shows a DES G which is not
nonblocking under control. As both !u-transitions are only
enabled in states where controllable events are also enabled,

these transitions are considered as non-progressive and can-
not be used to prove that the marked state is reachable.
The two sub-behaviours S1 and S2 are nonblocking under
control, however neither of them is least restrictive, and their
least upper bound, G, is not nonblocking under control.

It is shown in [14] how the property of nonblocking
under control can be verified. Synthesis for this and similar
properties can be achieved using ω-languages [8], however
these methods do not in general produce a state-based
supervisor that can be readily implemented.

VI. CONCLUSIONS

The condition of nonblocking with progressive events
is introduced as an extension of standard nonblocking. It
is shown that there are situations where synthesis using
the standard nonblocking property results in an unexpected
result, because the synthesised supervisor can complete its
tasks only if certain rare or undesirable events occur. Using
progressive events, it can be specified more precisely how
a synthesised supervisor must complete its tasks. While
progressive events increase the modelling capabilities, ver-
ification and synthesis can still be achieved without increase
in complexity over the standard nonblocking property.

REFERENCES

[1] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[2] A. Arnold, Finite Transition Systems: Semantics of Communicating
Systems. Prentice-Hall, 1994.

[3] Y.-L. Chen, S. Lafortune, and F. Lin, “Design of nonblocking mod-
ular supervisors using event priority functions,” IEEE Trans. Autom.
Control, vol. 45, no. 3, pp. 432–452, Mar. 2000.

[4] M. H. de Queiroz, J. E. R. Cury, and W. M. Wonham, “Multi-
tasking supervisory control of discrete-event systems,” in Proc. 7th
Int. Workshop on Discrete Event Systems, WODES ’04, Reims, France,
Sept. 2004, pp. 175–180.

[5] R. Malik and R. Leduc, “Generalised nonblocking,” in Proc. 9th Int.
Workshop on Discrete Event Systems, WODES ’08, Göteborg, Sweden,
May 2008, pp. 340–345.

[6] R. J. Leduc, B. A. Brandin, M. Lawford, and W. M. Wonham,
“Hierarchical interface-based supervisory control—part I: Serial case,”
IEEE Trans. Autom. Control, vol. 50, no. 9, pp. 1322–1335, Sept. 2005.

[7] P. Dietrich, R. Malik, W. M. Wonham, and B. A. Brandin, “Implemen-
tation considerations in supervisory control,” in Synthesis and Control
of Discrete Event Systems, B. Caillaud, P. Darondeau, L. Lavagno, and
X. Xie, Eds. Kluwer, 2002, pp. 185–201.

[8] C. Baier and T. Moor, “A hierarchical control architecture for se-
quential behaviours,” in Proc. 11th Int. Workshop on Discrete Event
Systems, WODES ’12, Guadalajara, Mexico, Oct. 2012, pp. 259–264.

[9] W. M. Wonham, “Supervisory control of discrete-event systems,”
Systems Control Group, Dept. of Electrical Engineering, University of
Toronto, ON, Canada; at http://www.control.utoronto.edu/DES/, 2009.

[10] R. Su and W. M. Wonham, “Supervisor reduction for discrete-event
systems,” Discrete Event Dyn. Syst., vol. 14, no. 1, pp. 31–53, Jan.
2004.

[11] R. Malik and R. Leduc, “Compositional nonblocking verification using
generalised nonblocking abstractions,” IEEE Trans. Autom. Control,
vol. 58, no. 8, pp. 1–13, Aug. 2013.

[12] B. A. Brandin, R. Malik, and P. Malik, “Incremental verification
and synthesis of discrete-event systems guided by counter-examples,”
IEEE Trans. Control Syst. Technol., vol. 12, no. 3, pp. 387–401, May
2004.

[13] A. Tarski, “A lattice-theoretical fixpoint theorem and its applications,”
Pacific J. Math., vol. 5, no. 2, pp. 285–309, 1955.

[14] P. Malik, “From supervisory control to nonblocking controllers for dis-
crete event systems,” Ph.D. dissertation, University of Kaiserslautern,
Kaiserslautern, Germany, 2003.

1471

