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Abstract

This thesis examines the bifurcations, i.e., the emergent behaviours, for the Waikato corti-

cal model under the influence of the gap-junction inhibitory diffusion D2 (identified as the

Turing bifurcation parameter) and the time-to-peak for hyperpolarising GABA response

γi (i.e., inhibitory rate-constant, identified as the Hopf bifurcation parameter). The corti-

cal model simplifies the entire cortex to a cylindrical macrocolumn (∼ 1 mm3) containing

∼ 105 neurons (85% excitatory, 15% inhibitory) communicating via both chemical and

electrical (gap-junction) synapses. The linear stability analysis of the model equations

predict the emergence of a Turing instability (in which separated areas of the cortex

become activated) when gap-junction diffusivity is increased above a critical level. In

addition, a Hopf bifurcation (oscillation) occurs when the inhibitory rate-constant is suf-

ficiently small. Nonlinear interaction between these instabilities leads to spontaneous

cortical patterns of neuronal activities evolving in space and time. Such model dynamics

of delicately balanced interplay between Turing and Hopf instabilities may be of direct

relevance to clinically observed brain dynamics such as epileptic seizure EEG spikes, deep-

sleep slow-wave oscillations and cognitive gamma-waves.

The relationship between the modelled brain patterns and model equations can nor-

mally be inferred from the eigenvalue dispersion curve, i.e., linear stability analysis. Some-

times we experienced mismatches between the linear stability analysis and the formed

cortical patterns, which hampers us in identifying the type of instability corresponding to

the emergent patterns. In this thesis, I investigate the pattern-forming mechanism of the

Waikato cortical model to better understand the model nonlinearities. I first study the

pattern dynamics via analysis of a simple pattern-forming system, the Brusselator model,

which has a similar model structure and bifurcation phenomena as the cortical model.

I apply both linear and nonlinear perturbation methods to analyse the near-bifurcation

behaviour of the Brusselator in order to precisely capture the dominant mode that con-

tributes the most to the final formed-patterns. My nonlinear analysis of the Brusselator

model yields Ginzburg-Landau type amplitude equations that describe the dynamics of

the most unstable mode, i.e., the dominant mode, in the vicinity of a bifurcation point.

The amplitude equations at a Turing point unfold three characteristic spatial structures:

honeycomb Hπ, stripes, and reentrant honeycomb H0. A codimension-2 Turing–Hopf

point (CTHP) predicts three mixed instabilities: stable Turing–Hopf (TH), chaotic TH,
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and bistable TH. The amplitude equations precisely determine the bifurcation conditions

for these instabilities and explain the pattern-competition mechanism once the bifurcation

parameters cross the thresholds, whilst driving the system into a nonlinear region where

the linear stability analysis may not be applicable.

Then, I apply the bifurcation theories to the cortical model for its pattern predictions.

Analogous to the Brusselator model, I find cortical Turing pattens in Hπ, stripes and H0

spatial structures. Moreover, I develop the amplitude equations for the cortical model,

with which I derive the envelope frequency for the beating-waves of a stable TH mode;

and propose ideas regarding emergence of the cortical chaotic mode. Apart from these

pattern dynamics that the cortical model shares with the Brusselator system, the cortical

model also exhibits “eye-blinking” TH patterns latticed in hexagons with localised oscil-

lations. Although we have not found biological significance of these model pattens, the

developed bifurcation theories and investigated pattern-forming mechanism may enrich

our modelling strategies and help us to further improve model performance.

In the last chapter of this thesis, I introduce a Turing–Hopf mechanism for the anaes-

thetic slow-waves, and predict a coherence drop of such slow-waves with the induction of

propofol anaesthesia. To test this hypothesis, I developed an EEG coherence analysing

algorithm, EEG coherence, to automatically examine the clinical EEG recordings across

multiple subjects. The result shows significantly decreased coherence along the fronto-

occipital axis, and increased coherence along the left- and right-temporal axis. As the

Waikato cortical model is spatially homogenous, i.e., there are no explicit front-to-back

or right-to-left directions, it is unable to produce different coherence changes for different

regions. It appears that the Waikato cortical model best represents the cortical dynamics

in the frontal region. The theory of pattern dynamics suggests that a mode transition

from wave–Turing–wave to Turing–wave–Turing introduces pattern coherence changes in

both positive and negative directions. Thus, a further modelling improvement may be

the introduction of a cortical bistable mode where Turing and wave coexist.
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Chapter 1

Introduction

The human brain is known to exhibit features of pattern-forming dynamical systems, in-

cluding self-organisation and multistability. These dynamical behaviours are observed tra-

ditionally by placing electrodes on the subject’s scalp to record the electroencephalogram

(EEG): electrical activity reflecting the summation of excitatory postsynaptic potentials

in apical dendrites of pyramidal neurons in the more superficial layers of the cortex [109].

The spatiotemporally oscillating EEG forms wave patterns which reveal brain states,

distinguished through frequency and amplitude. For example, the EEG is a powerful

tool for tracking brain changes during different phases of sleep: When awake, the brain

exhibits β (>13–30 Hz) and γ (13–100+ Hz) waves in which γ waves are the highest

in frequency and lowest in amplitude. During the period of relaxation, the brain waves

become slower, and increase in amplitude; these are called α waves (8–13 Hz). The first

stage of sleep (or anaesthetised unconsciousness) is characterised by θ waves (4–8 Hz),

which are even slower in frequency and greater in amplitude than α waves. Passing this

stage, the sleeper enters into the deep-sleep stage where δ waves (< 4 Hz) are the slowest

and highest amplitude brain waves.

Apart from categorising brain functioning via EEG, the detection of EEG patterns

brings evidence of significant differences between normal and pathological states of the

brain [136]. For example, EEG recording during epileptic seizure shows abrupt bursts in

a single EEG channel and global synchronisation over the whole cortex region [68]. Such

pathological synchronisation may be the main mechanism responsible for an epileptic

seizure [80, 89]. Further previous studies also indicate other large-scale coherent phe-

nomena in neural pathologies, including hand tremor in Parkinson disease and hallucina-

tions [46].

The above findings regarding transitions between two brain states, either from con-

sciousness to unconsciousness, or from normal to pathological, are in principle bifurca-

tions. A bifurcation is a sudden change in a dynamical system’s activity, which can be

either static (Turing) or periodic (Hopf) in nature; the type of bifurcation is determined

by the dominant eigenvalue of the Jacobian matrix of the system, namely zero or purely

imaginary, respectively. Over the last few decades, there has been increasing interest in

attempting to explain the transitions in the brain using bifurcation theories. This has
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required development of nonlinear models of the brain to simulate brain dynamics. In

the community of brain modelling, there are two major classes: spatially discrete neural

network models and spatially continuous population models (see [20] for a review).

The ambitious Blue Brain Project is a neuron-by-neuron model representing the large-

scale neural simulation of about one million neurons in cortical columns. The model

includes considerable biological detail, neural spatial structures, connectivity statistics

and other neural properties [72]. More recent work has extended the spatial scale to

one billion neurons in the Cognitive Computation Project [3] and even up to 100 billion

neurons reported in [50]. These types of models enable us to relate the incredibly complex

behaviour of animals to the equally complex neural activity of their brains [27]; but they

cannot provide clear delineation as to the scale of details that should be included, and

the lack of adequate empirical detail leads to the failure of these types of models to

produce EEG [65]. The second class of models, in which the cortical tissue is described

as a spatial continuum, only considering the mean activities of densely interconnected

neuronal aggregates in a field, is arguably more suited to the description of EEG as it

relies on spatial averaging by implicitly defining a spatial scale while the EEG is also a

spatial average depending on the geometry of recording [87]. Such spatially continuous

theories are often referred as cortical mean-field theories [13,42].

Brain modelling may give rise to the development of artificial intelligence mechanisms

(e.g., Blue Brain Project); and is used to investigate the dynamics of neural activity in

cortex. The PhD work presented here is focused on the second aim, based on a mean-field

cortical model developed by Cortical Modelling Group of The University of Waikato (see

[112, 117, 120, 121] for representative publications corresponding to the Waikato cortical

model).

The principal configuration of the Waikato cortical model follows the continuum theo-

ries initially proposed by Wilson and Cowan [143] and shares features of Nunez’s [84–86],

Wright’s [146–148], Robinson and Rennie’s [100–102] and Liley’s models [65]:

• Wilson and Cowan describe the interaction of excitatory and inhibitory neurons to

model the cortical tissue as a two-dimensional sheet with these two kinds of neurons

homogeneously and isotropically distributed. The model allows four types of in-

terconnections: excitatory–excitatory, excitatory–inhibitory, inhibitory–excitatory

and inhibitory–inhibitory. The long-range action potential delivery is assumed to

be preserved without any decay in a constant velocity along the axon. A sigmoid

function is used to represent the relationship between the membrane potential and

the population-averaged neuronal firing-rate.

• The Nunez model distinguishes action potential propagation along the long-range

cortico-cortical and short-range intracortical fibres by introducing a significant delay
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in the distant neuronal connections. The model assumes that the long-range cortico-

cortical fibres are exclusively excitatory and the short-range introcortical fibres are

both excitatory and inhibitory. The idea of spatial divergence in neuronal fibres

allows a more realistic modelling of the large mammalian brain, such as human

brain.

• The Wright model visualises the cortex as a 2-dimensional cortical sheet consist-

ing of lumped excitatory and inhibitory neural populations characterised of their

mean membrane potentials, mean firing-rates, and mean interconnection densities.

The Wright model embeds the mostly physiologically-based parameters, enabling

comparable predictions to real measurements.

• The Robinson and Rennie model is similar to the Wright model while replacing the

axonal propagation from the original Green function to a damped wave equation.

This modification greatly improves the spatial resolution and permits analytic study

of wave properties and stability.

• The Liley model assumes a homogeneous cortex consisting of excitatory and in-

hibitory neuronal populations, which communicate via long-range (cortico-cortical)

and short-range (intra-cortical) connections. Here, the long-range connections are

also exclusively excitatory. A sigmoid function is used to link the mean soma mem-

brane potential and the mean firing-rate of the action potential. Analogous to the

Wright model, the Liley model uses a Green function for the axonal propagation

approximation. This model has successfully simulated the alpha rhythmic activity

in the human brain.

The Waikato cortical model utilises coupled differential equations to model the dynam-

ics of two neuronal populations: excitatory and inhibitory. This type of model is referred

to as activity-based model [28], in which differential equations describe the spatiotemporal

evolution of mean firing-rate for each of the neural sub-populations. To study the model

output (of simulated EEG patterns) as a response of model internal properties, a stability

analysis is performed. Dynamical systems depend on parameters, which, when varied in

certain regions of the parameter space, can result in bifurcations from equilibrium [71]. In

a cortical model, the bifurcation-controlling parameters carry physiological significance,

thus providing a better understanding of how the bifurcation mechanism contributes to

clinically-observed EEG.

Bifurcation analysis of a dynamical system usually follows a standard procedure. For

simple systems such as the Hodgkin-Huxley model [64], the steady-states are first deter-

mined by setting the time derivatives to zero. Then the stability of these steady-states is

examined by linear eigenvalue analysis. By examining the phase plot and its isoclines, one
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is able to investigate the dynamics of a simple system. This method of bifurcation con-

centrates on the dynamics in the linear region, thus being named linear stability analysis

(LSA).

Chapters 6, 8 and 9 of the textbook Spikes, Decisions & Actions: Dynamical Foun-

dations of Neuroscience1 by Wilson [144] offer details for bifurcation analysis on simple

neural models. Even for more complicated models, LSA is capable of capturing the linear

growth of the mode [100, 118, 120]. However, LSA cannot predict further details of the

mode when the system has fully evolved into its nonlinear regime.

To be more specific, the nonlinear pattern dynamics raises numerical questions: Is

the emerged pattern (Turing or Hopf) stable? Is there a possibility that a second bi-

furcation might occur? What kind of Turing pattern will be featured: striped, square

or hexagonal? What will happen if Turing and Hopf coincide? The amplitude equation

is a nonlinear analysis technique that can address some of these issues. Comprehensive

reviews of amplitude equations can be found in [4, 22].

It is well known that the amplitude equation has the form of the Ginzburg-Landau

equation (GLE) for superconductivity in the absence of a magnetic field. The GLE asso-

ciated with Turing bifurcation is referred as the real GLE (RGLE), since the coefficients

in the equation are real. Correspondingly, the amplitude equation associated with Hopf

bifurcation gives the complex GLE (CGLE) in which the coefficients are complex num-

bers [4]. The basic idea of amplitude equations are that they describe the time evolution

of the amplitudes corresponding to the critical wavenumbers that characterise the critical

modes at the onset of bifurcations.

Nonlinear bifurcation analysis has previously been applied to the cases of the Brus-

selator model [75], Belousov-Zhabotinsky model [48], the Gray-Scott model [24] and the

Lengyel-Epstein model [104]. These investigate pattern-forming systems near a codimension-

two2 Turing-Hopf point (CTHP) where the mode is characterised by a critical wave vector

(Turing feature) and a critical oscillating frequency (Hopf feature). The CTHP is trig-

gered by the coordinated tuning of both Turing and Hopf control parameters in the

system. Coupled amplitude equations are derived at a CTHP for the analysis of the pat-

tern dynamics [56]. The amplitude equation provides a reduced, universal description of

weakly nonlinear spatiotemporal phenomena [4]; that is, any pattern-forming system can

be transformed into an amplitude equation regardless of the details of the original system.

The most widely applied techniques to derive the amplitude equations are centre man-

ifold reduction (CMR) and multiple scale expansion (MSE). The main idea of both tech-

niques is to give insight into system dynamics by mapping the original system to a normal

form showing reduced dynamics captured by the amplitude equations. The centre mani-

fold is the surface separating the unstable and stable manifolds in the space spanned by

1ebook available at http://cvr.yorku.ca/webpages/wilson.htm
2The “two” refers to the number of control parameters responsible for the bifurcation
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the eigenvectors of the bifurcating eigenvalues. These subspaces are linear approximations

of the full nonlinear dynamics described by their corresponding manifolds. The centre

manifold theorem proposed in [14] states that the full dynamics of a nonlinear model

can be reduced to the centre manifold near a bifurcation point. The dynamics on the

centre manifold is described by universal normal forms of the amplitude equations. As

an alternative to CMR, MSE introduces scaled space and time coordinates that capture

the slow modulation of the dominant mode. However, these new scaled variables may

cause the perturbation method to fail because of a resonant driving of a higher order

term by a lower-order term [70]. To prevent this, a solvability condition is applied. The

lowest-order nontrivial solvability condition often produces an evolution equation that is

called the amplitude equation [15].

We chose MSE for the analysis of pattern dynamics because it is conceptually more

straightforward than CMR. Although the calculation of MSE is extremely cumbersome, it

is an iteration-based algorithm, thus has the advantage when programming an automated

process. A few attempts for MSE programming have been made in the last decades:

Pismen et al. [97] outlined a computer software written in Mathematica for computer-

assisted derivation of the amplitude equation valid in the vicinity of a bifurcation point.

Later, Pismen et al. showed a more sophisticated illustration of their Mathematica

software [96]. However, the proposed software is not available to the public. Yu has

published a series of works on the analysis of a double-Hopf bifurcation using MSE in

the Maple programming environment [156–158]. Although the source code of Yu’s work

is available [158], the lack of explanation and its specialised application (double-Hopf

bifurcations only) restrict its extension to other bifurcation cases. Khanin et al. devel-

oped another Mathematica package with the implementation of MSE on generalising

amplitude equations for a wide range of bifurcations [55]. To our knowledge the soft-

ware by Khanin et al. may be the most promising work regarding bifurcation analysis.

Unfortunately, the Mathematica codes are not given in their paper.

The difficulty for locating a suitable software for the amplitude equation derivation

was the initial motivation for developing our own software. Furthermore, the published

analysis and text books often omit many mathematical details, which are necessary for

fully understanding the derivation and application of amplitude equations. There are

limited resources describing the full implementation of MSE. Most publications reference

Kidachi’s 1980 paper [56], which offers a relatively detailed application of MSE to the

Brusselator model at a CTHP. This work is arguably the most valuable contribution to

the community of pattern dynamicists since it gives explicit expressions for all coefficients

of the amplitude equations.

The amplitude equation, representing the reduced dynamics at a bifurcation point, is

deduced from the original system. Parameters of the original system will feed into the

coefficients of the derived amplitude equation. Therefore it is essential to understand how
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the coefficients of amplitude equations are formalised. In this PhD work special attention

will be paid to these details.

Thesis structure

In Chapter 2, I outline the standard LSA by examining the pattern dynamics of the

Brusselator model. The reason I choose to use the Brusselator model as my calibration

test is that it represents the simplest reaction–diffusion system capable of generating

complex patterns. In the Brusselator model, the competition between two reactors and

the introduction of diffusion satisfy the key requirements for pattern formation [127].

The structure of the Brusselator model is a miniature of more sophisticated pattern-

forming systems, such as the Waikato cortical model. The techniques reviewed there

can be applied to any pattern-forming system directly. The Brusselator simulation codes

provided in Appendix A can also be applied to simulate other pattern-forming systems.

In Chapter 3, a brief introduction to the Waikato cortical model is presented. The

cortical modelling logic will be explained in detail; the necessary mathematical deductions

are supplied in Appendices B and C. I then review the cortical dynamics previously

published in [118, 120]. In Appendix D, I present the simulation program of Waikato

cortical model coding in Simulink supplementary to its original Matlab code-sheet

environment.

At the end of Chapters 2 and 3, I present patterns from simulations that cannot be

explained by LSA. To have a better understanding of the pattern formation, I developed an

MSE based semi-automated algorithm, Amp solving, for the derivation of the amplitude

equation at an arbitrary bifurcation point (Hopf, Turing or CTHP). The algorithm is

encoded in the Maple programming environment. A comprehensive tutorial of MSE is

given in Chapter 4. The practical derivations of amplitude equations in the vicinity of

distinct bifurcation points via Amp solving are detailed in the Appendices E–H.

In Chapter 5, I move back to the Brusselator and cortical models. I analyse the

mode stability of the Brusselator model via its amplitude equations; then I apply the

MSE program to derive the amplitude equation of the cortical model to explain those

patterns that cannot be predicted by LSA.

In Chapter 6, an anaesthesia model for the cortex is established for understanding

the mechanism of the slow waves that feature during the unconscious state of the brain.

We argue that such slow waves may result from complicated bifurcations of the brain. The

Amp solving Maple program is applied to the anaesthesia model for the derivation of

the amplitude equation at CTHP. Nonlinear analysis of the bifurcation is then performed.

The model suggests an EEG coherence drop with the induction of propofol anaesthesia.

This theoretical prediction is examined in my clinical EEG studies via a custom Matlab

algorithm EEG coherence.
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Chapter 7 concludes the whole thesis and outlines possible future work which extends

current research in pattern selection and formation of the Waikato cortical model.

Original work

My original contributions to the work include:

• Chapter 4: detailed explanation of the multiple-scale expansion and the development

of its automatic algorithm Amp solving

• Chapter 5: nonlinear analysis of the pattern dynamics for both the Brusselator and

the Waikato cortical models via amplitude equations

• In Chapter 6, the nonlinear analysis for the anaesthesia model; and the development

of EEG coherence algorithm to study the phase-coherence of clinical EEG recordings

• Appendix A: Matlab codes for solving numerically the 2D Brusselator model by

Runge-Kutta solver ode45

• Appendix D: Simulink modelling for the 2D Brusselator and Waikato cortical mod-

els

• Appendices E–H: all Amp solving codes dedicated to realising the multiple-scale

expansion and its application to the Brusselator model.
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Chapter 2

Pattern dynamics of the Brusselator

model

Reaction–diffusion systems describe dynamics under the influence of two processes: the

reaction, which transforms one set of substances, the reactants, to another set of sub-

stances, the products; and the diffusion, which allows the random movement of substances

in space. British mathematician Alan Turing proposed that diffusion can be a destabilis-

ing factor for the homogeneous stable state of a two-component reaction [127], that is, the

introduction of diffusion can lead to the spontaneous formation of patterns. A prominent

example of reaction–diffusion is the Brusselator — a system of model reactions developed

in 1970 by Ilya Prigogine and his collaborators at the Free University of Brussels [22]. The

name Brusselator is a portmanteau of the words Brussels and oscillator. The Brussela-

tor model is one of the simplest chemical models exhibiting Turing instability and other

pattern-forming instabilities [24,153]. In this chapter we first review the reaction–diffusion

system in a general form and discuss the Hopf and Turing instabilities via linear stability

analysis (LSA). We then apply these theories to the Brusselator model to investigate the

performance of LSA in pattern prediction.

2.1 Introduction to reaction–diffusion systems

Consider a generalised reaction–diffusion system for two reacting and diffusive species U

and V of the form:

∂U

∂t
= fU(U, V ) +DU∇2U

∂V

∂t
= fV (U, V ) +DV∇2V

(2.1)

The diffusion constant DU,V [with units (length)2/time] is an important parameter indica-

tive of the diffusion mobility. For a multi-component system, the higher the diffusivity,

the faster the species diffuse into each other. Here, fU,V (U, V ) is typically a nonlinear

function of concentrations U and V .
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The stationary uniform state (U0, V0) is derived by setting ∂/∂t = ∇2 = 0, leading to

fU(U0, V0) = 0

fV (U0, V0) = 0.
(2.2)

Linear stability analysis (LSA) is performed by introducing weak perturbations (δU, δV )

around the steady states: δU = U−U0 and δV = V −V0. The original system Eq. (2.1) is

simplified by keeping only the linear terms of a Taylor expansion about the steady state:

∂

∂t
(U0 + δU) = fU(U0 + δU, V0 + δV ) +DU∇2(U0 + δU)

= fU(U0, V0) +
∂fU
∂U

∣∣∣∣
0

δU +
∂fU
∂V

∣∣∣∣
0

δV + DU∇2δU + higher order terms

which approximates to

∂

∂t
δU =

∂fU
∂U

∣∣∣∣
0

δU +
∂fU
∂V

∣∣∣∣
0

δV +DU∇2δU. (2.3)

where the “|0” notation indicates evaluation of steady-state.

Similarly, the second equation of Eq. (2.1) has the linearised form:

∂

∂t
δV =

∂fV
∂U

∣∣∣∣
0

δU +
∂fV
∂V

∣∣∣∣
0

δV + DV∇2δV. (2.4)

The linearised system Eqs. (2.3) and (2.4) can be converted to the vectorised form:

∂

∂t


δU

δV

 =


∂fU
∂U

∂fU
∂V

∂fV
∂U

∂fV
∂V


∣∣∣∣∣∣∣∣
0


δU

δV

 +


DU∇2 0

0 DV∇2



δU

δV

. (2.5)

The substitution of a trial solution set (δU, δV ) = (AUe
i~q·~r, AV e

i~q·~r) yields

∂

∂t


AU

AV

 =


∂fU
∂U
− q2DU

∂fU
∂V

∂fV
∂U

∂fV
∂V
− q2DV


∣∣∣∣∣∣∣∣
0


AU

AV

, (2.6)

where 
∂fU
∂U
− q2DU

∂fU
∂V

∂fV
∂U

∂fV
∂V
− q2DV


∣∣∣∣∣∣∣∣
0

(2.7)
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is called the Jacobian matrix. The trial solution set is actually a mode ansatz featuring

the wavenumber q and amplitudes (AU , AV ) for reactants (U, V ). The linear combination

of eigenvectors
[
V1
V2

]
corresponding to the dominant eigenvalue σq (that has the largest

real part) of the Jacobian matrix yields the solution of Eq. (2.6):[
AU

AV

]
= c1

[
V1

V2

]
eσqt + c2

[
V ∗1

V ∗2

]
e−σqt (2.8)

where c1 and c2 are constants; the superscript ∗ stands for complex conjugate. The

dominant eigenvalue is a function of q. The real part α describes the mode’s linear growth

rate, and the imaginary part ω indicates the mode’s oscillating frequency if ω 6= 0. It is

straightforward to understand that the amplitude of the perturbation will grow (decay)

exponentially if the real part of the dominant eigenvalue is positive (negative). Since

eigenvalues are derived from the Jacobian matrix at a steady state, we have a stability

condition for the steady state:

Theorem (Linear stability condition)

α = Re(σq) > 0⇒ the steady state is unstable

α = Re(σq) < 0⇒ the steady state is stable
(2.9)

There are four main classes of instability:

1. A Hopf bifurcation manifests with a global oscillation (at zero wavenumber) with

the nonzero frequency that is the imaginary part of the dominant eigenvalue:

• q = 0, ω > 0⇒ Hopf instability; A sign change in α signals the onset of a Hopf

instability, with α = 0 marking the bifurcation point.

2. A Turing bifurcation manifests with spatial inhomogeneity at a nonzero wavenum-

ber:

• q 6= 0, α > 0, ω = 0 ⇒ Turing instability; with α = 0 marking the Turing

bifurcation point.

3. A mixed Turing-Hopf (TH) instability occurs near a codimension-2 TH point

(CTHP) when critical Turing and Hopf conditions coincide:

• α = 0, ω > 0 at q = 0, with σq = 0 at q 6= 0.

4. A wave instability1 manifests with spatial inhomogeneity at a nonzero wavenum-

ber with nonzero frequency:

• q 6= 0, α ≥ 0, ω > 0⇒ wave instability.

We summarise the threshold for each type of bifurcation in Table 2.1.

It is straightforward to predict the mode stability by inspecting the eigenvalue disper-

sion curve showing the variation of the dominant eigenvalue as a function of wavenumber

1The analysis of the wave instability is detailed in [81]. In our work, we mainly focus on investigating
Turing, Hopf and TH bifurcations.
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Table 2.1: Threshold of bifurcations (in theory)

Pattern stability

Bifurcation Critical wavenumber Eigenvalue (σq = α+ iω) Spatially Temporally

Turing q 6= 0 σq = 0 unstable stable
Hopf q = 0 α = 0, ω 6= 0 stable unstable
TH q ≥ 0 α = 0, ω 6= 0 at q = 0 unstable unstable
Wave q 6= 0 α ≥ 0, ω > 0 wave instability

q. In the next section, we will apply LSA to the Brusselator model to examine the LSA

performance in predicting the dynamics of the system.

2.2 The Brusselator model

The Brusselator model describes chemical reactions given as [82]

A
k1−→ X

B +X
k2−→ Y +D

2X + Y
k3−→ 3X

X
k4−→ E

(2.10)

where ki is the reaction rate-constant2 quantifying the rate of the i-th chemical reaction.

A,B,X and Y are species. D,E, the final products, are removed from the reaction pool

as soon as they are produced.

The law of mass action states:

“The rate change of the concentration of each species in a reaction is the product of its

stoichiometric coefficient with the rate of the reaction, adjusted for sign (“+” if product,

“−” if reactant)”.

So the rate equations for X and Y are:

∂[X]

∂T
= k1[A]− (k2[B] + k4)[X] + k3[X]2[Y ] + d1∇2[X]

∂[Y ]

∂T
= k2[B][X]− k3[X]2[Y ] + d2∇2[Y ]

(2.11)

2 The units of the rate constant depend on the order of the reaction. If the concentration is measured
in units of mol· L−1 (abbreviated as M), then:

• For order one, the rate constant k1 and k4 have units of s−1

• For order two, the rate constant k2 has units of (M· s)−1

• For order three, the rate constant k3 has units of (M2· s)−1

• For order m+ n, the rate constant ki has units of mol1−(m+n)· L(m+n)−1· s−1
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The concentration for each species is denoted by [ ] with units mol· L−1. Here, d1 and d2

are diffusion constants for [X] and [Y ] respectively.

For better insight into the qualitative behaviour, the following scaled variables are

introduced:

t = k4T, X =

√
k3

k4

[X], Y =

√
k3

k4

[Y ]

A =

√
k2

1k3

k3
4

[A], B =
k2

k4

[B], Di =
di

k4

(2.12)

By substituting these relations into Eq. (2.11), one finds the commonly seen dimen-

sionless Brusselator system (note we have replaced D1,2 by DX,Y for better readibility):

∂

∂t
X = A− (B + 1)X +X2Y +DX∇2X

∂

∂t
Y = BX −X2Y +DY∇2Y

(2.13)

Here, X is the activator enhancing its own rate of production; Y is the inhibitor

suppressing X’s and its own rate of production. Turing established that a necessary

condition for the formation of spatial patterns in a chemical reaction is that the inhibiting

substance must diffuse more rapidly than the activator [127]: DY > DX .

The steady state of the Brusselator model (X0, Y0) = (A,B/A) is given by setting

∂X/∂t = ∂Y/∂t = 0, DX = DY = 0 in Eq. (2.13). We determine the stability of the

steady states by examining the eigenvalue solved from the Jacobian matrix:

JBru =

[
B − 1− q2DX A2

−B −A2 − q2DY

]
(2.14)

A bifurcation occurs when there is a qualitative change in the dynamics of a system

as a control parameter is varied, which can be predicted by the value of the dominant

eigenvalue (see Eq. (2.8)). Following Nicolis and Prigogine’s and other researchers’ work

[24, 82, 93, 94, 151], we choose B as the bifurcation control parameter. Eigenvalues are

found from the characteristic equation:

σ2 − σΣ + ∆ = 0 (2.15)

where Σ and ∆ are the trace and determinant of the matrix JBru: Σ = B − 1 − A2 −
q2(DX +DY ), ∆ = A2 + q2[A2DX + (1−B)DY ] + q4(DXDY ). The two eigenvalues are:

σ± =
1

2
[Σ±

√
Σ2 − 4∆] (2.16)

The onset of the Hopf bifurcation occurs when Σ = 0, which results in the critical Hopf

condition BH
c = 1 + A2. Two eigenvalues are σH

± = ±iA, where i ≡
√
−1.
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The threshold of the Turing instability is obtained by setting σ± = 0, which results

to the critical Turing condition BT
c = (1 +Aη)2 where η =

√
DX/DY . The wave number

corresponding to the most unstable Turing mode is given by q2
c = A/

√
DXDY .

If η = (
√
A2 + 1 − 1)/A then the two bifurcations are close together, leading to a

combination of spatial patterns superimposed with temporal oscillations. Here BT
c =

BH
c = 1 + A2 ≡ BTH

c . Since the diffusion rate η and B both participate in modulating

such mixed bifurcations, it is called a Turing-Hopf (TH) bifurcation at a codimension-2

TH point (CTHP). A summary of the critical settings for each type of bifurcation is shown

in Table 2.2.

Table 2.2: Threshold of bifurcations (Brusselator model)

Bifurcation B setting Critical wavenumber Critical frequency

Turing (1 +Aη)2
√
A/(DXDY )1/4 0

Hopf 1+A2 q = 0 A

TH 1+A2
√
A/(DXDY )1/4 A

2.2.1 Linear stability analysis vs simulations

Assuming A and DX,Y are fixed, we vary B and investigate the LSA predictions. Following

the ideas discussed in the previous section, the critical Turing condition BT
c and the critical

Hopf condition BH
c can be numerically determined. B should be greater than the critical

value for the emergence of the corresponding bifurcation. In the following, we will observe

the simulated pattern dynamics and examine the performance of LSA.

Hopf simulation

A Hopf bifurcation is manifest by homogeneous temporal oscillations, observed in a

diffusion-free (i.e., DX = DY = 0) simulation. The simulation is coded in Matlab using

the built-in ode45() 4th order Runge-Kutta solver3. We set A = 3 for this experiment,

thus BH
c = 10.

We investigated the time evolution of the Brusselator model forB below the bifurcation

threshold BH
c : B1 = 9.9; above the threshold: B2 = 10.2; and at B3 = 10.8, a further

distance from the threshold. All three simulations start from the equilibrium state plus

a small perturbation, which plays an important role to kick the system away from the

equilibrium state. The simulation runs for 100 s4 with the time step 0.1 s. Simulation

results are shown in Fig. 2.1

3Source code available in Appendix A; a Simulink model is presented in Appendix 2.2
4 Strictly speaking, the simulation for the Brusselator model runs in a unit-time, because the model

equation Eq. (2.13) is dimensionless. Here, we just assume that the simulation runs in sec.
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Figure 2.1: 1-D simulation of the Brusselator model when the bifurcation control pa-
rameter B is (a) B1 = 9.9 (below Hopf threshold), (b) B2 = 10.2 (above threshold), and
(c) B3 = 10.8 (further away from threshold). For each simulation, the time evolution for
the activator X is shown at the upper panel and the inhibitor Y is shown at the lower
panel. The plot of the phase plane of X and Y is located at top right for each simulation.
Fourier power spectrum measuring the oscillating frequency is placed at lower right for
each simulation run. (Note that the Hopf oscillation cannot be formed at B1 < BH

c , so
we did not show the Fourier power spectrum.)

The comparison of LSA predictions and simulations observed from Fig. 2.1 are sum-

marised in Table 2.3. It is clear to see that LSA matches well with two cases: B1 = 9.9

and B2 = 10.2. But when B is relatively further away from the critical point, reaching

B3 = 10.8, there is a discrepancy between the oscillating frequency predicted by LSA and

the numerical simulation.

When B < BH
c , the dominant eigenvalue derived from the Jacobian matrix has a

negative real part, meaning that the added perturbation to the steady state will decay

exponentially. This is because in Eq. (2.8), the amplitude of the perturbation is propor-

tional to eσqt where Re(σq) is now negative. Therefore, the perturbed system will decay

back to the initial steady state. From the first phase plane in Fig. 2.1, the limit cycle
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Table 2.3: LSA predictions vs simulations of the Brusselator model at Hopf mode

B value Dominant eigenvalue Predicted frequency Simulations

9.9 −0.0500 + 2.9996i 0.4774 Hz
weakly damped oscillations

about the steady state
10.2 0.1000 + 2.9983i 0.4772 Hz ∼0.47 Hz stable oscillation
10.8 0.4000 + 2.9732i 0.4732 Hz ∼0.15 Hz stable oscillation

cannot form but converges to a dot, which means the system is gradually becoming quies-

cent. The actual observed fluctuations may be from the initially added noise. Moreover,

it is natural that noise will exist in a living system.

When B > BH
c , the Hopf oscillation is expected to emerge. From Fig. 2.1, we can

see that even when B2 is just above threshold, stable oscillations over time are observed,

giving rise to a limit cycle. The frequency of the X time-series is detected as ∼0.47 Hz,

which is very close to the LSA prediction.

When the value of B is increased from 10.2 to 10.8, Fig. 2.1(c) shows the amplitude of

the time-series becomes larger, which can be explained from Eq. (2.8): the increased real

part of the dominant eigenvalue (see Table. 2.3) leads to the exponential growth of the

perturbation. We also find that competition between the activator X and its counterpart

inhibitor Y gives rise to anti-phased time-series. Unfortunately, the measured frequency

from Fourier spectrum reads ∼0.15 Hz, which is different from the LSA predicted value

of 0.4732 Hz. We argue that this discrepancy results from the fact that the nonlinear

effect has become sufficiently strong that LSA not longer applied since it deals only with

weakly nonlinear phenomena.

Turing simulation

The Turing bifurcation is commonly known by its beautiful patterns that are spatially

structured with temporal stability. The parameter setting for this experiment reads:

A = 5, DX = 5, DY = 40. From Table 2.2, the critical value BT
c to trigger the Turing

bifurcation is (1 + Aη)2 that turns out to be 7.66. In the following experiments, the

pattern dynamics are observed by increasing the value of B from the neighbourhood of

the threshold to a large value. Through LSA, the stability of the Turing mode is examined

according to the real part of the dominant eigenvalue at a specific wavenumber as shown

in Fig. 2.2.

In Fig. 2.2, the onset of Turing instability is predicted to be observed when B = 8.04

(> BT
c = 7.66) as the real part of the dominant eigenvalue becomes positive in the vicinity

of the wavenumber q/2π = 0.09 (waves per cm). Increasing the value of B, the eigenvalue

dispersion curve moves upwards which implies a larger growth rate and larger amplitude

of the mode. The parameter settings from Fig. 2.2 are fed into the Matlab program5 for

5Source code available in Appendix A
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Figure 2.2: Brusselator stability curves for various B values. Real parts of dominant
eigenvalue σq are plotted as a function of scaled wavenumber for three settings of bifurca-
tion control parameter B: B = 8.04, 10.72 or 19. The peak of the curve (corresponds to
the most unstable mode) is located at q/2π = 0.097 when B = 8.04; q/2π = 0.112 when
B = 10.72; q/2π = 0.138 when B = 19.

the Brusselator model. For the 2D simulation of the Brusselator model, we initialise the

model as a 2D sheet consisting of a 60× 60 grid6 (spatial resolution = 1 cm/grid-point)

with each grid-point representing the local concentration of the reactant. Edges of the

sheet are joined to give toroidal boundaries. The Laplacian operator ∇2 is implemented

as a circular convolution of the 3× 3 second-difference operator L:

L =

0 1 0

1 −4 1

0 1 0

 (2.17)

All simulations commence from the homogeneous steady-state with added small am-

plitude Gaussian-distributed white noise. The noise perturbation is turned off after one

iteration step leaving the pattern-forming system to organise itself spontaneously. Simu-

lation results with respect to different B values are seen in Fig. 2.3.

From panel (a) of Fig. 2.3, although B = 8.04 is only 5% above the threshold (BT
c =

7.66), a Turing pattern can form if the simulation runs for sufficient time. By increasing

the B value, stable Turing patterns are found more promptly in panels (b) and (c) of Fig.

2.3. These simulations show that, provided the value of the bifurcation control parameter

exceeds the Turing threshold condition (see Table 2.2), a Turing pattern will emerge.

It is useful to examine more carefully the texture of the Turing patterns and their cor-

responding two-dimensional Fourier amplitude spectrum. The pattern formed at B = 19

(“bullet”) seems like an anti-phased (upside down) version of the one formed at B = 8.04

6Since the Brusselator model is dimensionless, we imply the space scale between two grid-point is
∆x = 1cm. So the model 2D-reaction pool has the side length 60 cm
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Figure 2.3: Grid simulations of the Brusselator model for the observation of Turing
pattern at (a) B = 8.04, (b) B = 10.72 and (c) B = 19. Other parameter settings are:
A = 5, DX = 5, DY = 40. The pattern formed at t = 150 s of the activator X is shown in
the second (3D-view) and third (2D-view) columns with its Fourier amplitude spectrum
placed at the rightmost column. Colour of the pattern indicates the local concentration
of the reactant: [red] high concentration, [blue] low concentration. At the left hand side,
is the time-series extract of 5 equally spaced grid-points along the mid-vertical axis of the
pattern.

(“ice-cream cone”). We also argue that the stripes formed at B = 10.72 may be a middle-

state between “ice-cream cone” and “bullet” patterns. On the other hand, the Fourier

amplitude spectrum shows increased radius from the top (∼ 0.1 cm−1) to bottom (∼ 0.13

cm−1) plot, in good agreement with the predicted wavenumber for maximum instability

indicated in Fig. 2.2. Furthermore, the top spectrum hints at a hexagonal spectral distri-

bution, indicative of a fixed spatial frequency whose wave vector has preferred directions.

Similarly, the spectrum of the stripes shows two opposed wave vectors, while the “bul-

let” gives rise to a hexagonal-ish shape in which red spots indicate the direction of the

wave vector. However, we cannot infer this information from LSA. It is very likely that

a nonlinear mechanism is responsible for the fine details of the pattern. This nonlinear

mechanism will be investigated in Chapter 5.

Turing-Hopf simulation

From our investigation of the Hopf and Turing modes, we see that the LSA plays an

important role in predicting patterns. From LSA the mode stability can be determined

by examing the sign of the real part of the dominant eigenvalue. We again refer to Table

2.1 for basic rules in pattern prediction. In this section, we finely adjust the bifurcation
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control parameter B and the ratio between diffusion terms DX/DY to observe mixed

Turing and Hopf modes.

In the simulations shown in Fig. 2.4, we fixed model parameters A = 2.5, DX =

5, DY = 10. B is initially set to 7.4 (upper row of Fig. 2.4) to generate a homogeneous Hopf

oscillation, then B is raised to 8 to promote the Turing mode. The stability curve at B =

7.74 clearly shows the co-existence of Hopf and Turing modes. In its corresponding strip-

chart, the vertical and horizontal view indicates, respectively, the spatial and temporal

evolution of the pattern. Such an oscillating Turing mode is the key feature of a TH

bifurcation. The time-series of the TH mode shows two frequencies: the Hopf and its

subharmonic. de Wit et al. [22] point out that such subharmonic phenomena are common

near a CTHP. In the third experiment, we increased the value ofB to 9. The stability curve

of the lower panel predicts that both Turing and Hopf appear with larger amplitude and

growth rate. However, the simulation shows a Turing bifurcation only. Such discrepancy

may result from the pattern competition with strong nonlinearity.

Figure 2.4: Grid simulations of the Brusselator model for the observation of TH pattern
with the value of B = 7.4 (upper row), B = 8 (middle row) and B = 9 (bottom row).
Other parameter settings are: A = 2.5, DX = 5, DY = 10. (a) column is the dispersion
curve of [solid] real and [dashed] imaginary parts of dominant eigenvalues predicting the
mode stability. H: Hopf mode at wavenumber q = 0; T: Turing mode with Re(σq) > 0
at q 6= 0; DT: damped Turing with Re(σq) < 0 at q 6= 0. (b) column is the activator
X(t, x) time vs space strip-chart for the last 50 s of the 150-s simulation. The strip-chart
is formed by stacking strips extracted from the vertical mid-line of the Brusselator grid
at a specific time. Colour indicates the local concentration of the reactant: [red] high
concentration, [blue] low concentration. (c) column is the time evolution of X located at
the centre of the 2-D sheet.
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The Turing time-series shown in the third row of Fig. 2.4 exhibits a slow increase in a

small data range. Theoretically the Turing pattern is temporally stable, but the nonlinear

effect will drive the pattern (even with completely closed Hopf instability) away from an

absolutely frozen state. Fig. 2.5 shows that the Turing time-series is still not completely

stable after 2 hours evolution. The bifurcation for a nonlinear system is complicated

and practically difficult to predict. Several bifurcations may occur over a slow time-scale.

Given sufficient time, we argue that the Turing pattern may evolve to other spatiotemporal

dynamics.

0 20 40 60 80 100 120

1

1.5

2

2.5

3

Time (min)

X
(3
0
,
3
0
)

Figure 2.5: 2-hour time-series of the mid-point extracted from a Brusselator pattern
(60×60) experencing a Turing bifurcation.

2.3 Discussion

In this chapter, we introduced the reaction–diffusion system and its basic pattern-forming

theory. To gain some insight into the pattern formation, linear stability analysis (LSA)

was applied. LSA introduces a small spatiotemporal perturbation into the system. By

examining the growth rate of the perturbation, the mode stability can be predicted. We

applied LSA to the well-known Brusselator model for a preliminary analysis of various

pattern dynamics: Hopf, Turing and TH coupled modes. LSA was moderately successful

in predicting patterns. However, we did find a mismatch between LSA prediction and

pattern simulation: predicted TH mode vs actual Turing mode shown in Fig. 2.4 (bot-

tom row). Moreover, LSA is not able to explain the intrinsic mechanism of the pattern

structure, for example the different Turing patterns shown in Fig. 2.3. Later in Chapter

5, we will apply a nonlinear method called amplitude equations for a detailed analysis of

pattern formation.



Chapter 3

Pattern dynamics of the Waikato

cortical model

Cognition, as a high-level brain function, is not a single neural response, yet appears as a

cooperative phenomenon of multiple-interacting neural populations [107]. This raises the

question: How can widely separated neural populations that are anatomically unconnected

be in very similar states of activity, thereby becoming functionally connected and giving

rise to coherent percepts and actions? Aiming to answer this question, the Cortical

Modelling Group at the University of Waikato developed a mean-field cortical model

(referred as the Waikato cortical model) by treating the cortex as a continuum of excitable

tissues, rather than following the exact details of neuron-by-neuron interactions.

The Waikato cortical model has a rich history of development: The model is based on

early work by Liley et al. [66], with enhancements motivated by Rennie et al. [100] and

Robinson et al. [101]; and has been recently extended to include electrical synapses (also

referred as gap junctions) [118, 120] supplementing neural communications via standard

chemical synapses.

The Waikato cortical modelling assumptions are:

1. Cortical element is the “macrocolumn” containing ∼100,000 neurons.

2. There are only two distinct kinds of neuron groups: 85% excitatory, and 15% in-

hibitory neurons. “Excitatory” and “inhibitory” are classified according to their

effects on other neurons.

3. There are three isotropic neuronal interactions: cortico-cortical (long-range from

other macrocolumns), intra-cortical (short-range within macrocolumn) and connec-

tions from subcortical structures such as the thalamus and brain-stem. A macro-

column with diameter ∼1mm and depth ∼3mm is drawn in Fig. 3.1. We further

assume that inhibitory connections via their short axons are locally restricted within

a macrocolumn. In contrast, the axons from excitatory neurons are often longer and

extensively branched, having length ranging from centimetres to several meters (in

giraffe’s neck), allowing exclusively excitatory cortico-cortical connections. Both

excitatory and inhibitory connections are permitted in local neuron connections.
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4. Neurons exchange information via both chemical and electrical (gap-junction) synapses.

Gap-junctions are more abundant within inhibitory populations, while being rare

within excitatory neuronal populations. It is known that gap-junctions form between

only the same types of neurons, i.e., excitatory–excitatory and inhibitory–inhibitory.

Figure 3.1: Schematic representation of the connective topology within a cortical macro-
column. Only four of the ∼100,000 neurons are shown. The shapes of neurons are deter-
mined based on their observations under microscope: Triangles are excitatory (pyramidal)
neurons; Circles are inhibitory neurons.

The Cortical Modelling Group first introduced gap-junctions into the cortical model in

the paper Gap-junction mediate large-scale Turing structures in a mean-field cortex driven

by subcortical noise [118]. Gap-junctions, acting in a similar fashion as the inhibitory

diffusion in the Brusselator model, are found to be the critical factor for spontaneously

emerging spatial (Turing) patterns of brain activities. Later, Steyn-Ross et al. [120]

presented two limiting cases of the cortical model: the “slow-soma” limit with slow voltage

feedback from soma to dendrite, and the “fast-soma” limit in which such feedback is

prompt. Steyn-Ross et al. argued that the “slow-soma” limit might describe a “default”

background state for the idling, non-cognitive brain; the “fast-soma” limit might relate

to the cognition-driven cortical activation. Notice that the “slow-soma” exhibits only

temporally stable Turing instability in [120], which does not match with ultra-slow BOLD

oscillations (≤0.1 Hz) characterised the default mode of the cortical activation. In a
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recent work [117], Steyn-Ross et al. proposed that the slowly oscillating spatial mode of

the BOLD images might arise from the nonlinear interaction between Turing and Hopf

instabilities of the “slow-soma” at a codimension-2 Turing-Hopf point (CTHP).

In the following, we will review modelling strategies of the Waikato cortical model and

its multiple dynamics.

3.1 Modelling strategy

The neuron is the basic element of the cortex. A simplified structure of the neuron is

described in Fig. 3.2: The dendrite tree gathers information and passes this to the soma

body. The axon is the bridge connecting soma and the terminal where signals will be

delivered to the next neuron via the synapse.

Figure 3.2: Illustration of the connection between two neurons. Soma body receives
incoming signals gathered at the dendrite tree. Soma converts these signals to spikes and
sends them to the terminal synapse through the axon, further provoking postsynaptic
potentials at the target neuron.

Multiple signals are integrated at the soma to trigger action potentials (spikes). Spikes

travel along the axon to its terminal. At the axon terminal, incoming spikes can provoke

the chemical synapse to release neurotransmitter molecules, which will be captured by

the postsynaptic neuron thus giving rise to the postsynaptic potential. In the meantime,

electrical synapses (gap-junctions) let ions or charged particles pass through into the next

neuron. Gap-junctions can create either a depolarisation (a more positive charge) or a

hyper-polarisation (a more negative charge) in the adjacent neuron. If the cell becomes

sufficiently depolarised, or sufficiently positive, it generates an action potential, in turn

setting off a rapid wave of signals that excites connected neurons.

The Waikato mean-field cortical model is an extended version of the single neuron

model. The basic frame for delivering spikes is the same: Firing flux transmits through the

axon to the terminal synapse, these incoming spikes will induce postsynaptic potentials,

and all spike activities invading the dendrite tree are integrated at the soma, imposing a

time-dependent perturbation about the soma resting potential.

With the knowledge of the connective topology of neurons within a cortical macro-

column shown in Fig. 3.1, we explain our modelling strategy following the flow of neural
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firing flux, from the left to right in Fig. 3.3.

Figure 3.3: Schematic of the Waikato cortical model

3.1.1 Cortico-cortical flux

Flux φeb generated by excitatory source Qe obeys a 2-D damped-wave equation [101]

connecting to population-averaged neuron type b where b can be either e (excitatory) or

i (inhibitory): [(
∂

∂t
+ vΛeb

)2

− v2∇2

]
φαeb = (vΛeb)

2Qe (3.1)

Qe is the spike-rate flux, which is a mapping from membrane voltage Ve to population-

averaged firing rates:

Qe =
Qmax
e

1 + e−C(Ve−θe)/σe
(3.2)

According to our modelling assumptions, cortico-cortical fibres are exclusively excita-

tory since the inhibitory neurons typically have short axons. Thus the long-range wave

source is excitatory only. φαeb is the long-range flux from distant excitatory neural source

Qe. The subscript eb is read “e→ b”, the connection from the presynaptic neuron type e

to postsynaptic neuron type b.

Symbol definitions for the cortico-cortical terms are shown in Table 3.1.

Table 3.1: Symbol definition for the cortico-cortical equations

Symbols Description Value Unit

Λe,b inverse-length scale for e→ b axonal connection 4 cm−1

v axonal conduction speed 140 cm s−1

Qmax
e,i maximum firing rate 30, 60 s−1

θe,i sigmoid threshold voltage −58.5, −58.5 mV
σe,i standard deviation for threshold 3, 5 mV

C constant π/
√

3



3.1 Modelling strategy 25

3.1.2 Intra-cortical flux

The total input flux arriving at the post-synapse is given as,

Mab = Nα
eb φ

α
eb︸ ︷︷ ︸

long-range

+Nβ
ab φ

β
ab︸ ︷︷ ︸

local

+ φsc
eb︸︷︷︸

subcortical

(3.3)

where superscripts α and β distinguish long-range and local chemical synaptic inputs; Nα
eb

and Nβ
ab are the number of such input connections. Subcortical excitation φsc

eb is modelled

as small-amplitude spatiotemporal Gaussian-distributed white noise superimposed on a

background excitatory “tone” 〈φsc
eb〉 whose constant level is set via a subcortical drive

scale-factor s:

φsceb = s〈φsc
eb〉+

√
s〈φsc

eb〉ξeb (3.4)

where ξeb is the Gaussian-distributed white-noise sources are delta-correlated in time and

space (generated by Matlab command randn()). Inclusion of white-noise stimulus is

motivated by physiological evidence that the cortex requires a continuous background

“wash” of input noise to function normally.

The total input flux Φab is the temporal convolution of the dendrite impulse response

H(t) with the input flux Mab:

Φab = (dendrite response)⊗ (input flux)

= Hb(t)⊗Mab(t)

=

∫ t

0

Hb(t− t′)Mab(t
′)dt′

(3.5)

The input spike flux Mab releases quanta of neurotransmitters into the synaptic cleft,

altering the dendritic conductance and thereby causing a momentary change in the post-

synaptic neuron via charge transfer through opened ion channels. Experimental measure-

ments of the post-synaptic potentials (PSPs) shows a rapid-rise, slow-decay curve which

is well approximated by the so-called alpha-function Hb(t):

Hb(t) = γ2
abte

−γabt (3.6)

where the time-to-peak is given by t = 1/γa, and the total area under the curve is

normalized to unit on the interval 0 ≤ t <∞ for ease of calculation. Meanwhile, writing

γeb = γe and γib = γi, Eq. (3.6) can be simplified to:

Hb(t) = γ2
ate
−γat (3.7)

Reducing γi is equivalent to increasing the time-to-peak (1/γi) for the hyperpolarising

GABA response, as indicated in Fig. 3.4.

By taking derivatives1, Eq. (3.5) becomes

1For detailed calculation see Appendix B.1
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Figure 3.4: IPSP response (inhibitory alpha-function) curve. With delays in the in-
hibitory postsynaptic response (reduction of the inhibitory rate-constant γi), the occu-
rance of the IPSP peak will be postponed. Here, the position of the peak shifts from
0.017 to 0.04 s by reducing γi from 58.6 to 25 s−1.

(
∂

∂t
+ γa

)2

Φab = γ2
aMab(t) (3.8)

Therefore, the flux received by target neural populations are:(
∂

∂t
+ γe

)2

Φeb = [Nα
ebφ

α
eb +Nβ

ebQe + φsceb]γ
2
e (3.9a)(

∂

∂t
+ γi

)2

Φib = Nβ
ibQiγ

2
i (3.9b)

Symbol definitions for the intra-cortical terms are shown in Table 3.2.

Table 3.2: Symbol definition for the intra-cortical equations

Symbols Description Value Unit

Nα
eb long-range e→ b axonal connectivity 2000 -

Nβ
eb,ib local e→ b, i→ b axonal connectivity 800, 600 -

γe,i excitatory, inhibitory rate-constant 170, 50 s−1

〈φsc
eb〉 e→ b tonic flux entering from subcortex 300 s−1

3.1.3 Soma voltage

Soma input from chemical synapses

Voltage input to the soma is modelled as postsynaptic potentials (PSPs) entering the

neurons somatic “capacitor” (considered to be a single RC compartment), which describes
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the low-pass filter characteristics of the soma:

Vb(t) = (soma resting potential) + (input perturbation)

= (soma resting potential) + (soma response⊗ PSPs)

= V rest
b + (soma response)⊗ (excitatory and inhibitory voltage inputs)

= V rest
b + Lb ⊗ [Eb(t) + Ib(t)]

= V rest
b +

∫ t

0

Lb(t− t′)[Eb(t′) + Ib(t
′)]dt′

(3.10)

The excitatory and inhibitory voltage inputs read

Eb(t) = ρeψeb(t)Φeb(t), (ρe > 0) (3.11a)

Ib(t) = ρiψib(t)Φib(t), (ρi < 0) (3.11b)

where

ψab(t) =
V rev
a − Vb(t)
V rev
a − V rest

b

(3.12)

is a dimensionless weighting factor to capture the dendritic response sensitivity to reversal

potential for either excitatory (AMPA) receptors or inhibitory (GABA) receptors. In the

present work, we take V rev
e = 0 mV for AMPA (excitatory) receptors, and V rev

i = −70

mV for GABA (inhibitory) receptors.

The soma response is represented as:

Lb =
1

τb
e−t/τb (3.13)

where τb is the time-constant that gives the decay time for the cell to relax back to its

resting voltage. τb depends on the resistance Rm and capacitance Cm of the membrane:

τ = RmCm (3.14)

By taking the derivative2 of Eq. (3.10), we obtain

τb
dVb
dt

= −(Vb(t)− V rest
b ) + Eb(t) + Ib(t)

= V rest
b − Vb(t) + Eb(t) + Ib(t)

(3.15)

Dividing both sides of Eq. (3.15) by the membrane resistance Rm:

τb
Rm

dVb
dt

=
V rest
b − Vb
Rm

+
Eb + Ib
Rm

(3.16)

Note that (Eb + Ib)/Rm carries the unit of current, and thus is the chemical synaptic

input current Isyn generated by the action potentials incident at the dendrite. Considering

Eq. (3.14), we re-arrange Eq. (3.16) as:

Cm
dVb
dt

=
V rest
b − Vb
Rm

+ Isyn (3.17)

2For detailed calculation see Appendix B.2
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Soma input from electrical synapses

In addition to chemical synapses, gap-junctions are clusters of protein channels that con-

nect interiors of adjacent neurons, allowing direct exchange of ions and small molecules.

The gap-junction diffusive current is modelled as (for details of derivation, see [118]):

Igap =
a

R
∇2Vb (3.18)

with a being the area of the Fukuda-cell and R being the gap-junction resistance [118].

Including Igap, Eq. (3.17) becomes:

Cm
∂Vb
∂t

=
V rest
b − Vb
Rm

+ Isyn + Igap (3.19)

Multiplying both sides by Rm yields:

τb
dV

dt
= V rest

b − Vb + IsynRm +Dbb∇2V

= V rest
b − Vb + (Eb + Ib) +Dbb∇2V

(3.20)

with Dbb = aRm/R the effective diffusion constant [cm2].

Consequently, the soma voltage changes due to chemical synaptic inputs and the gap-

junction diffusion results in the following equation:

τb
∂Vb
∂t

= V rest
b − Vb + ρeψebΦeb + ρiψibΦib︸ ︷︷ ︸

chemical synapses

+ D1,2∇2Vb︸ ︷︷ ︸
electrical synapses

(3.21)

We write Dbb as the diffusive-coupling strength between electrically adjoined e→ e, i→ i

neuron pairs. To simplify the notation, we write (D1, D2) ≡ (Dee, Dii).

Symbol definitions for the soma voltage terms are shown in Table 3.3.

Table 3.3: Symbol definition for the soma equations

Symbols Description Value Unit

τe,i neuron time constant 0.04, 0.04 s
V rev
e,i reversal potential at dendrite 0, -70 mV

V rest
e,i neuron resting potential -64, -64 mV

ρe,i excitatory, inhibitory synaptic gain 1.00× 10−3, −1.05× 10−3 mV s
D2 i→ i gap-junction diffusive coupling strength 0–1.0 cm2

D1 e→ e gap-junction diffusive coupling strength D2/100 cm2

3.1.4 Summary

To summarise, the cortical model consists of three parts:

Cortico-cortical equations[(
∂

∂t
+ vΛeb

)2

− v2∇2

]
φαeb = (vΛeb)

2Qe, b = e, i
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Intra-cortical equations(
∂

∂t
+ γe

)2

Φeb = [Nα
ebφ

α
eb +Nβ

ebQe + φsceb]γ
2
e(

∂

∂t
+ γi

)2

Φib = Nβ
ibQiγ

2
i

Soma equations

τb
∂Vb
∂t

= V rest
b − Vb + (ρeψebΦeb + ρiψibΦib) +Dbb∇2Vb

This model was first proposed in Physics Review E 2007 by Steyn-Ross et al. (see

[118]). Hereafter, we refer to it as the SR2007 model of the cortex.

Later, by modifying the SR2007 model, Steyn-Ross et al. developed “slow-”and “fast-

soma” limits to model brain activation patterns for the default and cognitive states re-

spectively [120]. The cortical model for the “slow-soma” limit is basically the same as the

SR2007 model, except that the dendrite response Eq. (3.6) is replaced by a biexponential

function:

Hab(t) =
αabβab
βab − αab

(e−αabt − e−βabt) (3.22)

Thus the intra-cortical equation for the “slow-soma” limit changes to:(
∂

∂t
+ αab

)(
∂

∂t
+ βab

)
Φab(t) = αabβabMab(t) (3.23)

The other equations for the “slow-soma” model remain the same. For the “fast-soma”

limit, we assumed that the soma voltage changes on a time-scale similar to that of dendritic

integration, which is the fact that the input flux M is integrated at the dendrite, then

modulated by the reversal function Eq. (3.12):

Φab = Hab(t)⊗ [ψab(t) ·Mab(t)], (3.24)

leading to two fast-soma differential equations for the soma voltage,

τb
∂Vb
∂t

= V rest
b − Vb + (ρeΦeb + ρiΦib) +Dbb∇2Vb (3.25)

For convenient reference, we refer to the slow-soma model as SR2009s and the fast-

soma model as SR2009f (both reported in NeuroImage 2009 by Steyn-Ross et al.). The

SR2009s and the previously introduced SR2007 models both describe the slow-soma limit.

The subtle difference between them are detailed in Table 3.4.
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Table 3.4: Referenced Waikato cortical models

Slow-soma limit Fast-soma limit

SR2007 model [118] SR2009s model [120] SR2009f model [120]

Dendritic response H alpha-function biexponential function biexponential function
Dendritic flux Hα,bi ⊗ (input flux) Hbi ⊗ (ψ· input flux)

The major difference between slow- and fast-soma models is the order of the convolu-

tion:

• The slow-soma limit allows a slow soma voltage feedback from soma to dendrite,

thus the weighting factor ψab is applied after the input flux Mab has been integrated

at the dendrite to give the dendritic flux Φab:

Φab = (dendrite response)⊗ (input flux)

= Hb(t)⊗Mab(t)

τb
∂Vb
∂t

= V rest
b − Vb + (ρeψebΦeb + ρiψibΦib) +Dbb∇2Vb

• The fast-soma limit allows instantaneous feedback from soma voltage onto dendrite

reversal potential (see Eqs. (3.24, 3.25)), thus the weighting factor ψ is applied

directly to the input flux M , with the product being integrated at the dendrite.

The comparison of slow- and fast-soma limits are detailed in Table C.1.

In the next section, we will show that this simple alteration of the order of convolution

gives rise to dramatic divergence of cortical dynamics.

3.2 Cortical stability

3.2.1 Cortical stability of SR2007 model

Before exploring the full two-dimensional dynamics of the model, it is instructive to

calculate the homogeneous steady states of the model. To locate the steady states for

the cortical model, we set all temporal and spatial derivatives to zero, and remove the

noise source φsc
eb. Then we compute numerically the steady-state membrane voltage V o

e

and firing rates Qo
e of the excitatory neural population as a function of subcortical drive

s.

The upper left panel of Fig. 3.5 shows the distribution of V o
e equilibrium values as

a function of subcortical drive s. Positions M and N, respectively locate the upper and

lower turning points of the S-shape distribution, identifies the region of multiple steady-

states, 0.2 ≤ s ≤ 0.3, where the noiseless homogeneous cortical model can either reside

at low-firing quiescent state (below N) or at high-firing activated state (above M).

By examining the effect of gap-junction diffusion on the cortical stability at different

subcortical drives (plots A to G in Fig. 3.5), we find:
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Figure 3.5: [Upper left] Distribution of equilibrium states for the homogeneous model
cortex as a function of the subcortical drive. The distribution curve forms an S-shape
where two turning points M and N demarcate a range (0.2 ≤ s ≤ 0.3) of multiple steady
states belonging to three branches: the high-firing activated state (above M, top branch);
the low-firing quiescent state (below N, bottom branch) and the unstable middle branch
(between M and N). Plots A to G are eigenvalue dispersion (real parts only) curves for
representative points from the steady-state distribution: A (s = 0.05), B (s = 0.2) and
C (s = 0.25) from the lower branch; D (s = 0.25) from the midbranch; E (s = 0.25),
F (s = 0.3) and G (s = 0.5) from the top branch. At each steady state, we examined
the effect of gap-junction strength [cm2] on its stability: (D1, D2) = (0, 0) (no diffusion,
dash-dot curve); (D1, D2) = (0.006, 0.6) (weak diffusion, solid cruve); (D1, D2) = (0.03,
3) (strong diffusion, dashed curve). (Figure modified from [118].)

• The strong-, weak- and zero-diffusion curves converge at q = 0, i.e., the whole-

of-cortex with “infinite wavelength”. Inspecting plots A to C, the equilibria of the

homogenous cortex is becoming less stable (real part α of the dominant eigenvalue is

approaching zero at q = 0). At D, the midbranch, the homogenous cortex becomes

unstable (α > 0). When the equilibria is moving away from point M along the

top branch (plots E, F and G), the homogenous cortex is becoming more and more

stable (α is turning to be more negative at q = 0).

• Strong gap-junction diffusion (D2 = 3) leads to an instability at a nonzero wavenum-

ber on all branches. In contrast, closure of the gap-junction (D2 = 0) predicts that

the cortex is likely to be stable, and this stability becomes greater with increasing

wave numbers.

• For the weak gap-junction diffusion (D2 = 0.6) case, the stability of the cortical

equilibria follows the same trend as the homogeneous cortex: The instability emerges

in favour of a band of non-zero wavenumbers when the steady state gets closer to

the lower turning point N, and dies away when the steady state moves away from

the region of multiple steady states towards the high-firing branch. The midbranch

equilibria D is unstable within a range of wavenumbers.
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• Plots C and D indicate that increases in the inhibitory diffusion increase the range

of spatial frequencies that can destabilise the homogeneous equilibrium.

From the above observations, we can conclude a general trend that for the SR2007

model, stronger inhibitory diffusion leads to greater instability. We also find that in the

multiroot region (0.2 ≤ s ≤ 0.3), a Turing instability can be precipitated by rather smaller

values of inhibitory diffusion. For example in our predictions, weak inhibitory diffusion

D2 = 0.6 is sufficient to trigger a Turing instability in the multiroot zone, but it is too

weak to provoke an instability when s < 0.2 or s > 0.3.

3.2.2 Cortical stabilities of SR2009s and SR2009f models

In Fig. 3.6, we compare responses of the SR2009s (slow-soma limit) and SR2009f (fast-

soma limits) models to inhibitory diffusion and subcortical excitation. The arrows labelled

with “D2 increasing” and “s increasing” indicate the fact that increasing inhibitory dif-

fusion and subcortical drive provoke contrary cortical instabilities:

• For the SR2009s model, at a fixed subcortical drive, Fig. 3.6(a) shows that stronger

inhibitory diffusion D2 leads to greater Turing instability, while at a fixed inhibitory

diffusion, Fig. 3.6(b) shows that greater subcortical drive s tends to restore the

Turing instability to the homogeneous steady state.

• For the SR2009f model, at a fixed subcortical drive, Fig. 3.6(c) shows stronger

inhibitory diffusion D2 leads to weaker wave instability, while at a fixed inhibitory

diffusion, Fig. 3.6(d) shows greater subcortical drive s tends to boost the wave

instability.

We also note that the SR2009f model is about two orders of magnitude more sensitive

to variations of inhibitory diffusion D2 than is the SR2009s model. Comparing Fig. 3.6(a)

and (c), we see that the SR2009s model reaches the maximum instability (growth rate

∼8 s−1) when D2 = 4 cm2; in contrast, the SR2009f model experiences the maximum

instability when there is no inhibitory diffusion D2 = 0.

In addition, the SR2009s model, modified by replacing the alpha-function in SR2007

model with the biexponential form, is not strictly identical in cortical stability with re-

spect to subcortical drive. In Fig. 3.5, the Turing instability is enhanced with increasing

subcortical drive until it reaches the midbranch root D, then the Turing instability is

suppressed with future increases in subcortical drive. For the SR2009s and SR2009f mod-

els, we used another setting of cortical parameters proposed by Rennie et al [100] in

order to compare performance of different models (full parameter settings for SR2009s

and SR2009f models are listed in [120]). The setting of model parameters is considered

to be the major factor for altered stabilities of cortical homogeneous steady-states.
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Figure 3.6: SR2009s (slow-soma limit) dispersion curve at the left column for (a) in-
creasing inhibitory diffusion D2 with fixed subcortical drive s = 0.1 and (b) increasing
subcortical drive s with fixed excitatory and inhibitory diffusions (D1, D2) = (0.025, 2.5)
cm2. SR2009f (fast-soma limit) dispersion curve at the right column for (c) increasing
inhibitory diffusion D2 with fixed subcortical drive s = 0.1 and (d) increasing subcortical
tone s with fixed excitatory and inhibitory diffusions (D1, D2) = (0.0005, 0.05) cm2. The
SR2009s model predicts a temporally stable Turing instability, and the SR2009f predicts
a ∼30 Hz gamma wave instability. (Figure reproduced from [120].)

3.3 Cortical simulations

3.3.1 Cortical simulations of SR2007 model

In Sec. 3.2.1, we applied linear stability analysis (LSA) to the cortical steady-states (as a

function of subcortical drive), and predicted that the Turing instability could be triggered

with rather smaller inhibitory diffusion in the multiroot region (0.2 ≤ s ≤ 0.3, see Fig.

3.5) or a sufficiently large diffusion in the single-root region. In Table 3.5, we show LSA

predictions at three selected points sampling different regions from the steady-state curve

in Fig. 3.5.

In our cortical simulations, the substrate was a 100×100 square grid, of spatial reso-

lution ∼0.25 cm/grid-point3, joined at the edge to provide toroidal boundaries. We used

a forward-time, centred-space Euler algorithm custom-written in Matlab4. The basic

coding principles are the same as for the Brusselator simulation in Sec. 2.2.1. We used

3The spatial resolution can be increased by increasing the grid density or decreasing the side length.
Higher resolution provides more pattern details, but lowers the simulation speed. The resolution setting
does not affect pattern dynamics.

4Simulation codes were written by A/Prof. Alistair Steyn-Ross. The complete codes, plus README
files and movies of cortical dynamics, are available from the web site:
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specific pairs of steady state and inhibitory diffusion D2 (see Table 3.5) to test the LSA

predictions. We find that simulated patterns in Fig. 3.7 are in good agreement with LSA

predictions in Table 3.5. In Fig. 3.7, by scanning the first column, we can see that under

the weak inhibitory diffusion, the midbranch homogeneous equilibrium D has evolved to

a Turing pattern; in contrast, simulations commencing at homogeneous equilibria A or G

show spatially unstructured patterns. Scanning from left to right on the first and third

rows, the top-branch equilibrium G is found to be less sensitive to inhibitory diffusion

with respect to emergence of Turing instability; for A, D2 = 1.2 is sufficient to trigger

Turing patterns; while for G, this value is too weak but should be increased to 1.3.

Table 3.5: Turing instability predictions for selected steady states (SS) in Fig. 3.5. ×:
decayed Turing pattern;

√
: emerged Turing pattern

H
HHH

HHSS
D2 0.6 1.2 1.3

A × √ √

D
√ √ √

G × × √

Figure 3.7: Cortical patterns of SR2007 model for three steady-states (vertical axis) and
three values of inhibitory diffusion D2 (horizontal axis). The subcortical drives for A, D
and G are s = 0.01, 0.25, 0.5 respectively.

3.3.2 Cortical simulations of SR2009s and SR2009f models

Linear stability predictions for the SR2009s model in Figs. 3.6(a) and (b) reveal that

increases in inhibitory diffusion and in subcortical drive act in contrary directions with

http://www2.phys.waikato.ac.nz/asr/
A Simulink representation of the cortical model is demonstrated in Appendix D.4
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respect to maintaining or breaking the symmetry of the homogeneous cortical sheet. This

counteracting tendency is illustrated in Fig. 3.8. A vertical scan from top to bottom

shows that for a constant subcortical drive, strengthening the inhibitory diffusion leads

to enhanced Turing patterns. In contrast, when the inhibitory diffusion is held constant

(e.g., D2 = 3), a horizontal scan from left to right shows that increasing the subcortical

drive intends to wash out the Turing formation. However, when the inhibitory diffusion

is sufficiently strong (e.g., D2 = 5), the LSA predicted Turing instability more than

compensates the pattern-suppression effect of large subcortical drive. Thus, in Fig. 3.8 we

see that D2 > 3 induced Turing formation has the resistance to washout from subcortical

drive s > 0.1.

For the SR2009f model, Figs. 3.6(c) and (d) indicate reversed stability tendencies to

that of the SR2009s model. Comparing the top-right corner of Figs. 3.8 and 3.9, the

SR2009f model shows clear patterning at zero inhibitory diffusion and strong subcortical

drive; but for the SR2009s case the strongest patterns are at the bottom-left corner (large

inhibitory diffusion and weak subcortical drive). In Fig. 3.9, a top to bottom scan shows

the pattern contrast will gradually blur and eventually disappear with moderate inhibitory

diffusion. The reason can be found in Fig. 3.6(c): Increasing inhibitory diffusion D2 will

diminish the wave instability, thus there will be fewer unstable wavenumbers to support

a spatial structure.

3.4 Cortical pattens at a codimension-2 Turing-Hopf
point

Until now, we have reviewed cortical dynamics with respect to a single bifurcation: Turing

bifurcation for the SR2007 and SR2009s models; wave instability for the SR2009f model.

We have showed the crucial importance of the inhibitory diffusion D2 on cortical stability.

For SR2007 and SR2009s models, the value of D2 is directly related to the occurrence

of Turing patterns. Therefore, inhibitory diffusion D2 is considered to be a bifurcation

control parameter for the Turing instability.

The Turing spatial instability induced by strong inhibitory diffusion can be suppressed

by closing the gap-junctions (i.e., by setting D2 = 0). Alternatively, we can induce a low-

frequency Hopf temporal instability with a reduction in γi (equivalent to rate-constants

βie and βii), the rate-constant for the inhibitory post-synaptic potential. Hence, γi is

determined to be a bifurcation control parameter for the Hopf instability.

Steyn-Ross et al. [117] had found that temporally stable Turing patterns could be

made to oscillate in place at a low Hopf frequency, which is very similar to the Brusselator

Turing-Hopf (TH) mode seen in Sec. 2.2.1. Such a cortical TH mode can be induced by
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Figure 3.8: Patterns of SR2009s (slow-soma limit) model for five values of inhibitory
diffusion D2 (vertical axis) and four values of subcortical drive s (horizontal axis). Cortical
sheet is initialised at the homogeneous steady state, stimulated by one-off spatiotempo-
ral white noise, and iterated for 5 s. Colour indicates the activation of cortical tissue:
[red] high-firing activated, [blue] low-firing suppressed. Cortical sheet has side length
10 cm containing 100×100 grid-points (spatial resolution = 1 mm/grid-point). (Figure
reproduced from [111].)
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Figure 3.9: Patterns of SR2009f (fast-soma limit) for five values of inhibitory diffusion
D2 (vertical axis) and four values of subcortical drive s (horizontal axis). See Fig. 3.8 for
simulation details. (Figure reproduced from [111].)

a coordinated tuning of both the Turing control parameter D2 and the Hopf control

parameter γi, to place the cortex at a CTHP.

Let us relate these ideas to Fig. 3.5, the S-bend homogeneous equilibriums of SR2007

model. We found for a subcortical drive s = 0.2989 that is located at the right edge of

the multiroot region, a reduction of γi below a critical value ∼30.94 s−1 is sufficient to

produce a complex dominant eigenvalue at zero wavenumber whose real part is positive;
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thus suggesting a global Hopf oscillation. In Fig. 3.10(d), setting γi = 29.45 s−1 predicts a

∼0.95 Hz Hopf oscillation. Independently, a Turing instability is boosted with moderately

strong inhibitory diffusion D2 = 1 cm2 above its critical value 0.9066 cm2. Similar to the

Brusselator TH mode in Fig. 2.4, cortical TH interactions lead to unpredicted beating

patterns revealed in the time series recorded in Fig. 3.10(b) for a single pixel on the cortical

grid. The Fourier spectrum shows two frequency components whose difference matches

with the ultra-slow envelope frequency, which is likely to be the weakly-damped resonance

at ∼0.152 Hz. Clearly, the frequency-splitting and its associated ultra-slow oscillation

arise from the the nonlinear nature of the TH interaction, since neither phenomenon is

predicted by LSA.

Figure 3.10: With strong gap-junction diffusion D2 and carefully chosen inhibitory
rate-constant γi, eigenvalue dispersion curve (d) predicts a mixed pattern of Turing and
Hopf instabilities. α and ω are the real and imaginary part of the dominant eigenvalue
respectively. Through a 400-s simulation, the Fourier spectrum (c) indicates a 0.15-Hz
ultra-slow oscillation of the beating pattern (b) zoomed from (a) Qe time evolution of
the point at position (1, 30) shown in (e) 25-×25-cm grid 3-D plot. (Figure modified
from [117].)

3.5 Discussion

In this chapter, we have discussed the gap-junction mediated mean-field model of the

human cortex in a slow-soma limit (SR2007, SR2009s models). Subtle modifications to the

temporal convolutions of the slow-soma model leads to a distinct fast-soma limit (SR2009f
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model) of the cortex. We consider that the SR2007 and SR2009s models share the same

feature of the slow-soma pattern dynamics: LSA and numerical simulations reveal that

they exhibit spatial structured Turing and weak Hopf instabilities. In contrast, the fast-

soma model exhibits a wave instability oscillating at a low gamma frequency. What are

the biophysical implications for these patterns?

The slow-soma models suggest that the strong gap-junction diffusivity provides a nat-

ural mechanism for Turing bifurcation that leads to the spontaneous formation of Turing

patterns of high and low neural activity that spread over the whole cortex, allowing multi-

ple, spatially separated cortical regions to become activated simultaneously. It is possible

that such spatial synchrony explains the cognition “binding” question proposed at the

beginning of this chapter. However, cognition is thought to involve spatiotemporal cor-

tical dynamics, thus the temporally stable Turing patterns may not match the cognitive

cortical state.

At the vicinity of a Turing instability, a weak Hopf instability can be induced in parallel

by prolonging the timing of delivery of inhibition at chemical synapses to destabilise the

temporal stability of Turing patterns, permitting 1.5-Hz Hopf oscillations with the spatial

structure maintained. Our numerical simulations revealed a beating pattern, unpredicted

by LSA, with ultra-slow envelope frequency ∼0.152 Hz. We posit that the interacting low-

frequency Hopf and Turing instabilities may form the substrate for the cognitive state,

namely, the “default” background state for the non-cognitive brain. These slow patterned

oscillations may relate to very slow (≤0.1 Hz) fluctuations in BOLD (blood-oxygen-level

dependent) signals detected using fMRI (functional magnetic resonance imaging) of re-

laxed, non-tasked human brains [30, 32]. This default state will be suppressed with ele-

vated levels of subcortical drive during goal-directed tasks [16,35,38,63,99].

The work by Rodriguez et al. [103] and Varela et al. [130] demonstrated that a long-

range synchrony associated with gamma-band activity was observed during cognition. In

spite of a comprehensive scan in parameter space, we found no evidence that the slow-

soma models can generate gamma-band activity. A reordering of the convolution in which

the reversal potential weighting was applied on the dendritic integration before it comes

into the soma body (instant feedback or “fast-soma” limit) allows the cortical model to

support gamma oscillations, indicating that the frequency of cortically-generated rhythms

is critically dependent on the nature and timeliness of the feedback from soma to dendrite.

Our grid simulations show that these gamma oscillations are coherent over distance of

several centimetres that provides a possible basis of “instantaneous” action-at-a-distance

normally associated with cognition [106].

We see that elevated subcortical drive induces a transition from non-cognitive to cog-

nitive brain state. The fast-soma model predicts that cortical cognitive patterns will be

washed out with strong inhibitory diffusion D2 by increasing gap-junction strength. So,

what is the clinical relevance for the sensitivity of fast-soma patterns on the gap-junction
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diffusion? Steyn-Ross et al. argue that unusual gap-junction strength in the brain might

be relevant to the so-called “dopamine hypothesis” for schizophrenia disease. The neu-

romodulator dopamine, known as a potent gap-junction blocker [39], is found in excess

in schizophrenia patients [128]. For the schizophrenic brain, coherent gamma activity

is predicted to emerge by lowering inhibitory diffusion (equivalent to applying excess

dopamine) in the fast-soma model. But these spindly fast-soma patterns (see upper-right

panel of Fig. 3.9) are observed to be less spatially generalised than those observed in a

normal brain with lower dopamine levels and therefore stronger inhibitory diffusion (e.g.,

bottom-right panel of Fig. 3.8). This prediction is consistent with diminished long-range

synchrony seen in the EEG signals recorded from schizophrenics [129].

In the next chapter, we will introduce a multiple-scale expansion, a nonlinear perturba-

tion method, to derive the pattern-forming system’s amplitude equations for the analysis

of its near-bifurcation behaviours, e.g., predicting the structures of Turing patterns and

the envelope frequency of the cortical TH pattern.



Chapter 4

Derivation of the amplitude equation

for reaction–diffusion systems via

computer-aided multiple-scale

expansion

The amplitude equation describes a reduced form of a reaction–diffusion system yet still

retains its essential dynamical features. By approximating the analytic solution, the

amplitude equation allows examination of mode instability when the system is near a

bifurcation point. Multiple-scale expansion (MSE) offers a straightforward way to sys-

tematically derive the amplitude equations. The method expresses the single independent

variable as an asymptotic power series consisting of newly introduced independent vari-

ables with differing time and space scales. The amplitude equations are then formulated

under the solvability conditions which remove secular terms.

To our knowledge, there is little information in the research literature that explain how

the exhaustive workflow of MSE is applied to a reaction–diffusion system. In this chapter,

detailed mathematical operations underpinning the MSE are elucidated, and the practical

ways of encoding these operations using Maple are discussed. A semi-automated MSE

computer algorithm Amp solving is presented for deriving the amplitude equations in this

research. Amp solving has been applied to the classical Brusselator model for the deriva-

tion of amplitude equations when the system is in the vicinity of a Turing codimension-1

and a Turing–Hopf codimension-2 bifurcation points. Full open-source Amp solving codes

for the derivation are comprehensively demonstrated and available to the public domain.

4.1 Introduction

The reaction–diffusion system is a mathematical representation of the interaction between

two morphogens [127] competitively reacting in time and spreading in space, which could

give rise to a symmetry-breaking transition bifurcating from a homogeneous to patterned

state, either stationary in a spatial (Turing) structure or in a temporal (Hopf) oscillation
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[22]. These spatiotemporal instabilities are believed to be relevant to patterns widely

observed in nature: animal coats (e.g., zebra stripes, leopard spots and fish spirals),

chemicals in a gel [44], laser light in a cavity [9], charges on the surface of a semiconductor

[7], ecological balance between two species [36] and even neuronal activations in human

cortex [121].

The remarkably similar pattern formation observed in such diverse systems can of-

ten be understood as a consequence of a universal form of the amplitude equation, a

near-bifurcation description highlighting the dynamics of the most unstable mode that is

relevant to the emergent pattern. The analysis of the amplitude equation allows us to

determine the stability and selection of the spatial pattern arising beyond the bifurcation

point, thus enabling precise control of the pattern in its spatial texture and temporal

evolution [34,92,93].

The derivation of the amplitude equation is a procedure that separates pattern modes

into their fast- and slowly-evolving components. Approaching an instability (before a

bifurcation occurs), the real part of the dominant eigenvalue1 for a system tends to vanish,

resulting in slowed recovery to perturbations (critical slowing down) [12]. Such slow

modulations of the system can be extracted via a perturbation expansion, over multiple

temporal and spatial scales, in a small parameter ε characterising the distance to the

threshold (bifurcation point). This perturbation method is referred to as multiple-scale

expansion (MSE), by which the coefficients for the amplitude equation are obtained based

on the solvability condition of the resulting linear differential equations at different orders

of ε (see e.g. [137]).

Over the last decade, MSE has been extensively used to derive the amplitude equa-

tion for a wide range of systems: nonlinear wave propagation [159]; planar beam model

[69]; double pendulum system [156]; van der Pol–Duffing oscillator [74]; Klein–Gordon

model [91]; Swift–Hohenberg model [59]; and especially chemical reaction–diffusion sys-

tems [22]. However, to our knowledge few papers give precise details on the derivation of

amplitude equations. For example, the pattern dynamics of the well-known Brusselator

model are discussed in the bifurcation literatures [24, 92, 154] with the aid of the ampli-

tude equation, but with few clues as to its derivation. Although the authors of these

works referred other literatures (e.g., [37, 56, 62]) for the amplitude equation derivation,

the sophisticated mathematical language used in these references limits MSE uptake by

non-mathematicians.

Besides, despite that fact that the MSE strategy is well formulated, its manipulation

involves tedious analytical calculations. That is, the amplitude equation derivation via a

MSE is difficult, involving a long sequence of computations by hand. This provides the

motivation to convert the hand work to a systematic procedure with machine assistance.

1The eigenvalue of the Jacobian matrix that has the largest real part.



4.1 Introduction 43

A few attempts for MSE programming have been made in the last decades: Pismen

et al. [97] outlined a computer software written in Mathematica for computer-assisted

derivation of the amplitude equation valid in the vicinity of a bifurcation point. Later, Pis-

men et al. showed a more sophisticated illustration of their Mathematica software [96].

However, the proposed software is not available to the public. Yu has published a series

of works on the analysis of a double Hopf bifurcation using MSE in the Maple program-

ming environment [156–158]. Although the source code of Yu’s work is available [158],

the lack of explanation and its specialised application (double Hopf bifurcation) restrict

its extension to other bifurcation cases. Khanin et al. developed another Mathematica

package with the implementation of MSE on generalising amplitude equations for a wide

range of bifurcations [55]. To our knowledge, the software by Khanin et al. may be the

most promising work regarding bifurcation analysis. Unfortunately the Mathematica

codes are not given in their paper.

The difficulty of locating suitable software for the amplitude equation derivation was

the initial motivation for developing our own software. Furthermore, there are limited

resources describing the full implementation of MSE and necessary mathematical details

for fully understanding the derivation of the amplitude equation. Consequently, in this

chapter we aim to detail our customised (semi-automated) MSE algorithm Amp solving

encoded using Maple. To our knowledge, it is the first time that the application of MSE

on reaction–diffusion systems has been carefully explained, systematically programmed,

and released into the public domain.

The chapter is organised as follows. We start, for pedagogical reasons, with a brief

demonstration of the amplitude equation derivation for the well-known Brusselator model

at a Turing bifurcation point (Sec. 4.2). The necessary mathematical operations of the

MSE is outlined for deriving the amplitude equation for a stripe mode, the basic element

of the hexagonal Turing patterns.

In Sec. 4.3, we extract the basic MSE ideas and expand them for the amplitude

equation derivation for a general reaction–diffusion system at a specific bifurcation point

(either Turing, Hopf or mixed Turing–Hopf).

In Sec. 4.4, we briefly introduce our customised MSE algorithm Amp solving. We

elucidate the algorithm logic and core mechanisms for automating the MSE manipulations.

A summary of this chapter is made in Sec. 4.5.

We include tutorial guidance and example Maple codes in the three appendices.

Appendix E provides a short Maple tutorial manifesting our coding philosophies in

Amp solving. Appendixes F and G deliver comprehensively explained Amp solving codes

for the derivation of the Brusselator amplitude equations, respectively, for a full hexagonal

Turing and a Turing–Hopf mixed modes. These examples give step-by-step guidance

toward realisation of efficient MSE calculation in the Maple environment. Appendix



44 Computerised derivation of the amplitude equations

H supplies a quickcheck table summarising mathematical symbols and their expressions

used in Amp solving.

4.2 Derivation of Brusselator amplitude equation for
the stripes mode

The Brusselator model is represented by a set of coupled differential equations describing

the spatially and temporally varying chemical concentrations X (the activator) and Y

(the inhibitor) [92]:

∂X

∂t
= A− (B + 1)X +X2Y +DX∇2

rX

∂Y

∂t
= BX −X2Y +DY∇2

rY

(4.1)

where DX,Y are the diffusion constants setting the pace of diffusion for chemicals X and

Y respectively. A and B are constants. t is time and r is space. Following Nicolis and

Prigogine’s and other researchers’ work [24,82,93,94,151], we choose B as the bifurcation

control parameter.

Close to the Turing bifurcation point B ≡ BT
c = (1 + Aη)2 (where η =

√
DX/DY ),

the model variables u = [X, Y ]Transpose can be expressed in a nonlinear expansion δu in

the deviation from the homogeneous steady-state u0 = [X0, Y0]Transpose:

u = u0 + εu1 + ε2u2 + ε3u3 + . . .︸ ︷︷ ︸
δu

=
k∑

m=0

εmum (4.2)

which is equivalent to[
X

Y

]
=

[
X0

Y0

]
+ ε

[
x1

y1

]
+ ε2

[
x2

y2

]
+ ε3

[
x3

y3

]
=

[
X0

Y0

]
+

k∑
p=1

εp

[
xp

yp

]
(4.3)

The original model variablesX and Y depend on (t, r), while the expanded model variables

depend on the multiply scaled temporal and spatial arguments, e.g.,

u1 ≡ u1(T0, T1, T2, . . . Tk;R0, R1, R2, . . . , Rk),

u2 ≡ u2(T0, T1, T2, . . . Tk;R0, R1, R2, . . . , Rk),

u3 ≡ u3(T0, T1, T2, . . . Tk;R0, R1, R2, . . . , Rk)

in which Tk = εkt and Rk = εkr.

The small parameter ε relates the distance to the instability via the expansion:

B = B0 + εB1 + ε2B2 + ε3B3 + . . . =
k∑

m=0

εmBm, B0 = BT
c (4.4)
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According to the chain rule of the total derivative, the temporal derivative on expanded

variables has the expression:

∂

∂t
δu = ε

[
∂u1

∂T0

dT0

dt
+
∂u1

∂T1

dT1

dt
+
∂u1

∂T2

dT2

dt
+ . . .+

∂u1

∂Tk

dTk
dt

]
+

ε2
[
∂u2

∂T0

dT0

dt
+
∂u2

∂T1

dT1

dt
+
∂u2

∂T2

dT2

dt
+ . . .+

∂u2

∂Tk

dTk
dt

]
+

ε3
[
∂u3

∂T0

dT0

dt
+
∂u3

∂T1

dT1

dt
+
∂u3

∂T2

dT2

dt
+ . . .+

∂u3

∂Tk

dTk
dt

]
+ . . .

= ε

[
∂u1

∂T0

+ ε
∂u1

∂T1

+ ε2
∂u1

∂T2

+ . . .+ εk
∂u1

∂Tk

]
+ ε2

[
∂u2

∂T0

+ ε
∂u2

∂T1

+ ε2
∂u2

∂T2

+ . . .+ εk
∂u2

∂Tk

]
+ ε3

[
∂u3

∂T0

+ ε
∂u3

∂T1

+ ε2
∂u3

∂T2

+ . . .+ εk
∂u3

∂Tk

]
+ . . .

= ε
∂u1

∂T0

+ ε2(
∂u1

∂T1

+
∂u2

∂T0

) + ε3(
∂u1

∂T2

+
∂u2

∂T1

+
∂u3

∂T0

) +O(ε4)

(4.5)

which can be simplified to the expression:

∂

∂t

( k∑
p=1

εpup

)
=

k∑
p=1

(
εp

k∑
m=0

∂up
∂Tm

dTm
dt

)
(4.6)

One may write the temporal derivative operator ∂/∂t as:

∂

∂t
=

∂

∂T0

+ ε
∂

∂T1

+ ε2
∂

∂T2

+ . . . =
k∑

m=0

εm
∂

∂Tm
(4.7)

Similarly, the Laplacian operation may be expanded in the same manner:

∇ =
k∑

m=0

εm∇Rm (4.8)

By introducing the above expansions into the original model equations, one can collect

terms with the same order of ε to construct a series of order equations.

The zeroth-order terms recover the uniform reference state

u0 =

[
X0

Y0

]
(4.9)

The order-1 equation recovers the linear stability analysis:(
∂

∂T0

− Lc

)
u1 = 0 (4.10)

where Lc is the Jacobian matrix of the Brusselator model:

Lc =

[
(B0 − 1)−DXq

2 A2

−B −A2 −DY q
2

]
(4.11)
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Eq. (4.10) has a first-guess solution of a standing-wave (structure ansatz of the stripes

mode) related to the Turing pattern:

u1 = ATe
i~qc·~rRT + c.c. (4.12)

where AT describes slow modulations of the Turing pattern with respect to slow space

and time arguments, in short we call it Turing amplitude; qc is the critical wavenumber

associated with the zero eigenvalue (where a Turing bifurcation occurs). RT is the critical

right eigenvector corresponding to the zero dominant eigenvalue of Lc. c.c. stands for the

complex conjugate pairs.

By collecting terms of order ε2, one obtains the order-2 equation:(
∂

∂T0

− Lc

)
u2 = I2 (4.13)

where

I2 = − ∂

∂T1

[
x1

y1

]
+

[
B1 + 2DX∇R0∇R1 0

−B1 −2DY∇R0∇R1

][
x1

y1

]

+

(
B0

A
x2

1 + 2Ax1y1

)[
1

−1

] (4.14)

To guarantee a solution of Eq. (4.13), the solvability condition (Fredholm alternative

[40]) states that a matrix equation Lv = b has a nontrivial solution if and only if the

inner product 〈w|b〉 = 0, where w is the left nullspace (in row vectors) of L, i.e., wL = 0.

If w is complex, the inner product can be expressed as:

〈w|b〉 =
1

V

∫
V

w∗b dµ (4.15)

where w∗ is the complex conjugate of w; V is the space of the function L; and µ is the

space variable.

Thus we have the orthogonal condition between the left nullspace of (∂/∂T0−Lc) and

I2:

〈vT|I2〉 = 0 (4.16)

where vT = LTe
i~qc·~r. LT is the critical left eigenvector corresponding to the zero dominant

eigenvalue of Lc. Analogous to Eq. (4.15), the inner product Eq. (4.16) in the 2π/qc-space

is:

〈vT|I2〉 =
qc

2π

∫ 2π
qc

0

vT
∗ · I2 dr = 0 (4.17)

which yields the following constraints:

B1 = 0 (4.18a)

∂

∂T1

AT =
∂

∂T1

A∗T = 0 (4.18b)
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Eq. (4.18b) is the order-2 amplitude equation and indicates that the Turing amplitude

does not depend on the time scale T1. So we should carry on to third order to examine

the dependence of the Turing amplitude on a slower time scale T2. Before doing this, we

will need to solve the order-2 equation.

By substituting constraints Eq. (4.18a) and (4.18b), and the structure ansatz Eq.

(4.12) into the order-2 equation (4.13), one is able to determine the order-2 solution u2:

u2 =

[
x2

y2

]
=

[
c11

c21

]
ei~qc·~r +

[
c12

c22

]
e2i~qc·~r +

[
c13

c23

]
+ c.c. (4.19)

with

c11 +
A

η(1 + A η)
c21 = −

2iqc

√
DXDY

A(1 + A η)
∇R1AT

c12 =
4(1− A2η2)

9A2η
A2

T

c22 = −
(1− A2η2)(1 + 4A η)

A3
A2

T

c13 = 0

c23 = −
2(1− A2η2)

A3
|AT|2

(4.20)

Analogous to the order-2 equation, the order-3 equation has the form:(
∂

∂T0

− Lc

)
u3 = I3 (4.21)

where

I3 =− ∂

∂T1

[
x1

y1

]
− ∂

∂T2

[
x2

y2

]
+

[
B2 +DX∇2

R1
0

−B2 DY∇2
R1

][
x1

y1

]

+

[
2DX∇R0∇R1 0

0 2DY∇R0∇R1

][
x2

y2

]

+

(
2
B0

A
x1x2 + 2A(x1y2 + x2y1) + x2

1y1

)[
1

−1

]
(4.22)

Finally, the solvability condition of the order-3 equation

〈vT|I3〉 = 0 (4.23)

yields the following amplitude equation for the stripes mode:

∂

∂T0

AT = µAT − g|AT|2AT +DTs∇R0AT (4.24)
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with

µ =
1 + Aη

1− η2
(
B −B0

B0

), g =
− 8A3η3 + 5A2η2 + 38Aη − 8

9A3η(1− η2)
, DTs =

4DX(1 + Aη)

B0(1− η2)
(4.25)

Eq. (4.24) describes the slow growth and nonlinear saturation of the amplitude of the

most unstable mode (at the wavenumber qc) near bifurcation threshold. The form of

Eq. (4.24) is generic for all reaction–diffusion systems undergoing a spatial symmetrical

breaking, leading to a stripes mode. This equation governs the spatiotemporal evolution

of the stripes amplitude after a Turing instability.

In the next section, we will describe how the MSE procedures can be applied to a

general case.

4.3 Concepts underpinning multiple-scale expansion

In the previous section, we demonstrated application of MSE to derive the Brusselator

amplitude equation for the stripes mode, the simplest Turing pattern. The MSE approach

for this simple case can be generalised to a multiple dimensional reaction–diffusion system

at a more complicated bifurcation point as follows.

4.3.1 Structure of order equations

The order equations are basic elements of the MSE. After expanding variables and differ-

ential operators in a power series of ε, successive families of order equations are generated

by collecting coefficients with the same power of ε.

• Order-1 equation (
∂

∂T0

− Lc

)
u1 = I1 = 0 (4.26)

where Lc is the Jacobian matrix of the original system at the critical point.

• Order-2 equation (
∂

∂T0

− Lc

)
u2 = I2 = − ∂

∂T1

u1 + F2 (4.27)

F2 is the nonlinear combination of u0 and u1 (e.g., Eq. (4.14)).

• Order-3 equation (
∂

∂T0

− Lc

)
u3 = I3 = − ∂

∂T1

u1 −
∂

∂T2

u2 + F3 (4.28)

F3 is the nonlinear combination of u1 and u2 (e.g., Eq. (4.22)).

The principle for constructing order equations is intuitive: In an order-k equation,

order-k variables are at the LHS, lower orders are sorted at the RHS, e.g., Fk is the

nonlinear combination of expanded variables up to order (k − 1):(
∂

∂T0

− Lc

)
uk = Ik = − ∂

∂T1

u1 −
∂

∂T2

u2 − . . .−
∂

∂T(k−1)

u(k−1) + Fk (4.29)
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4.3.2 Structure ansatz

The structure ansatz describes the pattern mode of interest. In Eq. (4.12), we have shown

an ansatz for the Turing stripes mode. Other commonly used structure ansatzes are:

• Hopf mode

u1
H = AHe

iωctRH + c.c. (4.30)

in which AH is the Hopf mode amplitude for a temporal oscillation at frequency ωc;

RH is the critical right eigenvector corresponding to the critical dominant eigenvalue

that is purely imaginary, namely, λc = iωc.

• Hexagonal mode of the Turing pattern

u1
Hex = AT1e

i ~q1·~rRT + AT2e
i ~q2·~rRT + AT3e

i ~q3·~rRT + c.c. (4.31)

~q1, ~q2 and ~q3 are three equal-length (magnitude is identical to qc in Eq. (4.12)) wave

vectors at 120o to each other (see Fig. 4.1):

q1

q2

q3

120o

Figure 4.1: Superposition of three wave vectors at an angle of 120 degree with each
other to form a hexagonal pattern.

~q1 + ~q2 = −~q3, ~q1 + ~q3 = −~q2, ~q2 + ~q3 = −~q1 (4.32a)

~q1 · ~q2 = ~q1 · ~q3 = ~q2 · ~q3 = q2
ccos(θ), θ = 120◦ (4.32b)

AT1, AT2 and AT3 are complex mode amplitudes.

• Turing–Hopf mode

u1
TH = ATe

i~qc·~rRT + AHe
iωctRH + c.c. (4.33)

Mixed Turing and Hopf modes appear when the system is above a codimension-

2 Turing–Hopf point (CTHP) where the dominant eigenvalue becomes zero at a

non-zero wavenumber and becomes purely imaginary at a zero wavenumber, thus

allowing an oscillatory Turing mode at a low Hopf frequency. The frequency of the

Turing–Hopf modulated pattern envelope is normally smaller than ωc/2π Hz.

As we can see, the Turing–Hopf structure ansatz is a combination of Turing and Hopf

modes. The hexagonal mode ansatz is a summation of three stripes modes oriented at

120o angular separations.

Examples of above mentioned modes are illustrated in Fig. 4.2
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Figure 4.2: Simulations of the Brusselator model to demonstrate its pattern dynam-
ics of Hopf (upper panel), hexagon (mid panel) and Turing–Hopf (lower panel). The
parameter settings for generating these patterns are shown in the figure. A 2D grid-
simulation consisting of a 60 × 60 grid (spatial resolution = 1 cm/grid-point) is utilised
to exhibit the pattern dynamics of the concentration of X, the reactor in Brusselator.
The Hopf simulation demonstrates a time-space strip-chart (left) and time-series of the
centre grid-point (right) for the homogeneous oscillations; the hexagonal simulation shows
the 2D Turing pattern in honeycomb (left) and reentrant honeycomb (right) structures;
the Turing–Hopf simulation reveals a time-space strip-chart (left) and time-series of the
centre grid-point (right) for an oscillatory Turing pattern. Colour of the pattern indicates
the local concentration of the reactant: [red] high concentration, [blue] low concentration.

4.3.3 Solvability condition

In Sec. 4.2, we demonstrated the importance of the solvability condition: The order-

2 solvability condition Eq. (4.16) yields the constraints allowing the order-2 amplitude

equation (i.e., Eq. (4.18b)); and the order-3 solvability condition Eq. (4.23) yields the

desired order-3 amplitude equation.

For an equation in the form:

Luk ≡
(

∂

∂T0

− Lc

)
uk = Ik (4.34)

its solvability condition with respect to each mode is:

• Stripes mode of the Turing pattern

Stripes mode requires an inner product in the 2π/qc spatial space between the left

null space of L and Ik:

〈vT|Ik〉 2π
qc

= 0 (4.35)

where vT = ei~qc·~r LT. LT is the critical left eigenvector associated with the zero

dominant eigenvalue at a Turing bifurcation.
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• Hopf mode

For the Hopf mode, we require an inner product in the 2π/ωc temporal space between

the left null space of L and Ik:

〈vH|Ik〉 2π
ωc

= 0 (4.36)

where vH = eiωct LH. LH is the critical left eigenvector associative with the critical

dominant eigenvalue being purely imaginary at a Hopf bifurcation.

• Hexagonal mode of the Turing pattern

The solvability condition of the hexagonal mode is the repetitive application of the

condition (4.35) on the three oriented stripes modes:

〈vT1|Ik〉 2π
| ~q1|

= 〈vT2|Ik〉 2π
| ~q2|

= 〈vT3|Ik〉 2π
| ~q3|

= 0 (4.37)

where

vT1 = ei ~q1·~r LT, vT2 = ei ~q2·~r LT, vT3 = ei ~q3·~r LT (4.38)

The three inner products in Eq. (4.37) are symmetric with respect to cyclic permu-

tation of their indices.

• Turing–Hopf mode

The solvability condition for the TH mode consists of a pair with the first being the

Turing component (i.e., Eq. (4.35), leading to Turing constraints) and the second

being the Hopf component (i.e., Eq. (4.36), leading to Hopf constraints).

〈vT|Ik〉 2π
qc

= 0 (4.39a)

〈vH|Ik〉 2π
ωc

= 0 (4.39b)

Practically, the solvability condition for a Turing mode is

〈v|Ik〉 2π
qc

=
qc

2π

∫ 2π
qc

0

LT
∗e−i~qc·~r · Ik dr

=
qc

2π

∫ 2π
qc

0

[
(· · · )︸ ︷︷ ︸

secular terms

+(· · · )ei~qc·~r + (· · · )ei2~qc·~r + . . .+ c.c.

]
dr = 0

(4.40)

Provided ∫ 2π
qc

0

ein~qc·~r dr = 0, {n ∈ Z|n 6= 0} (4.41)

the condition (4.40) yields the constraint (· · · ) = 0, in which (· · · ) are called secular

terms, to be eliminated.
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Similarly, the solvability condition for a Hopf mode

〈v|Ik〉 2π
ωc

=
ωc

2π

∫ 2π
ωc

0

LH
∗e−iωct · Ik dt

=
ωc

2π

∫ 2π
ωc

0

[
(· · · )︸ ︷︷ ︸

secular terms

+(· · · )eiωct + (· · · )ei2ωct + . . .+ c.c.

]
dt = 0

(4.42)

leads to constraints (· · · ) = 0, provided∫ 2π
ωc

0

einωcr dt = 0, {n ∈ Z|n 6= 0} (4.43)

The algorithm to locate the secular terms is described in Sec. 4.4.3.

4.3.4 Order-2 pattern matching and order-2 solution

In Sec. 4.2, before operating the order-3 solvability condition Eq. (4.23), we must already

know the explicit form of u2 in I3 (i.e., Eq. (4.22)). In the following, we will introduce a

pattern forming strategy to solve u2.

After substituting the structure ansatz into the order-2 equation, its RHS will become

a linear combination of exponential functions. e.g., by substituting the structure ansatz

Eq. (4.12) into the order-2 equation (4.13), its RHS becomes:

I2 =

[
2DXiqcRT

(1)∇R1AT

−2DY iqcRT
(2)∇R1AT

]
ei~qc·~r+

[
B0/A (ATRT

(1))2 + 2AA2
TRT

(1)RT
(2)

][
1

−1

]
ei2~qc·~r

+

[
2B0/A |AT|2|RT

(1)|2 + 2A|AT|2RT
(1)RT

(2)∗
][

1

−1

]
+ c.c.

(4.44)

which can be read as a pattern2 of exponential functions

I2 = (· · · )ei~qc·~r + (· · · )ei2~qc·~r + (· · · ) + c.c. (4.45)

Thus, the LHS of the order-2 equation (4.13) must follow the same pattern, which deter-

mines the structure of u2 (see Eq. (4.19)).

The exponential pattern of I2 is affected by the choice of u1 (since I2 is a function of

u1); the structure ansatz describes the mode of interest. The exponential patterns of I2

for the proposed structure ansazt in Sec. 4.3.2 and their corresponding u2 structure are

summarised as follows:

• Stripes mode of the Turing pattern

I2
T = (· · · )ei~qc·~r + (· · · )e2i~qc·~r + (· · · ) + c.c. (4.46)

2We need to distinguish the word “pattern” used here for the description of a series of mathematical
expressions (e.g., exponential functions) from the meaning of a spatial structure (e.g., spatial Turing
structure)
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u2
T =


c11

c21

...

cn1

 ei~qc·~r +


c12

c22

...

cn2

 e2i~qc·~r +


c13

c23

...

cn3

+ c.c. (4.47)

• Hopf mode

I2
H = (· · · )eiωct + (· · · )e2iωct + (· · · ) + c.c. (4.48)

u2
H =


c11

c21

...

cn1

 eiωct +


c12

c22

...

cn2

 e2iωct +


c13

c23

...

cn3

+ c.c. (4.49)

• Hexagonal mode of the Turing pattern

I2
Hex =(· · · )e2i ~q1·~r + (· · · )e2i ~q2·~r + (· · · )e2i ~q3·~r+

(· · · )ei(~q1−~q2)·~r + (· · · )ei(~q1−~q3)·~r + (· · · )ei(~q2−~q3)·~r + (· · · ) + c.c.
(4.50)

u2
Hex =


c11

c21

...

cn1

 e2i ~q1·~r +


c12

c22

...

cn2

 e2i ~q2·~r +


c13

c23

...

cn3

 e2i ~q3·~r+


c14

c24

...

cn4

 ei(~q1−~q2)·~r +


c15

c25

...

cn5

 ei(~q1−~q3)·~r +


c16

c26

...

cn6

 ei(~q2−~q3)·~r +


c17

c27

...

cn7

+ c.c.

(4.51)

• Turing–Hopf mode

I2
TH =(· · · )eiωct + (· · · )ei~qc·~r + (· · · )ei(ωct+~qc·~r)+

(· · · )ei(ωct−~qc·~r) + (· · · )e2iωct + (· · · )e2i~qc·~r + (· · · ) + c.c.
(4.52)

u2
TH =


c11

c21

...

cn1

 eiωct +


c12

c22

...

cn2

 ei~qc·~r +


c13

c23

...

cn3

 ei(ωct+~qc·~r)+


c14

c24

...

cn4

 ei(ωct−~qc·~r) +


c15

c25

...

cn5

 e2iωct +


c16

c26

...

cn6

 e2i~qc·~r +


c17

c27

...

cn7

+ c.c.

(4.53)
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Here, cij is the unknown coefficient with the first index i being the dimension identifier

(e.g. for the Brusselator model, i = 1, 2) and the second index j counts which exponential

function cij is multiplied with.

Once the structure of u2 is determined, it will be substituted into the LHS of the

order-2 equation. Then we apply the constraints derived from the order-2 solvability

condition, and balance the exponential pattern for both sides of the order equation to

construct a series of coefficient equations. The unknown coefficient cij can be solved from

these coefficient equations to give an explicit description of the order-2 solution u2.

At last, the derived order-2 solution u2 and the structure ansatz u1 will be substituted

into the order-3 equation. By applying the solvability condition (see Sec. 4.3.3), the

constraints yield the order-3 amplitude equations.

4.3.5 General comments

The application of MSE involves many tedious calculations. For example, the term X2Y

in the Brusselator model Eq. (4.1) has the third-order multiple-scale expansion (X0 +

εx1 + ε2x2 + ε3x3)2(Y0 + εy1 + ε2y2 + ε3y3), which, when fully expanded, gives 64 terms.

Also, Eq. (4.53) shows that there are 14 unknown coefficients cij (and their 14 complex

conjugates denoted as c.c.) in u2 for the Turing–Hopf mode, i.e., we need to solve for

these coefficients from 28 coefficient equations. If a system has i model equations and

j exponential components, there will be a total of 2 × (i × j + i) coefficient equations

(including complex conjugates). For example, the Waikato cortical model has 8 first-

order differential equations for the simplest case [118]. The pattern analysis of this cortical

model requires us to solve 112 order-2 TH mode coefficient equations.

In the next section, we introduce Amp solving — a semi-automated MSE algorithm

in the Maple programming platform. Amp solving allows for automatic MSE operation,

thus eliminating the need for manually mathematical manipulations.

4.4 Amp solving algorithm

Amp solving algorithm, encoded in Maple, follows a standard MSE procedure to derive

the order-3 amplitude equation of a n-dimensional reaction diffusion system

∂

∂t
u = f(u,φ) +∇2u (4.54)

in which φ is the bifurcation control parameter. The algorithm proceeds as follows:

1. Introduce a weakly linear perturbation δu around the steady state u0: u = u0+δu.

2. • Expand δu as a nonlinear series:

δu =
k∑
p=1

εpup(T0, T1, . . . Tk;R0, R1, . . . Rk) (4.55)
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in which Tm = εmt and Rm = εmr (m = 0, 1, 2 . . . k) are scaled temporal and

spatial arguments respectively.

• Expand the bifurcation control parameter φ:

φ = φ0 +
k∑
p=1

εpφp (4.56)

Order equations can be obtained by grouping coefficients with the same order of

ε. For example, the order-k equation is obtained by equating the coefficients of εk

from both sides of the expanded model equations.

3. Determine the structure of the ansatz for u1.

This structure ansatz is a linear combination of the specific modes of interest.

4. Substitute the ansatz u1 into the order-2 equation.

5. Derive the order-2 solvability condition by eliminating secular terms.

6. Substitute both the derived order-2 solvability condition and the structure ansatz

into the order-2 equation, then solve the order-2 equation to give an explicit expres-

sion for u2.

7. Substitute the structure ansatz, derived order-2 solvability condition and the order-2

solution into the order-3 equation, which yields the order-3 amplitude equations.

We outline above steps in the flowchart of Fig. 4.3 for deriving the order-3 amplitude

equations. A general flowchart for deriving the order-k amplitude equation is shown in

Fig. 4.4. Although we can obtain any higher terms iteratively, it is sufficient to examine

the pattern dynamics from the order-3 amplitude equation [56].

Amp solving automates the tedious calculations of MSE mainly in the following parts:

Constructing the order equation, solving the order equation and establishing the solvabil-

ity condition. We now briefly explain the core commands used in Amp solving to ease

MSE calculations.

4.4.1 Constructing the order equation

The multiple-scale expansion starts by introducing a linear perturbation into the original

reaction–diffusion system, leading to perturbation equations. The next step is to expand

these perturbation nonlinearly in a scaling constant ε characterising the distance to the

bifurcation threshold.

After substituting multiple-scale expansions (the multiple-scale expansion block in Fig.

4.3), Amp solving uses

simplify(collect(..., e), {e^(e_order+1) = 0})

to collect all the coefficients with the same rational power of ε (ε is represented by e

in Amp solving) up to εe order, leading to a series of raw order equations. In collect
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F.1

F.2

F.3
F.4

F.5

F.1—F.5 corresponding sections in Appendix F

Figure 4.3: Amp solving flowchart for deriving the order-3 amplitude equation.

Figure 4.4: A general flowchart for deriving the order-k amplitude equation from the
order-k equation. Figure properties see Fig. 4.3.
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function, “...” is the set of multiple-scale expanded model equations. The raw order

equation, for example, at order ε3 has the expression:

∂u1

∂T2

+
∂u2

∂T1

+
∂u3

∂T0

=

f(u1,u2,u3,φ1,φ2)+

[
∇2
R0

u3 + 2∇R0∇R1u2 + 2(∇R0∇R2 +∇2
R1

)u1

] (4.57)

Amp solving uses the selectmove function to select the terms with order-3 variable u3

and group them at the LHS, meanwhile placing the remaining terms at the RHS. This

process is shown below:

Amp solving outputs the order equation in the from

(
∂

∂Tp
− Lc

)
up = Ip.

4.4.2 Solving the order equation

As mentioned in Sec. 4.3.4, to solve the order equation, we need to determine the struc-

ture of the solution, which Amp solving constructs via the exponential pattern matching

strategy: Amp solving first substitutes the structure ansatz into the RHS of the order-2

equation, then calls op command to identify all exponential components. Amp solving

will count the number of extracted unique exponential components, and generate their

corresponding coefficients cij (index definitions see Sec. 4.3.4). At last, Amp solving

combines coefficients and exponential components to form the structure of the order-2

solution.

After substituting the constructed order-2 solution (currently with unknown coeffi-

cients) into the order-2 equation, Amp solving will produce coefficient equations and call

solve command to solve all unknown coefficients.

4.4.3 Establishing the solvability condition

Applying the solvability condition requires two significant operations: dot product and

identification of secular terms. Amp solving uses VectorCalclus[DotProduct] to per-

form the dot product, then calls the coeff function to find secular terms that disobey

the Fredholm alternative [40] (see Sec. 4.3.3 for details).

For example, the solvability condition for the Hopf mode reads 〈vH|Ik〉 = 0. Amp solving

finds the secular terms according to the following scheme:



58 Computerised derivation of the amplitude equations

The order-2 solvability condition yields constraints that will be applied back to the

order-2 equation for its solution. Amp solving utilises both order-2 solvability condition

and solution to derive the order-3 amplitude equation.

Appendix E provides a mini Maple tutorial focusing on coding strategies specific to

Amp solving:

• vectorising variables

• defining and displaying functions

• computing the total derivative via the differentiation chain rule

• defining constants

In Appendixes F and G, we provide an expanded commentary of the Amp solving

codes used to derive the Brusselator amplitude equation for the hexagonal and Turing–

Hopf modes. These commentaries are intended to help readers to master the application

of Amp solving.

4.5 Summary

The derivation of the amplitude equation for a reaction–diffusion system via a multiple-

scale expansion (MSE) in the vicinity of a bifurcation point is carefully explained in this

chapter. A customised Maple algorithm Amp solving is proposed to automate the MSE

manipulation. By taking the advantage of the powerful Maple symbolic computation

engine, Amp solving can derive the amplitude equation in an analytical expression with

high efficiency and accuracy. A programming tutorial is provided in the appendix to

introduce the coding strategies used in Amp solving. Following the tutorial, examples

are given to demonstrate using Amp solving to derive the Brusselator amplitude equation

for the hexagonal (codimension-1 point) and Turing–Hopf (codimension-2 point) modes.

The derived amplitude equations are consistent with the work by other researchers [56,

92]. Since Amp solving is designed for a general reaction–diffusion system (for multiple

bifurcation cases), we hope that this chapter will be valuable for readers who wish to

study pattern dynamics but are not familiar with the MSE approach. Our intention

is that readers will find our symbolic codes useful for expediting the extraction of the

amplitude equation for other reaction–diffusion systems.

In the next chapter, we will investigate the mode stabilities of the Brusselator and

Waikato cortical models via use of amplitude equations.



Chapter 5

Mode stability analysis by amplitude

equations

In Chapter 2, linear stability analysis (LSA) suggests that a bifurcation occurs when

the bifurcation control parameter crosses a certain threshold. This prediction matches

moderately well with our Brusselator and cortical model simulations. However, we also

found LSA-unpredicted Turing structures (Fig. 2.3) and TH competitions (Fig. 2.4) for

the Brusselator model, which we argue may arise from the nature of the mode competition

when the system has crossed the bifurcation threshold and evolved into a nonlinear region

where LSA is no longer applicable. To address this issue, in Chapter 4 we utilised multiple-

scale expansion (MSE) to introduce a nonlinear perturbation1 to the pattern-forming

system, which results to the so-called amplitude equations describing the near-bifurcation

behaviours of the most unstable modes. In this chapter, we will further examine the

stability of emergent patterns by investigating the amplitude equations. This will entail a

comprehensive analysis of the pattern dynamics of the Brusselator model: in Sec. 5.1, we

will discuss the mechanism of the Turing pattern selection; In Sec. 5.2, we will investigate

the stability of the mixed Turing–Hopf mode. All developed theories of pattern dynamics

will be adopted in analysing the mode stability of the Waikato cortical model in Sec. 5.3.

5.1 Brusselator amplitude equations for the hexagonal
mode

Recall the Brusselator amplitude equations for the hexagonal mode, as derived in Ap-

pendix F:

∂

∂t
Z1 = µZ1 + vZ∗2Z

∗
3 − g|Z1|2Z1 − h(|Z2|2 + |Z3|2)Z1

∂

∂t
Z2 = µZ2 + vZ∗1Z

∗
3 − g|Z2|2Z2 − h(|Z1|2 + |Z3|2)Z2

∂

∂t
Z3 = µZ3 + vZ∗1Z

∗
2 − g|Z3|2Z3 − h(|Z1|2 + |Z2|2)Z3

(5.1)

1LSA introduces linear perturbation
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As we can see, the equations for Z2 and Z3 can be obtained by simple permutation of

the indices. In the previous chapter, we calculated the explicit expressions for equation

coefficients:

µ = (B −Bc)/Bc v =
2

A

(
1− Aη
1 + Aη

)
+

2

A
µ

g =
38Aη + 5(Aη)2 − 8− 8(Aη)3

9A3η(1 + Aη)
h =

5Aη + 7(Aη)2 − 3− 3(Aη)3

A3η(1 + Aη)
, η =

√
DX/DY

We consider µ as a bifurcation control parameter of the amplitude equations since it

measures the relative distance of the bifurcation setting B to its Turing threshold Bc.

5.1.1 Steady-state solutions

To split the modulus and phase, we use an ansatz Zi = ρie
iφi , thus obtaining modulus

equations:

∂ρ1

∂t
= µρ1 + vρ2ρ3 − gρ3

1 − h(ρ2
2 + ρ2

3)ρ1

∂ρ2

∂t
= µρ2 + vρ1ρ3 − gρ3

2 − h(ρ2
1 + ρ2

3)ρ2

∂ρ3

∂t
= µρ3 + vρ1ρ2 − gρ3

3 − h(ρ2
1 + ρ2

2)ρ3

(5.2)

and phase equations:

Φ = φ1 + φ2 + φ3

∂Φ

∂t
= −v

(
ρ2

1ρ
2
2 + ρ2

1ρ
2
3 + ρ2

2ρ
2
3

ρ1ρ2ρ3

)
sinΦ

(5.3)

The steady-state of the modulus takes the form

0 = µρ1 + vρ2ρ3 − gρ3
1 − h(ρ2

2 + ρ2
3)ρ1 (5.4)

The system possesses three types of solutions:

• Single root – Stripes (one wavevector)

ρs
1 =

√
µ/g, ρs

2 = ρs
3 = 0 (5.5)

• Triple identical roots – Hexagon (three wavevectors with identical modulus)

ρh
1 = ρh

2 = ρh
3 ≡ ρh

ρh =
v ±

√
v2 + 4µ(g + 2h)

2(g + 2h)
≡ ρh

±

(5.6)
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• Squeezed hexagon

ρm
1 =

v

h− g, ρm
2 = ρm

3 =

√
µ− g(ρm

1 )2

g + h
≡ ρm

2,3 (5.7)

Fig. 5.1 illustrates the specific modes.

Stripes Hexagon Squeezed hexagon

q1

q2

q3

q0 q1q2

q3

120o 120o

|q1| = |q2| = |q3| |q2| = |q3|
Figure 5.1: Three basic modes of the Turing patterns.

Examining Eq. (5.3), Φ relaxes monotonically to zero (π) when v > 0 (v < 0), as

demonstrated in Fig. 5.2.

0 1 2 3 4 5

0

1

2

3

Time

Φ

v < 0

v > 0

Figure 5.2: Demonstrated phase evolution Φ(t) with respect to the sign of v: [upper
curve] Φ saturates to π when v < 0; [bottom curve] Φ decays to 0 when v > 0.

Fig. 5.2 shows that Φ has two stationary solutions: π and 0, which corresponds to two

hexagonal structures (see examples in Fig. 5.10). When Φ = π, we denote this hexagonal

structure Hπ. When Φ = 0, the hexagonal structure will be reentrant with Hπ; we denote

this structure H0.

The sign of v determines the nature of the hexagonal structure. Thus there is an

exchange of stability between two structures at v = 0, where µ = (Aη−1)/(Aη+1) ≡ µp.

From

v =
2

A

(
1− Aη
1 + η

)
+

2

A
µ ≡ αµ+ αβ, (5.8)

we have v ∝ µ. Increasing µ, Hπ appears first, then it evolves to H0.
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5.1.2 Eigenvalue analysis

To examine the stability of various Turing modes for the Brusselator model, and to lo-

cate their corresponding parametric space where the mode is stable, we will apply linear

stability analysis (LSA) on the amplitude equations Eq. (5.2):

ρi = ρ0
i + δρi (5.9)

where i = 1, 2, 3 and ρ0
i is the steady-state solution of ρi. To find the stability condition

for each Turing mode, we first substitute Eq. (5.9) into Eq. (5.2), then derive the Jacobian

matrix with respect to δρ1, δρ2 and δρ3. The mode stability is determined by the sign of

the real part of the dominant eigenvalue.

• Stripes

The stripes mode has one trivial solution, as shown in Eq. (5.5). The Jacobian

matrix of the stripes mode reads:

Jacs =

a 0 0

0 b c

0 c b

 (5.10)

where a = −2µ, b = µ− h
µ

g
, c = v

√
µ

g
. Three eigenvalues are solved:

λs
1 = −2µ

λs
2 = µ

(
1− h

g

)
+ v

√
h

g

λs
3 = µ

(
1− h

g

)
− v
√
h

g

To reach the point where the stripes mode loses stability, we set the dominant

eigenvalue to zero:

λs
2 = 0 or λs

3 = 0 ⇒ µ =
g

(g − h)2
v2

⇒ v2 = µ
(g − h)2

g
≡ µsγs

(5.11)

By substituting Eq. (5.8) into (5.11), we have a quadratic equation in µs:

α2µ2
s + (2α2µsβ + α2β2) = µsγs

⇒ α2µ2
s + (2α2β − γs)µs + α2β2 = 0

⇒ µs =
− (2α2β − γs)±

√
γ2

s − 4α2βγs

2α2
≡ µ±s

(5.12)

µ±s indicates where the stripes change mode stability.
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• Hexagon

The hexagonal mode possesses three identical steady-state solutions, as shown in

Eq. (5.6). Jacobian matrix of the hexagonal structure reads:

Jach =

a b b

b a b

b b a

 (5.13)

where a = µ − 3g(ρh)2 − 2h(ρh)2, b = vρh − 2h(ρh)2. In this case there are three

eigenvalues but two of these are identical:

λh
1 = λh

2 = a− b = µ− 3g(ρh)2 − vρh

λh
3 = a+ 2b = µ− 3g(ρh)2 + 2vρh − 6h(ρh)2

Similar to the stripes case, we will locate where the hexagon loses its stability. By

substituting the hexagonal solution Eq. (5.6) into λh
1, λh

2 and λh
3, we hereby obtain:

µ ≡ µh =
v2(2g + h)

(g − h)2
,

thus

v2 =
µh(g − h)2

2g + h
≡ µhγh (5.14)

Again, by substituting Eq. (5.8) into (5.14), we have a quadratic equation about µh:

(αµh + αβ)2 = µhγh

⇒ µ2
h + (2β −

γh

α2
)µh + β2 = 0

µh =
γh − 2α2β ±

√
γ2

h − 4α2βγh

2α2
≡ µ±h

(5.15)

µ±h determines where the hexagonal mode changes its stability.

• Squeezed hexagon

In practice, in pattern simulations, it is difficult to obtain ideal stripes or hexagonal

structures because of the interference from the squeezed hexagonal mode. This

mode causes distorted stripes and hexagons, as shown in Fig. 5.3. The analysis of

the mode distortion will not be considered hereafter since our interests are of the

stability of the stripes and hexagonal modes. Here, we only present the explicit

forms of the Jacobian matrix and its eigenvalues.

The Jacobian matrix of the squeezed hexagon reads:

Jacm =

a d d

d b c

d c b

 (5.16)



64 Mode stability analysis by amplitude equations

where a = µ − 3g(ρm
1 )2 − 2h(ρm

2,3)2, b = a = µ − 3g(ρm
2,3)2 − h(ρm

1 )2 − h(ρm
2,3)2, c =

vρm
1 − 2h(ρm

2,3)2 and d = vρm
2,3 − 2hρm

1 ρ
m
2,3. Three eigenvalues are:

λm
1 = 2

µ(g − h)2 − v2(2g + h)

(g + h)(h− g)

λm
2 =

gv2 − (3h+ g)(h− g)µ+ (h2 − g2)R

2(g + h)(h− g)

λm
3 =

gv2 − (3h+ g)(h− g)µ− (h2 − g2)R

2(g + h)(h− g)

in which R =
√
a2 − 2ab− 2ac+ b2 + 2bc+ c2 + 8d2

5.1.3 Simulation results

In Sec. 5.1.1, we have noted the steady-state solutions for the stripes and hexagonal

modes. Now let us investigate stabilities of these modes by varying the bifurcation control

parameter µ.

Fig. 5.3 predicts the stabilities of stripes (red), H0 (blue) and Hπ (black) modes for

the Turing instability of the Brusselator model. From the range of solid curves, we have

the summary of parametric space where a specific mode is stable: The stripes mode is

stable when µ−s < µ < µ+
s ; the hexagonal mode is stable (Hπ and H0) when µ < µ−h or

µ > µ+
h . Hπ and H0 interact at µp where they exchange mode stability, that is, Hπ will

transit to H0 when µ crosses µp from its LHS to the RHS.

To verify the predictions from the bifurcation diagram, we select five different values

of µ then examine the simulated patterns:

(a) µ = 0.0495 (i.e., B = 8.04, see Fig. 2.3(a)) falling into a range where only Hπ is stable;

(b) µ = 0.1100 falling into a range where stripes and Hπ modes coexist;

(c) µ = 0.3994 (i.e., B = 10.72, see Fig. 2.3(b)) where only the stripes structure is stable;

(d) µ = 0.7000 again falling into a bistable range where stripes and H0 coexist;

(e) µ = 1.4802 (i.e., B = 19, see Fig. 2.3(c)) where only H0 is stable.

In Fig. 5.3, we see good agreement between simulated patterns and theoretical pre-

dictions. Clear Hπ, stripes and H0 structures are observed at (a), (c) and (e) cases

respectively. (b) and (d) show mixed states between forward and backward stable struc-

tures. Consequently, we can conclude that by increasing µ, the distance to the critical

point, positively, Brusselator forms sequentially from Hπ, to stripes, to H0. Here, ampli-

tude equations precisely capture the mechanism of the pattern selection thus providing a

straightforward guidance for determining the mode of Turing patterns.
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Figure 5.3: Turing mode stability of the Brusselator model. Red – Stripes, blue – H0,
black – Hπ. Solid and dashed curves correspond to stable and unstable modes respectively,
according to the eigenvalue analysis. Five representative µ values are selected for com-
parison of theoretical predictions for mode stability against practical simulations (shown
as subplots). Colour of the pattern indicates the local concentration of the reactant: [red]
high concentration, [blue] low concentration. Simulations follow the same settings as in
Sec. 2.2.1. Model parameters: A = 5, DX = 5, DY = 40.

5.2 Brusselator amplitude equations for the TH mode

In Appendix G, we derive the TH mode amplitude equations for the Brusselator model:

∂T

∂t
= CTT − CTT|T |2T − CTH|H|2T +DT∇2T (5.17a)

∂H

∂t
= CHH − (CHHr + iCHHi)|H|2H − (CHTr + iCHTi)|T |2H + (DHr + iDHi)∇2H

(5.17b)

where CT and CH are bifurcation control parameters. For the Brusselator model, CTT,

CTH, DT, CHHr, CHTr and DHr are positive to assure super-critical bifurcations.

5.2.1 Steady-state solutions and stability analysis

Ignoring diffusion terms, amplitude equations Eqs. (5.17a, 5.17b) possess three homoge-

neous steady-state solutions:

1. Turing solution

TTs =

√
CT

CTT

, HTs = 0 (5.18)
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2. Hopf solution

HHs =

√
CH

CHHr

, THs = 0 (5.19)

3. TH mixed mode solution

TMs =
√

(CHHrCT − CTHCH)/∆ (5.20a)

HMs =
√

(CTTCH − CHTrCT)/∆ (5.20b)

where ∆ = CHHrCTT − CTHCHTr. TMs and HMs coexist

when
CTH

CHHr

<
CT

CH

<
CTT

CHTr

if ∆ > 0, or

when
CTT

CHTr

<
CT

CH

<
CTH

CHHr

if ∆ < 0

We then analyse the stability of these steady states with regard to homogeneous per-

turbations.

• Stability of the Turing mode

Assuming T = TTs + δT ; H = δH, Eqs. (5.17a, 5.17b) are linearised to:

∂δT

∂t
= −2CTδT (5.21a)

∂δH

∂t
= (CH − CHTrT

2
Ts)δH (5.21b)

We see that the Turing mode is super-critically stable since δT in Eq. (5.21a) will be

linearly decayed if CT is positive. However, the Turing mode will become unstable

with respect to the enhanced homogeneous limit cycle (δH will be linearly increased)

if

CH − CHTrT
2
Ts > 0,

which leads to
CT

CH

<
CTT

CHTr

(5.22)

• Stability of the Hopf mode

Assuming T = δT ; H = HHs + δH, Eqs. (5.17a, 5.17b) are linearised to:

∂δT

∂t
= (CT − CTHH

2
Hs)δT (5.23a)

∂δH

∂t
= −2CHδH (5.23b)

Hopf mode is super-critically stable. However, the Hopf mode will become unstable

if

CT − CTHH
2
Hs > 0, (5.24)
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which leads to
CT

CH

>
CTH

CHHr

(5.25)

• Stability of the mixed TH mode

Assuming T = TMs + δT ; H = HMs + δH, Eqs. (5.17a, 5.17b) are linearised to:

∂δT

∂t
= −2CTTT

2
MsδT − 2CTHHMsTMsδH (5.26a)

∂δH

∂t
= −2CHTrHMsTMsδT − 2CHHrH

2
MsδH (5.26b)

The product of the two eigenvalues is the determinant of the Jacobian matrix:

λ1λ2 ≡ I = 4H2
MsH

2
Ms(CTTCHHr − CTHCHTr) = 4H2

MsH
2
Ms∆

The sum of the two eigenvalues is the trace of the Jacobian matrix:

λ1 + λ2 ≡ S = −2(CTTT
2
Ms + CHHrH

2
Ms)

Assuming CTT and CHHr are both positive, S < 0 always holds. Two eigenvalues

can be both negative or have opposite signs, depending on the sign of ∆:

Mixed mode is stable if ∆ > 0 (5.27a)

Mixed mode is unstable if ∆ < 0 (5.27b)

From the above stability analysis, we can conclude stabilities of Turing and Hopf

modes near a codimension-2 point (CTHP) in the bifurcation sketch of Fig. 5.4:

(a) ∆ < 0 (b) ∆ > 0

CTT

CHTr

CTH

CHHr

CT

CH

CTT

CHTr

CTH

CHHr

CT

CH

Hopf Hopf

Turing Turing

Mixed TH mode Mixed TH mode

stable
unstable

Figure 5.4: Bifurcation diagram with CT/CH being the control parameter. Each mode
has its corresponding range where it is stable. CTT/CHTr and CTH/CHHr are the boundaries
for the mode stability. In the case (a) ∆ < 0, the range where mixed mode is unstable
experiences bistability between Hopf and Turing modes. In the case of (b) ∆ > 0, mixed
mode is always stable between CTH/CHHr and CTT/CHTr.
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If ∆ < 0, by successively increasing CT/CH, mode evolves from stable Hopf to stable

Turing, with a transition where mixed TH is unstable. When CT/CH falls into this

unstable range, the system may exhibit either temporal or spatial instabilities depending

on initial conditions.

If ∆ > 0, the mixed mode is always stable in the field where Hopf and Turing are

both unstable. Increasing CT/CH, the following sequence of states are observed: Hopf →
mixed TH → Turing.

Until now we have conducted the bifurcation analysis on Eqs. (5.17a, 5.17b) without

considering the imaginary parts of Eq. (5.17b) (assuming H is real). The sign of ∆

determines the stability of the mixed mode. When ∆ > 0, mixed mode is always stable.

However, this conclusion is deduced based on real H. In Sec. 5.2.3, we will investigate

the stability of the mixed mode by introducing a complex H, when ∆ > 0.

5.2.2 Application of amplitude-equation theory to the Brusselator

model

In this section, we will apply the TH mode stability analysis we derived from the amplitude

equations to predict the pattern dynamics of the Brusselator model.

Let us remark that the bifurcation control parameter CT/CH in the amplitude equa-

tions (5.17a, 5.17b) is related to (B −B0) and (σ − σ0):

CT

CH

=
2

1 + σ0

− 4

(−1 + σ0)2

σ − σ0

B −B0

(5.28)

and
CT

CH

is proportional to B −B0

In the following, we will investigate the mode stability of the Brusselator amplitude equa-

tions by varying B with σ fixed. Since Fig. 5.4 shows the sign of ∆ plays an important

role in mode dynamics, ∆ < 0 and ∆ > 0 cases will be discussed separately.

∆ > 0

When ∆ > 0, Fig. 5.4(b) shows that the bifurcation follows stable Hopf → stable mixed

mode → stable Turing by increasing the bifurcation control parameter. The Brusselator

model setting A = 2.5, DX = 5, DY = 10 ensures ∆ > 0. As a result, Fig. 5.5 predicts that

the Brusselator model will experience a stable Hopf instability when B < 7.7, a stable

TH instability when 7.735 < B < 7.771 and a stable Turing instability when B > 7.771.

Then, we select three different values of B and forecast the corresponding model

dynamics from Fig. 5.5: (1) B = 7.4, predicted stable Hopf; (2) B = 7.76, predicted

stable mixed TH mode; (3) B = 8.3, predicted stable Turing. We started the simulation

with specific B to verify these predictions.
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Figure 5.5: Mode stability of the TH mode amplitude equations for the Brusselator
model when ∆ > 0. The mode solution at a specific B is solved from the real amplitude
equations Eqs. (5.17a, 5.17b) by ignoring their imaginary parts: [blue] Pure Turing solu-
tion Eq. (5.18); [red] Pure Hopf solution Eq. (5.19); [black] Turing solution Eq. (5.20a)
and [grey] Hopf solution Eq. (5.20b) of the mixed mode. The [solid curve] stable and
[dashed curve] unstable modes are determined via the eigenvalue analysis. Mixed mode
are stable when 7.735 < B < 7.771.

In Fig. 5.6, we see that the LSA predicts a Hopf mode when B = 7.4 and a TH mode

when B = 7.76. Both predictions agree with the amplitude equation method. However,

the LSA loses its success when B = 8.3, where the LSA predicts a TH mode while

the simulation exhibits a stable Turing mode. We argue that the LSA gradually loses

its capability in describing pattern dynamics when the bifurcation distance (B − B0) is

becoming larger with stronger nonlinearity (LSA is a weakly linear perturbation method).

∆ < 0

Let us now examine the pattern dynamics for the Brusselator model when ∆ < 0. To

ensure this condition, we introduced another parameter setting: A = 2, DX = 4, DY = 9.7.

When ∆ < 0, Fig. 5.4(a) shows that the bifurcation follows stable Hopf → bistability

→ stable Turing by increasing the bifurcation control parameter.

In Fig. 5.7, we find the bistable range when 5.3 < B < 6.3. At the LHS of this range,

Hopf is the only stable mode; at the RHS of this range, Turing is the only stable mode.

The mixed mode is unstable at all B values.

Again, we selected specific B values: (1) B = 5.2, predicted stable Hopf mode; (2)

B = 5.4 and (3) B = 6.0, predicted either Hopf or Turing mode; (4) B = 6.6, predicted

stable Turing mode. Then we compared their simulation results (see Fig. 5.8) with these

mode predictions.
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Figure 5.6: Simulations for the Brusselator model when ∆ > 0. Simulation starts
separatively from three different B values: (1) B = 7.4; (2) B = 7.76; (3) B = 8.3. For
each case, we compare the (a) linear stability analysis (LSA) of the Brusselator model
(the solid and dashed curves are the real and imaginary parts respectively of dominant
eigenvalues with respect to scaled wave numbers); (b) Activator X(t, x) space-time strip
charts for a full 200-s simulation (see the description of Fig. 2.4) and (c) Time-series of
the final 50 s at the centre grid-point of the 60× 60 grid.

5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7

0

0.2

0.4

0.6

0.8

1

1.2 A = 2
DX= 4
DY = 9.7
∆ < 0

B

A
m
p
li
tu

d
e

 

 

Turing
Hopf
Mixed (Turing)

Mixed (Hopf )

bistable range
5.3 < B < 6.3

Figure 5.7: Mode stability of the TH mode amplitude equations for the Brusselator
model when ∆ < 0. Bistable range for Turing and Hopf are found when 5.3 < B < 6.3.
See Fig. 5.5 for the figure properties.
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When ∆ < 0, the mixed TH mode is always unstable. Comparing the second row of

Figs. 5.6 and 5.8, although we see very similar eigenvalue dispersion curves both predict-

ing a TH mode, the simulations show that this mode occurs only when ∆ > 0. In Fig. 5.7,

when B = 5.4, 6.0 or 6.6, LSA predicts a mixed mode between Turing and Hopf. However,

the simulations show a single mode only. This phenomenon suggests that one mode even-

tually becomes dominant over the other, thus being the winner of the mode competition.

When B = 6.6, the strip-chart exhibits equally spaced bands, implying well-structured

spots of the Turing pattern. Further increasing B induces a mode transition following the

prediction by the amplitude equation for the hexagonal mode: Hπ → stripes→ H0.

Figure 5.8: Simulations for the Brusselator model when ∆ < 0. Simulation starts
separatively from four different B values: (1) B = 5.2; (2) B = 5.4; (3) B = 6.0; (4) B =
6.6. (a) linear stability analysis (LSA); (b) Activator X(t, x) space-time strip charts for a
full 200-s simulation and (c) Time-series of the final 50 s for the centre grid-point of the
60× 60 grid.

Although the analysis of the amplitude equations cannot determine the dominant

mode at the bistable region, mode predictions outside of this region by the amplitude

equations have good agreements with simulations.

Note that above analysis is based on the real amplitude equations, ignoring their

imaginary parts. The real and imaginary parts of the amplitude equations represent

respectively the modes and their phase. Therefore, the analysis on the complex amplitude
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equations predicts the stability of the mode phases. Unstable phases may lead to chaotic

evolutions, which we will discuss in the next section.

5.2.3 Analysis of the mixed mode via the complex TH mode

amplitude equations

Assuming T is still real but H is complex (H = Hr + iHi), introducing the weak pertur-

bations

T = TMs + δT

Hr = HMs + δHr

Hi = δHi

to Eqs. (5.17a, 5.17b) leads to the Jacobian matrix with respect to δT , δHr and δHi:−2CTTT
2
Ms −DTk

2 −2CTHTMsHMs 0

−2CHTrTMsHMs −2CHHrH
2
Ms −DHrk

2 DHik
2

−2CHTiTMsHMs −2CHHiH
2
Ms −DHik

2 −DHrk
2

 (5.29)

Notice that diffusion terms are included because we consider here T and H depend on

both time and space. The amplitude equations have the wavenumber k, which is distinct

from the wavenumber q of the original system. The determinant is calculated as:

I = −4H2
MsT

2
MsDk

2 +O(k3)

in which

D = DHi(CHHiCTT − CTHCHTi) +DHr(CHHrCTT − CTHCHTr) (5.30)

Using Maple, we calculated the explicit forms for three eigenvalues, two of which are

complex conjugate pairs with negative real parts. Hence, we have the following conclusion:

Amplitude equation system is stable I < 0 when D > 0 (5.31a)

Amplitude equation system is unstable I > 0 when D < 0 (5.31b)

By forcing parameters related to the coupling coefficients (CTH, CHTi, CHTr) to zero, the

standard Benjamin-Feir instability criterion of a homogeneous limit cycle is recovered [23]:

DBF = DHiCHHi +DHrCHHr < 0 (5.32)

However, it is important to note that the inequality (5.31b) can be satisfied even when the

Benjamin-Feir condition (5.32) is not fulfilled, i.e., stable limit cycle coupled with spatial

instability (Turing bifurcation).
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Chaos at ∆ > 0

When ∆ > 0, we found certain parameter settings lead to chaotic patterns (continuous

competition between Turing and Hopf). Here, we will investigate the pattern dynamics

with two such sets of parameters: Setting (1) A = 2.5, B = 7.9, DX = 5, DY = 10; Setting

(2) A = 2.5, B = 8, DX = 4.49, DY = 8.91 (following de Wit’s work [24]).

Mode stability prediction Fig. 5.5 shows that setting (1) is just beyond the right

edge of the mixed mode region, falling into the stable Turing region. Setting (2) has

the same prediction (not shown here). However, the simulation results for both settings,

demonstrated in Fig. 5.9, are spatiotemporal patterns whose time-series appear to be

turbulent and chaotic.

Figure 5.9: Chaotic mode of the Brusselator generated from two sets of parameters.
Both settings satisfy ∆ > 0, which leads to a region of stable mixed TH mode (see Fig.
5.5). See Fig. 5.7 for figure properties.

Is there a way to predict such chaotic mode? de Wit responded to our enquiry as

follows:

“Chaotic dynamics arises from desynchronisation of the phases of the oscillators (i.e.,

Benjamin-Feir instability). The related criterion is given by looking at the stability of the

Turing and Hopf modes with regard to perturbations of the phase of the Hopf mode (Eqs.

(5.31a, 5.31b)).”

Following de Wit’s suggestion, we then examined TH mode stability conditions (5.31a),

(5.31b) and (5.32) with both sets of parameters. Surprisingly, both settings (1) and (2)

give negative I and positive D, which suggests a stable TH mode. This prediction conflicts

with the observed chaotic patterns seen in Fig. 5.9.

How did de Wit find the parameter settings [24] for the chaotic patterns? She ex-

plained:

“I did not use all these criteria to find parameters for simulations in the Brusselator.

There are on one hand simulations using the Brusselator in which I just vary parameters
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and find various dynamics. Then in parallel and totally independently (bolded by

the thesis author), I have integrated amplitude equations on their own. But I do not

connect the two. I think there are anyway corrections at higher orders that are neglected

in the derivation of the amplitude equations that make them not matching quantitatively

the full nonlinear model like the Brusselator.”

From de Wit’s statement, it is important to note that the phase stability condition

(5.31a, 5.31b) and (5.32) are only applicable to the system of amplitude equations2, in

order words, they may not be applicable to the original system.

Although we have not found theoretical criteria to directly predict the Brusselator

chaotic patterns, there are clues to locate the parametric space where the chaos may occur:

chaotic mode exists when ∆ > 0; chaotic mode is available within or near the stable TH

region. In the vicinity of the TH region, the competition between the Turing and Hopf

modes is most likely to transit to a chaotic evolution, resulting from the nonlinearity and

possibly the unstable Hopf phases.

5.2.4 Discussion

To analyse a pattern-forming system, the linear stability analysis (LSA) is first applied

to examine the stability of the steady-states with respect to weak perturbation, which

predicts the emergent mode (first bifurcation). After sufficient time, the system may

evolve into a nonlinear region where the LSA may not be applicable, meanwhile, the

previous emergent mode may experience another instability bifurcating to a more stable

state (second bifurcation). Such complicated mode stability may be predicted via the

eigenvalue analysis of the amplitude equations.

In Chapter 4, we introduced a multiple-scale expansion to capture the subtle mode

dynamics near a bifurcation point (i.e., at a point where new dynamical behaviour is

about to emerge). The product of this nonlinear expansion is the so-called amplitude

equations which we utilised to analyse the mode stability in this chapter.

Our analysis of the Brusselator amplitude equations for the hexagonal mode shows

that the Turing pattern of the Brusselator model can be spatially structured to honey-

comb (Hπ), stripes or reentrant honeycomb (H0) modes. Fig. 5.3 shows good agreements

between the mode predictions by the amplitude equations and simulations. It is noticed

that the H0 structure in Fig. 5.3 is only roughly reentrant in shape with Hπ, but is not its

“upside down” version. It is always true that the H0 cannot be the perfect reentrant of Hπ

by only tuning the bifurcation parameter B. There are two reasons for this phenomenon:

1. Increasing the bifurcation distance (B − B0) introduces strong nonlinearity, which

coupled with the effect from squeezed hexagonal mode will distort the H0 hexagons.

2See examples of predicting chaotic modes for the amplitude equations in [23].
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2. Larger B will shift the peak of the eigenvalue dispersion curve to the right, which

implies a larger wavenumber (i.e., smaller wavelength) for the most unstable mode.

Thus the H0 mode has a higher spot density than the Hπ mode.

To obtain a well-structured H0 mode, one needs to maintain a small (B−B0) distance as

well as tuning the parameter A. For example, to produce patterns in Fig. 5.10, we only

tuned the value of A. Reducing the value of A is equivalent to increasing B, as well as

shortening the distance from the the Turing threshold to the H0 region. Thus this tuning

will lead the model to the H0 region without changing significantly the wavenumber of

the most unstable mode.

Figure 5.10: Demonstrated Hπ and H0 modes generated by (1) A = 3, B = 9, DX =
5, DY = 12 and (2) A = 2, B = 9, DX = 5, DY = 12. The Turing conditions for setting
(1) is B0 = 8.623, for setting (2) is B0 = 5.249.

After investigating the Brusselator Turing patterns, we then moved our attention to

the Brusselator interacting Turing–Hopf patterns. To assist this analysis, we derived the

TH mode amplitude equations in Appendix G. The TH mode amplitude equations have

an argument ∆ (see Eqs. (5.20a, 5.20b)) whose sign determines if the TH mode is stable:

stable when ∆ > 0; unstable when ∆ < 0. When ∆ < 0, we found that the TH mode

amplitude equations will experience a bistability, where the Brusselator evolves to either a

Turing or Hopf mode. It should be noticed that the bistable mechanism for the TH mode

is distinct from the bistable Turing structures since Fig. 5.3 shows that multiple Turing

modes can coexist at the bistable range. When ∆ > 0, a chaotic mode exists in the vicinity

of the stable TH region: At the onset of a stable TH mode, finely tuning the bifurcation

parameter will cause the Hopf phases to lose stability, leading to a chaotic mode. From

our discussions with de Wit, the phase stability criteria (5.31a, 5.31b) and (5.32) are only

applicable to the system of the amplitude equations. In order to find the chaotic mode,

it is suggested to manually scan the parametric space close to a codimension-2 point.

Our amplitude equations-based mode predictions have better agreement than the linear

stability analysis with numerical simulations.

Generally speaking, predicting the Turing–Hopf dynamics is more challenging than the

pure Turing dynamics since the Turing–Hopf interference induces a strong nonlinearity

and interplay among multiple modes. Our TH mode analysis is based on the simplest

structure ansatz with one wavelength qc and one frequency ωc:

u1
TH = ATe

i~qc·~rRT + AHe
iωctRH + c.c.,



76 Mode stability analysis by amplitude equations

which is a preliminary investigation in the mechanisms of the pattern selection and com-

petition. A comprehensive understanding of the TH dynamics may require the derivations

of the amplitude equations based on other structure ansatzes describing the mode inter-

actions, e.g., subharmonic modes [22,24]:

• Subharmonic instability of a Turing mode

Near a CTHP, a Turing mode can give rise to subharmonic latticed patterns os-

cillating in time and generated by subharmonic instabilities. Such subharmonic

instability is the combination of a steady structure with wave number qc and of a

standing wave formed by the superposition of the left- and right-travelling waves

(AR and AL) with wave number qc/2 and frequency ωq = ωqc/2. The structure ansatz

has the expression:

u1
subT = ATe

i~qc·~rRT + ALe
i[ωqc/2t+(~qc/2)·~r]RL + ARe

i[ωqc/2t+(~qc/2)·~r]RR + c.c. (5.33)

where RL and RR are the critical eigenvectors corresponding to the left- and right-

travelling waves of the wave number qc/2 and frequency ωqc/2. Such a structure

ansatz yields three amplitude equations about the Turing mode AT, left-travelling

wave AL and right-travelling wave AR. By introducing linear perturbations AT =

AT0 + δAT, AR = AL = (ARL0 + δARL)eiΩt, one can examine the stabilities of

the Turing mode δAT or travelling-wave mode δARL by a standard linear stability

analysis of the amplitude equations.

• Subharmonic instability of a Hopf mode

The resonance between a homogeneous temporal oscillation with frequency ωc and

of a standing wave with frequency ωc/2 and wave number qω = qωc/2 lead to a

subharmonic Hopf mode with one wave number and two frequencies. The resulting

dynamics is then a pattern with one wave number oscillating with two frequencies.

The structure ansatz has the expression:

u1
subH = AHe

iωctRH + ALe
i[(ωc/2)t+~qωc/2·~r]RL + ARe

i[(ωc/2)t−~qωc/2·~r]RR + c.c. (5.34)

which yields three amplitude equations about AH, AL and AR. The linear perturba-

tion AH = (AH0 +δAH)eiϕt and AR = AL = (ARL0 +δARL)eiφt allow a linear stability

analysis for examining the respective mode stability.

• Subharmonic instability of a Turing–Hopf mode

Near a CTHP, a subharmonic Hopf mode characterised by the wavenumber qωc/2

could resonate with the Turing mode of wavenumber qc if qc = 2qωc/2. In this case,

the structure ansatz reads:

u1
subTH =AHe

iωctRH + ALe
i[(ωc/2)t+~qωc/2·~r]RL

+ ARe
i[(ωc/2)t−~qωc/2·~r]RR + ATe

i~qc·~rRT + c.c.
(5.35)
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where the amplitudes obey a set of four coupled amplitude equations describing a

spatiotemporal dynamic with two wave numbers qωc/2 and 2qωc/2 and two frequencies

ωc and ωc/2.

In the next section, we will investigate the mode stability of the Waikato cortical model

via the theories of pattern dynamics we developed from the Brusselator model.

5.3 Mode stability analysis for the Waikato cortical
model

The amplitude equations derivation for the Waikato cortical model follows the multiple-

scale expansion (MSE) flowchart Fig. 4.3; however, the complexity of the model (high

dimensions) allows only numerical implementation of MSE. The cortical model has more

than twenty parameters (Brusselator model has only four), and the implicit combinations

of them form the steady-state (SS), critical eigenvalues and eigenvectors, which can only

be found numerically. These numerical terms will further construct the order solutions

of the MSE and eventually merge into the coefficients of amplitude equations. To our

knowledge, this is the first attempt to apply MSE numerically to a system as complicated

as the cortical model. Such a procedure may raise two major difficulties:

1. The numerical errors in each MSE step may accumulate;

2. We are not able to obtain explicit expressions for the coefficients in the amplitude

equations.

As the amplitude equation is a universal form only relating to specific modes but not

the original model, the amplitude equations for the Brusselator and the cortical model

will share the same expressions. Due to the simplicity of the Brusselator model (or

other commonly seen reaction–diffusion systems like Gray [49], Leygyel-Epstein [104] or

Belousov-Zhabotinsky [150] models), all the coefficients of the amplitude equations can

be derived precisely in analytical expressions; this enables us to examine the dependence

of mode dynamics on coefficients by tuning any model parameter (A,B,DX or DY ). In

comparison, the numerical implementation of MSE leads to amplitude equations for the

cortical model only explicit to bifurcation distance for the Turing (D2 − Dc
2) and Hopf

(γi − γc
i ). In other words, (D2 −Dc

2) and (γi − γc
i ) are the only terms we can tune in the

amplitude equations. Thus we are not able to investigate how other cortical parameters

form the coefficients and affect the mode stabilities of the amplitude equations. For

example, the subcortical drive s is a control parameter for the cortical SS distribution (see

Fig. 3.5), where each s-dependent SS may have distinct stabilities. Since we cannot vary

the subcortical drive s in the amplitude equations (s is fixed to derive the SS numerically,

and cannot be identified with a particular coefficient), we are only allowed to derive
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amplitude equations for the cortical model at a specific s of interest. Then we can examine

the mode stability of this particular s with respect to bifurcation parameters.

The above-mentioned numerical operations of MSE on the cortical model require us to

first scan the cortical parametric space in order to find a “special” coordinate where the

mode stability experiences a bifurcation from the simulation. Then we apply the MSE on

this coordinate to derive the amplitude equations for a better understanding of the mode

dynamics.

5.3.1 Hexagonal mode of the cortical model

In this section, we will investigate various Turing patterns of the cortical model, then

discuss their stabilities by the amplitude equations.

We first ran a series of simulations starting from selected SS from theQo
e SS-distribution

(see Fig. 5.11) of SR2007 model of the cortex. We intended to find the effect of subcortical

drive s on the spatial structure of cortical Turing patterns. We selected nine SS from the

Qo
e(s) curve: A to C are from the bottom branch; D is from the middle branch; E to I

are from the top branch. C, D and E are the multiroots of the same subcortical drive

s = 0.25. All simulations share the same parameter settings except the starting SS points

and bifurcation parameters. LSA shown in Fig. 3.5 implies that simulations starting from

the SS single-root zone at the top branch requires a rather larger gap-junction strength

D2 to trigger the Turing instability. So H and I at the top branch have slightly larger

D2 = 1.7 cm2 than A to G’s setting D2 = 1.3 cm2. The other bifurcation parameter γi

is set to 35 ensuring a sufficient distance to its Hopf threshold (ranging from 25 to 29 for

all s), so that only Turing mode is expected to be dominant.

Fig. 5.11 shows G is a mode-transition point, before which (s < 0.5) Turing patterns

have the stripes structure; after which (s ≥ 0.5) Turing patterns have the Hπ structure.

We had tested other SS for 0 < s < 0.5 with various D2 values, which all gave rise to

stripes. The SS-curve of Fig. 5.11 covered in grey indicates that simulations starting here

will evolve to stripes of the Turing pattern.

When s ≥ 0.5 (SS-curve in Fig. 5.11 covered in black), moderately strong D2 and

appropriate setting of γi in favour of a Hπ structure of the Turing patterns. In the

following we will investigate the stability of the Hπ mode with different D2 and γi at the

mode transition point s = 0.5 where the critical setting [Dc
2, γ

c
i ] = [1.2159, 29.9999] leads

to a CTHP. First, we examined the sensitivity of the Hπ mode with respect to γi. With

D2 fixed at 1.3 cm2, the LSA in Fig. 5.12 demonstrates that decreasing γi from 60 to 30

raises the Hopf instability dramatically (real part of the dominant eigenvalue at q = 0 is

getting less negative) and the Turing instability slightly, which accordingly gives rise to

larger growth rate of the Turing instability. When γi = 30, we see the best structured Hπ
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Figure 5.11: Cortical simulations of the SR2007 model starting from nine selected SS
(A to I) of the Qo

e SS-curve. Qo
e is a function of the subcortial drive s ranging from 0 to

1. Qo
e(s) and V o

e (s) (Fig. 3.5) are linked via the sigmoidal mapping of function Eq. (3.2).
Simulations starting from A to G are set with [D2, γi] = [1.3, 35], from H to I are set
with [D2, γi] = [1.7, 35]. D2 is set to be sufficiently large to trigger the Turing instability;
γi is set to maintains a sufficient distance to its critical value for supressing the Hopf
instability. 30-s simulation shows that A to F evolve to stripes of the Turing pattern; G
to I evolve to a Hπ structure (see Fig. 5.3 for reference) of the Turing pattern. Simulated
2D cortical tissue has a side length 25 cm with 100×100 grid-points.

mode where both simulated patterns and the Fourier spectrum show spatially periodic

hexagons.

In our next investigation, we fixed γi = 30, then gradually increased the bifurcation

distance of D2 from its critical value 1.2159 cm2 to observe the corresponding pattern

dynamics. Fig. 5.13 illustrates simulated patterns by increasing D2 from 1.23 that is only

1.15% over its critical value to 3.20 that is 62% over its critical value. Clearly, the smallest

D2 experiences the best structured Hπ mode. By increasing D2, the Hπ mode will become

unstable then eventually be replaced by the more stable stripes structure.

Until now we have located the parameter setting (D2, γi) = (1.23, 30) leading to the

best structured Hπ mode of the Turing pattern for the SR2007 model. D2 and γi are within

1.15% and 3.33×10−2% of their critical values, respectively. Theoretically we could set

D2 even closer to Dc
2 for a better Hπ structure, however, the growth rate for the mode

would be too small to obtain a stable mode in a reasonable time frame. On the other

hand, once γi crosses its bifurcation threshold, a temporally unstable Hopf instability will

be induced into the Turing patterns, thus breaking their temporal stabilities. As a result,

we must keep (γi − γci ) > 0 to suppress the Hopf instability for static Turing patterns.

From Figs. 5.12 and 5.13, we see that D2 plays a major role in mode stability of

the Turing patterns. To precisely examine how D2 affects the Turing structures, we

applied the multiple-scale expansion (MSE) on the cortical model at s = 0.5 to derive the

amplitude equations for the hexagonal mode. In our mode stability analysis, we varied
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Figure 5.12: 30-s cortical simulations starting from G (s = 0.5) in the SS-curve of Fig.
5.11 with γi is 60, 50, 40 or 30 and fixed D2 at 1.3 cm2. At each panel, from left to
right there are LSA predicting curves, patterns formed at 30 s, its 2D Fourier amplitude
spectrum and time-series extract of 10 equally spaced grid-points along the vertical axis
at the centre of the horizontal axis. Best Hπ patterns are structured at γi = 30.

Figure 5.13: Patterns formed from 60-s cortical simulations starting from G (s = 0.5)
in the SS-curve of Fig. 5.11 with increased D2 and fixed γi = 30. Best Hπ patterns are
structured at D2 = 1.23. Here, both D2 and γi are extremely close to their bifurcation
thresholds.
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D2 but kept γi fixed at 30. According to theories of mode stability for the Brusselator

model in Sec. 5.1, we derived mode stability diagram 5.14 for the cortical model.
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Figure 5.14: Mode stabilities of the Turing pattern for the SR2007 model when subcor-
tical drive s = 0.5. γi is fixed at 30. The Turing pattern of the SR2007 model possesses
three modes: stripes (red), Hπ (black) and H0 (blue). The stability of the mode at each
D2 is examined via eigenvalue analysis (see Sec. 5.1.2): solid curve — stable mode; dashed
curve — unstable mode.

Clearly shown in Fig. 5.14, Hπ is dominant when D2 < 1.7. Stripes and Hπ are mixed

when 1.7 < D2 < 2.8. Stripes become dominant when D2 > 2.8. H0 is unstable across the

whole range of D2. Such theoretical predictions from the amplitude equation are in good

agreement with the experimental observations in Fig. 5.13. Besides s = 0.5, we have also

examined other settings when 0.5 < s < 1: The trend of the mode stabilities with respect

to D2 keeps the same as shown in Fig. 5.14.

With reference to Fig. 5.3, increasing the Turing bifurcation distance introduces a

mode transition from Hπ to stripes first, then to H0. However, we could not find the H0

structure for the SR2007 model. When the subcortical drive 0.5 < s < 1, we comprehen-

sively scanned the (D2, γi) space for the H0 mode without any success. Once the cortical

patterns have reached stripes, they become absolutely dominant no matter how large the

setting for D2.

Since we could not find the existence of the H0 patterns in the SR2007 model, we

switched our attention to the SR2009s model (another slow-soma limit, see Table 3.4 for

its definition) of the cortex. The SR2009s model we introduced in Sec. 3.3.2 is different

from the SR2007 model mainly in two aspects:

1. It uses two different sets of cortical parameters;

2. The PSP is described either by the alpha-function Eq. (3.7) in SR2007 model or the

biexponential function Eq. (3.22) in SR2009s model.

In Sec. 3.2.2, we discussed the different dynamics of the two models of the cortex. Fig.

3.8 drew to our attention that strong inhibitory diffusion D2 leads to H0-like patterns:
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red spots embedded in the blue background, which is very similar to the H0 patterns

(bullet structure) of the Brusselator model seen in Fig. 2.3. However, we could not find

well-constructed H0 patterns of the slow-soma model after comprehensively scanning the

parametric space. Later, in an experiment testing the effect of the alpha-function on the

SR2009s model (this experiment follows our earlier work in [139]), we successfully found

the H0 patterns, shown in Fig. 5.15:

Figure 5.15: H0 patterns generated by the SR2009s model with PSP described by the
alpha-function. Turing bifurcation parameter D2 is set to 2.6 cm2 that leads to a weak
Turing peak of the LSA predicting curve. Hopf bifurcation parameter γi is set to 58
where LSA predicts a highly damped Hopf instability. The simulated 25-cm cortical
tissue (100×100 grid) exhibits well-structured H0 hexagonal patterns. We sketched three
adjoint hexgons in the patterns. Such consecutive hexagonal structure of the patterns is
revealed in the 2D Fourier spectrum.

Then we investigated the stabilities of the H0 mode with respect to varying D2 and γi.

As shown in Fig. 5.15, a stable H0 mode is found when D2 is 2.6 cm2 that is very close to

its threshold (Turing peak is very close to the dash-dotted zero line). Therefore we first

examined the stability of the H0 mode by increasing D2 to 3.0, 3.8 and 4.0 correspondingly

at 15.39%, 46.15%, 53.85% above D2 = 2.6, respectively with γi fixed at 58. In Fig. 5.16,

a top to bottom scan of the LSA predicting curves shows that the Turing instability is

enhanced by increasing D2, meanwhile, the Hopf instability at q = 0 is highly damped

at all D2 choices. Surprisingly, by examining seven snapshots captured within 1.2 s, we

see localised oscillations (at the red spots) for the H0 mode. When D2 = 3.0, the pattern

repeats its spatial structure every 0.78 s: Snapshots captured at 16.0994 and 16.8794 s

are similar, so are snapshots captured at 15.8498 and 16.6298 s. However, the oscillatory

patterns for D2 = 3.8 and 4.0 are irregular: the red spots “light” and “dim” randomly in

time and space.

Next, we fixed D2 at 2.6 cm2 then investigated the pattern dynamics by decreasing

γi. As we have learned from Fig. 5.12, decreasing γi will enhance the Hopf instability

significantly and boost the Turing instability slightly. Examining the LSA predicting

curves in Fig. 5.17, γi = 46 experiences a single Turing peak; when γi = 28 or 38, it



5.3 Mode stability analysis for the Waikato cortical model 83

Figure 5.16: With fixed γi = 58, simulation snapshots for three distinct D2 = 3.0, 3.8
and 4.0 cm2 of the SR2009s model with PSP described by the alpha-function. LSA
predicting curve for each D2 setting is listed in the first column. Simulated cortical tissue
has a side-length 10 cm and 40×40 grid.

has crossed its Hopf critical point, so a TH mode is predicted. When γi = 46, we found

localised oscillating patterns without significant temporal periodicity, that is, repeated

patterns with the same spatial structure are not observed within a certain time-period.

When γi = 38 or 28, we observed not only the periodically emerged patterns, but also

regular transitions between two modes:

• At γi = 38, the first snapshot at 15.9434 s shows equally spaced red spots (high

firing-rate zone) decorated in the blue background (low firing-rate zone). After

0.0936 s, the second snapshot shows the spot mode has locally evolved to the “ring”

mode. Notice that this mode will return to the spot structure at 16.1930 s, but the

position of spots are shifted, which illustrates a fact that the red spots and blue

background in the first snapshot (t = 15.9434 s) exchange contrast in the third

snapshot (t = 16.1930 s). Then these spots will locally transit to rings, seen in the

fourth snapshot (t = 16.2866 s), which take place in the blue area of the second

snapshot. We may group the first four snapshots as a complete cycle of mode

transitions, in which two patterns with exchanged contrast (either spot to spot or

ring to ring modes) are in precisely 0.2496-s interval; the mode transition from spots

to rings takes 0.0936 s, and from rings to spots takes 0.1560 s. The complete cycle

of mode transitions repeats every 0.3432 s.

• At γi = 28, we also found the consecutive mode transition between the thin (first

snapshot) and thick (second snapshot) stripes. Meanwhile, patterns with exchanged

contrast can be observed, e.g., the second and fourth snapshots. Here, the complete

cycle of mode transitions (thin to thick stripes, then return to thin and thick stripes

at shifted positions) repeats precisely every 0.5926 s (15.9434 s to 16.536 s is a

complete cycle).
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Figure 5.17: With fixed D2 = 2.6 cm2, simulation snapshots for three distinct γi = 46,
38 or 28 of the SR2009s model with PSP described by the alpha-function. LSA predicting
curve for each γi setting is listed in the first column. Simulated cortical tissue has a
side-length 10 cm of 40×40 grid.

In Figs. 5.16 and 5.17, by increasing D2 or decreasing γi, we see that the enhanced

Turing or Hopf instabilities will break the temporal stability of the H0 mode of the Turing

patterns, leading to localised oscillations and mode transitions. Fig. 5.18 clearly demon-

strates that the Turing peak at a nonzero wavenumber is raised by increasing D2, and the

Hopf peak at the zero wavenumber is raised by decreasing γi. LSA also predicts a single

Turing instability when γi ≥ 42 and a TH instability when γi ≤ 38.

To better examine the pattern dynamics relating to the choice of D2 and γi, we made

an animated gallery3 with 64 windows showing individual simulations for a specific (D2, γi)

coordinate in Fig. 5.18. Fig. 5.19 shows four frames of the animation. The first column

of the frame (D2 = 2.6) shows the H0 mode is temporally stable when γi ≥ 50. When

38 ≤ γi ≤ 46 meanwhile D2 ≥ 3.0, the mode dynamics are chaotic, the observed patterns

of which do not have significant periodicities (the gif animation shows better visibility).

When the Hopf instability coincides with the Turing instability (see the last two rows of

Fig. 5.18), LSA predicted TH mode is manifest with dynamical stripes in simulations. Fig.

5.19 exhibits cortical simulations driven with one-off noise. We also tested the robustness

of the cortical dynamics with continuous noise4, the results of which show little difference

with the one-off noise simulations.

The cortical H0 patterns with localised oscillations is similar to the so-called “twinkling-

eyes” patterns, first seen in a reaction–diffusion experiment involving the chlorite-iodide-

malonic acid (CIMA) reaction in a thin layer gel reactor [37]. Yang et al. argued that

3The 10-s animation (last 10 s of the 20-s simulation) can be downloaded as a .gif file at http:

//www2.phys.waikato.ac.nz/~kw89/spots_noiseless.gif
4The 10-s simulation with contineous noise can be downloaded as a gif animation file at http://www2.

phys.waikato.ac.nz/~kw89/spots_noise.gif

http://www2.phys.waikato.ac.nz/~kw89/spots_noiseless.gif
http://www2.phys.waikato.ac.nz/~kw89/spots_noiseless.gif
http://www2.phys.waikato.ac.nz/~kw89/spots_noise.gif
http://www2.phys.waikato.ac.nz/~kw89/spots_noise.gif
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Figure 5.18: Gallery of LSA predicting curves for the SR2009s model with PSP described
by the alpha-function for eight values of inhibitory diffusion D2 (horizantal axis) and eight
inhibitory rate-constant γi (vertical axis), the subcortical drive s is fixed 0.1. The solid-
black and dashed-red curves are respective real and imaginary parts of the dominant
eigenvalues over the scaled wavenumbers (q/2π) ranging from 0 to 1 waves per cm. All
subplots share the same y-axis scale from -25 to 13.

this oscillatory Turing pattern is a mixed-pattern, which originates from following possible

mechanisms:

• Resonance between a Turing mode and its subharmonic [154]

Yang et al. coupled two identical Brusselator systems to represent two thin layers of
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Figure 5.19: Four frames (continued in Fig. 5.20) of the animated cortical gallery con-
taining 64 separated cortical simulations at various (D2, γi) coordinates shown in Fig.
5.18.
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Figure 5.20: (Continued from Fig. 5.19) Each simulation runs on a substrate with 10-cm
side-length of 40×40 grid. The cortical model is fed with one-off noise.
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gel meeting at an interface which allows both horizontal and vertical diffusions. As-

suming either Brusselator system possesses a single Turing mode, by adjusting the

coupling rate for the vertical diffusion, the two-layer system may exhibit two over-

lapped Turing structure with their respective wavenumbers. Twinkling-eye patterns

are found when the basic Turing mode (with larger wavenumber) lies just above the

onset point and the sub-Turing (with smaller wavenumber) is also close to onset

but within the Hopf domain where the imaginary parts of the dominant eigenvalues

in the vicinity of the zero wavenumber are positive. When the basic mode is too

far above the onset, the Turing pattern is striped, which agrees with our nonlinear

pattern analysis for the Brusselator (see Fig. 5.3) and the cortical (see Figs. 5.13

and 5.14) models.

• Turing–wave interaction [152]

Yang and Epstein linearly coupled two extended Oregonators [29] to represent a two-

layer Belousov-Zhabotinsky (BZ) reaction. One layer possesses a Hopf instability,

the other layer supports a Turing instability. The coupling produces a Turing–wave

instability in which oscillating Turing spots are arranged as a hexagonal lattice.

Yang’s theories imply that the oscillatory Turing patterns may have an oscillation

source, from either the Hopf or the wave instabilities. In Sec. 5.2.4, we also introduced de

Wit’s theories for subharmonic instabilities which also suggest a Hopf oscillation source.

However, neither of the oscillation sources is identified in our oscillatory H0 patterns for

the cortical model. Fig. 5.18 shows that the cortical model owns only a single Turing

mode and a damped Hopf mode when γi ≥ 42, whereas the simulations reveal another

temporal instability (see supplied animation file). We argue that the Turing instability

may destabilise the damped Hopf mode through nonlinearities.

On the other hand, we also noticed that the H0 structure is well formed when γi is

sufficiently large (see Fig. 5.19, row γi = 58). When D2 is increased, LSA predicted

Turing peak will slightly shift towards a larger wavenumber, thus giving rise to smaller

wavelength, which visually denotes higher spot-density in the simulated patterns. From

Fig. 5.19, we see that the H0 structure cannot be maintained if Turing or Hopf instabilities

are too strong.

Unfortunately, we cannot apply the current MSE scheme to the “twinkling-eye” anal-

ysis for the cortical model, due to lack of a determined oscillation source. The structure

ansatz of the MSE is a linear combination of LSA predicted modes. For the cortical

model, LSA predicted single Turing mode leads to only hexagonal amplitude equations.

Moreover, we cannot combine Hopf and Turing modes as an ansatz for the cortical model

since the homogeneous oscillation of the Hopf instability is conflict with observed localised

oscillations. On the other hand, to our knowledge, the wave instability is only available

to the fast-soma SR2009f model of the cortex (see Fig. 3.6(c) and (d)), but unavailable to
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the SR2009s mode (slow-soma model). In principle, LSA predicts damped wave modes.

We have discussed with de Wit possible reasons for the mismatches between the LSA and

simulations, but she also had difficulty suggesting possible mechanisms. The analysis of

the oscillatory H0 patterns of the cortical model may inform our future research.

5.3.2 Turing–Hopf mode of the cortical model

In Sec. 3.4, we introduced a TH mode of the SR2007 model for the cortex. Shown in Fig.

3.10, by tuning D2 and γi to cross their respective bifurcation thresholds, LSA predicts

simultaneously raised Turing and Hopf instabilities, thus leading to oscillatory Turing

patterns with ultra-slow envelope frequency. To derive the TH mode amplitude equations,

we simply use the structure ansatz Eq. (4.33) with the cortical critical conditions of a

CTHP for the Amp solving algorithm in Maple. The amplitude equation for any pattern-

forming system has the universal expression only depending on the mode it describes. So

the TH mode amplitude equations for the cortical model are structured the same as Eqs.

(5.17a, 5.17b).

The cortical ultra-slow wave is modulated by both Turing and Hopf instabilities. The

envelope frequency W can be derived by applying a pair of ansatz T = TMs and H =

HMse
iWt to the amplitude equations:

W = H2
MsCHHi + T 2

MsCHTi (5.36)

in which expressions for H2
Ms and T 2

Ms refer to Eqs. (5.20a, 5.20b). Given the (D2, γi)

settings in Fig. 3.10, numerical calculation yields W = 0.9592, which is equivalent to

0.1527 Hz. This theoretical prediction of the envelope frequency is in good agreement

with observation.

From the mode stability diagram in Fig. 5.21, we see that the mixed mode is unstable

when γi > γc
i = 30.94, while the pure Turing is the only stable mode. The Hopf mode

increases its stability dramatically when γi < γci . Although Fig. 5.21 predicts that the

mixed mode is stable when γi < γc
i , the strong Hopf mode may collide with the mixed

mode, thus giving rise to Hopf dominated chaotic turbulence. The experiment shown in

Fig. 5.22 illustrates such a chaotic mode of the cortical model when γi is a long way above

the bifurcation threshold (γi − γc
i < 0, cortical Hopf bifurcation is subcritical).

The TH mode of a pattern-forming system is normally introduced by the interaction

between Turing and Hopf instabilities. The TH mode may also evolve to a chaotic state

if the TH instability collides with a strong Hopf instability. We found that the emergence

of the TH mode for the cortical model does not necessarily require both Turing and Hopf

LSA peaks to be positive; sometimes the TH mode can be triggered by a single Turing

instability. Fig. 5.23 shows a series of cortical simulations starting from eight cortical

steady-states (SS), extracted from different branches of the subcortical-tone driven SS-

curve. For each SS, we deliberately tuned the bifurcation parameters D2 and γi to reach
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Figure 5.21: Mode stability of the TH mode amplitude equations for the SR2007 model
when D2 is fixed at 1 cm2, subcortical drive s = 0.2989 (see Fig. 3.10). See the description
of Fig. 5.5 for figure properies.

Figure 5.22: LSA predicts that sufficiently small inhibitory rate-constant γi raises both
Turing and Hopf instabilities. Turing–Hopf mode interacting with a strong Hopf in-
stability leads to a chaotic pattern: the time-series of the centre grid shows turbulent
oscillations; a snapshot of the pattern formed at 40 s does not have identifiable periodic
spatial structures, thus being spatiotemporally unstable.

a specific coordinate (DSSo
2 , γSSo

i ) in which the LSA predicts a single Turing instability

coupled with a damped Hopf instability, and both instabilities have the same absolute

growth rate. According to LSA predictions, all SS will have the same instabilities, and

may incur a Turing bifurcation. However, the simulations reveal that the SS at the top-

and bottom-branches have completely different dynamics: Simulations starting from A to

D at the bottom-branch exhibit chaotic dynamics; while from E to H at the top-branch

evolve to Turing patterns.

To better understand the mode stability of the cortical model for the SS in the region

from A to D, we derived their respective TH mode amplitude equations. By fixing γi at

γSSo
i (SS stands for a steady-state in Fig. 5.24), the TH mode stability with respect to D2

is presented in Fig. 5.25. In common, the Turing mode experiences a “turning” at the

critical point DSSc
2 . Scanning from A to D plots, the “turning” point moves towards the
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Figure 5.23: 400-s simulations of the SR2007 model starting from eight different steady-
states (SS) indicated in Fig. 5.24. At each SS, the bifurcation parameters are tuned to
specific DSSo

2 and γSSo
i so that the LSA-predicting curve shows Turing peak at 1 (i.e.,

Re(λ) = 1 at q 6= 0) and Hopf peak at −1 (i.e., Re(λ) = −1 at q = 0). In the LSA-
predicting curves, solid-black and dashed-red curves are respective real and imaginary
parts of the dominant eigenvalues. So eight steady-states are predicted to have the same
linear instabilities for Turing and Hopf. The second column is the 100-s space-time strip-
chart extracted from the centred-vertical axis of the simulated cortex with a side length
20cm and 60×60 grid-points. The third column is the time-series of a centred gird-point
at (30, 30) of the cortical substrate. The fourth column is a snapshot of the pattern
formed at 400 s.

left hand side, which implies that increasing the subcortical drive at the bottom branch

lowers the Turing threshold. Amplitude equations show that the Turing mode becomes

dominant when D2 > DSSc
2 . In the vicinity of D2 = DSSc

2 , stable TH mode (black and

grey curves are both solid) collides with the Hopf mode (red), thus predicting a possible

chaotic mode.
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i for simulations at different steady-states (SS) in Fig.

5.23. The mid-branch of the SS curve is marked in grey, indicating the SS here are highly
unstable (very small D2 may cause a Turing instability).
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Figure 5.25: Mode stabilities for the steady-states in the region from A to D. The mode
stability, derived from the TH mode amplitude equations, is examined by fixing γi at γSSo

i

(see Figs. 5.23 and 5.24) and varying D2 from 0.4 to 1 cm2. Mode stability is represented
by solid (stable mode) or dashed (unstable mode) curves. DSSc

2 (SS stands for A, B, C or
D here) is the Turing threshold for each SS.

Moreover, increasing D2, the mode stability analysis suggests a very narrow stable

TH region after the interacting TH with Hopf modes. At large D2, the TH mode will

be replaced by the stable Turing mode. To test these hypotheses, we ran a series of

simulations with D2 increased up to 180% over DSSo
2 and γi fixed at γSSo

i . Examining

from Fig. 5.26(a) to Fig. 5.27 (c) reveals that increasing D2 does induce a transition from

TH mode to pure Turing mode.

On the other hand, we also investigated the TH mode stability with respect to the
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Figure 5.26: Pattern simulations of the excitatory firing-rate Qe for the SR2007 model
starting from the steady-states in the range from A to D shown in Fig. 5.24 with increased
D2 from DSSo

2 by (a) 60%, (b) 70% and (c) 80% (see Fig. 5.27) meanwhile fixing γi at
γSSo
i . (Continued in Fig. 5.27.)

Hopf parameter γi. Fig. 5.27(d) illustrates a case that D2 is maintained the same level

as in Fig. 5.26(a), but γi is increased by 5% over γSSo
i : A, B and C all evolve to Turing

patterns as expected due to reduced Hopf instability. Surprisingly, cortical evolution

from D returns to the steady-state, which is completely against the LSA prediction for a

strong Turing instability. To our knowledge, there is little publications referring to this

phenomenon. We argue that the current (D2, γi) settings may lead the two instabilities to

completely cancel with each other. This steady-state can be easily broken by increasing
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Figure 5.27: (continued from Fig. 5.26) In (d), we increased D2 by 60% and γi by 5%.
In (e), we maintained D2 the same as in (d) and only increased γi by 1%. In (f), we
maintained γi the same as in (d) and increased D2 by 70%.
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slightly either the Hopf instability (see Fig. 5.27(e)) or the Turing instability (see Fig.

5.27(f)), which will consequently prompt a dominant mode.

In addition, the hexagonal structure shown in the last row of Fig. 5.26(a) has also

attracted our attention. We examined the pattern dynamics in the last few seconds of this

400-s simulation. The upper panel of Fig. 5.28 reveals “twinkling-eye” patterns, which are

very similar to Yang’s observations on chemical reaction–diffusion systems [152,154]. The

2D Fourier spectrum shows that the pattern periodically switches the spatial structure

between solo- and dual-hexagon. The spatial Qe pattern has three different localised

structures: light blue (intermediate firing-rate) and dark blue (low firing-rate) spots, and

red (high firing-rate) background. The 20-s time-series reveal that the red background

oscillates homogeneously, which is also in phase with the blue spots at the intermediate

firing-rate region but out of phase with the low firing-rate spots. Thus we can see spots

“blink” alternately. The Fourier spectrum in panel (d) shows the high firing-rate zones

(i.e., red background) oscillate two times faster than other pattern components, indicating

that the pattern has two characteristic wavenumbers as well as two frequencies, which is

very similar to the subharmonic instability of a Turing–Hopf mode (see Eq. (5.35)).

5.3.3 Discussion

In the second half of this chapter, we investigated the pattern dynamics of the Waikato

cortical model, and found the appropriate model parameter settings to form specific spa-

tiotemporal patterns.

The cortical model is expected to exhibit similar dynamics to a chemical reaction–

diffusion system: The interaction between the excitatory and inhibitory neurons is analo-

gous to the competition between activator and inhibitor of the chemical reaction–diffusion

model, e.g. the Brusselator. The gap-junction strength between the inhibitory neurons

also plays the same role as the diffusion terms in the Brusselator, which allows a spatial

evolution of the patterns. Consequently, it is reasonable that the cortical model shares

the same pattern dynamics with the chemical reaction–diffusion system. For the cortical

model, the Hπ (Figs. 5.12 and 5.13(a)), stripes (Fig. 5.11(A)) and H0 (Fig. 5.15) modes

of the Turing patterns plus TH (Fig. 3.10) and chaotic (Fig. 5.22) modes are all found to

exist in our investigations.

Besides, the strong nonlinearity of the cortical model leads to richer pattern dynamics

than the Brusselator model. The cortical model possesses a unique S-shaped steady-state

distribution with respect to subcortical drives, the top-, mid- and bottom-branch of which

have distinct dynamics in

• Mode dominance (see Fig. 5.11)

The top-branch dominates the Hπ mode, and the mid- and bottom-branches domi-

nate the stripes mode of the Turing patterns;
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Figure 5.28: Pattern dynamics for the SR2007 model at steady-state D with (D2, γi)
= (160%DSSo

2 , γSSo
i ) (see the last row of Fig. 5.26(a)). Panel (a) shows the evolution of

the cortical Qe firing-rate pattern from 397.40 to 400 s, and the corresponding 2D Fourier
spectra are shown in panel (b). Panel (c) shows 20-s Qe time-series of 10 equally spaced
grid-points down the vertical mid-line of the cortical grid. Qe oscillates in three regions:
Top, high-firing zone ranging from 10 to 18 s−1; Mid, intermediate-firing zone ranging from
5 to 13 s−1; Bottom, low-firing zone below 6 s−1. Panel (d) measures the contribution of
the frequency components to the total spectral power for three representative Qe time-
series from three regions.
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• Hopf instability sensitivity (see Fig. 5.23)

The bottom-branch is more sensitive to the Hopf instability than the top-branch,

and the mid-branch is highly unstable to the Turing or wave instabilities.

• Also, presence of turning point in steady-states enhances instabilities.

From Figs. 5.12 and 5.13, we see that the stability of the Hπ mode for the cortical

mode has stronger dependency on the Turing parameter D2 than the Hopf parameter

γi. Once the model experiences a Turing bifurcation, the choice of γi has little effect on

forming the Hπ structure; in comparison, increasing D2 from its Turing threshold to a

large value, a well-structured Hπ mode will gradually be taken over by stripes. It is also

noticed that the Hπ mode can exist in the bottom-branch close to the right turning point

where both the subcortical drive and D2 are sufficiently large (see Fig. 5.27(f)).

The hexagonal amplitude equations for the SR2007 model shows no evidence of the

H0 mode (see Fig. 5.14). The H0 mode, also referred as reentrant Hπ mode, is found

in the SR2009s model (see Fig. 5.15). Increasing the Turing or Hopf instabilities will

induce localised oscillations to the H0 mode, thus leading to the oscillatory H0 patterns.

However, the source of the oscillation is unclear since the linear stability analysis (LSA)

shows a highly damped Hopf temporal instability (see Fig. 5.16).

On the other hand, once the Turing and Hopf instabilities are both enhanced suf-

ficiently, a stable TH mode will occur. The TH mode amplitude equations provide a

more accurate temporal measurement of the envelope frequency for the pattern evolution

than the LSA, and provide a better understanding of the TH mode stability relating to

a bifurcation parameter. Our TH mode analysis are in agreement with simulations (Fig.

5.23) except for the case seen in the last row of Fig. 5.27(d) where the pattern evolution is

quiescent and the system returns to the steady-state despite the fact that both amplitude

equations and LSA predict a strong Turing instability. We argue that the system may

not evolve if intrinsic instabilities are completely cancelled with each other.

Figure 5.16 signals that a moderately induced Hopf instability will temporally desta-

bilise the H0 mode. With the same mechanism, the Hπ mode shown in Fig. 5.27(f) can

also be introduced with temporal instability for localised oscillations, evident in Figs.

5.26(a) (last row) and 5.28. Interestingly, both temporal Hπ and H0 instabilities are only

induced by a damped Hopf instability.

In Fig. 5.28, the 2D Fourier spectrum shows that the oscillatory Hπ mode has two

dominant hexagonal spatial periodicities in different sized wavenumbers. At 397.40 s, the

double hexagonal structures are clearly unveiled. In the 2D Fourier spectrum, the internal

hexagon may be induced from the Hopf instability since it waxes and wanes over time.

Commonly a system possesses a single dominant wavenumber5. To obtain a multiple-

wavenumber system, Yang et al. [152,154] linearly coupled two identical chemical systems

5A pattern can have multiple wavevectors with the identical magnitude (wavenumber)
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with distinct wavenumbers and instabilities. The ratio between two wavenumbers and the

total instability can be adjusted via the coupling rate. According to Yang’s theories, the

“twinkling-eye” pattern is a wave instability, which can be produced by either modulating

the Turing instability of a subsystem with the Hopf instability of the other subsystem or

maintaining a dominant Turing instability meanwhile mixing a sub-Turing (with a smaller

wavenumber) with the Hopf instabilities. To our understanding, Yang’s twinkling-eye

pattern essentially results from the interaction between two coupled systems, and its

spatial structure is modulated by the coupling rate. In Yang’s simulations, the model

shows stable multiple wavenumbers, which stay fixed over time.

Why do our our “twinkling-eye” patterns (Fig. 5.28) have a temporally unstable

wavenumber? Does such wavenumber belong to a subsystem of the cortical model? Al-

though the cortical model can be separated to three parts: cortico-cortical, intra-cortical

and soma models, they are coupled nonlinearly with dynamical coupling-parameters. For

example, the coupling-parameters between intra-cortical and soma models are ρeψeb and

ρiψib, in which ψeb and ψib are functions of Ve and Vi respectively. Qe, a function of Ve, also

plays as a coupling-parameter connecting intra-cortical and cortico-cortical models; mean-

while it receives feedbacks from excitatory membrane potentials from the soma model. We

have tried to decompose the cortical model into subsystems. By examining the eigenvalue

dispersion curves of these subsystems, we did not find the characteristic wavenumber. We

propose a hypothesis that the second wavenumber is generated spontaneously from the

nonlinearity in the cortical model.

Mathematically, the wavenumber comes from the spatial derivative – the Laplacian

operator. The cortical model has two types of spatial derivatives: one in the soma model

and the other in the cortico-cortical model. We found that mismatches between LSA

prediction and simulations are mostly from the effect of the spatial derivative in the

cortico-cortical model. To remove this Laplacian operator, we simply force v to zero,

which will cut-off the long-range wave propagation. Then LSA shows a very strong Turing

instability, which appears to be labyrinth pattern with very thin stripes arranged in high

density. It is biologically unreasonable for a cortical system to have only local connections,

so we need to retain the spatial derivative in the cortico-cortical model.

The Waikato cortical model is a biological system providing theoretical guidance for

brain dynamics, it is also a complicated pattern-forming system exhibiting comprehensive

pattern dynamics: Hπ, stripes, H0, TH, travelling wave, chaotic, Hπ-Hopf and H0-Hopf

modes. Without adjusting the model structure, these pattern dynamics can be observed

by tuning the balance between Turing and Hopf instabilities.

In the next chapter, we will tune the model dynamics for a representation of the

anaesthetised cortex, in order to have a better understanding of the mechanism of slow-

waves observed from the comatose cortex.



Chapter 6

A gap-junction modulated Turing–Hopf

mechanism for anaesthetic slow-waves

Electroencephalogram (EEG) recorded from non-REM (NREM) sleep and general anaes-

thesia are characterised by large amplitude slow-waves. Tracking the properties of such

slow-waves from consciousness to unconsciousness may help us to identify the effects of

the anaesthetic and offer an insight into the mechanisms of general anaesthesia. EEG

coherence is considered to be a qualitative measure of the functional cooperation between

brain regions. By examining EEG recorded from volunteers undergoing propofol anaes-

thesia, we observed a drop in EEG coherence during the slow-wave oscillations, mainly at

the frontal cortex. However, the mechanisms of such reduced coherence, and the origin

of slow-wave oscillations in the unconscious state, are still unclear.

A recent theoretical study by Steyn-Ross et al. [116] forced the pre-developed cortical

model to describe the anaesthesia-induced transition from consciousness to unconscious-

ness. At the modelled unconsciousness state, the intermediate gap-junction coupling

originates a codimension-2 point (CTHP) where competing Turing and Hopf instabili-

ties coexist (TH mode), signifying chaotic slow-wave oscillations arising spontaneously in

the cortical simulation. At this brain state, Steyn-Ross et al. also found that neuronal

synchronisation across the cortex drops dramatically compared to its high level during

consciousness.

In this chapter, we will first review Steyn-Ross et al.’s anaesthesia model of the cortex

and its pattern dynamics with respect to gap-junction coupling strength. Then, we will

present our clinical study for analysing EEG data during deep anaesthesia to test the

model prediction.

6.1 Anaesthetic unconsciousness

Propofol induced anaesthesia is a sleep-like stage that is signposted by the propagation

of large amplitude, slow oscillation of EEG activity of the cortex. Although it remains

unclear how these slow oscillations are produced, deep anaesthesia is commonly used to

model slow-wave sleep.
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Sleep is modulated by a complex system of brainstem modulators. For ease of mod-

elling the sleep cycle, Steyn-Ross et al. [112] assumed that there are just two neuro-

modulators controlling cortical state in a transition from awake (REM sleep) to slow-wave

sleep (SWS):

• Adenosine, one of the “fatigue agents”, its accumulation intends to suppress corti-

cal activity through increases in potassium leak-current, thus lowering the neuronal

resting potential and making cortical neurons less likely to activate [41].

• Acetylcholine (ACh), reported to have direct influences on depolarising cortical

pyramidal cell (excitatory) membrane potentials [41]. ACh release is greatest during

wake, and is reduced during slow-wave sleep (SWS) [131].

Both adenosine and ACh are the body’s self-modulation to enter into the sleep stage.

On the other hand, anaesthetic unconsciousness is a manually induced deep sleep. Gen-

eral anaesthetic agents potentiate neuronal inhibition by prolonging the opening of GABA

(γ-ambinobutyric acid) channels, increasing the influx of chloride ions, causing the neu-

ron to become hyperpolarised [19]. Although there is ongoing debate about the exact

mechanisms of general anaesthetic agents at the molecular level, it is widely acknowl-

edged that, for example, the anaesthetic propofol tends to increase the area under the

inhibitory post-synaptic potential (IPSP) by prolonging the duration without increasing

its peak amplitude, thus increasing the level of inhibition within the brain [108].

6.2 The effect of gap-junctions on cortical stability

Unconsciousness is characterised by low-frequency, large-amplitude traveling waves in

scalp electroencephalogram (EEG), which is also observed in generalised seizure man-

ifest with the synchronised spike-wave discharge [43]. Distinct from chemical synap-

tic connection, gap-junctions allow direct electrical communication between adjoining

neurons, thus enhancing synchronous behaviour is likely to relate to the emergence of

seizure (expression of gap-junctions is often found to be higher after clinically induced

seizures than before [134]); conversely, reducing gap-junction conductance may suppress

seizure [110,121]. It has been acknowledged that gap-junction plays an crucial role in the

cortical stability [117, 119, 121]. However, it remains an open question as to whether or

not gap-junctions are necessary for neuronal synchronisation [25]. The debate arises from

the contradictory experimental observations from different research groups: It has been

observed that open gap-junctions aid synchronisation of sleep spindles [76, 126], while

opening gap-junctions via the stimulant modafinil is also found to increase vigilance [5].

There is already some evidence that induction of anaesthetic drugs (such as propofol

and thiopental) depress intercellular communication thus mediating the hypnotic effects

by altering gap-junctional gating [53]. Furthermore, Jacobson et al. [51] suggests that
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the hypnotic effects of anaesthetic drugs may be moderately enhanced by gap-junction

blockade. In therapeutic seizure, some report that gap-junction blocking agents suppress

seizure by limiting the spread of synchronised activities [33, 52, 83], while others pro-

vide evidence that increased gap-junctional communication plays an intrinsic role in the

epileptogenic process [6, 95]. The role of Cx36 gap-junction on anticonvulsant effects is

examined in [135]; comparison between pharmacological (mefloquine) and genetic (Cx36

knockout mice) manipulation of Cx36 gap-junctions shows that Cx36 gap-junctions may

not directly promote seizure activity.

Overall, it seems intuitively reasonable that opening gap-junctions will reduce input

resistance of the neuron and allow rapid information exchange, thus enhancing synchrony

between neurons and promoting seizure activity. Experimental studies, as introduced,

however, have reported conflicting results. These discrepancies highlight our inadequate

understanding of the role of gap-junctions.

Does opening gap-junction promote or inhibit neuronal synchronisation? To help ad-

dress this conflict, in Sec. 3.1 we have presented a physiologically-motivated cortical model

that comprises neuron groups communicating via chemical (neurotransmitter controlled)

and electrical (gap junctions) synapses simultaneously. In the following sections, we will

show how coupling via gap junctions can be involved in the slow-wave dynamics featured

in general seizure and anaesthetic coma.

6.3 Modelling anaesthesia

Consistent with the discussion in Sec. 6.1, Steyn-Ross et al. [116] modelled propofol effect

by scaling the area of the IPSP response with induced anaesthetic drug concentration

without changing the IPSP peak amplitude, thus the following mappings are introduced

to the intra-cortical equation (3.7) and soma equation (3.21):

γi → γ0
i /λi

ρi → λiρ
0
i

(6.1)

An increase in propofol concentration corresponds to an increase of a dimensionless scale

factor λi, which will decrease the inhibitory rate-constant γi but enhance the synap-

tic strength ρi. Such balance between γi and ρi allows the area of the IPSP response

grow linearly with propofol concentration while ensuring that the IPSP peak remains

unchanged.

In addition, Steyn-Ross et al. introduced a resting potential offset ∆V rest
e :

V rest
e → V rest

e + ∆V rest
e (6.2)

acting as an excitatory drive from subcortical sources.

As a result, the cortical steady-state is determined in a domain of anaesthetic effect

λi and resting potential offset ∆V rest
e .
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6.4 Cortical stability

In order to locate the steady-states for the cortical model, we set all time- and space-

derivatives in the differential equations to zero, and set the noise sources φsc
eb(t) = 0, then

compute numerically to locate the steady-state firing rates (Qo
e, Q

o
i ) of the excitatory and

inhibitory neuronal populations as a function of ∆V rest
e and λi. The resulting 3-D manifold

of steady-states is displayed in Fig. 6.1.

Figure 6.1: Manifold of equilibrium states Qo
e for homogeneous model cortex. Anaes-

thetic effect controller λi and soma membrane potential offset ∆V rest
e . Multiple stationary

states exist with the yellow curve bounding the upper and lower surfaces. Red-green-blue
curve is a reprentative distribution of multiple steady states for varying anaesthetic inhi-
bition at a constant cortical excitation ∆V rest

e = 1.5 mV (vertical slice plot shown in Fig.
6.2). (Figure reproduced from [116])

Figure 6.1 shows that the excitatory neuronal steady-state firing rates Qo
e of the model

forms a reversed S-shape distribution with the upper branch corresponding to an activated

cortical state identified as awake (or REM sleep), and the lower branch corresponding to

a suppressed cortical state identified as propofol anaesthetic induced coma (or SWS)

[112, 121]. In this study we investigate the cortical dynamics at selected “awake” and

“coma” coordinates from a vertical slice Fig. 6.2 of the multiple steady-states domain in

Fig. 6.1 at a constant cortical activation ∆V rest
e = 1.5 mV. By increasing the concentration

of propofol anaesthesia λi, the model describes the anaesthesia-induced transition from

consciousness to unconsciousness.

In Fig. 6.2, two contrasting states for the homogeneous model cortex are chosen: An

awake state from the upper manifold branch at anaesthetic effect λi = 1.0; and a coma

state just beyond the manifold branch at λi = 1.018.
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Figure 6.2: The steady-state firing rates Qo
e as a function of varying anesthetic inhibition

λi at constant cortical excitation ∆V rest
e = 1.5 mV. The upper, high-firing and lower, low-

firing branches (solid curve) are considered to be “awake” and “coma” states respectively
with “coma” state being associated with anaesthetic-induced unconsciousness. Dashed
curve indicates an unstable branch where a steady-state has the potential to jump to
the upper or lower stable branch. Upper and lower marked circles indicate references
at λi = 1.0 and 1.018 on awake and coma branches respectively. (Figure reproduced
from [116])

The model cortex is represented as an Nx×Ny = 120× 120 square grid of side length

6 cm, joined at the edges to provide toroidal boundaries. The cortical sheet is initialised

at the homogeneous steady-state corresponding to a specified value of cortical activation

∆V rest
e and anaesthetic effect λi.

In the present work, we investigate cortical dynamics at “awake” and “coma” (ini-

tialised from circled points in Fig. 6.2) brought about by stepped increase in the gap-

junction conductance D2. This increase in conduction of the electrical synapse may also

modulate neuronal synchrony that will be explored via the coherence measure.

6.5 The measure of EEG phase-coherence

In this study, we tracked coherence of modelled EEG across the cortical substrate before

(λi = 1) and after (λi = 1.018) propofol anaesthesia to identify the theoretical effects of

the anaesthetic

EEG coherence is considered to be a qualitative measure of the degree of association or

coupling between two EEG channels, which can be extended to measure the functional co-

operation between two brain regions [87], and reveal subtle changes in brain dynamics. For

example, coherence has been utilised to investigate brain cognition [124], maturation [61],

spatial tasks [105] and various clinical diagnoses of brain disease [17, 18, 98]. EEG coher-

ence between two electrode sites is usually computed by one of two methods: the Fourier
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transform (FT) cross spectrum [1], or the Hilbert transform (HT) instantaneous phase

difference [80] between two EEG time-series. Since EEG represents the activities of non-

linearly interacting neuronal populations, it is neither truly linear nor stationary. Thus

it may be unreliable to use FT-based methods for EEG analysis since these assume that

the time-series is stationary [67, 161]. The Hilbert transform [45, 123] circumvents the

requirement for stationarity by generating an analytic signal to extract the instantaneous

frequency and phase angle from the original nonstationary signal. The mean of the phase

divergence between two time-series yields an index characterising the phase synchronisa-

tion between them. The advantages of the HT over the traditional FT-based approaches

have been appreciated in many studies of cortical neuronal synchronisation under differ-

ent circumstances such as Parkinson’s disease [125], abrupt seizure [90], sleep [155] and

anaesthetic coma [60].

6.5.1 Hilbert transform

A real time-series X(t) can be transformed to a complex function known as the analytic

signal:

X̂(t) = Xr(t) + iXi(t) (6.3)

where Xr(t) is the original series X(t) and Xi(t) is the Hilbert transform of X(t) [60,80].

The instantaneous phase of X(t) is computed by:

φ(t) = tan−1

(
Xi(t)

Xr(t)

)
(6.4)

To quantify the phase synchronisation between two time-series Xm(t) and Xn(t), an

index presented by Steyn-Ross et al. [116,121] is used:

R(m,n) = |〈ei[φm(t)−φn(t)]〉| (6.5)

The mean phase coherence R measures the time-averaged phasor for the angular distri-

bution of the phase difference between the two time-series. The index R lies between 0

to 1, where 1 represents perfect phase coupling.

A Matlab implementation for computing the mean phase coherence between two

signals reads as follows [121]:

% Compute analytic (complex) signals for Xm and Xn
Xmc = hilbert(Xm); Xnc = hilbert(Xn);

% Extract instantaneous phase angles
phi Xm = angle(Xmc); phi Xn = angle(Xnc);

% Measure the average phase-coherence
R = abs(mean(exp( 1i*(phi Xm - phi Xn))));

Here, we imagine that the vertical mid-column of the cortical grid is attached to a

series of electrodes, located at positions 1, 2,. . . , 120. Let Xm(t) and Xn(t) be a pair of
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EEG recordings respectively from the electrodes m and n down the middle of the cortical

grid. A 120-channel EEG recording has a total of 120 × 120 pairs of R values, but half

of these are redundant since R(m,n) = R(n,m). The coherence matrix is represented as an

m × n = 120 × 120 square grid with the unit diagonal (R(m,n) = 1 when m = n), which

separates the matrix into two symmetrical triangles (R(m,n) = R(n,m)). Practically, we

need only examine the upper triangle (i.e., R(m,n)) of the R matrix. See Figs. 6.3(e) and

6.10 for an illustration of the structure of the coherence matrix.

For coherence calculations, if a given time-series is longer than 5 s, we will use a

5-s moving window with 1-s overlap, and follow Mormann et al. [80] and Steyn-Ross et

al. [116,121] in applying a Hann window, retaining only the middle 80% of each segment

to minimise edge distortions from the Hilbert transform. The final determined coherence

is the average of those obtained from windowed signal segments.

6.6 Simulation results

The numerical simulation demonstrates 20-s evolution of the cortex starting from homo-

geneous “awake” and “coma” respectively. In this section, we will investigate the effect

of variation in the strength of inhibitory diffusion D2 on each of the cortical states.

6.6.1 Effect of inhibitory diffusion on “Awake” cortex

Pathological brain: An instability takes precedence

Strong inhibitory diffusion D2 = 0.8 cm2 (bottom row in Fig. 6.3) reveals an extremum

in which the homogeneous cortex has evolved to a relatively-frozen (patterns have little

temporal evolution) Turing pattern with maze-like high- and low-firing activities. Such

Turing dominant cortical status is identified to be pathological, since the frozen pattern

blocks information flow to distinct cortical areas. At the other extreme, weak inhibitory

diffusion (see D2 = 0.1 cm2 at top row) leads to Hopf dominated global oscillations (phase-

coherence map shows that evolution at distinct grid-points is highly synchronised). Such

unrestrained Hopf instability manifest with globally synchronised oscillation over time

is identified as seizure [121]. To conclude, a cortical state either dominated by Hopf

oscillation with highly synchronised global oscillation, or frozen Turing structure with

desynchronised standing waves are two pathological states of the brain.

Inhibitory diffusion modulates the balance between Turing and Hopf instabilities

It is noticed from Fig. 6.3(a) that weak D2 = 0.1 shows a Hopf instability at up-state plus

a damped-Hopf at down-state, while the strong D2 = 0.8 shows not only Hopf at up-state,

also a Turing instability (instability peak at q 6= 0) at down-state. Scanning column (a)

from top to bottom, we can find the cortical stability at up-state has little change, but
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at down-state stepped increases of D2 favour the occurrence of a Turing instability. From

the time-series in column (c), it is clear that the Hopf oscillation is gradually suppressed

by Turing structure with increasing D2. Thus the variation of D2 leads to a competition

between Turing and Hopf modes and emergent spatiotemporal pattern dynamics.

Healthy brain: Balanced Turing and Hopf instabilities

In the awake cortical simulations of Fig. 6.3, when the gap-junction strength is suffi-

ciently large (D2 = 0.7 cm2), linear stability analysis of the up-branch steady-state at λi

= 1 in Fig. 6.2 predicts whole-of-cortex Hopf oscillations; while the down-branch steady-

state shows a damped-Hopf at wavenumber q = 0 plus a damped-Turing at q 6= 0.

The time-series and strip-chart depict a stable Turing–Hopf mode evolution where the

cortical Turing patterns oscillate in small amplitudes. Such Turing-interacted Hopf slow-

oscillation has been characteristic of a resting state of the cortex [121] or non-cognitive

idling state [117]. These slow patterned oscillations may relate to very slow (≤0.1 Hz) fluc-

tuations in BOLD (blood-oxygen-level dependent) signals detected using fMRI (functional

magnetic resonance imaging) of relaxed, non-tasked human brains [30, 32]. In Sec. 3.4,

we have discussed the idea that a balance between cortical Turing and Hopf instabilities

may form a possible substrate of a healthy functioning brain.

Early warning sign of seizure: Turbulent, chaotic waves

Two extreme cortical states are associated with either too large or too small inhibitory

diffusion, leading respectively to Turing pattern or Hopf oscillation. Now let us examine

the transition between these two extrema with D2 being altered from 0.7 to 0.3 cm2.

With stepped reduction of D2 from 0.7 to 0.3 cm2, the coherent, small oscillations about

the up-and down-states are replaced by incoherent fluctuations at D2 = 0.4 cm2 (see col-

umn (e)), the fluctuations appearing turbulent and chaotic. The above inspection shows

that the onset of seizure (identified as maximally coherent, whole-of-cortex oscillation at

suppressed inhibitory diffusion D2) might follow on turbulent, chaotic EEG signals with

decreased coherence, serving as a potential early warning sign of seizure. This modelling

prediction is supported by clinical observations [2, 11, 79].

Conclusion

The modelling of cortex at “awake” state enables two predictions:

1. Opening gap-junctions protects brain against seizure, while closure of gap-junctions

promotes seizure;

2. The survey of coherence maps implies an underlying trend from healthy to seizing

brain: The phase coherence between two separated cortical areas initially decreases,

then increases dramatically.
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Figure 6.3: At the λi = 1.0 wake state, cortical stability analysis and spatiotemporal
dynamics for varying gap-junction strength D2 from 0.1 (top row) to 0.8 cm2 (bottom).
Model cortex is initialised from the top high-firing branch of steady-state manifold marked
as “Awake” in Fig. 6.2. (a) Cortical stability analysis showing dominant eigenvalue
dispersion curve of the real (black) and imaginary (red) parts as a function of scaled
wavenumber for top- and bottom-branch equilibria at fixed anaesthetic effect λi = 1.0
in Fig. 6.2. Thus each panel has two parts in it—the upper part corresponds to the
top-branch, the lower part to the bottom-branch. The dotted line is zero. (b) Last 4-
sec time-series of excitatory firing-rate Qe(t) extracted from 5 equally-spaced grid-points
in (c) Qe(t, x) space-time chart representing the full 20-sec time-evolution of cortical
activity along the y = 60 midline strip. y-axis ranges from 0 to 30 s−1. (d) Bird’s-
eye snapshot Qe(y, x) of the cortex when t = 20 sec. (e) Phase coherence map R(x′, x)
showing synchronisation level of firing-rate between Qe(t, x) and Qe(t, x

′) for the final 5-
sec time evolution. The coherence level is computed via Hilbert transform Eq. (6.5) with
a transition from red to blue meaning high to low coherence. In (c)–(e), colour scale from
blue to red indicates the numerical range from low to high. The size of the red-blocks is
proportional to the coherence level. (Figure modified from [116])
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6.6.2 Effect of inhibitory diffusion on “Comatose” cortex

Now let us examine the effect of variation of inhibitory diffusion on an anaesthetised

cortex. The model cortex is initialised from a low-firing state at coordinate (λi,∆V
rest
e )

= (1.018, 1.5 mV) in Fig. 6.2.

Too large or too small inhibitory diffusion leads to pathological brain state.

Analogue to the two extrema of the “awake” cortex in Fig. 6.3, the anaesthetised cortex

with strong inhibitory diffusion D2 = 0.9 cm2 progresses to a Turing structure with low

global coherence (bottom row in Fig. 6.4), while insufficient inhibitory diffusion (D2 ≤
0.1 cm2) suppresses cortical activity and maintains neuronal firing at the initial low-firing

state, as seen in the top row; This contrasts with our previous observation on an “awake”

cortex exhibiting highly coherent global oscillation with weak inhibitory diffusion.

Mechanism of anaesthetic slow-wave

For the anaesthetised cortex, anaesthetic effect λi = 1.018 is just beyond the multiple

steady-states region where the awake cortex stays at the up-branch of λi = 1.0. This

subtle change in coordinates causes the cortical stability to be guided only by the steady-

state at the low-firing bottom branch. In Fig. 6.4, at the near-closure of the gap-junction

D2 = 0.1 cm2, linear stability analysis (column (a)) predicts a heavily damped Hopf,

which is consistent with the grid simulation. Most general anaesthetics will enhance

the strength of the inhibitory postsynaptic potential (IPSP) [31, 58], as well inhibit gap-

junction communication [142]. Consequently further increases in D2 (for D2 < 0.7 cm2

of Fig. 6.4) lead the cortex into a chaotic phase, arising from the competitive interference

between Hopf and Turing instabilities. Such mixed instabilities may provide a mechanism

for the emergence of turbulent slow-waves of inductive anaesthesia, characterised by low

phase-coherence. D2 = 0.7 cm2 is the border of the anaesthetic slow oscillations; larger

values of D2 (e.g., D2 = 0.8 cm2) rebalances the Turing and Hopf instabilities in favour

of spatially structured Turing pattern oscillating at a low Hopf frequency (∼ 3 Hz). Such

mixed-mode interference is very similar to the noncognitive-wake cortex at D2 = 0.7 cm2

in Fig. 6.3. Nevertheless, because the cortex is still under anaesthetic coma, Steyn-Ross et

al. label this coherent oscillation as “anaesthetic delirium”, a clinical state common during

emergence from general anaesthesia and associated with excitability and confusion [88].

Closure of gap-junctions in anaesthetic cortex does not promote seizure.

Comparing the weak inhibitory diffusion cases (D2 = 0.1 cm2) for Figs. 6.3 and 6.4, we

see that the mode interplay between top-branch Hopf and bottom-branch damped-Turing

instabilities is replaced by bottom-branch mode competition between damped-Hopf and

damped-Turing. An attractor is formed to set the anaesthetic cortex to the homogeneous

low-firing state. Scanning column (a) of Fig. 6.4 from bottom to top, we see that the
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closure of gap-junctions does not bring seizure-like bursting oscillations, but completely

suppresses cortical neuronal activity.

Conclusion

By forcing the “awake” cortex into “anaesthetic-coma” with a slight increase in anaes-

thetic effect λi, damped-Hopf and damped-Turing instabilities interact to destabilise the

homogeneous state, leading to either quiescent silence at weak inhibitory diffusion D2 =

0.1 cm2, or a mixed mode of balanced Turing and Hopf at D2 = 0.8 cm2 that is similar to a

“noncognitice” cortical state (see Fig. 3.10), while the intermediate values of D2 give rise

to incoherent chaotic oscillations. Further increasing D2 to 0.9 cm2 triggers a spatially

structured Turing pattern. The modelling of the cortex under anaesthetic coma implies

a prediction that seizure is suppressed by closure of gap-junctions.

6.7 Global coherence for the cortex at “Awake” and
“Coma”

A comprehensive inspection of the global coherence relating to changes in inhibitory

diffusion is presented in Fig. 6.5. Here, we simply computed the global coherence at

a given value of D2 by taking the mean of the upper-triangle of the coherence matrix

R(x′, x) defined in Figs. 6.3(e) or 6.4(e).

Let us first examine the mean neuronal synchronisation across the whole cortex relating

to different levels of inhibitory diffusion, when the cortex is at an awake state. We

see a high global coherence in the non-cognitive state, where the inhibitory diffusion is

moderately strong D2 ' 0.7 cm2. The global coherence is reduced when the inhibitory

diffusion is in the intermediate range 0.2 cm2 . D2 . 0.6 cm2; and back to rather

higher values in the seizure state with the closure of gap-junctions D2 < 0.2 cm2. In the

intermediate range of D2, the reduced global coherence manifests with spatiotemporally

chaotic pattern dynamics, which we take to be an early warning sign of upcoming seizure

with reduced gap-junction strength.

For the anaesthetised cortex, the anaesthetic drug promotes two major effects: com-

plete elimination of seizure at low inhibitory diffusion values (“Suppression”: D2 .

0.4 cm2), leading to rather smaller globally coherent levels of cortical activations; and

a shifting of the activated “Noncognitive-wake” coherence peak to the right, implying

a possible hysteresis effect such that an anaesthetised cortex requires a stronger Turing

instability to reinforce an activated state. To the left of the peak for the delirium state,

there is a broad intermediate zone of D2 experiencing reduced coherence, which results

from large, low frequency chaotic oscillations.

The marked contrasts between the anaesthetic slow-wave and delirium (activated cor-

tex) are visualised in Fig. 6.6 (bottom row): The slow-waves are almost 6 times larger
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Figure 6.4: At the λi = 1.018 coma state, cortical stability analysis and spatiotemporal
dynamics of varying gap-junction strength D2 from 0.1 (top row) to 0.9 cm2 (bottom).
Model cortex is initialised from the bottom low-firing branch of steady-state manifold
marked as “Coma” in Fig. 6.2. (a) Cortical stability analysis showing dominant eigenvalue
dispersion curve of the real (black) and imaginary (red) parts as a function of scaled
wavenumber at anaesthetic effect λi = 1.018 in Fig. 6.2. (b) Last 4-s time-series of
excitatory firing-rateQe(t) extracted from 5 equally-spaced grid-grids in (c)Qe(t, x) space-
time chart representing the full 20-s time-evolution of cortical activity along the y = 60
midline strip. (d) Bird’s-eye snapshot Qe(y, x) of the cortex when t = 20 s. (e) Phase
coherence map R(x′, x) showing synchronisation level of firing-rate between Qe(t, x) and
Qe(t, x

′) for the final 5-s time evolution. In (c)–(e), colour scale from blue to red indicates
the numerical range from low to high. (Figure modified from [116])
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Figure 6.5: Global phase-coherence trends with respect to inhibitory strength for the
cortex at (a) awake (λi = 1) and (b) comatose (λi = 1.018) states. Inhibitory strength
D2 is evenly spaced (0.01 cm2 interval) in the range 0.0 to 1.0 cm2. At a given D2,
simulations were repeated 10 times. For each simulation, we first computed the phase-
coherence matrix R(x′, x) for the final 5-s time evolution (see Figs. 6.3(e) and 6.4(e)),
then extracted its upper-triangular matrix mean as an estimate of global phase-coherence,
which is represented as a gray circle in the figure. The trend curves were produced by
spline function in Matlab curve-fitting toolbox. (Figure modified from [116])

in power while 40 times smaller in the dominated frequency than the anaesthetic delir-

ium. The slow-waves have a broad energy distribution over the low-frequency domain

0 . f . 2 Hz, whereas the activated brain state (delirium) evinces a strong resonant

frequency at ∼4.3 Hz.

These model results allow a promising prediction that the passage from wake to anaes-

thetic unconsciousness should manifest as a decrease in phase coherence between separated

cortical electrodes.
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delirium (D2 = 0.8 cm2). The Fourier spectral power for two sampled time-series are
displayed at the bottom. (Figure modified from [116])
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6.8 Mode stability analysis for the anaesthetic cortical
model

A pattern-forming system usually yields a pair of complex amplitude equations repre-

senting the dynamics of the Turing–Hopf (TH) mode. In Chapter 5, we discussed the

mechanism of mode stability by analysing the amplitude equations. The existence of the

TH mode depends on the sign of ∆ (see Eqs. (5.20a, 5.20b)) — a parameter derived from

the amplitude equations; the TH mode exists only when ∆ is positive (see Fig. 5.4).

Using our multiple-scale expansion algorithm, Amp solving, we derived the TH mode

amplitude equations for the cortical model at “Awake” and “Coma” states, and their cor-

responding bifurcation diagrams, which are presented in Fig. 6.7. Although the “Awake”

(Fig. 6.7(a)) and “Coma”(Fig. 6.7(b)) TH mode stability trends are broadly similar,

the effect of anaesthetic mainly shifts the TH region (solid Turing–Hopf curves) to the

right, indicating the dependence on rather larger inhibitory diffusion for the TH mode in

comatose cortex.

In Fig. 6.7, we see that the TH mode exists in a particular D2 region. Within this D2

region, Fig. 6.5 shows that the chaotic evolution induced coherence drops. Meanwhile,

we see a subcritically stable Hopf mode colliding with the TH mode, possibly implying

a Hopf-dominated Turing–Hopf mechanism for the chaotic slow-waves. Since de Wit

suggested that the unstable Hopf phase leads to a chaotic mode, we tested the phase

stability conditions (5.31a, 5.31b) and (5.32) but all failed to produce correct predictions.

To find a chaotic mode of the cortical model, one may need to manually scan the parameter

space close to a CTHP.

0
0

0.5

1

1.5

2

 

 

(b) Coma

A
m

pl
itu

de

Turing
Hopf
Mixed (Turing)
Mixed (Hopf)

0

1

2

3

4
(a) Awake

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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6.9 Phase-coherence analysis of the clinical EEG with
induced propofol anaesthesia

In this section, we will analyse clinically recorded EEG to test the model predictions for

phase-coherence changes during the transition from consciousness to anaesthetic uncon-

sciousness.

6.9.1 Materials

The EEG dataset used in this study are archived files from Waikato Clinical School,

Hamilton, New Zealand, and were previously used in investigating the anaesthetic re-

sponse of EEG in different frequency bands [54]. The dataset contains pairs of 60-s EEG

(sampling frequency 250 Hz) recordings for two distinct brain states: wake and propofol

anaesthetic coma, recorded from 5 healthy adult subjects via 129 electrodes1 using an

EGITM dense array with Cz (vertex) being the reference electrode. The archival EEG

dataset are manually selected epochs that are relatively artifact-free.

An example of EEG recorded from electrode Fp1 is represented in Fig. 6.8. This

demonstrates the transition from wakefulness (upper EEG trace) to sedated unconscious-

ness (lower trace) with the appearance of spindles (12–15 Hz) and slow rhythms including

delta activity (1–4 Hz) and slow oscillations (0.2–1 Hz). By focusing on the EEG in

sub-delta band (≤ 1.5 Hz), Fig. 6.9 shows that the power of the slow-waves in sedated

unconsciousness is nearly twice as large as that in the wake state.

6.9.2 EEG coherence: An automatic EEG processing algorithm for

EEG coherence analysis

The raw EEG data were visually inspected and the artifacts were manually marked using

EEGLAB3. The one or two bad channels were replaced by substituting with the average of

the 4 neighbouring channels. Eye-blink artifacts were removed by AAR (see Fig. 6.8 de-

scription) then examined (see Fig. 6.8 for an AAR correction example). Since the archival

EEG data are relatively artifact-free, only minor corrections were needed. Besides, we

verified that AAR operation does not affect phase-coherence between EEG channels by com-

paring the statistical difference for EEG phase-coherence between raw and AAR-corrected

epileptic EEG data4. Indeed, phase-coherence is an important measure and must be pre-

served by the artifact removal process [160]. We then filtered EEG to the sub-delta band

1The electrodes map is available at http://psychophysiology.cpmc.columbia.edu/software/

CSDtoolbox/tutorial.html
2Automatic Artifact Removal toolbox, an EEGLAB plug-in available at http://www.germangh.com/

eeglab_plugin_aar/index.html
3An open source EEG processing Matlab toolbox available at http://sccn.ucsd.edu/eeglab/
4Data available from AAR authors’ website http://kasku.org/projects/eeg/databases.htm#

epilepsy

http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/tutorial.html
http://psychophysiology.cpmc.columbia.edu/software/CSDtoolbox/tutorial.html
http://www.germangh.com/eeglab_plugin_aar/index.html
http://www.germangh.com/eeglab_plugin_aar/index.html
http://sccn.ucsd.edu/eeglab/
http://kasku.org/projects/eeg/databases.htm#epilepsy
http://kasku.org/projects/eeg/databases.htm#epilepsy
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Figure 6.9: Filtered Fig. 6.8 EEG in sub-delta band (≤ 1.5 Hz) and corresponding power
spectra revealing a strong slow-wave (∼ 0.3 Hz) in the sedated unconsciousness state.

(≤ 1.5 Hz) using EEGLAB built-in basic order-2 FIR (linear finite impulse response) filter

with the pass-band between 0.05 and 1.5 Hz. During filtering, EEGLAB uses the Matlab

routine filtfilt() applying the filter forward and then backward, to ensure that phase

delays introduced by the filter are nullified. The obtained sub-delta band EEG are char-

acteristic of slow oscillatory activity, which is the most prominent feature of the EEG

activity during the non-rapid eye movement (non-REM) sleep in humans (see Fig. 6.9 for

an example) [73].

The EEGLAB pre-processed EEG data were then passed to EEG coherence, a cus-

tom Matlab algorithm that identifies electrode-pairs with significantly altered phase-

coherence between the two brain states. The user specifies the folder location where the

EEG data are stored and configures some basic parameters (e.g., window and overlap
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length for the coherence measure). EEG coherence automatically generates a summary

table including identified electrode-pairs and their corresponding phase-coherence indices

at two distinct brain states for all subjects. p-values that are used to identify those

electrode-pairs whose phase-coherence has significantly altered are included in the table

to permit further statistical analysis.

As shown in Fig. 6.10, EEG coherence processes EEG data in three steps:

1. Construction of coherence matrices

The measure of phase-coherence is based on the Hilbert transform, as described

in Sec. 6.5.1. Each subject will have two coherence matrices awake pair and

sleep pair, respectively for the wake and sedated unconsciousness (i.e., deep sleep

or unconsciousness) states.

2. Extraction of coherence summaries

At each brain state (wake or unconsciousness), EEG coherence will define a sum-

marised coherence matrix by integrating all subjects’ coherence matrices for this

state. This summary matrix has three dimensions: the first dimension (row-index

k) identifies the subject; the second dimension (channel-index m) and the third

dimension (base-channel index n) coordinate the coherence between EEG channel

pairs m and n. Thus, coordinate (k,m, n) indicates the coherence R(k,m,n) between

EEG channels m and n for subject k. Since we only consider the upper triangle of

the coherence matrix, the redundant coherence5 in the summarised matrix will be

filled with NaN (not a number). The output from this step is a pair of coherence

summary matrices for wake and unconscious states.

3. Statistical comparison

A one-tail Mann-Whitney U-test is performed to scan the coherence for all electrode-

pairs between two summarised coherence matrices over the base-channels. We tested

the null hypothesis that the coherence in two coherence summary matrices are sam-

ples with equal medians, against the alternative that they are not. More specifically,

the alternative hypothesis is that the median of coherence in one coherence sum-

marising matrix is greater (right-tailed; or smaller, left-tailed) than the median of

those in the other matrix. The statistical comparison for a base-channel n returns a

p-strip containing p-values for channel-pairs: 1-n, 2-n,. . .,128-n. All p-strips forms a

three dimensional matrix, which is obtained via the following Matlab implemen-

tation:

awake size = size(awake pair);
prop size = size(sleep pair);

% Check if two coherence matrices have the same size
if ~isempty(find((awake size == sleep size)==0))

5The lower triangle of the coherence matrix R(k,n,m) and the diagonal unit coherence.
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error('unequal size');
end

% Create p-strip matrix
for base ch = 1: size(awake pair, 3)

for ch ind = 1: size(awake pair, 2)
if isnan(awake pair(:,ch ind, base ch))

p(:,ch ind, base ch) = NaN;
else

[p(:,ch ind, base ch), h(:,ch ind, base ch)]...
= ranksum(awake pair(:,ch ind, base ch),

sleep pair(:,ch ind, base ch),...
'alpha', p limit, 'tail', direction);

% direction: left: awake < sleep; right: awake > sleep
end

end
end

% Squeeze the 3D p-strip matrix, leading to a 2D p-matrix
p matrix = squeeze(p); % e.g. E1-E2 is at row 2 (channel), col 1 (base-channel)

If, across all subjects, a given electrode-pair shows a statistically significant differ-

ence in coherence between wake and unconscious state (i.e., p < p limit), EEG coherence

will store this electrode-pair in the summary table.

6.9.3 Results

Figure 6.11 visualises those electrode-pairs identified by EEG coherence as having sig-

nificantly altered (i.e., decreased or increased) coherence between wake and unconscious

states. The comparison between the upper and lower panels of Fig. 6.11 reveals two major

features of the coherence changes with respect to propofol anaesthesia:

• Decreased coherence for frontal and occipital electrode-pairs

The electrode-pairs with reduced coherence are densely clustered at the frontal and

occipital areas of cortex. Similarly, electrode-pairs connecting the frontal and occip-

ital regions show significantly reduced coherence, indicating that neuronal activities

between them are less strongly coupled when the brain is switched to a unconscious

state. Scanning the top panels of Fig. 6.11 from left to right, we see that the front

electrodes manifest the highest significant level in decreased coherence, in other

words, propofol anaesthesia leads to increased disorder in neuronal activity in the

frontal cortex.

• Increased coherence for left- and right-temporal electrode-pairs

Electrodes at the left- and right-temporal areas detect enhanced coherence. These

maps of enhanced connectivities seem to be complementary to the preceding maps

showing decreased frontal-occipital connectivity: coherence trends have been re-

versed with the significant front-back uncoupling (top panel) occurring simultane-

ously with a left-right coupling. Examining the lower panels of Fig. 6.11, we see
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Figure 6.10: Flowchart for processing EEG of two brain states to determine electrode-
pairs with significantly altered phase-coherence. EEG data undergo a pre-processing in
EEGLAB before passing to EEG coherence, a customised Matlab algorithm automatically
identifying electrode-pairs with significantly altered phase-coherence between two brain
states across multiple subjects, and store these electrode-pairs in summary tables.
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evidence of strengthened left-right electrode connectivitiy, showing increased EEG

coherence with the induction of propofol anaesthesia.
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Figure 6.11: Graphical representations of the electrode-pairs with significantly reduced
(upper panel) or increased (lower pannel) phase-coherence of the sub-delta band (0.05–
1.5 Hz) EEG induced by propofol anaesthesia. EEG data (129-channel recording) were
recorded from 5 subjects and processed by the EEG coherence algorithm diagrammed in
Fig. 6.10. The electrode-pairs with significant (p < 0.05) changes in phase coherence are
connected with lines. The electrode-pair map is represented in a bird’s-eye view of the
3D head model (created via the modified EEGLAB function plotchans3d). The black dots
are EEG coherence selected electrodes. Electrode-pairs for altered phase coherence are
determined with different levels of significance (the significant level p was set at 0.05, 0.03
and 0.01 in the Mann-Whitney U-test). Smaller p thresholds result in a lower density of
electrode-pair cluster due to the stricter selection criterion, however, the electrode-pair
distributions are generally preserved in trend.

If we overlap the upper and lower panels of Fig. 6.11, we find some frontal electrodes

have decreased coherence with the occipital electrodes, while having increased coherence

with the left- and right-temporal electrodes. Similarly, some occipital electrodes have de-

creased coherence with the electrodes in the frontal area, while having increased coherence

with those in the temporal areas. These observations suggest an underlying compensatory

mechanism between a subsystem of fronto-occipital and other cortical regions at sub-delta
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frequencies. Cantero et al. [8] reported a similar compensatory phenomenon in coherence

between the temporal and other cortical regions for the alpha (8–12 Hz) and sleep spindle

(12–15 Hz) frequency ranges.

Furthermore, we examined the EEG decreased coherence pattern by nine electrodes

(see the description of Fig. 6.12) that Koskinen et al. utilised in their work [60], which

identified electrode-pairs with sub-delta EEG coherence decrease due to propofol-induced

anaesthesia. We set the significance level (p < 0.05) in EEG coherence to be the same as

that used by Koskinen et al. The comparison result shown in Fig. 6.12 illustrates that

EEG coherence produced a similar electrode-pair distribution pattern to the Koskinen

result, which reinforces our finding about the sub-delta EEG coherence reduction in the

frontal cortex.

NzFp1 Fp2

F7
Fz

F8

Oz

Pz

Cz

NzFp1 Fp2

F7 Fz F8

FCz

Oz

Pz

Cz

Nose

L R

Koskinen resultEEG_coherence result

FCz

Figure 6.12: A subset of electrode-pairs (left) showing significant (p < 0.05) reduction
in phase coherence extracted from the upper left corner plot of Fig. 6.11 (referenced to
Cz, in dark blue lines) and Koskinen et al. reported pattern [60] (right, referenced to FCz,
in light blue lines) for the coherence measured from 9 electrodes: Nz (nasion), Fp1′(about
1 cm down from Fp1, just above the eyebrow), Fp2′, Fz, F7, F8, Cz, Pz and Oz.

6.10 Discussion

In this chapter, we first reviewed the pattern dynamics of an anaesthesia model of the

cortex. The anaesthetic effect was introduced into the cortical model (SR2007 model)

through an inhibitory drive λi, an increase of which suppresses cortical activity, leading

to an unconscious state. A transition from unconsciousness to consciousness requires suf-

ficient depolarisation to the cortical excitatory membrane potentials, which was modelled

by raising the soma membrane resting potential offset ∆V rest
e , an excitatory drive. The

inhibitory drive λi and excitatory drive ∆V rest
e define a reversed-S manifold (Fig. 6.1) of

the cortical steady-states. With a fixed ∆V rest
e = 1.5 mV (see Fig. 6.2), we identified

an “Awake” state (λi = 1) at the high-firing branch and a “Coma” state (λi = 1.018)
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at the low-firing branch for the homogeneous model cortex. For both cortical states, we

investigated the effect of variation in the strength of inhibitory diffusion D2 on the cortical

dynamics.

At the modelled “Awake” state (Fig. 6.3), a strong inhibitory diffusion generates a

Turing spatial cortical pattern while a weak inhibitory diffusion leads to a homogeneous

global oscillation. We identified these two extrema as pathological brain states: The

frozen Turing pattern lacks any temporal evolutions, so blocks information flow6; the

highly synchronised whole-of-cortex oscillation (top row of Fig.6.3) favours abrupt seizure.

Intermediate values of inhibitory diffusion give rise to spatiotemporal chaos which we

postulated to be a competition between Turing and Hopf modes. The model prediction

that the abrupt seizure is preceded by a chaotic regime with low coherence is consistent

with a series of clinical reports [2, 11, 79].

When there is little anaesthetic effect, a sufficiently strong inhibitory diffusion (i.e.,

gap-junction strength) allows a bistability between the Turing pattern and Hopf oscilla-

tions, leading to slow Hopf oscillations of high global coherence with the spatial structure

maintained (see D2 = 0.7 simulation in Fig. 6.3). Such interacting low-frequency Hopf and

Turing instabilities may form the substrate for the cognitive state, namely, the “default”

background state for the non-cognitive brain during wake. Its slow beating dynamics

(≤0.1 Hz) is similar to what is observed in BOLD functional MRI recording of relaxed,

non-tasked human brains [30, 32].

At the modelled “Coma” state (see Fig. 6.4), a strong inhibitory diffusion again en-

counters a pathological brain state dominated by the Turing mode while the weak in-

hibitory diffusion suppresses cortical activity completely, leading to a quiescent EEG

trace (top row of Fig. 6.4). Compared to the global oscillations seen in the awake cortex

with weak inhibitory diffusion, the induced propofol anaesthesia completely suppressed

seizure.

An increase in anaesthetic effect λi suppresses cortical activity, leading to an anaes-

thetised coma state. Here, intermediate values of D2 are expected since propofol blocks

gap-junctions. The weak gap-junction connections allow spontaneous emergence of large-

amplitude slow chaotic oscillations (see the highlighted simulations in Fig. 6.4). This

mechanism for the slow oscillation is quite distinct from the conventional view of a cyclic

alternation in extracellular ionic (Ca2+) concentrations [73] or a recent view of an alterna-

tion of numerous pacemakers played by tiny clusters of neurons in the cerebral cortex [122].

These cortical dynamical patterns, from the view of mathematics, are governed by

bifurcation theories. We applied linear stability analysis (the first column of Figs. 6.3

and 6.4) to determine the dominant modes for observed cortical instabilities. However,

6Steyn-Ross et al. [116] proposed that the cortex with a Turing structure may possibly be relevant to
early brain development when the immature brain is richly endowed with gap junctions. Such abundent
gap junctions favour the formation of permanent Turing patterns.
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predictions of linear stability analysis do not always agree with cortical simulations. For

example, we started an “awake” cortex simulation from a high-firing steady-state (Fig.

6.2), where the linear stability analysis predicts an emergent Hopf instability for all D2

values in Figs. 6.3, whereas the cortical patterns experienced spatiotemporal turbulence

for intermediate values of D2, and maze-like labyrinthine Turing structure for larger values

of D2. Examining closely the last row of Fig. 6.3, the linear stability analysis at the low-

firing branch predicts a weak Turing instability, which is likely to be responsible for the

observed Turing patterns. However, at the onset of the multiple-instabilities, how to

determine the dominant instability (i.e., the more stable mode): Hopf at the top-branch

or Turing at the bottom-branch? We cannot infer this information from the linear stability

analysis. We experienced the same issues in predicting the pattern dynamics at a “coma”

cortex (Fig. 6.4): there seems no confident links between the linear stability analysis and

the actual pattern dynamics. To address these problems, a weakly nonlinear analysis

(see Sec. 6.8) was then carried out. Assisted by the multiple-scale expansion algorithm

Amp solving, TH mode amplitude equations in the vicinity of a CTHP were derived.

A mode stability analysis (see Fig. 6.7) was then performed based on the amplitude

equations, to determine the dominant modes at a bifurcation setting. In the D2 region

where the chaotic mode exists, we applied phase stability conditions, but they also could

not offer correct predictions. By observing the bifurcation diagram Fig. 6.7, we argue

that the chaotic mode may occur when a strong Hopf mode collides with a TH mode,

and the interaction between them may lead to a strong nonlinearity disturbing the Hopf

phase stability.

On the other hand, the cortical simulations revealed another feature characterising

the transit from wake to anaesthetic unconsciousness (see Fig. 6.5): A movement from

the “noncognitive-wake” high coherence peak to a “anaesthetic slow-wave” region with

diminished coherence. We analysed the changes in coherence for archival human electroen-

cephalogram (EEG) recorded from volunteers undergoing propofol anaesthesia, looking

for confirmation of the model prediction of a drop in coherence during the slow-wave oscil-

lations. In this study, we investigated systematic phase-synchronisation changes between

pairs of EEG channels in the sub-delta band during propofol anaesthetic induction. An

EEG phase-coherence processing algorithm, EEG coherence, was developed in Matlab

and applied to the archival EEG data from a group of subjects. EEG coherence uses the

Hilbert transform to extract instantaneous phase-angles from nonstationary EEG signals,

and yields a phase-coupling index appraising the phase-shift consistency between pairs of

EEG channels. The trends of such EEG coherence change between two brain states are

statistically tested via a Mann-Whitney U-test, which is a simple non-parametric test but

convincing even for small data sets lacking assumptions of distribution (e.g., the data sets

do not necessarily to be normal distribution). Our EEG examination discloses a coherence
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decrease in the frontal and occipital regions, as well in the connection between them. Si-

multaneously, more strongly coupled neuronal activities are found in the temporal-frontal,

temporal-occipital and left-right temporal regions. Such contrasts in coherence changes

suggest an underlying compensatory mechanism of the sub-delta band activities between

a subsystem of fronto-occipital and cortical temporal regions. Our findings of reduced-

coherence between particular electrode-pairs is similar to clinical reports [60, 78] where

the frontal cortical region exhibits a negative inter-correlation during anaesthetic coma.

Moreover, the presented reduced phase-coherence along the fronto-occipital axis is con-

sistent with an animal study by Imas et al. [47] that the anterio-posterior coherence in

both 5–25 Hz and 26–50 Hz bands was significantly reduced by isoflurane in the rat. In

contrast, Dumermuth and Lehmann [26] reported a high interhemispheric coherence be-

tween the left and right parietal areas with deepening slow wave sleep. They postulated

that the high coherence may reflect the interhemispheric transfer of information. Later,

research by Mölle et al. [77] reinforced Dumermuth and Lehmann’s findings and verified

their hypothesis by comparing coherence changes for subjects during the slow-wave sleep

with or without pre-learning tasks. Mölle et al. observed significantly increased coherence

during the occurrence of slow oscillations (< 1 Hz) for subjects after learning tasks (Figs.

1 and 2 in [77] show the delta-band EEG coherence have increased coherence between the

left- and right-temporal regions).

Our clinical observation of reduced EEG coherence is consonant with cortical model

predictions. However, our clinical EEG study indicates that the coherence alternation is

a regional concept while the cortical model describes a uniform trend. Moreover, we did

not find any theoretical prediction for the left- and right-temporal increased-coherence

patterns seen in Fig. 6.11. As the cortical model by Steyn-Ross et al. is spatially ho-

mogenous, i.e., there are no explicit front-to-back or right-to-left directions, it is unable to

produce different coherence changes for different regions. It appears that the Steyn-Ross

cortical model best represents the cortical dynamics in the frontal region.

To allow the cortical model include two contrast coherence changes in one pattern, it

may be suggested to induce a bistable mode with separable instabilities. For example,

we tuned the parameters of the well-known chemical reaction–diffusion system Brussela-

tor [24], so that it exhibits independent Turing and wave instabilities, as shown in Fig.

6.13. Unlike the cortical model experiencing a single instability (frozen Turing, homoge-

neous Hopf or chaotic Turing–Hopf modes), the Brusselator model manifests stable fronts

between Turing domains and trains of plane waves existing in the bistable domain. The

phase-coherence descriptions show that the Turing standing waves have high coherence

while the travelling waves have low coherence. Examining panel (a) in Fig. 6.13, we see

a Turing mode embedded in the travelling waves background, leading to low coherence

in the top and bottom sides while high coherence in the centre range. Conversely, panel

(b) shows a travelling wave mode embedded in the Turing background, leading to low
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coherence in the centre range while high coherence in the top and bottom sides. A tran-

sition from panels (a) to (b) is very similar to our clinical observation of reduced and

increased EEG coherence with induced propofol anaesthetic (Fig. 6.11): emergent Turing

structures at both sides are related to the synchronised neuronal activities in the left- and

right-temporal regions for information processing during the slow-wave sleep; the occur-

rence of the low coherent oscillations at the centre is analogous to the chaotic waves in

the fronto-occipital areas.

Figure 6.13: Bistable modes of the Brusselator model for (a) wave–Turing–wave and
(b) Turing–wave–Turing. The first column is the space-time map of the 1D Brusselator
(120 grid-points in a totaly of 120 cm) simulation. To the right is the phase-coherence
representation of the 120 time-series in the space-time map.

Besides, Fig. 6.4 shows that the gap-junction cluster synchronises the neuronal ac-

tivities positively in high density (D2 & 0.8 cm2) but negatively in lower density (D2 .

0.7 cm2). Since our clinical coherence study suggests higher coherence in the temporal

lobes than other cortical areas, we posit that the temporal lobes may possess a larger den-

sity of gap-junctions than other cortical areas during unconsciousness. Although there is

little direct evidence to support our hypothesis (the measure of gap-junction density in the

living cortex may be experimentally difficult), it is widely acknowledged that gap-junctions

are vitally important to shape neuronal population rhythms [6,25,52,118,120,132,134].

In future work, we will further investigate the pattern dynamics of the cortical model

for its possible bistabilities; meanwhile we may refine the cortical model into separated

cortical regions to investigate their distinct responses to gap-junction modulation and how

these sub-systems contribute to whole-of-cortex dynamics.
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Summary and future work

The Waikato cortical model describes the mean activities of densely interconnected neu-

ronal aggregates, in which neuron groups communicate via chemical (neurotransmitter

controlled) and electrical (gap-junction) synapses simultaneously. Although the cortical

model is essentially a mathematical description comprising a series of differential equa-

tions, the neurophysiological significance of the model allows simulations of brain dy-

namics such as anaesthesia [113–115], sleep cycles [112], K-complexes [145], and Turing

pattern formation [118]. These simulated spatiotemporal patterns describe, in principle,

the emergent behaviours of the Waikato cortical model. What is the theoretical mecha-

nism of these emergent patterns? We investigated the answer in this thesis via bifurcation

theories.

7.1 Summary

Considering the high dimensionality and strong nonlinearity of the cortical model, we

first examined the reliability and applicability of bifurcation theories in a simple pattern-

forming system Brusselator for pattern predictions and analysis.

The reason we chose to analyse the Brusselator was explained in Sec. 5.3.3:

The cortical model is expected to exhibit similar dynamics to a chemical reaction–

diffusion system: The interaction between the excitatory and inhibitory neurons is anal-

ogous to the competition between the activator and inhibitor of the chemical reaction–

diffusion model, e.g. the Brusselator. The gap-junction strength between inhibitory neu-

rons also plays the same role as the diffusion terms in the Brusselator, which allows a

spatial evolution of the patterns. Consequently, it is reasonable that the cortical model

shares the same pattern dynamics with the chemical reaction–diffusion system.

To analyse the pattern dynamics of the Brusselator model, we applied the linear

stability analysis and nonlinear perturbation method:
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Linear stability analysis of the Brusselator model

The linear stability analysis (LSA) is the most commonly used technique to examine

the stability of a model’s steady-state with respect to weak perturbations. It is con-

ceptually clear and manipulatively simple. We applied LSA to the Brusselator model

to derive its parameter settings to produce wave, Turing, Hopf and mixed Turing–Hopf

(TH) instabilities. These bifurcation conditions were validated via simulations. However,

we also found some LSA unpredicted phenomena: well-structured Turing patterns with

lattices in particular arrangements and Turing-dominant TH mode. As we also experi-

enced mismatches between the LSA and patterns from cortical models, we believe that

a comprehensive understanding of the pattern dynamics of Brusselator may help us to

better control and explain the cortical patterns. Noticed that the LSA is the first-order

linear simplification of the original model, some important information may be hidden

in the higher-order terms. To include these high-order terms, we introduced a nonlinear

perturbation method — multiple-scale expansion.

Multiple-scale expaniosn of the Brusselator model

The multiple-scale expansion (MSE) splits the model variables into a perturbative power

series in the vicinity of a bifurcation point. Each new variable carries arguments in mul-

tiple spatiotemporal scales. The idea of MSE is to separate the fast- and slow-evolutions

of a patterned mode of interest, in which the slow-evolution corresponds to the pattern

dynamics with the most unstable wave number, i.e., the critical wave number. The LSA

shows that the mode with the critical wavenumber has the major contribution to the emer-

gent pattern, so MSE highlights this mode and further gives rise to amplitude equations

describing the mode envelope dynamics in a slow temporal scale close to a bifurcation

point. Although MSE is conceptually simple, its manipulation is rather tedious and lacks

of explanation in published materials. To facilitate an efficient MSE of the Brusselator

model, we developed an open-source algorithm Amp solving in Maple. Amp solving

follows a standard MSE scheme as well as allowing its automatic implementation. We

supplied full Amp solving tutorials to comprehensively demonstrate the manipulation of

MSE and its automation. Although the tutorials interpret the application of Amp solving

only on the Brusselator model, it is a general purposed algorithm that can be utilised to

any pattern-forming system, e.g., the cortical model.

Amp solving simplifies the Brusselator model to the so-called amplitude equations,

which provide supplementary pattern information to the LSA: Turing pattern structures

and Turing–Hopf stabilities. Turing or Hopf bifurcation is the linear instability (first bi-

furcation) predicted by the linear stability analysis, they may become unstable (second

bifurcation) due to the natural nonlinearity in the system. For example, the Turing in-

stability is predicted via the positive real part of dominant eigenvalue of the Jacobian
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matrix of the original system. Theoretically, such positive real part will cause the pertur-

bation grow exponentially, so the Turing amplitude should have increased without bound.

However, the simulation reveals that the Turing amplitude only grows linearly in a fast

temporal scale, then saturates in a slow temporal scale since the nonlinearity becomes

dominant. Consequently, it is necessary to consider the nonlinear effects of the system

in order to predict its final state. To do this, we applied the stability analysis to the

amplitude equations to investigate the stability conditions of the first bifurcation.

Analysis of the amplitude equations

The amplitude equations provide a universal expression relating to specific modes of

interest, i.e., all pattern-forming systems have the same amplitude equations with respect

to specific modes. Thus the stability analysis for one kind of amplitude equations can be

shared between different systems. Here, we first analysed the amplitude equations for the

Brusselator model. The same analysing methods were then applied to the cortical model.

In this thesis, we discussed the stability of the Turing and Turing–Hopf patterns via

their respective amplitude equations. The Turing amplitude equations reveal three spatial

structures: honeycomb like Hπ, stripes and bullet like H0 modes. Three modes follow a

super-critical bifurcation: Hπ → stripes → H0. The stripes can mix with either Hπ or H0

leading to a mixed Turing patterns.

The TH amplitude equations are more complicated than the Turing ones since they

possess an additional temporal component, the Hopf mode. The inclusion of the Hopf

mode allows a Turing–Hopf (TH) mode, pattern with a spatial structure oscillating in a

homogeneous Hopf frequency. Such a TH mode may be unstable, eventually replaced by

a stabler Turing or Hopf mode; or stable, possibly becoming a chaotic mode. We found

that the suggested Hopf phase-stability conditions could not predict the chaotic mode.

From discussions with Prof. Anne de Wit, an expert in pattern dynamics, we understood

that these phase-stability conditions are restricted to the system of amplitude equations

but not the original model. Thus, to find the chaotic mode of the original model, it is still

suggested to manually scan the parametric space close to a codimension-2 point where the

competitive Turing and Hopf are most likely to disturb the Hopf phase-stability, giving

rise to chaotic turbulence.

After the pattern analysis of the Brusselator model, we applied developed theories to

the cortical model for its pattern predictions and explanation.

Pattern analysis of the Waikato cortical model

The Waikato cortical model has three different versions (see Table 3.4): the SR2007 and

SR2009s models belong to the slow-soma limit, and the SR2009f model belong to the

fast-soma limit. The SR2009f model possesses a wave instability that is not the inter-

est of this thesis. The LSA reveals that the coupling strength between gap-junctions
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D2 (i.e., inhibitory diffusion) and inhibitory rate-constant γi are two major bifurcation

control parameters, responsible for Turing and Hopf instabilities respectively. A corti-

cal Turing pattern occurs super-critically when the inhibitory diffusion D2 is sufficiently

large; seizure-like global oscillations are emergent sub-critically when the inhibitory rate-

constant is sufficiently small. For both SR2007 and SR2009s models, a strong D2 favours

a Turing pattern of high- and low-neuronal activities; meanwhile suppressing seizure os-

cillations induced by the delays in the inhibitory postsynaptic response (i.e., reducing

γi). Moderately strong D2 and appropriate setting of γi introduce a cortical TH mode

characteristic of a cortical Turing pattern oscillating homogeneously in ultra-slow enve-

lope frequency, implying mechanisms of beating waves observed in BOLD fMRI recording

of relaxed, non-tasked human brains; as well as the long-range neuronal synchronisation

during the cognitive tasks.

The cortical model exhibits a series of cortical activations with biological significance,

meanwhile it is a pattern-forming system following the bifurcation theories. As a result,

the discipline of pattern dynamics in Brusselator may also be applicable to the cortical

model. Aided by the LSA and Turing amplitude equations, we found the Hπ and stripes

modes in SR2007 model. Later, an investigation of the SR2009s model with the post-

synaptic potential (PSP) described by a bi-exponential function unveiled the H0 mode.

These findings expand our previous experience on the cortical labyrinth (stripes) pattern

in simulations. As in the Turing investigations, we applied bifurcation theories to the

cortical TH mode. Similar to the Brusselator, we observed the bistable and chaotic TH

modes of the cortical model. However, the complexity of the cortical model leads to a

strong nonlinearity, sometimes the bifurcation theories may completely fail in pattern

prediction.

Mixed mode of the Waikato cortical model

A mixed mode can be a combination of Hopf and Turing, Turing and Turing, Turing

and wave, or Hopf and wave. Our bifurcation analysis shows that the Turing–Turing

is the simplest mixed mode, the spatial structure of which can be predicted correctly

from amplitude equations. The inclusion of the Hopf temporal instability dramatically

increases the pattern uncertainty. In the cortical model, a sufficiently strong Turing

instability is likely to activate a damped Hopf mode. This mechanism is very distinct to

the conventional view that the Hopf is introduced by a first-quadrant complex eigenvalue.

As a result, we discovered oscillatory H0 patterns with a Turing instability and a damped

Hopf instability. Similarly, by slightly increasing the Turing instability of a Hπ mode,

we activated its damped Hopf instability, leading to an oscillatory Hπ mode. There are

previous reported oscillatory hexagonal patterns generated by linearly coupling a temporal

source (Hopf or wave instabilities) and a Turing mode, but we argue that such a mechanism

may not be applicable to our cases since the temporal source is not clearly identified. We



7.2 Major achievements 129

are still looking for the theoretical support to our Turing–damped Hopf mode, and we

doubt that the Laplacian terms in the long-range wave equation may be responsible for

two reasons: it imbalances the symmetry of a reaction–diffusion system that has the same

numbers of activatory and inhibitory diffusion terms; it acts on the excitatory membrane

potentials but not the long-range flux, the derivative term of this equation.

Further, we discussed TH induced chaotic mode of the cortical model. Although we

could not apply the Hopf phase-stability condition to predict a chaotic mode, it is widely

acknowledged that an unstable Hopf phase leads a TH mode to chaotic turbulence. The

cortical chaotic mode is very similar to the slow-wave oscillation observed during the deep

sleep. So we postulate that these slow-waves may be formed spontaneously by the interact-

ing spatial (Turing) and temporal (Hopf) neuronal activities. The balance between Turing

and Hopf instabilities are modulated by the inhibitory diffusion D2. A rather larger D2

recovers the unconscious subject back to a wake state, implying two clinical predictions:

moderately gap-junction coupling strength drives an awake cortex with balanced Tur-

ing and Hopf instabilities; fatigue agents (e.g., adenosine and propofol anaesthetic) will

suppress the cortical activation further lowering the gap-junction coupling strength, and

causing a Hopf-dominated chaotic slow-waves.

Propofol anaestheic induced EEG coherence drop

Another promising result from investigating the cortical TH mode was that a transit

from wake to unconsciousness is accompanied by reduced EEG coherence in the sub-

delta band. We analysed clinical EEG recordings from five subjects to examine the

significant EEG coherence changes between wake and anaesthetic unconsciousness. To do

this, we developed an automatic EEG processing algorithm, EEG coherence, to separate

the electrode-pairs with significantly reduced or increased coherence. We found that from

wake to anaesthetic unconsciousness, sub-delta band EEG coherence was reduced mainly

along the fronto-occipital axis, and increased along the left-right temporal axis. These

EEG coherence alternations were also reported by other research teams [26,47,60,77,77,

78], but the cortical model predicts only a reduced coherence. Consequently, we posit

that the Waikato cortical model may best represent the cortical dynamics in the frontal

region.

7.2 Major achievements

To conclude, the work completed in this thesis lead to the following major achievements:

• We comprehensively explained the multiple-scale expansion, and developed a Maple

algorithm Amp solving allowing an automatic implementation of the multiple-scale

expansion to derive amplitude equations.
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• The analysis of the amplitude equations are well demonstrated. We showed how to

examine the mode stability by performing the linear stability analysis of amplitude

equations. Three Turing modes are determined, and the stability of the TH mode

is examined.

• We investigated pattern dynamics for the Waikato cortical model at all steady-state

branches. We located the cortical parametric space for Turing patterns in Hπ, stripes

and H0 modes, for Turing–Hopf patterns in stable and chaotic TH modes. We also

found interesting mixed modes such as oscillatory Hπ and H0 modes.

• We developed a Matlab algorithm EEG cohernece for automatically analysing

EEG phase-coherence changes between two brain states. By applying EEG coherence

to the clinical EEG recordings we found particular cortical regions experiencing re-

duced or increased coherence. Our clinical EEG study supports the cortical model

prediction that propofol anaesthesia will induce a EEG coherence drop at the frontal

cortex.

• In addition, our introduction of the linear stability analysis and simulation strategies

for the pattern-forming system may provide a basic tutorial for readers who wish to

study pattern dynamics.

7.3 Future work

Prediction of the cortical Turing–Hopf mode

As discussed in the previous section, we still experienced difficulties when attempting to

predict the cortical TH mode, especially the chaotic TH mode. Although the clue to

locate chaotic mode is to scan the neighbourhoods of a codimension-2 point, we intend

to find strong theoretical evidence to support the simulations. To do this, an analytical

manipulation of the multiple-scale expansion is necessary. An analytical expression such as

the amplitude equations has dramatic advantages over a numerical approach since we will

be given more freedom to investigate all coefficients in the equations. The demonstrated

amplitude equations are derived from the order-3 MSE. To predict pattern dynamics more

precisely, we may consider to derive the higher order amplitude equations since de Wit

indicated that high-order terms may contain corrections to the pattern dynamics. Besides,

it is still worthwhile to develop new signal analysing algorithm to directly detect the early

warning sign of the cortical chaotic evolutions or similar cortical emergent behaviours.

In addition, we consider an analytical amplitude equations may help us better predict

the cortical bistable mode. The cortical model predicts an EEG coherence drop with

induced propofol anaesthesia, but it lacks of information about other increased coherence

trends at the temporal areas of the cortex. In Sec. 6.10, we utilised a Brusselator model

to demonstrate a pattern transition with reduced coherence in the centre and enhanced
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coherence at edges occurred simultaneously via a bistable mode. Considering the cortical

model has a similar pattern-forming mechanism with the Brusselator model, we expect

that the analytical amplitude equations may assist us to find the cortical bistable mode.

Development of the cortical model with mixed slow- and fast-soma limits

The slow-soma limit describes a resting state of the awake brain, i.e., a baseline level of

activation which is suspended during goal-oriented tasks [99]; while the fast-soma limit

characterises gamma oscillations associated with the cognitive function [106]. The major

difference between two limits are the pattern oscillation frequency: the slow-soma limit

introduces up to 4-Hz oscillations while the fast-soma limit can boost the oscillations up

to 40-Hz. It is biological reasonable that a cortical model should switch between a slow-

and fast-soma limits automatically or under certain circumstances. Currently the slow-

and fast-soma limits are two different models, so how should we combine them together?

A new model should possess two characteristic frequencies, a small one for the slow-soma

and a large one for the fast-soma, and one frequency can become dominant by certain

internal adjustments. From the view of pattern dynamics, such model will have a typical

mixed mode with two frequencies. Following Yang et al. modelling strategies [152, 154],

there may be a solution: couple two cortical models together, each of which has a critical

frequency. Then set the coupling rate as a weighting factor to control the dominant mode.

Alternatively, we may need to find the appropriate parameter setting for the slow-soma

(or fast-soma) limit to generate fast-soma (or slow-soma) patterns. A strategy is to use

machine-learning based methods such as particle swarm optimisation [141] and differential

evolution algorithm [140] to estimate the model parameters based on the practical model

response. For example, we may construct a fitness function based on the slow-soma limit

then feed the machine-learning algorithm with fast-soma data. So the algorithm will

learn the features of the fast-soma limit meanwhile update the slow-soma model to fit

the fast-soma data. However, one disadvantage for this method should be considered:

the estimated model parameters may not be biological reasonable. So how to refine the

searching range of the cortical parameters should be carefully investigated.
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Source codes

This appendix includes selected Matlab source codes that generate important results in

the thesis.

A.1 Brusselator simulation

Runge-Kutta and Euler methods are commonly used to solve differential equations for

pattern-forming systems, e.g., Brusselator and the cortical model. These pattern-forming

systems are essentially mathematical differential equations. The evolved patterns we see in

this thesis are time and space dependent solutions solved from the differential equations.

The Matlab built-in ode45 solver provides a simple way to integrate the differential

system in 1D space (e.g., van der Pol oscillator and Hodgkin-Huxley neuronal model),

but there are few examples that demonstrate the application of ode45 solver in 2D space.

The major advantage of ode45 is its automatic adjustments in time steps to maintain the

accuracy of the solutions, and its faster calculations than the customised Euler algorithm.

We illustrate the source codes for solving the Brusselator model numerically by both

ode45 solver and Euler algorithm in 2D space.

% Brusselator: reaction-diffusion model in 2D spatial grid
% with periodic boundary conditions
% dX/dt = A - (B+1) * X + X^2 * Y + Dx * nabla^2 * X
% dY/dt = B*X - X^2 * Y + Dy * nabla^2 * Y
% in which B is the control parameter
%
% The differential system is solved by ode45 solver
% 12-Oct-2010: KWang

clear
clc; close all

% grid size
N= 60;

% dimensions for the full-resolution grid
[Nx Ny] = deal(N); % no. of sampling points along each axis
[Lx Ly] = deal(60); % square substrate (cm)
[dx dy] = deal(Lx/Nx, Ly/Ny); % spatial resolution (cm)

L = [0 1 0; 1 -4 1; 0 1 0]; % Laplacian matrix
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% define model parameters
a = 3;
Dx = 5/dx^2; % diffusion multipliers (depend on spatial resolution)
Dy = 12/dx^2;
b = 9.1;

params = {N, Dx, Dy, a, b, L};

% initial conditions
% steady-states superimposed with one-off noise
xini = (a)*ones(N,N) + 0.001*randn(N,N);
yini = (b/a)*ones(N,N) + 0.001*randn(N,N);

% transform matrix to vector being ready to input ode45
ini reshape = reshape([xini yini],1,2*N^2);

% time parameters
tstep= 0.1; % sec
tend = 50;

% run simulation
[t v] = ode45(@dxdt wrap, 0:tstep:tend , ini reshape, [], params);

% save output in a file
tv=[t v];

% split output to two variables
x = v(:,1:N*N);
y = v(:,N*N+1:end);
% structure of x and y
% matrix is arranged in vectors
% 1st grid-point 2nd grid-point 3rd grid-point
% 0
% dt
% dt*2
% dt*3

% convert x and y to matrix form
for t ind = 1: length(t)

X(:,:, t ind) = reshape(x(t ind, :), N, N);
Y(:,:, t ind) = reshape(y(t ind, :), N, N);

end

figure(1)
% time series of a given grid-point
plot(t, squeeze(X(30,30, :)));

figure(2)
% final pattern plot
pcolor(X(:,:,end))
set(gcf, 'InvertHardCopy', 'off')
shading interp
axis tight
colormap(jet)

The ode45 solver calls dxdt wrap function that contains following codes:
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function dv = dxdt wrap(t,v,params)

N = params{1,1}; Dx = params{1,2}; Dy = params{1,3}; a = params{1,4}; b = params{1,5};
L = params{1,6};

% input vector split into two variables
x = v(1:N*N);
y = v(N*N+1:end);

x = reshape(x,N,N); % transform the vector into N*N matrix
y = reshape(y,N,N); % transform the vector into N*N matrix

% differential equations
[dx, dy] = deal(zeros(N));

dim = 1: N;
dx(dim,dim) = a-(b+1)*x(dim,dim) + x(dim,dim).^2.*y(dim,dim);
dy(dim,dim) = b*x(dim,dim) - x(dim,dim).^2.*y(dim,dim);

conv1 = convolve2(x, L, 'wrap'); % periodic boundaries (toroid)
conv2 = convolve2(y, L, 'wrap');

dx = dx + Dx * conv1;
dy = dy + Dy * conv2;

% monitor spatial evolution over the time
imagesc(dx);
drawnow

dx = reshape(dx,N*N,1);
dy = reshape(dy,N*N,1);

dv = [dx; dy];

The Euler implementation of the Brusselator simulation is coded as following:

% Simulate 2D Brusselator model by Euler algorithm
%
% 21-June-2013: KWang

clear;clc;close all

a = 3;
b = 9.1;
Dx = 5;
Dy = 12;

time end = 50; % length of simulation, in sec

% dimensions for the full-resolution grid
[Nx Ny] = deal(60); % no. of sampling points along each axis
[Lx Ly] = deal(60); % square substrate (cm)
[dx dy] = deal(Lx/Nx, Ly/Ny); % spatial resolution (cm)

% time resolution and time-base
dt = 1*1e-3;
Nsteps = round(time end/dt)
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% 3x3 Laplacian matrix (used in grid convolution calculations)
Laplacian = [0 1 0; 1 -4 1; 0 1 0];

% set up storage vectors and grids
[U grid V grid] = deal(0.001*randn(Nx, Ny));
U0 = a; V0 = b/a;

% initialize the grids at steady-state values
[U grid V grid] = deal(U0 + U grid, V0 + V grid);

% diffusion multipliers (depend on spatial resolution)
Dx = Dx/dx^2;
Dy = Dy/dx^2;

% Simulation
stride2 = 100; % iterations per screen update
time = [0:Nsteps-1]'*dt; % timebase
ii = 1;
for i = 1: Nsteps

U grid = U grid + dt*(a-(b+1)*U grid + U grid.^2.*V grid + ...
Dx*convolve2(U grid, Laplacian, 'wrap'));

V grid = V grid + dt*(b*U grid - U grid.^2.*V grid + ...
Dy*convolve2(V grid, Laplacian, 'wrap'));

if (mod(i, stride2) == 1 || i == Nsteps)
mesh(x, y, U grid);
drawnow;
U save(:,:, ii) = U grid;
ii = ii + 1;

end

end

In Fig. A.1, we see that, given the identical initial condition (as well as the same randn

seed), the ode45 and Euler integration algorithms give rise to the nearly same result. The

discrepancy between two algorithms experiences a jump between 20 and 30 s, when the

pattern evolution encounters the second bifurcation, a saturation effect that suppresses

the initial Turing instability. After this unstable period, the two algorithms converge,

which is evident as the flat, zero-error curve.

Comparing ode45 and Euler algorithms in the Brusselator simulation, we have the

following comments:

• Time efficiency

In this example, ode45 uses less time to finish the simulation. Notice that the time-

step settings in our codes: for ode45 is 0.1 s, while for Euler is 10−3 s, 100 times

smaller than ode45. Such distinct time-step settings result from two factors: ode45

automatically adjusts the internal time-step to maintain the integration accuracy; in

order words, ode45 decreases the internal time-step only when necessary to achieve

a balance between speed and accuracy. Euler is a first-order integration method, so
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Figure A.1: Comparision of the Brusselator simulation using ode45 and Euler codes
presented in this section. Note that the time-step for ode45 is 0.1 s while for Euler is
0.001 s. ode45 and Euler spend respectively 6.3467 s and 22.1422 s to complete this 50-sec
simulation. The left plot demonstrates the temporal evolutions of a centre grid-point in
the Brusselator X grid using two integration methods, the discrepancy of which see the
right plot.

we need to use a rather smaller time-step for the Euler method to maintain accuracy.

For a given time-step setting, the Euler method runs generally faster than the ode45

since Euler has fewer internal calculations, and does not need the matrix packing

and unpacking operations that ode45 does.

• Accuracy

Provided we choose a sufficiently small time-step, the Euler method can achieve the

same accuracy as the ode45 method. ode45 automatically adjusts the internal time-

step to preserve integration accuracy. In a practical case, one may need to carefully

tune the Euler time-step for a balance between the time-efficiency and accuracy.
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Derivation of the cortical model

This appendix includes detailed calculations for deriving the cortical model.

B.1 Total synaptic inputs

The total input flux Φ is the temporal convolution of the dendrite impulse response H(t)

with the synapse spike-rate M (all subscripts are ignored for simplicity):

Φ = H(t)⊗M(t)

=

∫ t

0

H(t− t′)M(t′)dt′
(B.1)

Theorem B.1.1

F (t) =

∫ v(t)

u(t)

f(t′, t)dt′

⇒ dF

dt
=

∫ v

u

∂

∂t
f(t′, t)dt′ +

dv

dt
f(t′, t)

∣∣∣∣
t′=v

− du

dt
f(t′, t)

∣∣∣∣
t′=u

By substituting alpha-function Eq. (3.7) and applying Theorem B.1.1, Eq. (B.1) yields:

dΦ

dt
=

∫ t

0

∂

∂t
H(t− t′)M(t′)dt′

=

∫ t

0

[
γ2e−(t−t′)γ − γH(t− t′)

]
M(t′)dt′

= γ2

∫ t

0

e−(t−t′)γM(t′)− γ
∫ t

0

H(t− t′)M(t′)dt′

= γ2

∫ t

0

e−(t−t′)γM(t′)dt′ − γΦ

(B.2)
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Take the second derivative, we have:

d2φ

dt2
= γ2

[ ∫ t

0

∂

∂t
e−(t−t′)γM(t′)dt′ +M(t)

]
− γ dΦ

dt

= γ2

[
− γ

∫ t

0

e−(t−t′)γM(t′)dt′ +M(t)

]
− γ dΦ

dt

= γ2

{
− γ
[(

dΦ

dt
+ γΦ

)
/γ2

]
+M(t)

}
− γ dΦ

dt

= γ2

[
− 1

γ

(
dΦ

dt
+ γΦ

)
+M(t)

]
− γ dΦ

dt

= −γ dΦ

dt
− γ2Φ + γ2M(t)− γ dΦ

dt

= −2γ
dΦ

dt
− γ2Φ + γ2M(t)

(B.3)

Arranging the above equation, we have(
d2

dt2
+ 2γ

d

dt
+ γ

)
Φ = γ2M(t) (B.4)

which is equivalent to: (
d

dt
+ γ

)2

Φ = γ2M(t) (B.5)

Considering differentiation on both time t and space ~r, we replace d/dt by ∂/∂t. Thus

the rate of the total synaptic inputs into the dendritic tree is:(
∂

∂t
+ γ

)2

Φ(~r, t) = γ2M(~r, t) (B.6)

B.2 Soma modelling - chemical synaptic inputs

The soma potential is its resting potential superimposed with inputs from excitatory E

and inhibitory I chemical synapses:

V = V rest + L⊗ [E(t) + I(t)]

= V rest +

∫ t

0

L(t− t′)[E(t′) + I(t′)]dt′
(B.7)

in which

L(t− t′) =
1

τ
e−(t−t′)/τ (B.8)

with its differential form being:

∂

∂t
L(t− t′) = − 1

τ 2
e−(t−t′)/τ = −1

τ
L(t− t′) (B.9)



B.2 Soma modelling - chemical synaptic inputs 141

Using theorem B.1.1, the differentiation of Eq. (B.7) reads:

dV (t)

dt
=

∫ t

0

1

τ
L(t− t′)

[
E(t′) + I(t′)

]
dt′ + L(t− t′)

[
E(t) + I(t)

]
= −1

τ

∫ t

0

L(t− t′)
[
E(t′) + I(t′)

]
dt′ +

1

τ

[
E(t) + I(t)

] (B.10)

Substituting Eq. (B.7) into the above equation, we obtain:

τ
dV

dt
= −(V (t)− V rest) + E(t) + I(t)

= V rest − V (t) + E(t) + I(t)
(B.11)

Considering both time and space , we have

τ
∂

∂t
V (~r, t) = −(V (~r, t)− V rest) + E(~r, t) + I(~r, t)

= V rest − V (~r, t) + E(~r, t) + I(~r, t)
(B.12)





Appendix C

Comparision between slow- and

fast-soma cortical models

Table C.1: Slow- and fast-soma limits of the Waikato cortical model

Step 1. Flux φab generated by source Qa obeys 2-D damped wave equation through
axon from population-averaged neuron type a to the population-averaged neuron type b

[(∂/∂t+ vΛab)
2 − v2∇2]φab = v2Λ2

abQa

N Qa is a mapping from membrane voltage Va,b to population-averaged firing rates
a, b are shorthand for either the population-average neuron being excitatory (e) or inhibitory (i)

Step 2.1. Total input flux arrive at axon terminal

Mab = Nα
ab φ

α
ab︸ ︷︷ ︸

long-range

+Nβ
ab φ

β
ab︸ ︷︷ ︸

local

+ φsc
ab︸︷︷︸

subcortical

Step 2.2. Dendrite postsynaptic flux response
Slow-soma limit: Fast-soma limit:

slow soma voltage feedback from soma to dendrite prompt feedback from soma to dendrite

Φab =
∫ t

0
Hab(t− t′)︸ ︷︷ ︸

dendrite response

Mab(t
′)︸ ︷︷ ︸

input flux

dt′ Φab =
∫ t

0
Hab(t− t′) ψab(t

′)︸ ︷︷ ︸
reversal weight

Mab(t
′)︸ ︷︷ ︸

input flux

dt′

N The dendrite dynamics are determined by the alpha-function impulse response Hab(t) = γ2
abte

−γabt

or biexponential function Hab(t) = αabβab/(βab − αab)(e−αabt − e−βabt)

Step 3. Voltage input to the soma

V int
b =

∫ t
−∞ Lb(t− t′)︸ ︷︷ ︸

soma response

[ Eb(t
′) + Ib(t

′)︸ ︷︷ ︸
excitatory and inhibitory voltage inputs to the soma

]dt′

Eslow
b (t) = ρeψeb(t)Φeb(t) Efast

b (t) = ρeΦeb(t), (ρe > 0)
Islow
b (t) = ρiψib(t)Φib(t) I fast

b (t) = ρiΦib(t), (ρi < 0)

N ψab(t) = [V rev
a − Vb(t)]/[V rev

a − V rest
b ] is a dimensionless weighting factor to capture the dendritic

response sensitivity to reversal potential for either excitatory (AMPA) or inhibitory (GABA) receptors.

Time-dependent perturbation about V rest
b

Vb(t) = V rest
b + V int

b

Including electrical synapses, the differential equations for the soma voltage are
Slow-soma limit Fast-soma limit

τb
∂Vb
∂t

= V rest
b − Vb + ρeψebΦeb + ρiψibΦib︸ ︷︷ ︸

chemical synapses

τb
∂Vb
∂t

= V rest
b − Vb + ρe Φeb + ρi Φib︸ ︷︷ ︸

chemical synapses

+ D1,2∇2Vb︸ ︷︷ ︸
electrical synapses

+ D1,2∇2Vb︸ ︷︷ ︸
electrical synapses

N D1,2 = e-to-e, i-to-i gap-junction diffusive coupling (cm2), ρe,i = chemical synaptic strength (mV·s)
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Simulink reconstruction of the Waikato

cortical model

This chapter is extracted from our report to the New Zealand–Japan Exchange Pro-

gramme (NZJEP1). The report describes my visiting scholar research in the Embedded

Systems Lab at Gunma University in Japan for the Matlab/Simulink construction of

the Waikato cortical model from February to May 2013.

D.1 Background

The current Waikato cortical model simulation is executed via the standard Matlab

programming code script, which does not have a user-friendly interface and requires high-

level programming skills to tune the model parameters. We are attempting to develop

a graphic-based, user-friendly interface for the Waikato cortical model, thus providing a

better access for users who are not familiar with programming. We are hoping our cortical

model may offer a theoretical guidance for the clinical monitoring of brain states.

We found that Simulink might be an appropriate environment to reconstruct the

Waikato cortical model. Simulink, an add-on product to Matlab, provides an interac-

tive, graphical environment for modelling, simulating, and analysing of dynamic systems.

It enables modelling via a graphical user interface (GUI) for building models as block

diagrams.

Embedded Systems Lab led by Associate Professor Yoichi Shiraishi at Gunma Uni-

versity (Japan) has a long history working with Matlab/Simulink. The research at

Embedded Systems Lab has a strong focus on transferring medical engineering theory

into practical application. For example, they established a signal-processing algorithm

for human pulse recorded from a fingertip. They implemented the algorithm by fabricat-

ing a mobile pulse-wave detector to monitor patient physical condition such as circulatory

disease, mental disease, etc. Recently, they challenged the traditional method for mea-

suring blood pressure, arguing that it was not reliable. They have begun to re-model

1http://ilep.ac.nz/pld-opportunities/pld-opportunities-abroad/japanese-programmes/

the-nzjep-programme

http://ilep.ac.nz/pld-opportunities/pld-opportunities-abroad/japanese-programmes/the-nzjep-programme
http://ilep.ac.nz/pld-opportunities/pld-opportunities-abroad/japanese-programmes/the-nzjep-programme
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the human circulatory system in Simulink incorporating their ideas into an embedded

system.

Some preliminary ideas and research proposals of the collaboration between the Waikato

Cortical Modelling Group and Embedded Systems Lab were discussed during my short

visit to the Embedded Systems Lab following my presentation at the Conference on Com-

putational Physics in Kobe, Japan in October of 2012.

The collaborative research for translating the cortical model from code sheet to Simulink

blocks commenced in March 2013. After such translation, the cortical model is presented

as graphical neuronal-group connections instead of Matlab code, and simple drag-drop

operation is supported to modulate neuronal properties; this allows a better control of

the cortical behaviour and a clear demonstration of the rich diversity of brain states. The

translated cortical model allows general access for medical researchers and neuroscientists

who have an interest in cortical modelling.

As a PhD student working as a member of the Waikato Cortical Modelling Group, I

was honoured to be the representative working at the Embedded Systems Lab to conduct

our collaborative project. During my stay at Embedded Systems Lab, we completed a

prototype of the Simulink-based cortical model that was able to show a range of brain

dynamics. In a recent update, we have introduced spatial scales into the model, thus

we can restrict the simulation running at a specific spatial scale, e.g., simulation about a

piece of squared cortex with side length 6 cm, which brings more clinical significance.

This collaborative project has been presented at:

• Research seminar at Faculty of Information and Systems, 3rd April 2013, University

of Tsukuba, Japan, hosted by Professor Hidetoshi Konno;

• Research seminar at Department of Production Science and Technology, 25th April

2013, Gunma University, Japan, hosted by Associate Professor Yoichi Shiraishi;

• Postgraduate seminar at School of Engineering, 11th July 2013, the University of

Waikato, New Zealand.

D.2 Modelling differential equations in Simulink

The Waikato cortical model, as shown in Chapter 3, consists of a series of partial differ-

ential equations in first- and second-order. Solving these equations requires interpreting

the differential operators for time (∂/∂t, ∂2/∂t2) and space (∇2). As a first example, we

model the van der Pol oscillator in Simulink to explain how we interpret the differential

operators. In the second example, the famous Brusselator reaction–diffusion system is

modelled in Simulink. The interpretation of the Laplacian operator ∇2 is addressed

here. To our knowledge, it may be the first Simulink-based Brusselator model.
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D.2.1 Van der Pol oscillator

The van der Pol oscillator was originally developed by the Dutch electrical engineer and

physicist Balthasar van der Pol [10]. The van der Pol oscillator was the first mathematical

model proposed for the heartbeat, and it has also been used to simulate brain waves

[57,149]:
d2x

dt2
− µ(1− x2)

dx

dt
+ x = 0 (D.1)

We wish to solve this equation for the case µ = 1 with initial conditions x(0) = 2 and

dx/dt = 0 at t = 0. The traditional way to solve a second-order differential equation is

to convert to a pair of coupled first-order differential equations:

ẋ = y

ẏ = µ(1− x2)y − x
(D.2)

We would now integrate these equations with time using the Matlab numerical in-

tegrator ode45. This helps to form the link with the integration in Simulink .

We code the first-order van der Pol equations into a Matlab function2 as follows:

function dydt = vanderpoldemo(t,y,Mu)
%VANDERPOLDEMO
%Defines the van der Pol equation for ODEDEMO.

% Copyright 1984-2002 The MathWorks, Inc.
% Revision: 1.2 Date: 2002/06/17 13:20:38

dydt = [y(2); Mu*(1-y(1)^2)*y(2)-y(1)];

To solve Eq. (D.2), we specify the coefficient µ, the initial conditions and the time-span

over which the integration is to proceed; then pass these values, along with the name of

the van der Pol function, to the Runge-Kutta solver ode45:

tspan = [0, 20];
y0 = [2; 0];
Mu = 1;
ode = @(t,y) vanderpoldemo(t,y,Mu);
[t,y] = ode45(ode, tspan, y0);

% Plot of the solution
plot(t,y(:,1), t, y(:,2))
xlabel('t')
ylabel('solution y')
title('van der Pol Equation, mu = 1')

The calculated results are plotted in Fig. D.1.

Alternatively, we may use the Simulink construction of Eq. (D.1), as shown in Fig.

D.2.

2vanderpoldemo is a Matlab pre-coded function
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Figure D.1: Solution of the van der Pol equation, produced via Matlab code sheet.
Program running time: 0.384 s in variable time-step. Simulation platform (same for all
simulations in this paper): Matlab R2013a, Mac OS X 10.9.1, Xcode 5.0.2; CPU 2.4
GHz Intel Core i7, memory 8 GB 1600 MHz DDR3.
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Figure D.2: Simulink built-in example for the van der Pol model called by the Matlab
command vdp.

At a first glance, the interface for Simulink is completely different from the code

sheet. In Simulink, all calculating elements are displayed by blocks. We select blocks

from the Simulink library, then connect them to build a model.

The basic principle to model a differential equation in Simulink is to find the input

and output of an integrator. Since we have:∫ [ ∫
d2x

dt2
dt

]
dt =

∫
dx

dt
dt = x (D.3)

then it follows that for a second-order differential equation, we need at least two integra-

tors. As seen in Fig. D.2, we first place an integrator block (the left block labelled with
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1
s
) to process the inner integration of Eq. (D.3):

∫
d2x

dt2
dt. The output of this integrator

reads dx/dt, which is sent into the second integrator (the right block labelled with 1
s
).

We assume the integrated x is known, thus being used to construct the input of the left

integrator block, which is equivalent to
d2x

dt2
with the form:

d2x

dt2
= µ(1− x2)

dx

dt
− x (D.4)

The product block (labelled with ×) in Fig. D.2 combines (1 − x2) and dx/dt. The

result is amplified by a gain (triangle block, valued µ), then passed through a function

block where x is subtracted. Here, the RHS of Eq. (D.4) is constructed.

Modelling a differential equation in Simulink requires forming a closed loop, where

the integrated variables are fed back into the system. Evolution proceeds until reaching

the desired final time. The scope block shows the real-time output of the two integrators;

the scope can be placed anywhere to monitor the response of a sub-system. The Out1

and Out2 terminals send outputs of two integrators to the Matlab workspace for further

analysis. The results of this Simulink model are exactly the same as shown in Fig. D.1.

Both Matlab and Simulink allow fixed or self-adaptive (i.e., auto) time-steps for

the Runge-Kutta solver3. Fig. D.3 shows that the discrepancy between Matlab and

Simulink Runge-Kutta solvers in either fixed or auto time-step mode are sufficiently

small (< 10−10). Consequently, we can see that the accuracy of the model simulation

does not depend on the modelling platform since Matlab and Simulink share the same

integration algorithm to solve differential equations. However, modelling in Simulink is

more straightforward and intuitive, and requires less programming skill than the Mat-

lab code sheet. The original mathematical equations can be converted into Simulink by

matching its pattern with Simulink blocks directly. Moreover, in Simulink, by simply

adding more blocks, or replacing blocks, a new model is able to be built in a very short

time. Simulink may be an ideal tool to efficiently perform the simulations of a mathe-

matical model. In the next section, we will extend the Simulink modelling method to

describe a Brusselator system considering both its temporal and spatial evolutions on 1-D

and 2-D Cartesian grids.

Readers should be aware of the choice of an appropriate differential solver for a specific

problem, depending on the stiffness of differential equations. Applying a wrong solver may

lead to either unstable solution or exceptional computation time. However, it is practically

difficult to identify the stiffness of a differential model, thus one should try at least two

different solvers, and compare the results. If they concur, i.e. give the same solution, they

are likely to be correct. As suggested by Matlab help file, it is worthwhile to try ode45

3fixed time-step ODE solvers are not built into Matlab, but they can be acquired from a release by
the MathWorks Support Team:
http://www.mathworks.com/matlabcentral/answers/uploaded_files/5693/ODE_Solvers.zip

http://www.mathworks.com/matlabcentral/answers/uploaded_files/5693/ODE_Solvers.zip
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Figure D.3: Discrepancy over time for the solution of Eq. (D.1) is calculated from two
modelling methods: Simulink and Matlab code sheet. Both methods use (a) fixed
time-step 10−3 s; or (b) auto time-step. Program running time for Simulink in fixed and
auto time-steps are respective 1.3410 and 0.7404 s; for Matlab the corresponding time
are 17.3952 and 9.4569 s.

first since it is the most widely used method. For pattern-forming systems, we can also

compare the numerical solution with the theoretical prediction to identify the applicability

of the solver. For the demonstrated Brusselator and cortical models, ode45 and ode23

both work well and give rise to similar result; moreover, the numerical solutions match

well with the theoretical predictions in emergent patterns (see [138] for full simulation

results). So we choose ode45 solver to integrate the differential-equation models in this

chapter.

D.3 Brusselator model

The Brusselator model describes the competition of two chemical species in a chemical

reaction, and is the simplest reaction-diffusion system capable of generating complex

spatial patterns. The competition between two reactors and the introduction of diffusion

satisfy the key requirements for pattern formation [127]. The pattern dynamics of the
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Brusselator has been comprehensively examined in Chapters 2 and 5. Here, our purpose

is to introduce Simulink modelling strategies.

The simplest form of the model reads [24],

∂

∂t
X = A− (B + 1)X +X2Y +DX∇2X

∂

∂t
Y = BX −X2Y +DY∇2Y

(D.5)

where X and Y denote concentrations of activator and inhibitor respectively; DX and DY

are diffusion constants; A is a constant and B is a parameter that can be varied to result

in a range of different patterns.

The LHS of Eq. (D.5) is a partial derivative on time sinceX and Y are functions of both

time and space. At the RHS, the spatial derivative is represented by a Laplacian operator

∇2. In the numerical simulation, the spatial dimension of the model is discretised into a

grid by using the finite difference method. In the two-dimensional system the Laplacian

with respect to the concentration field U in the node (i, j) is calculated along the x and

y directions simultaneously:

∇2Ui,j ≈
∆2
xUi,j

h2
x

+
∆2
yUi,j

h2
y

(D.6)

where

∆2
xUi,j = Ui+1,j − 2Ui,j + Ui−1,j; ∆2

yUi,j = Ui,j+1 − 2Ui,j + Ui,j−1 (D.7)

The hx,y demonstrators in Eq. (D.6) are the respective x and y grid spacings; they

define the spatial resolution. Assuming h ≡ hx = hy (i.e., a square grid), the discrete

Laplacian operation in a one-dimensional Cartesian coordinates along the y-axis has the

form:

∇2
1DUi,j ≈

Ui,j+1 − 2Ui,j + Ui,j−1

h2
; (D.8)

for the two-dimensional case, we have

∇2
2DUi,j ≈

Ui+1,j + Ui−1,j − 4Ui,j + Ui,j+1 + Ui,j−1

h2
(D.9)

In Simulink, we initialise the Brusselator model as a column vector consisting of

a 60 × 1 grid (spatial resolution = 1 cm/grid-point) for the one-dimensional case; or

as a 60 × 60 grid for the two-dimensional case. Grid edges are joined to give toroidal

boundaries.

The Laplacian operator ∇2
1D in Eq. (D.8) is implemented as a circular convolution of

the 3× 1 second-difference kernel Ly1D acting along the y-axis:

∇2
1D ≈ Ly1D =

1

h2
y

 1

−2

1

 (D.10)
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The two-dimensional Laplacian operator ∇2
2D in Eq. (D.9) is built up from the sum of

two orthogonal L1D operators:

∇2
2D ≈ L2D =

1

h2
x

0 1 0

0 −2 0

0 1 0

+
1

h2
y

0 0 0

1 −2 1

0 0 0

 =
1

h2

0 1 0

1 −4 1

0 1 0

 (D.11)

where we have again assumed a square grid so that hx = hy = h.

In Simulink, the 1-D or 2-D Laplacian operator with toroidal boundaries is processed

through two blocks: The “wrap-around” and “2-D CONV” (can process both 1-D and 2-D

convolutions) . The “wrap-around” block wraps the input matrix on both axes to allow

a valid convolution in the “2-D CONV” block against the Laplacian kernel L to return the

cyclic convolution. We created a subsystem to compute the convolution, as shown in Fig.

D.4.

Out
1 2−D CONV

I1

I2

MATLAB Function

x

m
y

wraparound

In3
3

In2
2 In1

1

∇2X

Figure D.4: Simulink modelling of the convolution with toroidal boundaries. The
spatial derivative ∇2X approximates to the discrete convolution of X given by the kernal
L. X will be fed into the port In1, the kernel L enters In2 and In3.

In Fig. D.4, the custom block labelled “wraparound” contains codes extracted from

the convolve2() function4.

function y = wraparound(x, m)
% Extend x so as to wrap around on both axes, sufficient to allow a
% "valid" convolution with m to return the cyclical convolution.
% We assume mask origin near centre of mask for compatibility with
% "same" option.
[mx, nx] = size(x);
[mm, nm] = size(m);
if mm > mx | nm > nx

error('Mask does not fit inside array')
end

mo = floor((1+mm)/2); no = floor((1+nm)/2); % reflected mask origin
ml = mo-1; nl = no-1; % mask left/above origin
mr = mm-mo; nr = nm-no; % mask right/below origin

4The two-dimensional circular convolution algorithm was written by David Young, Department of In-
formatics, University of Sussex, UK. His convolve2() code can be downloaded from MathWorks File Ex-
change, http://www.mathworks.com/matlabcentral/fileexchange/22619-fast-2-d-convolution

http://www.mathworks.com/matlabcentral/fileexchange/22619-fast-2-d-convolution
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me = mx-ml+1; ne = nx-nl+1; % reflected margin in input
mt = mx+ml; nt = nx+nl; % top of image in output
my = mx+mm-1; ny = nx+nm-1; % output size

y = zeros(my, ny);
y(mo:mt, no:nt) = x; % central region
if ml > 0

y(1:ml, no:nt) = x(me:mx, :); % top side
if nl > 0

y(1:ml, 1:nl) = x(me:mx, ne:nx); % top left corner
end
if nr > 0

y(1:ml, nt+1:ny) = x(me:mx, 1:nr); % top right corner
end

end
if mr > 0

y(mt+1:my, no:nt) = x(1:mr, :); % bottom side
if nl > 0

y(mt+1:my, 1:nl) = x(1:mr, ne:nx); % bottom left corner
end
if nr > 0

y(mt+1:my, nt+1:ny) = x(1:mr, 1:nr); % bottom right corner
end

end
if nl > 0

y(mo:mt, 1:nl) = x(:, ne:nx); % left side
end
if nr > 0

y(mo:mt, nt+1:ny) = x(:, 1:nr); % right side
end

The reason we introduce the custom block is that the Simulink built-in 2-D CONV

block provides only the “valid” (non-flux) boundary condition, and cannot handle periodic

boundaries.

Following the ideas of modelling the van der Pol oscillator, we can easily convert Eq.

(D.5) to Simulink blocks, seen in Fig. D.5.

In summary, to construct the Brusselator model in Simulink, we first place an inte-

grator block to represent time derivative. The temporal integrator’s output will be fed

back into the system to engage with the system’s evolution, then form the input of this

integrator block, closing the loop. The model parameters can be adjusted by tuning the

settings of the blocks A and B as well as two gains (labelled DX and DY respectively).

The real-time spatiotemporal evolution of X and Y are monitored via the Matrix viewer

block. The simout block delivers the solution of Eq. (D.5) to the Matlab workspace for

future analysis. The solution is a three-dimensional matrix with the third dimension the

same length as the time span.
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Figure D.5: Simulink construction of the Brusselator model.

D.4 Simulink versions of Waikato cortical model
equations

Let us first list the mathematical equations for the Waikato cortical model and examine

their characteristics.

• The cortico-cortical equation[(
∂

∂t
+ vΛeb

)2

− v2∇2

]
φαeb = (vΛeb)

2Qe

can be arranged by collecting temporal derivatives to the LHS:

∂2

∂t2
φαeb + 2vΛeb

∂

∂t
φαeb = v2∇2φαeb − v2Λ2φαeb + (vΛeb)

2Qe (D.12)
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• The intra-cortical equations(
∂

∂t
+ γe

)2

Φeb = [Nα
ebφ

α
eb +Nβ

ebQe + φsceb]γ
2
e(

∂

∂t
+ γi

)2

Φib = [Nβ
ibQi]γ

2
i

have different RHS, but their LHS are in the same mathematical pattern:(
∂

∂t
+ γ

)2

Φ =
∂2

∂t2
Φ + 2γ

∂

∂t
Φ + γ2Φ (D.13)

We can move the term γ2Φ to the RHS of the intra-cortical equations, then the LHS

of the intra-cortical equations have the expression:

∂2

∂t2
Φ + 2γ

∂

∂t
Φ (D.14)

which is similar to the LHS of the cortico-cortical equation.

• The soma equation

τb
∂Vb
∂t

= V rest
b − Vb + (ρeψebΦeb + ρiψibΦib) +Dbb∇2Vb

can be re-arranged as

∂Vb
∂t

=
1

τb

[
V rest
b − Vb + (ρeψebΦeb + ρiψibΦib) +Dbb∇2Vb

]
(D.15)

Following the ideas of Simulink modelling in van der Pol oscillator, we need two

integrator blocks for Eqs. (D.12) and (D.14), and two convolution processing for Eqs.

(D.12) and (D.15).

The strategy for modelling a large system is to focus on its subsystems first, then con-

nect them together. The Waikato cortical model has three major parts: cortico-cortical,

intra-cortical and soma equations. Fig. D.6 shows how neuronal fluxes are transferred

from one to another: cortico-cortical flux φαeb is delivered to the long-range targets Φee

and Φei; intra-cortical flux Φee and Φei, Φie and Φii merge into the soma equations. The

output of the soma Ve is connected to source neurons to form the closed loop through the

excitatory sigmoid function:

Qe =
Qmax
e

1 + e−C(Ve−θe)/σe

In following sections, we detail the Simulink implementation of the three subsystems

(drawn as three blocks in Fig. D.6) of the cortical model.
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α
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Figure D.6: Flux flows for the Waikato cortical model between its cortico-cortical, intra-
cortical and soma equation subsystems.

D.5 Cortico-cortical flux

The Simulink based cortico-cortical block (see Fig. D.7) is converted from Eq. (D.12).

The flux-source Qe is a mapping from the excitatory soma voltage sent via the Goto

block, to the firing-rate received via the From block. After two integrations, signals will be

passed to the excitatory synapses via port-1 (upper right corner) and inhibitory synapses

via port-2 in the intra-cortex.
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Figure D.7: Simulink-based cortico-cortical wave-equation
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D.6 Intra-cortical flux

In Simulink modelling, we divide Eq. (3.4) into two parts: the constant (i.e. dc-level) ex-

citatory background s〈φsc
eb〉 and the one-off kick

√
s〈φsc

eb〉ξeb. As illustrated in Fig. D.8, we

use a Clock block to count the iteration step. Once the counter is above one, the “switch”

will turn off the kick, allowing only the constant excitation to enter the intra-cortex (re-

moving the Clock block would allow on-going noise stimulus from the subcortex). The

2-D spatial white noise are generated by the Band-Limited White Noise block.

1off noise
Out
1

Switch

 >= 2

Clock

Add

s φsc
eb

s φsc
eb

ξeb Gain

Figure D.8: Simulink-based subcortical flux

The intra-cortical model describes how post-synaptic fluxes evolve over time. In Fig.

D.9, the local fluxes (input via the From block) along with the long-range fluxes (from

input-1 at the left, labelled as φαe ) and subcortical drive are summed, then filtered at the

post-synaptic dendrite, thus forming the post-synaptic fluxes Φee at the output port-1

(upper right corner). The Φee and Φei flux models have symmetric structure.
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Figure D.9: Simulink-based e→ e post-synaptic flux Φee for the intra-cortex
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We assume that the cortico-cortical fibres are exclusively excitatory, thus there are

no long-range inhibitory fluxes entering into the soma. Fig. D.10 shows that the local

inhibitory fluxes Φie come from local source Qi only. The Φie and Φii models also have

symmetric structure.

1

1
s 1

s

Φie

u2

Gain
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Initial state
Φie

Φie

Φie →

γi

Nβ
ie
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∂2Φie

∂t2
∂Φie

∂t
e-soma

Figure D.10: Simulink-based i→ e post-synaptic flux Φie for the intra-cortex

D.7 Soma voltage

Fig. D.11 presents the soma model of the excitatory neuronal group. The short-range

fluxes are accumulated at the soma, from ports 1 and 2. The soma voltage Ve is converted

to firing-rate Qe locally in this sub-model (block labelled with Qe sigmoid), then fed back

into the cortico-cortical and intra-cortical models.

Finally, we connect all subsystems to form the completed Waikato cortical model, as

illustrated in Fig. D.12. It follows the flux flow-chart of Fig. D.6, with the detailed

Simulink block connections shown in Fig. D.13. We argue that such model-based-

design is an advantage for representing differential equations in Simulink . Although

Simulink is useful for rapid prototyping, the Simulink implementation of the cortical

model runs slower than our pre-coded Euler integration5 since it is time-consuming to

interpret the Matlab function wrapround (see Fig. D.4) in Simulink . A 60 × 60 grid

(side length 20 cm) 5-s cortical simulation takes ∼10 s via Matlab Euler integration

5Matlab simulation codes were written by Alistair Steyn-Ross. The complete codes, plus README
files and movies of cortical dynamics, are available from the web site:
http://www2.phys.waikato.ac.nz/asr/

http://www2.phys.waikato.ac.nz/asr/
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Figure D.11: Simulink-based excitatory soma equation

(fixed time-step 0.8×10−3 s), while ∼40 s via Simulink (auto time-step and in accelera-

tor mode). Thus, it is recommended to avoid using Matlab functions in Simulink unless

necessary.

D.8 Comment on Simulink running efficiency

Although Simulink has an intuitive programming logic and comparable accuracy to

Matlab, it sometimes runs much slower than Matlab, e.g., in the demonstrated Brus-

selator and cortical model simulations. The reason is that we embed Matlab functions

wraparound in the model to expand the Simulink capability. Once a Matlab function

block is present, the Matlab interpreter is called at each time-step. This drastically

reduces the simulation speed. So, one should use the built-in blocks whenever possible.

Without using Matlab function blocks, Simulink shows a higher performance than

Matlab, e.g., see the description of Fig. D.3. MathWorks Support Team also presented

comprehensive guidance to speed up the Simulink simulation, which are available at

http://www.mathworks.com/matlabcentral/answers/94052. In the further optimisa-

tion of our Simulink model, we will consider replacing Matlab function with the MEX

S-function, which may help to accelerate the simulation in the merit of its direct com-

munication with the Simulink engine (avoid the time consuming compile-link-execute

cycle).

http://www.mathworks.com/matlabcentral/answers/94052


160 Simulink reconstruction of the Waikato cortical model

long−range source 

i-soma

Out

e-soma

Out

φα
e → Φee

φα
e → Φei

short-range Φee

short-range Φie

short-range Φei

short-range Φii

short-range Φee

short-range Φie

short-range Φei

short-range Φii

Qe Display

Qi Display

Qe

Qi

Figure D.12: Overview of the Simulink implementation of the Waikato cortical equa-
tions

Qe

From
1

2

φα
e → Φee

φα
e → Φei

1 Qe

From

Φee → soma e
1

Qe

From

Φei → soma i
1

Φie → soma e

1

1
From

Qi

Φii → soma i
1

From

Qi

1

2

short-range Φee

short-range Φie

1

2

short-rangeΦei

short-rangeΦii

Ve

Goto

Ve

From

Qe

Goto

Vi

Goto

Vi

From

Qi

Goto

cortico-cortical equation

soma e equation

soma i equation

intra-cortical equations

φα
e

φα
e

sigmoid function

Figure D.13: Detailed connection diagram for the Simulink-based Waikato cortical
equations. Solid arrow: direct connection; dashed arrow: Goto–From connection.



Appendix E

Coding strategies used in Amp solving

This Maple tutorial covers basic programming ideas used in Amp solving. We present a

stepwise instructed implementation of annotated example code to help readers master our

coding strategies in a time-efficient manner. We encourage readers to run these examples

in Maple for a better understanding of our coding logic.

E.1 Assigning values and defining equations

In Matlab, we simply use “=” to assign a value to a variable, which will be stored in

the Matlab workspace. But in Maple, the assignment is declared by “:=”, while “=”

stands for an equation. Let us see an example in Maple:

> a := 5;
a := 5

Here we assign 5 to the variable a, which will be stored in the Maple workspace. Hereafter

a will automatically be substituted by its value 5 if we call a. Such syntax is the same as

in Matlab:

> a + 2;
7

The equation describes an identical relationship between its left and right hand sides.

Equation will NOT be stored in the Maple workspace:

> a = 5: # "colon" suppresses the output
> a + 2; # "semicolon" terminates the statement with the output shown

a + 2

We can however assign an equation to a variable:

> f := a = 5;
f := a = 5

then substitute this relationship between a and 5 into a + 2:
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> subs(f, %%);
7

The % sign in Maple is a ditto operator allowing us to refer to a previously computed

result. In our example, %% reevaluates the second last expression computed, i.e., a + 2.

E.2 Vectorising variables

There are two ways to vectorise variables in Maple. The first, the same as in Matlab,

creates an array in which each element is a variable:

> seq(a[i], i=1..5);
a1, a2, a3, a4, a5

But such manipulation has a drawback: a and its index i are actually separated:

> a := 5;
a := 5

> a[1];
51

Although we can assign 5 to a[1] directly:

> a[1] := 5;
a1 := 5

the variable a cannot be declared anymore. What is more, Maple has difficulty distin-

guishing a and a1:

> f := a * a[1] + a[2] + a[3]:
> select(has, f, a); # select terms with a in f

a a1 + a2 + a3

To overcome this problem and maintain program stability, we use || to concatenate

a name and its index:

> seq(a||i, i=1..5);
a1, a2, a3, a4, a5

> a := 5;
a := 5

> a1;
a1

> f2 := a * a1 + a2 + a3:
> select(has, f2, a); # select terms with a in f2

a a1

Note that variable a is distinct from “subscripted” variables a1, a2, a3, etc.
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E.3 Manipulating expressions

In Maple there are many ways to tidy up and manipulate expressions, e.g., simplify,

factor and collect. In this section, we will review a few commands used frequently in

Amp solving. Commands are explained using simple examples relevant to multiple-scale

expansion to help readers master the syntax quickly.

• collect(f, x): Collect all the coefficients with the same rational (fractional) power

of x from f .

> f := (e*a1 + e^2*b1) * (e*a2 + e^2*b2);
f := (e a1 + e2 b1)(e a2 + e2 b2)

> f2 := expand(f);
f2 := e2 a1 a2 + e3 a1 b2 + e3 b1 a2 + e4 b1 b2

> f3 := collect(f2, e^3);
f3 := e4 b1 b2 + (a1 b2 + b1 a2) e3 + e2 a1 a2

• select(has, f, x): Select operands x in f :

> select(has, f3, e^3);
(a1 b2 + b1 a2) e3

• remove(has, f, x): Remove operands x from f .

> remove(has, f3, e^3);
e4 b1 b2 + e2 a1 a2

• selectremove(has, f, x): Partitions into terms containing, and not containing,

x in f .

> f4 := selectremove(has, f3, e^3);
f4 := (a1 b2 + b1 a2) e3, e4 b1 b2 + e2 a1 a2

> f4[1]; # terms containing e^3
(a1 b2 + b1 a2) e3

> f4[2]; # terms not containing e^3
e4 b1 b2 + e2 a1 a2

• coeff(f, x): Extract coefficient of x in the polynomial f .

> coeff(f3, e^3);
a1 b2 + b1 a2

• subs(x = a, f): Substitute x by a in f .

> subs(e = E, f);
(E a1 + E2 b1) (E a2 + E2 b2)
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E.4 Coding strategies in multiple-scale expansion

In the first five examples of this section, we will demonstrate how to define a differential

equation used in Amp solving. All these ideas will be combined in the last example:

Programming the multiple-scale expansion.

E.4.1 Example 1

In Maple, to define a partial differential operation in which the derivative acts on the

first and second arguments of the function y(x1, x2, x3)

∂2

∂x1∂x2
y(x1, x2, x3) + c, c = constant

we can use “D” operator:

> f:= D[1,2](y)(x1,x2,x3) + c;
f := D1,2(y)(x1, x2, x3) + c

Then convert f to the commonly seen “diff” differential form:

> f diff := convert(f, diff);

f diff :=
∂2

∂x2 ∂x1
y(x1, x2, x3) + c

To have compact display, we replace y(x1, x2, x3) by an alias Y :

> alias(Y = y(x1,x2,x3));
Y

> f diff;
∂2

∂x2 ∂x1
Y + c

> is(Y, function); # Demonstrate that Y is a function
true

> is(c, function); # Demonstrate that c is not a function (i.e., is a constant)
false

These codes demonstrate that the convert(f, diff) command converts functions only,

from “D” to “diff” form. In Maple, a function is defined as a symbol attached with its

arguments, the case here is y(x1, x2, x3). Y , the alias of y(x1, x2, x3), is also recognized

as a function. But, can we define an alias before applying the D operator?

E.4.2 Example 2

> restart:
> alias(Y = y(x1,x2,x3));

Y



E.4 Coding strategies in multiple-scale expansion 165

> is(Y, function);
true

> f:= D[1,2](Y) + c;
f := D1,2(Y ) + c

> f diff := convert(f, diff);
f diff := D1,2(Y ) + c

We see that Maple fails to convert D to diff form if the function is defined in an alias.

Thus we conclude that convert only works for explicit arguments. If we have a large

numbers of functions to input, it will be tedious to write out their full expressions. A

solution is given in the following example.

E.4.3 Example 3

> restart:
> f := D[1](y1) + D[2](y2) + D[1,2](y3);

f := D1(y1) + D2(y2) + D1,2(y3)

In the above partial differential expression f , there are three functions y1, y2 and y3.

Assume that they have the same arguments (x1, x2, x3). By converting f to the diff

form, we simply attach (x1, x2, x3) to f :

> f diff := convert(f(x1,x2,x3), diff);

f diff :=
∂

∂x1
y1(x1, x2, x3) +

∂

∂x2
y2(x1, x2, x3) +

∂2

∂x2 ∂x1
y3(x1, x2, x3)

Obviously, the above example shows a more efficient manipulation than what was achieved

in Example 1. Thus we can use alias to exhibit compact display. Note that in this

example there are no constant terms in f . Let us examine what happens if a constant

term is added to f .

E.4.4 Example 4

> restart:
> f := D[1](y1) + D[2](y2) + D[1,2](y3) + c;

f := D1(y1) + D2(y2) + D1,2(y3) + c
> f diff := convert(f(x1,x2,x3), diff);

f diff :=
∂

∂x1
y1(x1, x2, x3) +

∂

∂x2
y2(x1, x2, x3) +

∂2

∂x2 ∂x1
y3(x1, x2, x3) + c(x1, x2, x3)

Unfortunately, by attaching arguments to f , the constant term c becomes a function,

which is not what we want. Hence we need to inform Maple that c is to be treated as a

constant.



166 Coding strategies used in Amp solving

E.4.5 Example 5

> restart:
> f := D[1](y1) + D[2](y2) + D[1,2](y3) + c;

f := D1(y1) + D2(y2) + D1, 2(y3) + c
> c := ()->c;

c := ( )→ c
> f diff := convert(f(x1,x2,x3), diff);

f diff :=
∂

∂x1
y1(x1, x2, x3) +

∂

∂x2
y2(x1, x2, x3) +

∂2

∂x2 ∂x1
y3(x1, x2, x3) + c

> is(c, procedure);
true

In this example, we propose a strategy to hold a constant while converting it from D to

diff form: Define the constant as a procedure with itself being the output. As a result,

with taking arbitrary inputs the output of c is also c:

> for i from 1 to 5 do
c(i)

od;
c
c
c
c
c

Since c has become a procedure, Maple preserves it from being attached to other argu-

ments.

To define a sequence of constants, e.g., c1, c2, c3, the following codes show that the

“()->” definition cannot be directly used in a for loop:

> for i from 0 to e order do
c||i := ()->c||i

od:
> is(c1, procedure);

false

Alternatively, we can separate the input and the output of a procedure in the for loop:

> for i from 0 to e order do
c||i := subs([variables=(), body=c||i], (variable->body)):

od:
> is(c1, procedure);

true

Th above idea is useful in defining the expanded bifurcation parameters, e.g., B1, B2, B3

in Eq. (4.4).
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E.4.6 Example 6

As a final example, we will demonstrate how to employ these coding strategies in the

chain rule for the total derivative after introducing the multiple-scale expansion (MSE)

for the operation ∂u(t, r)/∂t.

The MSE of ∂u(t, r)/∂t starts with a linear perturbation

u(t, r) = u0 + δu(t, r)

to obtain the perturbation derivative ∂δu(t, r)/∂t. MSE introduces a further nonlinear

expansion to δu(t, r):

δu(t, r) =
k∑
p=1

εpup(T0, T1, . . . Tk;R0, R1, . . . Rk)

in which ε is an arbitrary small expansion constant; Tm = εmt and Rm = εmr (m =

0, 1, 2 . . . k) are scaled temporal and spatial arguments respectively. The following codes

show an expansion up to the order ε3.

First, we define the expansion settings:

> restart:
> e order := 3: # expansion to the order of epsilon
> vas := op(op~([seq([R[j],T[j]], j=0..e order)])); # variable arguments

vas := R0, T0, R1, T1, R2, T2, R3, T3

op(op~([])) merges sets generated by seq:

> vas sample := seq([R[j],T[j]], j = 0..e order);
vas sample := [R0, T0], [R1, T1], [R2, T2], [R3, T3]

> op~([vas sample]);
[R0, T0, R1, T1, R2, T2, R3, T3]

> op(op~([vas sample]));
R0, T0, R1, T1, R2, T2, R3, T3

Then we define the original partial derivative

> f original := Dt(u);
f original := Dt(u)

Dt() is a customised differential operator that is analogue to ∂/∂t. Similarly, we have

other customised differential operator conversions:

• Spatial derivative ∇ →Ds(), ∇2 →Ds@@2().

Now let us expand u:

> u := u 0 + du; # du stands for perturbation
> u 0 := ()->u 0; # define constant
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The assignment of u is automatically substituted into f original:

> f original;
Dt(u 0 + du)

Let us introduce the nonlinear expansions:

> du := sum('e^k*u||k', 'k'=1..e order); # expand du
du := e u1 + e2 u2 + e3 u3

> Dt := sum('e^m*D[2*m+2]', 'm'=0..e order); # m: index of temporal expansion
Dt := D2 + e D4 + e2 D6 + e3 D8

in which the Dt expansion is equivalent to:

∂

∂t
=

∂

∂T0

+ ε
∂

∂T1

+ ε2
∂

∂T2

+ ε3
∂

∂T3

i.e.,

D2 ≡
∂

∂T0

, D4 ≡
∂

∂T1

, D6 ≡
∂

∂T2

, D8 ≡
∂

∂T3

in other words, D2m+2 operator in the Dt expansion is the temporal derivative acting on

the (2m+ 2)-th temporal argument in vas.

We have used e instead of ε for simplicity. Since e is a constant, it must be declared:

> e := ()->e;

Let us examine the current expression of f original:

> f original;

D2(u 0) + D2(e) u1 + e D2(u1) + 2D2(e) e u2 + e2 D2(u2) + 3 D2(e) e2 u3 + e3 D2(u3)

+ e (D4(u0) + D4(e) u1 + e D4(u1) + 2 D4(e) e u2 + e2 D4(u2) + 3 D4(e) e2 u3

+ e3 D4(u3)) + e2 (D6(u0) + D6(e) u1 + e D6(u1) + 2 D6(e) e u2

+ e2 D6(u2) + 3 D6(e) e2 u3 + e3 D6(u3)) + e3 (D8(u0) + D8(e) u1 + e D8(u1)

+ 2 D8(e) e u2 + e2 D8(u2) + 3 D8(e) e2 u3 + e3 D8(u3))

Conversion from D to diff will eliminate the temporal derivative on constant e:

f diff := convert(f original(vas), diff);

f diff := e

(
∂

∂T0
u1(R0, T0, R1, T1, R2, T2, R3, T3)

)
+ e2

(
∂

∂T0
u2(R0, T0, R1, T1, R2, T2, R3, T3)

)

+ e3

(
∂

∂T0
u3(R0, T0, R1, T1, R2, T2, R3, T3)

)

+ e

(
e

(
∂

∂T1
u1(R0, T0, R1, T1, R2, T2, R3, T3)

)
+ e2

(
∂

∂T1
u2(R0, T0, R1, T1, R2, T2, R3, T3)

)
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+ e3

(
∂

∂T1
u3(R0, T0, R1, T1, R2, T2, R3, T3)

))

+ e2

(
e

(
∂

∂T2
u1(R0, T0, R1, T1, R2, T2, R3, T3)

)
+ e2

(
∂

∂T2
u2(R0, T0, R1, T1, R2, T2, R3, T3)

)

+ e3

(
∂

∂T2
u3(R0, T0, R1, T1, R2, T2, R3, T3)

))

+ e3

(
e

(
∂

∂T3
u1(R0, T0, R1, T1, R2, T2, R3, T3)

)
+ e2

(
∂

∂T3
u2(R0, T0, R1, T1, R2, T2, R3, T3)

)

+ e3

(
∂

∂T3
u3(R0, T0, R1, T1, R2, T2, R3, T3)

))

Compact display is obtained using alias:

> alias(seq(u ||i = u||i(vas), i=1..e order)):
> f diff;

e

(
∂

∂T0
u 1

)
+ e2

(
∂

∂T0
u 2

)
+ e3

(
∂

∂T0
u 3

)

+ e

(
e

(
∂

∂T1
u 1

)
+ e2

(
∂

∂T1
u 2

)
+ e3

(
∂

∂T1
u 3

))

+ e2

(
e

(
∂

∂T2
u 1

)
+ e2

(
∂

∂T2
u 2

)
+ e3

(
∂

∂T2
u 3

))

+ e3

(
e

(
∂

∂T3
u 1

)
+ e2

(
∂

∂T3
u 2

)
+ e3

(
∂

∂T3
u 3

))

At last, we rearrange f diff by collecting terms with the same order of e:

> f sorted := collect(f diff, e);

f sorted :=

(
∂

∂T3
u 3

)
e6 +

(
∂

∂T2
u 3 +

∂

∂T3
u 2

)
e5 +

(
∂

∂T1
u 3 +

∂

∂T2
u 2 +

∂

∂T3
u 1

)
e4

+

(
∂

∂T0
u 3 +

∂

∂T1
u 2 +

∂

∂T2
u 1

)
e3 +

(
∂

∂T0
u 2 +

∂

∂T1
u 1

)
e2 +

(
∂

∂T0
u 1

)
e

The coefficient of a specified ε (i.e., e in the code) order can be extracted by the command

coeff for further analysis (e.g., construct order equations). For example, to extract the

coefficients of ε2:

> coeff(f sorted, e^2);
∂

∂T0
u 2 +

∂

∂T1
u 1





Appendix F

Derivation of Brusselator amplitude

equations for the hexagonal mode using

Amp solving

In this section, we will demonstrate a practical application of Amp solving to derive

the order-3 Brusselator amplitude equations for the hexagonal mode. This amplitude

equation allows us to better understand the Turing pattern-forming mechanism, enabling

precise control of the patterned structure.

To derive the order-3 amplitude equation, Amp solving is modularised into 5 parts:

1. Nonlinear expansion

2. Linear stability analysis

3. Order-2 solvability condition

4. Solving order-2 equation

5. Order-3 solvability condition

The Order-3 solvability condition yields the order-3 amplitude equations. Higher-order

amplitude equations can be obtained by iterating the similar procedures of steps 3, 4

and 5: Order-(k − 1) solvability condition → Solve order-(k − 1) equation → Order-k

solvability condition.

F.1 Nonlinear expansion

F.1.1 Initialise model configuration

Following the work by Peña et al. [93], we define η =
√
DX/DY . The Brusselator model

∂X

∂t
= A− (B + 1)X +X2Y + η2∇2X

∂Y

∂t
= BX −X2Y +∇2Y
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has the critical Turing condition B0 = (1 +Aη)2. X and Y are functions of temporal and

spatial arguments (t; r) in original scales. We will expand the variable to third order in ε:

u(t; r) = u0 + εu1(T0, T1, T2, T3;R0, R1, R2, R3) + ε2u2(T0, T1, T2, T3;R0, R1, R2, R3)

+ ε3u3(T0, T1, T2, T3;R0, R1, R2, R3)

(F.1)

then solve the amplitude equation at order ε3.

To start the computerised MSE, we first initialise Amp solving for the expansion order,

system dimension (number of model equations) and multiple-scaled arguments.

> # Initialisation
> e order := 3: # Expansion order
> sys dim := 2: # System dimensions
> vas := op(op~([seq([R[m],T[m]], m = 0..e order)])); # Variable arguments

vas := R0, T0, R1, T1, R2, T2, R3, T3

• e_order: expansion order of the final amplitude equation

• sys_dim: number of model equations

• vas: variable arguments. Temporal and spatial arguments in multiple-scales

F.1.2 Define model equations

In Amp solving, model equations are declared via our customised syntax:

• Differential operator conversion

Temporal derivative ∂/∂t→Dt(); Spatial derivative ∇ →Ds(), ∇2 →Ds@@2().

• Vectorised variables

Brusselator variables X and Y are defined as uo1 and uo2 respectively. The symbol

o means that the variable has the original temporal and spatial scales. In general,

we have the variable definition uoi, in which i = 1. . .sys dim. In Maple program-

ming, uoi is equivalent to uo||i, in which || is an Maple operator to concatenate

expressions. The form uo||i is useful in a for loop over index i.

• Define constants

Constants of the model are defined as Maple procedures to preserve their indepen-

dence (see Appendix E.4 for a detailed explanation).

Following these rules, the Brusselator mode equations are defined as:

> # Define the Brusselator model
> ## Activator
> PDE[1] := Dt(uo1) = A - (Bo + 1) * uo1 + uo1^2 * uo2 + N^2 * (Ds@@2)(uo1);
> A := ()->A: # define the constant as a procedure
> N := ()->N:
>
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> ## Inhibitor
> PDE[2] := Dt(uo2) = Bo * uo1 - uo1^2 * uo2 + (Ds@@2)(uo2);

• Bo: the original and unexpanded bifurcation control parameter B

• PDE[i]: i-th partial differential equation of the model

• N: η =
√
DX/DY

F.1.3 Expansions

1. Weakly linear perturbation

Expand the model variable u as a small perturbation δu around the steady state

u0:

u = u0 + δu

Following codes automatically solve u0 and substitute the linear expansion to the

model equation PDE[i].

> # Remove temporal and spatial derivatives
> for i from 1 to sys dim do
> PDE ss[i] := 0 = expand(subs(Ds = 0, rhs(PDE[i])));
> od:
> # Automatically solve homogeneous steady-states and store them in ss
> ss := solve( seq(PDE ss[i], i=1..sys dim),

seq(uo||i, i=1..sys dim) );

ss :=

{
uo1 = A, uo2 =

Bo

A

}
> # Introduce linear perturbations
> for i from 1 to sys dim do

uo||i := u||i|| ||0 + du||i; # Linear perturbation
u||i|| ||0 := rhs(ss[i]); # Substitute steady-states

od:

• dui: δu, small perturbation around the steady state ui_0

2. Expand differential operators

(see Appendix E.4 for more details)

Introduce differential operator expansions Eqs. (4.7) and (4.8):

> Dt := sum('e^m*D[2*m+2]', 'm'=0..e order): # Expand temporal derivative
> Ds := sum('e^m*D[2*m+1]', 'm'=0..e order): # Expand spatial derivative
> e := ()->e: # Define scaling constant

3. Nonlinear expansions

Introduce the nonlinear variable expansion

δu = εu1 + ε2u2 + ε3u3
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and the bifurcation parameter expansion

B = B0 + εB1 + ε2B2 + ε3B3 (F.2)

> for i from 1 to sys dim do # Nonlinear variable expansion
du||i := sum('e^j*u||i||j', 'j'=1..e order);

od:
> Bo := sum('e^i*B ||i', 'i'=0..e order); # Bifurcation parameter expansion

> # Define expanded bifurcation parameters as constants
> for i from 0 to e order do

B ||i := subs([variables=(), body=B ||i], (variables-> body)):
od:

• uij: expanded variables. i stands for the variable index, j is the variable

expansion index. i.e., for the Brusselator model

u1 =

[
u11

u21

]
, u2 =

[
u12

u22

]
, u3 =

[
u13

u23

]
4. Obtain order equations

The expanded terms (differential operators, variables and bifurcation parameters)

will be substituted back into the model equations automatically. Then we convert

the differential expression from D to diff mode.

> # Define alias for compact display
> for i from 1 to sys dim do

alias(seq(u||i|| ||j = u||i||j(vas), j=1..e order));
od:

> # Convert D to diff mode for differential equations
> for i from 1 to sys dim do

PDE sorted[i]:= simplify(collect(PDE[i] ,e), e^(e order+1)=0):
PDE diff[i] := convert(PDE sorted[i](vas), diff):

od:

• PDE sorted[i]: fully expanded model equation up to the order εe order

• PDE diff[i]: PDE sorted[i] in the diff form

Using coeff() to extract coefficients at a specific order of ε from both sides of

PDE diff[i], we can obtain a series of raw order equations. This is done automat-

ically in Amp solving by scanning each model equation at all ε orders.

> # Collect terms with the same order of e
> for i from 1 to sys dim do

for j from 1 to e order do # ith equation at order j
eq||i|| order||j :=

expand(coeff(lhs(PDE diff[i]), e,j) = coeff(rhs(PDE diff[i]), e,j));
od:

od:
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• eqi_orderj: raw order equation, read as the i-th equation of εj. It is obtained

by equating the coefficients of εj from both sides of the expanded equation.

We need to rearrange the raw order equation eqi_orderj to the form as Eqs. (4.10),

(4.13) and (4.21), so that the LHS of the order equation has only the linear oper-

ation (∂/∂T0 − Lc) on the current order variables. We use selectremove() to

select the current order variables then group them at the LHS while placing other

terms at the RHS (see Sec. 4.4.1 for more details). The sorted order equation is

read eqi orderj diff, the suffix of which diff indicates its explicit differentiation

display.

> # Tidy up order equations
> for i from 1 to sys dim do

for j from 1 to e order do

PDE temp||i||j := lhs(eq||i|| order||j) - rhs(eq||i|| order||j);
PDE components||i||j := selectremove(has,PDE temp||i||j,

seq(u||ii||j, ii=1..sys dim) );
eq||i|| order||j|| diff := PDE components||i||j[1]

= -PDE components||i||j[2];
od:

od:

At last, we vectorise the RHS of order equations at each ε order to a column vector

(e.g., Ij in Eqs. (4.13) and (4.21)). This is required for the scalar product of the

solvability condition. At the expansion order j, RHS for all order-j equations are

stored in eq vec orderj (representing Ij).

> # Vectorise rhs of order equations
> for j from 1 to e order do

eq vec order||j :=
Vector[column]([seq(rhs(eq||i|| order||j|| diff), i = 1..sys dim)]);

od:

F.2 Linear stability analysis

The order-1 equation recovers the linear stability analysis (LSA), which is coded in a sep-

arate Maple worksheet LSA.mw. To do this, Amp solving will save the order-1 equation

to a .txt file:

> eqlist order1 := seq(eq||i|| order1, i = 1..sys dim);
> save eqlist order1, e order, sys dim, vas, `eqlist order1.txt` :

LSA in LSA.mw is coded as following:

> # LSA.mw
>
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> read "eqlist order1.txt":
> # convert from diff to D form prepared for Jac calculation
> eqlist := convert(eqlist order1, D):
> # Remove function properties required for deriving the Jac matrix
> eqlist subs := subs(seq(D[2](u||i||1)(vas) = D[2](u||i||1), i=1..sys dim),

seq(D[1,1](u||i||1)(vas) = D[1,1](u||i||1), i=1..sys dim),
seq((u||i||1)(vas) = (u||i||1), i=1..sys dim), eqlist);

> # Jacobian matrix
> Jac list := [seq(rhs(eqlist subs[i]), i=1..sys dim)]: # eq list
> Jac vars := [seq(u||i||1, i=1..sys dim )]:
> Jac := VectorCalculus[Jacobian](Jac list, Jac vars);
> Jac ss := subs( seq(diff(D[1, 1](u||i||1), u||i||1) = -q^2, i=1..sys dim), Jac):
> eig Jac := LinearAlgebra[Eigenvalues](Jac ss): # eigenvalues
>
> # Pure Turing condition: vanished eigenvalue
> eig real := remove(hastype, expand(eig Jac[1]), sqrt); # real part of the dom eig
> eig sqrt := select(hastype, expand(eig Jac[1]), sqrt); # imag part of the dom eig
> eig zero := eig real = eig sqrt: # force to get zero eigenvalue
> B T := expand(solve(eig zero, B 0)); # B is a function of q
>
> # Critical wavenumber
> q eq := convert(select(has, B T, q), `list`):
> qc T := solve(q eq[1] = q eq[2], q)[1]: # only choose the positive solution
>
> # At the critical wavenumber, derive the critical B
> assume(A>0, q>0, N>0): interface(showassumed=0):
> Bc T := 2*sqrt(q eq[1]) * sqrt(q eq[2]) + remove(has, B T, q):
>
> # Derive the right and left critical eigenvectors
> unassign('q'):
> Jac T := simplify(subs(B 0 = Bc T, q = qc T, Jac ss)):
> RT, eigT := MTM[eig](Jac T):
> R T := RT(1..2, 2)/(RT(1,2)): # Turing right eigenvector
> Jac T Tr := MTM[transpose](Jac T):
> LT, L2 := MTM[eig](Jac T Tr);
> L T := MTM[transpose](LT(1..2, 1))/(LT(1,1)); # Turing left eigenvector
>
> save R T, L T, Bc T, qc T, `Brusselator Tsets.txt`;

From LSA.txt, the critical Turing condition, the critical wavenumber, and critical

right and left eigenvectors are calculated and saved in a standard .txt file that can be

loaded in the main program by using the read command.

> read "Brusselator Tsets.txt": # read LSA results
> Tsets := {

seq(RT||i = R T(i), i=1..sys dim), # right eigenvectors
seq(LT||i = L T(i), i=1..sys dim), # left eigenvectors
B 0 = Bc T # Turing condition

};
> Tsets extra := q0 = qc T; # critical wavenumber

Note that we define the critical eigenvectors and wavenumber implicitly in Maple

sets since we only need their explicit expressions when necessary. e.g., we want to extract

the coefficient of ey from the expression f :
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> f := (y*exp(-y) + x*exp(2*y))^2:
> exp coeff := coeff(expand(f), exp(y));

exp coeff := 2 x y

Suppose that x and y are functions of a and b, we can define a comma-separated set to

include their expressions:

> fun set := y = 2*a + 5*b, x = (a + b)^2:

To obtain the explicit form of exp coeff , we simply substitute fun set into it:

> subs(fun set, exp coeff)
(2(2a+ 5b))(a+ b)2

If x and y are declared explicitly before f , we are not able to extract the coefficient of ey

since it will automatically become e2a+5b in f . If x and y are declared explicitly after f ,

we can extract the coefficient of ey, but f is not in its original form anymore. This idea

is important to define the structure ansatz since it is a function of the wavenumber q0,

more specifically, it is an exponential function of q0: e.g., ei ~q1~r, |~q1| = q0. In the solvability

condition, we need to extract the coefficient of exponential functions, thus we must keep

q0 as a symbol. Moreover, this technique enhances computing efficiency dramatically since

we can substitute the explicit expressions when necessary.

F.3 Order-2 solvability condition

F.3.1 Structure ansatz

The structure ansatz for the hexagonal mode is written as:

u1 = AT1 e
i ~q1·~r0 RT + AT2 e

i ~q2·~r0 RT + AT3 e
i ~q3·~r0 RT + c.c.

where c.c. stands for complex conjugate pairs. ~q1, ~q2 and ~q3 are three critical wavevectors

with identical modulus (equal to the critical wavenumber q0) and 120◦ angular separation.

One wavevector coincidences with the resultant wavevector of other two. In Amp solving,

we state this condition as q_loop:

~q1 + ~q2 = −~q3, ~q1 + ~q3 = −~q2, ~q2 + ~q3 = −~q1, (F.3)

In the meantime, the product of any two wavevectors has the q_times relationship:

~q1 · ~q2 = ~q1 · ~q3 = ~q2 · ~q3 = q2
0 cos(θ), θ = 120◦ (F.4)

AT1, AT2 and AT3 are mode amplitudes. The mode amplitude describes the mode dy-

namics in slow temporal and extended spatial scales, thus depending on scaled arguments

(T1, T2;R1, R2), that is, aas(amplitude arguments) in the program.
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> aas := op(op~([seq([R[j],T[j]], j = 1..e order)])); # Amplitude arguments
>
> # Right and left eigenvectors
> RT := Vector[column]([seq(RT||i, i=1..sys dim)]):
> LT := Vector[column]([seq(LT||i, i=1..sys dim)]):
>
> # Apply alias for compact amplitude display
> alias(AT1=A T1(aas), AT1c=A T1c(aas)):
> alias(AT2=A T2(aas), AT2c=A T2c(aas)):
> alias(AT3=A T3(aas), AT3c=A T3c(aas)):
>
> # Wavevector conditions for the hexagonal mode
> q subs := subs(Tsets extra, [q1=q0, q2=q0, q3=q0]):
> q times := [q1*q2 = q0^2*(-1/2), q1*q3 = q0^2*(-1/2), q2*q3 = q0^2*(-1/2)]:
> q loop := q2+q3=-q1, q1+q3=-q2, q1+q2=-q3:
>
> # Order 1 ansatz
> ans1 := AT1*exp(I*q1*R[0])*RT + AT2*exp(I*q2*R[0])*RT +

AT3*exp(I*q3*R[0])*RT + AT1c*exp(-I*q1*R[0])*RT +
AT2c*exp(-I*q2*R[0])*RT + AT3c*exp(-I*q3*R[0])*RT;

• AT1c, AT2c, AT3c: A∗T1, A
∗
T2, A

∗
T3, complex conjugate pairs.

• I: Maple notation for the complex number i ≡
√
−1.

F.3.2 Order-2 solvability condition

Recall the column vector eq vec orderj (where j represents the expansion order, i.e.,

Ij in Eqs. (4.13) and (4.21)). Here, we apply the DotProduct (from VectorCalculus

package) between the critical left eigenvector LT and the RHS of the order-2 equations

eq_vec_order2 for the orthogonal condition (see. Eq. (4.16)). According to Eqs. (4.37),

the solvability condition yields a series of constraints that require us to collect secular

terms and force them to zero.

> # Orthogonal condition
> SC2 := VectorCalculus[DotProduct](LT, eq vec order2):
>
> # Substitute order 1 ansatz
> SC2 temp1 := PDETools[dsubs]([seq(u||i||1(vas)=ans1[i], i=1..sys dim)], SC2):
> SC2 temp2 := simplify(expand(SC2 temp1)):
>
> # Substitute wavevector conditions for the hexagonal mode
> SC2 temp3 := subs(q loop, SC2 temp2):
>
> # Collect secular terms and force them to zero
> for i from 1 to 3 do

SC2 temp4 ||i := coeff(simplify(SC2 temp3), exp(I*q||i*R[0])):
SC2 temp4cc ||i := coeff(simplify(SC2 temp3), exp(-I*q||i*R[0])):

SC2 temp5 ||i := collect(simplify(SC2 temp4 ||i), B 1, diff, 'distributed'):
SC2 temp5cc ||i := collect(simplify(SC2 temp4cc ||i), B 1, diff, 'distributed'):

SC2 temp6 ||i := collect(simplify(subs(Tsets, SC2 temp5 ||i)), B 1, diff, AT);
SC2 temp6cc ||i := collect(simplify(subs(Tsets, SC2 temp5cc ||i)), B 1, diff, AT);
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# Eliminate secular terms
SC2 Case ||i := denom(simplify(SC2 temp6 ||i))*simplify(SC2 temp6 ||i) = 0;
SC2 Casecc ||i := denom(simplify(SC2 temp6cc ||i))*simplify(SC2 temp6cc ||i) = 0;

# Solve B 1 from above equations
B1 subsCase||i := B 1 = solve(SC2 Case ||i, B 1);

od:

The for loop in the above code extracts all six solvability conditions (i.e., Eqs.

(4.37)), yielding six constraints: SC2 Case 1, SC2 Case 2 and SC2 Case 3; conjugate pairs

SC2 Casecc 1, SC2 Casecc 2 and SC2 Casecc 3. By examining the constraint SC2 Case 1:

> SC2 Case 1;

AT1 A B 1 −
(

∂

∂T1
AT1

)
A −

(
∂

∂T1
AT1

)
Aˆ2 N +

(
∂

∂T1
AT1

)
A N2

+

(
∂

∂T1
AT1

)
A2 N3 − 2 AT2c AT3c N2 A2 + 2 AT2c AT3c = 0

we see that the mode amplitude AT1 does not depend on T1 or R1, thus we can re-define

the amplitude arguments aas:

> aas := R[2], T[2], R[3], T[3];

Now SC2_Case_1 outputs:

> SC2 Case 1;

AT1 A B 1 − 2 AT2c AT3c N2 A2 + 2 AT2c AT3c = 0

B 1 is solved from above equation and stored in B1_subsCase1.

F.4 Solution of order-2 equation

Amp solving follows the exponential pattern matching method (see Secs. 4.3.4 and 4.4.2

for detailed explanations) to solve the order equation, which we will demonstrate in the

following five sections.

F.4.1 Expand the RHS of the order-2 equation

To construct coefficient equations, we need to first determine the precise structure of the

order-2 solution, which can be derived by examining the fully expanded order-2 equation.

To do this, we will substitute the order-2 solution structure and the order-2 solvability

conditions into the order-2 equation.
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> for j from 1 to sys dim do
# Subs structure ansatz
eq||j|| order2 withAnsatz temp1 := PDETools[dsubs](

[seq(u||i||1(vas)=ans1[i], i=1..sys dim)],
eq||j|| order2 diff):

# Subs Turing conditons
eq||j|| order2 withAnsatz temp2 := subs(op(Tsets), eq||j|| order2 withAnsatz temp1):
# Subs q loop condition
eq||j|| order2 withAnsatz temp3 := subs(q loop,

simplify(expand(eq||j|| order2 withAnsatz temp2)) ):
# Collect exp functions
eq||j|| order2 withAnsatz temp4 :=

collect(eq||j|| order2 withAnsatz temp3, exp):
# Subs order-2 solvability conditions
eq||j|| order2 withAnsatz := subs(seq(-SC2 Case ||i, i=1..3),

seq(-SC2 Casecc ||i, i=1..3),
eq||j|| order2 withAnsatz temp4):

od:

F.4.2 Determine the structure of the order-2 solution

Amp solving uses op() to extract unique exponential components from the fully expanded

order-2 equation eqj order2 withAnsatz, then produces a series of coefficients ci j to

determine the structure of the order-2 solution.

> # Extract exp components
> exp fun := op(select(has,

indets(simplify(expand(eq||1|| order2 withAnsatz))), exp));
>
> # Unknown coefficient cij, i-ith equations, j-jth coefficient
> cas := aas;
> for i from 1 to sys dim do

seq( alias(c||i|| ||j=c||i||j(cas)), j=1..nops([exp fun])+1 );
od:

>
> # Order 2 ansatz
> for i from 1 to sys dim do

ans2[i] := sum('c||i|| ||j * exp fun[j]', 'j'=1..nops([exp fun]))
+ c||i|| ||(nops([exp fun])+1):

od:

It should be mentioned that coefficient ci_j is not a constant but a function having

the same dependence as the mode amplitude, so we name the coefficient dependence cas

(coefficient arguments). It should also be noticed that the order-2 solution structure ans2

and structure ansatz ans1 share the same dependence vas.
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F.4.3 Substitute order-2 solution structure into the LHS of the

order-2 equation

> for i from 1 to sys dim do
# Subs order 2 ansatz into the LHS
eq||i|| lhs temp1 := collect(

PDETools[dsubs]([seq(u||i||2(vas)=ans2[i], i=1..sys dim)],
lhs(eq||i|| order2 withAnsatz)), exp):

# Subs q times conditions into the LHS
eq||i|| lhs temp2 := collect(simplify(simplify(eq||i|| lhs temp1, q times)), exp);
# Re-construct the order 2 equation
eq||i|| order2 subs:= eq||i|| lhs temp2 = rhs(eq||i|| order2 withAnsatz):

od:

F.4.4 Construct coefficient equations by matching exponential

patterns

Now, the order-2 equation has been fully expanded with both sides in the summation of

exponential series (can be checked by calling eq1 order2 subs or eq2 order2 subs).

In Sec. 4.3.4, we see that the exponential series of the expanded order-2 equation

starts from the zero power. Amp solving treats separately these exponential patterns

that have nonzero and zero exponential powers since op() cannot extract terms with zero

exponential power (i.e., ε0) directly. Assuming the model has i equations and j nonzero

exponential components, there will be a total of 2(i · j + i) coefficient equations.

> for i from 1 to sys dim do
# Coefficient equations for nonzero exp power
for j from 1 to nops([exp fun]) do

eq||i|| coef||j :=
coeff( lhs(eq||i|| order2 subs), exp fun[j] ) =
coeff( rhs(eq||i|| order2 subs), exp fun[j] );

od:

# Coefficient equations for zero exp power
eq||i|| coef||(nops([exp fun])+1) :=

remove(has, lhs(eq||i|| order2 subs),
seq(exp fun[j], j=1..nops([exp fun])) ) =

remove(has, rhs(eq||i|| order2 subs),
seq(exp fun[j], j=1..nops([exp fun])) );

od:

F.4.5 Solve coefficient equations

To solve unknown coefficients ci j in the order-2 solution structure ans2, Amp solving

will group coefficient equations in eq list and unknown coefficients in coef list, then

feed them to the Maple solver solve() to obtain the solution coeff order2.
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> # List of coefficient equations
> eq list := [seq(seq(eq||i|| coef||j, i=1..sys dim), j=1..nops([exp fun])+1 )]:
> # List of unknwon coefficients
> coef list := [seq(seq(c||i|| ||j, i=1..sys dim ), j=1..nops([exp fun])+1 )]:
> # Solve coefficients
> coeff order2 temp := solve(eq list, coef list):
> coeff order2 := subs(Tsets extra, subs(q subs, coeff order2 temp) ):

F.5 Order-3 solvability condition

The order-3 solvability condition is derived in the same fashion as the order-2 solvability

condition: Substitute the structure ansatz and order-2 solution into the RHS of the order-

3 equation eq vec order3, then apply the orthogonal condition to find secular terms and

force them to zero. The order-3 amplitude equation appears here.

F.5.1 Substitute the structure ansatz and order-2 solution into the

order-3 equation

The explicit order-2 solution u2 is obtained by plugging solved coefficients coeff order2

into the corresponding ansatz ans2.

> # Explicit order-2 solution
> ans2 subs := subs(op(op(coeff order2)), seq(ans2[i], i=1..sys dim)):
>
> # Subs the structure ansatz and order-2 solution into the RHS of

the order-3 equation
> eq vec order3 subs := subs(

[seq(u||i||1(vas)=ans1[i], i=1..sys dim)],
[seq(u||i||2(vas)=ans2 subs[i], i=1..sys dim)], eq vec order3):

F.5.2 Apply the orthogonal condition

> # Orthogonal condition
> SC3 := VectorCalculus[DotProduct](LT, eq vec order3 subs):
> # Collect exp components
> SC3 temp1 := collect(simplify(SC3), exp):
> # Subs q loop condition
> SC3 temp2 := subs(q loop, SC3 temp1):
> # Extract secular terms
> SC3 temp3 := simplify( subs(Tsets, coeff(SC3 temp2, exp(I*q1*R[0]))) ) = 0:
> # Tidy up the amplitude equation for the q1 mode
> SC3 temp4 := collect(SC3 temp3, diff,factor):

The hexagonal mode has 6 amplitude equations relating to AT1, AT2 and AT3; A∗T1,

A∗T2 and A∗T3. Here, we derive the amplitude equation only with respect to AT1 (i.e.,
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SC3 temp4). Amplitude equations about AT2 and AT3 can be obtained by permutations

of indices. We then tidy up SC3 temp4 and return its argument scales.

F.5.3 Tidy up amplitude equation

The following algorithm will automatically sort out the raw amplitude equation into the

form of Eq. (4.24): Find the derivative term and place it at the LHS, keeping other terms

at the RHS.

> # Extract the coefficient of the temporal derivative
> AT coeff := PDEtools[dcoeffs](lhs(SC3 temp4), AT1)[1]:
> # Normalize the coefficient of the temporal derivative Eq.
> SC3 temp5 := collect(expand(SC3 temp4/(AT coeff)), diff,factor):
> # Select the temporal derivative
> time diffT := selectfun(SC3 temp5, diff)[1]:
> # Place the temporal derivative at LHS, other terms at RHS
> SC3 temp6 := time diffT = -selectremove(has, lhs(SC3 temp5), time diffT)[2]:
> # AT1 abs: modulus of the amplitude AT1, i.e., |AT1|.
> SC3 temp7 := simplify(SC3 temp6,

AT1*AT1c = AT1 abs^2, AT2*AT2c = AT2 abs^2, AT3*AT3c = AT3 abs^2):
> # Tidy up the equation
> SC3 temp8 := collect(SC3 temp7, AT1 abs, AT2 abs, AT3 abs, factor);

SC3 temp8 :=
∂

∂T2
AT1 = −1

9

AT1 (A N + 2) (8 N2 A2 + 4 − 21 A N) AT1 abs2

(N − 1) (N + 1) A3 N

−AT1 (3 A3 N3 − 7 N2 A2 − 5 A N + 3) AT2 abs2

(N − 1) (N + 1) A3 N

−AT1 (3 A3 N3 − 7 N2 A2 − 5 A N + 3) AT3 abs2

(N − 1) (N + 1) A3 N

−2 B 1 AT2c AT3c + B 2 A AT1

(N − 1)(N + 1)(1 +A N)A

F.5.4 Return arguments to normal scales

Assume Z1 = εAT1 (representing amplitude scaling), where Z1 is the amplitude carrying

unscaled arguments (r0, T0), namely nas: normal arguments. Meanwhile considering

T2 = ε2T0 (temporal argument scaling), the LHS of SC3_temp8 turns to be 1/ε3 ·∂Z1/∂T0.

Similarly, we have the following conversions:

AT1 = Z1/ε AT2 = Z2/ε AT3 = Z3/ε

A∗T1 = Z∗1/ε A∗T2 = Z∗2/ε A∗T3 = Z∗3/ε

|AT1|2 = |Z1|2/ε2 |AT2|2 = |Z2|2/ε2 |AT3|2 = |Z3|2/ε2
(F.5)

Substituting these relationships into SC3_temp8 generates the Z1 amplitude equation with

normal scales.



184 Derivation of the hexagonal amplitude equations via Amp solving

> nas := R[0], T[0]; # normal arguments
> alias(Z1=Z 1(nas), Z1c=Z1 c(nas)):
> alias(Z2=Z 2(nas), Z2c=Z2 c(nas)):
> alias(Z3=Z 3(nas), Z3c=Z3 c(nas)):
> SC3 temp9 := 1/e^3 * diff(Z1, T[0]) = subs(

AT1 = Z1/e, AT2 = Z2/e, AT3 = Z3/e,
AT1c = Z1c/e, AT2c = Z2c/e, AT3c = Z3c/e,
AT1 abs^2 = Z1 abs^2/e^2, AT2 abs^2 = Z2 abs^2/e^2,
AT3 abs^2 = Z3 abs^2/e^2, rhs(SC3 temp8)):

> SC3 temp10 := simplify(e^3*SC3 temp9):
> SC3 temp11 := collect(SC3 temp10, Z1 abs, Z2 abs, Z3 abs, factor);

SC3 temp11 :=
∂

∂T0
Z1 = −1

9

Z1 (A N + 2) (8 N2 A2 + 4− 21 A N) Z1 abs2

(N − 1) (N + 1) A3 N

−Z1 (3 A3 N3 − 7 N2 A2 − 5 A N + 3) Z2 abs2

(N − 1) (N + 1) A3 N

−Z1 (3 A3 N3 − 7 N2 A2 − 5 A N + 3) Z3 abs2

(N − 1) (N + 1) A3 N

− (2 B 1 T2c T3c + B 2 A Z1 e) e

(N − 1)(N + 1)(1 +A N)A

SC3 temp11 is the amplitude equation about the amplitude Z1 with respect to the

unscaled arguments (T0, R0). We find that the last term of SC3 temp11 still has an

existing ε (e in the code), which can be eliminated by substituting the order-2 solvability

condition SC2 Case 1 and the bifurcation parameter expansion Eq. (F.2). This process

was done manually in Maple. Finally, we have the Brusselator amplitude equation for

the hexagonal mode

hexAMP :=
∂

∂T0

Z1 = µZ1 + v Z2c Z3c− g Z1 abs2 Z1− h (Z2 abs2 + Z3 abs2) Z1

which reads equivalently as:

∂

∂t
Z1 = µ Z1 + v Z∗2 Z

∗
3 − g |Z1|2 Z1 − h (|Z2|2 + |Z3|2) Z1

where

µ = (B −Bc)/Bc v =
2

A

1− Aη
1 + Aη

+
2

A
µ

g =
38Aη + 5(Aη)2 − 8− 8(Aη)3

9A3η(1 + Aη)
h =

5Aη + 7(Aη)2 − 3− 3(Aη)3

A3η(1 + Aη)
, η =

√
DX/DY

This result is consistent with the work by Peña et al. [92, 93], and Verdasca et al. [133].

These literatures also provide further analysis of the amplitude equations.



Appendix G

Derivation of Brusselator amplitude

equations for the Turing–Hopf mode

using Amp solving

The Turing–Hopf (TH) bifurcation for the Brusselator model can be triggered by the

simultaneous tuning of the two bifurcation parameters B and σ = DX/DY . Critical

settings

B ≡ B0 = 1 + A2

σ ≡ σ0 =
(−1 +

√
A2 + 1)2

A2

lead the system to a codimension-2 point (CTHP), where the real part of the dominant

eigenvalue touches zero twice, respectively at a zero wavenumber q = 0 at eigenvalue

λH
c = 0 + iωc and at a nonzero wavenumber qc =

√
A/σ

1/4
0 with eigenvalue λT

c = 0 + i0.

The critical right and left eigenvectors associated with the Hopf eigenvalue λH
c are

RH =

 1

i− A
A

 , LH =

[
1

A(A+ i)

1 + A2

]
, i =

√
−1

The critical right and left eigenvectors associated with the Turing eigenvalue λT
c are

RT =

 1

−√σ0

A(1 + A
√
σ0)

 , LT =

[
1

A
√
σ0

(1 + A
√
σ0)

]

For a codimension-2 bifurcation, we need to expand both bifurcation parameters si-

multaneously:

B = B0 + εB1 + ε2B2 + . . .

σ = σ0 + εσ1 + ε2σ2 + . . .

Now, we will utilise Amp solving to derive the order-3 amplitude equation at a CTHP.

We first initialise the algorithm:
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> # Initialisation
> e order := 3: # Expansion order
> sys dim := 2: # System dimensions
> vas := op(op~([seq([R[m],T[m]], m = 0..e order)])); # Variable arguments

vas := R0, T0, R1, T1, R2, T2, R3, T3

then define the Brusselator model (σ0 is represented by No in the code)

> # Define the Brusselator model
> ## Activator
> PDE[1] := Dt(uo1) = A - (Bo + 1) * uo1 + uo1^2 * uo2 + No * (Ds@@2)(uo1);
> A := ()->A: # define the constant as a procedure
>
> ## Inhibitor
> PDE[2] := Dt(uo2) = Bo * uo1 - uo1^2 * uo2 + (Ds@@2)(uo2);

Amp solving starts the expansion by introducing a linear perturbation:

> # Remove temporal and spatial derivatives
> for i from 1 to sys dim do
> PDE ss[i] := 0 = expand(subs(Ds = 0, rhs(PDE[i])));
> od:
> # Automatically solve homogeneous steady-states and store them in ss
> ss := solve( seq(PDE ss[i], i=1..sys dim),

seq(uo||i, i=1..sys dim) );
>
> # Introduce linear perturbations
> for i from 1 to sys dim do

uo||i := u||i|| ||0 + du||i; # Linear perturbation
u||i|| ||0 := rhs(ss[i]); # Substitute steady-states

od:

followed by expanding differential operators

> Dt := sum('e^m*D[2*m+2]', 'm'=0..e order): # Expand temporal derivative
> Ds := sum('e^m*D[2*m+1]', 'm'=0..e order): # Expand spatial derivative
> e := ()->e: # Define scaling constant

and model variables perturbations and bifurcation parameters,

> for i from 1 to sys dim do # Nonlinear variable expansion
du||i := sum('e^j*u||i||j', 'j'=1..e order);

od:
> Bo := sum('e^i*B ||i', 'i'=0..e order); # Bifurcation parameter expansion
> No := sum('e^i*N ||i', 'i'=0..e order);
>
> # Define expanded bifurcation parameters as constants
> for i from 0 to e order do

B ||i := subs([variables=(), body=B ||i], (variables-> body)):
N ||i := subs([variables=(), body=N ||i], (variables-> body)):

od:

The order equations can be obtained by the following codes:
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> for i from 1 to sys dim do
> alias(seq(u||i|| ||j = u||i||j(vas), j=1..3));
> od:
>
> for i from 1 to sys dim do
> PDE sorted[i] := simplify(collect(PDE[i] ,e), e^(e order+1)=0):
> PDE diff[i] := convert(PDE sorted[i](vas), diff):
> od:
>
> # Collect terms with the same order to construct order equations
> for i from 1 to sys dim do

for j from 0 to e order do # ith equation at order j
eq||i|| order||j :=

expand(coeff(lhs(PDE diff[i]), e,j)=coeff(rhs(PDE diff[i]), e,j));
od:

> od:
>
> # Tidy up each order equation
> for i from 1 to sys dim do
> for j from 1 to e order do

PDE temp||i||j := lhs(eq||i|| order||j) - rhs(eq||i|| order||j);
PDE components||i||j :=

selectremove(has,PDE temp||i||j, seq(u||ii||j, ii=1..sys dim) );

eq||i|| order||j|| diff := PDE components||i||j[1] = -PDE components||i||j[2];
od:

> od:
>
> # Vectorize rhs of order equations
> for j from 1 to e order do

eq vec order||j :=
Vector[column]([seq(rhs(eq||i|| order||j|| diff), i=1..sys dim)]);

> od:

The critical bifurcation conditions are calculated in an external worksheet LSA TH.mw

then loaded to the main program (critical frequency ωc is represented by w in the code):

> read "Brusselator THsets.txt": # read LSA results, created by LSA TH.mw
> Tsets := {

seq(RH||i = R H(i), i=1..sys dim), # Hopf right eigenvectors
seq(RH||i||c = R Hc(i), i=1..sys dim), # Hopf right eigenvectors (c.c.)
seq(RT||i = R T(i), i=1..sys dim), # Turing right eigenvectors
seq(LH||i = L H(i), i=1..sys dim), # Hopf left eigenvectors
seq(LH||i||c = L Hc(i), i=1..sys dim), # Hopf left eigenvectors (c.c.)
seq(LT||i = L T(i), i=1..sys dim), # Turing left eigenvectors
B 0 = Bc TH, # critical bifurcation setting
q0 = qc T # critical wavenumber

};
> THsets extra := w = A, N 0 = sc HT;

The structure ansatz is defined according to Eq. (4.33):

> aas := op(op~([seq([R[j],T[j]], j=1..e order)]));
> RT := Vector[column]([seq(RT||i, i=1..sys dim)]): # Turing right eigenvector
> LT := Vector[column]([seq(LT||i, i=1..sys dim)]): # Turing left eigenvector
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> RH := Vector[column]([seq(RH||i, i=1..sys dim)]): # Hopf right eigenvector
> RHc := Vector[column]([seq(RH||i||c, i=1..sys dim)]):# Hopf right eigenvector (c.c.)
> LH := Vector[column]([seq(LH||i, i=1..sys dim)]): # Hopf left eigenvector
> LHc := Vector[column]([seq(LH||i||c, i=1..sys dim)]):# Hopf left eigenvector (c.c)
> alias(AT=A T(aas), ATc=A Tc(aas)): # Turing amplitude
> alias(AH=A H(aas), AHc=A Hc(aas)): # Hopf amplitude
> ans1 := AT*exp(I*q0*R[0])*RT + ATc*exp(-I*q0*R[0])*RT +

AH*exp(I*w*T[0])*RH + AHc*exp(-I*w*T[0])*RHc;

Following Eqs. (4.39a) and (4.39b), the TH mode solvability condition has separated

Turing and Hopf components:

> # Solvability condition - Turing
> SC2T := VectorCalculus[DotProduct](LT,eq vec order2):
> SC2T temp1 := PDETools[dsubs]([seq(u||i||1(vas)=ans1[i], i=1..sys dim)], SC2T):
> SC2T temp2 := simplify(expand(SC2T temp1)):
> SC2T temp3 := coeff(SC2T temp2, exp(I*q0*R[0])):
> SC2T temp3cc := coeff(SC2T temp2, exp(-I*q0*R[0])):
> SC2T temp4 := collect(simplify(SC2T temp3), B 1, diff, 'distributed'):
> SC2T temp4cc := collect(simplify(SC2T temp3cc), B 1, diff, 'distributed'):
> SC2T temp5 := collect(simplify(subs(subs(THsets, SC2T temp4))), B 1, diff, AT):
> SC2T temp5cc := collect(simplify(subs(subs(THsets, SC2T temp4cc))), B 1, diff, AT):
> SC2T temp6 := denom(simplify(SC2T temp5)) * simplify(SC2T temp5) = 0:
> SC2T temp6cc := denom(simplify(SC2T temp5cc)) * simplify(SC2T temp5cc) = 0:
> SC2T Case := collect(SC2T temp6, B 1, N 1, diff, AT):
> SC2T Casecc := collect(SC2T temp6cc, B 1, N 1, diff, ATc):

> # Solvability condition - Hopf
> SC2H := VectorCalculus[DotProduct](LHc,eq vec order2):
> SC2H temp1 := PDETools[dsubs]([seq(u||i||1(vas)=ans1[i], i=1..sys dim)], SC2H):
> SC2H temp2 := simplify(expand(SC2H temp1)):
> SC2H temp3 := coeff(SC2H temp2, exp(I*w*T[0])):
> SC2H temp3cc := coeff(SC2H temp2, exp(-I*w*T[0])):
> SC2H temp4 := collect(simplify(SC2H temp3), B 1, diff, 'distributed'):
> SC2H temp4cc := collect(simplify(SC2H temp3cc), B 1, diff, 'distributed'):
> SC2H temp5 := collect( subs(THsets, SC2H temp4), B 1, diff, AH):
> SC2H temp5cc := collect(subs(THsets, SC2H temp4cc), B 1, diff, AHc):
> SC2 temp6 := denom(simplify(SC2T temp5)) * simplify(SC2T temp5) = 0:
> SC2H temp6cc := denom(simplify(SC2T temp5cc)) * simplify(SC2T temp5cc) = 0:
> SC2H Case := collect(SC2H temp6, B 1, N 1, diff, AH):
> SC2H Casecc := collect(SC2H temp6cc, B 1, N 1, diff, AHc):

Amp solving yields the order-2 solvability condition:

> SC2T Case;

AT B 1
√
N 0 + (−A − A2

√
N 0) AT N 1 +

(N 03/2 + N 02 A −
√
N 0 − N 0 A)

∂

∂T1
AT = 0

> SC2H Case;

AH B 1 + I AH B 1 A − 2
∂

∂T1
AH − 2I A

∂

∂T1
AH = 0
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The order-2 solvability condition gives rise to following constraints:

∂

∂T1

AT =
∂

∂T1

A∗T =
∂

∂T1

AH =
∂

∂T1

A∗H = 0

B1 = 0, σ1 = 0

which are defined in Amp solving as:

> aas := R[1], R[2], T[2], R[3], T[3]:
> B 1 := 0:
> N 1 := 0:

Using the order-2 solvability condition, we can solve the order-2 equation.

> for j from 1 to sys dim do
eq||j|| order2 withAnsatz temp :=
PDETools[dsubs]([seq(u||i||1(vas)=ans1[i], i=1..sys dim)], eq||j|| order2 diff):

eq||j|| order2 withAnsatz :=
simplify(expand(eq||j|| order2 withAnsatz temp), exp):

> od:
>
> exp fun := op(select(has, indets(eq2 order2 withAnsatz), exp));
>
> # Determine the order-2 structure
> cas := aas;
> for i from 1 to sys dim do

seq( alias(c||i|| ||j=c||i||j(cas)), j=1..nops([exp fun])+1 );
> od:
> for i from 1 to sys dim do

ans2[i] := sum('c||i|| ||j * exp fun[j]', 'j'=1..nops([exp fun]))
+ c||i|| ||(nops([exp fun])+1):

> od:
>
> # substitution
> for i from 1 to sys dim do

eq||i|| lhs :=
collect( PDETools[dsubs]([seq(u||i||2(vas)=ans2[i], i=1..sys dim)],

lhs(eq||i|| order2 withAnsatz)),exp):
eq||i|| order2 subs:= eq||i|| lhs = rhs(eq||i|| order2 withAnsatz):

> od:
>
> # Construct coefficient equations - exponential pattern match
> for i from 1 to sys dim do

for j from 1 to nops([exp fun]) do

eq||i|| coef||j :=
coeff( lhs(eq||i|| order2 subs), exp fun[j] ) =
coeff( rhs(eq||i|| order2 subs), exp fun[j] );

od:

eq||i|| coef||(nops([exp fun])+1) :=
remove(has, lhs(eq||i|| order2 subs),

seq(exp fun[j], j=1..nops([exp fun])) ) =
remove(has, rhs(eq||i|| order2 subs),

seq(exp fun[j], j=1..nops([exp fun])) );
> od:
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>
> # symbolic solutions of coefficients
> unassign(N 0, A): assume(A>0, N 0>0): interface(showassumed=0):
> eq list temp := [seq(seq(eq||i|| coef||j, i=1..sys dim), j=1..nops([exp fun])+1 )]:
> eq list := simplify(subs(THsets, eq list temp)):
> coef list := [seq(seq(c||i|| ||j, i=1..sys dim ), j=1..nops([exp fun])+1 )]:
> coeff order2 temp := expand(solve(eq list, coef list)):
> coeff order2 := simplify(coeff order2 temp, AH*AHc =AH abs, AT*ATc = AT abs):

Finally, apply the solvability condition Eqs. (4.39a) and (4.39b) to the order-3 equation

to derive the order-3 amplitude equations for the Turing and Hopf components.

> # Solvability condition: Turing amplitude equation
> SC3T := VectorCalculus[DotProduct](LT, eq vec order3 subs):
> SC3T temp1 := simplify(expand(SC3T), exp):
> SC3T temp2 := simplify(subs(THsets, coeff(SC3T temp1, exp(I*q0*R[0])))) = 0:
> SC3T temp3 := collect(simplify(subs(THsets extra, SC3T temp2)), diff,factor):
> AT coeff := PDEtools[dcoeffs](lhs(SC3T temp3), AT)[1]:
> SC3T temp4 := collect(expand(SC3T temp3/expand(AT coeff)), diff,factor):
> time diffT := selectfun(SC3T temp4, diff)[2]: # time derivative
> SC3T temp5 := time diffT = -selectremove(has, lhs(SC3T temp4),time diffT)[2]:
> SC3T temp6 := simplify(SC3T temp5, AH*AHc =AH abs, AT*ATc =AT abs):
> SC3T temp7 := collect(SC3T temp6, AT abs, AH abs, diff, B 2, factor):
>
> # Return arguments to normal scales
> nas := R[0], T[0]; # normal arguments
> alias(To = T o(nas)):
> SC3T temp8 := diff(To, T[0])

= subs( diff(AT, R[1], R[1]) = diff(To, R[0], R[0]), AT = To,
AT abs = T abs, AH abs = H abs,rhs(SC3T temp7)):

> SC3T := collect(SC3T temp8, T abs, H abs, diff, factor):

> # Solvability condition: Hopf amplitude equation
> SC3H := VectorCalculus[DotProduct](LHc, eq vec order3 subs):
> SC3H temp1 := simplify(expand(SC3H), exp):
> SC3H temp2 := simplify(subs(THsets, coeff(SC3H temp1, exp(I*w*T[0])))) = 0:
> SC3H temp3 := collect(simplify(subs(THsets extra, SC3H temp2)), diff,factor):
> AH coeff := PDEtools[dcoeffs](lhs(SC3H temp3), AH)[1]:
> SC3H temp4 := collect(expand(SC3H temp3/expand(AH coeff)), diff,factor):
> time diffH := selectfun(SC3H temp4, diff)[2]: # time derivative
> SC3H temp5 := time diffH = -selectremove(has, lhs(SC3H temp4),time diffH)[2]:
> SC3H temp6 := simplify(SC3H temp5, AH*AHc =AH abs, AT*ATc =AT abs):
> SC3H temp7 := collect(SC3H temp6, AT abs, AH abs, diff, B 2, factor):
>
> # Return arguments to normal scales
> nas := R[0], T[0]; # normal arguments
> alias(Ho = H o(nas)):
> SC3H temp8 := diff(Ho, T[0])

= subs( diff(AH, R[1], R[1]) = diff(Ho, R[0], R[0]), AH = Ho,
AT abs = T abs, AH abs = H abs, rhs(SC3H temp7)):

> SC3H := collect(SC3H temp8, T abs, H abs, diff, factor):

Amp solving derives the Turing mode amplitude equation SC3T

∂

∂t
T = CTT − CTT|T |2T − CTH|H|2T +DT∇2T (G.1)
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where

CT =
1

1 + σ0

(B −B0)−
2

(−1 + σ0)2
(σ − σ0), CTT =

1

18

39 σ2
0 − 25 σ0 + 2

σ2
0 (−1 + σ0)

,

CTH =
− 2 σ0 − 1 + 2 σ2

0 + 13 σ3
0 + 3 σ4

0 + σ5
0

σ0 (3 σ0 + 1 + σ2
0) (−1 + σ2

0)
, DT =

4σ0

1 + σ0

(G.2)

and the Hopf mode amplitude equation SC3H:

∂

∂t
H = CHH − (CHHr + iCHHi)|H|2H − (CHTr + iCHTi)|T |2H + (DHr + iDHi)∇2H (G.3)

where

CH =
1

2
(B −B0), CHHr =

1

2

2 + A2

A2
, CHHi =

1

6

4 A4 − 7 A2 + 4

A3
,

CHTr =
1

2

(−7 σ0 − 17 σ2
0 + 1 + 25 σ3

0 + 14 σ4
0)

(3 σ0 + 1 + σ2
0) σ0 (−1 + σ0)

, DHr =
1

2
+

1

2
σ0,

CHTi = −
1

2

1− 5 σ0 − 9 σ2
0 + 38 σ3

0 + 22 σ4
0 + σ5

0

σ
3/2
0 (3 σ0 + 1 + σ2

0) (−1 + σ0)
, DHi =

√
σ0

(G.4)

CTH in Eq. (G.1) and CHTr + iCHTi in Eq. (G.3) are cross terms indicating the interacting

Turing and Hopf instabilities. Removing cross terms, Eq. (G.1) becomes the amplitude

equation for the stripes mode (i.e., Eq. (4.24)), and Eq. (G.3) becomes the amplitude

equation for the pure Hopf mode. Amp solving derived TH mode amplitude equations

are consistent with those derived by de Wit [21].





Appendix H

Symbol notations in Amp solving

Table H.1: Mathematical symbols and their expressions used in Amp solving

Mathematical symbol Amp solving expression Comment

∂/∂t Dt() partial derivative in time
∇ Ds() partial derivative in space
∇2 Ds@@2() second spatial derivative (Laplacian)
X,Y uo1, uo2 Brusselator variables
X0, Y0 u1 0, u2 0 Brusselator steady-states

η N η =
√
DX/DY

σ No σ = DX/DY

B Bo bifurcation parameter
δx, δy du1, du2 linear perturbations
x1, x2, x3 u11, u12, u13 expanded variables for δx
y1, y2, y3 u21, u22, u23 expanded variables for δy
B0, B1, B2 B 0, B 1, B 2 expanded B
σ0, σ1, σ2 N 0, N 1, N 2 expanded σ
ε e scaling constant
Ij eq vec orderj j = 1, 2, 3
RT RT Turing critical right eigenvectors
LT LT Turing critical left eigenvectors
RH RH Hopf critical right eigenvectors
RH

∗ RHc Hopf critical right eigenvectors (c.c.)
LH LH Hopf critical left eigenvectors
LH
∗ LHc Hopf critical left eigenvectors (c.c.)

qc q0 Turing critical wavenumber
ω w Hopf critical frequency
AT1, AT2, AT3 AT1, AT2, AT3 hexagonal amplitudes
A∗T1, A∗T2, A∗T3 AT1c, AT2c, AT3c hexagonal amplitudes (c.c.)
Z1, Z2, Z3 Z1, Z2, Z3 Z1 = εAT1 Z2 = εAT2, Z3 = εAT3

~q1, ~q2, ~q3 q1, q2, q3 hexagonal wavevectors
AT, AH AT, AH Turing, Hopf amplitudes for the TH mode
A∗T, A∗H ATc, AHc Turing, Hopf amplitudes for the TH mode (c.c.)
cij ci j coefficients in the order-2 solution
| | abs modulus of a complex number
i I

√
−1
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