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Scaling of Anisotropy in Hydromagnetic Turbulence
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We present evidence that anisotropy of low frequency plasma turbulence scales linearly with the
ratio of fluctuating to total magnetic field strength for a useful range of parameters, for incompressible,
weakly compressible, and driven magnetohydrodynamic turbulence. [S0031-9007(98)07008-2]

PACS numbers: 52.30.—q, 47.65.+a, 52.35.Ra, 95.30.Qd

Evidence accumulated over the past several decadésat is “quasi-2D” is described by “reduced” MHD equa-
indicates that a large-scale applied (dc) magnetic fieldions that emerge naturally in the theory of nearly incom-
imposes a preferred direction on turbulence, and thupressible MHD [24] for low plasmg.
plays an important role in plasma diffusion [1], energetic It is well known that anisotropy can be generated ro-
particle scattering [2], and plasma heating [3—5]. Eachbustly through rapid turbulent wave-vector—space spec-
of these in turn may significantly influence large-scaletral transfer in the directions transverse to the mean field
flows and structure [6—8]. The interplay between tur-[14]. Parallel spectral transfer is relatively suppressed, so
bulence and large-scale magnetic field suggests a crucitle spectrum, especially at smaller scales, becomes pro-
role of rotational symmetry or “geometry” of the fluctu- gressively dominated by fluctuations with quasi-2D char-
ations in many astrophysical plasma settings. There haacteristics. This argument, which can be made explicit in
been considerable recent interest in detection and undeterms of resonant triad couplings [14], supports the per-
standing of anisotropy of fluctuations in solar, interplanespective adopted in derivations of the reduced MHD equa-
tary, and galactic plasmas, and thus it would appear ttions [9,10]. Development of anisotropic spectra through
be of importance to understand mechanisms that can prenhanced perpendicular spectral transfer has been observed
duce and regulate anisotropy in fluid-scale plasma turbuin two- and three-dimensional simulations [25], and in both
lence. In this Letter we show, using numerical solutions ofincompressible and compressible MHD simulations [26].
magnetohydrodynamics (MHD), that anisotropy produced Here we employ numerical experiments with varying
by spectral transfer scales in a systematic way with apapplied magnetic field strength to examine the scaling of
plied field strength. In particular, an angular measure oMHD spectral anisotropy. MHD equations are solved in
the anisotropy of the spectrum varilsearly with field  a periodic cube using Fourier spectral methods that have
strength over a useful range of applied field magnitudesproved reliable in studies of hydrodynamic turbulence.
A simple argument, based upon the physics of reduceBor incompressible modeling, we solve the constant den-
MHD [9-11], explains this scaling property as well as itssity incompressible MHD equations [25] in terms of the
saturation. solenoidal fluid velocityw and fluctuating magnetic fiel,

Within the MHD framework, anisotropy associated with with constant resistivity and viscosity coefficients, employ-
a (uniform) dc magnetic fieldBy) may take a number ing a Fourier-Galerkin method and the Orszag-Patterson
of forms [12—-14]. Here we are concerned specificallytransform method. For compressible numerical (pseu-
with dynamical development of spectral anisotropy duedospectral) modeling [26], we solve the MHD Navier-
to asymmetry of nonlinear spectral transfer relative to theStokes equation fov, and vector potential equation for
mean field direction [14,15]. This anisotropy is charac-a (with b = V X a), with scalar dissipation coefficients.
terized by gradients across the mean magnetic field thAWe adopt a polytropic equation of state and solve the cor-
are relatively larger than gradients along the field. Suchiesponding continuity equation for mass dengity The
features can be readily observed in fluctuations of plasmpolytropic model, frequently used in solar and heliospheric
fluid velocity, magnetic field, and density, and have beerstudies, is a computational convenience here, and is not ex-
observed in the solar wind [16—18], the solar corona [19]pected to significantly impact our low Mach number com-
the interstellar medium [20,21], and in various laboratorypressible simulations. Initial (or steady) large-scale kinetic
plasma devices [22,23]. The limiting case, when all variaand magnetic Reynolds numbers &e- 200. Magnetic
tions are perpendicular to the mean field, and the paralldlelds are in Alfvén speed units.
coordinate is ignorable, is known as two-dimensional (2D) Standard numerical experiments examined here are the
turbulence. The opposite limit, with perpendicular coordi-dissipative initial value problem (decay case) and the dissi-
nates ignorable, often called “slab” symmetry, is tradition-pative randomly driven problem that has attained a statisti-
ally employed in linear wave theory [2,16]. Turbulence cally steady state. Initial data and driving are band limited
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and isotropic. In each case the (initial or steady) fluctua-
tion energy per unit mass is approximately unity in the
familiar dimensionless units, and the mean magnetic field
Bo—a uniform constant—is varied to examine its effects
on spectral transfer and the development of anisotropy.
The degree of anisotropy is conveniently quantified
[14,25,26] by the mean perpendicular wave nunmber=

(k1) and mean parallel wave numbley = +/{kj) where
the Fourier wave vectok has componentg; and k |
parallel and perpendicular 8, respectively. The mean
value is taken with respect to a positive definite spectral
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where the vorticityw = V X v, Q = 3|w(k)|? is the en-
strophy (mean square vorticity), and the sum is over alf\iI
k’s in the vorticity spectrum. It is also convenient to de-
fine an angular measure (a@nisotropy anglg 6, such
that tand,, = k, /kj. Anisotropy is indicated by sys- transfer that remain strong in the presence of an applied
tematic departures from the isotropic valag = 54.7°, magnetic fieldBy. Heuristically, the principal effect of
or cosd,, = 0.577. Dynamical development of quasi-2D strongBy is to cause interference between the two Elsasser
anisotropy is indicated by growing,, and in general fields z= = v + b, which in the wave picture tend to
stronger anisotropy is seen for larger Reynolds numbergropagate in opposing directions in the sense of Alfvén
strongerBy, and at later times [14,25,26]. waves (in the incompressible limit). As noted by Kraich-
We now use simulation data to quantify variation of nan [3], this causes more rapid decay of triple correlations,
anisotropy with increasing field strength. For decayingthus suppressing spectral transfer. However, the magni-
turbulence, the anisotropy anglg is computed at a fixed tude of this effect varies considerably in accordance with
turbulence “age”—at a time, at which the total incom- the direction of the wave vectors involved, giving rise
pressible MHD energy has decreased to 60% of its initiato anisotropy. We would expect that spectral transfer to
value. This ensures that different simulations are comhigherk; should be suppressed relative to transfer to higher
pared after passage of the same number of characteristic, , simply because highéjj is associated with more rapid
eddy turnover times [27]. Comparing runs at differing Alfvénic decorrelation, whereas transfer to higher is
dc field strength but otherwise identical initial conditionsnot. This is borne out in the simulation data as is illus-
shows that the computed c@s(7¢0) ~ b/B, the ratio of  trated in Fig. 2 where the behavior of mearis contrasted
the field variance to the rms total magnetic field. This is il-with that ofk, for simulations withB, = 0 and 4. For the
lustrated in Fig. 1, for a series of runs with initial Reynolds zero mean field case the transfer is consistent with isotropy.
number of 200, band limited initial data between dimen-However, forBy, = 4 parallel transfer is essentially frozen
sionless wave numbeksof 1 = k = 8 and a resolution of out, suggesting that small-scale structures are mainly of a
643 Fourier modes. The four incompressible runs at varyquasi-2D type and the cascade and dissipation processes
ing By are fitted with a straight line, indicating an excellent are highly anisotropic [10,14].
fit to cosd, ~ b/B. Four additional points are shown in ~ Upon closer consideration we can see that there are two
Fig. 1, obtained using a compressible MHD code but ini-classes of interactions that are partially or fully exempt
tial data that are identical (including uniform mass density)from the Alfvén wave decorrelation effect. The first
to the incompressible simulations shown in the same figelass is typified by strictly 2D incompressible turbulence
ure. In the compressible runs, the initial turbulent Mach[28] in which all excitations havey = 0 and the dc
number is 0.15. The close proximity of the compressiblemagnetic field becomes dynamically invisible. This class
solutions to the incompressible ones is consistent with ais appropriately broadened to include interacting triads
interpretation that these solutions lie in the nearly incom-of Fourier modes withk; # 0, but small enough that
pressible regime [24]. The linear scaling of &gsillus-  the corresponding Alfvén wave period is of order or
trated in Fig. 1 is typical, and has been seen in a varietjonger than the typical nonlinear time. The latter class
of other simulations that we have recently analyzed. Eviof quasi-2D turbulence is described by reduced MHD
dently, co9,, ~ b/B is a fairly robust feature of decaying equations which have been derived by Montgomery under
MHD turbulence. the equivalent assumption that the wave time scale remain
To understand the physical basis for the observed scabrder one as the dc field strength becomes large [10,15].
ing, we must first identify the types of nonlinear spectralThe second class of incompressible interactions that are
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FIG. 1. Cosine of the anisotropy angleosd,, = k| /k) for
simulations with initial Reynolds numbet = 250 and identi-

cal initial conditions with excitations confined fo < 8. In-
compressible run data (triangles) are fitted with a straight line.
orresponding compressible run data are for initial turbulent
ach numben; = 0.15.



VOLUME 81, NUMBER 10 PHYSICAL REVIEW LETTERS 7 BPTEMBER 1998

is prescribed by 5B

1
cost < -~ B 3)
wheref is the angle betweek andB, and A is an energy-
containing length scale such that the large-scale eddy-
turnover time is6B/A. SincekA = 1 for the scales of
interest, this inequality is only meaningful whé® /B, <
1. In this parameter range we can approximately replace
the value of dc field with the total rms field strengsh
a replacement motivated by the reasoning [29] that large
s scale fluctuations induce wavelike propagation effects on
1] I . ; : ] the small scale fluctuations.
0 1 2 e 4 5 In order to estimate the anisotropy angle égsas-
sociated with the vorticity, we note that the enstrophy

and perpendiculafL) to the dc magnetic fiel®, for two of spec_trumd(abt sufflcu_ebntly h'g? Reyﬂolds nul?flsjers) Vé'" be
the incompressible runs shown in Fig. 1, labeled by their valuglominated by contributions from the conelofspace de-

of dc field strengthB,. The effect ofB, is to suppress parallel Scribed by Eq. (3). Therefore, estimates of both mean
transfer and initially slow perpendicular transfer. parallel and mean perpendicular wave numbers will be

essentially determined by contributions from this region.

Figure 2 suggests that the parallel distribution of vorticity
insensitive to propagation effects are the resonant triad$ essentially unchanged by spectral transfer. Perpendicu-
described by Shebaliet al.[14] in which at least one lar spectral transfer of the quasi-2D type is independent
wave vector is associated with a zero frequency mode (o9f Bo, and thereforék? ) will be determined by other fac-
equivalently for the purposes of the present argument, tors such as the Reynolds numbers (or, perpendicular dis-
nearly zero frequency mode, i.e., a quasi-2D mode). sipation scale). The mean parallel wave number, on the

For both classes of interaction—2D and resonant—other hand, must scale &g ~ 6B/B in accordance with
spectral transfer is in the direction towards higker not  Eq. (3). Consequently, c#s, ~ 6B/B for the parameter
higher kj, and either class can explain the freeze-out ofegime of interest.
parallel transfer seen in Fig. 2. Interaction strengths are Until this point we have discussed only simulations
independent o3, for resonant couplings, and interacting of decaying, dissipative MHD turbulence. However, the
triads of wave vectors are not restricted by the valuBpf above reasoning also applies to driven dissipative steady
beyond the requirement that frequency and wave numbestate turbulence, with minor modification. Recently we
matching conditions are met [14]. Thus, resonant transfehave been able to verify using simulations that very simi-
will not easily explain the linear scaling of anisotropy anglelar linear scaling of co8,, vs §B/B is obtained for MHD
that seems to be a robust feature in simulation data foiurbulence driven by large-scale random driving. Figure 3
moderate values of B/B. illustrates this result using four simulation runs in which
The alternative scenario, that the observed scaling dhe values of co8,, are computed after the driven turbu-

anisotropy is associated with quasi-2D transfer, seems t@nce attains an approximately steady state.
readily provide an explanation. Adopting a (spectrally) The simulations have shown that spectral anisotropy be-
local transfer hypothesis and assuming that nonresonahgaves in a predictable manner as the mean magnetic field
(or, zero-mode) transfer dominates over resonant transfesfrength is varied. Linear scaling of anisotropy angle was
we can estimate the region of wave vector space in whiclseen for decaying turbulence and driven turbulence, and
spectral transfer will be most vigorous. This region isin both incompressible and low Mach number compress-
defined by the requirement that the local nonlinear timgble MHD. However, we also expect there are parameter
7~L IS comparable to or smaller than the characteristidegimes in which this simple linear scaling fails, in particu-
wave periodr,, and thus nonlinear couplings within this lar at either very high or very low values of mean field
region are relatively unaffected by Alfvénic propagation.strength. There is, for example, a suggestion in the simu-

<k>

FIG. 2. Mean parallel components of wave vector pard||¢l

The region of interest is prescribed by lations (Figs. 1 and 3) that saturation of anisotropy occurs
1 at low b/B, as one would expect (see discussion above)
[k - Bo| < e (2)  when resonant spectral transfer is dominant. As yet, com-

NL

putations have not fully explored the weak and str@&ag

The quantityry (k) is a dimensional estimate of the local limits, but a possible basis for understanding the transition
eddy-turnover time, which is difficult to estimate without between such regimes has been discussed recently [11].
knowledge of the spectrum itself. However, since weFor the parameters explored in the simulations here, how-
expect that the time scale associated with decorrelation aver, it appears that the use of reduced MHD, an entirely
the small-scale eddies is smaller than the large-scale edd{zero frequency” description, is justified. In contrast,
turnover time, a modified and somewhat weaker restrictionveak turbulence perspectives of the type that ignore “zero
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