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Conditions for sustainment of magnetohydrodynamic turbulence driven
by Alfve n waves *

P. Dmitruk,"® W. H. Matthaeus, and L. J. Milano
Bartol Research Institute, University of Delaware, Newark, Delaware 19716

S. Oughton
Department of Mathematics, University College London, London WC1E 6BT, United Kingdom

(Received 26 October 2000; accepted 4 December)2000

In a number of space and astrophysical plasmas, turbulence is driven by the supply of wave energy.
In the context of incompressible magnetohydrodynamiidslD) there are basic physical reasons,
associated with conservation of cross helicity, why this kind of driving may be ineffective in
sustaining turbulence. Here an investigation is made into some basic requirements for sustaining
steady turbulence and dissipation in the context of incompressible MHD in a weakly
inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves
at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection
permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two
dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus,
details of the wave boundary conditions also affect the ease of sustaining a cascade. Supply of a
broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need
for reflections. Implications for coronal heating and other astrophysical applications, as well as
simulations, are suggested. @001 American Institute of Physic§DOI: 10.1063/1.1344563

I. INTRODUCTION question of whether such wave driving can sustain MHD

. turbulence. By avoiding specific details associated with par-
. A number.of space and astrophyspal plasmas engage ttular applications, and by adopting several idealizations,
vigorous heating, transport, and diffusion processes assOGla can state the problem as an academic one in MHD tur-
ated with dynamically active fluctuations. Often this activity b

: . .bulence theorylUnder what circumstances can one sustain
can be described by the equations of magnetohydrodynam|(ﬁ§compressibIe MHD turbulence by the supply of energy in

.(MHD)' It s not an infrequent cir'cumstance .that turbulencethe form of unidirectionally propagating Alfaenvaves?Be-

is driven by an input of f!uctuatlon energy in the form .Of, low we discuss some general conditions under which turbu-
waves. In the incompressible or nearly incompressible I|m|1'Ience can be sustained in this way. We assume that the
such waves would be described as Affveaves. Wave en- lasma is either homogeneous or weakly inhomogeneous,

ergy might be supplied as a flux through a boundary. This‘gnd is threaded by a strong uniform magnetic field. The
would correspond, for example in a solar context, to wavestop,, of the region of interest has “open” field lines, so

launched “PW"?“O' from the chromospheric net.wo.rk regiony aves can transport energy rapidly through the region. Our
After propagation into the lower corona, the dissipation of

) resentation is based upon physical properties of MHD, as
such waves, possibly through a cascade process, may be g pon phy prop

Tipported by direct simulations.
sociated with observed intense heattnysomewhat distinct PP y

scenario is that in which wave particle interactiérasting Il. RMHD MODEL: TURBULENCE WITH OPEN

as a body force, generate large amplitude Atfveaves. This BOUNDARIES SUBJECT TO A MEAN MAGNETIC
viewpoint would be relevant to turbulence and fluctuationsgg p

near comets, or in the outer heliosphere where newly ionized

interstellar charged particles scatter and excite Alfwaves. To adopt a simple model that demonstrates the essential
There is some evidence that this process enhances cascaf®/sics of interest, we consider a reduced MHD model
and dissipation processes. (RMHD), appropriate to the low-frequency dynamics of an

While details vary considerably, there is a commonincompressible or weakly compressible plasma in Ehe pres-
thread in these various circumstances that is of interest frorance of a strong uniform constant magnetic fiBjg= Boz.*~°
the point of view of MHD turbulence theory: Turbulence is This one-fluid MHD model involves a fluctuating fluid ve-
driven, not by random “stirring” of the velocity field as is locity v(X,y,z,t)=(vy,vy,0), a magnetic field(x,y,z,t)
often envisioned in hydrodynamics contexts, but rather by=Bg+b=(by,b,,Bg), and a uniform constant densify.
the injection of wave energy, either at a boundary, or as &he magnetic field is expressed in Alfvepeed units. Large-

volume force. Our purpose in this paper is to address th&cale Reynolds numbeR and magnetic Reynolds number
R, are reciprocals, respectively, of a uniform constant scalar

R viscosity u and resistivity.
Paper JI2 3, Bull. Am. Phys. S045, 187 (2000. . o :
qma,li?ee(; speake# m-rs (2000 Inherent to RMHD is the condition that gradiertts all

dElectronic mail: pablo@bartol.udel.edu variableg in the direction parallel tB, are much weaker
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than those in the perpendicular directions. Thus, for exampleyncontrolled. We wish to control the wave flux entering at
d,<dy. Supplemented by the solenoidality conditioisb  the base, which is set to a known function. We also want to
=V.v=0, this implies that the leading-order fluctuations set to zero the wave flux entering through the top. These are
can be described by the vorticity(x,y,ez)2= V,Xv and accomplished in one of two ways. First we may choose to
the vertical component of the vector potenti(x,y, ez) control the corresponding potentials themselves. This is done
where b=V, Xaz. Here we place a small parameterin ~ PY Setting f(x,y,s=0{)=Fq(x,y,t) and settingg(x,y,s
front of the z coordinate to emphasize the anisotropy of the= 1) =0. The second method is to control the spatial de-
RMHD representation. Hereafter we denote the S|0V\,|y_r|vat|ves of the pgtennals. That is, at the bottom we specify
varying coordinate along the mean field by The appear- dsf(X,y,s=0t)=Fq(X,y,t) for some appropriately chosen
ance of the perpendicular gradieWit =(d,,d,,0) is also a  function IEO, while at the top we choosésg(x,y,s=1})
manifestation of this anisotropy. Preferential spectral transfer=0.

to a high perpendicular wavenumbel’ is a well known For brevity we refer hereafter to these two possibilities
feature of fully three dimensiondBD) MHD which favors  as theg=0, f=F case(fixed potential, or the 9.9=0, d
dynamical generation of the anisotropic conditions described- f:o case(fixed derivative.

by RMHD. The (differend effects of these distinct constraints upon
Note that the electric current densityji%= V,Xb and the turbulence are discussed below.
the stream function) satisfiesz = —w. The dynamical Our numerical method involves solving Ed4) via a
equations of RMHD can now be written in terms of the El- Fourier pseudospectral treatment of thendy variables.
sasser variablesz. =v+b, The wave operator terms in the coordinatare handled by
Chebyshev collocation, which facilitates imposing boundary
92+ - Aai: —V,p' -2V, z.+ ﬂszz , (1) condition§ ats.:O ands=1 while providing high-order ac-
ot Js curacy. Time is advanced using a second-order Runge—Kutta
method.

where the total pr '=plp+B?2 and w m . L
ere the total pressure’=p/p /2 and we assumed The same strong mean field condition that favors devel-

=7. . . . ,
In the standard set of units in which the equations are\?v':T:gta?é:nlsog?ﬁgea\l\?: \I/U:rl:tc ?OS itr?\?egi;)g?giﬂznir?tfefdfl;e
written, the speed is measured in units of the typical turbu- Po- 9 play

lent fluctuation strengtldv. The perpendicular length scales bfé\g;inR?\;‘H'g‘ F;?:Sc;wvéflllihflljusxaania'\rﬂsHtg Sg?g;?ci’ ft:f
are in units ofL, while the parallel length scale is in units of P PP '

L,>L, corresponding to the scale inequalities inherent inCVAHVD rr\:\?k:jie:] \fN?IUId tp%rm'tf ?r:lvgs/l:é :er;t/rih;ig]k:]frel_?uvc\elnsyr
derivations of RMHD. By virtue of the same principle, the aves which falf outside ot the estrictions. Howeve

advective and Alfve time scales are comparable/dv iuz? wlgrr: -:‘rivcl?rency guctuitl?ns_wonutldint:ﬁ stlr:ongrj?r:erio-d
~L,/V,, sinceV> Sv while L,>L. a ow-irequency energy-containing -ourier modes,

To address basic questions regarding the feasibility Ofand would thus be ineffective in driving turbulence. The
supporting steady MHD turbulence by Alfvavave driving, ower-frequency Alfva waves retained in the RMHD model

e consider a rgin of space it s perodic g [ 2 LY Chance of susaring Lbuence: poreuer, e
plane, but is bounded in the direction with s=[0,1] in P P

appropriate dimensionless units. Wave flux is supplied at th&" efficient and easily understood representation which fa-

lower boundary,s=0. It is convenient to employ the EI- cilitates the making of our basic points.
sasser potentiald = ¢—a andg=+a. These are the po-
tentials associated with the variables=v=b which corre- lll. UNIDIRECTIONAL WAVES ALONE CANNOT
. o, L . SUSTAIN TURBULENCE

spond to negative and positive cross helicity fluctuations,
respectively. Note that foBy>0, i.e., an upward directed The first point we make is one that is based upon ideas
mean field, a packet of purely upward propagating waves is already well documented in the literature® The question
packet off, while a downward propagating packet is de-at hand is whether turbulence can be sustained by forcing
scribed byg. However, the quasi-two dimensional or “zero- consisting solely of unidirectionally propagating waves. Al-
frequency” modes of the system, described &yw,,=0  though the answer is negative, and is a corollary of prior
=dsb,p, May have either positive or negative cross helicity.studies(see below, we will demonstrate this first numeri-
These are the nonpropagating modes, whose importance wihlly, in part to elucidate our numerical approach.
be emphasized below. For afiyand g, the nonpropagating The simulations shown here, labeled Ruhs (11), (Ill),
parts may be extracted by averaging & e.g.,, vop  and(lV), employ periodic boundaries inandy, and an open
= ]_/szLx(f—g)S%ds_ wave propagation scheme in tealirection, as described in

It is straightforward to apply the desired boundary con-the prior section. We have studied various definitions for the
ditions ats=0 ands=1 in terms of the potentialsandg,  imposed wave flux at the bottom boundary, (x,y,s
which are characteristic variables for the wave part of Eqs=0it). However for the several cases illustrated here, we
(1). We need not control the potentials on outward propagatWi” restrict ourselves to monochromatic forcing, by which
ing characteristics since these are intended to allow upwar@e mean the following. We may define the perpen-
waves to escape at the top and downward waves to escapeddgular spectral decomposition of the potentials as
the bottom. Thusy(x,y,s=0t) and f(x,y,s=1t) are left f(x,y,z,t)=2kjf’(kx,ky,s,t)ei(kxx+kyy) and g(x,y,st)
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=Ekl§(kx,ky,s,t)e‘(kxx*kyy). Correspondingly the spectral Normalized Cross Helicity

structure of the lower boundary condition may be repre- 1.0¢
sented asFo(ky Ky, t)=T(k,k,,5=01), which can be
specified for fixed potential boundary conditions. Alterna-
tively, for fixed derivative boundary conditions, the spectral
structure will enter through specification cﬁ‘o(kx,ky,t)
=a§(kx,ky,s=0,t). By monochromatic driving we mean
that the transverse structure of the driven mode consists of a
single perpendicular wave vector, while the time dependence
is at a single frequency. Thus for monochromatic driving at : . :

transverse wavevectoky(,k,)=(1,1) we choose, for fixed 0 5 10 15 20
potential boundaries,
Asin2mut, if k, =(1,), o DISISIpOtIOI"l'Z efﬁmepcy

Folky Ky t)= (2)

0, otherwise.

For fixed derivative boundary conditions we choose

A2V somut, i K, = (1)
A COoSsZm v, | = 1),
Folke Ky ,t)= Va . 3)

0, otherwise.

It is clear by examination of the linear part of E¢$) that

the latter choice enforces a specified upward propagating
wave flux at the bottom boundary, and in this respect accom-
plishes a wave driving similar to that of the fixed potential
case, Eq.(2). We considered a low-frequency forcing Non forcing modes dissipation fraction
throughout all the runs, withv=0.1t,, wheret, is the ' ' ' ]

0 5 10 15 20

Alfvén wave crossing time along directi@of the domain. B ]
For the top boundary, we require that the flux of downwards o0.8F ]
waves is zero, the latter being accomplished using either the
g=0 or d,g=0 boundary condition. 0.61 ]
The initial conditions for the fields within the box are i ]
random spectra of fluctuations which are band-limited so that 0.4 ; ]
excited modes have<2k, <6. The cross helicity of the ini- 0.2l ]
tial population is nearly zero. The question is whether the I ]
forcing can sustain this turbulence level against dissipation °~°O' : s v ~

and losses due to propagation out of the simulation domain,
or if, alternatively, the turbulence dies out.

Run () addresses this question employing the0 FIG. 1. Results from Ruil), which has a uniform Alfve speed and upper
boundary condition. Figure 1 shows the results of a run witHPoundary conditiong=0, showing that turbulence is not sustained by a

. unidirectionally propagating wave flux supplied at the lower boundary in an
XXYXS resolution of 64 64x31. The top panel shows a open field configuration. Top panel: Normalized cross helioity(see the

Time (t,)

time history of normalized cross helicity, text) as a function of time. After a rapid decrease over a time scale of the
order of the Alfva crossing timepg.— — 1 indicating pure upward propa-
fp(Zi - zz_)dxdyds gation. Middle panel: Dissipation efficiendyatio of dissipation to period-
= 5 5 . 4) averaged input wave energy fluxs time. The low and oscillatory level
Ip(z5 +2zZ)dxdyds indicates simple periodic dissipation associated with a single propagating

) ) . . wave. Bottom panel: Ratio of total dissipation in all undriven modes, to
The middle panel shows, as a function of time, the ratio Ofgissipation in the driven mode. Again the decrease- after an Alfvn

the dissipation rate to the time averaged input of wave entime suggests there is little or no spectral transfer after that time. The tur-
ergy though the lower boundary. This is called the dissipa_bulence has died out and is replaced with a simple propagating wave.
tion efficiency.(The average is taken over an oscillation pe-

riod at the lower boundaryThe bottom panel is the fraction

of total dissipation due to all Fourier modes other than the  Referring to the results for Rufh) in Fig. 1, we see that
driven mode. This is a measure of nonlinear spectral transfethe normalized cross helicity rapidly decreases fronfats

For a simple wave that does not couple to other degrees dfitrary) initial value of zero to values very close to.
freedom, this quantity is zero; if it approaches unity it signi-=—1 by t~1, which is one Alfve crossing time of thes
fies that nearly all the excitations have transferred out of thelimension of the domain. The dissipation efficiency also de-
driven mode. Transfer into smaller scale modes is emphecreases rapidly(after a brief transient growih and then
sized. bounces between zero and a small value in a regular way.
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The behavior shown by the final diagnostic indicates that the Normalized Cross Helicity

dissipation is initially due to interactions of many modes, but 10k ' ' ' ' ]

for t>1 nearly all dissipation is associated with direct damp- .

ing of the driven mode. The conclusion is clear—the initially o5k ]

present turbulence is responsible for a burst of dissipation .

early in the run, but it vanishes in an Alfwetime, and is ook i

replaced by what is essentially a pure upward traveling wave.

This is a representative result. 05 i
Although the path taken is somewhat differently, similar .

results are obtained in Ruifl), for which the parameters of _1.0f

Run (1) are adopted, aside from changing the boundary con- L : ' ' :

dition from fixed potential conditions to fixed derivative con- 0 10 20 50 40 50
ditions.

Results of Run(ll) are summarized in Fig. 2. The top Dissipation: efficiency
and middle panels are very similar to Fig. 1, showing that the 1.0 " " " "
fluctuations are dominated by upward propagating waves af- i
ter aboutt=4. There is evidence of some nonlinear activity 08 ]
at later times associated with the persistent wobbles in the !

Co e L . 0.6 1

dissipation efficiency curve. This is borne out in the lower
panel, which clearly shows that the dissipation due to non- 0.4 1
forced modes recurs for a much longer time than in Rjn ’
The boundary conditions have made a manifest difference. 0.2 ]
Nonetheless, turbulence is still not sustained, although it
takes much longer for it to die out completely. 0.0

Note that both boundary conditions disallow entry of a 0 1o 20 30 40 50

downward wave fluxi.e., propagating modg$rom the top.
The difference between the two cases is thatO [Run (I)]
eliminates, in addition, any nonpropagating mode amplitude
after one Alfven time. In contrastgsg=0 [Run(Il)] does not 1.0p
eliminate the nonpropagating modes, which can appear in the i

Non forcing modes dissipation fraction

initial data, and are left to freely relax due to nonlinear ef- 0'8;
fects and dissipation. 06k

To understand further this point, we can consider the i
detailed balance of upward and downward fluctuation ener- 0.4}
gies at each plans=const. From the dynamical equations [
(1), the equations for the fluctuation energies at each perpen- 0.2p
dicular plane are obtained by integrating Y, 0.0t , , , ,

0 10 20 30 40 50
Hz?) o Klz-]?) Time (t)
—— =*Vp———-D-, (5
ot Js FIG. 2. Results from Rur(ll), which differs from Run(l) only in the

boundary condition at the top, here fixed derivative conditions are imposed
where(---) means an integral ovex(y) andD. are the [e.g.d,g(s=1)=0], which allows nonpropagating modes. The format is as

dissipation terms. The nonlinear terms and the pressure ternfsFig- 1. Normalized cross helicity and dissipation efficiency again tend
towards zero, but more slowly than in R@p. The fraction of dissipation

do not contribute to the_ total energy balance at_eaCh plar_‘e’tgking place in the undriven modes displays large oscillations but also tends
result that can be readily seen from the dynamical equation® zero. Evidently turbulence cannot be sustained in this situation either.
(1) using the transverse periodicity of the fields. Dissipative

terms can be shown to be single signed. The downward and

upward fluctuation energies satisfgside from dissipation  which is much longer than the Alfvetime. When the non-
wave equations which, more importantly, are completely depropagating modes are permitted in the simulafRan (I1)],
coupled from one another. It is clear that|iz, |?)'°=0 [as  positive cross helicity Z,) modes can persist beyond the
imposed by thegy=0 boundary condition of Rufl)], then  “emptying time” of Run (1). It is well established®!®that

this condition will propagate through the box from the top nonpropagating modes act as an efficient catalyst for perpen-
and after one Alfva time there will be no downward type of dicular spectral transfer. Consequently the observation that
fluctuations. At this point, the nonlinear couplingshich  the turbulence takes much longer to die out in Rlin can
necessary involve both, andz_) will be no longer possible be understood as a direct consequence of the existence of
and the initial level of turbulence dies. In the case of Runnonlinear couplings involving the nonpropagating fluctua-
(I1), the conditiondsg=0 does not imposéz, |?)*P=0, but  tions.

instead it implies thaw(|z, |?)"°°’= D', so that thez, In spite of the interesting differences between Rdns
energy at the top boundary relaxes in a dissipation timeand (I), both support the conclusion that turbulence cannot
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be regenerated and sustained by driving due tmidirec-
tionally propagating monochromatic Affaevave in a homo-
geneous plasma. These conclusions are actually a corollary
of a significantly stronger statemeriturbulence cannot be
sustained by unidirectionally propagating waves even if the
driven wave spectrum is broadbanthe key to understand-

ing this is to realize that driving by unidirectionally propa-
gating waves supplies energy to one of the &sa vari-
ables, but not the other, as it can be seen from the decoupled
energy equationss). If there is no supply of the downward
type of fluctuations, then, those fluctuations will disappear
through dissipation and/or transmission through the bottom
boundary. At that moment, no turbulence is possible since
the nonlinear terms, which necessarily involve bathand

z_, will be zero.

IV. WAVES AND TURBULENCE IN A SMOOTHLY
INHOMOGENEOUS MEDIUM

Some additional effect has to be included to have any
possibility of sustaining turbulence with the type of driving
employed here. In most of the applications we have in mind
in space and astrophysics, the large-scale magnetic field and
the density are not uniform as we considered them to be
above. It is well known that waves propagating in an inho-
mogeneous medium can be reflected due to gradients in their
propagation speed. A number of authors have extensively
studied the influence of inhomogeneities on the linear propa-
gation of Alfven waves mostly in the context of the inter-
planetary medium or model solar atmosphéfe&® General
frameworks for transport locally incompressible turbulence
in weakly inhomogeneous media, including inhomogeneous
flows and nonlinear effects, have been develddetf.In all
cases one finds that large-scale spatial variations in the mag-
netic field and density cause reflection. Even a relatively
small amount of reflection of an imposed propagating wave
train raises the possibility that counter-propagating wave
trains can interact and excite turbulence. This “mixing” ef-
fect has been suggested to play a role in triggering turbu-
lence in both the solar wifd and in the open field line
corona?® Here we ask whether this effect has the sought
after influence of permitting the maintenance of steady tur-
bulence using waves as the forcing mechanism.

In the simplest case reflection can be introduced by al
lowing for weak inhomogeneity along the direction of the

Normalized Cross Helicity

Conditions for sustainment of magnetohydrodynamic . . .

0 5 10 15 20
Dissipation: efficiency

1.0: ' ' '
0.8F .
o.ef— .
0.2F .
0.0 K_———-~;J4_———~s.44‘———~s.4

0 5 10 15 20

Non forcing modes dissipation fraction

1.0:1
0.8
0.6 1

0.4

0.2

0.0L

10

0

5

10
Time (t,)

15

20

2381

|EIG. 3. Results from Rurlll), which includes the effects of reflection
associated with inhomogeneous Alfvepeed. As in Ruil), the boundary

magnetic field. This implies that,=V(s). For the present
model, let us consider a normalized Alfveelocity profile,

Va(s),
Va(s)=[1+3(s— 7 lcogms)sin(ms))], (6)

with s in the interval[0,1]. This quantity starts a¥/, (s
=0)=1 and smoothly varies up t&, (s=1)=4. The

modified RMHD equations in an inhomogeneous mediumt

are (neglecting a possible mean flow speed and using plan
geometry,

9z. _ 9z _1dVj +1dVA
ot TVATgs T T2 7ds T2 ds o
()

~-V,p'—2z--V,z.+3V?z, .

ar

condition at the topg (s=1)=0, does not allow nonpropagating modes.
The oscillation of normalized cross helicity and dissipation efficiency indi-
cate recurrent activity but very little spectral transfer. The fraction of dissi-
pation in undriven modes is small except at early times. After that point,
there is no suggestion of turbulence.

We now ask whether our modified problem permits the sus-
tainment of turbulence. In Ru(ll) we computed the solu-
jons to the same problem as in Rdn, but with reflection
Included as above. Note that the upper boundary condition is
g=0, so the nonpropagating modes are excluded. Figure 3
summarizes the results of this simulation, which was carried
out using the same methods as in the previous section
[Chebyshev collocation easily permits the extension to non-
uniformV4(s)]. The upper panel of Fig. 3 shows that a large
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persistent oscillation of normalized cross helicity is set Normalized Cross Helicity
up. The system periodically achieves states of almost purely 10k ' ' ' ' 3
outward propagating fluctuations, and alternately states with '

nearly equal mixtures of inward and outward fluctuations. o5k ]
The dissipation efficiency oscillates but remains very low, ' ]
suggesting little spectral transfer. This is confirmed in the ook ]
bottom panel. There is a brief period early in the run during ]
which there is significant dissipation in undriven modes due _osk ]
to decay of the initially present turbulence. Subsequently, % ]
however, there is no discernible dissipation except in the _10F i

driven mode. Again, turbulence has not been sustained, this : . : '
time in spite of moderately strong reflection. 0 20 40 60 80 100
Run (IV) repeats Rur{lll), but with the boundary con-

ditions changed to fixed derivative boundarigsg., dsg Dissipation: efficiency

=0) (Fig. 4. Now nonpropagating modes are permitted. 1.5[ " " ' "
Normalized cross helicity once again increases in magnitude
as it did in the previous cases, due to supply of upward I
traveling modes at the lower boundary. However in this in- 1.0F
stance, a statistically steady plateau, away from the extremal I
value of —1, is attained aftet~5.

This simulation has been extended to longer times ( 0.5H
=100) than the previous ones, to effectively show that the [
turbulence is sustained. Dissipation efficieriEig. 4, middle U
pane), increases and does not return to near-zero values as it 0.0 . f . .
did in all other runs; it does exhibit large pulsations associ- 0 20 40 60 80 100

ated with the periodic monochromatic driving. The bottom
panel of Fig. 4 shows that the fraction of dissipation occur-
ring in the undriven modes remains at a very high level—

Non forcing modes dissipation fraction

near unity, in fact. It appears that RUV) has established a 1-0b'\«‘v‘v-\~"y-wrv—v-‘«‘v-w'\r"!
sustained level of statistically steady turbulence. This can be ]
confirmed by the examination of a sequence of one dimen- 0'8_' ]
sional energy spectra, computed as functions of transverse 0.6F ]
wavenumbek, . Such a sequence is shown in Fig. 5, for [ ]
=0.0,0.5,2.5. This case corresponds to a high perpendicular 0.4 .
resolution version of Run IV, with 512512X 9 grid-points ;

in xXyXs, but keeping the same parameters and boundary 0.2r ]
conditions as in Run IV. The solid line suggests a spectral o.of . . . .

slope that is approximatelly, >® as would be expected for 0 20 40 60 80 100
steady driven MHD turbulence. Time (t)

FIG. 4. Results from RurtlV), which includes reflection effects and has

V. DISCUSSION AND CONCLUSIONS fixed derivative boundary conditiorig.g.,dsg(s=1)=0], permitting non-
propagating modes. Normalized cross helicity quickly attains a steady value,

We have examined a series of simulations of RMHD too.~—0.8. Dissipation efficiency varies quasi-periodically but remains

address the question of whether MHD turbulence can b@Pove~0.1 with average=0.45. Fraction of dissipation in undriven modes
. . ¢ L remains high(near unity. MHD turbulence is sustained in this case.

driven and sustained by Alfwewave driving alone. The fo-
cus has been upon the supply of unidirectionally propagating
Alfvén waves that are monochromatic in the sense that a
single transverse wave vector is driven at the “lower” can be understood easily because counter-propagating fluc-
boundary, and at a single low frequency. tuations, or, at least, mixed cross helicities, are required for

Thus in an infinite domain and in the absence of reflecincompressible MHD turbulence, as is well known. This
tion or nonlinearity, a propagating nondispersive Affve theorem must be modified for a weakly inhomogeneous case
wave would be driven at a well defined wave vector andin which reflection is present due to nonuniform Alfve
frequency. Two upper boundary conditions were employedspeed. Incorporating reflection, we show that turbulence
both of which permit no entry of downwards waves from theonce again cannot be sustained when the nonpropagating
top boundary. However one choicé,g=0) permits non- modes are excluded, but that it can be sustained when they
propagating modes to be present while the othg+ Q) are not excluded.
eliminates them. Our conclusion is that turbulence cannot be The above conclusions provide a firm answer to the re-
sustained for the homogeneous problem with no reflectionstricted question that we posed. Applicability to more gen-
regardless of which boundary condition is employed. Thiseral situations can also be addressed to some degree. For
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FIG. 6. Dependence of the solution on the vertical coordisat®r the

inhomogeneous RufiV). Top panel: Energy distribution per unit volume

(E_ for upward-type fluctuations anl, for downward-type fluctuations

as function ofs and averaged in time over several forcing periods. Lower

L 1 panel: Dissipation distribution per unit volume as functiorsolveraged in

1 0—8 . time. The energy of downward-type fluctuations is comparatively higher on
the lower region(close tos=0) than at the topg=1) and dissipation is

! 10 K 100 enhanced there.

FIG. 5. Energy spectra from RuitV) at three timest=0.0,0.5,2.5. The
straight line is~k_ ®°. A fully developed turbulence spectrum emerges to sustain turbulence in any case in which the broadband
e vk s e gy /% " "orcing supplies only upward propagating fluctuatons. The
requirement of including nonpropagating fluctuations that we
saw in our numerical results is evidently connected, in the
monochromatic case, to the need for efficient first-step cou-
example, what happens for wave driving that is broadband iplings that set up more numerous couplings required for a
wavenumber? Qualitatively we would expect that broadbandull cascade. With broadband forcing, these efficient or reso-
forcing would immediately supply nonlinear couplings, with- nant first couplings are still helpful, but are not required.
out the need for a preliminary step of transferring excitation  Another broader circumstance of interest is one that re-
out of the directly supplied mod®. Thus, we anticipate that sults from relaxing the incompressibility constraint. Even for
broadband drivingwith, say, akf”3 transverse spectrym weak compressibility there may be channels for driving non-
would make turbulence easier to maintain, even in cases ilinear couplings that are not present in the current discussion
which the nonpropagating modes are excluded by boundaryf incompressible MHD. These effects, which can be impor-
conditions. Several runs of this type were carried (ut  tant when the main fiel®, is not strong(or equivalently, for
shown and this reasoning was indeed confirmed. Howeverplasma~1), are considered in Ref. 29. Also, nonlinear
there is still an absolute requirement that reflection is presewave equation formalisms, such as DNLS and its kinetic
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