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Conditions for sustainment of magnetohydrodynamic turbulence driven
by Alfvé n waves *

P. Dmitruk,†,a) W. H. Matthaeus, and L. J. Milano
Bartol Research Institute, University of Delaware, Newark, Delaware 19716

S. Oughton
Department of Mathematics, University College London, London WC1E 6BT, United Kingdom

~Received 26 October 2000; accepted 4 December 2000!

In a number of space and astrophysical plasmas, turbulence is driven by the supply of wave energy.
In the context of incompressible magnetohydrodynamics~MHD! there are basic physical reasons,
associated with conservation of cross helicity, why this kind of driving may be ineffective in
sustaining turbulence. Here an investigation is made into some basic requirements for sustaining
steady turbulence and dissipation in the context of incompressible MHD in a weakly
inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves
at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection
permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two
dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus,
details of the wave boundary conditions also affect the ease of sustaining a cascade. Supply of a
broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need
for reflections. Implications for coronal heating and other astrophysical applications, as well as
simulations, are suggested. ©2001 American Institute of Physics.@DOI: 10.1063/1.1344563#
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I. INTRODUCTION

A number of space and astrophysical plasmas engag
vigorous heating, transport, and diffusion processes ass
ated with dynamically active fluctuations. Often this activ
can be described by the equations of magnetohydrodyna
~MHD!. It is not an infrequent circumstance that turbulen
is driven by an input of fluctuation energy in the form
waves. In the incompressible or nearly incompressible li
such waves would be described as Alfve´n waves. Wave en-
ergy might be supplied as a flux through a boundary. T
would correspond, for example in a solar context, to wa
launched upward from the chromospheric network regi
After propagation into the lower corona, the dissipation
such waves, possibly through a cascade process, may b
sociated with observed intense heating.1 A somewhat distinct
scenario is that in which wave particle interactions,2 acting
as a body force, generate large amplitude Alfve´n waves. This
viewpoint would be relevant to turbulence and fluctuatio
near comets, or in the outer heliosphere where newly ioni
interstellar charged particles scatter and excite Alfve´n waves.
There is some evidence that this process enhances ca
and dissipation processes.3

While details vary considerably, there is a comm
thread in these various circumstances that is of interest f
the point of view of MHD turbulence theory: Turbulence
driven, not by random ‘‘stirring’’ of the velocity field as is
often envisioned in hydrodynamics contexts, but rather
the injection of wave energy, either at a boundary, or a
volume force. Our purpose in this paper is to address

*Paper JI2 3, Bull. Am. Phys. Soc.45, 187 ~2000!.
†Invited speaker.
a!Electronic mail: pablo@bartol.udel.edu
2371070-664X/2001/8(5)/2377/8/$18.00

rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

130.217.128.202 On: Thu
in
ci-

ics
e

it

is
s
.
f
as-

s
d

ade

m

y
a
e

question of whether such wave driving can sustain MH
turbulence. By avoiding specific details associated with p
ticular applications, and by adopting several idealizatio
we can state the problem as an academic one in MHD
bulence theory:Under what circumstances can one susta
incompressible MHD turbulence by the supply of energy
the form of unidirectionally propagating Alfve´n waves?Be-
low we discuss some general conditions under which tur
lence can be sustained in this way. We assume that
plasma is either homogeneous or weakly inhomogene
and is threaded by a strong uniform magnetic field. T
‘‘top’’ of the region of interest has ‘‘open’’ field lines, so
waves can transport energy rapidly through the region. O
presentation is based upon physical properties of MHD,
supported by direct simulations.

II. RMHD MODEL: TURBULENCE WITH OPEN
BOUNDARIES SUBJECT TO A MEAN MAGNETIC
FIELD

To adopt a simple model that demonstrates the esse
physics of interest, we consider a reduced MHD mo
~RMHD!, appropriate to the low-frequency dynamics of
incompressible or weakly compressible plasma in the p
ence of a strong uniform constant magnetic fieldB05B0ẑ.4–6

This one-fluid MHD model involves a fluctuating fluid ve
locity v(x,y,z,t)5(vx ,vy ,0), a magnetic fieldB(x,y,z,t)
5B01b5(bx ,by ,B0), and a uniform constant densityr.
The magnetic field is expressed in Alfve´n speed units. Large
scale Reynolds numberR and magnetic Reynolds numbe
Rm are reciprocals, respectively, of a uniform constant sca
viscositym and resistivityh.

Inherent to RMHD is the condition that gradients~of all
variables! in the direction parallel toB0 are much weaker
7 © 2001 American Institute of Physics
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 This a
than those in the perpendicular directions. Thus, for exam
]z!]x . Supplemented by the solenoidality conditions“•b
5“•v50, this implies that the leading-order fluctuatio
can be described by the vorticityv(x,y,ez) ẑ5“'Ãv and
the vertical component of the vector potentiala(x,y,ez)
where b5“'Ãaẑ. Here we place a small parametere in
front of thez coordinate to emphasize the anisotropy of t
RMHD representation. Hereafter we denote the slow
varying coordinate along the mean field bys. The appear-
ance of the perpendicular gradient“'5(]x ,]y,0) is also a
manifestation of this anisotropy. Preferential spectral tran
to a high perpendicular wavenumber7–10 is a well known
feature of fully three dimensional~3D! MHD which favors
dynamical generation of the anisotropic conditions descri
by RMHD.

Note that the electric current density isj ẑ5“'Ãb and
the stream functionc satisfies¹'

2 c52v. The dynamical
equations of RMHD can now be written in terms of the E
sässer variables,zÁ5v6b,

]z6

]t
7VA

]z6

]s
52“'p82z7•“'z61h¹'

2 z6 , ~1!

where the total pressurep85p/r1B2/2 and we assumedm
5h.

In the standard set of units in which the equations
written, the speed is measured in units of the typical tur
lent fluctuation strengthdv. The perpendicular length scale
are in units ofL, while the parallel length scale is in units o
Lz@L, corresponding to the scale inequalities inherent
derivations of RMHD. By virtue of the same principle, th
advective and Alfve´n time scales are comparable,L/dv
;Lz /VA , sinceVA@dv while Lz@L.

To address basic questions regarding the feasibility
supporting steady MHD turbulence by Alfve´n wave driving,
we consider a region of space that is periodic in thex,y
plane, but is bounded in thes direction with s5@0,1# in
appropriate dimensionless units. Wave flux is supplied at
lower boundary,s50. It is convenient to employ the El
sässer potentialsf 5c2a and g5c1a. These are the po
tentials associated with the variablesz75v7b which corre-
spond to negative and positive cross helicity fluctuatio
respectively. Note that forB0.0, i.e., an upward directed
mean field, a packet of purely upward propagating waves
packet of f, while a downward propagating packet is d
scribed byg. However, the quasi-two dimensional or ‘‘zero
frequency’’ modes of the system, described by]sv2D50
5]sb2D , may have either positive or negative cross helic
These are the nonpropagating modes, whose importance
be emphasized below. For anyf and g, the nonpropagating
parts may be extracted by averaging ins, e.g., v2D

51/2*“'3^ f 2g&sŝds.
It is straightforward to apply the desired boundary co

ditions ats50 ands51 in terms of the potentialsf and g,
which are characteristic variables for the wave part of E
~1!. We need not control the potentials on outward propag
ing characteristics since these are intended to allow upw
waves to escape at the top and downward waves to esca
the bottom. Thusg(x,y,s50,t) and f (x,y,s51,t) are left
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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uncontrolled. We wish to control the wave flux entering
the base, which is set to a known function. We also wan
set to zero the wave flux entering through the top. These
accomplished in one of two ways. First we may choose
control the corresponding potentials themselves. This is d
by setting f (x,y,s50,t)5F0(x,y,t) and settingg(x,y,s
51,t)50. The second method is to control the spatial d
rivatives of the potentials. That is, at the bottom we spec
]sf (x,y,s50,t)5F̂0(x,y,t) for some appropriately chose
function F̂0, while at the top we choose]sg(x,y,s51,t)
50.

For brevity we refer hereafter to these two possibiliti
as theg50, f 5F0 case~fixed potential!, or the]sg50, ]s

5F̂0 case~fixed derivative!.
The ~different! effects of these distinct constraints upo

the turbulence are discussed below.
Our numerical method involves solving Eqs.~1! via a

Fourier pseudospectral treatment of thex and y variables.
The wave operator terms in the coordinates are handled by
Chebyshev collocation, which facilitates imposing bounda
conditions ats50 ands51 while providing high-order ac-
curacy. Time is advanced using a second-order Runge–K
method.

The same strong mean field condition that favors dev
opment of anisotropy also induces the propagation of Alfv´n
waves alongB0. Since we want to investigate the interpla
between an imposed wave flux and MHD turbulence,
present RMHD framework thus appears to be ideal. A f
MHD model would permit driving by very high frequenc
waves which fall outside of the RMHD restrictions. Howev
such high-frequency fluctuations would be stronglynonreso-
nant with low-frequency energy-containing Fourier mod
and would thus be ineffective in driving turbulence. Th
lower-frequency Alfve´n waves retained in the RMHD mode
have a better chance of sustaining turbulence. Moreover,
RMHD model provides a simple characteristic structure a
an efficient and easily understood representation which
cilitates the making of our basic points.

III. UNIDIRECTIONAL WAVES ALONE CANNOT
SUSTAIN TURBULENCE

The first point we make is one that is based upon id
already well documented in the literature.11–15 The question
at hand is whether turbulence can be sustained by forc
consisting solely of unidirectionally propagating waves. A
though the answer is negative, and is a corollary of pr
studies~see below!, we will demonstrate this first numeri
cally, in part to elucidate our numerical approach.

The simulations shown here, labeled Runs~I!, ~II !, ~III !,
and~IV !, employ periodic boundaries inx andy, and an open
wave propagation scheme in thes direction, as described in
the prior section. We have studied various definitions for
imposed wave flux at the bottom boundary,F0 (x,y,s
50,t). However for the several cases illustrated here,
will restrict ourselves to monochromatic forcing, by whic
we mean the following. We may define the perpe
dicular spectral decomposition of the potentials
f (x,y,z,t)5(k'

f̃ (kx ,ky ,s,t)ei (kxx1kyy) and g(x,y,s,t)

ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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5(k'
g̃(kx ,ky ,s,t)ei (kxx1kyy). Correspondingly the spectra

structure of the lower boundary condition may be rep
sented asF̃0(kx ,ky ,t)5 f̃ (kx ,ky ,s50,t), which can be
specified for fixed potential boundary conditions. Altern
tively, for fixed derivative boundary conditions, the spect
structure will enter through specification ofF̂0(kx ,ky ,t)
5]sf̃ (kx ,ky ,s50,t). By monochromatic driving we mea
that the transverse structure of the driven mode consists
single perpendicular wave vector, while the time depende
is at a single frequencyn. Thus for monochromatic driving a
transverse wavevector (kx ,ky)5(1,1) we choose, for fixed
potential boundaries,

F̃0~kx ,ky ,t !5H Asin2pnt, if k'5~1,1!,

0, otherwise.
~2!

For fixed derivative boundary conditions we choose

F̂0~kx ,ky ,t !5H 2
A2pn

VA
cos2pnt, if k'5~1,1!,

0, otherwise.

~3!

It is clear by examination of the linear part of Eqs.~1! that
the latter choice enforces a specified upward propaga
wave flux at the bottom boundary, and in this respect acc
plishes a wave driving similar to that of the fixed potent
case, Eq. ~2!. We considered a low-frequency forcin
throughout all the runs, withn50.1/tA , where tA is the
Alfvén wave crossing time along directions of the domain.
For the top boundary, we require that the flux of downwa
waves is zero, the latter being accomplished using either
g50 or ]sg50 boundary condition.

The initial conditions for the fields within the box ar
random spectra of fluctuations which are band-limited so
excited modes have 2<k'<6. The cross helicity of the ini-
tial population is nearly zero. The question is whether
forcing can sustain this turbulence level against dissipa
and losses due to propagation out of the simulation dom
or if, alternatively, the turbulence dies out.

Run ~I! addresses this question employing theg50
boundary condition. Figure 1 shows the results of a run w
x3y3s resolution of 64364331. The top panel shows
time history of normalized cross helicity,

sc5
*r~z1

2 2z2
2 !dxdyds

*r~z1
2 1z2

2 !dxdyds
. ~4!

The middle panel shows, as a function of time, the ratio
the dissipation rate to the time averaged input of wave
ergy though the lower boundary. This is called the dissi
tion efficiency.~The average is taken over an oscillation p
riod at the lower boundary.! The bottom panel is the fractio
of total dissipation due to all Fourier modes other than
driven mode. This is a measure of nonlinear spectral trans
For a simple wave that does not couple to other degree
freedom, this quantity is zero; if it approaches unity it sig
fies that nearly all the excitations have transferred out of
driven mode. Transfer into smaller scale modes is emp
sized.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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Referring to the results for Run~I! in Fig. 1, we see that
the normalized cross helicity rapidly decreases from its~ar-
bitrary! initial value of zero to values very close tosc

521 by t'1, which is one Alfve´n crossing time of thes
dimension of the domain. The dissipation efficiency also
creases rapidly~after a brief transient growth!, and then
bounces between zero and a small value in a regular w

FIG. 1. Results from Run~I!, which has a uniform Alfve´n speed and upper
boundary conditiong50, showing that turbulence is not sustained by
unidirectionally propagating wave flux supplied at the lower boundary in
open field configuration. Top panel: Normalized cross helicitysc ~see the
text! as a function of time. After a rapid decrease over a time scale of
order of the Alfvén crossing time,sc→21 indicating pure upward propa
gation. Middle panel: Dissipation efficiency~ratio of dissipation to period-
averaged input wave energy flux! vs time. The low and oscillatory leve
indicates simple periodic dissipation associated with a single propaga
wave. Bottom panel: Ratio of total dissipation in all undriven modes,
dissipation in the driven mode. Again the decrease to'0 after an Alfvén
time suggests there is little or no spectral transfer after that time. The
bulence has died out and is replaced with a simple propagating wave.
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The behavior shown by the final diagnostic indicates that
dissipation is initially due to interactions of many modes, b
for t.1 nearly all dissipation is associated with direct dam
ing of the driven mode. The conclusion is clear—the initia
present turbulence is responsible for a burst of dissipa
early in the run, but it vanishes in an Alfve´n time, and is
replaced by what is essentially a pure upward traveling wa
This is a representative result.

Although the path taken is somewhat differently, simi
results are obtained in Run~II !, for which the parameters o
Run ~I! are adopted, aside from changing the boundary c
dition from fixed potential conditions to fixed derivative co
ditions.

Results of Run~II ! are summarized in Fig. 2. The to
and middle panels are very similar to Fig. 1, showing that
fluctuations are dominated by upward propagating waves
ter aboutt54. There is evidence of some nonlinear activ
at later times associated with the persistent wobbles in
dissipation efficiency curve. This is borne out in the low
panel, which clearly shows that the dissipation due to n
forced modes recurs for a much longer time than in Run~I!.
The boundary conditions have made a manifest differen
Nonetheless, turbulence is still not sustained, althoug
takes much longer for it to die out completely.

Note that both boundary conditions disallow entry of
downward wave flux~i.e., propagating modes! from the top.
The difference between the two cases is thatg50 @Run ~I!#
eliminates, in addition, any nonpropagating mode amplitu
after one Alfvén time. In contrast,]sg50 @Run~II !# does not
eliminate the nonpropagating modes, which can appear in
initial data, and are left to freely relax due to nonlinear
fects and dissipation.

To understand further this point, we can consider
detailed balance of upward and downward fluctuation en
gies at each planes5const. From the dynamical equation
~1!, the equations for the fluctuation energies at each perp
dicular plane are obtained by integrating in (x,y),

]^uz6u2&
]t

56VA

]^uz6u2&
]s

2D6 , ~5!

where ^•••& means an integral over (x,y) and D6 are the
dissipation terms. The nonlinear terms and the pressure te
do not contribute to the total energy balance at each plan
result that can be readily seen from the dynamical equat
~1! using the transverse periodicity of the fields. Dissipat
terms can be shown to be single signed. The downward
upward fluctuation energies satisfy~aside from dissipation!
wave equations which, more importantly, are completely
coupled from one another. It is clear that if^uz1u2& top50 @as
imposed by theg50 boundary condition of Run~I!#, then
this condition will propagate through the box from the t
and after one Alfve´n time there will be no downward type o
fluctuations. At this point, the nonlinear couplings~which
necessary involve bothz¿ andzÀ) will be no longer possible
and the initial level of turbulence dies. In the case of R
~II !, the condition]sg50 does not imposêuz1u2& top50, but
instead it implies that] t^uz1u2& top52D1

top, so that thez¿
energy at the top boundary relaxes in a dissipation tim
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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which is much longer than the Alfve´n time. When the non-
propagating modes are permitted in the simulation@Run~II !#,
positive cross helicity (z1) modes can persist beyond th
‘‘emptying time’’ of Run ~I!. It is well established8,9,16 that
nonpropagating modes act as an efficient catalyst for perp
dicular spectral transfer. Consequently the observation
the turbulence takes much longer to die out in Run~II ! can
be understood as a direct consequence of the existenc
nonlinear couplings involving the nonpropagating fluctu
tions.

In spite of the interesting differences between Runs~I!
and ~II !, both support the conclusion that turbulence can

FIG. 2. Results from Run~II !, which differs from Run~I! only in the
boundary condition at the top, here fixed derivative conditions are impo
@e.g.,]sg(s51)50], which allows nonpropagating modes. The format is
in Fig. 1. Normalized cross helicity and dissipation efficiency again te
towards zero, but more slowly than in Run~I!. The fraction of dissipation
taking place in the undriven modes displays large oscillations but also te
to zero. Evidently turbulence cannot be sustained in this situation eithe
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
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be regenerated and sustained by driving due to aunidirec-
tionally propagating monochromatic Alfve´n wave in a homo-
geneous plasma. These conclusions are actually a coro
of a significantly stronger statement:Turbulence cannot be
sustained by unidirectionally propagating waves even if
driven wave spectrum is broadband.The key to understand
ing this is to realize that driving by unidirectionally prop
gating waves supplies energy to one of the Elsa¨sser vari-
ables, but not the other, as it can be seen from the decou
energy equations~5!. If there is no supply of the downwar
type of fluctuations, then, those fluctuations will disapp
through dissipation and/or transmission through the bot
boundary. At that moment, no turbulence is possible si
the nonlinear terms, which necessarily involve bothz1 and
z2 , will be zero.

IV. WAVES AND TURBULENCE IN A SMOOTHLY
INHOMOGENEOUS MEDIUM

Some additional effect has to be included to have a
possibility of sustaining turbulence with the type of drivin
employed here. In most of the applications we have in m
in space and astrophysics, the large-scale magnetic field
the density are not uniform as we considered them to
above. It is well known that waves propagating in an inh
mogeneous medium can be reflected due to gradients in
propagation speed. A number of authors have extensi
studied the influence of inhomogeneities on the linear pro
gation of Alfvén waves mostly in the context of the inte
planetary medium or model solar atmospheres.17–23 General
frameworks for transport locally incompressible turbulen
in weakly inhomogeneous media, including inhomogene
flows and nonlinear effects, have been developed.24–27 In all
cases one finds that large-scale spatial variations in the m
netic field and density cause reflection. Even a relativ
small amount of reflection of an imposed propagating wa
train raises the possibility that counter-propagating wa
trains can interact and excite turbulence. This ‘‘mixing’’ e
fect has been suggested to play a role in triggering tur
lence in both the solar wind27 and in the open field line
corona.28 Here we ask whether this effect has the sou
after influence of permitting the maintenance of steady
bulence using waves as the forcing mechanism.

In the simplest case reflection can be introduced by
lowing for weak inhomogeneity along the direction of th
magnetic field. This implies thatVA5VA(s). For the present
model, let us consider a normalized Alfve´n velocity profile,
VA(s),

VA~s!5@113„s2p21cos~ps!sin~ps!…#, ~6!

with s in the interval @0,1#. This quantity starts atVA (s
50)51 and smoothly varies up toVA (s51)54. The
modified RMHD equations in an inhomogeneous medi
are~neglecting a possible mean flow speed and using pla
geometry!,

]z6

]t
7VA

]z6

]s
57

1

2

dVA

ds
z66

1

2

dVA

ds
z7 ,

~7!
2“'p82z7•“'z61h“'

2 z6 .
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub

130.217.128.202 On: Thu
ry

e

led

r
m
e

y

d
nd
e
-
eir
ly
a-

e
s

g-
y
e
e

-

t
r-

l-

ar

We now ask whether our modified problem permits the s
tainment of turbulence. In Run~III ! we computed the solu
tions to the same problem as in Run~I!, but with reflection
included as above. Note that the upper boundary conditio
g50, so the nonpropagating modes are excluded. Figu
summarizes the results of this simulation, which was carr
out using the same methods as in the previous sec
@Chebyshev collocation easily permits the extension to n
uniform VA(s)]. The upper panel of Fig. 3 shows that a lar

FIG. 3. Results from Run~III !, which includes the effects of reflection
associated with inhomogeneous Alfve´n speed. As in Run~I!, the boundary
condition at the top,g (s51)50, does not allow nonpropagating mode
The oscillation of normalized cross helicity and dissipation efficiency in
cate recurrent activity but very little spectral transfer. The fraction of dis
pation in undriven modes is small except at early times. After that po
there is no suggestion of turbulence.
ject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

, 03 Apr 2014 03:32:01



re
i

ns
w

th
in
u
tly
th
th

-

d
ud
ar
in
m

(
th

a
c
m
ur
l—

b
e
er
r
u

a
tr
r

to
b

tin
t

r’’

ec
e
n
ed
he

t b
io
hi

fluc-
for
is
ase

ce
ting

they

re-
n-

. For

s

lue,
ins
s

2382 Phys. Plasmas, Vol. 8, No. 5, May 2001 Dmitruk et al.

 This a
persistent oscillation of normalized cross helicitysc is set
up. The system periodically achieves states of almost pu
outward propagating fluctuations, and alternately states w
nearly equal mixtures of inward and outward fluctuatio
The dissipation efficiency oscillates but remains very lo
suggesting little spectral transfer. This is confirmed in
bottom panel. There is a brief period early in the run dur
which there is significant dissipation in undriven modes d
to decay of the initially present turbulence. Subsequen
however, there is no discernible dissipation except in
driven mode. Again, turbulence has not been sustained,
time in spite of moderately strong reflection.

Run ~IV ! repeats Run~III !, but with the boundary con
ditions changed to fixed derivative boundaries~e.g., ]sg
50) ~Fig. 4!. Now nonpropagating modes are permitte
Normalized cross helicity once again increases in magnit
as it did in the previous cases, due to supply of upw
traveling modes at the lower boundary. However in this
stance, a statistically steady plateau, away from the extre
value of21, is attained aftert'5.

This simulation has been extended to longer timest
5100) than the previous ones, to effectively show that
turbulence is sustained. Dissipation efficiency~Fig. 4, middle
panel!, increases and does not return to near-zero values
did in all other runs; it does exhibit large pulsations asso
ated with the periodic monochromatic driving. The botto
panel of Fig. 4 shows that the fraction of dissipation occ
ring in the undriven modes remains at a very high leve
near unity, in fact. It appears that Run~IV ! has established a
sustained level of statistically steady turbulence. This can
confirmed by the examination of a sequence of one dim
sional energy spectra, computed as functions of transv
wavenumberk' . Such a sequence is shown in Fig. 5, fot
50.0,0.5,2.5. This case corresponds to a high perpendic
resolution version of Run IV, with 512351239 grid-points
in x3y3s, but keeping the same parameters and bound
conditions as in Run IV. The solid line suggests a spec
slope that is approximatelyk'

25/3 as would be expected fo
steady driven MHD turbulence.

V. DISCUSSION AND CONCLUSIONS

We have examined a series of simulations of RMHD
address the question of whether MHD turbulence can
driven and sustained by Alfve´n wave driving alone. The fo-
cus has been upon the supply of unidirectionally propaga
Alfvén waves that are monochromatic in the sense tha
single transverse wave vector is driven at the ‘‘lowe
boundary, and at a single low frequency.

Thus in an infinite domain and in the absence of refl
tion or nonlinearity, a propagating nondispersive Alfv´n
wave would be driven at a well defined wave vector a
frequency. Two upper boundary conditions were employ
both of which permit no entry of downwards waves from t
top boundary. However one choice (]sg50) permits non-
propagating modes to be present while the other (g50)
eliminates them. Our conclusion is that turbulence canno
sustained for the homogeneous problem with no reflect
regardless of which boundary condition is employed. T
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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can be understood easily because counter-propagating
tuations, or, at least, mixed cross helicities, are required
incompressible MHD turbulence, as is well known. Th
theorem must be modified for a weakly inhomogeneous c
in which reflection is present due to nonuniform Alfve´n
speed. Incorporating reflection, we show that turbulen
once again cannot be sustained when the nonpropaga
modes are excluded, but that it can be sustained when
are not excluded.

The above conclusions provide a firm answer to the
stricted question that we posed. Applicability to more ge
eral situations can also be addressed to some degree

FIG. 4. Results from Run~IV !, which includes reflection effects and ha
fixed derivative boundary conditions@e.g.,]sg(s51)50], permitting non-
propagating modes. Normalized cross helicity quickly attains a steady va
sc'20.8. Dissipation efficiency varies quasi-periodically but rema
above;0.1 with average'0.45. Fraction of dissipation in undriven mode
remains high~near unity!. MHD turbulence is sustained in this case.
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example, what happens for wave driving that is broadban
wavenumber? Qualitatively we would expect that broadb
forcing would immediately supply nonlinear couplings, wit
out the need for a preliminary step of transferring excitat
out of the directly supplied mode~s!. Thus, we anticipate tha
broadband driving~with, say, ak'

25/3 transverse spectrum!
would make turbulence easier to maintain, even in case
which the nonpropagating modes are excluded by bound
conditions. Several runs of this type were carried out~not
shown! and this reasoning was indeed confirmed. Howev
there is still an absolute requirement that reflection is pres

FIG. 5. Energy spectra from Run~IV ! at three times,t50.0,0.5,2.5. The
straight line is;k'

25/3 . A fully developed turbulence spectrum emerg
from a seed level of turbulence, driven by a monochromatic wave in
presence of reflection due to Alfve´n speed inhomogeneity.
rticle is copyrighted as indicated in the article. Reuse of AIP content is sub
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to sustain turbulence in any case in which the broadb
forcing supplies only upward propagating fluctuations. T
requirement of including nonpropagating fluctuations that
saw in our numerical results is evidently connected, in
monochromatic case, to the need for efficient first-step c
plings that set up more numerous couplings required fo
full cascade. With broadband forcing, these efficient or re
nant first couplings are still helpful, but are not required.

Another broader circumstance of interest is one that
sults from relaxing the incompressibility constraint. Even f
weak compressibility there may be channels for driving no
linear couplings that are not present in the current discus
of incompressible MHD. These effects, which can be imp
tant when the main fieldB0 is not strong~or equivalently, for
plasmab;1), are considered in Ref. 29. Also, nonline
wave equation formalisms, such as DNLS and its kine

FIG. 6. Dependence of the solution on the vertical coordinates, for the
inhomogeneous Run~IV !. Top panel: Energy distribution per unit volum
(E2 for upward-type fluctuations andE1 for downward-type fluctuations!
as function ofs and averaged in time over several forcing periods. Low
panel: Dissipation distribution per unit volume as function ofs, averaged in
time. The energy of downward-type fluctuations is comparatively higher
the lower region~close tos50) than at the top (s51) and dissipation is
enhanced there.
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modifications,30,31 might be able to enhance cascade effe
in a strong compressible situation. Such considerations h
been outside the present context, but remain as interes
topics for further research.

A final feature that we remark upon is the spatially no
uniform distribution of turbulence and dissipation in the i
homogeneous case Run~IV !, in which steady turbulence wa
achieved through wave driving. As argued above, MHD t
bulence requires spatial overlap of the upward-type (z2) and
downward-type (z1) fluctuations. Upward waves are su
plied at the lower boundary, and downward fluctuations w
be generated at a rate controlled by the background Alf´n
speed profile. The net result is that the dissipation is gre
enhanced in the lower part of the simulation domain. This
illustrated in Fig. 6 which shows both the~time averaged!
distribution of fluctuation energies per unit volume (E7

5rz7
2 ) and dissipation per unit volume, as functions of t

vertical coordinates. This has immediate consequences
applications such as solar coronal heating in which the wa
flux enters from a more or less prescribed boundary. In s
cases, it is to be expected that the heating rate due to tu
lence will be confined, in a relative sense, to a region es
lished by the reflection profile, which is itself determined
the Alfvén speed profile.

This provides a direct link between the large-scale fi
structure and the deposition of turbulent energy as h
which is of clear importance in the problem of coronal he
ing. A further discussion of the model studied here in t
context of coronal heating in open magnetic regions is
dressed elsewhere.32,33
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