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ABSTRACT

We employ a turbulence transport theory to the radial
evolution of the solar wind at both low and high lati-
tudes. The theory includes cross helicity, magnetohy-
drodynamic (MHD) turbulence, and driving by shear and
pickup ions. The radial decrease of cross helicity, ob-
served in both low and high latitudes, can be accounted
for by including sufficient shear driving to overcome the
tendency of MHD turbulence to produce Alfvénic states.
The shear driving is weaker at high latitudes leading to
a slower evolution. Model results are compared with ob-
servations from Ulysses and Voyager.

1. INTRODUCTION

The evolution of solar wind turbulence is a challenging
space plasma physics problem, and one that is central in
understanding various features of the heliosphere includ-
ing radial temperature, solar energetic particles and mod-
ulation of galactic cosmic rays. Relatively complete for-
malisms for turbulence transport in a weakly inhomoge-
neous medium have been developed using several com-
plementary approaches [1, 2, 3]. Frequently further ap-
proximations are imposed to achieve a physically trans-
parent model. One of those simplifications is to the case
of zero cross helicity or, equivalently, equal admixtures of
inward and outward Alfvénic fluctuations. This is proba-
bly well satisfied beyond a heliocentric distance of a few
Astronomical Units (AU), but it is marginal from 1–3 AU,
and is definitely not a reasonable simplification at dis-
tances less than 1 AU from the sun [4, 5, 6, 7, 8].

Recent work [9, 10] has focused on developing a turbu-
lence transport model for the solar wind which allows for
mixed cross helicities. In this paper, we apply the model
to the solar wind at both low and high latitudes. The ap-
plication of the model differs in the two regimes by rea-
sonable changes to characteristic parameters.

2. MODEL AND PARAMETERS

Several features of MHD turbulence are relevant to un-
derstanding the evolution of solar wind fluctuations.
First, the general scenario of cascade and decay of ho-
mogeneous MHD turbulence is found to proceed in much
the same way as in hydrodynamics [11]. Second, MHD
cascades can be strongly anisotropic. Spectral transfer
is stronger in the directions perpendicular to the large-
scale mean magnetic field, and is weaker in the parallel
direction, leading to relatively stronger cross-field gradi-
ents of magnetic, velocity, and small-scale density fluc-
tuations [12]. Third, for the weakly inhomogeneous so-
lar wind flow, a generalization of WKB theory [2, 1, 13]
describes the transport of “locally homogeneous” MHD
turbulence. Fourth, for low plasma-frame Mach num-
ber the local turbulence can be described approximately
by a nearly incompressible (NI) MHD theory [14, 15] in
which the leading-order nonlinear effects are anisotropic
and incompressible. These factors may be assembled into
a quantitative description of turbulence transport and de-
cay that, with some simplifications, can be applied to the
solar wind in relatively tractable form [16, 17, 18, 19].

In the absence of strong large-scale velocity shear,
dynamic alignment [20, 21] tends to increase the
Alfvénicity, in the sense that the cross helicity Hc =
1

2
〈v · b〉 of the velocity v and magnetic field b fluctua-

tions decreases more slowly than does the incompressible
energy density (per unit mass) E = 1

2
〈|v|2 + |b|2〉. (An-

gle brackets denote an appropriate averaging procedure.)
Quantitatively, dynamic alignment is signified by growth
of the normalized cross helicity σc = 2Hc/E = (Z2

+ −
Z2
−)/(Z2

+ + Z2
−), with Z2

± = 〈|v ± b|2〉. Shear driv-
ing generally supplies equal energy in “forward” (Z+,
say) and “backward” (Z−) type fluctuations, which in
linear theory are eigenmodes associated with unidirec-
tional propagation. Hence shear driving opposes dynamic
alignment, which on its own would act to increase the
Alfvénicity.

Here we will compare the predictions of a four-equation
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turbulence model with observations of the radial decrease
of normalized cross helicity. The turbulence model in-
cludes equations for turbulence energy Z2 = (Z2

+ +

Z2
−)/2, similarity or correlation lengthscale λ, proton

temperature T , and normalized cross helicity σc. The
equations are steady-state, and employ a uniform large-
scale solar wind speed U and specified radial profiles for
the Alfvén speed and density. Turbulence is considered to
be locally homogeneous and incompressible, following
an MHD adaptation of a Kármán–Taylor phenomenology
[16, 22]. The equations are,
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Three functions of the cross helicity were introduced to
simplify the notation. They are,

f±(σc) =
(1− σ2

c )1/2

2

[

(1 + σc)
1/2 ± (1− σc)

1/2
]

,

(5)
and

f ′(σc) =
[

σcf
+(σc)− f−(σc)

]

≈
σc − σ3

c

2
. (6)

The model depends upon various parameters, including
Kármán–Taylor constants, chosen here as α = 2β = 0.8,
a mixing constant M = 1/2, σD = 〈|v|2 − |b|2〉/2E =
−1/3 (assumed constant). See, e.g., [22].

Turbulence is driven by two effects. First, large-scale
shear instability supplies turbulence energy. This is rep-
resented by constants Csh and Ĉsh that control the shear
strength. (Here we take Ĉsh = 0 appropriate to driv-
ing at roughly the correlation scale.) Second, scattering
of ionized interstellar neutrals (pickup ions) supplies en-
ergy through wave-particle interactions, represented here
by the term ĖPI . The form of pickup ion driving we
employ is the same as in [18] (for an updated form, see
[19]). Pickup ion driving of turbulence is important be-
yond 10 AU and is not the focus of the present study.

The main focus of the present paper is the radial evolu-
tion of normalized cross helicity σc. Using the approxi-
mation given in Eq. (6), we examine threshold estimates
of the interplanetary conditions needed to account for the
typical observation that σc decreases with increasing he-
liocentric distance [23, 7]. Rearranging Eq. (3) we find

dσc

dr
≈

[

α
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(1− σ2

c )
Z

Uλ
−
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−
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]

σc.

(7)

Thus, σc decays towards zero provided the square-
bracketed term is negative. Consequently the observa-
tions require, approximately, that

Csh −MσD +
rĖPI

UZ2
> α

(1− σ2
c )

2

rZ

Uλ
. (8)

Note that usually MσD ≈ −1/6 << Csh [3]. In the
middle heliosphere, say 0.3 AU < r < 10 AU, pickup
ion effects are not important, and Eq. (8) simplifies to

Csh > α
(1− σ2

c )

2

rZ

Uλ
. (9)

The fraction rZ/λU , interpretable as the ratio of the ex-
pansion and nonlinear timescales, is often of order unity
in the solar wind. We see that there exists a threshold in
shear strength above which σc decreases with radius.

The shear constant is estimated using ∆U/∆r = CshU/r
[2, 16]. The strength of shear driving of turbulence is
expected to differ in low latitude and high latitude solar
wind. In particular, a lower value of Csh is expected in the
high latitude fast wind, due to the absence of large stream
interfaces. We find [10] that Csh ∼ 1.5 for the low lati-
tudes and Csh ≈ 1/2 for the high latitudes works well to
account for the solar wind turbulence evolution. Note that
these values of Csh are high enough that the condition
given in equation (9) should be satisfied for high values
of σc thought to be apparent in the innermost heliosphere
(say, r = 0.3 AU). We can thus expect a decrease in the
cross helicity in the innermost part of the heliosphere.

3. LOW LATITUDE RESULTS

We used the model to compute solutions at both low and
high latitudes and compare the results to observations.
Figure 1 shows a sample solution in the ecliptic plane,
where the cross helicity is observed to decrease with he-
liocentric distance [5, 6, 7, 8].

Note that we have used parameters (see caption) in the
transport model that are comparable to values employed
by [18] The model results are compared to observational
points adapted from [7], as well as two 1 AU data points
from the OMNI data set. Evidently the transport theory
accounts reasonably well for the observed decrease of σc

vs. r, providing further support for the suggestion [24]
that Alfvénicity is reduced by turbulence driven by shear
in solar wind stream structure. Note, however, that the
adapted data points are not properly sorted, e.g., by wind
speed. Consequently a more careful comparision with
observations is needed. The present results also motivate
further examination of latitude effects on solar wind cross
helicity [25, 23, 26].

4. HIGH LATITUDE RESULTS

Figure 2 shows solutions computed by the model at high
latitude. The solutions are compared with hourly σc val-



Figure 1. Radial evolution of normalized cross helicity
σc at low latitudes, near the ecliptic plane. Observa-
tional values extracted from Helios and Voyager data,
are suggested by the symbols, which are adapted from
[7] (courtesy of D. A. Roberts). Additionally, two data
points from the OMNI data set are also included. The pa-
rameters used for the model solution are appropriate to
low latitudes; shear strength Csh = 1.5, mixing parame-
ter MσD = −1/6, a standard form of the pickup driving
term (see Smith et al.2001), and constants α = 2β = 0.8,
with boundary data at 0.3 AU specified as Z2 = 2200
km2/sec2, λ = 0.01 AU and σc = 0.7

ues from Bavassano et al. (2000a,b), computed from
Ulysses data. There is no attempt to examine system-
atic variation with latitude—we plot values of σc for two
ranges of latitude (moderately high 25–55◦ and very high
55–80◦). All points have θ > 25◦.

As there is considerable spread in the data, we have plot-
ted three solutions for σc(r) from the theory. The three
solutions differ in the imposed inner boundary values for
the turbulence amplitude Z2 and the correlation scale λ.
Relative to low latitude solutions (figure 1), these solu-
tions use lower Csh, higher solar wind speed, and lower
density [27]. The three solutions show that a moderate
(and realistic) variation of inner boundary values pro-
duces theoretical curves that vary in a way that is com-
parable to the scatter in the Ulysses data. A fourth solu-
tion is also shown, with identical parameters, except that
σc = 1.0 (maximal value) at the inner boundary, and Csh

was reduced. This solution represents a pure Alfvénic
stream, with higher σc, as might be inferred from some
studies (e.g., Goldstein et al., 1995) ).

We recall the suggestion [Bavassano et al., 2000a,b] that
the cross helicity saturates, i.e., approaches a terminal
nonzero value in the high latitude wind. This tendency is
apparent in Figure 2: Between 1.5 AU and 3 AU there is
a downward trend. However there is no clear downward
trend for data beyond 3 AU. Note the substantial spread
in observed values of σc(r) near any r.
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Figure 2. Radial evolution of normalized cross helicity
σc at high latitudes. Observational points from Ulysses
data in two latitude bands (see legend). Three solu-
tions for σc(r) from the transport equations are shown,
for a fixed latitude of 75◦ and varying values of turbu-
lence level and correlation scale at the boundary: Dotted
curve: Z2 = 10000km2 s−2 and λ = 0.02AU; Solid
curve: Z2 = 6000 km2 s−2 and λ = 0.04AU; Dashed
curve Z2 = 4500 km2 s−2 and λ = 0.07AU. All other
parameters are fixed. Appropriate to high latitudes [27],
we take U = 774 km/s and an Alfvén speed at 1 AU of
51 km/s. The driving parameters are Csh = 0.5 and
MσD = −1/6, with a standard pickup driving term
[18].Note that lower Z2 and higher λ at the inner bound-
ary produces more rapid radial decrease of σc.

5. CONCLUSION

We have presented a turbulence transport model that has
been extended to include non-zero cross helicities [9, 10].
The model accounts reasonably well for observations in
both the high and low latitude solar wind. The parame-
ters characterizing the model differ in the two regimes in
reasonable ways, including lower shear in the high lati-
tude wind. It is beyond the scope of the current paper to
fully explore the implications of the model solutions at
different latitudes. Such a study will be presented in the
future.
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