
A TWO-COMPONENT PHENOMENOLOGY FOR THE EVOLUTION OF MHD
TURBULENCE

S. Oughton(1), P. Dmitruk(2), and W. H. Matthaeus(2)

(1)Department of Mathematics, University of Waikato, Hamilton, New Zealand
(2)Bartol Research Institute, University of Delaware, Newark, DE, USA

In Proc. Solar Wind 11 – SOHO 16 “Connecting Sun and Helio-
sphere”, Whistler, Canada 12 – 17 June 2005
(p. 633–636, ESA SP-592, September 2005).

ABSTRACT

Incompressible MHD turbulence with a mean magnetic
field B0 develops anisotropic spectral structure and can
be simply described only by including at least two dis-
tinct fluctuation components. These are conveniently re-
ferred to as “waves,” for which propagation effects are
important, and “quasi-2D” turbulence, for which nonlin-
ear effects dominate over propagation ones. The quasi-
2D component has wavevectors approximately perpen-
dicular to B0. These two idealized ingredients cap-
ture the essential physics of propagation (high frequency
fluctuations) and strong turbulence (low frequency fluc-
tuations.) Here we present a two-component energy-
containing range phenomenology for the evolution of ho-
mogeneous MHD turbulence.

1. INTRODUCTION

Magnetohydrodynamic (MHD) turbulence is expected to
be active in many space physics and astrophysics sys-
tems, including the solar corona and solar wind. Given
the apparent intractability of the governing nonlinear
equations it is desirable to develop models for the evo-
lution of MHD turbulence. Here we report on the initial
phase of such a development, concentrating on the sim-
pler case of zero cross helicity.

The key idea is to decompose the velocity (v) and mag-
netic (b) fluctuations into “wave-like” and non-wavelike
components. The decomposition is accomplished in
Fourier space using an orthogonal projection. Thus we
write,

v = v
2D + v

waves, (1)

b = b
2D + b

waves. (2)

Throughout we measure magnetic fields in Alfvén speed
units b/

√
4πρ → b.

Account is taken of both the self interactions of each
component and also the couplings between the two com-
ponents. As some of the couplings are resonant they have
the potential to dominate the remaining couplings.

In incompressible MHD there are two timescales asso-
ciated with excitation at each wavevector k (ignoring
dissipative timescales). These are the Alfvén (or wave)
timescale and the nonlinear timescale, respectively de-

fined as

τA(k) =
1

k‖B0

, (3)

τNL(k) =
1

kūk

, (4)

where ū2
k

≈ the energy in the scales with |k| ≈ k.
At each k, the faster timescale has the leading-order
influence on the dynamics. However, because of the
anisotropy of τA(k) with respect to the mean field di-
rection, the boundary in Fourier space where τNL(k) =
τA(k) is also, in general, anisotropic (Montgomery and
Turner 1981; Montgomery 1982; Higdon 1984; Goldre-
ich and Sridhar 1995; Kinney and McWilliams 1998;
Oughton et al. 2004). Note that this would be true even
if the energy spectrum itself was (somehow) maintained
to be isotropic. Figure 1a is a sketch in Fourier space
showing the nature of this boundary for a strong B0 and
an assumed Kolmogorov-type spectrum in the (roughly)
perpendicular directions. This boundary is referred to by
various names including the critical balance boundary
and the reduced MHD boundary.

Also shown (Fig. 1b) are typical directions of spectral
transfer inside and outside the τNL = τA boundary. Note
that in each case, the dominant sense of transfer is in the
perpendicular directions. This is an aspect of the dynam-
ics which modeling of the turbulence should reflect.

2. DEVELOPMENT

The starting point for the development of the model is
the (dissipative) incompressible MHD equations, with a
mean magnetic field B0. Substituting Eqs. 1 and 2 into
the MHD equations, and switching to Elsässer variables
for each component, defined as

z± = v
2D ± b

2D, (5)

w± = v
waves ± b

waves, (6)

one finds for the “plus” fields,

∂

∂t
(z+ + w+) ∼ − (z− + w−) · ∇ (z+ + w+)

+B0 · ∇ (z+ + w+)

= −z− · ∇z+ − w− · ∇z+

−z− · ∇w+ − w− · ∇w+

+B0 · ∇z+ + B0 · ∇w+ (7)

A similar equation holds for the “minus” fields. An ad-
vantage of the two-component decomposition is that the
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Figure 1. (a) Sketch of the quasi-2D/wave-like regions,
and boundary, in Fourier space. The boundary is given
by the curve τNL(k) = τA(k). A moderate to strong
B0 is assumed. Note the dependence of the boundary on
B0. In particular as B0 gets weaker the boundary and
shaded (quasi-2D) region expand to fill more and more
of Fourier space. (b) Indication of typical spectral trans-
fer directions and strengths. In both regions the domi-
nant behaviour is (quasi-)perpendicular transfer. After
Oughton et al. (2004).

generic nature of each term is evident in Eq. 7. For ex-
ample, reading from left to right there are terms involv-
ing 2D-2D interactions, wave-2D, 2D-wave, and wave-
wave interactions. The final two terms are associated with
propagation effects.

Equations for the evolution of the Elsässer energies are
obtained by forming dot products of Eq. 7 and its “mi-
nus” sibling with z±, w±, and spatially averaging (ho-
mogeneous turbulence is assumed).

The next step is to model the nonlinear terms in the
Elsässer energy equations, using ideas based on the well-
verified “u3/`” decay phenomenology of hydrodynam-
ics. That is, on the pair of equations du2/dt ∼ −u3/`,
d`/dt ∼ u (von Kármán and Howarth 1938; Dryden
1943; Hossain et al. 1995). Note that these have analytic
solutions. Some MHD extensions of this phenomenol-
ogy have been considered previously (e.g., Hossain et al.
1995; Matthaeus et al. 1996).

For this first presentation of the model we specialise to
the case of zero cross helicity, i.e., 〈v · b〉 = 0. It is then
convenient to employ the notation

Z2 = 〈z2
+〉 = 〈z2

−〉, (8)

W 2 = 〈w2
+〉 = 〈w2

−〉. (9)

After taking account of the relevant nonlinear and Alfvén
timescales in each term in the Elsässer energy equations
we obtain the following modeled equations for the quasi-

2D and wave-like energies,

dZ2

dt
= −Z3

`
Γzz

z − WZ2

`
Γwz

z

+WZ2

[

Γzw
w

λ
− Γzz

w

`

]

+W 2Z

[

Γww
w

λ
− Γwz

w

`

]

, (10)

dW 2

dt
= −ZW 2

λ
Γzw

z − W 3

λ
Γww

w

−WZ2

[

Γzw
w

λ
− Γzz

w

`

]

−W 2Z

[

Γww
w

λ
− Γwz

w

`

]

, (11)

where the B0-dependent attenuation factors are

Γab

c
=

1

1 + τab

NL/τ c

A

=

[

1 +
`b

a
/

`
‖
c

B0

]−1

(12)

with `a a characteristic lengthscale of a, `‖ a character-
istic parallel lengthscale, and a, b, c represent the appro-
priate z±, w± fluctuation. Lengthscales associated with
the quasi-2D component are denoted using `, while those
for the wave-like component are denoted with λ (with its
connotations of wavelength). The Γ factors arise from
constructing the spectral transfer time associated with
each term in equations like 7 (e.g., Matthaeus and Zhou
1989).

In each equation, the first two terms model the turbu-
lent cascades while the last two model the (conservative)
exchange of energy between the two components. In-
deed, consideration of the various types of interactions
between quasi-2D and wave-like modes leads to the fol-
lowing conceptual classification of the terms,

dZ2

dt
= quasi-2D cascade (Kolmogorov-like)

+ non-res. replenishment from waves

+ non-res. loss to waves (13)
dW 2

dt
= resonant z-w (⊥) cascade (Shebalin-like)

+ non-res. w+-w− cascade (Kraichnan-like)

+ non-res. gain from quasi-2D interactions

+ non-res. loss to quasi-2D component. (14)

Note, in particular, that the distinction between cascade
type effects and exchange type effects comes out quite
cleanly.

2.1 Evolution of the lengthscales

In order to close the model, equations for the behaviour
of the lengthscales are also required.

For the perpendicular ones, ` and λ, we employ separate
conservation laws for the quasi-2D and wave-like com-



ponents:

`Zn = const, (15)

λW m = const, (16)

with n and m independent constants. Note that n or
m = 1 implies evolution at constant Reynolds number,
while n or m = 2 implies constant area under the associ-
ated correlation function (Hossain et al. 1995; Zank et al.
1996; Matthaeus et al. 1996)

The evolution of the parallel lengthscales, `‖ and λ‖, is
somewhat more difficult to model, since not all types
of interactions alter them. We are again using the u3/`
type phenomenology as a guide [cf. Hossain et al. (1995);
Matthaeus et al. (1996); Zank et al. (1996)].

2.2 Limits

Here we briefly consider two limits of particular interest,
namely B0 → 0 and B0 → ∞.

In the B0 → 0 case, all the Γ factors approach unity.
For consistency of interpretation it is also necessary that
W 2/Z2 → 0. This can be understood heuristically with
reference to Fig. 1a. As B0 decreases, the equal timescale
(aka critical balance) boundary expands away from the
k⊥ axis and the wave-like region occupies a smaller and
smaller region of k-space. Indeed, in the B0 → 0 limit
there is no wave-like region.

Thus, to leading-order only quasi-2D (note that the name
quasi-2D is quite misleading in this limit) fluctuations re-
main, and one recovers essentially the standard hydrody-
namic u3/` phenomenology,

dZ2

dt
= −Z3

`
,

d`

dt
= Z. (17)

This is the sense in which the free decay of zero
cross helicity MHD turbulence, without a mean field, is
hydrodynamic-like. Note also that isotropy has been re-
covered.

Turning now to the B0 → ∞ limit, we find that the
leading-order terms for both Z and W are associated with
perpendicular cascades. They have the important prop-
erty that they are independent of the mean field strength
B0.

For the wave-like component, the leading-order term is
due to the dominance of the resonant interaction of a
quasi-2D fluctuation with a wave-like fluctuation. The
importance of these resonant terms was first identified
by Shebalin et al. (1983) and subsequently expanded
upon (e.g., Bondeson 1985; Oughton et al. 1994, 1998;
Matthaeus et al. 1998).

dZ2

dt
= −1

2

Z3

`
− WZ2

`

1

1 + Z/W
, (18)

dW 2

dt
= −ZW 2

λ

1

1 + λ/`
. (19)

Note the factor of a half in the first term on the
RHS of Eq. 18, which is a natural consequence of the
quasi-2D/wave-like decomposition employed in this phe-
nomenology. Recall that Hossain et al. (1995) compared
an earlier MHD u3/`-type phenomenology to direct sim-
ulation results and found, empirically, that the best fits for
energy decay were obtained with just such a factor of a
half.

3. CONCLUSIONS AND FURTHER WORK

The development of a two-component model of MHD
turbulence with a mean field has been outlined. The com-
ponents are a wave-like piece for which propagation ef-
fects are important, and a quasi-2D piece for which non-
linear interactions generate the leading-order dynamics.
The components are coupled and there are typically both
resonant and non-resonant terms in the evolution equa-
tions for the energy and lengthscales characterizing each
component.

We anticipate that such phenomenologies will be useful
in modeling the evolution of systems such as the solar
corona and the solar wind.

As for future work, we are currently working on complet-
ing the development of equations for the evolution of the
parallel lengthscales, and also on extending the model to
take account of non-zero cross helicity effects and forcing
terms.
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