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We extend the theory for third-order structure functions in homogeneous incompressible
magnetohydrodynamic turbulence to the case in which a constant velocity shear is present. A
generalization is found of the usual relation �Politano and Pouquet, Phys. Rev. E 57, 21 �1998��
between third-order structure functions and the dissipation rate in steady inertial range turbulence,
in which the shear plays a crucial role. In particular, the presence of shear leads to a third-order law
which is not simply proportional to the relative separation. Possible implications for laboratory and
space plasmas are discussed. © 2009 American Institute of Physics. �doi:10.1063/1.3240333�

A well known result in hydrodynamic turbulence theory
is the Kolmogorov–Yaglom �“4/5”� law that relates the third-
order structure function to the energy dissipation rate.1–3 Of-
ten regarded as a rigorous result of the fluid equations, this
law requires assumptions of isotropy, homogeneity, and time
stationarity of the statistics of velocity increments �u=u�x
+r�−u�x� �velocity u, spatial positions x+r and x�. In
addition—and crucially—it also requires adoption of the von
Kármán hypothesis4 that the rate of energy dissipation � ap-
proaches a constant nonzero value as the Reynolds number
tends to infinity. Without the need for assuming isotropy, one
finds

�

�ri
��ui��u�2� = − 4� , �1�

where �¯ � indicates an ensemble average and a sum on
repeated indices is implied. If isotropy is further assumed,
then

��uL��u�2� = −
4

d
��r� , �2�

where d is the number of spatial dimensions and �uL= r̂ ·�u
is the increment component measured in the direction of the
unit vector r̂ parallel to the relative separation r. Extension of
the third-order law to the case of incompressible magnetohy-
drodynamics �MHD� was reported in Ref. 5, which remained
close to the approximations made in the hydrodynamic case.
Without assuming isotropy, they found

�

�ri
��zi

���z��2� = − 4��, �3�

which, after adoption of isotropy, reduces to

��zL
���z��2� = −

4

d
��r , �4�

where �z�=z��x+r�−z��x� are the increments of the
Elsässer variables and �zL

�= r̂ ·�z�. The constants �� are the
mean energy dissipation rates of the corresponding variables

z�=u�b, where b is the magnetic field fluctuation in Alfvén
speed units.

Here we extend the third-order law in MHD turbulence
to cases in which the isotropy assumption is relaxed. This is
accomplished by introducing homogeneous shear in the ve-
locity field, a simplified and well-studied approach in
hydrodynamics.6–9 In particular, it supports departures from
strict isotropy and introduction of shear without consider-
ation of rigid boundaries. MHD third-order laws have been
applied to systems that may also admit departures from strict
uniformity due to coherent large-scale gradients, e.g., plasma
confinement devices10,11 and the solar wind.12–15 For systems
like these, the homogeneous shear approximation may be a
reasonable step toward including such large-scale effects in
the relevant MHD turbulence scaling laws. To this end, our
derivation of the MHD third-order law will include the effect
of homogeneous shear, leading to a necessarily anisotropic
form for the law.

More specifically, we find that a uniform shear intro-
duces new terms in the third-order law, so that one can no
longer conclude that a particular third-order structure func-
tion, or even a particular integral of a third-order structure
function, is proportional to the dissipation rate times the rela-
tive separation length r. This is in marked contrast to the
situation for the fully isotropic hydrodynamic and MHD
cases, given here as Eqs. �2� and �4�. It is, however, entirely
consistent with the work in Refs. 16 and 17, in which modi-
fications to the form of the third-order law for hydrodynam-
ics with shear were derived.

The principal theoretical result given below is that a uni-
form shear indeed is responsible for changing the form of the
third-order law, whereas a mean magnetic field does not pro-
duce such structural changes. Implications for solar wind,
laboratory, and astrophysical measurements of turbulence are
suggested, and, in particular, the primacy of the third-order
law in unambiguously defining an inertial range is chal-
lenged.

The third-order law is often derived from the steady-
state version of an equation related to energy decay. To ob-
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tain the version of the law appropriate for MHD with uni-
form velocity shear, we follow the same procedure used
previously for MHD,5,13 combined with the method in Ref.
17 for extending Eq. �2� to include shear. A uniform mag-
netic field is also retained, although only the simplest of its
consequences will enter the discussion.

First, let us employ a Reynolds decomposition of the
velocity field v=U+u into a mean velocity U�x� and a fluc-
tuating component u�x , t�, where �v�=U and �u�=0. Simi-
larly we write the total magnetic field, conveniently ex-
pressed in Alfvén speed units, as B=b+B0. We assume B0 is
constant and uniform but that U�x� varies in space. However,
this variation will be taken as nonrandom and slowly vary-
ing, so that the turbulence properties can be treated as locally
homogeneous.

Now we write the incompressible MHD equations at two
positions, x and x�=x+r,

�tzi
� = − �zk

� + Uk � B0k��k�Ui + zi
�� − �iP + ��k�kzi

�, �5�

�tzi
�� = − �zk

�� + Uk� � B0k��k��Ui� + zi
��� − �i�P�

+ ��k��k�zi
��. �6�

Here the prime denotes quantities at position x�, P is the
pressure, and � is the kinematic viscosity, taken equal to the
resistivity hereafter. Subtracting Eq. �5� from Eq. �6� yields
the following equation for the Elsässer increments �z�

=z��x��−z��x�:

�t�zi
� = − ��Uk + �zk

���k��zi
�

− �zk
� + Uk � B0k���k� + �k��zi

�

− ��zk
� + �Uk��kUi − �zk

�� + Uk� � B0k����kUi�

− ��i� + �i��P + ���k��k� + �k�k��zi
�, �7�

where we use the property that the primed and unprimed
coordinates are independent, so that �kzi

��=0 and �k�zi
�=0.

As noted above, we seek an equation related to energy
decay. Multiplying the previous equation by 2�zi

� and aver-
aging yields

�t���zi
��2� = −

�

�rk
���Uk + �zk

����zi
��2�

+ ���zi
��2��kUk + �k�Uk���

− 2��kUi�zi
���zk

� + �Uk��

− 2��zk
�� + Uk� � B0k����kUi��zi

��

+ 2�
�2

�rk
2 ���zi

��2� − 4����kzi
��2� . �8�

In arriving at this expression we make use of �k� · �
=−�� /�rk�� · � and �k�� · �= �� /�rk�� · �. These latter relations fol-
low from spatial homogeneity �i.e., translation invariance of
the statistical properties�, which can be considered for some
systems to be an exact property �see below� or an approxi-
mation, e.g., in the case of a weakly inhomogeneous system.
The main results here will be for strict homogeneity.

The last term of Eq. �8� can be identified with the dissi-
pation rates

�� = ����kzi
��2� , �9�

which for steady state are also the mean energy transfer
rates. Following the usual arguments,4 in the limit of vanish-
ing viscosity �→0, it is assumed—not proven—that the ��

remain nonzero and in effect are externally prescribed by the
rate of supply of turbulence energy �and cross helicity�. Al-
though this nontrivial assertion is physically plausible,18 it
nonetheless prevents the subsequent developments, including
the classical 4/5 law, from being considered an exact conse-
quence of the fluid equations themselves. Furthermore, the
penultimate term in Eq. �8�, also involving the viscosity, is
assumed to vanish at high Reynolds number when we are
examining the inertial range of separations. For the above-
stated set of approximations, the increments r are restricted
to lie in the inertial range, that is, separations smaller than
the correlation length �energy-containing scale� and bigger
than the dissipation scale �scale at which fluctuations are
critically damped�. For variations of the set of assumptions
that lead to a third-order law, see, e.g., Ref. 19.

The above relations need not be strictly homogeneous,
as variations in U over the slowly varying large scales may
be present. To rectify this and arrive at a general law that is
translation invariant, we now specialize to the case of a ho-
mogeneous shear flow, alluded to earlier. With this choice the
tensor �Ui /�xj is a constant matrix independent of position.
The turbulence is then homogeneous and all terms in Eq.
�8�—both coefficients and averaged terms—are only a func-
tion of the separation vector r.

Under the hypothesis of steady-state turbulence, the left-
hand side of Eq. �8� vanishes. Integrating in r, over a volume
V that is enclosed by a surface S, the equation becomes

�
S

�n̂k���zk
� + �Uk���zi

��2��dS + 2
�Ui

�xk
	

V
��zi

��zk
��dV

= − 4V��, �10�

where V is the volume of the region V, dS is the differential
area on S, and n̂k is a unit vector normal to S.

If the region of integration is a three dimensional sphere
of radius r, volume Vr, and surface Sr, the integration yields

S3
� + SU

� + S�
� = − 4

3��r , �11�

where

S3
� 


1

4�r2� ��zL
���zi

��2�dS ,

SU
� 


1

4�r2� ��UL��zi
��2�dS , �12�

S�
� 


1

2�r2

�Ui

�xk
	 ��zi

��zk
��dV ,

where, again, �zL
�= r̂ ·�z� and �UL= r̂ ·�U. And now in

spherical �r� ,� ,	� coordinates dS=r2d�cos ��d	
r2d
 and
dV=r�2d
dr�. Equation �11� may be interpreted as the inte-
gral form of the third-order law for incompressible homoge-
neous MHD turbulence with an external velocity field that is
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constant in time but which can vary linearly in space. By
setting U=0 and assuming isotropic turbulence, Eq. �11� will
recover the standard third-order law for isotropic MHD
turbulence,5 given here as Eq. �4�.

In standard derivations for isotropic turbulence,5,13,14

shear is necessarily lacking, and it is assumed that the struc-
ture functions are rotationally symmetric. In that case the
above relation is simplified by carrying out the integrals ex-
plicitly. �For a more general case, see below.� Here we allow
for anisotropy induced either by a uniform large-scale mag-
netic field or by an imposed homogeneous shear. Note that a
uniform magnetic field B0 has increments �B0=0, and thus it
does not appear explicitly in the third-order relation, even
though it is well documented that such a field induces spec-
tral anisotropy in MHD turbulence.20

We now further specialize to the large-scale homoge-
neous shear flow U=Ux�y�x̂=�yx̂ in a Cartesian �x ,y ,z� sys-
tem, with �=const. The integral form of the third-order re-
lation, in the form S3

�=−SU
�−S�

�− 4
3��r, becomes

���zL
���z��2��
 = − �r���r̂ · x̂��r̂ · ŷ���z��2��


− 2
3�r���zx

��zy
���V − 4

3r��, �13�

denoting an angular average over a shell of radius r as �¯ �


and a volume average over a sphere of radius r as �¯ �V.
This form, based on a spherical region of radius r, indicates
that all three terms on the right-hand side of the equation
have an explicit proportionality to r; moreover, the first and
second of these also admit an implicit dependence on r. The
quantity on the left side of Eq. �13� is the MHD analog of the
usual third-order structure function that appears in the Ya-
glom and Kolmogorov laws,1,2 and we see that in the pres-
ence of homogeneous shear it is not simply proportional to
the dissipation ��. Instead, under the stated assumptions,
only the sum of the first three terms in Eq. �13� is guaranteed
to be proportional to the dissipation rate.

At this point we remark on an alternative form that the
third-order law can assume that may be revealing in aniso-
tropic cases. Recall that Eq. �10� is valid for an arbitrary
volume V and its associated bounding surface S. The advan-
tage of employing a spherical volume V is that when the flux
is isotropic, the integrand in the surface integral will be in-
dependent of the direction of r, making the integration
trivial. Unfortunately, this property is lost when the turbu-
lence is anisotropic.20,21 However, provided that the �energy-
like� vector flux F+= ���z−+�U���z+�2� is smoothly varying
in r, it is in principle possible to find a set of nested surfaces
S�V� �labeled by their enclosing volume V and with unit
normal vectors n̂S�, such that the normal component of the
vector flux F+ is uniform across S�V�. Then �SdSn̂S ·F+

=Fn
+�V�S, where the constant normal flux Fn is labeled by the

volume V bounded by the surface, and S is the value of the
surface area. The partner quantity F− is defined analogously.
Provided these nested surfaces can be found, the homoge-
neous shear case, Eq. �10�, can then be reduced to

Fn
��V�� = ��n̂S� · ��z� + �U���z��2��S��

= −
2�V�

S� ���zx
��zy

���V −
4V�

S� ��, �14�

where V� and S� are the volumes and associated surface
areas that admit constant normal fluxes Fn

��V��. Note that in
general the constant flux surfaces S+ and S− are expected to
be different, e.g., due to cross helicity effects.

When homogeneous shear is absent the result in Eq. �14�
reduces to the formal anisotropic third-order law

Fn
��V�� = −

4V�

S� ��. �15�

The latter can have application in the cases in which aniso-
tropy is present due to a mean magnetic field B0�0.

In summary, we examined the mixed third-order Elsässer
structure functions for MHD turbulence, incorporating a con-
stant sheared velocity �homogeneous shear� field in addition
to homogeneous fluctuations, under a set of assumptions that
parallel those used in standard turbulence theory to derive
the Kolmogorov 4/5 law. In analogy to the findings in Refs.
16 and 17 for hydrodynamics, we find that a law can be
obtained for stationary homogeneous turbulence that relates
third-order structure functions and dissipation but which also
involves additional terms. For MHD with a constant imposed
shear, there are shear-related terms that appear in this modi-
fied third-order law, as in the hydrodynamic case. On the
other hand, a uniform magnetic field does not appear explic-
itly in this relation, as it does not contribute directly to the
increments.

On the basis of a very simple estimate we expect the
new terms in the third-order equation to be of significance
when the large-scale velocity increments are of the same
order or larger than the fluctuation increments at the same
separation r, that is, when �U��z. In some applications this
condition may be realized, and consequently the classical
third-order law is modified by these new terms. We suspect
that for solar wind turbulence, as well as for laboratory de-
vices, the present generalized form of the third-order law will
be relevant. Estimating both ���z��2� and �zx

+zy
−� as �r2/3, one

expects that over a limited inertial range, SU
� and S�

� will
scale as �r5/3. Therefore we expect that these additional
terms have the potential to dominate the summation in Eq.
�11�, especially at large scales, even though the full sum
should always be �r. However, in all cases in which the
terms SU

� and S�
� cannot be neglected, the modified MHD

third-order law no longer admits an interpretation purely in
terms of energy transfer and dissipation, and therefore differs
from the isotropic case without shear.

Several other extensions of the third-order law result in
formulas similar to those above. For example, including a
large-scale magnetic shear is straightforward and can be in-
cluded in place of the velocity shear in Eqs. �11�–�13� by the
substitutions �UL→ ��BL and �Ui /�xk→ ��Bi /�xk in Eq.
�12�. The combined case of velocity and magnetic shear is
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accomplished by setting �UL→�ZL
� and �Ui /�xk→�Zi

� /�xk

in Eq. �12�, where the large-scale Elsässer fields are Zk
�

=Uk�Bk in Alfvén speed units. Still another extension is to
the case of uniform rotation, accomplished by setting
�Ui /�xk→ 1

2�ikm
m, an antisymmetric tensor with 
 the uni-
form rate of rotation. �Here �ikm is the Levi–Civita symbol.�

As a final remark, we note that the modifications of the
third-order law for energy decay that we describe here can be
anticipated in the structure of scale-separated transport equa-
tions derived for MHD in a weakly inhomogeneous
medium.22,23 These two-scale transport equations provide a
formalism for evolution of second-order correlation func-
tions and include nonlinear decay, analogous to our third-
order structure functions, along with advection and shear
terms. On this basis, one could have already concluded that
the third-order law requires modification in the presence of
large-scale shear. The present study concentrated only on the
special case of homogeneous shear, and generalizations of
the third-order law have been found.

We expect that future studies based on numerical simu-
lations may provide explicit verification and examples of the
relationships we propose here. Taking into account effects
such as shear, observational studies may prove useful in a
variety of systems with large-scale shear flows, such as as-
trophysical and laboratory plasmas.
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