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ABSTRACT

The behavior of scale-dependent (or filtered) kurtosis is studied in the solar wind using magnetic field
measurements from the ACE and Cluster spacecraft at 1 AU. It is also analyzed numerically with high-resolution
magnetohydrodynamic spectral simulations. In each case the filtered kurtosis increases with wavenumber, implying
the presence of coherent structures at the smallest scales. This phase coupling is related to intermittency in solar
wind turbulence and the emergence of non-Gaussian statistics. However, it is inhibited by the presence of upstream
waves and other phase-randomizing structures, which act to reduce the growth of kurtosis.
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1. INTRODUCTION

In the last 20 years, intermittency in the solar wind has
been widely analyzed by using satellite observations of so-
lar wind fluctuations (Burlaga 1991; Marsch & Tu 1997;
Sorriso-Valvo et al. 1999; Voros et al. 2002, 2006; Koga et al.
2007). These studies have added to the growing body of evidence
that the solar wind provides a natural laboratory for investiga-
tions of magnetohydrodynamic (MHD) turbulence (Matthaeus
& Goldstein 1982; Biskamp 2003). Indeed, many features of
MHD turbulence have been revealed in the solar wind (Tu &
Marsh 1995; Goldstein et al. 1995; Bruno & Carbone 2005).

The phenomenon of intermittency is related to the emergence
of small-scale coherent structures that are responsible for en-
hanced dissipation, and in steady state these structures cause
departures from self-similarity and the emergence of charac-
teristic scaling laws (Frisch 1995). Classically, the notion of
intermittency can be discussed in the inertial range, and equiv-
alently, in the dissipation range. Intermittency has been deeply
investigated in both hydrodynamic and MHD turbulence (Frisch
1995; Sreenivasan & Antonia 1997; Biskamp 2003). Here we
will employ a method based on scale-dependent kurtosis to
characterize intermittency in MHD and in the solar wind. This
method is related to several others that we will review below,
and we will argue that it provides a clear perspective on the re-
lationship between scales, coherency, and higher order statistics
that may be useful in observational and numerical studies.

To motivate our methodology, we recall that perhaps the
most fundamental approach to studying intermittency is to ex-
amine the non-Gaussian behavior of the probability density
function (PDF) of the dissipation function. However, adopting
Kolmogorov’s refined similarity hypothesis (KRSH;
Kolmogorov 1962; Oboukhov 1962) allows the local averages
of dissipation to be related to the increments of velocity, with
both quantities remaining as random variables. This approach
leads to the familiar connection of intermittency to the PDF of
the increments of the velocity in hydrodynamics (Anselmet et al.
1984). This scale-dependent non-Gaussianity is also observed
in the MHD primitive variables (velocity and magnetic field) in
simulations (Biskamp et al. 1990), theoretical models (Carbone
1994), and in solar wind data (Burlaga 1993; Marsch & Tu 1994;

Sorriso-Valvo et al. 1999). We note that particularly in the case
of the solar wind, the scale-dependent non-Gaussianity may be
observed either in the inertial range or as a property of the in-
termittent solar source. Here we are concerned only with small-
scale non-Gaussianity. Increments are computed for separation
r and the non-Gaussianity of the PDFs is found to increase with
decreasing r. A useful way to quantify this is the kurtosis of the
increments, which increases with decreasing r (see, e.g., Voros
et al. 2002; Bruno et al. 2003), as well as the normalized higher
order moments, which also increase at smaller separations
(Dudok de Wit & Krasnosel’skikh 1996). A related method-
ology is to quantify intermittency based on the sequence of pth
moments (integer p) of the increment PDFs, which then lead to
power-law scalings ∼rζ with increment separation where the
power-law indices ζ (p) depend on moment order p. The behav-
ior of these scaling exponents is connected to various fractal
and multi-fractal models (Frisch et al. 1978; Burlaga 1991; She
& Leveque 1994; Grauer et al. 1994; Politano & Pouquet 1995;
Horbury & Balogh 1997). The physical content of these models
lies in the sensitivity of the higher order moments to concentra-
tions of dissipation and, through the KRSH, to large values of
the increments. Thus, the higher order scalings are associated
with the presence of coherent structures, usually assumed to be
generated by the turbulence cascade.

While the mathematical framework of the multi-fractal scal-
ings does not lend itself to a transparent interpretation in terms
of coherent structures, other approaches, based on direct exam-
ination of local structure, have improved understanding of the
same issues.

For some time there have been suggestions that intense struc-
tures of electric current density, appearing during MHD turbu-
lent relaxation (Matthaeus & Montgomery 1980; Frisch et al.
1983; Matthaeus & Lamkin 1986; Carbone et al. 1990), are
real-space manifestations of intermittency. For even longer, and
with little apparent connection, magnetic directional disconti-
nuities (DDs) have been studied in the interplanetary medium
(Burlaga 1968; Burlaga & Ness 1969; Tsurutani & Smith 1979;
Neugebauer 2006). Rather than a consequence of turbulence
these “DDs” or “D-sheets” have typically been viewed as con-
vecting or propagating solutions of ideal MHD equations, pos-
sibly broadened by diffusion. Only relatively recently has the
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potential connection with turbulence been emphasized. This is
based on comparison with distributions of the normalized mag-
netic field increments, a statistic called the partial variance of in-
crements (PVI) that links magnetic field gradients to turbulence
intermittency, and comparison of waiting time distributions in
turbulence simulations and solar wind observations (Greco et al.
2008, 2009).

There has also been considerable success in applying fil-
tering methods such as wavelets (Farge 1992) to identify the
most intermittent events in spacecraft data (Veltri & Mangeney
1999). The approach here is to find wavelet amplitudes that
exceed a chosen multiple of the average amplitude, defin-
ing these as “intermittent events.” Just as in the simulation
studies (Matthaeus & Montgomery 1980; Greco et al. 2009),
one finds that sheet-like structures contribute substantially to
the observed intermittency and that after the removal of these
events (Veltri & Mangeney 1999) the remaining fluctuations
better follow Gaussian scalings of higher order moments. The
intermittency events themselves (rather than the remaining near-
Gaussian fluctuations) have also been studied employing a
wavelet approach to identify “events” (Bruno et al. 2001).

Another very interesting approach to studying effects associ-
ated with intermittency is the method of phase coherence (Hada
et al. 2003; Koga & Hada 2003; Koga et al. 2007). The basis of
this idea is that signals containing coherent structures must in-
clude fluctuations that add constructively at the positions of the
structures. Therefore, a non-Gaussian intermittent signal can be
compared with both a phase-randomized signal and a perfectly
phase-coherent signal to produce a measure of coherency and
intermittency, called the phase coherence index (PCI). Com-
bined with wavelet low-pass filtering (Koga & Hada 2003) the
PCI method has been shown to produce results that are consis-
tent with small-scale intermittency due to coherent structures,
which however are mainly found at frequencies lower than the
ion gyro-frequency.

A final class of methods is based on computing the normalized
fourth-order moment, the kurtosis. While large kurtosis signals
non-Gaussianity and often super-Gaussian tails on the PDF of
fluctuations, the analysis becomes much more revealing when
it is applied selectively to ranges of length scales. In this way,
the influence of small-scale coherent structures in producing
intermittency can be detected. The usual way that this has been
implemented (Voros et al. 2002; Bruno et al. 2003; Bolzan
2005; Chian & Miranda 2009) is to compute the kurtosis of
the increments of the fluctuations. Then letting the increment
lag become smaller, one expects increased kurtosis if small-
scale coherent structures are present. It is interesting to note
that it has recently been shown that the PCI method performs
similarly to a method based on computing the kurtosis of
the increments of the vector magnitudes (Chian & Miranda
2009). The kurtosis of increments method is clearly related to
the defining characteristic of intermittency as given by Frisch
(1995): a signal is considered intermittent if its high-pass
filtered kurtosis is increasing with increasing cutoff frequency.
However, as it is based on increments, and not a high-pass filter,
the connection is heuristic (or at least complex).

Here we modify the kurtosis method to employ the high-pass
filtered kurtosis method directly, examining both solar wind data
and simulation data. While the present approach is connected
conceptually to the several families of methods described above,
the filtered kurtosis method addresses the Frisch definition di-
rectly while maintaining a close connection to the moments of
the PDF of fluctuations. Furthermore, as it is based on a sharp
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Figure 1. Magnetic energy spectrum (top) and filtered kurtosis of the magnetic
field χ> (bottom) from an 81922 MHD simulation. For comparison, a k−5/3

power law is also plotted in the top panel. The Kolmogorov dissipation scale is
indicated by the vertical dashed lines.

(A color version of this figure is available in the online journal.)

Fourier high-pass filter, this approach permits an exact identifi-
cation of the scales at which the measured coherence resides.

In the following sections we calculate the scale-dependent
kurtosis of the magnetic field using Cluster and ACE data, and
compare the results to those obtained from high-resolution two-
dimensional (2D) MHD simulations.

2. SCALE-DEPENDENT KURTOSIS

The scale-dependent (or filtered) kurtosis, χ>(kc), is defined
as the kurtosis of a high-pass filtered variable (e.g., magnetic
field B); that is, Fourier components of the variable with
wavenumbers k < kc are zeroed (Frisch 1995; Wan et al. 2009,
2010). This quantity measures a characteristic that is very close
to what Frisch (1995) discussed as the defining property of
spatial intermittency. In Wan et al. (2010) it is demonstrated
using numerical simulations that the scale-dependent kurtosis of
electric current density χ>

j (kc) and vorticity χ>
ω (kc) are sharply

increasing functions of the high-pass cutoff wavenumber kc
when a run is well resolved.

To get a general idea of scale-dependent kurtosis, in
Figure 1 we show the (high-pass) filtered kurtosis of magnetic
fluctuations together with the magnetic energy spectrum from
an 81922 incompressible MHD simulation (see Section 3.2 for
simulation details). As is well known, the global (unfiltered)
kurtosis of magnetic fluctuations is close to 3 and the PDFs
of the components of b are also close to Gaussian. However,
Figure 1 clearly shows a non-Gaussian feature of the magnetic
field, namely that its filtered kurtosis increases sharply for higher
cutoff wavenumber kc. Moreover, the rate of increase of χ>(kc)
continues to increase well into the dissipation range.

In Figure 2 we plot the same quantities, but now calculated
from a 4 hr interval of Cluster data (detailed description of data
selection will be given in the next section). A k−5/3 inertial range
is evident in the magnetic energy spectrum. Comparing the two
figures, one observes that the general behavior of χ>(kc) for
these Cluster data is very similar to that from the 2D MHD
simulation.

We note that in order to accomplish a comparison of sim-
ulation and solar wind data sets, it is advantageous to nor-
malize the relevant quantities in a physically meaningful way.
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Figure 2. Magnetic energy spectrum (top) and filtered kurtosis χ> (bottom)
from a 4 hr interval of Cluster data. The vertical dashed lines correspond to the
estimated Kolmogorov dissipation scale of 0.5 Hz, where frequencies higher
than this are generally considered to be in the dissipation range.

(A color version of this figure is available in the online journal.)

In earlier studies of waiting times between detections of co-
herent structures, normalization of length scales to the corre-
sponding correlation scales was preferred (Greco et al. 2008,
2009), in part because some of the data sets did not extend to
very high wavenumber. Here we will instead normalize to com-
puted or estimated values of a scale connected approximately
with the short-wavelength end of the inertial range. This was
empirically found to work well for present purposes because
the scale-dependent kurtosis becomes sensitive, at large values
of the cutoff wavenumber, to the small amount of energy in the
remaining signal.

With this motivation, the analysis of both simulation and
solar wind data sets will be scaled to the computed or estimated
Kolmogorov dissipation scale ηd, as in Figures 1 and 2. For
hydrodynamics, ηd ≡ 1/kd = (ν/ε)1/4, where ν and ε are the
kinematic viscosity and energy dissipation rate, respectively.
An MHD Kolmogorov scale can be defined in an analogous
way. In general, the inertial range lies at wavenumbers kηd � 1
and the dissipation range at kηd � 1. For solar wind data, we
choose kdηd ∼ 1 to correspond to the scale at which magnetic
field spectra typically steepen, departing from the inertial
range power-law behavior that extends to lower spacecraft
frequencies. Various studies (e.g., Leamon et al. 1998) have
shown that this “breakpoint” often occurs near the ion inertial
scale, which through the Taylor frozen-in hypothesis is often
found near 0.5 Hz at 1 AU in the spacecraft frame. For simplicity
we use this value for normalization of solar wind data sets. For
simulations we employ the hydrodynamic formula.

In the analysis below, an additional step in the procedure gives
improved comparisons. This is motivated by the fact that the
short-wavelength signals in simulations and solar wind data have
distinctive complications. Simulations have truncation error and
possibly a small reflection from the cutoff wavenumber. The
solar wind data have various errors associated with instrument
accuracy, averaging, and telemetry limitations, etc. In order
that the high wavenumber comparison avoid unintentionally
comparing these spurious factors, we use a low-pass filter to cut
off both types of data at their respective dissipation scales. All
subsequent analyses employ data that are first low-pass filtered
in this way (i.e., before spectra or scale-dependent kurtosis are
calculated).

3. DATA SELECTION AND ANALYSIS

3.1. Solar Wind Data Selection

We analyze five years of magnetic field measurements
(2001–2005) using 1 s and 22.4 sample per second resolution
data respectively from the ACE (Smith et al. 1998) and Cluster 1
(Balogh et al. 2001) spacecraft at 1 AU. The magnetic field vec-
tors are in geocentric solar ecliptic (GSE) coordinates, with the
x-axis along the Sun–Earth line and the z-axis toward ecliptic
north. A convenient ensemble is obtained by dividing the data
into 4 hr intervals. This duration is long enough to contain sev-
eral correlation times (Matthaeus et al. 2005), but short enough
to avoid large-scale inhomogeneities. Within each interval, the
kurtosis of each magnetic field component must lie within the
range 2.8–4.0 to ensure the global behavior is approximately
Gaussian. In order to maintain statistical stationarity, intervals
are removed from the ensemble if they contain heliospheric cur-
rent sheet crossings. Intervals are also discarded if the amount of
missing or bad data exceeds 5%, since this reduces the statistical
robustness of any computed quantities. The remaining intervals
are examined visually for transient events. Ten intervals that best
match our criteria are selected from each spacecraft ensemble,
and these constitute the solar wind data set for this present study.

3.2. MHD Simulations

To provide numerical examples, we also carried out a se-
ries of simulations of decaying incompressible 2D MHD tur-
bulence. Use of 2D simulation is a reasonable approach given
that solar wind fluctuations are widely held to be quasi-2D (see,
e.g., Bieber et al. 1996). Computationally, the reduced dimen-
sionality affords the possibility of better spatial resolution and
higher Reynolds numbers. Expressed in terms of the vorticity
ω = (∇ × v) · ẑ and the vector potential a, the 2D MHD
equations are

∂ω

∂t
= ∇ · [bj − vω] + ν∇2ω, (1)

∂a

∂t
= −v · ∇a + μ∇2a. (2)

Here, v is the fluid velocity, b = ∇a× ẑ is the magnetic field, and
j = −∇2a is the electric current density; these are functions of
x, y, and t . The viscous and resistive dissipation coefficients are,
respectively, ν and μ and are equivalent to reciprocal Reynolds
numbers with the normalization employed.

Equations (1) and (2) are solved numerically in a
2π -periodic box using a Fourier spectral method with phase-
shift dealiasing (Patterson & Orszag 1971). The time integration
is a second-order Runge–Kutta method. All runs are performed
with ν = μ and are unforced. Initial (t = 0) spectra of v and
b are chosen proportional to [1 + (k/k0)8/3]−1, within a band
of wavenumber k = |k|; phases are assigned using Gaussian
random numbers. The initial kinetic and magnetic energies are
equal, Ev = 〈|v|2〉/2 = 0.5, Eb = 〈|b|2〉/2 = 0.5.

Two simulations are reported on herein, with respective
resolutions of 40962 and 81922. For the largest 81922 run, the
initial Reynolds number is 20,000. Table 1 summarizes the run
parameters.

4. RESULTS

The average magnetic energy spectrum is computed sepa-
rately for the ACE and Cluster data sets. To average the spectra,
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Figure 3. Magnetic energy spectrum averaged over the entire (a) ACE and
(b) Cluster data sets. A low-pass filter has removed frequencies above 0.5 Hz,
and any spikes at harmonics of the spacecraft spin frequency have also been
removed. A k−5/3 power law is plotted for comparison (dashed).

(A color version of this figure is available in the online journal.)

Table 1
Parameters for the Simulations

Run Grid Re kmax kd
kmax
kd

1 40962 8333 1931 633 3.05
2 81922 20000 3862 1169 3.30

Notes. Here kd means the maximum value of the time-dependent dissipation
wavenumber kd(t). kmax is the maximum retained wavenumber in the simulation.
The initially excited Fourier modes have wavenumbers k ∈ [5, 20].

first each individual energy spectrum value is normalized by the
corresponding total magnetic energy:

E′
b(k) = Eb(k)

/∑
k

Eb(k). (3)

A low-pass filter is applied to remove frequencies above 0.5 Hz.
As stated above, this is to focus our analysis on the inertial range
and to eliminate effects such as measurements that approach the
noise floor of the instruments. Figure 3 shows the resulting
averaged energy spectra, where any spikes at harmonics of the
spacecraft spin frequency have been removed by rescaling the
Fourier components.

We compute the scale-dependent kurtosis of each magnetic
field component for all the intervals within the solar wind data
set. Figure 4 shows the results obtained from two of the inter-
vals within the Cluster ensemble. In both cases, the kurtosis
is around 3 at the largest scales. This suggests that globally
the magnetic field components are statistically approximately
Gaussian, which is consistent with expectations (Marsch & Tu
1994; Bruno et al. 2003, 2007; Koga et al. 2007). However,
the filtered kurtosis of the interval associated with Figure 4(a)
increases essentially monotonically as the cutoff wavenumber
kc increases, until kc reaches close to the maximum allowed
wavenumber. This behavior of χ>(kc) is considered a defini-
tion of intermittency (Frisch 1995) and is consistent with the
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Figure 4. Scale-dependent kurtosis for each magnetic field component. The
panels correspond to two distinct intervals from the Cluster data set. Panel
(a) displays signatures of intermittency, whereas the interval for panel (b)
contains upstream waves and much weaker intermittency features.

(A color version of this figure is available in the online journal.)
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Figure 5. Scale-dependent kurtosis averaged over the 10 Cluster intervals.

(A color version of this figure is available in the online journal.)

magnetic field vector being an intermittent quantity. This too
is consistent with results previously obtained in studies using a
variety of techniques (Marsch & Tu 1994; Bruno et al. 2003,
2007; Koga et al. 2007). Scale-dependent kurtosis provides a
slightly different perspective, maintaining direct contact with
both increment statistics and coherent structures. The steady
rise in kurtosis implies the presence of coherent structures at the
smallest scales since these are sources of intermittency in MHD
turbulence, which are described by non-Gaussian statistics.

Figure 4(b) shows only a slight rise in kurtosis with increasing
kc, which is consistent with the traditional view of an approxi-
mately Gaussian magnetic field. This conflicts with the results
in Figure 4(a), despite both intervals being selected accord-
ing to the same criteria. Further examination of the time series
and associated spectrograms, obtained from the CIS instrument
(Rème et al. 2001), reveals the presence of upstream waves in the
Figure 4(b) interval. Indeed, the scale-dependent kurtosis of all
the intervals in our solar wind data set is ordered by the extent
of upstream waves within the time series: phase-randomizing
structures impede the growth of kurtosis. Hence, our results
support the interpretation of an intermittent magnetic field with
phase-coherent structures at small scales. It appears that only
when intervals are contaminated with upstream waves is their in-
termittent character hidden. Figure 5 shows the scale-dependent
kurtosis, averaged over our entire Cluster data set, for each
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Figure 6. Scale-dependent kurtosis averaged over the 10 ACE intervals.

(A color version of this figure is available in the online journal.)
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Figure 7. Averaged magnetic energy spectrum (top) and averaged scale-
dependent kurtosis of each magnetic field component (bottom) from an
81922 MHD simulation. The averaging is performed over 100 data lines parallel
to the x-axis.

(A color version of this figure is available in the online journal.)

magnetic field component. The trends with kc/kd are similar to
those seen in the “clean” interval of Figure 4(a), indicating that
the majority of intervals within the data set confirm the presence
of coherent structures and MHD turbulence intermittency (even
though the Cluster spacecraft orbit makes it difficult to obtain
completely uncontaminated intervals of solar wind data).

In comparison with Cluster, the ACE spacecraft data set
contains fewer upstream waves. Therefore, a stronger scale-
dependent kurtosis response is expected. Figure 6 shows χ>,
averaged over our ACE data set, for each magnetic field com-
ponent. The intermittency signature is indeed greater, providing
yet more evidence of coherent structures at small scales.

We now turn to examining data from the MHD simulations. It
would be straightforward to calculate the filtered kurtosis using
data from the whole simulation domain. However, to facilitate
comparison with the observational results just presented, we in-
stead only use data from straight line cuts through the domain
—thereby simulating a spacecraft trajectory. Specifically, we
first extract data from lines parallel to the x-axis and then use a
low-pass filter to remove all scales smaller than the dissipation
scale before we calculate the scale-dependent kurtosis.

In the top panel of Figure 7 we show the averaged magnetic
energy spectrum, obtained by averaging 100 spectra each
associated with a different line of data points. There is over a
decade of k−5/3 inertial range scaling. As noted in the previous
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Figure 8. Averaged magnetic energy spectrum (a) and the scale-dependent
kurtosis of magnetic field components (bottom three panels, x, y, z components,
respectively) from Cluster data, ACE data, and simulation data. Note that for
the simulations, the same y component results are plotted in both panes (c) and
(d) since the 2D simulations lack a z component.

(A color version of this figure is available in the online journal.)

paragraph, the dissipation range scales were filtered out (i.e.,
Fourier components at scales smaller than the Kolmogorov
scale were zeroed) before the individual “line” spectra were
calculated. In the bottom panel we plot the averaged scale-
dependent kurtosis of the two magnetic field components.
As expected we notice that χ>(kc) increases with larger kc.
Comparing with Figure 1, one observes that the rate of increase
of χ> is smaller in Figure 7 due to the removal of the smallest
scales. We note the interesting feature that the extremely high
filtered kurtosis values in Figure 1 are found deep in the
dissipation range, indicating the presence of structures with
very high phase coherence at very small scales. However, as
emphasized by Sreenivasan & Antonia (1997), very small scale
dissipative structures have a persistent influence seen even in the
inertial range. The contrast between Figures 1 and 7 exemplifies
their point, with the filtered kurtosis method making it very
evident.

In Figure 8, we summarize the results from Cluster data,
ACE data, and simulation data. Panel (a) displays the averaged
magnetic energy spectrum for each case. To aid comparison, the
smallest scales of all data sets are normalized to be the same.
Panels (b)–(d) show the averaged scale-dependent kurtosis of
the individual magnetic field components. However, because the
simulation is in two dimensions, we plot the simulation results
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from the by component in both panels (c) and (d). Note that the
data sets used in constructing this figure are low-pass filtered at
the dissipation scales.

5. CONCLUSIONS

In this paper, we employ the method of scale-dependent
(or filtered) kurtosis to study intermittency both in MHD
simulations and in solar wind data near 1 AU. This method
is closely related, in a number of ways, to several other
methods that have been employed in various studies examining
intermittency in MHD and in the solar wind. A representative
sampling of these other studies was reviewed in the Introduction.
The method we adopted herein has the advantage that it is very
close to Frisch’s straightforward definition of intermittency. It
maintains close connection to the physics of scale-dependent
PDFs while also affording a simple interpretation in terms of
the coherent structures that are observed across the scales of the
turbulence.

We studied the behavior of scale-dependent kurtosis in
the solar wind using magnetic field measurements from
the ACE and Cluster spacecraft at 1 AU. For comparison,
scale-dependent kurtosis is also analyzed numerically with high-
resolution incompressible MHD spectral simulations. Scale-
dependent kurtosis increases with wavenumber, implying the
presence of coherent structures at the smallest scales. This phase
coupling is related to intermittency in solar wind turbulence and
the emergence of non-Gaussian statistics. However, in the solar
wind data, increase of scale-dependent kurtosis at high cutoff
wavenumbers might be inhibited by the presence of upstream
waves and other phase-randomizing structures, which act to re-
duce the growth of kurtosis. This method may provide a sensitive
tool for detecting the presence of phase-randomizing effects at
small scales, whether they may be due to numerical effects,
such as inadequate simulation resolution (Wan et al. 2010) or
instrument noise, or of physical origin, as in the case of kineti-
cally excited but apparently phase-randomized upstream waves.
Effects similar to this have also been studied using phase co-
herency methods (Koga & Hada 2003; Koga et al. 2007).

Finally, we note that the similarity in the behavior of the scale-
dependent kurtosis in the normalized analysis of solar wind data
and MHD simulation data adds to the growing evidence that the
physics of solar wind turbulence is closely related to what is seen
in strong MHD turbulence (Greco et al. 2008, 2009; Osman et al.
2011).
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