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Abstract

Canonical abstraction is a static analysis technique
that represents states as 3-valued logical structures,
and is able to construct finite representations of sys-
tems with infinite statespaces for verification. The
granularity of the abstraction can be altered by the
definition of instrumentation predicates, which derive
their meaning from other predicates. We introduce
shape predicates for preserving certain structures of
the state during abstraction. We show that shape
predicates allow linearizability to be verified for con-
current data structures using canonical abstraction
alone, and use the approach to verify a stack and
two queue algorithms. This contrasts with previous
efforts to verify linearizability with canonical abstrac-
tion, which have had to employ other techniques as
well.

Keywords: canonical abstraction, concurrent data
structures, linearizability, verification

1 Introduction

Canonical abstraction (Sagiv et al. 2002) is a powerful
static analysis technique that can be used to construct
bounded finite systems representing unbounded or in-
finite systems for verification. Key to this is the abil-
ity to vary the coarseness of the abstraction by defin-
ing so called “instrumentation predicates” that can
explicitly preserve specified properties of a state dur-
ing abstraction. We observe that many of the instru-
mentation predicates defined previously in the liter-
ature record linear relationships between objects in
a state, but it may be necessary to record geometric
relationships, such as a group of objects forming a
triangle shape or a square shape. To demonstrate the
effectiveness of these “shape predicates”, we consider
the problem of verifying that concurrent data struc-
tures are linearizable (Herlihy & Wing 1990) with re-
spect to a sequential specification. Preserving the
relationship between the implementation and speci-
fication data structures is tricky, and without shape
predicates other authors (see Section 5) have had to
invent other techniques to augment canonical abstrac-
tion.

The contributions of this paper are:

• Description of shape predicates, which have not
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been used in the literature before, to our knowl-
edge.

• Demonstration that linearizability can be verified
using canonical abstraction alone.

• (Re-)Verification of a stack and two queue al-
gorithms using canonical abstraction with shape
predicates.

The paper is structured as follows. Section 2 gives
some background in two parts. In Section 2.1, an
overview of canonical abstraction; in Section 2.2, a
brief overview of concurrent data structures and the
linearizability correctness condition, as well as a stack
algorithm to be used as an example. Section 3 defines
and explains the canonical abstraction model, includ-
ing the shape predicates used to verify linearizability
of the stack algorithm. Section 4 provides empirical
results of verifying linearizability for the stack algo-
rithm and two queue algorithms using canonical ab-
straction in the TVLA tool. Section 5 discusses re-
lated work. Finally, Section 6 concludes and discusses
future work.

2 Background

2.1 Canonical Abstraction

Sagiv et al. (2002) represent states as logical struc-
tures, where predicates describe relationships be-
tween objects. Concrete states are represented using
2-valued structures. Abstract states are represented
using 3-valued structures, which allow multiple con-
crete objects to be represented by a single abstract
“summary object”. Since a summary object can rep-
resent two or more concrete objects, an abstract state
with summary objects can represent an infinite num-
ber of concrete states.

First, a finite set of predicates P = {eq, p1, . . . , pn}
is fixed for the analysis, and we define Pk to be the set
of k -ary predicates in P (the equality predicate eq has
arity 2). Then, a concrete configuration S \ =

〈
U \, ι\

〉
has a universe U \ that is a (finite or infinite) set of
objects and an interpretation ι\ over the logical values
true (1) and false (0). For each k -ary predicate p,

ι\(p) : (U \)k → {0, 1}

Additionally, for each u1, u2 ∈ U \ where u1 6= u2,
ι\(eq)(u1, u1) = 1 and ι\(eq)(u1, u2) = 0.

The definition of an abstract configuration S =
〈U , ι〉 is similar to that of a concrete configuration,
but the interpretation is over the truth values true (1),
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false (0) and unknown (1
2 ). For each k -ary predicate

p,

ι(p) : U k → {1, 0, 1
2}

Note that a concrete configuration is also trivially
an abstract configuration. An object u, for which
ι(eq)(u, u) is unknown, is called a summary object.

Intuitively, an abstract configuration represents a
concrete one if it contains the same information, ex-
cept for some conservative information loss. In other
words, it has the same universe of objects, though
some may have been merged together into summary
objects, and it has the same predicate interpretations,
though some may have become unknown. This is for-
malised by the notion of embedding, which relates
configurations (concrete or abstract1) that are related
by conservative information loss.

We say that a configuration S1 = 〈U1, ι1〉 embeds
into an abstract configuration S2 = 〈U2, ι2〉 if there
exists a surjective function f : U1 → U2 such that for
every k -ary predicate p, and u1, . . . , uk ∈ U1,

ι1(p)(u1, . . . , uk ) v ι2(p)(f (u1), . . . , f (uk ))

where, for l1, l2 ∈ {1, 0, 1
2}, l1 v l2 iff l1 = l2 or l2 = 1

2 .
We further define a tight embedding to be one that

minimises information loss, i.e. a predicate interpre-
tation only becomes unknown if two objects are being
merged together, one which has a true interpretation
and the other a false interpretation. Formally, there
exists a surjective function f : U1 → U2 such that for
every k -ary predicate p, and u1, . . . , uk ∈ U2,

ι2(p)(u1, . . . , uk ) =
1 if ∀ u ′1 ∈ f −1(u1), . . . , u ′k ∈ f −1(uk ) •

ι1(p)(u ′1, . . . , u
′
k ) = 1

0 if ∀ u ′1 ∈ f −1(u1), . . . , u ′k ∈ f −1(uk ) •
ι1(p)(u ′1, . . . , u

′
k ) = 0

1
2 otherwise

Canonical abstraction is a method for constructing
tight embeddings. Given a subset of the unary pred-
icates A ⊆ P1, called the abstraction predicates, we
map objects in the original configuration to the same
abstract object if they have the same interpretations
over the abstraction predicates. The interpretation in
the abstract configuration is constructed as per the
definition of tight embeddings above. We say that a
configuration is canonically abstract, with respect to
A, if it is the canonical abstraction of itself.

Canonical abstraction has a number of important
properties:

• Every configuration has a single canonical ab-
straction, as each object has a single canonical
mapping in the embedding function.

• Since there are a finite number of abstraction
predicates, it follows that there is a finite bound
on the number of objects in the universe of a
canonically abstract configuration, and thus a fi-
nite bound on the number of potential states in
an abstract system.

The soundness of the canonical abstraction ap-
proach rests upon the Embedding Theorem of Sa-
giv et al. (2002, Theorem 4.9). Informally, this says
that if a structure S embeds into a structure S ′, then

1Since 2-valued configurations are trivially 3-valued configura-
tions also, we will assume that configurations are 3-valued unless
otherwise noted.

any information extracted from S ′ via a formula ϕ is
a conservative approximation of the information ex-
tracted from S via ϕ. Alternatively, if we prove a
property ϕ true or false in S ′, then we know it has
the same value in S .

The initial work of Sagiv et al. (2002) focused on
sequential heap-manipulating programs, with a con-
figuration universe representing the objects of the
heap. This can be extended to represent concurrent
programs, by including an object in the universe for
each thread, and defining predicates to represent the
threads’ locations and fields (Yahav & Sagiv 2010).

2.1.1 Refining abstractions

Canonical abstraction using the fixed predicates P is
often too coarse, resulting in too much information
being lost (i.e. evaluating to unknown) for a property
to be verified. A key method for refining abstrac-
tions is to introduce additional predicates that record
properties derived from the other predicates. These
instrumentation predicates add no new information
to a concrete state, since they evaluate to the same
truth values as their defining formulas. However, in
an abstract state they may add information: an in-
strumentation predicate may evaluate to a definite
value (true or false) whilst its defining formula may
evaluate to unknown. Additionally, unary instrumen-
tation predicates may be added to the set of abstrac-
tion predicates, which can prevent some objects from
being merged together into summary objects.

Defining instrumentation predicates to sufficiently
refine the abstraction is the principal focus of Sec-
tion 3.

2.2 Concurrent Data Structures

In this paper, we consider concurrent data structure
algorithms (see e.g. Moir & Shavit 2004), which have
multiple threads interacting with shared data, and
synchronising access using locks or atomic primitives
such as compare-and-swap (CAS).

A common correctness condition is linearizability
(Herlihy & Wing 1990), which informally requires
each operation to appear to take effect atomically
at some point between its invocation and response.
A system is linearizable, with respect to a given se-
quential specification, if the operations in any exe-
cution can be rearranged — respecting the ordering
of non-concurrent operations — into an execution of
the specification. One way of showing this is by de-
termining “linearization points” for each operation,
where the operation can be seen to take effect. If
the specification is composed with the implementa-
tion and can perform a matching operation atomically
at each linearization point then the implementation
is linearizable.2

2.2.1 Example: Stack

Figure 1 gives the pseudocode for a linked list based
stack algorithm. Each node of the list contains a value
in the val field and a next field pointing to another
node (or is null). A shared Head variable points to
the first element when the stack is non-empty, and is
null when the stack is empty. The algorithm assumes
a garbage collector is present — popped nodes are not
explicitly freed.

2In general this is more complicated, as an operation’s lineariza-
tion point may be a step of another operation, one step may be the
linearization point for several operations, or a step may or may not
be a linearization point depending on the future behaviour of other
threads.
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Type: Node = {val : T; next : Node}
Shared: Head : Node := null

1: operation Push(lv:T)
2: n := new(Node)
3: n.val := lv
4: repeat
5: ss :=Head
6: n.next := ss
7: until CAS(Head, ss, n)
8: end operation

9: operation Pop( )
10: repeat
11: ss :=Head
12: if ss = null then
13: return empty
14: end if
15: ssnext := ss.next
16: lv := ss.val
17: until CAS(Head, ss, ssnext)
18: return lv
19: end operation

Figure 1: A lock-free stack algorithm

A push operation obtains a new node n and sets its
value. It then takes a “snapshot” of Head and points
n’s next field at the snapshot. A CAS operation is
used to ensure that Head is updated to point to n
only if it has not been modified. If Head has been
modified then there has been a conflict with another
(successful) operation so the loop is restarted.

A pop operation first takes a snapshot of Head
and tests to see if the snapshot is null ; if so it returns
“empty”. Otherwise it takes a snapshot of this node’s
next field and records the value in the val field. As for
push, a CAS is used to detect a conflict with another
successful operation — if Head has been modified it
retries, otherwise it uses the snapshots to advance
Head along the list.

This algorithm was first introduced by Treiber
(1986) in IBM System/370 assembler. The version
here assuming garbage collection follows that given by
Colvin et al. (2005). Versions of the algorithm have
been formally verified by several authors (including
Colvin et al. 2005).

We can see that the algorithm is linearizable by
determining the linearisation points of the operations:

• A push operation takes effect at line 7, when the
CAS is successful.

• A non-empty pop operation takes effect at line
17, when the CAS is successful.

• An empty pop operation “takes effect” at line 11
when it reads a null Head value. The linearisa-
tion point is not at line 12 when the snapshot is
tested, because Head may have been changed by
other threads, so the stack cannot be guaranteed
to be empty at that point in time.

For the first two, the successful CAS step is where
the change of an added or removed node becomes ob-
servable to the other threads, and it is the trigger for
leaving the loop, so cannot repeat. For the third, a
null snapshot causes the thread to execute lines 12–13
and exit the loop (and operation), so the linearisation
point cannot be repeated.

3 Verification of Stack

In order to attempt to verify linearizability for the
concurrent stack algorithm in Section 2.2.1, we in-
clude an additional linked-list stack, which performs
a Push or Pop operation atomically at the linearisa-
tion points of the implementation operation. If the
implementation and specification operations always
match, i.e. they always push and pop the same values,
then the concurrent stack is linearizable. If they do
not match, e.g. the specification Pop returns empty

HeadI

HeadS

at[pop12] at[pop12] at[push3]

next next

next next

val

val

val

val

val

val

ss n

lv

Figure 2: A potential concrete configuration

but the implementation Pop returns a value, then lin-
earizability has not been shown.3

To represent this system for canonical abstraction,
we define the set of predicates initially to contain
unary predicates representing object types (is thread,
is node, is data), shared variables for the two stack
lists (HeadI, HeadS) and thread locations (at[loc], for
loc ∈ {idle, push2, push3, . . . , pop11, pop12, . . .}). Addi-
tionally, we have binary predicates representing the
fields of the nodes (next, val) and the threads (n, lv,
ss, ssnext).

For clearer explanations, we will describes states
diagrammatically, rather than logically. We use dif-
ferent object shapes to represent the type predicates
— hexagons for threads, squares for nodes, and circles
for data values. Unary predicates are shown as labels
on objects when true, binary predicates are shown
as arrows (solid for true, dotted for unknown, not
shown for false), and summary objects have a double
line. Figure 2 shows a potential concrete configura-
tion, and Figure 3 its canonical abstraction.

The two stack lists have length three, with three
distinct data values. One of the three threads has
just begun a push operation; the other two have just
begun pop operations, though one has a current snap-
shot of the HeadI and the other has a stale null snap-
shot taken when the stack was empty.

As is common, the canonical abstraction on core
predicates alone is too coarse. For example, we can-
not distinguish between the nodes of the two different
lists, nor those from the nodes not yet pushed, and
cannot tell whether a thread has a null or non-null
field. This means that abstraction of some reachable

3The algorithm may not be linearizable, or it may be lineariz-
able but we have chosen incorrect linearization points. Determining
which is the case is outside the scope of this paper.
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HeadI

HeadS

at[pop12]

at[push3]

next

next
next

val

val

val

ss

n

lv

Figure 3: Canonical abstraction of potential configu-
ration

states will also represent some nonreachable states,
which will lead to executions with spurious errors de-
tected. We can refine the abstraction by defining in-
strumentation predicates, of forms previously used by
other authors (e.g. Sagiv et al. 2002, Yahav & Sagiv
2010):4

has[field](v) ⇔ ∃ u • field(v , u)

r by[n](v) ⇔ ∃ u • n(u, v)

shared[n](v) ⇔ ∃ u1, u2 • n(u1, v) ∧ n(u2, v)

∧ ¬ eq(u1, u2)

circ(v) ⇔ next+(v , v)

reachI(v) ⇔ ∃ u • HeadI(u) ∧ next∗(u, v)

reachS(v) ⇔ ∃ u • HeadS(u) ∧ next∗(u, v)

where p+ is the transitive closure of p, and p∗ is the
reflexive transitive closure. These instrumentation
predicates allow more information to be preserved in
the abstract states by, e.g. preventing the two list
bodies from being merged together, and recording
that each is connected and acyclic.

The two lists should have the same data values, in
the same order. However, when the tails of the lists
are abstracted to summary objects, this property is
lost. In order to specify properties of the pair of ith
nodes in the two lists, we introduce an auxiliary core
binary predicate R to relate them. R is set between
the head nodes of the lists by the specification Push
operation, and is unset for the head nodes by the
specification Pop operation.

Even with the auxiliary predicate, the instrumen-
tation predicates defined above are not sufficient to
preserve all the properties we need about the lists
and the threads’ fields. We observe that these pred-
icates all define linear properties — has[field] and
r by[n] describe two objects related by one predicate;
shared[n] describes three objects related by two pred-

4The square brackets have no meaning other than being a vi-
sual indicator of which core predicates are used in the definition.
(TVLA allows parametrised definitions of sets of predicates in this
way — e.g. to define reach[y, next] and reach[z, next] at the same
time.)

icates; reachI describes an arbitrary number of ob-
jects related by a chain of predicates; circ describes
the same, but the chain begins and ends with the
same object. We defined three additional instrumen-
tation predicates that describe geometric shapes re-
lating three or four objects.

3.1 Matching triangle predicate

Consider Figure 5, which shows the abstraction of
(the lists of) two states where the implementation

and specification stacks have length 3 — in S \
1 the

lists have the same values in the same order, and in

S \
2 the lists’ head values differ. Both states have the

same canonical abstraction and the information about
the values is lost.

In order to preserve the property that each corre-
sponding pair of nodes in the lists have the same data
value, we define an instrumentation predicate, called
matching:

matching(n1)⇔ ∃n2, d1 •
R(n1,n2) ∧ val(n1, d1) ∧ val(n2, d1)

The predicate records a “triangular” relationship be-
tween nodes and data values, as shown in the first
diagram in Figure 4.

Adding this instrumentation predicate to the con-
crete states in Figure 5 results in different canonically
abstract states. Both would differ from S1 as the im-
plementation list summary node would be labelled
with matching; and both would differ from each other
as one would have the head implementation node la-
belled with matching and the other would not.

3.2 Commutes square predicate

Consider the two concrete states in Figure 6 — they
both have three elements, and matching is true for

all the implementation list nodes. In S \
4 , the R re-

lations have “crossed”, so after a Pop operation the
head nodes will have different values — another Pop
from both lists will trigger a linearizability error. We
see that these two states have the same canonical ab-
straction, so analysis of a linearizable stack can still
provide spurious errors.

In order to preserve the property that related pairs
of nodes have the same order in both lists, we define
an instrumentation predicate that records whether
the next and R predicates “commute”:

commutes(n1)⇔ ∃n2,n3,n4 •
next(n1,n2) ∧ R(n1,n3) ∧
next(n3,n4) ∧ R(n2,n4)

The predicate records a “square” relationship be-
tween nodes, as shown in the second diagram in Fig-
ure 4.

Adding this instrumentation predicate to the con-
crete states in Figure 6 results in different canoni-
cally abstract states. The first two implementation

nodes in S \
3 are labelled with commutes; then since

all three implementation nodes have different abstrac-
tion predicate labels none of them will be merged in
to summary objects in the canonical abstraction. The
diagrams for the other concrete state and its canonical

abstraction are identical to S \
4 and S3, as commutes

is false for all of the implementation nodes.
Together, matching and commutes preserve suffi-

cient information about the two lists to allow lineariz-
ability to be verified.
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Figure 4: Three shape predicate diagrams
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Figure 5: Canonical abstraction of two lists: the prop-
erty of matching values is lost
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Figure 6: Canonical abstraction with “crossed” R
predicates: the property of ordered values is lost
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3.3 Successor triangle predicate

In the stack’s Pop operation, the ssnext field is the
next-successor of the ss field when it is read at line
15. This property is assumed to persist, so it is not
checked before the CAS step at line 17 that attempts
to set HeadI to ssnext.

Figure 7 shows that this property is not retained
in canonical abstraction using the predicates defined
so far. Both states (shown without the data values
and specification lists) have two threads performing

a Pop operation — in S \
5 , both ssnext predicates are

the next-successors of the respective ss predicates, but

this is not the case in S \
6 ; nevertheless, both states

have the same canonical abstraction (S5). As a con-
sequence, the CAS transition can remove an arbitrary
prefix of the list because ssnext can be concretised at
any point.

In order to preserve the relationship between the
thread fields, we define an instrumentation predicate
that records whether they are next-successors:

succ[ss, ssnext](t1)⇔ ∃n1,n2 •
ss(t1,n1) ∧ ssnext(t1,n2) ∧ next(n1,n2)

This predicate records a “triangular” relationship be-
tween threads and nodes, as shown in the third dia-
gram in Figure 4.

Adding this instrumentation predicate to the con-
crete states in Figure 7 results in different canonically
abstract states. The diagrams are almost the same,
but are distinguished by whether the thread summary
object has is labelled with succ[ss, ssnext] or not.

A similar situation arises in the Push operation.
The ss predicate is set to be the next-successor of
the n predicate at line 6, which is assumed to be
unchanged at the CAS step that sets HeadI to n at
line 7. Thus we similarly define the instrumentation
predicate succ[n, ss].

For space restrictions, we omit further discussion
on the basic model constructs, notably details about
transitions. A complete presentation can be found in
Friggens (2013, Chapter 7).

4 Empirical Results

To perform analyses and gather empirical results, we
used TVLA5 (Three Valued Logic Analyzer) (Lev-
Ami & Sagiv 2000, Bogudlov et al. 2007), a prototype
static analysis tool developed at Tel Aviv University
that implements canonical abstraction.

4.1 Stack

We analysed thread-bounded and unbounded models
of the stack algorithm using TVLA 3.0α on a ma-
chine with an Intel Core 2 3.0 GHz processor and 4 GB
of RAM, running Java 1.6.0 on a 32-bit GNU/Linux
operating system. By default, TVLA can construct
models with one thread or an unbounded number of
threads, depending on whether the initial configu-
ration has a summary or non-summary idle thread
object. To obtain models with some other bounded
number of threads, we defined compatibility con-
straints (Sagiv et al. 2002, Section 6.4.2) that discard
any configuration that satisfy a formula identifying
n + 1 or more distinct thread objects. For example,

5http://www.cs.tau.ac.il/~tvla/
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has[ss]

has[ssnext]

at[pop17]
has[ss]
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next

ss

ss

ssnext
S5

HeadI
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has[ss]

has[ssnext]
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ss ssnext

S\
6

α
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Figure 7: Canonical abstraction of threads: the rela-
tionships between fields’ values are lost

bounding to two threads:

∃ t1, t2, t3 •
is thread(t1) ∧ is thread(t2) ∧ is thread(t3)
∧ ¬ eq(t1, t2) ∧ ¬ eq(t2, t3) ∧ ¬ eq(t1, t3)

Table 1 contains results of verifying linearizability
with unbounded lists and data values, and up to three
threads. Time, memory and statespace figures are as
reported by TVLA. With four threads, the model was
too large and TVLA ran out of memory.

Since TVLA does not implement techniques such
as partial order reduction (Peled 1998) to reduce un-
necessary interleavings of threads, we manually mod-
ified the models to restrict interleaving of transitions
that only read or write to local variables. Table 2
contains results of these models, which appear to have
an exponential reduction in statespace. The principal
result is that linearizability of the stack algorithm is
able to be verified for unbounded numbers of threads
and data values, and for lists of unbounded length,
using only canonical abstraction.

We note that the time for the analyses of bounded
models increases exponentially - the general approach
taken by TVLA of evaluating our bounding formu-
las becomes increasingly impractical as the number of
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Heap Ave Max
Limit Time RAM RAM Stored

Th. (MB) (s) (MB) (MB) States
1 800 2 16 38 148
2 800 88 178 335 7,731
3 2,048 2,931 1,089 1,946 148,191
4 2,048 — — — >282,441

Table 1: Stack verification results with full interleav-
ing

Heap Ave Max
Limit Time RAM RAM Stored

Th. (MB) (s) (MB) (MB) States
1 800 1 4 6 86
2 800 18 94 252 1,312
3 800 102 173 336 6,493
4 800 535 255 479 18,564
5 2,048 6,409 502 1,184 36,749
6 2,048 143,302 480 1,052 55,069
7 4,096 2,625,113 1,182 2,633 67,334
∞ 1,024 6,524 647 1,057 74,056
∞ 2,048 1,934 849 1,603 74,056

Table 2: Stack verification results with restricted in-
terleaving

thread objects being identified, and thus the length of
the formula, increases. It may well be possible to im-
plement a more direct and efficient way in TVLA for
limiting numbers of specific objects; if so, it would
make verifying models with bounds of greater than
six threads practical.

4.2 Queues

We additionally analyzed linearizability for two non-
blocking queue data structures, the original due to
Michael & Scott (1998). Doherty et al. (2004) give a
variation with a simplified dequeue operation; they
also provide a formal verification using a theorem
prover.

The canonical abstraction models are constructed
similarly to the stack models, with similar shape pred-
icates — full details are available in Friggens (2013,
Section 7.9).

Table 3 contains results, using the same software
and hardware as for the stack. To reduce the states-
pace we again added manual restrictions to interleav-
ing for steps that only read and write to local vari-
ables. For both algorithms we verify linearizability
for one or two threads, unbounded numbers of data
values and lists of unbounded length. For the models
with three threads, the model is too large and TVLA
runs out of memory.

Heap Ave Max
Limit Time RAM RAM Stored

Deq Th. (MB) (s) (MB) (MB) States
MS 1 800 1 13 30 115
MS 2 800 393 260 476 24,271
MS 3 2,048 — — — >235k
Doh 1 800 1 14 33 117
Doh 2 800 83 189 354 10,746
Doh 3 2,048 — — — >230k

Table 3: Queue verification results

5 Related Work

The closest work to ours is by Amit et al. (2007), who
analysed the same nonblocking data structures (plus
two lock-based data structures). They also restricted
interleaving of threads manually, and were able to ver-
ify linearizability for the stack algorithm with three
threads and the queue algorithms with two threads
(limiting to 1.5 GB of RAM). They combine canonical
abstraction with an additional approach called “delta
heap abstraction”: the relationship between each pair
of implementation and specification nodes and their
identical value is represented in the state graph by a
single object. Delta heap abstraction requires each
push/enqueue etc. to be for a unique value, whereas
our approach can represent data values being entered
into the list multiple times. Their analyses use unique
predicates to distinguish each thread and its field val-
ues; this is exponentially more expensive than using
the shape predicates we have defined, and does not al-
low unbounded numbers of threads to be considered.

This approach is made more efficient by Manevich
et al. (2008), who combine canonical abstraction with
heap decomposition. Heap decomposition splits the
state into (overlapping) subgraphs and only stores one
copy of a subgraph no matter how many states it
appears in. They were able to verify linearizability
for the stack algorithm with 20 threads (limiting to
2 GB of RAM), and for the second queue algorithm
with 15 threads (limiting to 16 GB of RAM).

Berdine et al. (2008) combine the above ap-
proaches with an additional approach called “quan-
tified canonical abstraction” to verify linearizability
for unbounded threads. Like heap decomposition,
the approach splits the state into (overlapping) sub-
graphs, each containing the data structure and one
non-summary thread. Unlike heap decomposition,
each subgraph can represent an unbounded number of
identical subgraphs, thus the bounded number of sub-
graphs together can represent states with unbounded
numbers of threads. Extending the models of Amit
et al. (2007), and limiting to 2 GB of RAM, Berdine
et al. (2008) were able to verify linearizability for the
stack algorithm, but ran out of memory for the queue.
Extending the models of Manevich et al. (2008), us-
ing heap decomposition to create smaller subgraphs,
they were able to verify linearizability for both the
stack algorithm (with an 80% reduction in statespace)
and queue algorithm. This is the first published work
to verify linearizability for unbounded threads using
canonical abstraction, though it uses two additional
approaches to do so.

6 Conclusions and Further Work

In this paper we have introduced shape predicates, a
type of instrumentation predicate for refining canon-
ical abstractions. Though defining triangles and
squares may seem obvious in hindsight, these pred-
icates have not been used before in the canonical ab-
straction literature and can prove to be powerful in
constructing an appropriate abstraction. They will
almost certainly be of use in a wide range of canoni-
cal abstraction applications.

We have demonstrated the utility of shape pred-
icates by verifying linearizability for three concur-
rent data structure algorithms. In doing so we have
demonstrated the interesting theoretical result that
verification of linearizability is possible with canoni-
cal abstraction alone, and does not require delta heap
abstraction or thread quantification.

The abstract models that are constructed for the
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stack and two queue algorithms are finite, but still
very large. Restricting the interleaving of local steps,
we were able to completely verify the stack algorithm.
However, for the un-restricted stack and for the re-
stricted queues, the analyses ran out of memory for
models with four or more threads. The principal
problem is the exponential permutations of thread
objects and list configurations. One approach to im-
proving the performance would be to employ heap
decomposition (Manevich et al. 2008) or thread quan-
tification (Berdine et al. 2008), with which (an exten-
sion to) TVLA decomposes each state into list and
thread components, storing each only once, no mat-
ter how many states the component appears in. An
alternative approach would be to collapse all of the
thread objects in a state into a single summary ob-
ject, defining “soft invariant” instrumentation predi-
cates (Friggens & Groves 2013) to preserve properties
of the threads that would be lost otherwise.

Finally, we would like to extend the verifications
of the stack and queue algorithms to other concur-
rent data structures. Some data structures, such as
deques, have a similar property of having a close cor-
respondence between the implementation and speci-
fication data structures, so a similar approach would
be reasonable to expect. Other data structures, such
as elimination stacks and sets have more difference
between the implementation and specification data
structures, so more ingenuity in the model construc-
tion may be required.

References

Amit, D., Rinetzky, N., Reps, T., Sagiv, M. & Yahav,
E. (2007), Comparison under abstraction for veri-
fying linearizability, in W. Damm & H. Hermanns,
eds, ‘Proceedings of the 19th International Con-
ference on Computer Aided Verification (CAV)’,
Vol. 4590 of Lecture Notes in Computer Science,
Springer, pp. 477–490.

Berdine, J., Lev-Ami, T., Manevich, R., Ramalingam,
G. & Sagiv, M. (2008), Thread quantification for
concurrent shape analysis, in A. Gupta & S. Ma-
lik, eds, ‘Proceedings of the 20th International Con-
ference on Computer Aided Verification (CAV)’,
Vol. 5123 of Lecture Notes in Computer Science,
Springer, pp. 399–413.

Bogudlov, I., Lev-Ami, T., Reps, T. & Sagiv,
M. (2007), Revamping TVLA: Making paramet-
ric shape analysis competitive, in W. Damm &
H. Hermanns, eds, ‘Proceedings of the 19th Inter-
national Conference on Computer Aided Verifica-
tion (CAV)’, Vol. 4590 of Lecture Notes in Com-
puter Science, Springer, pp. 221–225.

Colvin, R., Doherty, S. & Groves, L. (2005), Verifying
concurrent data structures by simulation, in J. Der-
rick & E. A. Boiten, eds, ‘Proceedings of the Re-
finement Workshop’, Vol. 137.2 of Electronic Notes
in Theoretical Computer Science, Elsevier, pp. 93–
110.

Doherty, S., Groves, L., Luchangco, V. & Moir,
M. (2004), Formal verification of a practical lock-
free queue algorithm, in D. de Frutos-Escrig &
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