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Abstract

This dissertation studies conflicts. A conflict is a bug in concurrent systems where

one or more components of the system may potentially be blocked from completing

their task. This dissertation investigates how nonconflicting completions may be used

to characterise the situations in which individual components of a system may be in

conflict with other components. The first major contributions of this dissertation are

new methods of abstracting systems with respect to conflicts, and showing how these

methods may be used to check whether a large system is conflict-free. The second

contribution is a method of comparing whether one system is less susceptible to conflict

than another. The last major contribution is a method of expressing all conflicts in a

system in a finite and canonical way. The methods developed have applications for

model checking, refinement, and the development of contracts for concurrent systems.
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Chapter 1

Introduction

As the world becomes more and more dependant on electronic systems, there is an

increasing need for strong and robust mathematical models,to describe, to understand,

and to ensure the correctness of these systems. Such models have existed for years for

most engineering tasks, helping to ensure outcomes which are, correct, and safe. The

world of computing however has been slow to catch up to engineering in this regard, to

a large extent relying upon testing to ensure correctness rather than stringent proofs.

One of the key difficulties in describing software is that in general its expected

behaviour changes based upon the context it is in, often requiring different outcomes

dependant upon different inputs. This can often make it hardto describe what a soft-

ware or hardware system is supposed to do in formal terms. Onemethod of describing

software and hardware systems and how their behaviour evolves over time is discrete

event systems (DES). Here the behaviour of a system is described using finite state au-

tomata (FSA). DESs are also used to describe concurrency, where seperate processes

of a system are represented as seperate FSAs which syncronise on shared events.

DESs can then be examined for common design faults. One such fault is the prob-

lem of blocking and conflicts. A system is considered to be blocking, if it is possible

for the system to reach a state where it is no longer capable ofperforming any further

productive activity. This is analagous to asking whether the model is free of possible

deadlock and/or livelock situations. In contrast, two or more components of a system

are considered to be in conflict, if when run concurrently thecomponents are blocking.

The naive way of determining whether a model is nonblocking is by manually ex-

ploring the automaton constructed by composing all the automata in the model together.

This is called the monolithic method. Unfortunately in the general case, the size of this

automaton grows exponentially with the number of FSAs in themodel, thus making its

construction intractable for larger models. In fact the problem of verifying whether or

not a DES is nonblocking is NP-Hard [14].
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Large models which would be impossible to check using the monolithic approach

in many cases can be checked using a compositional conflict checker [11]. A compo-

sitional model checker will iteratively compose a subset ofa model, apply abstraction

techniques to simplify the resulting automaton, then repeat this process until the entire

model has been composed. Because at each step the model is simplified in most cases

it is never necessary for a compositional checker to composean automaton which is

the same size as the monolithic approach. In order for a compositional checker to give

the correct result it must use abstraction techniques whichensures that the simplified

automaton is equivalent to the original automaton with respect to the behaviour which

is being tested. Conflict equivalence is the best equivalencerelation for compositional

nonblocking verification. Two automata are considered conflict equivalent if they reach

a state of conflict under exactly the same conditions. Conflictequivalence was first in-

troduced in [25].

This thesis studies the conflict equivalence relation and how it can be used to ab-

stract automata, as well as to gain a greater understanding of what makes an automaton

conflict with other automata. [11] develops several methodsof simplifying automata

which preserved conflict equivalence in order to verify the nonblocking property. Be-

fore the work carried out in this thesis it was not understoodhow two processes could

be compared to one another in order to determine whether theywere conflict equiva-

lent, nor was it understood how to derive a unique automaton in order to represent a

given conflict equivalence class.

Conflict equivalence is similiar to many other equivalence relations which can be

used to simplify finite state machines. The most commonly used equivalence rela-

tion is language equivalence. Language equivalence determines whether two automata

are equivalent to each other based solely upon whether they are capable of perform-

ing exactly the same sequence of events, i.e. if they both have the same language. It

is currently well known how to abstract and compare automatawith respect to lan-

guage equivalence. [18] outlines how any finite state automaton can be converted into

a language equivalent automaton which is both minimal and unique using subset con-

struction and minimization. Abstraction with respect to language equivalence was used

in [34] in order to verify safety properties. Unfortunatelylanguage equivalence does

not preserve all the information necessary to determine whether two automata will be

conflicting with one another.

Bisimulation considers two automata equivalent to one another if they both have

equal nondeterministic branching behaviour [26]. Bisimulation is one of the finest

known behavioural equivalences. Bisimulation preserves all temporal logic properties

including nonblocking. This means that bisimulation is stronger than conflict equiv-

alence, that is to say any two automata which are considered equivalent with respect
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to bisimulation are equivalent with respect to conflict equivalence, but not vice versa.

Bisimulation is a well-understood equivalence relation which has fast algorithms capa-

ble of simplifying automata with respect to it.

Another equivalence relation which is used to compare automata is that of failures

equivalence [26]. Two automata are failures equivalent if they will reach a deadlock

situation, or fail, under exactly the same situations. Failures equivalence is also a well-

understood equivalence relation and it has been known for a long time how to find

a minimal automaton representation of any particular failures equivalence class. Un-

fortunately failures equivalence is not adequate to reflectall the conflict information

contained within an automaton, as it does not preserve livelocks. The ideas used to

represent failures equivalence can however be extended to reflect conflicts.

Fair testing [2] is the closest equivalence relation to conflict equivalence. Fair test-

ing differs from conflict equivalence in the respect that only the test automaton can

determine when the test has passed. This makes fair testing astronger eqivalence re-

lation. It is currently understood how to compare two automata with respect to fair

testing, however the algorithm has never been implemented to our knowledge, and it is

not understood how to simplify with respect to fair testing in a general way.

1.1 Contributions

The most important contributions of this thesis are

• New methods of abstracting automata with respect to conflictequivalence.

• A finite canonical characterization of an automaton’s generalised nonblocking

equivalence class.

• An algorithm to calculate whether an automaton is less conflicting to another.

• A finite canonical characterization of an automaton’s conflict equivalence class.

1.2 Outline

This thesis is divided into chapters. Chapter 2 describes thenotation used throughout

this thesis as well as key concepts. It introduces finite state automata, parallel composi-

tion, conflict equivalence, nonconflicting completions, and compositional verification.

In Chapter 3 a new method of abstracting automata with respectto conflict equiva-

lence is introduced. This method converts the automaton by marking states with anno-

tations, which are similar to the failures sets used in failures equivalence. The annotated
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automaton is then simplified using abstraction rules which make use of the annotations.

In addition to this we show how the method can be used in a conflict checker in order

to verify whether discrete event models are nonblocking, and give experimental results

of its use. This chapter is based upon work published in [35,38].

Chapter 4 investigates the related problem of generalised nonblocking equivalence.

Generalised nonblocking adds to standard nonblocking the ability to restrict the set of

states from which blocking is checked. This improves the expressive power of non-

blocking but makes it so that less information can be abstracted from an automaton.

Because of this it turns out that generalised nonblocking equivalence is in fact easier

to charaterise than conflict equivalence. This shows how to compare automata with

respect to generalised nonblocking and proposes a normal form which can be used to

represent automata with respect to generalised nonblocking. In addition to this it shows

experimental results derived from using this normal form toverify models with respect

to generalised nonblocking. This chapter is based upon workpublished in [36].

Chapter 5 builds upon the understanding of conflicts developed in the previous two

chapters to demonstrate how two automata can be compared to one another with respect

to conflict equivalence. It also shows experimental resultsfrom using the algorithm de-

veloped to compare automata. In addition it is shown that thealgorithm for comparing

automata with respect to conflict equivalence can be used to compare automata with

respect to fair testing, and that the algorithm has lower time complexity. This chapter

is based upon work published in [37].

Chapter 6 describes the conflict normal form which is a canonical representation

of a given conflict equivalence class. As the conflict normal form represents a unique

representation of any given conflict equivalence class it can be considered to be a form

which keeps only that information which is relevant to conflicts. Because of this it

has the potential to be used as a powerful abstraction for verifying nonblocking. In

addition to this however it can be used to be able to understand better what exactly

makes a process conflict with other processes. The work covered in this chapter has yet

to be published.
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Chapter 2

Preliminaries

This chapter introduces the notations used throughout thisthesis. Discrete event sys-

tems are modelled using automata, with the possibility of nondeterminism, which nat-

urally arises from abstraction and hiding [16,32]. System behaviour is described using

languages, with notations taken from the background of discrete event systems and au-

tomata theory [18, 30]. In section 2.1 it is shown what an event is and how they can

be concatenated to form traces and languages. Section 2.2 describes how a finite state

automaton is defined and how they relate to languages and traces in this thesis. Fur-

thermore section 2.3 describes several operations which are commonly used upon finite

state automata throughout this thesis. Next section 2.4 describes the conflict equiva-

lence relation which is used throughout this thesis. The concept of certain conflicts is

described in section 2.5. In addition section 2.6 describeshow conflict equivalence can

be encapsulated using nonconflicting completions. Finallysection 2.7 describes how

abstracting an automaton while preserving conflict equivalence can be used to verify

whether a large model is nonblocking.

2.1 Events and Traces

Event sequences and languages are a simple means to describediscrete system be-

haviours. Their basic building blocks areevents, which are taken from a finitealpha-

betΣ. Two special events are used, thesilent eventτ and thetermination eventω. These

are never included in an alphabetΣ unless mentioned explicitly. For this,Στ = Σ∪{τ},
Σω = Σ∪ {ω}, and Στ,ω = Σ∪ {τ,ω} are used. The silent eventτ represents be-

haviour which is local to the automaton in which it can occur,as such other automata

in the model can neither block or observeτ events. The termination eventω repre-

sents termination, when anω event occurs that means that the model has successfully

terminated.
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Σ∗ denotes the set of all finitetracesof the form σ1σ2 · · ·σn of events fromΣ,

including theempty traceε. Theconcatenationof two tracess, t ∈ Σ∗ is written asst.

A subsetL ⊆ Σ∗ is called alanguage. The traces is a prefix of t if if there exists a

traceu such thatsu= t. This thesis uses the notations⊑ t to signify thats is a prefix

of t. Traces and languages can also be catenated, for examplesL= {st∈ Σ∗ | t ∈ L}.

Natural projection Pτ : Σ∗τ → Σ∗ is the operation that deletes all silent (τ) events from

traces.Prefix-closureis the operation which saturates a languageL such that for every

traces∈ L if the tracet is a prefix ofs thent is also in the prefix-closure ofL. Thus

L = {t | ∀s∈ L such thatt ⊑ s}.

Languagederivation [4] is the operation which describes the behaviour of a lan-

guage after a given trace similiar to language derivation. The languageL derived

by the traces consists of all the traces whichL can perform after the traces. Thus

L/s= {t | st∈ L}.

2.2 Nondeterministic Automata

In this thesis, process behaviour is modelled using nondeterministic labelled transition

systemsor automata A= 〈Σ,Q,→,Q◦〉, whereΣ is a finite alphabet ofevents, Q is a

set ofstates,→⊆ Q×Στ,ω ×Q is thestate transition relation, andQ◦ ⊆ Q is the set

of initial states. A is calledfinite-stateif its state setQ is finite.

The transition relation is written in infix notationx
σ
→ y, and extended to traces by

letting x
ε
→ x for all x ∈ Q, andx

sσ
→ y if x

s
→ z

σ
→ y for somez∈ Q. The transition

relation must satisfy the additional requirement that, wheneverx
ω
→ y, there does not

exist any outgoing transition fromy. The automatonA is deterministicif |Q◦| ≤ 1

and the transition relation contains no transitions labelledτ, and ifx
σ
→ y1 andx

σ
→ y2

always impliesy1 = y2.

A statex∈Q is considered accepting ifx
ω
→ y for some statey∈Q. This is slightly

different from standard automata which have the additionalstate setQm which contains

all accepting states. The definition allows many equivalence relations such as bisim-

ulation and observation equivalence to be expressed more concisely and otherwise is

equivalent to the standard mark state definition of automata.

To support silent transitions,x
s
⇒ y, with s∈ Στ

∗, denotes the existence of a trace

t ∈ Στ,ω
∗ such thatx

t
→ y, ands is obtained fromt by deleting allτ events. For a state

setX ⊆Q and a statey∈Q, the expressionX
s
⇒ y denotes the existence ofx ∈ X such

thatx
s
⇒ y, andA

s
⇒ y means thatQ◦

s
⇒ y. Furthermore,x⇒ y denotes the existence

of a traces such thatx
s
⇒ y, andx

s
⇒ denotes the existence of a statey ∈ Q such that

x
s
⇒ y.
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Figure 2.1: Graphical representations of two equivalent automata

For a state or state setx, thecontinuation languageis defined as

L (x) = {s∈ Σ∗ | x s
⇒} , (2.1)

and likewise theω-marked languageis

L
ω(x) = {sω ∈ Σ∗ω | x sω

⇒} . (2.2)

The language and theω-marked language of the automatonG areL (G) = L (Q◦)

andL ω = L ω(Q◦). This is similar to the notion of the language recognized by an

automaton [16] with the addition of anω event. Lastly we define theeligible event set

of a state. This is the set of events which a state allows to occur.

Elig(x) = {σ |x σ
⇒ y whereσ ∈ Σω} (2.3)

States are represented as circles and transitions as arrowsbetween a source and tar-

get state. The names of states and the events associated withtransitions are represented

using floating text located next to their associated state ortransition. If there are two

or more transitions with the same source and target state thesame arrow is used to

represent all such transitions with all the events of those transitions listed next to the

arrow. Unless otherwise stated the alphabet of such an automaton is assumed to be the

union of all events associated with transitions in the graphwith the exception of the ter-

mination eventω. In other words it is assumed that the alphabet does not contain any

events which can never be executed by the automaton, unless otherwise stated. Initial

states are identified as states which have an arrow with no source entering them. Finally

sometimes automata are represented using marked states instead ofω transitions in or-

der to make the graphical representation more concise, in this case grayed out circles

represent a marked state.

Example 2.1 Figure 2.2 shows two representations of the same automaton.One ex-

plicitly shows anω-transition to represent termination, the other uses a colored in ac-
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cepting state. Both have the same meaning.

2.3 Operations

The process-algebraic operations of synchronous composition and hiding are used in

this thesis to compose automata.Synchronous compositionmodels the parallel execu-

tion of two or more automata, and is done using lock-step synchronisation in the style

of [16].

Definition 2.1 Let G= 〈Σ,QG,→G,Q
◦
G〉 andH = 〈Σ,QH ,→H ,Q

◦
H〉 be automata. The

synchronous productof G andH is

G‖H = 〈Σ,QG×QH ,→,Q◦G×Q◦H〉 (2.4)

where
(xG,xH)

σ
→ (yG,yH) if σ ∈ Σ, xG

σ
→G yG, and

xH
σ
→H yH ;

(xG,xH)
τ
→ (yG,xH) if xG

τ
→G yG;

(xG,xH)
τ
→ (xG,yH) if xH

τ
→H yH ;

In synchronous composition, shared events (includingω) must be executed by both

automata synchronously, while other events (includingτ) are executed independently.

In the notation of this thesis,

G1‖G2
s
⇒ (x1,x2) if and only if Gi

Pi(s)
=⇒ xi for i = 1,2 , (2.5)

wherePi : Σ→ Σi denotes the natural projection.

Automata with different alphabets can also be composed by lifting them to a com-

mon alphabets first: when an eventσ is added to the alphabetΣ, selfloop transitions

x
σ
→ x are added for all statesx ∈ Q. Other than chapter 3 it is assumed that automata

are always lifted to a common alphabet before composition.

It is easily confirmed that synchronous composition is a commutative and associa-

tive operation.

Hiding is the process-algebraic operation that generalises natural projection of lan-

guages when nondeterministic automata are considered [2].Events that are not of

interest are replaced by silent (τ) transitions orε-moves[18].

Definition 2.2 Let G = 〈Σ,Q,→,Q◦〉 be an automaton, and letϒ ⊆ Σ. The result of

hiding ϒ in G is

G\ϒ = 〈Σ\ϒ,Q,→\ϒ,Q◦〉 , (2.6)
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Figure 2.2: Examples of blocking and nonblocking automata.

where→\ϒ is obtained from→by replacing all events inϒ with the silent eventτ.

Automataderivationis an operation which describes the behaviour of an automaton

after a given trace similiar to language derivation. The automatonG derived by the trace

s is identical to the automatonG except that its initial state set consists of the set states

G can reach after the states.

Definition 2.3 For G = 〈Σ,Q,→,Q◦〉 ands∈ Σ∗, defineG/s= 〈Σ,Q,→,Q◦s〉 where

Q◦s = {x ∈Q |G
s
⇒ x}.

The state setQ◦s can be calculated using subset construction.

2.4 Conflict Equivalence

The key liveness property in supervisory control theory [30] is thenonblockingprop-

erty. Given an automatonA, it is desirable that every trace inL (A) can be completed

to a trace inL ω(A), otherwiseA may become unable to terminate. A process that may

become unable to terminate is calledblocking. This concept becomes more interest-

ing when multiple processes are running in parallel—in thiscase the termconflicting

is used instead. In this thesis we use a modified version of thenonblocking property

presented in [30] which can be applied to nondeterministic automata [?].

Definition 2.4 An automatonA= 〈Σ,Q,→,Q◦〉 is nonblockingif for every statex∈Q

and every traces∈ Σ∗ such thatQ◦
s
⇒ x it holds thatL ω(x) 6= /0. OtherwiseA is

blocking. A statex such thatL ω(x) = /0 is ablocking state. Two automataA andB are

nonconflictingif A‖B is nonblocking, otherwise they areconflicting.

Example 2.2 AutomatonA0 in figure 2.2 is nonblocking, as for every statex∈Q which

is reachable using a traces∈ Σ∗ it is always possible to reach the statea2 and terminate.

As aω can only be reached after theω event which is not inΣ the fact thataω is blocking

does not makeA0 blocking. AutomatonB0 on the other hand is blocking, because it

can enter stateb3 after executingαβ , from which is no longer possible to reach a state

where the termination eventω is enabled.
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Figure 2.3: Example of automata that are not conflict equivalent.

A2: B2

α

α τ

ω
a0 a1

a2

aω

α

τ

ω
b0 b1

bω

Figure 2.4: Two automata that are conflict equivalent.

For an automaton to be nonblocking, it is enough that a terminal statecan be

reached fromeveryreachable state. There is no requirement for termination tobe guar-

anteed. For example, automatonA0 in figure 2.2 is nonblocking despite the presence of

a possibly infinite loop ofα-transitions in statea0. Nonblocking is also different from

“may”-testing [31], which only requires the possibility oftermination from the initial

state. The testing semantics most similar to nonblocking is“should”-testing, which is

also known asfair testing[31].

A blocking states is equivalent to either adeadlock, where the automaton is no

longer capable of doing anything, or alivelock where the automaton can still execute

events but it can never terminate.

To reason about nonblocking in a compositional way, the notion ofconflict equiva-

lenceis developed in [25]. According to process-algebraic testing theory, two automata

are considered as equivalent if they both respond in the sameway to all tests of a certain

type [6]. For conflict equivalence, atestis an arbitrary automaton, and theresponseis

the observation whether or not the test is conflicting with the automaton in question.

Definition 2.5 Let A and B be two automata.A is less conflictingthan B, written

A .conf B, if, for every automatonT, if B‖T is nonblocking thenA‖T also is non-

blocking.A andB areconflict equivalent, A≃conf B, if A.conf B andB.conf A.

Example 2.3 AutomatonA1 in figure 2.3 isnot less conflicting thanB1, sinceA1 ‖T1

is blocking whileB1‖T1 is nonblocking. This is becauseA1‖T1 can enter the blocking

state(a2,q1) after executingα. This state is blocking because the eventβ can never

be executed after entering the statea2. In the case ofB1 however after executingα, it

eventually becomes possible to continue using aβ -transition regardless of whether the

stateb1 or b2 is entered. It can also be shown thatB1 .conf A1 does not hold.
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Example 2.4 AutomataA2 andB2 in figure 2.4 are conflict equivalent. For example

let T = 〈Σ,QT ,→T ,Q
◦
T〉 be an automaton such thatB2 ‖T is nonblocking. It can be

inferred for every statex∈Q◦T thatx
α
⇒ y for somey∈QT . This is becauseb0

τ
→ b1, thus

(b0,x)
τ
→ (b1,x) andα is the only event which can be performed inb1. Furthermore as

(b1,x)
α
→ (b0,y)

τ
→ (b1,y) thus it can be inferred thaty must also be able to perform an

α event and by induction that the statex must capable of performing an infinite number

α events followed by anω, this is also whatA2 requires to be nonblocking.

The properties of the conflict preorder.conf and of conflict equivalence and their

relationship to other process-algebraic relations are studied in [25]. It is enough to

consider deterministic tests in definition 2.5, and conflictequivalence is is the coarsest

possible congruence with respect to synchronous composition that respects blocking,

making it an ideal equivalence for use in compositional verification [12,35].

2.5 The Set of Certain Conflicts

Every automaton can be associated with a language ofcertain conflicts.

Definition 2.6 For an automatonG= 〈Σ,Q,→,Q◦〉, write

Conf(G) = {s∈ Σ∗ | for every automatonT such thatT
s
⇒, it holds that

G‖T is blocking} ,

(2.7)

NConf(G) = {s∈ Σ∗ | there exists an automatonT such thatT
s
⇒ and

G‖T is nonblocking} .

(2.8)

Conf(A) is the set ofcertain conflictsof A. It contains all traces that, when possible

in the test, necessarily cause blocking. Its complementNConf(A) is the most general

behaviour of processes that are to be nonconflicting withA. If A is nonblocking, then

Conf(A) = /0 andNConf(A) = Σ∗, because in this caseA‖U is nonblocking, where

U is a deterministic automaton such thatL ω(U) = Σ∗ω. The set of certain conflicts

becomes more interesting for blocking automata.

Example 2.5 Consider again automatonB0 in figure 2.2. Obviously,αβ ∈Conf(B0)

asB0 can enter the blocking stateb3 by executingαβ , and therefore every testT that

can executeαβ is conflicting withB0. But alsoα ∈ Conf(B0), becauseB0 can enter

stateb2 by executingα, from where the only possibility to terminate is by execut-

ing βω. So any test that can executeα also needs to be able to executeαβ if it is to be

nonconflicting withB0; but such a test is conflicting withB0 as explained above. It can

be shown thatConf(B0) = αΣ∗.
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The set of certain conflicts is introduced in [21], and its properties and its relation-

ship to conflict equivalence are studied in [25]. Even if an automaton is nondetermin-

istic, its set of certain conflicts is alanguage, but as shown in example 2.5, it is not

necessarily a subset of the languageL (A) of its automaton. An algorithm to compute

the set of certain conflicts for a given finite-state automaton is presented in [22].

It can further be shown that an automaton’s nonconflicting language is always

prefix-closed.

Lemma 2.1 Let G be an automaton, it holds thatNConf(G) =NConf(G).

Proof. NConf(G) ⊆NConf(G) is trivially proven. Lets∈NConf(G) be a trace.

As s∈NConf(G) there exists a tracet ∈NConf(G) such thats⊑ t. From definition

2.6 ast ∈NConf(G), there exists an automatonT such thatG‖T is nonblocking and

T
t
⇒. As s⊑ t it must be the case thatT

s
⇒. Therefores∈ NConf(G). As s was

chosen arbitrarilyNConf(G)⊆NConf(G). �

Lastly it can be shown that for any given traces∈NConf(G) every state which is

reachable bys can terminate using a trace inNConf(G).

Lemma 2.2 Let G be an automaton,x be a state ands∈ NConf(G) be a trace such

thatG
s
⇒ x. Then there existst ∈ Σ∗ such thatx

tω
⇒ andst∈NConf(G).

Proof. Let s∈ NConf(G) such thatG
s
⇒ Gs. Sinces∈ NConf(G), according to

definition 2.6, there exists a test automatonT such thatG‖T is nonblocking andT
s
⇒ xT

for some statexT . ThenG‖ T
s
⇒ (x,xT), so there existst ∈ Σ∗ such thatG‖ T

s
⇒

(x,xT)
tω
⇒. Clearlyx

tω
⇒, and furthermoreT

st
⇒, which impliesst∈NConf(G) asG‖T

is nonblocking. �

2.6 Nonconflicting Completions

Automata can be further associated to a set of nonconflictingcompletions. Nonconflict-

ing completions are a pair of trace and language. If the pair(c,C) is a nonconflicting

completion of the automatonG, then for every test automatonT which is capable of

performing the tracec it must be the case that eitherT can continue with at least one

tracet ∈C or G‖T is blocking.
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Definition 2.7 For an automatonG, define

CC(G) = {(c,C) ∈ Σ∗×2Σ+ω | for every test automatonT and statexT : if

G‖T is nonblocking andT
c
⇒ xT then∃t ∈C: xT

t
⇒} ;

(2.9)

CCω(G) = {(c,C) ∈ Σ∗×2Σ∗ω | for every test automatonT and statexT : if

G‖T is nonblocking andT
c
⇒ xT then∃t ∈C: xT

t
⇒} .

(2.10)

The only difference between CC(G) and CCω(G) is that CCω(G) only contains

complete traces that end withω. CC(G) is called thenonconflicting continuation

semantics, and CCω(G) is called thenonconflicting completion semanticsof G. In

both cases, the setC of nonconflicting continuations or completions cannot contain the

empty trace.

The concept of derivation which has been applied to both languages and automata

can also be applied to a set of nonconflicting completions or continuation.

Definition 2.8 ForC ⊆ Σ∗×2Σ∗ω ands∈ Σ∗, define

C /s= {(t,C) ∈ Σ∗×2Σ∗ω | (st,C) ∈ C } . (2.11)

The following is an unpublished proof by Dr Robi Malik. It shows that the noncon-

flicting completions are preserved after derivation.

Proposition 2.1 Let G be an automaton andc∈NConf(G) be a trace then,

CCω(G/c) = CCω(G)/c . (2.12)

Proof. Let G be an automaton andc∈NConf(G) trace.

First assume that(s,C) ∈ CCω(G/c), and consider a test automatonT and state

yT such thatG‖T is nonblocking andT
cs
⇒ yT . Then there exists a statexT such that

T
c
⇒ xT

s
⇒ yT . It follows that(G/c)‖ (T/c) is nonblocking asG‖T is nonblocking. To

see this lett ∈ Σ∗ be a trace and(z,zT) be a state tuple such that(G/c)‖(T/c)
t
⇒ (z,zT).

As (G/c) ‖ (T/c)
t
⇒ (z,zT) it holds thatG‖T

ct
⇒ (z,zT). As G‖T is nonblocking it

must hold that(z,zT) is nonblocking. Ast and(z,zT) where chosen arbitrarily it must

be the case that(G/c) ‖ (T/c) are nonblocking. Furthermore as(s,C) ∈ CCω(G/c),

(G/c)‖ (T/c) is nonblocking, andT/c
s
⇒ yT it holds thatyT

u
⇒ for someu∈C. Since

T andyT was chosen arbitrarily, it follows that(cs,C) ∈ CCω(G), and thus(s,C) ∈

CCω(G)/c.

Conversely, let(s,C)∈CCω(G)/c. By definition, this means that(cs,C)∈CCω(G).

Consider a testT = 〈Σ,QT ,→T ,Q
◦
T〉Σ such that(G/c)‖T is nonblocking andT

s
⇒ xT .
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A new test automatonTc is constructed as follows,

Tc = 〈Σ,NConf
ω(G) ∪̇QT ,→N∪→T ∪→NT,{ε}〉 (2.13)

where→N and→NT consist of the transitions

s
σ
→N sσ for all sσ ∈NConf

ω(G) ; (2.14)

c
τ
→NT x◦T for all x◦T ∈Q◦T . (2.15)

ThenG‖Tc is nonblocking. To see this, lett ∈ Σ∗ such thatG‖Tc t
⇒ (xG

t ,x
T
t ), for some

statesxG
t of G andxT

t of Tc. If xT
t ∈NConf(G), then by constructiont ∈NConf(G),

and givenG
t
⇒ xG

t , it follows by lemma 2.2 that there existsv ∈ Σ∗ such thatxG
t

vω
⇒

andtv∈NConf(G). Again by construction, and sinceNConf(G) is prefix-closed by

lemma 2.1, it follows that(xG
t ,x

T
t )

vω
⇒. If on the other handxT

t ∈QT , then by construc-

tion t = cu for someu∈ Σ∗, and

G‖Tc c
⇒ (xG

c ,c)
τ
→ (xG

c ,x
◦
T)

u
⇒ (xG

t ,x
T
t ) (2.16)

for some statexG
c of G and somex◦T ∈Q◦T . Clearly,G

c
⇒ xG

c
u
⇒ xG

t and thereforeG/c
u
⇒

xG
t . Together withT

u
⇒ xT

t , this implies(G/c) ‖ T
u
⇒ (xG

t ,x
T
t ). Since(G/c) ‖ T is

nonblocking, there existsv ∈ Σ∗ such that(xG
t ,x

T
t )

vω
⇒. Since the state(xG

t ,x
T
t ) was

chosen arbitrarily, it follows thatG‖Tc is nonblocking.

By construction ofTc, it holds thatTc c
⇒N c

τ
→NT x◦T for everyx◦T ∈Q◦T , and since

T
s
⇒ xT , it follows thatTc cs

⇒ xT . SinceG‖Tc is nonblocking and(cs,C) ∈ CCω(G),

there existst ∈C such thatxT
t
⇒. SinceT was chosen arbitrarily, it follows that(s,C)∈

CCω(G/c). �

As a direct consequence of proposition 2.1 if(c,C) ∈ CCω(G) then it is also the

case that(ε,C) ∈ CCω(G′/c).

Proposition 2.2 Let G= 〈Σ,Q,→,Q◦〉 be an automaton. Let(c,C) be a pair of trace

and language such thatc∈ NConf(G). It holds that(c,C) ∈ CCω(G) if and only if

(ε,C) ∈ CCω(G′/c).

Proof. This comes directly from 2.1. �

2.7 Compositional Nonblocking Verification

The one of the main reasons why conflict equivalence preserving abstractions are of

interest is that they can be used to check whether a large system of concurrent pro-
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cesses are conflicting or not. The straightforward approachto check whether automata

A1,A2, . . . ,An are conflicting is to construct the synchronous product

A1 ‖ A2 ‖ · · · ‖ An (2.17)

and check whether it is blocking. This is done by checking whether a terminal state

can be reached from every reachable state. Using symbolic representations such as

BDDs [3] or IDDs [39], this approach has been used to analyse very large models.

Yet, the technique always remains limited by the amount of memory available to store

representations of the synchronous product. As an alternative, compositional verifica-

tion [12] seeks to replace automatonA1, e.g., by a simpler versionA′1, and analyse the

simpler system

A′1 ‖ A2 ‖ · · · ‖ An . (2.18)

If A1 andA′1 are conflict equivalent, then (2.17) is nonblocking if and only if (2.18)

is nonblocking. This is a consequence of thecongruenceproperties of the conflict

preorder [25]. The following results follow directly from definition 2.5.

Proposition 2.3 [25] .conf is apre-congruencewith respect to‖. That is, ifA.conf B,

thenA‖T .conf B‖T for every automatonT.

Proposition 2.4 [25] .conf respects blocking. That is, ifA.conf B andB is nonblock-

ing, thenA also is nonblocking.

Compositional verification relies on the above two congruence properties and the

following simple facts about hiding.

Lemma 2.3 Let A= 〈ΣA,QA,→A,Q
◦
A〉 be an automaton andϒ⊆ ΣA.

(i) A is nonblocking if and only ifA\ϒ is nonblocking.

(ii) If B= 〈ΣB,QB,→B,Q
◦
B〉 is an automaton such thatΣB∩ϒ = /0, then(A\ϒ)‖B=

(A‖B)\ϒ.

Property (ii) shows howlocal events are exploited in compositional verification. A

componentA1 in a larger system such as (2.17) typically contains certainevents that are

not used in any of the remaining componentsA2, . . . ,An. Such events are local toA1,

and their identity can be removed. These events can be replaced by the silent eventτ,

making it possible to simplify the automaton. Compositionalverification is based on

this fact and the congruence properties.
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Figure 2.5: Manufacturing cell example.

Proposition 2.5 LetA= 〈ΣA,QA,→A,Q
◦
A〉 andB= 〈ΣB,QB,→B,Q

◦
B〉 be two automata,

and letϒ ⊆ ΣA such thatΣB∩ϒ = /0. Furthermore, letA′ be an automaton such that

A\ϒ .conf A′. Then it holds that, ifA′ ‖B is nonblocking thenA‖B is nonblocking.

Proof. LetA′‖B be nonblocking. SinceA\ϒ.conf A′, it follows by proposition 2.3 that

(A\ϒ)‖B.conf A′‖B, which implies by proposition 2.4 that(A\ϒ)‖B is nonblocking.

Then it follows from lemma 2.3 that(A‖B)\ϒ = (A\ϒ)‖B is nonblocking (ii), which

means thatA‖B is nonblocking (i). �

Proposition 2.5 gives a basic way to exploit the conflict preorder when verifying a

composed system to be nonblocking. The following example shows how such results

can be used to model check a large system of composed automata.

Example 2.6 Figure 2.5 shows a discrete event system model of a factory, which is

made up of a series of manufacturing cells. The model involves n manufacturing cells,

where the output of the first manufacturing cell is used as theinput of the second and

so forth. Each manufacturing cell has a machine which does work on the work pieces

which flow through the factory as well as a test unit which determines whether the

work on the work piece is satisfactory. In addition there aretwo buffers used to store
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work pieces before processing, one for the machine, the second for test unit. Given this

representation of the factory it is desirable to determine whether it is nonconflicting.

The flow of work pieces through thenth manufacturing cell is modelled using the

eventsout putn−1, out putn, tln, tun, trn, mln, andmun. A work piece entering the man-

ufacturing cell is represented by the eventout putn−1, which causes the machine buffer

MBn to be filled with one more work piece up to a maximum of three. The work piece

can then be loaded into the machineMn represented by themln event. Once the ma-

chine has finished working, the work piece is placed in the test buffer TBn with the

eventmun. The work piece can now be picked up by the test unitTn using the eventtln.

At this point, the test unit can decide either to accept(out putn) the work piece in which

case it is sent on to the next manufacturing cell, or it can reject the work piece(trn) and

have it sent back to the machine buffer so that it can have morework done on it. The

test bufferTBn will only allow the machineMn to be loaded whenTBn is empty, this is

to make certain that there will be a place for the work piece inMn to be put when the

machine is finished.MBn only allows the test unit to be loaded when there is an empty

space inMBn for similar reasons.

The state space of this model grows exponentially in the number n of manufac-

turing cells. Whenn = 7, the number of reachable states in the model is equal to

approximately 5.1 billion states, this has been found by BDDs to construct the state

space symbolically. Using compositional verification based on conflict equivalence,

the system can be proven to be nonblocking for arbitrary values ofn while looking at

far less states.

Composing the automata for the first manufacturing cell produces the subsystem

C1 = MB1‖M1‖TB1‖T1 (2.19)

with local eventstln, tun, trn, mln, andmun, as well as 22 reachable states. These events

are used only in the automata comprisingC1, so they can be hidden, i.e., replaced by the

silent eventτ before composingC1 with further automata. WhileC1 has 22 reachable

states, it can be shown to be conflict equivalent to the three state abstractionC′1 in

figure 2.6,

C1\{tln, tun, trn,mln,mun} ≃conf C
′
1 . (2.20)

The same process can be applied to the second manufacturing cell. This will result

C′2 shown in figure 2.6. The next step of composingC′1 andC′2 results in a 15 state

automaton, which after hiding the eventout put1 can be replaced with the automaton

C′1,2 in figure 2.6. The same process can be applied to addC3 to the composition

resulting in an automaton that is identical to bothC′1 andC′1,2 with the exception that

the different automata useout put1, out put2 and out put3 respectively. This process
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Figure 2.6: Abstractions for manufacturing cell example
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Figure 2.7: A manufacturing cell in state of deadlock.

can be repeated for alln manufacturing cells resulting in the automatonC1,2,...,n. This

automaton is blocking, thus the entire manufacturing cell model is blocking. Thus it

is possible to use compositional model checking to determine whether this model is

nonconflicting while at any given step only looking at an automaton with at most 22-

reachable states regardless of how largen is.

The abstraction also highlights, the circumstances, in which a manufacturing cell

is potentially blocking. For example if manufacturing cellC1 has four or more work

pieces in it at one time the manufacturing cell can block. Figure 2.7 highlights one

of the situations in which an individual manufacturing cellis blocking. For this figure

the current state of the automaton is coloured black, if the current state is both marked

and the current state, the state is coloured half black half gray. It highligts the situation

where both the machine buffer and the test buffer is full. In this situation neither the

machine nor the test unit may load a work piece, thus neither of the buffers can be

emptied.

Example 2.7 The dining philosopher’s problem [7] in concurrency is commonly used

to describe the problem of deadlock in concurrent systems. It involvesn philosophers

sitting at a circular table with a large bowl of spaghetti in the centre. A fork is placed

between each pair of philosophers, and each philosopher must eat with the two forks

next to him or her. Here they each spend their time pondering or alternatively eating.

In in order for a philosopher to eat they must pick up two forks, and they will not
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put their forks back down until after they have eaten. Becausethere is only one fork

per philosopher, if the philosophers are unable to communicate with each other this

can lead to a state where none of the philosophers are capableof eating, for example

if all philosophers pick up their left fork. Figure 2.8 showsa discrete event system

model of the dining philosopher problem which uses a coordinator to remove the pres-

ence of both deadlock and livelock. The diagram in figure 2.8 shows the philosophers

P0, . . . ,Pn−1 with the forksF0, . . . ,Fn−1 between them, and the automata represent and

attempt to control the system such that every philosopher can eventually get a chance to

eat. Given this model we would like to prove that it does in fact solve the problem. That

is to say it is impossible to reach a situation where it is impossible for any philosopher

to eat. This can be done by proving that the model is nonconflicting. This is because

only the initial state of this model can terminate, and it canbe easily proven that from

the initial state it is possible for any particular philosopher can eat.

Access to the forks is modelled using eventsti, j and pi, j , whereti, j means that

philosopherPi takes forkFj , andpi, j means that he or she puts it back. The automataPi,

for i = 0, . . . ,n−1, model the behaviour of each philosopherPi: after a thinking phase,

the philosopher gets hungry and signals his or her intentionto eat (hi), then he or she

picks up both adjacent forks (ti,i and ti,(i+1) modn), eats (ei), puts the forks back (pi,i

andpi,(i+1) modn), and returns to the thinking phase. The fork automataFj ensures that

Fj can only be picked taken up one philosopher at a time whereas the automatonFPi, j

ensures that the philosopherPi can only put downFj after picking it up, this ensures

mutual exclusion. Finally, the coordinatorsC j sequence access to forkFj by the two

philosophers using it, such that the philosopher who gets hungry first also gets access

first. For example if we consider the coordinator automaton for F0, it requires that

before either philosopherP0 or P1 may take the fork (t0,0 or t1,0) they must first register

their hunger (h0 or h1). Once philosopherP0 has registered his or her hunger ifP1 has

not registered hunger before them they may immediately takethe fork t0,0 otherwise

they must wait forP1 to return the forkp0,1. This is regardless of whether or notP1 has

taken the fork yet.

The state space of this model grows exponentially in the numbern of philosophers.

It can be shown that whenn = 16, the number of reachable states in the model is

greater than 1.123·1013 using symbolic model checking methods. For larger parame-

ter values it becomes infeasible to model check the system using explicit or symbolic

methods. Using compositional verification based on the conflict preorder, the system

can be proven to be nonblocking for arbitrary values ofn.

Composing the automata for philosophersP0 andP1 and the shared forkF1 produces
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Figure 2.9: Abstractions for dining philosophers example.

the subsystem

S1 = FP0,0‖P0‖FP0,1‖F1‖C1‖FP1,1‖P1‖FP1,2 (2.21)

with local eventse0, t0,1, p0,1, t1,1, p1,1, ande1 and 52 reachable states. These events

are used only in the automata comprisingS1, so they can be hidden, i.e., replaced by the

silent eventτ before composingS1 with further automata. WhileS1 has 52 reachable

states, it can be shown to be less conflicting than (in fact, conflict equivalent to) the

12-state abstractionS′1 in figure 2.9,

S1\{e0, t0,1, p0,1, t1,1, p1,1,e1}.conf S
′
1 . (2.22)

The next step to add the automata for forkF2 and philosopherP2 to the system results

in a 90-state automatonS1,2, with new local events. Hiding the local events leads to a

new 13-state abstractionS′1,2 also shown in figure 2.9,

(S′1‖F2‖C2‖FP2,2‖P2‖FP2,3)\{h1, t1,2, p1,2, t2,2, p2,2,e2}.conf S
′
1,2 . (2.23)

Repeating this process by including the next forkF3 and philosopherP3 gives a 100-

state automatonS1,2,3 and an abstractionS′1,2,3 identical toS′1,2 except that the events

for fork F2 and philosopherP2 are replaced by the corresponding events for forkF3

and philosopherP3. By induction, it can be shown that the subsystem consisting of

forksF1, . . . ,Fi and philosophersP0, . . . ,Pi is less conflicting than the abstractionS′1,...,i
in figure 2.9. Composing this abstraction with the missing automata for forkF0 gives a

41-state automatonF0‖C0‖S′1,...,i, which is easily shown to be nonblocking.

By repeated application of proposition 2.5 it follows that the dining philosophers

model is nonblocking for all values ofn≥ 4. Despite the enormous state space, this
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is possible without ever considering an automaton with morethan 100 states. The

necessary tests for the conflict preorder have been completed in less than one second

using the implementation described below in section 5.6. The most difficult is the

test for (2.23), which takes 0.34 s to complete. Further performance data is given in

section 5.7.
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Chapter 3

Annotated Automata

As has explained in section 2.4, conflicts can been put into two distinct categories:

deadlocks and livelocks. While it is quite difficult to categorise information about

livelock in a compositional way, this is not the case for deadlock.

In [16] the set of failures is used to characterise processeswith respect to how they

reach a deadlock situation. Failure sets can be used to characterise the deadlock infor-

mation contained within an automaton, and minimize with respect to it. Unfortunately

simplifying an automaton solely with respect to failures isnot guaranteed to preserve

conflict equivalence as livelocks may be hidden.

This chapter introduces annotated automata as a means of using failures to simplify

automata with respect to conflict equivalence. An annotatedautomaton is a standard

automaton which in which each state is annotated with a set ofevents. These event sets

are called annotations. An annotation signifies that any automaton which wishes to be

nonblocking with the state which that annotation is associated with must be able to ex-

ecute at least one event in that annotation. This is similar to nonconflicting completions

mentioned in section 2.6. If an annotated automatonA is derived from the standard

automatonG the annotations ofA will be derived from the ready sets of the states in

G, where ready sets are the complement of failure sets. The information contained in

annotations can be used in several abstraction rules as wellas a modified version of

bisimulation equivalence in order to simplify automata with respect to conflict equiva-

lence.

Unlike the later chapters, which seek to fully characteriseconflict equivalence, this

chapter only provides abstraction rules which can be used tosimplify an automaton

with respect to conflict equivalence. That said the methods developed in this chap-

ter are fast abstraction rules which have been shown to be capable of improving the

performance of compositional conflict checkers. Furthermore the idea of annotating

states with their ready sets/one step nonconflicting completions is generalised in future
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chapters to comparing the full nonconflicting completions.

This chapter is organized into several sections. Section 3.1 describes how a standard

automaton can be converted into an annotated automaton, andback again. In addition

it describes several abstractions which can be applied to annotated automata which

preserve conflict-equivalence. Finally section 3.2 gives experimental results showing

the effectiveness of using the abstractions in a compositional checker.

3.1 Annotated Automata

This section shows how annotations are used to bring automata in a more regular form

to make simplification with respect to conflict equivalence more effective. Using the

running example in figure 3.1, methods to construct an annotated automaton are de-

scribed in 3.1.1 and 3.1.2, and three abstraction rules to simplify annotated automata

are presented in 3.1.3–3.1.5. In 3.1.6, the complete abstraction procedure to simplify

automata using annotations is presented.

3.1.1 Annotation

The states in a nondeterministic automaton carry several implicit requirements charac-

terising their blocking or nonblocking behaviour in composition with other automata.

For illustration, consider stateq0 in automatonG in figure 3.1. Its eligible event set

is EligG(q0) = {α,β ,γ}; note thatβ is included because of the silent transition toq4.

Blocking will occur if stateq0 is composed with a state that does not enable at least

one of the eventsα, β , or γ. Moreover, due to the silent transitions to statesq3 andq4,

any state composed withq0 also needs to enable at least one event from their sets of

eligible events, EligG(q4) = {α,β} and EligG(q3) = {α}. In order to capture these

nonblocking requirements in a more concise manner, the three eligible event sets are

associated with stateq0 asannotations.

Definition 3.1 An annotated automatonis a 5-tupleA= 〈Σ,Q,→,Q◦,Ann〉 such that

〈Σ,Q,→,Q◦〉 is an ordinary automaton withoutτ-transitions, andAnn⊆Q×2Σω is the

annotation relation, which satisfies the following conditions:

(i) for everyx ∈Q, there existsa⊆ Σω such that(x,a) ∈ Ann;

(ii) for every (x,a) ∈ Ann, it holds thata⊆ EligA(x).

An annotation is a set of eventsa⊆ Σω associated with a statex∈Q. The intended

meaning of(x,a) ∈ Ann is that, if the automaton is in statex, at least one of the events

in a must be enabled in the synchronous composition of the entiresystem in order
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Figure 3.1: Simplification of automatonG using annotations givesG≃conf U ′′.
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to avert blocking. The empty set of events can also serve as anannotation, which is

used to characterise deadlock states. Annotations are similar to ready sets[28] or the

complements offailure sets[16], but they can only be used to partially characterise

conflict equivalence.

The two requirements (i) and (ii) ensure that annotations capture the idea of non-

blocking requirements correctly. Each state must have at least one annotation, and all

annotations must be subsets of the eligible event set of their state. When annotating

automata in practice, every state can be associated with itsown eligible event set as an

annotation, and this “maximal” annotation does not need to be stored explicitly in an

annotated automaton as it can be inferred from the transitions.

The following definition shows how to transform an arbitrarynondeterministic au-

tomaton into an annotated automaton. - To do this for every statex in the automaton,

all statesy whichx can reach silently are determined. Once these states are determined

a copy of every outgoing transition ofy is created withx as its new source state, in

addition the eligible event set ofy is calculated and added tox as an annotation. After

this information has been added to the annotated automaton all silent transitions can be

removed without losing any conflict information.

Definition 3.2 Let G= 〈Σ,Q,→,Q◦〉 be an automaton. Theannotated formof G is

A (G) = 〈Σ,Q,→A,Q
◦,Ann〉 , (3.1)

where

→A = {(x,σ ,y) ∈Q×Σω ×Q | x
ε
⇒ z

σ
→ y for somez∈Q} ; (3.2)

Ann= {(x,EligG(y)) | x
ε
⇒ y} . (3.3)

The annotated form clearly satisfies the two conditions (i) and (ii) in definition 3.1,

because(x,EligG(x)) ∈ Ann for everyx ∈Q, andx
ε
⇒ y implies EligG(y)⊆ EligG(x).

The annotated form is obtained from the original automaton by replacing all silent

transitions by the transitions originating from the silentsuccessor states: if statez can

be reached silently from statex, then all transitions originating fromz are copied tox.

Due to this removal of silent transitions, some states may become unreachable and then

can be removed. To retain the nonblocking conditions associated with the originally

silently reached states, their eligible event sets are added as annotations to the start

states of the removed transitions.

Example 3.1 Figure 3.1 shows an automatonG and its annotated formA (G). As each

state can be reached from itself after 0 silent transitions,it is associated with its own
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Figure 3.2: Two automata with equivalent annotated form

eligible event set as an annotation. The stateq0 collects all the outgoing transitions ofq3

andq4, because it is connected to these two states by silent transitions, and annotations

are added toq0 for each of these two states. Similarly,q1 has all the outgoing transitions

and the annotation{α} of q6. The statesq3, q4, andq6 have been deleted because they

become unreachable after the removal of silent transitions.

Complexity 3.1 The annotated formA (G) of G= 〈Σ,Q,→,Q◦〉 has|Q| states, up to

|Q|2|Σω | transitions, and up to|Q|2 annotations. Thus, its size is bounded byO(|Q|2|Σ|).
The time complexity to constructA (G) is dominated by the computation of the transi-

tive closure of the silent transitions, i.e.,O(|Q|3) [27].

Annotation removes information, and it may well happen thattwo different au-

tomata have equal annotated forms. The following proposition shows that this can only

happen if the two original automata are conflict equivalent,so the annotation procedure

does indeed yield a standardised form with respect to conflict equivalence.

Proposition 3.1 Let G andH be two automata such thatA (G) =A (H). ThenG≃conf

H.

Example 3.2 In figure 3.2 there are two automataG andG′ with equivalent annotated

forms. The only difference betweenG andG′ is that the transitionq1
β
→ q4 exists in

G′ but not inG. When the two automata are annotated this difference is removed how-

ever. This is becauseq1 is only reachable viaτ transition and therefore is unreachable

in the annotated automaton, furthermore becauseq0
τ
→ q2

β
→ q4 in both automata the

transitionq0
β
→ q4 is added to the annotated automaton in both cases.

Conversely, it is not true that two conflict equivalent automata have the same anno-

tated forms. Annotations cannot be used to characterise conflict equivalence. This is

due to the fact that failures equivalence [16] does not implyconflict equivalence, and

the same counterexample as given in [25] applies.
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Figure 3.3: An automaton which is conflict-equivalent to theautomata in figure 3.2

Example 3.3 The automatonG′′ shown in figure 3.3 is conflict equivalent to the au-

tomata in figure 3.2 yet it does not have the same annotated form. This is because

the annotated automaton ofG has the annotation{α,β} whereas the annotated form

of G′′ does not. The three automata are conflict equivalent howeverbecause all three

automata have the annotation{β} in q0. The annotation{β} is strictly more restrictive

than the annotation{α,β}. Therefore the annotation{α,β} is redundant. This is gone

into in more detail in section 3.1.3.

In order to prove proposition 3.1 it is necessary to first prove two lemmas that

describe the relationship between paths in an automaton andits annotated form.

Lemma 3.1 Let G= 〈Σ,Q,→,Q◦〉 be an automaton. LetA (G) = 〈Σ,Q,→A,Q◦,Ann〉

be the annotated form ofG. For all tracess∈ Σ∗ and all eventsσ ∈ Σ, the annotated

form has a pathx
sσ
→A z if and only if there exists a pathx

s
⇒ y

σ
→ z in G, for somey∈Q.

Proof. The claim is proved by induction on|s|.

In the base case,s= ε, the claim follows directly from the definition (3.2).

For the inductive step, lets= tσ ′. Then note,

x
sσ
→A z ⇐⇒ x

tσ ′σ
−→A z ⇐⇒ x

tσ ′
→A y

σ
→A z for somey∈Q . (3.4)

By inductive assumption,x
tσ ′
→A y holds if and only ifx

s
⇒ y′

σ ′
→ y for somey′ ∈Q, and

by (3.2)y
σ
→A z holds if and only ify

ε
⇒ z′

σ
→ z for somez′ ∈ Q. Thus, (3.4) becomes

equivalent to,

x
s
⇒ y′

σ ′
→ y

ε
⇒ z′

σ
→ z for somey′,z′ ∈Q ⇐⇒ x

sσ ′
⇒ z′

σ
→ z for somez′ ∈Q . �

Lemma 3.2 Let G= 〈Σ,Q,→,Q◦〉 be an automaton. LetA (G) = 〈Σ,Q,→A,Q◦,Ann〉

be the annotated form ofG. Also letx,z∈Q ands∈ Σ∗.
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(i) If x
s
⇒ z, then there existsz′ ∈Q such thatx

s
⇒A z′ and(z′,EligG(z)) ∈ Ann.

(ii) If x
s
→A zand(z,a)∈Ann, then there existsz′ ∈Q such thatx

s
⇒ z′ and EligG(z

′)=

a.

Proof. (i) Let x
s
⇒ z. If s= ε then x

ε
⇒ z, so x

ε
→A x with (x,EligG(z)) ∈ Ann by

definition 3.2 (3.3). Otherwise,s= tσ and thusx
t
⇒ y

σ
→ z′

ε
⇒ z for somey,z′ ∈Q. By

lemma 3.1, it follows thatx
tσ
⇒A z′, and(z′,EligG(z)) ∈ Annsincez′

ε
⇒ z.

(ii) Let x
s
→A z and(z,a) ∈ Ann. By definition 3.2 (3.3), there existsz′ ∈ Q such

thatz
ε
⇒ z′ and EligG(z

′) = a. If s= ε thenx= z
ε
⇒ z′ with EligG(z

′) = a. Otherwise,

s= tσ and by lemma 3.1, there existsy∈Q such thatx
t
⇒ y

σ
→ z. Thenx

s
⇒ z

ε
⇒ z′ with

EligG(z
′) = a. �

Given these results, it is now possible to prove proposition3.1.

Proposition 3.1 Let G andH be two automata such thatA (G) =A (H). ThenG≃conf

H.

Proof. Let G= 〈Σ,QG,→G,Q
◦
G〉 andH = 〈Σ,QH ,→H ,Q

◦
H〉, and letT = 〈Σ,QT ,→T ,

Q◦T〉 be an arbitrary automaton.

Assume thatG‖ T is nonblocking. It is enough to show that this implies that

H ‖T is nonblocking. Therefore, lets∈ (Σ∪ΣT)
∗ such thatH ‖T

s
⇒ (xH ,xT). Then

H
P(s)
=⇒ xH according to (2.5), whereP: Σ∪ΣT → Σ denotes the natural projection, and

by lemma 3.2 (i), there exists a statexA ∈ QH such thatA (G) = A (H)
P(s)
−→ xA and

(xA,EligH(xH)) ∈ AnnH = AnnG. By lemma 3.2 (ii), there also exists a statexG ∈ QG

such thatG
P(s)
=⇒ xG and EligG(xG) = EligH(xH). Thus,G‖T

s
⇒ (xG,xT).

As G‖T is nonblocking, there exists a tracet ∈ (Σ∪ΣT)
∗ such that(xG,xT)

tω
⇒.

Clearly,tω = uσv for someu∈ (ΣT \Σ)∗, σ ∈ Σω , andv∈ (Σω ∪ΣT)
∗. ThenxG

u
⇒G

xG
σ
→G, i.e.,σ ∈ EligG(xG) = EligH(xH). If σ = ω, then clearlyH ‖T

s
⇒ (xH ,xT)

uω
⇒,

which is enough to show thatH ‖T is nonblocking. Otherwise, ifσ ∈ Σ, let yH ∈

QH such thatH
P(s)
=⇒ xH

σ
→ yH . By lemma 3.1, this impliesA (G) = A (H)

P(s)σ
−→ yH

andG
P(s)σ
=⇒ yH . Sinceu ∈ (ΣT \Σ)∗, it also follows thatG‖T

suσ
=⇒ (yH ,yT) for some

stateyT of T. SinceG‖T is nonblocking, there exists a tracew∈ (Σ∪ΣT)
∗ such that

(yH ,yT)
wω
⇒. Therefore,

H ‖T
s
⇒ (xH ,xT)

uσ
⇒ (yH ,yT)

wω
⇒ . (3.5)

Since(xH ,xT) was chosen arbitrarily, it follows thatH ‖T is nonblocking. �
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3.1.2 Unannotation

The annotation procedure can be reversed to obtain an ordinary automaton from a given

annotated automaton. The reverse operation is calledunannotationand is characterised

by the following definition.

Definition 3.3 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. Anunanno-

tated formof A is any automatonU = 〈Σ,QU ,→U ,Q◦〉 such that the following proper-

ties hold.

(i) QU = Q∪Ann;

(ii) x
τ
→U (x,a) for all (x,a) ∈ Ann, and these are the onlyτ-transitions inU ;

(iii) If x,y ∈Q, thenx
σ
→U y if and only if x

σ
→ y.

(iv) If (x,a) ∈ Annandσ ∈ a, then(x,a)
σ
→U ;

(v) If (x,a)
σ
→U y, thenσ ∈ a andx

σ
→ y.

The state space of an unannotated form consists of all theoriginal statesof the an-

notated automaton plus an additional so-calledannotation statefor each annotation (i),

which is linked to its original state by a silent transition (ii). Furthermore, the unan-

notated form contains all the transitions of the annotated automaton (iii). In addition,

the annotation states must have outgoing transitions for each event in their respective

annotation (iv), and these transitions must lead to some successor state reached by the

same event from the corresponding original state (v).

Given an annotated automatonA, an unannotated form can be constructed by in-

cluding the states and transitions according to (i), (ii), and (iii), and by arbitrarily choos-

ing for each annotation state(x,a) and each eventσ ∈ a a transitionx
σ
→ y, and then

including the transition(x,a)
σ
→ y in the unannotated form. There are several possi-

bilities to choose transitions satisfying points (iv) and (v), but the ambiguity does not

cause problems with conflict-preserving abstraction.

Proposition 3.2 Let A be an annotated automaton, and letU1 andU2 be unannotated

forms ofA. ThenU1≃conf U2.

This proposition which will be proven at the end of this section, confirms that unan-

notated forms are well-defined up to conflict equivalence, sothe ambiguity in defini-

tion 3.3 does not affect the nonblocking property and can be exploited to minimise

unannotated forms.

31



β

γ

q0
{β}

α ,β ,γ

q3
{γ}

q4
{ω}

A

q0

q3 q4

β
β β

γ
γ ττ

τ
(q0,{β})

α ,β ,γ

(q3,{γ}) (q4,{ω})

U1

q0

q3 q4

β
β

γ
γ

τ

τ

τ

(q0,{β})
α ,β ,γ

(q3,{γ}) (q4,{ω})

U2

q0

q3 q4

β
β

γ
γ

τ

τ

τ

(q0,{β})
α ,β ,γ

(q3,{γ}) (q4,{ω})

U3

Figure 3.4: Three possible unanotations of an annotated automaton

Example 3.4 Figure 3.4 show an annotated automatonAalongside three possible unan-

notated forms ofA. All three automata the annotations(q0,{β}), (q3,{γ}), and(q4,{ω})
are replaced by annotation states. These annotation statesare can be reached byτ-

transitions as defined in definition 3.3. Each annotation state must have at least one

outgoing transition for each event in its annotation. As theannotation states(q3,{γ}),
and (q4,{ω}). Have only one possible outgoing transition which can be chosen in

order to fulfill this requirement these states are identicalin U1,U2, andU3. The anno-

tation state(q0,{β}) has two outgoingβ -transitions which it can choose from in order

to fulfill the requirements of definition 3.3. As such it is possible to created a valid

unnanotation of the automatonA by choosing to use either/both transitions.

Example 3.5 In figure 3.1, automatonU is an unannotated form of the annotated au-

tomatonA′′. The three annotations inA′′ have been replaced by annotation states

(q7,{ω}) (q8,{α}), and(q0125,{α}). Note that the transition(q0125,{α})
α
→ q0125

is not included inU , although it could be inherited fromq0125.

Complexity 3.2 Given G = 〈Σ,Q,→,Q◦〉, an unannotated form ofA (G) has up to

|Q|+ |Ann| ≤ |Q|+ |Q|2 states and up to|→|+ |Ann|+ |Ann||Σω | ≤ |Q|2|Σω | tran-

sitions. Its space complexity isO(|Q|2|Σ|), and this is also the time complexity to

construct it from an annotated automaton. This worst-case is unusual in practice—in

the experiments in section 3.2, the number of states after unannotation is almost always

less than it was before annotation.

The following result confirms that unannotation is a reverseoperation of the an-

notation procedure, up to conflict equivalence. Conflict equivalence is preserved by

annotation and subsequent unannotation.

Proposition 3.3 Let G be an automaton, and letU be an unannotated form ofA (G).

ThenU ≃conf G.
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In the following sections, different methods are presentedto simplify annotated

automata. The simplification needs to be carried out in a conflict-preserving way, and

this requires an appropriate notion of conflict equivalenceof annotated automata. The

following definition is justified by propositions 3.2 and 3.3, and by the fact that every

annotated automaton has an unannotated form.

Definition 3.4 The two annotated automataA1 andA2 are conflict equivalent, written

A1≃conf A2, if for every unannotated formU1 of A1 and for every unannotated formU2

of A2 it holds thatU1≃conf U2.

It is now necessary to prove the two key results about unannotation. Unannotated

forms are equal with respect to conflict equivalence (proposition 3.2), and conflict

equivalence is preserved when annotating and unannotatingagain (proposition 3.3).

These results depend on the relationship between traces in an annotated automaton

and its unannotated forms, which are first established. Lemma 3.3 shows that every

nonempty path of an annotated automaton corresponds to an equivalent path of its

unannotated form. Lemma 3.4 lifts this result to all paths ofan unannotated form,

considering separately the cases of original and annotation end states.

Lemma 3.3 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and letU = 〈Σ,
QU ,→U ,Q◦〉 be an unannotated form ofA. For all tracess∈ Σ∗, all eventsσ ∈ Σ, and

all statesx∈Q, it holds thatx
sσ
→ z if and only if x

s
⇒U y

σ
→U z for somey∈QU .

Proof. The claim is proved by induction on|s|.

First consider the base cases= ε. If x
σ
→ z, it follows directly from definition 3.3 (iii)

that x
σ
→U z. Conversely, ifx

ε
⇒U y

σ
→U z, then by definition 3.3 (ii) eitherx = y or

x
τ
→U y. If x= y

σ
→U z, thenx

σ
→ zby definition 3.3 (iii). Ifx

τ
→U y, theny= (x,a)∈Ann

by definition 3.3 (ii), and(x,a) = y
σ
→U z impliesx

σ
→ z by definition 3.3 (v).

For the inductive step, lets= tσ ′, and first assumex
tσ ′
→ y

σ
→ z. By inductive as-

sumption, it follows thatx
tσ ′
⇒U y, and by definition 3.3 (iii) it holds thaty

σ
→U z. This

impliesx
tσ ′
⇒U y

σ
→U z. Conversely, assume thatx

tσ ′
⇒U y

σ
→U z, i.e.,

x
t
⇒U x′

σ ′
→U y′

ε
⇒U y

σ
→U z . (3.6)

Then x
tσ ′
→ y′ by inductive assumption, and by definition 3.3 (ii), it either holds that

y′ = y, and thusy′
σ
→U z, which impliesy′

σ
→ z by definition 3.3 (iii); or there is an

annotation(y′,a) ∈ Ann such thaty = (y′,a), i.e., (y′,a)
σ
→U z and thusy′

σ
→ z by

definition 3.3 (v). In both cases,x
tσ ′
→ y′

σ
→ z, i.e.,x

sσ
→ z. �

Lemma 3.4 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and letU = 〈Σ,
QU ,→U ,Q◦〉 be an unannotated form ofA.
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(i) For all tracess∈ Σ∗ and all statesx∈Q, it holds thatA
s
→ x if and only ifU

s
⇒ x.

(ii) For all tracess∈ Σ∗ and all annotations(x,a) ∈ Ann, it holds thatA
s
→ x if and

only if U
s
⇒ (x,a).

Proof. (i) Firstly, if s= ε, thenA
ε
→ x impliesx∈Q◦ and thusU

ε
⇒ x, and conversely

U
ε
⇒ x with x ∈ Q implies x ∈ Q◦ by definition 3.3 (ii) and thusA

ε
→ x. Secondly, if

s= tσ , the claim follows immediately from lemma 3.3.

(ii) Let (x,a) ∈ Ann. Thenx
τ
→U (x,a) by definition 3.3 (ii), and this is the only

way how(x,a) can be reached inU . Then the claim follows from (i), becausex ∈ Q

and thusA
s
→ x if and only if U

s
⇒ x

τ
→ (x,a). �

The result that two unannotated forms of the same annotated automaton are conflict

equivalent now becomes a consequence of lemmas 3.3 and 3.4.

Proposition 3.2 Let A be an annotated automaton, and letU1 andU2 be unannotated

forms ofA. ThenU1≃conf U2.

Proof. Let A = 〈Σ,Q,→,Q◦,Ann〉, and letUi = 〈Σ,Q∪Ann,→i ,Q◦〉 for i = 1,2 be

unannotated forms ofA. Furthermore, letT = 〈Σ,QT ,→T ,Q
◦
T〉 be an arbitrary automa-

ton such thatU1‖T is nonblocking. It is enough to show that this implies thatU2‖T is

nonblocking. Therefore, lets∈ (Σ∪ΣT)
∗ such thatU2‖T

s
⇒ (x,xT), and consider two

cases.

Case 1: x= (xa,a)∈Ann.ThenU2
P(s)
=⇒ (xa,a), which impliesA

P(s)
−→ xa andU1

P(s)
=⇒

(xa,a) by lemma 3.4 (ii). ThusU1‖T
s
⇒ ((xa,a),xT), and sinceU1‖T is nonblocking,

there existst ∈ Σ∗ such thatU1‖T
s
⇒ ((xa,a),xT)

tω
⇒. Write tω = uσv with u∈ (ΣT \

Σ)∗, σ ∈Σω , andv∈ (Σω∪ΣT)
∗. ThenU1‖T

s
⇒ ((xa,a),xT)

u
⇒ ((xa,a),x′T)

σ
→ (y1,yT),

so σ ∈ EligU1
((xa,a)) = a = EligU2

((xa,a)) by definition 3.3 (iv) and (v), and thus

(xa,a)
σ
→2 y2 for somey2 ∈ Q. ThusU2‖T

s
⇒ ((xa,a),xT)

u
⇒ ((xa,a),x′T)

σ
→ (y2,yT).

If σ = ω, then clearlyU2‖T
s
⇒ ((xa,a),xT)

uω
⇒, which is enough to show thatU2‖T is

nonblocking. Otherwise,U2‖T
suσ
=⇒ (y2,yT) with suσ ∈ (Σ∪ΣT)

∗ andy2 ∈Q, and the

proof continues as inCase 2.

Case 2: x∈ Q. ThenU2
P(s)
=⇒ x implies A

P(s)
−→ x andU1

P(s)
=⇒ x by lemma 3.4 (i).

ThusU1 ‖T
s
⇒ (x,xT), and sinceU1 ‖T is nonblocking, there existsw∈ Σ∗ such that

U1‖T
s
⇒ (x,xT)

wω
⇒ (y,yT) wherey∈Q. Thereforex

P(w)ω
=⇒ 1 y, which impliesx

P(w)ω
−→ y

andx
P(w)ω
=⇒ 2 y by lemma 3.3. ThenU2 ‖T

s
⇒ (x,xT)

wω
⇒, and since(x,xT) was chosen

arbitrarily, it follows thatU2‖T is nonblocking. �

The second main result about unannotation is that conflict equivalence is preserved

when annotation is followed by unannotation. To prove this,it is helpful to first es-

tablish a lemma about annotations, namely that the annotated form of an automaton
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is equal to the annotated form of its unannotation. Due to theway annotated forms

are defined in this thesis, lemma 3.5 only applies to annotated forms of an ordinary

automatonG, not to arbitrary annotated automata.

Lemma 3.5 Let G be an automaton, and letU be an unannotated form ofA (G). Then

A (U) = A (G).

Proof. Let A (G) = 〈Σ,Q,→,Q◦,Ann〉, let U = 〈Σ,QU ,→U ,Q◦〉 be an unannotated

form of A (G), and letA (U) = 〈Σ,QU ,→A (U),Q
◦,AnnA (U)〉. It will be shown that

the reachable parts ofA (G) andA (U) are equal, i.e., that→ =→A (U)|Q andAnn=

AnnA (U)|Q, where→A (U)|Q =→A (U)∩ (Q×Σω ×QU) andAnnA (U)|Q = AnnA (U)∩

(Q×2Σω ).

First, letx
σ
→ y. Thenx ∈ Q andx

σ
→U y by definition 3.3 (iii), andx

σ
→A (U) y by

definition 3.2 (3.2), andx
σ
→A (U)|Q y asx ∈Q.

Conversely, letx
σ
→A (U)|Q y. Thenx ∈ Q andx

ε
⇒U z

σ
→U y for somez∈ QU by

definition 3.2 (3.2). By definition 3.3 (ii), this means that eitherx = z, which implies

x
σ
→U y andx

σ
→ y by definition 3.3 (iii), orz= (x,a)

σ
→U y, which impliesx

σ
→ y by

definition 3.3 (v).

Second, let(x,a) ∈ Ann. Thenx ∈ Q andx
τ
→U (x,a) by definition 3.3 (ii) and

EligU((x,a)) = a by definition 3.3 (iv) and (v). By definition 3.2 (3.3), it follows that

(x,a) = (x,EligU((x,a))) ∈ AnnA (U)|Q.

Conversely, let(x,a) ∈ AnnA (U)|Q. Thenx ∈ Q, and by definition 3.2 (3.3), there

existsy∈QU such thatx
ε
⇒U y and EligU(y) = a. Here,x

ε
⇒U y means that eitherx= y

or x
τ
→U y.

In the casex = y, note thaty = x ∈ Q, and EligU(y) = EligA(y)∪
⋃

(z,a)∈Anna =

EligA(y) by definition 3.1 (ii), and EligA(y) = EligG(y) by definition 3.2 (3.2). There-

fore,(x,a) = (y,EligU(y)) = (y,EligA(y)) = (y,EligG(y)) ∈ Ann.

In the casex
τ
→U y, note thaty ∈ Ann by definition 3.3 (ii). Then it follows from

EligU(y) = a by definition 3.3 (iv) and (v) that(x,a) = y∈ Ann. �

Proposition 3.3 Let G be an automaton, and letU be an unannotated form ofA (G).

ThenU ≃conf G.

Proof. By lemma 3.5, it holds thatA (U) =A (G), which impliesU ≃conf G by propo-

sition 3.1. �

3.1.3 Subsumption

Annotations are sets of events that must be enabled to avert blocking. More precisely,

when a state is entered, at least one of the events in each of its annotations needs to be
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enabled in order to avert blocking. This leads to the observation that certain annotations

are redundant. For example, if a state has both the annotations{α} and{α,β}, then

the latter is implied by the former. The state already requires eventα to be enabled, so

the fact thatα or β needs to be enabled adds no additional information. The annota-

tion {α,β}, being a superset of{α}, is said to be covered orsubsumedby {α}, and

subsumed annotations can be removed without affecting conflict equivalence.

This gives rise to the followingsubsumption rule: if an annotated automaton con-

tains annotations(x,a) and (x,b) such thata $ b, then the annotation(x,b) can be

removed. The removal of subsumed annotations from an annotated automaton pre-

serves conditions (i) and (ii) in definition 3.1, because no annotations are added and

annotations can only be removed from states that have more than one annotation.

Example 3.6 In stateq0 of automatonA (G) in figure 3.1, the annotation{α} sub-

sumes{α,β} and{α,β ,γ}, and the annotation{α} in stateq1 subsumes{α,β ,γ}.
The subsumed annotations are struck out in the figure.

Proposition 3.4 Let A = 〈Σ,Q,→,Q◦,Ann〉 andAsub= 〈Σ,Q,→,Q◦,Annsub〉 be two

annotated automata such thatAnnsub⊆Annand for all(x,a)∈Annthere existsasub⊆ a

such that(x,asub) ∈ Annsub. ThenA≃conf Asub.

Proof. LetU = 〈Σ,Q∪Ann,→U ,Q◦〉 andUsub= 〈Σ,Q∪Annsub,→U,sub,Q◦〉 be unan-

notated forms ofA andAsub, respectively. It is to be shown thatU ≃confUsub. Therefore,

let T = 〈Σ,QT ,→T ,Q
◦
T〉 be an arbitrary automaton.

First, assume thatU ‖T is nonblocking, and lets∈ (Σ∪ΣT)
∗ such thatUsub‖T

s
⇒

(x,xT). ThenUsub
P(s)
=⇒ x∈Q∪Annsub. Consider two cases.

Case 1: x= (xa,a) ∈ Annsub. FromUsub
P(s)
=⇒ x= (xa,a), it follows thatAsub

P(s)
−→ xa

by lemma 3.4 (ii), which impliesA
P(s)
−→ xa becauseA andAsubhave the same transition

relations. Furthermore, since(xa,a) ∈ Annsub⊆ Ann, it follows by lemma 3.4 (ii) that

U
P(s)
=⇒ (xa,a). This impliesU ‖T

s
⇒ ((xa,a),xT), and sinceU ‖T is nonblocking, there

existst ∈ Σ∗ such thatU ‖T
s
⇒ ((xa,a),xT)

tω
⇒. Write tω = uσv with u∈ (ΣT \Σ)∗, σ ∈

Σω , andv∈ (Σω ∪ΣT)
∗. ThenU ‖T

s
⇒ ((xa,a),xT)

u
⇒ ((xa,a),x′T)

σ
→ (y,yT), soσ ∈

EligU((xa,a)) = a= EligUsub
((xa,a)) by definition 3.3 (iv) and (v), and(xa,a)

σ
→U,sub

ysub for someysub∈ Q. If σ = ω, then clearlyUsub‖T
s
⇒ ((xa,a),xT)

uω
⇒, which is

enough to show thatUsub‖T is nonblocking. Otherwise,Usub‖T
suσ
=⇒ (ysub,yT) with

suσ ∈ (Σ∪ΣT)
∗ andysub∈Q, and the proof continues as inCase 2.

Case 2: x∈Q. FromUsub
P(s)
=⇒ x, it follows thatAsub

P(s)
−→ x by lemma 3.4 (i), which

impliesA
P(s)
−→ x becauseA andAsub have the same transition relations, which implies

U
P(s)
=⇒ x again by lemma 3.4 (i). ThenU ‖T

s
⇒ (x,xT), and sinceU ‖T is nonblocking,
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there existsw∈ Σ∗ such thatU ‖T
s
⇒ (x,xT)

wω
⇒ (z,zT). This meansx

P(w)ω
=⇒ U z, which

implies x
P(w)ω
−→ z by lemma 3.3, which impliesx

P(w)ω
−→ sub z becauseA andAsub have

the same transition relations, which impliesx
P(w)ω
−→ U,sub z again by lemma 3.3. Thus,

Usub‖T
s
⇒ (x,xT)

wω
⇒, and since(x,xT) was chosen arbitrarily, it follows thatUsub‖T

is nonblocking.

Conversely, assume thatUsub‖T is nonblocking, and lets∈ (Σ∪ΣT)
∗ such that

U ‖T
s
⇒ (x,xT). ThenU

P(s)
=⇒ x∈Q∪Ann. Consider two cases.

Case 1: x= (xa,a)∈Ann.By assumption there existsasub⊆ a such that(xa,asub)∈

Annsub. FromU
P(s)
=⇒ x= (xa,a), it follows thatA

P(s)
−→ xa by lemma 3.4 (ii), which im-

plies Asub
P(s)
−→ xa becauseA andAsub have the same transition relations. Therefore,

Usub
P(s)
=⇒ xa

τ
→ (xa,asub) by lemma 3.4 (i) and by definition 3.3 (ii). Thus,Usub‖

T
s
⇒ ((xa,asub),xT), and sinceUsub‖T is nonblocking, there existst ∈ Σ∗ such that

Usub‖T
s
⇒ ((xa,asub),xT)

tω
⇒. Write tω = uσv with u ∈ (ΣT \Σ)∗, σ ∈ Σω , andv ∈

(Σω ∪ΣT)
∗. ThenUsub‖T

s
⇒ ((xa,asub),xT)

u
⇒ ((xa,asub),x′T)

σ
→ (ysub,yT), i.e., σ ∈

EligUsub
((xa,asub)) = asub⊆ a=EligU((xa,a)) by definition 3.3 (iv) and (v), and(xa,a)

σ
→U y for somey∈Q. If σ = ω, then clearlyU ‖T

s
⇒ ((xa,a),xT)

uω
⇒, which is enough

to show thatU ‖T is nonblocking. Otherwise,U ‖T
suσ
=⇒ (y,yT) with suσ ∈ (Σ∪ΣT)

∗

andy∈Q, and the proof continues as inCase 2.

Case 2: x∈ Q. FromU
P(s)
=⇒ x, it follows that A

P(s)
−→ x by lemma 3.4 (i), which

impliesAsub
P(s)
−→ x becauseA andAsubhave the same transition relations, which implies

Usub
P(s)
=⇒ x again by lemma 3.4 (i). ThenUsub‖ T

s
⇒ (x,xT), and sinceUsub‖ T is

nonblocking, there existsw ∈ Σ∗ such thatUsub‖T
s
⇒ (x,xT)

wω
⇒ (z,zT). This means

x
P(w)ω
=⇒ U,subz, which by lemma 3.3 impliesx

P(w)ω
−→ z, both inA andAsub, andx

P(w)ω
−→ U z.

Thus,U ‖T
s
⇒ (x,xT)

wω
⇒, and since(x,xT) was chosen arbitrarily, it follows thatU ‖T

is nonblocking. �

Complexity 3.3 The annotated formA (G) of G= 〈Σ,Q,→,Q◦〉 has up to|Q| anno-

tations per state, which givesO(|Q|2) subsumption tests per state, and the cost of each

test isO(|Σ|). So the worst-case time complexity of the subsumption test for A (G)

is O(|Q|3|Σ|). This makes subsumption one of the most expensive of the abstractions

presented here, but experimental results show that it is worthwhile. The subsumption

test is best done immediately while constructing annotatedautomata or introducing

annotations, considerably reducing memory requirements.
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3.1.4 Incoming Equivalence

Incoming equivalence[12] identifies two states as equivalent if they have exactlythe

same incoming transitions. The concept is extended to annotated automata as follows.

Definition 3.5 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. The incom-

ing equivalence relation∼inc ⊆ Q×Q is defined such thatx ∼inc y if and only if the

following conditions hold.

• x ∈Q◦ if and only if y ∈Q◦;

• For all statesz∈Q and all eventsσ ∈ Σω , it holds thatz
σ
→ x if and only if z

σ
→ y.

In [12], incoming equivalence is used as a restriction to make certain simplification

rules applicable. Due to the improved regularity achieved by annotations, all incoming

equivalent states in an annotated automaton can be merged. This merging is done using

the standard automaton quotient, with the addition that, when merging several states

into one, the resultant state receives the annotations of all original states.

Definition 3.6 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and let∼ ⊆

Q×Q be an equivalence relation. Thequotient automatonof A modulo∼ is A/∼ =

〈Σ,Q/∼,→/∼,Q̃◦, Ãnn〉, where

→/∼= {([x],σ , [y]) | x
σ
→ y} ; (3.7)

Q̃◦ = { [x] | x ∈Q◦ } ; (3.8)

Ãnn= {([x],a) | x∈Q and there existsx′ ∼ x such that(x′,a) ∈ Ann} . (3.9)

Here,[x] = {x′ ∈Q | x′ ∼ x} denotes theequivalence classof x∈Q with respect to∼,

andQ/∼= { [x] | x ∈Q} is the set of equivalence classes modulo∼.

It is easily confirmed that the quotientA/∼ of an annotated automatonA satisfies

conditions (i) and (ii) in definition 3.1, because every merged state receives annotations

from all its original states, and the eligible events sets are increased when merging.

Proposition 3.5 Let A= 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. ThenA≃conf

A/∼inc.

This result is proven later on in this section. The merging ofincoming equivalent

states can be considered as a generalisation of the silent continuation rule for normal

automata. This rule states that all incoming equivalent states which have outgoing

τ-transitions can be merges [12]. An annotation symbolises asilent transition to an

38



implicit state. When incoming equivalent states are merged,the nondeterministic de-

cisions of the predecessor states are deferred by one step, expressed by the merged

annotations.

Example 3.7 The annotated automatonA′ in figure 3.1 is the result of using incoming

equivalence to simplifyA (G). Statesq2 andq5 are incoming equivalent and have been

merged. The resultant stateq25 receives the annotations{α} and{α,β ,γ}, but only

{α} remains because of subsumption.

Complexity 3.4 The complexity of partitioning an automaton based on incoming equiv-

alence isO(|Q|2|Σ|). Two states are equivalent if they have equal sets of incoming tran-

sitions, which can be determined efficiently using hash codes. Hash codes can be set up

in a single pass over all transitions of the automaton, of which there are up to|Q|2|Σω |,

and the construction of the simplified automaton is achievedby another loop over all

transitions, in the same complexity [12]. However, the merging of some states may

make other states incoming equivalent, so the abstraction should be repeated to ensure

a minimal result. The maximum number of iterations is|Q|, as each merge except the

last reduces the number of states, so the complexity to obtain a minimal abstraction by

incoming equivalence isO(|Q|3|Σ|).

To prove the correctness of abstractions based on automatonquotients, such as the

incoming equivalence abstraction, the relationship between the traces in an automa-

tonA and its quotientA/∼ needs to be established. It is well-known that every trace inA

also has a corresponding trace inA/∼. The following lemma 3.6 is quoted from [12]

and holds for every equivalence relation. Conversely, not every path in a quotient au-

tomaton exists in the original automaton, but lemma 3.7 shows how such a path can be

obtained if the quotient is constructed using incoming equivalence.

Lemma 3.6 Let A= 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and let∼⊆Q×Q

be an equivalence relation. Then, for all statesx,y∈ Q and all tracess∈ Σ∗ such that

x
s
→ y in A, it holds that[x]

s
→ [y] in A/∼.

Proof. Let x
s
→ y in A with s= σ1 . . .σn. Then there exists statesx0, . . . ,xn ∈ Q such

that

x= x0
σ1→ x1

σ2→ ·· ·
σn→ xn = y . (3.10)

By definition 3.6, it holds that[xk−1]
σk→ [xk] for eachk= 1, . . . ,n, which implies[x]

s
→ [y]

in A/∼. �

Lemma 3.7 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton, and let ˜x, z̃ ∈

Q/∼inc be two states ofA/∼inc.
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(i) For all s∈ Σ∗ and allσ ∈ Σ such that ˜x
sσ
→ z̃, there existsx∈ x̃ such that for all

z′ ∈ z̃ it holds thatx
sσ
→ z′.

(ii) For all s∈ Σ∗ such thatA/∼inc
s
→ z̃ and for allz′ ∈ z̃, it holds thatA

s
→ z′.

Proof. (i) The claim is proven by induction on|s|.

Base case: s= ε. As x̃
σ
→ z̃, there must existx∈ x̃ andz∈ z̃ such thatx

σ
→ z. Let

z′ ∈ z̃. Thenz∼inc z′, and it follows from definition 3.5 thatx
σ
→ z′.

Inductive step: s= tσ . Assume that ˜x
t
→ ỹ

σ
→ z̃. Then there are statesy∈ ỹ andz∈ z̃

such thaty
σ
→ z. By inductive assumption, there exists a statex∈ x̃ such thatx

t
→ y. Let

z′ ∈ z̃. Thenz∼inc z′, and it follows from definition 3.5 thatx
t
→ y

σ
→ z′.

(ii) Let Q̃◦ = { [x◦] | x◦ ∈Q◦ } be the set of initial states ofA/∼inc.

If s= ε, thenz̃∈ Q̃◦ and thus ˜z= [x◦] for somex◦ ∈Q◦, which impliesx◦ ∈ z̃. Let

z′ ∈ z̃. Thenx◦ ∼inc z′, which impliesz′ ∈Q◦ by definition 3.5 and thusA
ε
→ z′.

Otherwises= tσ for somet ∈ Σ∗ andσ ∈ Σ, and there exists ˜x∈ Q̃◦ such that ˜x
tσ
→ z̃.

Let z′ ∈ z̃. It follows from (i) that there existsx∈ x̃ such thatx
tσ
→ z′. Since ˜x∈ Q̃◦, there

existsx◦ ∈ x̃ such thatx◦ ∈Q◦. Thenx◦ ∼inc x impliesx∈Q◦ and thusA
tσ
→ z′. �

Using the above two lemmas and the properties of the paths of unannotated forms

established in section??, the proof of proposition 3.5 proceeds using similar ideas to

that of theActive Events Rule[12].

Proposition 3.5 Let A= 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. ThenA≃conf

A/∼inc.

Proof. Let U = 〈Σ,Q∪Ann,→U ,Q◦〉 andŨ = 〈Σ,Q/∼inc∪ Ãnn,→Ũ ,Q̃
◦〉 be unan-

notated forms ofA and Ã = A/∼inc, respectively. It is to be shown thatU ≃conf Ũ .

Therefore, letT = 〈Σ,QT ,→T ,Q
◦
T〉 be an arbitrary automaton.

First, assume thatU ‖T is nonblocking, and lets∈ (Σ∪ΣT)
∗ such thatŨ ‖T

s
⇒

(x̃,xT). ThenŨ
P(s)
=⇒ x̃∈Q/∼inc∪ Ãnn. Consider two cases.

Case 1:x̃= (x̃a,a) ∈ Ãnn. Then there existsxa ∈ x̃a such that(xa,a) ∈ Ann. From

Ũ
P(s)
=⇒ x̃= (x̃a,a), it follows thatÃ

P(s)
−→ x̃a by lemma 3.4 (ii), which impliesA

P(s)
−→ xa by

lemma 3.7 (ii), andU
P(s)
=⇒ (xa,a) again by lemma 3.4 (ii). Thus,U ‖T

s
⇒ ((xa,a),xT),

and sinceU ‖T is nonblocking, there existst ∈ Σ∗ such thatU ‖T
s
⇒ ((xa,a),xT)

tω
⇒.

Write tω = uσv with u ∈ (ΣT \ Σ)∗, σ ∈ Σω , andv ∈ (Σω ∪ ΣT)
∗. ThenU ‖ T

s
⇒

((xa,a),xT)
u
⇒ ((xa,a),x′T)

σ
→ (y,yT), i.e., σ ∈ EligU((xa,a)) = a= EligŨ((x̃a,a)) by

definition 3.3 (iv) and (v), and(x̃a,a)
σ
→Ũ ỹ for some ˜y ∈ Q/∼inc. If σ = ω, then

clearly Ũ ‖T
s
⇒ ((x̃a,a),xT)

u
⇒ ((x̃a,a),x′T)

ω
⇒, which is enough to show that̃U ‖T

is nonblocking. Otherwise,̃U ‖T
s
⇒ ((x̃a,a),xT)

u
⇒ ((x̃a,a),x′T)

σ
→ (ỹ,yT) with suσ ∈

(Σ∪ΣT)
∗ andỹ∈Q/∼inc, and the proof continues as inCase 2.
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Case 2:x̃∈Q/∼inc. ThenÃ
P(s)
−→ x̃ by lemma 3.4 (i). Then letx∈ x̃, and it follows

from lemma 3.7 (ii) thatA
P(s)
−→ x, which impliesU

P(s)
=⇒ x again by lemma 3.4 (i). Thus,

U ‖T
P(s)
=⇒ (x,xT), and sinceU ‖T is nonblocking, there existsw ∈ Σ∗ such thatU ‖

T
P(s)
=⇒ (x,xT)

wω
⇒ (z,zT). Thenx

P(w)ω
=⇒ U z, with z∈ Q by definition 3.3. This implies

x
P(w)ω
−→ z by lemma 3.3, and thus[x]

P(w)ω
−→ [z] in A/∼inc by lemma 3.6, which implies

x̃= [x]
P(w)ω
=⇒ Ũ [z] again by lemma 3.3. Thus,̃U ‖T

s
⇒ (x̃,xT)

wω
⇒, and since(x̃,xT) was

chosen arbitrarily, it follows that̃U ‖T is nonblocking.

Conversely, assume thatŨ ‖T is nonblocking, and lets∈ (Σ∪ΣT)
∗ such thatU ‖

T
s
⇒ (x,xT). ThenU

P(s)
=⇒ x∈Q∪Ann. Consider two cases.

Case 1: x= (xa,a) ∈ Ann. FromU
P(s)
=⇒ (xa,a), by lemma 3.4 (ii) it follows that

A
P(s)
−→ xa, which impliesÃ

P(s)
−→ [xa] by lemma 3.6. Note that([xa],a) ∈ Ãnn and thus

Ũ
P(s)
=⇒ ([xa],a) again by lemma 3.4 (ii). Thus,̃U ‖T

s
⇒ (([xa],a),xT), and sinceŨ ‖T

is nonblocking, there existst ∈ Σ∗ such thatŨ ‖T
s
⇒ (([xa],a),xT)

tω
⇒. Write tω =

uσv with u∈ (ΣT \Σ)∗, σ ∈ Σω , andv∈ (Σω ∪ΣT)
∗. ThenŨ ‖T

s
⇒ (([xa],a),xT)

u
⇒

(([xa],a),x′T)
σ
→ (ỹ,yT), i.e.,σ ∈ EligŨ(([xa],a)) = a= EligU((xa,a)) by definition 3.3

(iv) and (v), and(xa,a)
σ
→U y for somey ∈ Q. ThereforeU ‖ T

s
⇒ ((xa,a),xT)

u
⇒

((xa,a),x′T)
σ
→ (y,yT) with y ∈ Q. If σ = ω, then clearlyU ‖ T

s
⇒ ((xa,a),xT)

uω
⇒,

which is enough to show thatU ‖T is nonblocking. Otherwise,U ‖T
suσ
=⇒ (y,yT) with

suσ ∈ (Σ∪ΣT)
∗ andy∈Q, and the proof continues as inCase 2.

Case 2: x∈ Q. Then A
P(s)
−→ x by lemma 3.4 (i), which implies̃A

P(s)
−→ [x] by

lemma 3.6. By definition 3.1, there existsa⊆ EligA(x) such that(x,a) ∈ Ann. Then

([x],a) ∈ Ãnn, andŨ
P(s)
=⇒ ([x],a) by lemma 3.4 (ii). Thus,̃U ‖T

s
⇒ (([x],a),xT), and

sinceŨ ‖ T is nonblocking, there existst ∈ Σ∗ such thatŨ ‖ T
s
⇒ (([x],a),xT)

tω
⇒.

Write tω = uσv with u ∈ (ΣT \ Σ)∗, σ ∈ Σω , andv ∈ (Σω ∪ ΣT)
∗. ThenŨ ‖ T

s
⇒

(([x],a),xT)
u
⇒ (([x],a),x′T)

σ
→ (ỹ,yT). Clearly,σ ∈ EligŨ(([x],a)) = a⊆ EligA(x) =

EligU(x) by definition 3.3 (iii) and (v). Ifσ = ω, it already follows thatU ‖ T
s
⇒

(x,xT)
uω
⇒, i.e., U ‖T is nonblocking. Otherwiseσ ∈ EligA(x) means thatx

σ
→ y for

somey∈ Q. ThenÃ
P(s)
−→ [x]

σ
→ [y] by definition 3.6 andŨ

P(s)σ
=⇒ [y] by lemma 3.4 (i).

ThereforeŨ ‖T
suσ
=⇒ ([y],yT), and sinceŨ ‖T is nonblocking, there existsw∈ Σ∗ such

thatŨ ‖T
suσ
=⇒ ([y],yT)

wω
⇒. Then[y]

P(w)ω
=⇒ Ũ , and by lemma 3.7 (i) there existsy′ ∈ [y]

such thaty′
P(w)ω
=⇒ U . Thusx

σ
→ y∼inc y′, which impliesx

σ
→ y′ by definition 3.5, and

x
σ
→U y′ by definition 3.3 (iii). Thus,U ‖T

s
⇒ (x,xT)

uσ
⇒ (y′,yT)

wω
⇒, and since(x,xT)

was chosen arbitrarily, it follows thatU ‖T is nonblocking. �
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3.1.5 Bisimulation

Bisimulationandobservation equivalence[26] are general tools that have been used

with considerable success to simplify automata during nonblocking verification [12,

33]. Bisimulation can also be applied to annotated automata,with the added restriction

that bisimilar states must have the same annotations. Nevertheless, the removal of silent

transitions can transform several conflict equivalent transition structures into the same

annotated states, even if they are not originally observation equivalent. So bisimulation

on the annotated automaton can be more effective, particularly after the removal of

subsumed annotations.

Definition 3.7 Let A1 = 〈Σ,Q1,→1,Q
◦
1,Ann1〉 andA2 = 〈Σ,Q2,→2,Q

◦
2,Ann2〉 be two

annotated automata. A relation≈ ⊆ Q1×Q2 is called abisimulationbetweenA1

andA2, if the following conditions hold for all statesx1 ∈ Q1 andx2 ∈ Q2 such that

x1≈ x2.

• For allσ ∈ Σω , if x1
σ
→ y1 then there existsy2∈Q2 such thaty1≈ y2 andx2

σ
→ y2.

• For allσ ∈ Σω , if x2
σ
→ y2 then there existsy1∈Q1 such thaty1≈ y2 andx1

σ
→ y1.

• For alla⊆ Σω , it holds that(x1,a) ∈ Ann1 if and only if (x2,a) ∈ Ann2.

A1 andA2 arebisimulation equivalentor bisimilar, written A1 ≈ A2, if there exists a

bisimulation≈ betweenA1 andA2 such that, for every initial statex◦1 ∈Q◦1 there exists

an initial statex◦2 ∈Q◦2 such thatx◦1≈ x◦2, and vice versa.

It is easily confirmed that conditions (i) and (ii) in definition 3.1 are preserved under

bisimilarity of annotated automata. This is because bisimilar states always have the

same sets of annotations and eligible events.

Example 3.8 AutomatonA′′ in figure 3.1 is bisimilar toA′. Statesq0, q1, andq25 have

been merged due to the fact that they have the same annotations and equivalent outgoing

transitions. Note that this only becomes possible after annotation, subsumption, and

incoming equivalence.

Proposition 3.6 LetA1 andA2 be annotated automata such thatA1≈A2. ThenA1≃conf

A2.

Complexity 3.5 Given an annotated automaton, a coarsest bisimulation relation can

be found in time complexityO(|→| log|Q|) using the algorithm in [10]. The anno-

tated form ofG = 〈Σ,Q,→,Q◦〉 hasO(|Q|2|Σ|) transitions, givingO(|Q|2|Σ| log|Q|)

time complexity for its simplification. An initial partition based on annotations can be

established with lower time complexity.
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We will now set out to prove proposition 3.6. This is best proven by showing that

the unannotated forms of bisimilar annotated automata are bisimilar. For this purpose,

the following standard definition of bisimulation for ordinary automata is used [26].

Definition 3.8 Let G1 = 〈Σ,Q1,→1,Q
◦
1〉 andG2 = 〈Σ,Q2,→2,Q

◦
2〉 be two automata.

A relation≈ ⊆ Q1×Q2 is called abisimulationbetweenG1 andG2, if the following

conditions hold for all statesx1 ∈Q1 andx2 ∈Q2 such thatx1≈ x2.

(i) For all σ ∈ Στ,ω , if x1
σ
→ y1 then there existsy2 ∈ Q2 such thaty1 ≈ y2 and

x2
σ
→ y2.

(ii) For all σ ∈ Στ,ω , if x2
σ
→ y2 then there existsy1 ∈ Q1 such thaty1 ≈ y2 and

x1
σ
→ y1.

G1 andG2 arebisimulation equivalentor bisimilar, written G1 ≈ G2, if there exists a

bisimulation≈ betweenG1 andG2 such that, for every initial statex◦1 ∈Q◦1 there exists

an initial statex◦2 ∈Q◦2 such thatx◦1≈ x◦2, and vice versa.

Although unannotated forms have been shown to be unique up toconflict equiva-

lence in proposition 3.2, two unannotated forms of the same annotated automaton are

not necessarily bisimilar. To prove the result about bisimulation, a unique unannotated

form is needed.

Definition 3.9 Let A = 〈Σ,Q,→,Q◦,Ann〉 be an annotated automaton. Thestandard

unannotationof A is U (A) = 〈Σ,QU ,→U ,Q◦〉 whereQU = Q∪Annand

→U =→∪{(x,τ,(x,a)) ∈Q×{τ}×Ann}∪

{((x,a),σ ,y) ∈ Ann×Σω ×Q | σ ∈ a andx
σ
→ y} (3.11)

The standard unannotation resolves the ambiguity in points(iv) and (v) of defini-

tion 3.3 by simply including all possible transitions for every annotation state. This

ensures uniqueness at the expense of minimality. It is easy to confirm that, for every

annotated automatonA, the standard unannotationU (A) is indeed an unannotated form

of A.

The standard unannotations of bisimilar automata can be shown to be bisimilar, and

this is enough to complete the proof of proposition 3.6.

Lemma 3.8 Let A1 = 〈Σ,Q1,→1,Q
◦
1,Ann1〉 and A2 = 〈Σ,Q2,→2,Q

◦
2,Ann2〉 be two

annotated automata such thatA1≈ A2. ThenU (A1)≈U (A2).
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Proof. Let U (Ai) = 〈Σ,QU,i,→U,i ,Q◦i 〉 whereQU,i = Qi ∪Anni for i = 1,2, and let≈

be a bisimulation betweenA1 andA2. Consider the relation≈U ⊆ QU,1×QU,2 such

thatx1≈U x2 if and only if one of the following two conditions holds:

x1 ∈Q1, x2 ∈Q2, andx1≈ x2 or (3.12)

there existsa⊆ Σω such thatx1 = (x′1,a) ∈ Ann1, x2 = (x′2,a) ∈ Ann2, andx′1≈ x′2 .

(3.13)

It is to be shown that≈U is a bisimulation betweenU (A1) andU (A2). To see (i)

in definition 3.8, letx1 ≈U x2 andx1
σ
→U,1 y1 for someσ ∈ Στ,ω . Then either (3.12)

or (3.13) holds.

If (3.12) holds, thenx1 ≈ x2 with x1 ∈ Q1 andx2 ∈ Q2. Then eithery1 ∈ Q1 or

y1 ∈ Ann1. If y1 ∈Q1, then it follows fromx1
σ
→U,1 y1 thatx1

σ
→1 y1 by definition 3.9.

Sincex1 ≈ x2, by definition 3.7 there existsy2 ∈ Q2 such thatx2
σ
→2 y2 andy1 ≈ y2.

Again by definition 3.9, this impliesx2
σ
→U,2 y2, andy1≈U y2 according to (3.12). If on

the other handy1∈Ann1, thenσ = τ andy1 = (x1,a) for somea⊆ Σω by definition 3.3.

Sincex1≈ x2 and(x1,a) = y1∈Ann1, it follows from definition 3.7 that(x2,a)∈Ann2.

Thenx2
τ
→U,2 (x2,a) by definition 3.9 andy1 = (x1,a)≈U (x2,a) by (3.13).

If (3.13) holds, thenx1 = (x′1,a) ∈ Ann1 andx2 = (x′2,a) ∈ Ann2 for somea⊆ Σω ,

andx′1≈ x′2. Then it follows from(x′1,a)
σ
→U,1 y1 by definition 3.9 thatσ ∈ a, y1 ∈Q1,

andx′1
σ
→1 y1. Sincex′1≈ x′2, there existsy2 ∈Q2 such thatx′2

σ
→2 y2 andy1≈ y2. Then

(x′2,a)
σ
→U,2 y2 by definition 3.9 sinceσ ∈ a, andy1≈U y2 by (3.12) sincey1≈ y2.

This shows (i) in definition 3.8. The proof of (ii) is symmetric, and the condition on

the initial states follows sinceA1≈ A2 andAi andU (Ai) have the same initial states.

�

Proposition 3.6 LetA1 andA2 be annotated automata such thatA1≈A2. ThenA1≃conf

A2.

Proof. LetU1 be an unannotated form ofA1, and letU2 be an unannotated form ofA2.

ThenU1≃conf U (A1)≈U (A2)≃confU2 by proposition 3.2 and lemma 3.8. The claim

follows from results in [25], according to which bisimilar automata are conflict equiv-

alent. �

3.1.6 Abstraction Procedure

This section explains how the above results can be used to minimise a given automaton

with respect to conflict equivalence. Given an automatonG, the task is to compute a

hopefully smaller abstractionG′ conflict equivalent toG.
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Given the complexity of the annotation procedure, it is advisable to reduce the size

of the input automatonG using some standard means before constructing an annotated

form. While not necessarily optimal for conflict equivalence, bisimulation or observa-

tion equivalence [26] can be computed efficiently and are known to achieve significant

reduction, as is the removal of blocking states [12].

After simplification of the input automaton, the next step isto compute its anno-

tated formA (G), which then is simplified in several steps. While constructing the

annotated form, annotations can be checked for subsumptionon the fly, suppressing

the generation of any redundant annotations. The resultingannotated form is next sim-

plified by merging incoming equivalent states, again checking for subsumption and

removing annotations that become redundant. Then the result is minimised according

to bisimulation equivalence.

After simplifying the annotated automaton, it is unannotated to obtain an ordinary

automaton that is conflict equivalent to the input. There aredifferent ways to construct

an unannotated form that satisfies the conditions of definition 3.3, as there is consid-

erable leeway in how outgoing transitions from annotation states can be chosen, and

by making clever choices, the new annotation states can become bisimilar to original

states or other annotation states, making it possible to further simplify the result.

An example of the abstraction procedure is shown in figure 3.1. AutomatonG is

first annotated to obtainA (G), with subsumption being tested on the fly to suppress

some annotations struck out in the figure. Next incoming equivalence leads to the ab-

stractionA′, with another annotation being suppressed due to subsumption as discussed

in example 3.7, and the result is further simplified using bisimulation, givingA′′.

Since the annotated automaton cannot be simplified further,it is replaced by its

unannotated formU . As explained in example 3.5, the transition(q0125,{α})
α
→ q0125

is not included inU . This choice makes the statesq8, (q8,{α}), and (q0125,{α})
observation equivalent, so they can be merged in addition tostatesq7 and(q7,{ω}).
This results in the observation equivalent abstractionU ′. Furthermore, the transition

q0125
α
→ q8 is redundant according to observation equivalence [8] and can be removed,

giving the final resultU ′′.

The abstraction steps in figure 3.1 can be justified by the propositions given in the

previous sections. Note that, for every annotated automaton, there exists an unanno-

tated form although it does not always have to be constructedexplicitly. Let V andV ′

be unannotated forms ofA (G) andA′, respectively. ThenG≃confV by proposition 3.3

andV ≃conf V ′ ≃conf U by proposition 3.4–3.6. Furthermore,U is observation equiva-

lent toU ′ andU ′′, which impliesU ≃conf U ′′ according to [25]. Thus,

G≃conf V ≃conf V
′ ≃conf U ≃conf U

′ ≃conf U
′′ . (3.14)
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Overall, the automatonG with nine states and 25 transitions is simplified to the conflict-

equivalent automatonU ′′ with three states and seven transitions.

3.2 Experimental Results

A conflict checker using annotated automata has been implemented in the DES soft-

ware tool Supremica [1] and tested on the same set of industrial-scale and parametrised

models as used previously in [12]. All these problems have been solved successfully,

and the results are shown in Table 5.1.

After simplifying each individual component in a composed system, the algorithm

selects acandidateset of automata for composition using strategies describedin [12].

After synchronous composition and hiding of local events, the result is first simplified

using observation equivalence and by removing obvious certain conflicts [12]. Then the

annotated form is constructed and simplified using incomingequivalence and bisimu-

lation. Subsumption is used during each of these steps. Finally, an unannotated form is

obtained and further simplified by removing states with onlysilent outgoing transitions.

TheAnnotating Methoddescribed above has been compared to theHeuristic Method

described in [12]. The heuristic compositional conflict checker of [12] selects and com-

poses candidate sets of automata in the same way as the annotating method, but it uses

a more straightforward set of abstraction rules to simplifyautomata. In addition to the

Certain Conflicts Ruleand observation equivalence, which are part of the preprocessing

steps in the Annotating Method, the Heuristic Method also uses theActive Events Rule,

theSilent Continuation Rule, theOnly Silent Incoming Rule, and theOnly Silent Out-

going Rule[12]. All these rules are directly applied to the transitions of an automaton,

without computing an annotated form. This makes the rules simpler to apply, but they

also have somewhat weaker abstraction potential, as it can be shown that all abstrac-

tions obtained using the above mentioned rules and more can in principle be achieved

by simplifying an annotated automaton.

To make the Annotating and Heuristic Method comparable, they have been modi-

fied to ensure that both implementations select and compose the same automata in the

same order, regardless of possible differences in the intermediate results. This is done

to compare the effects of the different simplification methods, as opposed to comparing

different choices of automata for composition (which oftenlead to dramatic changes).

However, the chosen order of composition is no longer optimal, which explains the

difference between the results in Table 3.1 and [12].

Table 3.1 shows the experimental results for nonblocking verification of 14 large

models of industrial-scale applications and 9 very large parametrised models. Please
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Table 3.1: Experimental results

Annotating Heuristic
Peak Total Time Peak Total Time

Size States States [s] StatesStates [s]
AGV 2.6·107 10552 18054 28.1 1368 4097 4.1
AGVb 2.3·107 975 1719 0.2 781 1524 0.1
verriegel3 9.7·108 2346 12767 4.7 2856 14639 6.8
verriegel3b 1.3·109 2346 11028 4.8 2537 11976 6.3
verriegel4 4.5·1010 3703 15286 5.4 2671 15106 6.1
verriegel4b 6.3·1010 2346 11827 4.6 2537 12968 6.3
big bmw 3.1·107 63 342 0.1 63 347 0.1
FMS 812544 86 206 0.0 125 279 0.1
SMS 312 18 119 0.0 18 120 0.0
PMS 5.7·108 75 487 0.1 75 492 0.2
IPC 20592 107 195 0.0 107 195 0.1
ftechnik 1.2·108 5631 21218 5.9 2450 15524 4.8
rhone tough 1.0·1010 1584 5025 4.1 1584 5026 4.5
AIP 1.0·109 6864 82542 30.3 6868 77512 24.7
256philo 5.4·10168 628 77419 21.8
512philo 2.9·10337 628 156395 48.1
1024philo 8.5·10674 628 314347 96.1
128transfer 1.6·10231 43 11115 3.9 42 10966 10.7
256transfer 2.4·10462 43 22251 10.7 42 21974 9.3
512transfer 5.8·10924 43 44523 42.6 42 43990 34.7
128arbiter 2.8·10112 55 14669 10.4
256arbiter 5.4·10224 55 29517 31.5
512arbiter 2.1·10449 55 59213 58.1
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refer to [12] for a more detailed description of the models. The table shows the number

of reachable states of the synchronous product of each model(Size), and the number

of states of the largest automaton encountered during compositional verification (Peak

States), the cumulative number of states constructed during verification (Total States),

and the total verification time in seconds, for both the Annotating Method and the

Heuristic Method,

All experiments were run on a standard laptop computer with a2 GHz microproces-

sor and 4 GB of RAM, and controlled by state limits. If during abstraction some syn-

chronous product has more than 10,000 states, its construction is aborted and another

set of automata is composed instead. If no suitable set of automata for composition

can be identified, a final attempt is made to construct and check the full synchronous

product of all remaining automata whether it is nonblocking. If this attempt runs out of

memory, the run is aborted and the corresponding table entries are left blank.

The annotating conflict checker performs much better than the heuristic method for

the parametrised dining philosophers and tree arbiter problems, which cannot be solved

by the heuristic method using the given state limits and candidate selection strategy. For

the industrial applications, the two methods yield similarresults, with the Annotating

Method producing a smaller peak number of states in 5 cases, and the Heuristic Method

producing a smaller peak number of states in 4 cases. The difference is particularly

notable for theAGVandftechnikmodels, where the annotating method results in larger

automata. This seems to be caused by the annotating and unannotating steps, which

may change the structure of an automaton in such a way that certain states are no

longer observation equivalent.

Table 3.2 shows some information on the effectiveness of theindividual steps taken

by the annotating method. First, it shows for each model the total number of annotations

created and removed by subsumption. Next, it shows the totalnumber of states removed

as unreachable after annotation (Ann.), the number of states removed by merging in-

coming equivalent (∼inc) and bisimilar (≈) states, and the number of states added back

in when constructing unannotated forms (Unann.). Note that≈ refers to simplifica-

tion of annotated automata and is in addition to observationequivalence simplification,

which is performed on all automata before annotating.

In most cases, annotating helps to remove substantially more states than need to

be added back during unannotation. The data clearly shows the importance of the

subsumption step, which is performed directly while constructing the annotated form.

While merging incoming equivalent and bisimilar states seems to have a limited effect

for most industrial models, it has a marked effect for some ofthe more regular models

in the dining philosophers and arbiter series.

Theses results show that conflict equivalence preserving abstractions can be used
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Table 3.2: Rule Usage

Annotations States
Create Subsume Ann. ∼inc ≈ Unann.

AGV +63435 −58073−1777 −34 −513 +5
AGVb +328 −226 −0 −0 −0 +0
verriegel3 +3442 −759 −93 −7 −16 +37
verriegel3b +3478 −777 −70 −1 −16 +19
verriegel4 +3875 −927 −93 −13 −32 +29
verriegel4b +4578 −1540 −122 −1 −67 +42
big bmw +53 −27 −1 −0 −0 +1
FMS +77 −26 −24 −0 −8 +11
SMS +8 −8 −0 −0 −0 +0
PMS +161 −103 −17 −9 −9 +7
IPC +133 −58 −9 −0 −2 +4
ftechnik +4785 −856 −26 −0 −0 +1
rhone tough +899 −491 −15 −0 −6 +13
AIP +17303 −6644−1600 −597 −216 +1054
256philo +86128 −33106−1756 −874 −9635 +0
512philo +174192 −67133−3548−1770−19491 +0
1024philo +350320−133683−7132−3562−39203 +0
128transfer +3721 −1289 −129 −0 −0 +1
256transfer +7433 −2569 −257 −0 −0 +1
512transfer +14857 −5129 −513 −0 −0 +1
128arbiter +5475 −2769−1002 −436 −61 +61
256arbiter +11043 −5585−2026 −884 −125 +125
512arbiter +22179 −11217−4074−1780 −253 +253
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to verify whether or not large systems are nonblocking. Theyfurther show that dif-

ferent abstraction methods can be superior to one another indifferent situations, and

thus that it beneficial to have a multitude of abstraction methods available for different

models. This chapter has introduced the method of abstracting automata using anno-

tated automata. It further introduces several abstractionrules which can be used on an

annotated automata in order to simplify the automaton whilepreserving conflict equiv-

alence.
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Chapter 4

Generalised Nonblocking

Despite its widespread use, the expressive powers of nonblocking are limited. To

overcome its weaknesses, nonblocking has been modified and extended in several

ways [9,23,29].

This chapter is concerned aboutgeneralised nonblocking[23], which adds to stan-

dard nonblocking the ability to restrict the set of states from which blocking is checked.

This is useful for the verification of software components and of certain conditions in

Hierarchical Interface-Based Supervisory Control [19, 20].Of particular interest for

the purposes of this chapter is how nonconflicting completions relate to generalised

nonblocking equivalence.

Comparing two automata with respect to generalised nonblocking equivalence is in

many ways similiar to comparing two automata with respect tostandard nonblocking

equivalence, but with a simplified semantics. This makes it amuch easier equivalence

relation to characterize, while still providing us insightinto conflict-equivalence. In ad-

dition to this, all standard nonblocking problems can also be represented as generalised

nonblocking problems. Thus, all methods of simplifying an automata with respect to

generalised nonblocking can be potentially be applied to standard nonblocking.

This chapter is organised as follows. Section 4.1 introduces multi-coloured au-

tomata. Section 4.3 introduces a testing equivalence and preorder for generalised

nonblocking, presents a semantic model, and proves resultsabout its adequacy and

finiteness. Afterwards, section 4.4 describes the canonical automaton as a standardised

normal form with respect to generalised nonblocking, and proposes an algorithm to

construct it.
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4.1 Multi-coloured Automata

Because generalised nonblocking uses the propositionα to mark states which must

terminate, the definition of automata which we introduced insection 2.2, and is used

throughout the rest of this thesis, is not well suited to dealing with generalised non-

blocking. This section gives a definition of multi-colouredautomata and describes how

the major automata operations behave with respect to them.Multi-colouredautomata

extend the traditional concept ofmarked statesto multiple simultaneous marking con-

ditions, by labelling states with differentcoloursor propositions. In most other respect

multi-coloured automata are identical to regular automata. The generalised nonblock-

ing property [23] is defined using these propositions. The following definition is intro-

duced in [23] and based on similar ideas in [5,29].

Definition 4.1 A multi-coloured automatonis a tupleG = 〈Σ,Π,Q,→,Q◦,Ξ〉 where

Σ is a finite set ofevents, Π is a finite set ofpropositionsor colours, Q is a set ofstates,

→⊆Q×Στ ×Q is thestate transition relation, Q◦ ⊆Q is the set ofinitial states, and

Ξ : Π→ 2Q defines the set of marked states for each proposition inΠ. G is called

finite-stateif the state setQ is finite.

Multi-coloured automata behave identically to the automata introduced in section 2.2

in most respects. The main difference is howπ-marked languages are defined. For

π ∈Π, theπ-marked languageL π(x) = {s∈ Σ∗ | x s
⇒ Ξ(π)} contains the traces that

lead fromx to some state markedπ. The language and theπ-marked language of an

automatonG areL (G) = L (Q◦) andL π(G) = L π(Q◦).

Synchronous compositionmodels the parallel execution of two or more automata,

and is done using lock-step synchronisation [16]. This is the same operation which was

introduced in section 2.3 except theΞ is also synchronised.

Definition 4.2 Let G = 〈Σ,Π,QG,→G,Q
◦
G,ΞG〉 andH = 〈Σ,Π,QH ,→H ,Q

◦
H ,ΞH〉 be

multi-coloured automata. Thesynchronous productof G andH is

G‖H = 〈Σ,Π,QG×QH ,→,Q◦G×Q◦H ,Ξ〉 (4.1)

where
(xG,xH)

σ
→ (yG,yH) if σ ∈ Σ, xG

σ
→G yG, andxH

σ
→H yH ;

(xG,xH)
τ
→ (yG,xH) if xG

τ
→G yG;

(xG,xH)
τ
→ (xG,yH) if xH

τ
→H yH ;

andΞ(π) = ΞG(π)×ΞH(π) for eachπ ∈Π.
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G1: G′1: G′′1: T1:

a a

b c

a

b,c

a a

b c

a

b

Figure 4.1: Generalised nonblocking equivalence.

4.2 Generalised Nonblocking

Nonblocking is generalised in [23], using two propositionsα and ω. The intended

meaning is thatω represents terminal states, whileα specifies a set of states from which

terminal states are required to be reachable. This is in contrast to standard nonblocking

where terminal states must be reachable from all reachable states.

Definition 4.3 Let G= 〈Σ,Π,Q,→,Q◦,Ξ〉 be a multi-coloured automaton withα,ω ∈
Π.

• G is ω-nonblockingor standard nonblocking, if for all statesx ∈ Q such that

G⇒ x it also holds thatx⇒ Ξ(ω). Otherwise,G is ω-blocking.

• G is (α,ω)-nonblocking, or generalised nonblockingif for all statesx ∈ Ξ(α)

such thatG⇒ x it also holds thatx⇒ Ξ(ω). Otherwise,G is (α,ω)-blocking.

4.3 Generalised Nonblocking Equivalence

In the same way that the nonblocking property of a system can be verified by abstracting

components with respect to conflict equivalence the generalised nonblocking property

can be verified by abstracting with respect to generalised nonblocking equivalence.

For example, automatonG1 in figure 4.1 may be replaced byG′1 while preserving

the generalised nonblocking property of the systemG1‖G2‖ · · · ‖Gn. If the remainder

G2‖· · ·‖Gn of the system has anα-marked initial state, the composed system is(α,ω)-

nonblocking if and only if it can reach anω-marked state after executing the traceab

or ac, regardless of whetherG1 or G′1 is used.

On the other hand, generalised nonblocking is not preservedif G1 is replaced byG′′1
in figure 4.1. IfG2 ‖ · · · ‖Gn has anα-marked initial state and can only reach anω-

marked state after executing the traceab, like automatonT1 in figure 4.1, thenG1 ‖

G2 ‖ · · · ‖Gn is (α,ω)-nonblocking whileG′′1 ‖G2 ‖ · · · ‖Gn is (α,ω)-blocking. This

is the same as conflict equivalence introduced in section 2.4with the exception that

generalized nonblocking is used instead of nonblocking.

53



4.3.1 The Generalised Nonblocking Preorder

A notion of processequivalenceto perform abstractions preserving generalised non-

blocking is described in [23]. This section generalises these definitions and introduces

apreorder, which makes it possible to reason not only about equivalence but also about

refinement. The definitions are based on the traditional testing framework [6, 15] that

defines preorders and equivalences relating processes based on their responses totests.

In the context of generalised nonblocking, a test can be an arbitrary automaton, and the

test’s response is the observation whether the test is(α,ω)-nonblocking in combina-

tion with the given automaton or not. Two automata are considered as equivalent, if the

responses of all tests are equal.

Definition 4.4 Let G andH be two multi-coloured automata withα,ω ∈Π.

• G is less (α,ω)-conflicting than H, written G .(α ,ω) H, if for every multi-

coloured automatonT such thatH ‖T is (α,ω)-nonblocking,G‖T also is(α,ω)-

nonblocking.

• G andH are(α,ω)-conflict equivalent, written G≃(α ,ω) H, if G.(α ,ω) H and

H .(α ,ω) G.

The relation.(α ,ω) defines thegeneralised nonblockingpreorder. An automatonG

is less(α,ω)-conflicting thanH if there are fewer testsT that are(α,ω)-blocking in

combination withG than in combination withH. Two automata are(α,ω)-conflict

equivalent if they are(α,ω)-blocking in combination with exactly the same tests.

Given the compositionG1 ‖G2 ‖ · · · ‖Gn, if G1 ≃(α ,ω) G′1, thenG1 can be replaced

by G′1 without affecting the generalised nonblocking property ofthe composition.

Example 4.1 figure 4.1 shows four multi-coloured automata.α-marked states are

black whereasω-marked states are gray. States which have no marking associated

with them have no colouring. AutomataG1 andG′1 in figure 4.1 are(α,ω)-conflict

equivalent, whileG1 andG′′1 are not, becauseG1‖T1 is (α,ω)-nonblocking andG′′1 ‖T1

is (α,ω)-blocking. Furthermore, it can be shown thatG1 .(α ,ω) G′′1.

4.3.2 Congruence Properties

An important question concerning preorders such as.(α ,ω) is their relationship to

process-algebraic operations. For compositional verification, the equivalence used must

be well-behaved with respect to synchronous composition and hiding. These so-called

congruenceproperties have been established in [25] for standard nonblocking and

in [23] for generalised nonblocking equivalence, and can easily be extended to the

generalised nonblocking preorder.
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Definition 4.5 Let. be a preorder on the set of multi-coloured automata.

• . is apre-congruencewith respect to‖ if, for all multi-coloured automataG, H,

andT such thatG. H, it follows thatG‖T . H ‖T.

• . respects(α,ω)-nonblockingif, for all multi-coloured automataG andH such

thatG. H, if H is (α,ω)-nonblocking thenG also is(α,ω)-nonblocking.

Proposition 4.1 .(α ,ω) is a pre-congruence with respect to‖.

Proof. Let G, H, andT be such thatG .(α ,ω) H, and letT ′ be an arbitrary multi-

coloured automaton such that(H ‖T) ‖T ′ is (α,ω)-nonblocking. Then clearly,H ‖

(T ‖T ′) = (H ‖T) ‖T ′ is (α,ω)-nonblocking, and sinceG .(α ,ω) H it follows that

(G‖T) ‖T ′ = G‖ (T ‖T ′) is (α,ω)-nonblocking. SinceT ′ was chosen arbitrarily, it

follows thatG‖T .(α ,ω) H ‖T. �

Proposition 4.2 .(α ,ω) respects(α,ω)-nonblocking.

Proof. Note that there exists a multi-coloured automatonU such thatG‖U = G for

every multi-coloured automatonG. Let G.(α ,ω) H, and letH be(α,ω)-nonblocking.

ThenH ‖U = H is (α,ω)-nonblocking. SinceG.(α ,ω) H, it follows thatG= G‖U

is (α,ω)-nonblocking. �

Thus, the generalised nonblocking equivalence is a congruence with respect to syn-

chronous composition and respects(α,ω)-nonblocking. This is enough to justify the

correctness of a compositional verification approach such as the one outlined at the

beginning of section 4.3.

Similarly to standard nonblocking [25], the generalised nonblocking preorder turns

out to be the coarsest pre-congruence with respect to synchronous composition that re-

spects(α,ω)-nonblocking. In other words, any preorder that relates multi-coloured

automata according to their generalised nonblocking behaviour and preserves syn-

chronous composition is contained in the generalised nonblocking preorder. There-

fore, the generalised nonblocking preorder is the best possible process refinement for

reasoning about generalised nonblocking.

Proposition 4.3 Let . be a pre-congruence with respect to‖ which respects(α,ω)-

nonblocking. ThenG. H impliesG.(α ,ω) H.

Proof. Let G. H, and letT be a multi-coloured automaton such thatH ‖T is (α,ω)-

nonblocking. ThenG‖T . H ‖T since. is a pre-congruence with respect to‖. Since

. respects blocking it follows thatG‖T is (α,ω)-nonblocking. SinceG, H, andT

were chosen arbitrarily, it follows thatG.(α ,ω) H. �
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4.3.3 Characterising the Preorder

In addition to the test-based definition of a process preorder, it is desirable to have a

characterisation that can be derived from the state structure of an automaton [13]. This

section introduces the generalised nonconflicting completion semantics as an algebraic

model of the generalised nonblocking preorder and equivalence, which can be derived

from the state and transitions of a multi-coloured automaton in such a way that the

model can be represented finitely for every finite-state automaton. This model will be

used in the following section to construct a canonical automaton.

The following definition restates the generalised nonblocking preorder as a state-

based criterion. To check whether an automatonG is less(α,ω)-conflicting than an-

other automatonH, it is enough to collect theω-marked languages of allα-marked

states ofG and check whetherH contains larger languages associated with the same

α-markings. This idea is formalised by the concept of being state-wise less(α,ω)-

conflicting, which turns out to be equivalent to the generalised nonblocking preorder.

Definition 4.6 Let G = 〈Σ,Π,QG,→G,Q
◦
G,ΞG〉 andH = 〈Σ,Π,QH ,→H ,Q

◦
H ,ΞH〉 be

multi-coloured automata withα,ω ∈Π. G is said to bestate-wise less(α,ω)-conflict-

ing thanH if the following property holds for everys∈ Σ∗: for everyxG ∈ ΞG(α) such

thatG
s
⇒ xG there existsxH ∈ ΞH(α) such thatH

s
⇒ xH andL ω(xH)⊆L ω(xG).

Proposition 4.4 Let G= 〈Σ,Π,QG,→G,Q
◦
G,ΞG〉 andH = 〈Σ,Π,QH ,→H ,Q

◦
H ,ΞH〉 be

multi-coloured automata withα,ω ∈Π. G is state-wise less(α,ω)-conflicting thanH

if and only if G is less(α,ω)-conflicting thanH.

Proof. First assume thatG is state-wise less(α,ω)-conflicting thanH, and letT =

〈Σ,Π,QT ,→T ,Q
◦
T ,ΞT〉 be an automaton such thatH ‖T is (α,ω)-nonblocking. Let

G‖T
s
⇒ (xG,xT) ∈ ΞG(α)×ΞT(α). ClearlyG

s
⇒ xG ∈ ΞG(α), and sinceG is state-

wise less(α,ω)-conflicting thanH, there exists a statexH ∈ ΞH(α) such thatH
s
⇒ xH

andL ω(xH)⊆L ω(xG). Thus,H ‖T
s
⇒ (xH ,xT) ∈ ΞH(α)×ΞT(α), and sinceH ‖T

is (α,ω)-nonblocking, there exists a tracet ∈ Σ∗ such that(xH ,xT)
t
⇒ΞH(ω)×ΞT(ω).

Then,t ∈L ω(xH)⊆L ω(xG), which impliesxG
t
⇒G ΞG(ω), and therefore(xG,xT)

t
⇒

ΞG(ω)×ΞT(ω). Sinces, xG, andxT were chosen arbitrarily, it follows thatG‖T is

(α,ω)-nonblocking.

Second, assume thatG is less(α,ω)-conflicting thanH. Let s∈ Σ∗ andG
s
⇒ xG ∈

ΞG(α). Construct a deterministic automatonT = 〈Σ,Π,QT ,→T ,Q
◦
T ,ΞT〉 such that

L (T) = Σ∗, L α(T) = {s}, andL ω(T) = Σ∗ \ sL ω(xG). SinceT is deterministic,

there exists a unique statexT ∈ QT such thatT
s
⇒ xT , which satisfiesxT ∈ ΞT(α) and

L ω(xT) = Σ∗ \L ω(xG). ThenG‖T is (α,ω)-blocking, becauseG‖T
s
⇒ (xG,xT) ∈

ΞG(α)×ΞT(α) andL ω(xG)∩L ω(xT) = /0. SinceG is less(α,ω)-conflicting thanH,
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it follows thatH ‖T is (α,ω)-blocking. This means that there existsu∈ Σ∗, yH ∈QH ,

andyT ∈QT such thatH ‖T
u
⇒ (yH ,yT) ∈ ΞH(α)×ΞT(α) andL ω(yH)∩L ω(yT) =

/0. ThenyT ∈ ΞT(α), and by construction ofT it follows that u = s and yT = xT .

This impliesH
s
⇒ yH ∈ ΞH(α) andL ω(yH)∩(Σ∗ \L ω(xG)) =L ω(yH)∩L ω(xT) =

L ω(yH)∩L ω(yT) = /0, i.e.,L ω(yH)⊆L ω(xG). Thus,yH satisfies the requirements

given forxH in definition 4.6, soG is state-wise less(α,ω)-conflicting thanH �

Proposition 4.4 is the key to constructing a process-algebraic model of generalised

nonblocking. Essentially, generalised nonblocking can becharacterised by the sets of

ω-marked languages associated with theα-marked states or, more precisely, with the

traces leading toα-marked states.

Definition 4.7 Let G= 〈Σ,Π,Q,→,Q◦,Ξ〉 be a multi-coloured automaton withα,ω ∈
Π. Thegeneralised nonconflicting completion semanticsfor G is defined as

CCω
(α ,ω)(G) = {(c,C) ∈ Σ∗×2Σ∗ | There existsx∈ Ξ(α) such thatG

c
⇒ x and

L ω(x)⊆C} .

(4.2)

If (c,C) ∈ CCω
(α ,ω)(G), thenC is called anonconflicting completionfor c in G.

AssumeG contains anα-marked statex reachable via tracec∈ Σ∗, i.e., G
c
⇒ x ∈

Ξ(α). Then the marked languageL ω(x) of x clearly is a nonconflicting completion

for c in G, i.e.,

(c,L ω(x)) ∈ CCω
(α ,ω)(G) . (4.3)

Furthermore, all superlanguages ofL ω(x) are also nonconflicting completions,

(c,C) ∈ CCω
(α ,ω)(G) for all C⊇L

ω(x) . (4.4)

If G is finite-state, then there exists only a finite number ofα-statesx and thus only a

finite number of associatedω-marked languagesL ω(x). This means that all noncon-

flicting completions can be obtained as supersets of theω-marked language of some

statex, of which there are only finitely many. Therefore, the following closure opera-

tions are used.

Definition 4.8 For CC⊆ Σ∗×2Σ∗, theupward closureCC↑ and thereduced formCC↓

are

CC↑ = {(c,C′) ∈ Σ∗×2Σ∗ | There exists(c,C) ∈ CC such thatC⊆C′ } ; (4.5)

CC↓ = {(c,C) ∈ CC | For all (c,C′) ∈ CC whereC′ ⊆C it holds thatC′ =C}. (4.6)
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Example 4.2 The generalised nonconflicting completion semantics of automatonG1

in figure 4.1 is

CCω
(α ,ω)(G1) = {(ε,{ab,ac})}↑ . (4.7)

Example 4.3 The generalised nonconflicting completion semantics of automatonG4

in figure 4.2 is

CCω
(α ,ω)(G4) = {(a

n,a+b) | n≥ 0}↑ . (4.8)

The ω-marked language of theα-marked stateq0 is L ω(q0) = a+b, and since this

state can be reached after any number ofa events, this language is associated with

all tracesan for n≥ 0. Theω-marked language of the secondα-marked stateq1 is

L ω(q1) = a∗b⊇L ω(q0), and as a superlanguage of the already listed language, it is

automatically included in the upward closure.

Not every nonconflicting completion semantics CC can be reconstructed from its

reduced form CC↓. In infinite structures, it is not guaranteed for(c,C) ∈ CC that there

exists a minimal subsetC′ ⊆C such that(c,C′) ∈ CC. However, if the set of noncon-

flicting completionsC that appear in CC is finite, then the existence of minimal subsets

is guaranteed. Thus, ifG is a finite-state automaton, then it indeed holds that

CCω
(α ,ω)(G)↓↑ = CCω

(α ,ω)(G) . (4.9)

The following main result of this section states that the generalised nonconflict-

ing completion semantics indeed characterises the generalised nonblocking preorder.

If an automatonG is less(α,ω)-conflicting than automatonH, then the generalised

nonconflicting completion semantics ofG is contained in that ofH.

Proposition 4.5 Let G= 〈Σ,Π,QG,→G,Q
◦
G,ΞG〉 andH = 〈Σ,Π,QH ,→H ,Q

◦
H ,ΞH〉 be

multi-coloured automata withα,ω ∈Π. ThenG.(α ,ω) H if and only if CCω
(α ,ω)(G)⊆

CCω
(α ,ω)(H).

Proof. First let G .(α ,ω) H and(c,C) ∈ CCω
(α ,ω)(G). Then there existsxG ∈ ΞG(α)

such thatG
c
⇒ xG andL ω(xG) ⊆C. By proposition 4.4,G is state-wise less(α,ω)-

conflicting thanH, so there existsxH ∈ ΞH(α) such thatH
c
⇒ xH and L ω(xH) ⊆

L ω(xG)⊆C. This already implies(c,C) ∈ CCω
(α ,ω)(H).

Second let CCω(α ,ω)(G) ⊆ CCω
(α ,ω)(H). By proposition 4.4, it is sufficient to show

thatG is state-wise less(α,ω)-conflicting thanH. Therefore, lets∈Σ∗ andxG∈ΞG(α)

such thatG
s
⇒ xG. Then(s,L ω(xG)) ∈ CCω

(α ,ω)(G) ⊆ CCω
(α ,ω)(H). By definition of

CCω
(α ,ω)(H), there existsxH ∈ ΞH(α) such thatH

s
⇒ xH and L ω(xH) ⊆ L ω(xG).

Thus,xH satisfies the conditions of definition 4.6, soG is state-wise less(α,ω)-con-

flicting thanH. �
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4.3.4 Relationship to Standard Nonblocking

The nonconflicting completion semantics introduced in definition 2.7 can also be ap-

plied to multi-coloured automata.

Definition 4.9 [25] Let G= 〈Σ,Π,Q,→,Q◦,Ξ〉 be a multi-coloured automaton with

ω ∈Π. Thenonconflicting completion semanticsof G is

CCω(G) = {(c,C) ∈ Σ∗×2Σ∗ | For every automatonT such thatG‖T is ω-

nonblocking andT
c
⇒ x, there existst ∈ C with x

t
⇒T ΞT(ω) }

.
(4.10)

As discussed in section 2.6 the idea of the nonconflicting completion semantics of

an automatonG is that each nonconflicting completion represents a requirement that

needs to be satisfied by any test that is to be nonblocking in combination withG. If

the test can execute the tracec associated with a nonconflicting completionC, then, in

order to be nonblocking in combination withG, the test must be able to terminate with

at least one of the tracest ∈C.

The following result shows that the generalised nonconflicting completion seman-

tics can be explained in the same way: if a pair(c,C) is contained in the semantics,

then every test that can enter anα-marked state after tracec must be able to terminate

with at least one of the traces inC, in order to be(α,ω)-nonblocking in combination

with G.

Proposition 4.6 LetG= 〈Σ,Π,Q,→,Q◦,Ξ〉 be a multi-coloured automaton withα,ω ∈
Π. The generalised nonconflicting completion semantics can be alternatively charac-

terised as

CCω
(α ,ω)(G) = {(c,C) ∈ Σ∗×2Σ∗ | For every automatonT such thatG‖T is

(α,ω)-nonblocking andT
c
⇒ x ∈ ΞT(α), there existst ∈C

with x
t
⇒T ΞT(ω) } .

(4.11)

Proof. Let (c,C) ∈ CCω
(α ,ω)(G) and T = 〈Σ,Π,QT ,→T ,Q

◦
T ,ΞT〉 such thatG‖ T is

(α,ω)-nonblocking andT
c
⇒ xT ∈ ΞT(α). Since(c,C) ∈ CCω

(α ,ω)(G), there exists

x∈Ξ(α) such thatG
c
⇒ x andL ω(x)⊆C. ThenG‖T

c
⇒ (x,xT)∈Ξ(α)×ΞT(α), and

sinceG‖T is (α,ω)-nonblocking there existst ∈Σ∗ such that(x,xT)
t
⇒Ξ(ω)×ΞT(ω).

This impliesxT
t
⇒T ΞT(ω) andt ∈L ω(x)⊆C.

Now let(c,C)∈ Σ∗×2Σ∗, and assume that for every automatonT = 〈Σ,Π,QT ,→T ,

Q◦T ,ΞT〉 such thatG‖T is (α,ω)-nonblocking andT
c
⇒ x ∈ ΞT(α), there existst ∈C

such thatx
t
⇒T ΞT(ω). Consider a deterministic automatonT = 〈Σ,Π,QT ,→T ,Q

◦
T ,
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G4: T4 :
a

a
a

b
q0 q1 q2

a b
r0 r1 r2

Figure 4.2: Standard nonconflicting completion semantics may be not well-founded.

ΞT〉 such thatL (T)=Σ∗, L α(T)= {c}, andL ω(T)= c(Σ∗\C). There exists exactly

one statexT ∈ ΞT(α), which also satisfiesT
c
⇒ xT andL ω(xT) = Σ∗ \C, so there does

not existt ∈C such thatxT
t
⇒ ΞT(ω). By assumption it follows thatG‖T is (α,ω)-

blocking. Then there exists a statey∈Ξ(α)×ΞT(α) such thatG‖T⇒ y andL ω(y) =

/0. By construction ofT, there existsx ∈ Ξ(α) such thaty = (x,xT) andG‖T
c
⇒ y =

(x,xT), and furthermore /0= L ω(y) = L ω(x)∩L ω(xT) = L ω(x)∩ (Σ∗ \C), which

impliesL ω(x)⊆C. It follows that(c,C) ∈ CCω
(α ,ω)(G) by definition. �

This shows that the standard and generalised nonconflictingcompletion semantics

are closely related to each other. Yet, there are also important differences. While the

generalised nonconflicting completion semantics only is closed via upward closure, in

standard nonblocking there are interdependencies betweenstates that lead to further

closure properties.

Example 4.4 [25] In order to beω-nonblocking in combination with automatonG4 in

figure 4.2, a test must initially be able to accept at least oneof the tracesab,aab,aaab, . . .

Therefore, CCω(G4) contains the pair(ε,{a+b}). Furthermore, any such test must be

able to executea in its initial state, and any test executinga initially must also be able

to cope withG4 being put back to its initial stateq0 by executing the selfloop inq0.

Therefore, such a test also has to accept at least one of the tracesaab,aaab,aaaab, . . .

in its initial state. It follows that CCω(G4) contains all the pairs(ε,{ana∗b}) for n≥ 1.

This example shows that, even for a finite-state automaton, the standard noncon-

flicting completion semantics is not necessarilywell-founded, and in general cannot be

described by listing a finite set of minimal nonconflicting completions. For generalised

nonblocking, this is possible. Due to the presence ofα-markings, there always is the

possibility for a test to be notα-marked for certain states.

Example 4.5 Consider automatonG4 in figure 4.2 in combination with testT4. Clearly,

G4 ‖T4 is (α,ω)-nonblocking, because the only reachableα-marked state of the syn-

chronous productG4 ‖T4 is the initial state, from which both automata can terminate

by executing traceab. However, the testT4 cannot execute any tracet ∈ {ana∗b} for

n> 1, so unlike the case of standard nonblocking,(ε,{aaa∗b}) /∈ CCω
(α ,ω)(G4).
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The presence ofα-markings makes the nonconflicting completions for different

traces independent from each other. This leads to a simpler semantic model with a finite

characterisation. It also means that some abstractions possible for standard nonblocking

are not applicable to generalised nonblocking.

4.4 Canonical Automaton

For compositional reasoning, it is necessary to modify automata in such a way that

generalised nonblocking equivalence is preserved. This isfacilitated by the fact that

the generalised nonconflicting completion semantics can berepresented finitely. This

section explains how the generalised nonconflicting completion semantics can be used

to construct a canonical form for any given finite-state automaton, which is generalised

nonblocking equivalent to the original automaton, and suchthat the canonical forms of

any two generalised nonblocking equivalent automata are equal.

4.4.1 Construction from Semantics

To ensure uniqueness, the canonical form is constructed directly from the generalised

nonconflicting completion semantics. More precisely, it isshown in the following how

to construct acanonical automatonC A (CC) for any given model

CC⊆ Σ∗×2Σ∗ . (4.12)

Afterwards, an algorithm will be given to compute the canonical automaton for any

given multi-coloured automatonG.

The canonical automaton consists of two parts, called theupperandlower automa-

ton. The upper automaton of CC essentially is a minimal deterministic recogniser of

the language covered by CC,

L (CC) = {c∈ Σ∗ | There existsC⊆ Σ∗ such that(c,C) ∈ CC}. (4.13)

The lower automaton consists of minimal deterministic recognisers of all the noncon-

flicting completions in CC, which are linked to transitions from the corresponding states

in the upper automaton.

To ensure uniqueness, the upper automaton needs to be minimised in such a way

that traces leading to equal nonconflicting completions in the future are mapped to the

same state of the upper automaton. The following definition provides the necessary

equality for any given model CC.
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Definition 4.10 Let CC⊆ Σ∗× 2Σ∗. Two tracesc1,c2 ∈ Σ∗ are said to beequivalent

moduloCC, writtenc1≡cc c2, if for all t ∈ Σ∗ and allC⊆ Σ∗, it holds that(c1t,C)∈CC

if and only if (c2t,C) ∈ CC.

Given this definition, the state set of the upper automaton is

Ucc = L (CC)/≡cc , (4.14)

and the transitions of the upper automaton are

[s]cc
σ
→U,cc [sσ ]cc for all sσ ∈L (CC). (4.15)

Here,[s]cc = {s′ ∈L (CC) | s≡cc s′ } denotes theequivalence classof smodulo≡cc,

and forL⊆ Σ∗, the notationL/≡cc = { [s]cc | s∈ L} represents its partition into equiv-

alence classes.

The lower automaton consists of deterministic recognisersfor all the nonconflicting

completions. It includes states accepting each of the following languages,

Vcc = {Cω/t | There existsc∈ Σ∗ such that(c,C) ∈ CC, andt ∈C} . (4.16)

Here,L/s= { t ∈ Σ∗ | st∈ L} denotes the continuation language ofL⊆ Σ∗ afters∈ Σ∗.
To ensure minimality and thus uniqueness, it is convenient to identify the states of the

lower automaton with the languages inVcc. Accordingly, the transitions of the lower

automaton are

L
σ
→V,cc L/σ for all L ∈Vcc andσ ∈ Σ∩L. (4.17)

A lower-automaton state inL ∈Vcc is markedω if and only if ω ∈ L. This ensures that

theω-marked languages of these states are equal to the languagesthey represent, i.e.,

L
ω(Lω) = L for eachLω ∈Vcc . (4.18)

To complete the lower automaton, each nonconflicting completion in CC is associated

with its ownα-marked state. Theα-marked states may only be accessed from the upper

automaton and therefore need to be distinct from any lower-automaton state. Therefore,

the following additional states are used,

Vα
cc = {(C,α) | There existsc∈ Σ∗ such that(c,C) ∈ CC} . (4.19)

Given these state sets and transitions, thecanonical automatonfor CC is con-
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structed as follows,

C A (CC) = 〈Σ,{α,ω},QCA,→CA,Q
◦
CA,ΞCA〉 (4.20)

where

• QCA =Ucc∪Vcc∪Vα
cc;

• →[CA] = →[U,cc]∪→[V,cc]∪

{([c]cc,τ,(C,α)) | (c,C) ∈ CC}∪

{((C,α),τ,Cω) | (C,α) ∈Vα
cc };

• Q◦CA = {[ε]cc}\{ /0};

• ΞCA(α) =Vα
cc;

• ΞCA(ω) = {C∈Vcc | ω ∈C}.

The canonical automaton has a simple regular form, but it is not necessarily min-

imal. For example, theα-marked states can be merged into their successors, if those

successors do not have other incoming transitions. The potential for reduction becomes

clear in example 4.6 below.

The following result confirms that the canonical automaton construction preserves

generalised nonblocking in that the generalised nonconflicting completion semantics of

the canonical automaton is equal to the upwards closure of the model CC, from which

the automaton was constructed.

Proposition 4.7 Let CC⊆ Σ∗×2Σ∗. Then

CCω
(α ,ω)(C A (CC)) = CC↑ . (4.21)

Proof. First, let(c,C) ∈ CCω
(α ,ω)(C A (CC)). Then there existsx ∈ ΞCA(α) such that

C A (CC)
c
⇒ x and L ω(x) ⊆ C. By construction, this means thatx ∈ Vα

cc, so x =

(C′,α) for some(c′,C′) ∈ CC. Also by construction of the upper automaton, since

C A (CC)
c
⇒ x = (C′,α), it follows thatC A (CC)

c
→ [c]cc

τ
→ (C′,α), which implies

(c,C′) ∈ CC. Furthermore by construction of the lower automaton,C′ = L ω(C′ω) =

L ω((C′,α)) = L ω(x)⊆C, so it follows from(c,C′) ∈ CC that(c,C) ∈ CC↑.

Second, let(c,C) ∈ CC↑. Then there existsC′ ⊆ C such that(c,C′) ∈ CC. By

construction of the upper automaton,C A (CC)
c
→ [c]cc

τ
→ (C′,α) ∈ ΞCA(α), and by

construction of the lower automaton,(C′,α)
τ
→C′ω andL ω((C′,α)) = L ω(C′ω) =

C′ ⊆C. Thus, givenC A (CC)
c
⇒ (C′,α) ∈ ΞCA(α) andL ω((C′,α)) ⊆C, it follows

by definition of CCω
(α ,ω) that(c,C) ∈ CCω

(α ,ω)(C A (CC)). �
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The canonical automaton can be constructed for any model CC, but the result is

only finite-state if the set of nonconflicting completions inCC is finite, and the upper

automaton has a finite-state representation. These conditions can be ensured when CC

is obtained from the generalised nonconflicting completionsemantics of a finite-state

automaton. In this case, the upper automaton is finite-statebecause of the finite number

of α-states from which nonconflicting completions can originate, and although the set

of nonconflicting completions is typically infinite due to upwards closure, it is enough

to construct the canonical automaton using only minimal nonconflicting completions.

Definition 4.11 Thecanonical formof a finite-state multi-coloured automatonG is

C A (G) = C A (CCω
(α ,ω)(G)↓) . (4.22)

As explained above, the canonical form of an automatonG is finite-state as long as

G is finite-state. Given the previous results, it is not difficult to show that the canonical

form is unique for all generalised nonblocking equivalent automata.

Proposition 4.8 Let G andH be two finite-state multi-coloured automata. Then

G≃(α ,ω) H if and only if C A (G) = C A (H) . (4.23)

Proof. First assume thatG≃(α ,ω) H. It follows that CCω
(α ,ω)(G) = CCω

(α ,ω)(H) by

proposition 4.5, which impliesC A (G) =C A (CCω
(α ,ω)(G)↓) =C A (CCω

(α ,ω)(H)↓) =

C A (H) by definition.

Second assume thatC A (G) = C A (H). From the fact thatG is finite-state and

proposition 4.7, it follows that

CCω
(α ,ω)(G) = CCω

(α ,ω)(G)↓↑

= CCω
(α ,ω)(C A (CCω

(α ,ω)(G)↓))

= CCω
(α ,ω)(C A (G))

= CCω
(α ,ω)(C A (H))

= CCω
(α ,ω)(C A (CCω

(α ,ω)(H)↓))

= CCω
(α ,ω)(H)↓↑

= CCω
(α ,ω)(H) . (4.24)

By proposition 4.5, this impliesG≃(α ,ω) H. �

Proposition 4.8 shows that the canonical automaton can be used for identification

of generalised nonblocking equivalent automata. To determine whether two finite-state
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automata are generalised nonblocking equivalent, it is enough to construct their canon-

ical automata and check whether they are equal.

Canonical automata can also be used to test the generalised nonblocking preorder.

To check whetherG.(α ,ω) H, it is possible to inspect allα-marked states of the syn-

chronous product of the canonical forms ofG andH and compare the associated lan-

guages. For everyω-marked language of anα-marked state ofG, there needs to be

a sublanguage associated with some correspondingα-marked state ofH. The lan-

guages can be compared polynomially since they are represented deterministically in

the canonical automata. However, the test for language inclusion requires only a de-

terministic representation for one of the two languages compared, and it is enough to

construct only the canonical automaton ofH to check whetherG.(α ,ω) H.

4.4.2 Algorithmic Construction

In the previous section, the canonical automaton has been constructed from a semantic

model CC, and its uniqueness has been established. This section proposes an algorithm

that, given a finite-state multi-coloured automatonG= 〈Σ,Π,Q,→,Q◦,Ξ〉, computes

its canonical formC A (G).

The first step in the computation of the canonical automaton is the construction of

the lower automaton, because it contains the languages associated with allα-marked

states, which are needed to ensure minimality of the upper automaton.

The lower automaton consists of the minimal deterministic recognisers of all the

ω-marked languages of allα-marked states ofG. To construct it, the first step is to

remove fromG all states from where noω-marked can be reached, that is, its state set

is restricted to

Rω = {x ∈Q | x→ Ξ(ω)} . (4.25)

Then subset construction [18] is used to construct a deterministic recogniserVdet of all

nonconflicting completion languages ofG. The subset construction starts with initial

state sets corresponding to eachα-marked state and continues until all reachable state

sets have been explored. More precisely,

Vdet= 〈Σ,{ω},2R
ω ,→V ,Q

◦
V ,ΞV〉 (4.26)

where

• X
σ
→V Y for X,Y⊆Rω andσ ∈ Σ if and only ifY = {y∈Rω |X

σ
⇒ y} andY 6= /0;

• X ∈Q◦V if and only if X = {x ∈ Rω | xα
ε
⇒ x} for somexα ∈ Ξ(α);

• ΞV(ω) = {X ⊆ Rω | X∩Ξ(ω) 6= /0}.
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This automaton is then minimised using Hopcroft’s algorithm [17] to obtain a unique

and minimal lower automatonV. For each initial statex◦ of the minimised lower au-

tomaton, a newα-marked statexα is created and linked via aτ-transition tox◦. These

α-marked state comprise the state setVα . In order to link this automaton to the upper

automaton later, a map is kept that links theα-marked states ofG to their corresponding

states inVα .

Next, the upper automaton is constructed. In order to ensurethat it accepts precisely

the languageL (CCω
(α ,ω)(G)) = L α(G), the state set ofG is restricted to states from

where anα-marked can be reached, i.e., to

Rα = {x ∈Q | x→ Ξ(α)} . (4.27)

Then a second subset construction is used to obtain a deterministic recogniserUdet

of L α(G).

In order to establish uniqueness with respect to≡CCω
(α,ω)(G), for each state setX ⊆

Rα in this subset construction, the associated set of minimal nonconflicting comple-

tions,

CCω
(α ,ω)(X) = {C ⊆ Σ∗ | There existsc ∈ Σ∗ such thatG

c
⇒ X and (c,C) ∈

CCω
(α ,ω)(G)↓ } ,

(4.28)

needs to be determined. Therefore, each state setX in the subset construction is associ-

ated with the set of all initial states of the lower automatonV that have been associated

with someα-marked state contained inX. The ω-marked languages of these states

are checked for language inclusion, and the initial states associated with non-minimal

languages are removed from the set of languages associated with X. The ω-marked

languages of the remaining states make up the set CCω
(α ,ω)(X).

Now the automatonUdet is minimised subject to an initial partition based on the

sets (4.28). Two subset statesX,Y ⊆ Rα can only be merged if

CCω
(α ,ω)(X) = CCω

(α ,ω)(Y) . (4.29)

This is done using Hopcroft’s algorithm [17] with an initialpartition based on the min-

imised sets ofα-marked states, which satisfies (4.29). The result is a unique minimal

upper automaton with states partitioned in the coarsest possible way that respects≡cc.

The final step in the construction of the canonical automatonis to link the upper

and lower automata. Each state[X] of the minimised upper automaton is linked via a

τ-transition to all theα-marked states inVα that have been associated with someα-

marked state ofG contained in one of the state sets associated with the mergedstate[X].
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Figure 4.3: Example construction of canonical automaton.
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Example 4.6 Figure 4.3 demonstrates the process of construction of the canonical

form C A (G) of automatonG.

The first step is to apply subset construction starting from the threeα-marked states

q4, q8, andq11. This results in the deterministic automatonVdetalso shown in figure 4.3.

Its three initial states{q8}, {q11}, and{q4,q5,q8} correspond to the threeα-marked

states ofG, from which the subset construction originates—theα-marked stateq4 is

expanded to{q4,q5,q8} because of its outgoingτ-transitions.

Next, the intermediate lower automatonVdet is minimised using Hopcroft’s algo-

rithm, resulting in the lower automatonV. After merging, this automaton has only two

initial states: statev8 corresponds to the originalα-marked statesq8 andq11, whilev458

corresponds to the originalα-marked stateq4. It can already be seen that theω-marked

language ofv8 is contained in theω-marked language ofv458.

Next, to construct the upper automaton, subset construction is applied toG to obtain

its deterministic formUdet. Owing to the fact thatα- andω-marked states are reachable

from all states ofG, this automaton is very similar to the intermediate lower automa-

ton Vdet. The α-marked states ofUdet are{q4,q5,q8} and{q4,q5,q8,q10,q11,q12}.

These states are both associated with the lower-automaton initial statesv8 and v458,

however sinceL ω(v8) ⊆L ω(v458), only v8 is considered. Bothα-marked states are

associated with equal sets of lower-automaton initial states, so they may be merged

during minimisation. And indeed, minimisation results in the automatonU with only

oneα-marked stateu458.

Finally, the upper and lower automata are linked, resultingin the canonical automa-

ton C A (G). The onlyα-marked state of the upper automaton isu458, which is to be

associated withv8 in the lower automaton. Therefore, the newα-marked statevα
8 is

created and linked via silent transitions tou458 andv8.

It becomes clear that the canonical automaton, although unique, is not minimal.

Sincevα
8 has only one outgoingτ-transition that leads to statev8 with no other incoming

transitions, statesvα
8 andv8 can be merged while preserving generalised nonblocking

equivalence. Furthermore, the language of lower-automaton statev37 is equal to the

language of upper-automaton stateu01, and since for lower-automaton states only the

language is relevant,v37 can be replaced byu01. This results in the automatonC A
′,

which is generalised nonblocking equivalent toC A (G) and toG.

The algorithm to construct the canonical automaton is exponential. The upper and

lower automaton are obtained through subset construction,and the number of states of
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the canonical automaton is bounded by

|Ucc|+ |Vcc|+ |V
α
cc| ≤ 2|Q|+2|Q|+ |Ξ(α)|

= O(2|Q|) . (4.30)

To estimate the number of transitions, note that the upper and lower automaton are

deterministic automata linked by twoτ-transitions for eachα-marked state. Thus, the

number of transitions of the canonical automaton is boundedby

|Σ||Ucc|+ |Σ||Vcc|+2|Vα
cc|= O(|Σ|2|Q|) . (4.31)

The construction of the upper automaton requires tests for language inclusion to see

whether languages associated to differentα-marked states are contained in each other.

There are up to12|Ξ(α)|(|Ξ(α)|−1) pairs ofα-marked states that need to be compared,

and each test in the worst case requires construction of a synchronous product of two

deterministic automata with 2|Q| states each. The time complexity of the language

inclusion check is determined by the number of transitions of the synchronous product,

which is bounded by|Σ|(2|Q|)2 = |Σ|4|Q|. In practice, the test can often be completed

much faster, because identical states ofG can be recognised in the subset construction,

and because the test can stop early when language inclusion is not satisfied. Still, the

worst-case time complexity of the algorithm to construct the canonical form is

O(|Σ||Ξ(α)|24|Q|) = O(|Σ||Q|24|Q|) . (4.32)

Despite its exponential complexity, subset construction is known to be well-behaved

in many practical cases. In [34], subset construction has been used for compositional

verification of safety properties of very large discrete-event systems models. Such re-

sults suggest that the canonical automaton may be a useful tool for compositional veri-

fication of generalised nonblocking.
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Chapter 5

Comparing Two Automata with

Respect to the Conflict Preorder

In this chapter we introduce a concrete algorithm with whichit is possible to compare to

arbitrary automata with respect to the conflict preorder, and thus by extension conflict

equivalence.

The ability to compare two automata with respect to conflict equivalence is essential

in order to construct a canonical form of automata with respect to conflict equivalence,

as will be described in chapter 6. Furthermore, being able tocalculate whether one

automaton is more conflicting than another is useful within the field of supervisory

control. In [24] it is described how to design interface automata for subsystems. One

of the requirements for such interfaces is that they should be more conflicting than their

subsystem.

In this chapter we introduce a state-based method of calculating whether one au-

tomaton is less conflicting than another usingLC −Pairs. An LC −Pair is a pair of

state sets which represent nonconflicting completions. We then go on to show that

theseLC −Pairs can be used to determine whether an automaton is less conflicting

than another by looking at a finite number of state sets.

In addition the algorithm to test the conflict preorder has been implemented in the

discrete event systems tool Supremica [1], and has been usedto compare several au-

tomata. We give experimental results which show that while the algorithm in the worst

case runs in linear exponential time, in practice for many automata of non-trivial size

the algorithm can calculate an answer within seconds. As anytwo automata can be

compared with respect to fair testing using conflict equivalence it is also possible to

use this algorithm to test fair testing equivalence. In [31]an algorithm for testing fair

testing equivalence is presented. While both algorithms have linear exponential time

complexity, the algorithm presented in this chapter has lower time complexity than the
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fair testing algorithm, furthermore the algorithm from that paper has not been imple-

mented to the best of our knowledge whereas our algorithm has.

In the following, Section 5.1 introduces how nonconflictingcompletions can be

used to compare automata with respect to the conflict preorder. Section 5.2 introduces

less conflicting pairs and shows how they can be used to describe nonconflicting com-

pletions. Section 5.3 shows how less conflicting pairs can beused to calculate the set

of certain conflicts of an automaton. Section 5.4 describes how less conflicting pairs

can be used to characterise the conflict preorder. Afterwards, Section 5.5 proposes an

algorithm to calculate less conflicting pairs for finite-state automata. Section 5.6 de-

scribes an implementation of the algorithm. Section 5.7 presents the results from using

the algorithm to compare several automata together.

5.1 The Conflict Preorder and Nonconflicting Comple-

tions

As has already been described in section 2.6 a nonconflictingcompletion of the au-

tomatonA is a pair(c,C) of trace and language such that for every test automatonT

and statexT such thatA‖T is nonblocking andT
c
→ xT it holds thatxT

sω
→ for some

sω ∈C. That is in order for a test automaton which is capable of performing the trace

c to be nonblocking withA, all processes which can be reached inT after c must be

capable of performing at least one trace inC.

In this subsection we introduce how we can use nonconflictingcompletions to test

whether two automata are less conflicting. It is already known that nonconflicting com-

pletions can be used to compare two automata with respect to conflict-equivalence, but

it was unknown how to use nonconflicting completions in a practical algorithm to com-

pare two automata with respect to conflict-equivalence. There were two main problems

in implementing such an algorithm. Firstly in general the set of nonconflicting com-

pletions of any given automaton is infinite. Second and more importantly previously

is was not known how to calculate for any given tuple(c,C) and automatonA whether

(c,C) ∈ CCω(A). In this section we will show how nonconflicting completionscan be

used to test whether two automata are conflict-equivalent. In subsequent subsections

we will go on to show how nonconflicting completions can be calculated usingLC

pairs.

Theorem 5.1 Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be two automata.A

is less conflicting thanB if and only if for all c∈ Σ∗ and allxA ∈QA such thatA
c
⇒ xA

it holds that(c,L ω(xA)) ∈ CCω(B).
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Proof. First let us assume that for allc∈ Σ∗ and allxA ∈QA such thatA
c
⇒ xA it holds

that(c,L ω(xA)) ∈ CCω(B). We will show thatA is less conflicting thanB.

Let T be a test automaton such thatB‖T is nonblocking. Letc be a trace and

(xA,xT) be pair of states such thatA‖T
c
⇒ (xA,xT). From definition 2.7 as(c,L ω(xA))

∈ CCω(B)) andB‖T is nonblocking the statexT must be able to do at least one trace

sω ∈L ω(xA). Therefore(xA,xT)
sω
⇒ andA‖T is nonblocking.

Now let us assume thatA is less conflicting thanB we will show that for allc∈ Σ∗

and allxA ∈QA such thatA
c
⇒ xA it holds that(c,L ω(xA)) ∈ CCω(B).

Let c∈ Σ∗ be a trace andxA ∈QA be a state such thatA
c
⇒ xA. From definition 2.7

it holds that(c,L ω(xA)) ∈CC(B) if for any given test automatonT and statexT such

that B‖T is nonblocking andT
c
→ xT thenxT

sω
→ wheresω ∈L ω(xA). Let T be an

automaton and statexT such thatB‖T is nonblocking andT
c
→ xT . As A

c
⇒ xA it holds

thatA‖T
c
⇒ (xA,xT). Furthermore asB‖T is nonblocking andA.conf B it must also

be the case thatA‖T is nonblocking, therefore there exists a tracesω ∈L ω(xA) such

that(xA,xT)
sω
→. xT

sω
→ can do this trace therefore(c,L ω(xA)) ∈ CCω(B). �

5.2 Less Conflicting Pairs

Determining whether or not the pair(ε,C) for any given languageC is in fact a non-

conflicting completion is non trivial. In order to be able to determine whetherC is in

fact a nonconflicting completion of the automaton it is neccessary to identify the sets

of states that the automaton may reach over the languageC. This is done using the

well-knownsubset construction[18]. To capture termination, the usual powerset state

space is extended by a special stateω entered only after termination.

Definition 5.1 Thedeterministic state spaceof automatonA= 〈Σ,Q,→,Q◦〉 is

Qdet
A = 2Q∪{ω} , (5.1)

and thedeterministic transition functionδ det
A : Qdet× (Σ∪{ω})→Qdet for A is defined

as

δ det
A (X,σ) =







ω, if σ = ω andX
ω
⇒;

{y∈Q | X
σ
⇒ y}, otherwise.

(5.2)

The deterministic transition functionδ det
A is extended to tracess∈ Σ∗∪Σ∗ω in the

standard way. Note thatδ det
A (X,s) is defined for every traces∈ Σ∗ ∪Σ∗ω; if none of

the states inX accepts the traces, this is indicated byδ det
A (X,s) = /0. This is also true

for termination: ifω is enabled in some state inX, thenδ det
A (X,ω) = ω, otherwise

δ det
A (X,ω) = /0.
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In order to determine whether or not the languageC is a nonconflicting completion

of the automatonB, we will use a possibly nondeterministic automatonA to represent

the language ofC. We will then compare the state sets which bothA andB can reach in

parallel to one another. Therefore, the deterministic transition function is also applied

to pairsX = (XA,XB) of state setsXA⊆QA andXB⊆QB.

δ det
A,B(X,s) = δ det

A,B(XA,XB,s) = (δ det
A (XA,s),δ det

B (XB,s)) . (5.3)

We now give a definition of less conflicting pairs. A pair of state sets(XA,XB) is a

less conflicting pair if and only if the language representedby XA is a nonconflicting

completion of the automaton represented byXB. The set of less conflicting pairs is

defined hierarchichally in such a way that lower ranked less conflicting pairs can be

used find higher ranked less conflicting pairs.

Definition 5.2 Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata. The set

LC(A,B)⊆Qdet
A ×Qdet

B of less conflicting pairsfor A andB is inductively defined by

LC0(A,B) ={ω}×Qdet
B ∪ {(XA,XB) | XB⊆QB and there exists

xB ∈ XB with L
ω(xB) = /0} ; (5.4)

LCn+1(A,B) ={(XA,XB) | there existsxB ∈ XB such that for allt ∈ Σ∗, if

xB
tω
⇒ then there existsr ⊑ tω such thatδ det

A,B(XA,XB, r) ∈

LC i(A,B) for somei ≤ n} ;

(5.5)

LC(A,B) =
⋃

n≥0

LCn(A,B) . (5.6)

Remark 5.1 If (XA,XB) /∈ LC(A,B), then according to (5.5), for every statexB ∈ XB,

there existst ∈Σ∗ such thatxB
tω
⇒, andδ det(XA,XB, r) /∈ LC(A,B) for all prefixesr ⊑ tω.

The idea of definition 5.2 is to classify a pair(XA,XB) as less conflicting, if the

marked language ofXA is anonconflicting completion[25] for the process with initial

statesXB. That is, every test that is nonconflicting in combination with each of the

states inXB can terminate with at least one trace from the marked language of XA.

Or conversely, every test that cannot terminate using any ofthe traces in the marked

language ofXA also is conflicting withXB (see lemma 5.3 below).

The first state setXA of a pair(XA,XB) is just used to represent alanguageof possi-

ble completions. If state setsXA andYA have the same languages, then all pairs(XA,XB)

and(YA,XB) have exactly the same less conflicting status. For the secondstate setXB

on the other hand, the complete nondeterministic behaviouris relevant.

A pair (ω,XB) is considered as “less conflicting” (5.4), since termination has al-

ready been achieved inA. If XB contains a statexB such thatL ω(xB) = /0, then
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(XA,XB) also is less conflicting (5.4), because conflict is guaranteed in XB. For other

pairs(XA,XB), it must be checked whetherXB contains a requirement to avert blocking

matching that given by the language ofXA (5.5).

Example 5.1 Consider again the automataA0 andB0 in figure 2.2. It is the case that

({a0},{b0})∈ LC1(A0,B0). There are three ways to terminate fromb0, by executingω
or αβω or ααβω. All three traces are possible ina0, each taking the pair({a0},{b0})

to the deterministic successor(ω,ω) ∈ LC0(A0,B0). This is enough to confirm that

(5.5) is satisfied.

On the other hand,({a0},{b2}) /∈ LC1(A0,B0). From statea0, blocking occurs

with a testT that can only executeβω, but this test is nonblocking withb2. It holds

thatb2
βω
→, where traceβω has the prefixesε, β , andβω, but δ det

A0,B0
({a0},{b2},ε) =

({a0},{b2}) /∈ LC0(A0,B0), δ det
A0,B0

({a0},{b2},β ) = ( /0,{b4}) /∈ LC0(A0,B0), and fi-

nally δ det
A0,B0

({a0},{b2},βω) = ( /0,ω) /∈ LC0(A0,B0). Therefore, (5.5) is not satisfied

and({a0},{b2}) /∈ LC1(A0,B0). It can also be shown that({a0},{b2}) /∈ LC(A0,B0).

For a level-1 less conflicting pair(XA,XB) ∈ LC1(A,B), if XB does not contain

blocking states, then there must exist a statexB ∈ XB such thatL ω(xB) ⊆ L ω(XA).

This is not the case for every less conflicting pair, as some nonblocking requirements

are only implicitly contained in the automaton. To show that(XA,XB) is a less con-

flicting pair, it is enough to find a state inxB ∈ XB that can cover an initial segment

of L ω(XA), as long as a less conflicting pair of alower levelis reached afterwards.

Example 5.2 Consider again automataA2 andB2 in figure 2.4. By definition,(ω,ω)∈

LC0(A2,B2), and following from this,({a1},{b0,b1}) ∈ LC1(A2,B2), because the

marked language ofa1 is α+ω, which also is the marked language ofb1.

Now consider the pair({a0},{b0,b1}). Statea0 has the marked languageαα+ω,

i.e., to avert blocking froma0, a test must be able to execute at least one of the traces

in αα+ω. Although this language is not directly associated with anystate inB2, the

nonblocking requirement is implicitly present in stateb1. If blocking is to be averted

from stateb1, eventα must be possible. After executingα, stateb0 is entered, from

where it is always possible to silently return to stateb1 with marked languageα+ω.

Therefore, in order to avert blocking from stateb1, it is necessary to executeα and

afterwards be able to terminate using one of the traces inα+ω. This amounts to the

implicit nonblocking requirement to execute a trace fromαα+ω in stateb1.

Therefore({a0},{b0,b1}) /∈ LC1(A2,B2), but ({a0},{b0,b1}) ∈ LC2(A2,B2) ac-

cording to (5.5): every trace that leads to a terminal state from stateb1 has the prefixα,

andδ det
A2,B2

({a0},{b0,b1},α) = ({a1},{b0,b1}) ∈ LC1(A2,B2).
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As shown in the example, some nonblocking requirements haveto be constructed

using a saturation operation that combines two previously found nonblocking require-

ments. The leveln of a less conflicting pair(XA,XB)∈ LCn(A,B) represents the nesting

depth of applications of this saturation operation.

The level of less conflicting pairs can also be seen as measuring progresstowards

termination. When moving to the next level, a strongly connected component is exited

and some state combinations become unreachable. The idea ofprogress is essential for

conflict semantics. By (5.6), every less conflicting pair mustbe in a setLCn(A,B) for

somen∈ N, even for infinite-state systems.

In the following lemma we shows that under all circumstanceswhere(XA,XB) is

not inLC(A,B), that there exists an automaton which is both nonblocking with XB and

incapable of performing any trace inL ω(XA). This automaton is a counterexample

which shows thatL ω(XA) is not a nonconflicting completion ofB.

Lemma 5.1 Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata. LetX =

(XA,XB) /∈ LC(A,B). Let B′ = 〈Σ,Q,→,Q◦〉XB[B].

Then there exists a deterministic automatonTX = 〈Σ,QT ,→T ,Q
◦
T{x
◦
T}〉 such that

both the following conditions hold.

(i) L ω(XA)∩L ω(T) = /0.

(ii) B′ ‖T is nonblocking.

Proof. Construct the deterministic automatonTX = 〈Σ,QT ,→T ,Q
◦
T{x

◦
T}〉 such that

L (TX) = {s∈ Σ∗∪Σ∗ω | δ det
A,B(X, r) /∈ LC(A,B) for all r ⊑ s} . (5.7)

This language is prefix-closed by construction and nonemptybecauseX /∈ LC(A,B).

Therefore,TX is a well-defined automaton.

(i) Let xA∈XA. If xA
tω
⇒ for somet ∈ Σ∗, thenδ det

A,B(X, tω) = (ω,YB)∈ LC0(A,B)⊆

LC(A,B) for someYB ∈Qdet
B by definition 5.1 and 5.2. It follows from (5.7) thattω /∈

L (TX), and thus(xA,x◦T)
tω
⇒ does not hold. Sincet ∈ Σ∗ was chosen arbitrarily, it

follows thatL ω(xA,x
◦
T) = /0. ThereforeL ω(XA)∩L ω(T) = /0.

(ii) Let xB ∈ XB, yB ∈ QB, yT ∈ QT , ands∈ Σ∗ such thatB‖T
s
⇒ (yB,yT). From

(5.7) it follows thatδ det
A,B(X,s) /∈ LC(A,B). Let δ det

A,B(X,s) = Y. ThenY /∈ LC(A,B),

so there exists a tracet ∈ Σ∗ such thatyB
tω
⇒ and for allr ⊑ t it holds thatδ det

A,B(Y, r) /∈

LC(A,B) (see remark 5.1). ThusxB
s
⇒ yB

tω
⇒ and for all prefixesu⊑ stω, it holds

that δ det
A,B(X,u) /∈ LC(A,B). Thenstω ∈ L (TX) according to (5.7), and sinceTX is

deterministic, it follows thatyT
tω
⇒. Therefore,(yB,yT)

tω
⇒, As s,xB,yB andyT were

chose arbitrarilyB′ ‖T is nonblocking. �
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We further show that if the tuple(XA,XB) ∈ LC(A,B) then for any test automaton

T, and any statexT from the automatonT it must be the case that eitherXA ‖ xT is

nonblocking orXB‖xT can reach a blocking state.

Lemma 5.2 Let A= 〈Σ,QA,→A,Q
◦
A〉, B= 〈Σ,QB,→B,Q

◦
B〉, andT = 〈Σ,QT ,→T ,Q

◦
T〉

be automata, and letxT ∈QT be a (possibly unreachable) state. For every less conflict-

ing pair(XA,XB) ∈ LC(A,B), at least one of the following conditions holds.

(i) XA = ω, or XA⊆QA and there existsxA ∈ XA such thatL ω(xA,xT) 6= /0.

(ii) There exists statesxB ∈ XB, yB ∈ QB, andyT ∈ QT such that(xB,xT)⇒ (yB,yT)

andL ω(yB,yT) = /0.

(Here and in the following, the notationL ω(xA,xT) is abused to be a shorthand for

L ω((xA,xT)).)

Proof. As (XA,XB) is a less conflicting pair, it holds that(XA,XB) ∈ LCn(A,B) for

somen∈ N. The claim is shown by induction onn.

If (XA,XB) ∈ LC0(A,B) then by (5.4) it holds thatXA = ω, or XB ⊆ QB and there

existsxB ∈ XB such thatL ω(xB) = /0. In the first case (i) holds, and in the second case

(ii) holds as(xB,xT)
ε
→ (xB,xT) andL ω(xB,xT) = L ω(xB)∩L ω(xT) = /0.

Now assume the claim holds for alli ≤ n, i.e., for all(XA,XB) ∈ LC i(A,B), one of

the conditions (i) or (ii) holds, and consider(XA,XB) ∈ LCn+1(A,B). By (5.5), there

existsxB∈XB such that for allt ∈ Σ∗, if xB
tω
⇒ then there exists a prefixr ⊑ tω such that

δ det
A,B(XA,XB, r)∈ LC i(A,B) for somei ≤ n. If L ω(xB,xT) = /0, (ii) follows immediately

as(xB,xT)
ε
→ (xB,xT). Therefore assume thatL ω(xB,xT) 6= /0, i.e., there existst ∈ Σ∗

such that(xB,xT)
tω
⇒. ThenxB

tω
⇒, so there existsr ⊑ tω such thatδ det

A,B(XA,XB, r) ∈

LC i(A,B) for somei ≤ n. As r ⊑ tω andxT
tω
⇒, it also holds thatxT

r
⇒ yT for some

yT ∈ QT . Let δ det
A,B(XA,XB, r) = (YA,YB). By inductive assumption, (i) or (ii) holds for

(YA,YB) ∈ LC i(A,B) andyT .

(i) In this case, eitherYA = ω, orYA⊆QA and there existsyA ∈YA andu∈ Σ∗ such

that (yA,yT)
uω
⇒. If YA = ω, thenδ det

A (XA, r) = YA = ω and according to definition 5.1

there existsrA ∈ Σ∗ such thatr = rAω, and there exists statesxA ∈ XA andyA ∈ QA

such thatxA
rA⇒ yA

ω
⇒, i.e., (xA,xT)

rAω
=⇒. If there existsyA ∈ YA andu ∈ Σ∗ such that

(yA,yT)
uω
⇒, then sinceδ det

A (XA, r) = YA, there existsxA ∈ XA such thatxA
r
⇒ yA, i.e.,

(xA,xT)
r
⇒ (yA,yT)

uω
⇒. In both cases, (i) holds for(XA,XB) andxT .

(ii) If there exists a stateyB ∈YB such that(yB,yT)⇒ (zB,zT) whereL ω(zB,zT) =

/0, then sinceδ det
B (XB, r) = YB, there existsxB ∈ XB such thatxB

r
⇒ yB, which implies

(xB,xT)
r
⇒ (yB,yT) ⇒ (zB,zT) with L ω(zB,zT) = /0. Thus, (ii) holds for(XA,XB)

andxT . �
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We further go on to show that if(XA,XB) is in LC(A,B) that it is in fact the case

thatL ω(XA) is a nonconflicting completion ofXB.

Lemma 5.3 Let A= 〈Σ,QA,→A,Q
◦
A〉, B= 〈Σ,Q,→,XB〉[B] be automata. LetXA⊆QA.

Then(ε,L ω(XA)) ∈ CCω(B) if and only if (XA,XB) ∈ LC(A,B)

Proof. First we will prove that if(XA,XB) /∈ LC(A,B) then(ε,L ω(XA)) /∈ CCω(B).

From lemma 5.1 their exists an automatonT such thatL ω(YA)∩L ω(Q◦T) = /0 and

B‖T is nonblocking. ClearlyT
ε
→Q◦T therefore(ε,L ω(XA)) /∈ CCω(B).

Second we will prove that if(XA,XB) ∈ LC(A,B) then(ε,L ω(XA)) ∈ CCω(B).

Let T = 〈Σ,QT ,→T ,Q
◦
T〉 be an automaton such thatB‖T is nonblocking we will

show thatL ω(XA)∩L (Q◦T) 6= /0.

As (XA,XB)∈ LC(A,B) from lemma 5.2 either there exists a statexA∈XA such that

L ω(xA)∩L ω(Q◦T) 6= /0 or there exists statesxB ∈ XB, yB ∈QB, andyT ∈QT such that

(xB,xT)⇒ (yB,yT) andL ω(yB,yT) = /0 In the first case asL ω(xA)⊆L ω(XA) it holds

thatL ω(XA)∩L (Q◦T) 6= /0. In the second caseB‖T⇒ (yB,yT), asL ω(yB,yT) = /0 it

would hold thatB‖T is blocking. As this contradicts our assumption aboutT it must

be the first case.

�

5.3 Less Conflicting Pairs and Certain Conflicts

Less conflicting pairs can be used to characterise the set ofcertain conflictsof an au-

tomaton as defined in 2.5. This shows the close link between the conflict preorder and

the set of certain conflicts. If a pair( /0,XB) is a less conflicting pair then, since termi-

nation is impossible from /0, conflict must be also present inXB. In this case, every

trace leading toXB must be a trace of certain conflicts. This observation leads to the

following alternative characterisation of the set of certain conflicts.

Theorem 5.2 The set of certain conflicts ofB= 〈Σ,Q,→,Q◦〉 can also be written as

Conf(B) = {s∈ Σ∗ | ( /0,δ det
B (Q◦, r)) ∈ LC(O,B) for some prefixr ⊑ s} , (5.8)

whereO= 〈Σ, /0, /0, /0〉 stands for the empty automaton.

Proof. First let s∈ Σ∗ such that( /0,δ det
B (Q◦, r)) ∈ LC(O,B) for somer ⊑ s, and let

T = 〈Σ,QT ,→T ,Q
◦
T〉 be an automaton such thatT

s
⇒. It is to be shown thatB‖T is

blocking. SinceT
s
⇒ andr ⊑ s, it holds thatT

r
⇒ xT for some statexT ∈ QT . Since

( /0,δ det
B (Q◦, r)) ∈ LC(O,B), either (i) or (ii) in lemma 5.2 holds. However, (i) is im-

possible as the first state set of the pair is empty, so (ii) must be true. Thus, there exists
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a statex∈ δ det
B (Q◦, r) such that(x,xT)⇒ (y,yT) whereL ω(y,yT) = /0. ThenB‖T is

blocking asB‖T
r
⇒ (x,xT)⇒ (y,yT).

Conversely, lets∈ Σ∗ such that( /0,δ det
B (Q◦, r)) /∈ LC(O,B) for every prefixr ⊑ s.

It is to be shown thats∈ NConf(B). Consider the deterministic automatonT such

that

L (T) = { t ∈ Σ∗ | ( /0,δ det
B (Q◦, r)) /∈ LC(O,B) for all r ⊑ t } . (5.9)

T is a well-defined automaton asL (T) is prefix-closed by construction. It remains

to be shown thatB‖T is nonblocking. LetB‖T
t
⇒ (x,xT). Thent ∈L (T), and by

definition ofT (5.9), it holds that( /0,δ det
B (Q◦, t)) /∈ LC(O,B), and the same holds for all

prefixes oft. Also x∈ δ det
B (Q◦, t), so there exists a traceu∈ Σ∗ such thatx

uω
⇒, and for

every prefixr ⊑ uω, it holds thatδ det
O,B( /0,δ det

B (Q◦, t), r) /∈ LC(O,B) (see remark 5.1).

By definition (5.9), it follows thattuω ∈L (T), and sinceT is deterministic alsoxT
uω
⇒.

Therefore,B‖T
t
⇒ (x,xT)

uω
⇒, i.e.,B‖T is nonblocking. �

The result of theorem 5.2 shows how less conflicting pairs generalise certain con-

flicts for the case when two automata are compared, and in combination with the al-

gorithm in section 5.5, less conflicting pairs lead to an alternative presentation of the

algorithm [22] to compute the set of certain conflicts.

5.4 Testing the Conflict Preorder

Given the less conflicting pairs for two automataA andB, it is possible to determine

whetherA.conf B. AutomatonA is less conflicting thanB if every testT that is noncon-

flicting in combination withB also is nonconflicting withA. To check this condition,

it is enough to consider tracesB‖T
s
⇒ (xB,xT), and check whether termination is also

possible for every statexA of A such thatA‖T
s
⇒ (xA,xT). This amounts to checking

whether({xA},XB) ∈ LC(A,B) whenA
s
⇒ xA andδ det

B (Q◦B,s) = XB.

However, this condition does not apply to traces of certain conflicts. Ifs∈Conf(B),

then every testT that can executes is in conflict withB. In this case,A can still be less

conflicting thanB, no matter whetherA can or cannot execute the tracesand terminate

afterwards. This observation leads to the following result.

Theorem 5.3 Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be two automata.A

is less conflicting thanB if and only if for all s∈NConf(B) and allxA ∈QA such that

A
s
⇒ xA it holds that({xA},XB) ∈ LC(A,B), whereδ det

B (Q◦B,s) = XB.

Proof. We will show that it holds that alls∈NConf(B) and allxA∈QA such thatA
s
⇒

xA it holds that({xA},XB) ∈ LC(A,B), whereδ det
B (Q◦B,s) = XB, if and only if it holds

that allc∈ Σ∗ and allxA ∈QA such thatA
c
⇒ xA it holds that(c,L ω(xA)) ∈ CCω(B).
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First we will show that if alls∈ NConf(B) and allxA ∈ QA such thatA
s
⇒ xA it

holds that({xA},XB) ∈ LC(A,B), whereδ det
B (Q◦B,s) = XB, then it holds that allc∈ Σ∗

and allxA ∈QA such thatA
c
⇒ xA it holds that(c,L ω(xA)) ∈ CCω(B).

Let c∈ Σ∗ be a trace andxA ∈ QA be a state such thatA
c
⇒ xA, we will show that

(c,L ω
( xA) ∈ CCω(B)).

First let us consider the case wherec ∈ Conf(B). In this case(c, /0) ∈ CCω(B),

which in turn implies that(c,L ω(xA)) ∈ CCω(B) as /0⊆L ω(xA).

Second let us consider the case wherec∈ NConf(B). In this case from assump-

tion it holds that({xA},XB) ∈ LC(A,B) ∈ LC(A,B), whereδ det
B (Q◦B,s) = XB. From

lemma 5.3 it holds that(ε,L ω(xA)) ∈ CCω(XB). It then holds from proposition 2.2

that(c,L ω(xA)) ∈ CCω(B) asc∈NConf(B) andδ detB
c
→ XB.

Now let us prove that if for allc∈ Σ∗ and allxA ∈QA such thatA
c
⇒ xA it holds that

(c,L ω(xA)) ∈ CCω(B) it must hold that for alls∈ NConf(B) and allxA ∈ QA such

thatA
s
⇒ xA it holds that({xA},XB) ∈ LC(A,B), whereδ det

B (Q◦B,s) = XB.

Let s∈NConf(B) be a trace andxA be a state such thatA
s
⇒ xA we will show that

it must hold that({xA},XB) ∈ LC(A,B), whereδ det
B (Q◦B,s) = XB.

As A
s
→ xA it must hold that(s,L ω(xA))∈CCω(B). As (s,L ω(xA))∈CCω(B) and

δ det
B (Q◦B,s) = XB from proposition 2.2 it must hold that(ε,L ω(xA)) ∈ CCω(XB). Fi-

nally from lemma 5.3 as(ε,L ω(xA))∈CCω(XB) it must hold that(XA,XB)∈ LC(A,B).

�

Example 5.3 Consider again automataA0 andB0 in figure 2.2. Recall thatConf(B0)=

αΣ∗ from example 2.5, so the only state inA0 that can be reached by a traces /∈

Conf(B0) is a0. Therefore, it is enough to check the pair({a0},{b0}) according to

theorem 5.3, and it has been shown in example 5.1 that({a0},{b0}) ∈ LC1(A0,B0). It

follows thatA0 .conf B0. This conclusion is made despite the fact that({a0},{b2}) /∈

LC(A0,B0), because({a0},{b2}) is only reachable by tracesαn ∈Conf(B0), n≥ 2.

When using theorem 5.3 to determine whether an automatonA is less conflicting

than some blocking automatonB, the set of certain conflicts ofB must be known first.

This can be achieved using theorem 5.2, which makes it possible to classify state sets

in the subset construction ofB as certain conflicts. If a state setXB ⊆ QB is found

to represent certain conflicts, i.e.,( /0,XB) ∈ LC(O,B) according to theorem 5.2, then

(XA,XB) ∈ LC(A,B) for every state setXA ⊆ QA. Successors reached only from such

pairs are also certain conflicts ofB and should not be considered when testing whether

A.conf B according to theorem 5.3.

Example 5.4 Consider again automataA1 andB1 in figure 2.3. ComposingA1 with a

deterministic version ofB1 results in the following four pairs of states inA1 and sets
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LC(A1,B1) :

α

α

α

α

ω

ω

(ω,ω)

( /0,ω)

β

β

γ

γ

β ,γ

({a0},{b0}) ({a1,a2},{b1,b2})

({a3},{b3})

({a1},{b1,b2}) ({a2},{b1,b2})

( /0,{b3})

LC(A2,B2) :

α
ααα

ωω ωω

(ω,ω)( /0,ω)

({a0},{b0,b1}) ({a1},{b0,b1})
({a1,a2},{b0,b1})

({a2},{b0,b1})

Figure 5.1: Less conflicting pairs for the automata pairs in figure 2.3 and 2.4.
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of states inB1 that should be tested according to theorem 5.3 to determine whether

A1 .conf B1:

({a0},{b0}) ({a1},{b1,b2}) ({a2},{b1,b2}) ({a3},{b3}) . (5.10)

All four pairs need to be considered asB1 is nonblocking and thusConf(B1) = /0.

The graph to the left in figure 5.1 shows these four pairs and their deterministic

successors. The four pairs (5.10) are marked as initial states, and the arrows in the graph

represent the deterministic transition function. Although the deterministic transition

function is defined for all state set pairs and events, arrowsto ( /0, /0) are suppressed for

clarity of presentation.

The following less conflicting pairs to compareA1 to B1 are determined from the

graph:

(ω,ω) ∈ LC0(A1,B1) ; (5.11)

({a0},{b0}), ({a1,a2},{b1,b2}), ({a3},{b3}) ∈ LC1(A1,B1) . (5.12)

For example,({a1,a2},{b1,b2})∈ LC1(A1,B1), because all the ways to reach termina-

tion from stateb1, i.e., all traces inL ω(b1) = α∗βω take the pair({a1,a2},{b1,b2})

to (ω,ω) ∈ LC0(A1,B1). No further pairs are found inLC2(A1,B1), so LC(A1,B1)

consists only of the pairs listed above. For example,({a1},{b1,b2}) /∈ LC2(A1,B1),

because the tracesαβω ∈ L ω(b1) andγω ∈ L ω(b2) do not have any prefixes that

reach a pair inLC1(A1,B1).

As ({a1},{b1,b2}) /∈ LC(A1,B1), it follows from theorem 5.3 thatA1 is not less

conflicting thanB1.

Example 5.5 Consider again automataA2 andB2 in figure 2.4. Note thatConf(B2) =

/0. By composingA2 with a deterministic version ofB2, it becomes clear that the

only pairs that need to be tested to determine whetherA2 .conf B2 according to the-

orem 5.3 are({a0},{b0,b1}) reached afterε, ({a1},{b0,b1}) reached afterα+, and

({a2},{b0,b1}) reached afterαα+.

The graph with these pairs and their deterministic successors is shown to the right in

figure 5.1, with the three crucial pairs marked as initial. The following less conflicting

pairs are discovered (see example 5.2):

(ω,ω) ∈ LC0(A2,B2) ; (5.13)

({a1}, {b0,b1}), ({a1,a2},{b0,b1}), ({a2},{b0,b1}) ∈ LC1(A2,B2) ; (5.14)

({a0},{b0,b1}) ∈ LC2(A2,B2) . (5.15)
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As the three crucial pairs are all inLC(A2,B2), it follows from theorem 5.3 thatA2.conf

B2.

The result of theorem 5.3 is related to the decision procedure for fair testing [31].

The fair testing decision procedure starts by composing theautomatonA with a de-

terminised form ofB, which gives rise to the same state set combinations that need

to be considered as in theorem 5.3. From this point on, the twomethods differ. The

fair testing decision procedure annotates each state of thesynchronous product ofA

and the determinised form ofB with automata representing the associated refusal trees,

and searches for matching automata (or more precisely, for matchingproductive sub-

automata) within these annotations. The method based on less conflicting pairs avoids

some of the resulting complexity by performing the completedecision on the flat state

space of the synchronous product of the determinised forms of A andB.

Another consequence of theorem 5.3 is that ifA.conf Band the traces∈NConf(B)

it must be the case thatA/s.conf B/s.

Proposition 5.1 Let A = 〈Σ,QA,→A,Q
◦
A〉 andB = 〈Σ,QB,→B,Q

◦
B〉 be two automata,

such thatA.conf B. Let s∈NConf(B). Let A/s= 〈Σ,QA,→A,XA〉 andB/s= 〈Σ,QB,

→B,XB〉

ThenA/s.conf B/s

Proof. We will prove thatA/s.conf B/s using theorem 5.3, by proving that for all

t ∈NConf(B/s) and allyA∈QA such thatA
s
⇒ xA it holds that({xA},XB)∈ LC(A,B),

whereδ det
B (Q◦B,s) = XB.

Let t ∈ NConf(B/s) be a trace. LetyA ∈ QA be a state such that̃A
t
⇒ yA and

YB⊆QB be a state set such thatXB
t
→YB. As det(B)

s
→XB

t
→YB→ω, st∈NConf(B).

Furthermore as det(A)
s
→ XA, XA

t
⇒ yA. From theorem 5.3 asst ∈ NConf(B) and

A
st
→ yA, ({yA},YB) ∈ LC.

Therefore asA.conf B, ({yA},YB) ∈ LC. �

5.5 Algorithm to Compute Less Conflicting Pairs

This section proposes a method to effectively compute the less conflicting pairs for two

given finite-state automataA andB. This is done in a nested iteration. Assuming that

the setLCn(A,B) is already known, the setLCn+1(A,B) is computed in a secondary

iteration based onmore conflicting triples.

Definition 5.3 Let A = 〈Σ,QA,→A,Q
◦
A〉 andB = 〈Σ,QB,→B,Q

◦
B〉 be automata. The

setMCn(A,B) ⊆ Qdet
A ×Qdet

B ×QB of nth level more conflicting triplesfor A andB is
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defined inductively as follows.

MCn
0(A,B) = {( /0,ω,xB) | xB ∈QB} ; (5.16)

MCn
m+1(A,B) = {(XA,XB,xB) | (XA,XB) /∈ LCn(A,B) andxB ∈ XB and there

exists a triple(YA,YB,yB)∈MCn
m(A,B) andσ ∈ Σ such that

δ det
A,B(XA,XB,σ) = (YA,YB) andxB

σ
⇒ yB } ;

(5.17)

MCn(A,B) =
⋃

m≥0

MCn
m(A,B) . (5.18)

For a pair(XA,XB) to be a less conflicting pair, according to definition 5.2 there must

be a statexB ∈ XB such that every trace that takesxB to termination inB has a prefix

that leads to another less conflicting pair. A triple(XA,XB,xB) is considered “more

conflicting” if (XA,XB) is not yet known to be a less conflicting pair, and the state

xB ∈ XB cannot be used to confirm the above property. Therefore, lemma 5.4 shows

that a triple(XA,XB,xB) is nth-level “more conflicting” if and only if the statexB ∈ XB

can reach termination without passing through a pair inLCn.

If (XA,XB,xB) is “more conflicting” for allxB ∈ XB, then the pair(XA,XB) cannot

be a less conflicting pair. Otherwise, if there exists at least one statexB ∈ XB such that

(XA,XB,xB) is not “more conflicting”, then(XA,XB) is added to set of less conflicting

pairs in the next iteration. Theorem 5.4 below confirms the correctness of this approach.

Lemma 5.4 Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata, letn∈ N

and(XA,XB,xB) ∈Qdet
A ×Qdet

B ×QB. The following statements are equivalent.

(i) (XA,XB,xB) ∈MCn(A,B);

(ii) There exists a traces∈ Σ∗ω ∪{ε} such thatδ det
A,B(XA,XB,s) = ( /0,ω) andxB

s
⇒,

andδ det
A,B(XA,XB, r) /∈ LCn(A,B) for all prefixesr ⊑ s.

Proof. First let(XA,XB,xB)∈MCn(A,B), i.e.,(XA,XB,xB)∈MCn
m(A,B) for somem∈

N. It is shown by induction onm that (ii) holds.

In the base case,m= 0, and by definition(XA,XB,xB) ∈ MCn
0(A,B) means that

(XA,XB) = ( /0,ω). Then considers= ε, and noteδ det
A,B(XA,XB,ε) = (XA,XB) = ( /0,ω)

andxB
ε
⇒. Clearly r ⊑ ε implies r = ε, andδ det

A,B(XA,XB,ε) = ( /0,ω) /∈ LC(A,B) ⊇

LCn(A,B) by lemma 5.2.

Now consider(XA,XB,xB) ∈ MCn
m+1(A,B). It follows from definition 5.3 that

(XA,XB) /∈ LCn(A,B) andxB∈XB, and there exists(YA,YB,yB)∈MCn
m(A,B) andσ ∈ Σ

such thatδ det
A,B(XA,XB,σ) = (YA,YB) andxB

σ
⇒ yB. By inductive assumption, there exists

a traces∈ Σ∗ω ∪{ε} such thatδ det
A,B(YA,YB,s) = ( /0,ω) andyB

s
⇒, and for allr ⊑ s it
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holds thatδ det
A,B(YA,YB, r) /∈ LCn(A,B). Thenδ det

A,B(XA,XB,σs) = δ det
A,B(YA,YB,s) = ( /0,ω)

andxB
σ
⇒ yB

s
⇒, and for allr ⊑ σs it holds thatδ det

A,B(XA,XB, r) /∈ LCn(A,B).

Conversely, lets∈ Σ∗ω∪{ε} such that (ii) holds. This means thatδ det
A,B(XA,XB,s) =

( /0,ω) andxB
s
⇒, andδ det

A,B(XA,XB, r) /∈ LCn(A,B) for all r ⊑ s. It is shown by induction

onm= |s| that(XA,XB,xB) ∈MCn
m(A,B).

In the base case, wherem= 0 ands= ε, it holds by definition that(XA,XB) =

δ det
A,B(XA,XB,ε) = ( /0,ω) ∈MCn

0(A,B).

Now let s = σt such that|t| = m, and δ det
A,B(XA,XB,s) = ( /0,ω) and xB

s
⇒, and

δ det
A,B(XA,XB, r) /∈ LCn(A,B) for all prefixesr ⊑ s. Write δ det

A,B(XA,XB,σ) = (YA,YB) and

xB
σ
⇒ yB

t
⇒. ThenyB

t
⇒ andδ det

A,B(YA,YB, t)= δ det
A,B(XA,XB,σt)= δ det

A,B(XA,XB,s)= ( /0,ω)

andδ det
A,B(YA,YB, r) /∈ LCn(A,B) for all r ⊑ t. Then(YA,YB,yB) ∈MCn

m(A,B) by induc-

tive assumption, and by definition 5.3 it follows that(XA,XB,xB) ∈MCn
m+1(A,B). �

Theorem 5.4 Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata, and let

n∈ N. Then

LCn+1(A,B) = {(XA,XB)∈Qdet
A ×Qdet

B | (XA,XB,xB) /∈MCn(A,B) for somexB∈XB} .

(5.19)

Proof. Let (XA,XB) ∈ LCn+1(A,B). Then by definition 5.2, there existsxB ∈ XB such

that for all t ∈ Σ∗ such thatxB
tω
⇒, there existsr ⊑ tω such thatδ det

A,B(XA,XB, r) ∈

LC i(A,B) for some i ≤ n. Equivalently, this means that if there does not exist a

tracet ∈ Σ∗ such thatxB
tω
⇒ and for all prefixesr ⊑ tω it holds thatδ det

A,B(XA,XB, r) /∈

LCn(A,B). Then(XA,XB,xB) /∈MCn(A,B) because otherwise such a trace would exist

by lemma 5.4.

Conversely, letxB ∈ XB such that(XA,XB,xB) /∈MCn(A,B). To check the condition

in definition 5.2 (5.5), considert ∈ Σ∗ such thatxB
tω
⇒. Then clearlyδ det

B (XB, tω) =

ω. By definition 5.1, it holds that eitherδ det
A (XA, tω) = ω or δ det

A (XA, tω) = /0. If

δ det
A (XA, tω)=ω, thenδ det

A,B(XA,XB, tω)= (ω,ω)∈ LC0(A,B). Otherwiseδ det
A (XA, tω)=

/0 and thusδ det
A,B(XA,XB, tω) = ( /0,ω), and by lemma 5.4 there must existr ⊑ tω such

thatδ det
A,B(XA,XB, r) ∈ LCn(A,B) as otherwise(XA,XB,xB) ∈MCn(A,B). In both cases,

δ det
A,B(XA,XB, r) ∈ LC i(A,B) for somer ⊑ tω and i ≤ n. Sincet ∈ Σ∗ with xB

tω
⇒ was

chosen arbitrarily, it follows from definition 5.2 (5.5) that (XA,XB) ∈ LCn+1(A,B). �

Example 5.6 Figure 5.2 shows a graph representing the more conflicting triples to

check whetherA2 .conf B2 in figure 2.4. The arrows in the graph represent the deter-

ministic transition function in combination with the transition relation ofB2. An arrow

(XA,XB,xB)
σ
→ (YA,YB,yB) indicates thatδ det

A2,B2
(XA,XB,σ) = (YA,YB) andxB

σ
⇒ yB.
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Figure 5.2: Calculating more conflicting triples for automataA2 andB2 in figure 2.4.

In the first iteration to computeMC0(A2,B2), first the triple( /0,ω,bω) is added to

MC0
0(A2,B2). Next, the triples({a0},{b0,b1},b0) and({a1},{b0,b1},b0) are added to

MC0
1(A2,B2) as they can immediately reach( /0,ω,bω). Finally, ({a0},{b0,b1},b1) is

also added toMC0
2(A2,B2) as it can reach the triple({a1},{b0,b1},b0)∈MC0

1(A2,B2).

No further triples are found to be inMC0
3(A2,B2). Therefore,({a1},{b0,b1},b1) /∈

MC0(A2,B2), so it follows from theorem 5.4 that({a1},{b0,b1}) ∈ LC1(A2,B2), and

likewise({a1,a2},{b0,b1}), ({a2},{b0,b1}) ∈ LC1(A2,B2).

In the next iteration to computeMC1(A2,B2), we note that({a1},{b0,b1},b0) /∈

MC1
1(A2,B2) as ({a1},{b0,b1}) ∈ LC1(A2,B2). ({a0},{b0,b1},b0) ∈ MC1

1(A2,B2)

because of the transition to( /0,ω,bω) ∈ MC1
0(A2,B2), but now({a0},{b0,b1},b1) /∈

MC1
2(A2,B2) because({a1},{b0,b1},b0) /∈MC1

1(A2,B2). Accordingly, the pair({a0},

{b0,b1}) is added toLC2(A2,B2).

In a final iteration to computeMC2(A2,B2), only one more conflicting triple is

found, ( /0,ω,bω) ∈ MC2
0(A2,B2). No further pairs are added inLC3(A2,B2). At this

point, the iteration terminates, having found exactly the four less conflicting pairs given

in example 5.5, (5.14) and (5.15).

To determine whether an automatonA is less conflicting than an automatonB, we

first needed to determine the set of certain conflicts ofB, and then find all the state-set

pairs forA andB that are reachable from a pair like({xA},XB) associated with some

trace that is not a certain conflict ofB. The more conflicting triples can be constructed

as they are discovered during the backwards search from the terminal states.

The complexity of each iteration of the more conflicting triples computation is de-

termined by the number of arrows in the graph, which is bounded by |Σ| · |QB|
2 ·2|QA| ·

2|QB|, because the powerset transitions are deterministic, which is not the case for the

transitions ofB. Each iteration except the last adds at least one less conflicting pair, so

the number of iterations is bounded by 2|QA| ·2|QB|. The complexity of this loop domi-

nates all other tasks of the computation. Therefore, the worst-case time complexity to
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Algorithm 1 Construct Deterministic State Space
1: Stack←{(Q◦A,Q

◦
B),( /0,Q◦B)}

2: Pairs←{(Q◦A,Q
◦
B),( /0,Q◦B)}

3: while Stack6= /0 do
4: (XA,XB)← Stack.pop()
5: for all σ ∈ Σ∪{ω} do
6: (YA,YB)← δ det

A,B(XA,XB,σ)
7: if (YA,YB) /∈ Pairs then
8: Pairs← Pairs∪{(YA,YB)}
9: Stack.push((YA,YB))

10: end if
11: end for
12: for all xA ∈ XA do
13: if ({xA},XB) /∈ Pairs then
14: Pairs← Pairs∪{({xA},XB)}
15: Stack.push(({xA},XB))
16: end if
17: end for
18: end while

determine whetherA.conf B using less conflicting pairs is

O(|Σ| · |QB|
2 ·4|QA| ·4|QB|) = O(|Σ| · |QB|

2 ·22|QA|+2|QB|) . (5.20)

This shows that the conflict preorder can be tested in linear exponential time, as is

the case for the fair testing preorder. Yet, the complexity (5.20) is better than the

time complexity of the decision procedure for fair testing,which is O(|QA| · |QB| ·

23|QA|+5|QB|) [31].

5.6 Implementation

To determine for two automataA andB whetherA .conf B, the implementation per-

forms three steps, presented as separate algorithms. FirstAlgorithm 1 computes the

set of reachable state-set pairs, second Algorithm 2 determines which of these pairs are

less conflicting pairs, and third Algorithm 3 examines the computed pairs to determine

whetherA.conf B based on theorem 5.3.

In the first step, given two automataA= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉,

Algorithm 1 performs a depth-first search to collect the setPairs of all reachable state-

set pairs(XA,XB) ∈ Qdet
A ×Qdet

B , using aStackof pairs yet to be expanded. The search

begins with the initial state-set pair(Q◦A,Q
◦
B) and with ( /0,Q◦B), in order to calculate

both the composed deterministic state space ofA andB and the set of certain conflicts
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of B according to theorem 5.2. For each state-set pair(XA,XB), the loop in lines 5–11

finds all successors and adds them into the set of pairs. In addition, the loop in lines

12–17 adds the pairs({xA},XB) for eachxA∈XA. This is done because these pairs have

to be checked for containment inLC(A,B) according to theorem 5.3.

Algorithm 1 constructs the state-set pairs to detect the setof certain conflicts and

to test the less conflicting condition in one iteration. For blocking automata, it may be

more efficient to discover all certain conflicts first and use them to prune the search for

the remaining pairs.

In the second step, Algorithm 2 calculates the setLC(A,B) of less conflicting pairs

for A andB, using more conflicting triples as described in section 5.5.

The loop in lines 2–6 collects all pairs inLC0(A,B) according to definition 5.2 (5.4)

and adds them to the setLC. Then the loop starting in line 7 adds to this the pairs in

the next levelLCn(A,B) by collecting the corresponding set of more conflicting triples.

According to definition 5.3 (5.16), this iteration starts with the triples inMCn
0(A,B) =

{( /0,ω,xB) | xB ∈QB}, which can be restricted to states reached byω as no other tran-

sitions lead toω ∈ Qdet
B . Then the algorithm looks backward to visit the predecessors

of each triple(XA,XB,xB). To find pairs(YA,YB) such thatδ det
A,B(YA,YB,σ) = (XA,XB) in

line 13 efficiently, it is advisable to remember the backwards transition relation during

the construction of the state-space in Algorithm 1.

Finally, after all the more conflicting triples for the current level n are found, the

loop in lines 24–31 adds the new less conflicting pairs forLCn+1(A,B) to the setLC.

According to theorem 5.4, this is done by checking each pair(XA,XB) if there is any

triple (XA,XB,xB) /∈MCn
0(A,B)with xB∈XB. If a new less conflicting pair is discovered

during this iteration, line 28 ensures that the main loop starting in line 7 is executed once

more to check for less conflicting pairs of the next level.

Lastly, Algorithm 3 is invoked to determine whetherA .conf B based on theo-

rem 5.3. The reachable state-set pairs are explored a secondtime to see if the relevant

pairs are in fact less conflicting pairs. In line 5, the searchstops when encountering a

pair (XA,XB) with XA = /0, as such pairs cannot lead to a pair({xA},XB). And when

( /0,XB) ∈ LC(A,B), thenXB and its successors represent certain conflicts according to

theorem 5.2, so according to theorem 5.3, these pairs are notexplored further either.

For the remaining pairs(XA,XB), the loop in lines 6–10 checks for statesxA ∈ XA such

that({xA},XB) is not a less conflicting pair—if such a pair exists thenA cannot be less

conflicting thanB according to theorem 5.3. If no such pair exists, the loop in lines

11–17 proceeds to visit the successors. If no relevant pair({xA},XB) /∈ LC(A,B) can

be found after visiting all reachable state-set pairs, the algorithm terminates and reports

thatA.conf B.
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Algorithm 2 CollectLC -pairs
1: LC← /0
2: for all (XA,XB) ∈ Pairsdo
3: if XA = {ω} or XB contains a blocking statethen
4: LC← LC∪{(XA,XB)}
5: end if
6: end for
7: repeat
8: Stack←{( /0,{ω},xB) | B

tω
→ xB}

9: MC←{( /0,{ω},xB) | B
tω
→ xB}

10: while Stack6= /0 do
11: (XA,XB,xB)← Stack.pop()
12: for all σ ∈ Σ do
13: for all (YA,YB) ∈ Pairs\LC such thatδ det

A,B(YA,YB,σ) = (XA,XB) do

14: for all yB ∈YB such thatxB
σ
→ yB do

15: if (YA,YB,yB) /∈MC then
16: MC←MC∪{(YA,YB,yB)}
17: Stack.push((YA,YB,yB))
18: end if
19: end for
20: end for
21: end for
22: end while
23: unchanged← true
24: for all (XA,XB) ∈ Pairsdo
25: for all xB ∈ XB do
26: if (XA,XB,xB) /∈MC then
27: LC← LC∪{(XA,XB)}
28: unchanged← false
29: end if
30: end for
31: end for
32: until unchanged
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Algorithm 3 Check for Less Conflicting
1: Stack←{(Q◦A,Q

◦
B)}

2: Pairs←{(Q◦A,Q
◦
B)}

3: while Stack6= /0 do
4: (XA,XB)← Stack.pop()
5: if XA 6= /0 and( /0,XB) /∈ LC then
6: for all xA ∈ XA do
7: if ({xA},XB) /∈ LC then
8: return false
9: end if

10: end for
11: for all σ ∈ Σ∪{ω} do
12: (YA,YB)← δ det

A,B(XA,XB,σ)
13: if (YA,YB) /∈ Pairs then
14: Pairs← Pairs∪{(YA,YB)}
15: Stack.push((YA,YB))
16: end if
17: end for
18: end if
19: end while
20: return true

5.7 Experimental Results

The algorithm to test the conflict preorder has been tested onpairs of moderately large

automata obtained during attempts at compositional nonblocking verification of dis-

crete event systems models of industrial applications [12]. The results are summarised

in Table 5.1.

The first six test cases are the checks needed to verify the dining philosophers ex-

ample as discussed in example 2.7. The other automata pairs have been obtained during

compositional verification of a manufacturing system modelusing abstraction [12,35].

Each test case seeks to compare an automaton constructed during compositional ver-

ification to a conflict equivalent abstraction that was computed automatically. Some

abstractions have been modified to produce test cases where the conflict preorder is not

satisfied.

Table 5.1 shows for each test case the number of states of eachof the two automata

composed (States), the number of reachable state-set pairs in the combined determinis-

tic state space (Pairs), the largest number of more conflicting triples constructed during

the iterations of Algorithm 2 (Triples), and the number of less conflicting pairs (LC-

Pairs). The number in column|LCk| indicates the number of new pairs discovered at

level k, not the total number of pairs at that level. Furthermore, the table displays the

execution time (Time) of each test, and whether or not the conflict preorder is satis-
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fied (Res.). All experiments were run on a standard laptop computer using a single

2.3 GHz CPU and 3.8 GB of RAM.

Despite the exponential complexity of the algorithm, all test cases except one have

been solved successfully by the implementation, which processes automata with a few

thousand states in a matter of seconds. The level of less conflicting pairs, which also has

an exponential worst-case, does not exceed four in any test.These results suggest that

the conflict preorder can be tested in a reasonable time for moderately large automata

derived from practical applications.
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Table 5.1: Experimental results

Instance States Pairs Triples LC-Pairs Time Res.
A.conf B |QA| |QB| |Pairs| |MC| |LC0| |LC1| |LC2| |LC3| |LC4| [s] .conf

S1 .conf S′1 52 12 198 13 2 90 0 0 0 0.10 true
S′1 .conf S1 12 52 80 149 1 25 0 0 0 0.14 true

S1,2 .conf S′1,2 90 13 483 65 2 193 22 0 0 0.19 true
S′1,2 .conf S1,2 13 90 200 1055 1 44 0 0 0 0.33 true

S1,2,3 .conf S′1,2,3 100 13 529 53 2 236 14 0 0 0.19 true
S′1,2,3 .conf S1,2,3 13 100 154 1054 1 34 0 0 0 0.36 true

1. a) 126 34 280 38 11 52 0 0 0 0.08 true
b) 34 126 183 57 87 50 0 0 0 0.04 true

2. a) 102 33 224 33 6 47 0 0 0 0.01 true
b) 33 102 143 120 15 37 0 0 0 0.02 true

3. a) 624 615 7800 17618 13 5584 47 0 0 2.60 true
b) 615 624 3402 9202 17 2813 0 0 0 1.17 true

4. a) 1141104817318 42876 20511173 906 56 0 5.96 true
b) 1048114117625 45705 16911654 990 0 0 6.09 true

5. a) 679 431 3538 1362 52 1561 222 0 0 0.24 true
b) 431 679 1633 1795 59 784 0 0 0 0.13 true

6. a) 165 153 1293 686 2 764 0 0 0 0.15 true
b) 153 165 871 888 1 601 0 0 0 0.12 true

7. a) 306 255 4145 3951 2 2809 128 0 0 0.69 true
b) 255 306 1889 4522 1 1500 0 0 0 0.38 true

8. a) 808 59823169 16195 2 19681 0 0 0 4.42 true
b) 598 80811369 22677 2 8845 0 0 0 3.11 true

9. a) 3853 7855537 10333 2 33231 198 50 4632.55 true
b) 783853 4003>440000 1 out of memory

10. a) 8304592770214 28269245040459 15 0 0 7.38 true
b) 5927830437140 37243202924313 0 0 0 5.40 true

11. a) 17731766 5976 3325 328 3734 0 0 0 0.59 true
b) 17661773 5956 3309 335 3720 0 0 0 0.45 true

12. a) 498 487 2777 1756 2 1367 70 0 0 0.15 true
b) 487 498 2998 1677 2 1583 0 0 0 0.14 true

13. a) 424 392 2176 818 93 986 2 0 0 0.21 true
b) 392 424 1341 809 87 822 810 0 0 0.15 true

14. a) 385 23113487 44240 2 9253 389 0 0 6.54 false
b) 231 385 5884 33618 2 6382 0 0 0 4.73 true

15. a) 620 455 4978 9875 14 1774 1 0 0 2.47 false
b) 455 620 3205 5408 19 5389 0 0 0 0.77 true

16. a) 120 49 1156 750 284 343 0 0 0 0.12 false
b) 49 120 715 715 268 244 0 0 0 0.59 true

17. a) 306 169 5119 5520 2 2113 0 0 0 2.28 false
b) 169 306 1770 2547 2 949 60 0 0 0.34 true
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Chapter 6

Conflict Normal Form

Two automataA and B are defined as being conflict equivalent, if when compared

with an arbitrary test automatonT, A‖T is nonblocking if and only ifB‖T is also

nonblocking. Two automata are conflict equivalent if and only if they are conflicting

in exactly the same situations. This describes conflict equivalence in terms of how two

conflict equivalent automata can be used. It does not howeverdescribe what in the two

automata’s structure causes the automataA andB to be conflict equivalent.

Another description of conflict equivalence is the nonconflicting completion seman-

tics. This describes conflict equivalence in terms of the traces which the test automaton

T must be capable of performing in order forA‖T to be nonblocking. The limita-

tion of this method is that there can be a potentially infinitenumber of nonconflicting

completions associated with any given automaton.

The previous chapter describes how to determine whether or not a given language

L is in fact a nonconflicting completion of the automatonA. The chapter further shows

that for every finite-state automatonB there is a finite set of languages which need to

be compared for inclusion in the set of nonconflicting completions of A, in order to

determine whetherB is less conflicting thatA.

This chapter builds upon this and shows that we can find a finite, minimal set of

nonconflicting continuations of the automatonA. We further show that this minimal

set of continuations uniquely characterises the nonconflicting continuations ofA. This

means that the minimal set of continuations characterises all the potential conflicts in

A, and only the potential conflicts inA. In addition if an automatonB is conflict equiv-

alent withA, it will have an identical minimal set of nonconflicting continuations to

the automatonA. This minimal set will be characterised as the conflict normal form,

which is comprised of atrunk automaton, paired with a set of nonconflicting require-

ments based upon thattrunk. This trunk and its nonconflicting requirements minimally

represent the nonconflicting continuations ofA.
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Figure 6.1 shows an example of an automatonA and its resulting conflict normal

form, while showing intermediate steps.A is a nonderministic automaton. The trunk

automatontrunk(A) of the automatonA is constructed as a deterministic recogniser of

A’s language, with the exception that all states intrunk(A) are marked. Once the trunk

automaton is constructed, a set of nonconflicting requirements ofA is also constructed.

For example the state({1,2},L ω(1)) represents that any test automaton which can

reach the state{1,2} must be capable of performing at least one trace inL ω(1). This

is represented by the state{1,2} being linked to({1,2},L ω(1)) by aτ transition. This

set is capable of characterising the nonconflicting completions ofA but is not unique,

this is the initial conflict normal form ofA. A series of refinement steps is then applied

to this nonconflicting requirement set until it is considered irreducible. This irreducible

set combined withtrunk(A) uniquely characterises the automatonA’s nonconflicting

completion and is the conflict normal form ofA.

This chapter is divided into sections. In the section 6.1 we introduce requirements,

requirement sets, requirement automata, and all the notation surrounding them. In

section 6.2 we show how to construct the trunk automaton, andthe initial requirement

set for a given automaton. In section 6.3 we show how a requirement set can be refined

into a simpler equivalent requirement set. In section 6.4 weshow that the refinements

in section three can be used to find an irreducible requirement set which is unique for

any given conflict equivalence class. This is combined with the results from section 6.2

to show that the trunk and unique requirement set are canonical.

6.1 Notation

6.1.1 Nonconflicting Requirements

In this subsection we introduce the concept of nonconflicting requirements. We first

define what a nonconflicting requirement is, next we define howdifferent requirements

relate to one another over→, we then define how requirements are grouped together,

finally we show how requirements can be compared to one another.

A nonconflicting requirement is a pair of state and language.Each nonconflicting

requirement(x,L) is used to represent a set of nonconflicting continuations, whereL

represents the continuation and the statex represents the set of traces{s∈ Σ∗|G s
→ x}.

The trunk automatonG is the automaton which is used to define the set of states which

reachx. All the nonconflicting requirements for a given normal formwill always have

the same trunk.

We place various restrictions on what can be a nonconflictingrequirement in order

to prevent obviously redundant requirements from being allowed. The first is that the
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language of the requirement must be prefix-free. A languageL is a prefix-free language

if for every traces contained inL, L contains no prefix ofs.

Definition 6.1 Let L ∈ Σ∗ω be a language.

L is a prefix-free language if and only if for alls, t ∈ L, s⊑ t impliess= t.

Example 6.1 Let L = {α,αβ ,β} be a language. This language is not prefix-free. This

is because bothα andαβ are elements ofL, while α ⊑ αβ . BecauseL is not prefix-

free, if L is being used to represent a nonconflicting continuation we can immediately

stateL contains redundant traces. This is because a nonconflictingcontinuation is satis-

fied as long as any trace inL is accepted by the test automaton. If the test automatonT

can performαβ that automatically implies thatT can performα. Therefore whenever

the traceαβ could be used to satisfyL, the traceα can be used instead. This is because

α is a prefix ofαβ .

Let M = {α,β} be a language. This language is prefix-free.

We further define the function prune such that for any given languageL, we can

find its appropriate prefix-free language.

Definition 6.2 Let L be a language.

prune(L) = {s∈ L|∀t ∈ L if t ⊑ s thens= t}

Example 6.2 Consider the languagesL andM from the previous exampleprune(L) =

M. This is becauseα is a prefix ofαβ , thusαβ is pruned back to the eventα.

A useful property of the prune relation which will be used later on in this chapter is

that prune is commutative with language derivation.

Lemma 6.1 Let L be a language. Lets∈ prune(L).

prune(L)/s= prune(L/s).

Proof. First we will prove thatprune(L)/s⊆ prune(L/s). Let t ∈ prune(L)/s be a

trace, by definition 2.3 it is the case thatst∈ prune(L). Thereforest∈ L and for every

tracep∈ L such thatp⊑ st it holds thatp= st. Thereforet ∈ L/s, and for every trace

p∈ L/s such thatp⊑ t it holds thatp= t, thereforet must be a trace inprune(L/s).

Next we will prove thatprune(L/s) ⊆ prune(L)/s. Let t ∈ prune(L/s), by defini-

tion t ∈ L/sand for every tracep∈ L/ssuch thatp⊑ t it holds thatp= t, furthermore

st ∈ L. As s∈ prune(L) by assumption andprune(L) is prefix-free for every trace

p∈ prune(L) such thatp⊑ s it holds thatp= s, therefore there exists nop∈ L such

that p ⊏ s⊑ st, furthermore as there exists no tracep ∈ L/s such thatp ⊑ t, there

exists no tracesp∈ L such thatsp⊑ st thereforest ∈ prune(L), and consequently

t ∈ prune(L)/s. �
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Each requirement pair(x,L) must satisfy several conditions in order for us to con-

sider(x,L) to be well formed. Firstly as has already been stated the languageL must

be prefix-free. This is because as has been previously shown languages which are

not prefix-free have traces which are trivially redundant. SecondL = /0 if and only if

L ω(x) = /0, in this case we don’t wish to use(x,L) to express certain conflicts. This

is because certain conflicts can be more easily and better dealt with outside the refine-

ment process for nonconflicting requirements. We also require thatL ⊆ L ω(x), this

has a dual purpose. We restrictL to traces which are inL(x) because we do not wish

requirements to be capable of performing traces which the original automaton cannot.

We further restrictL to traces inL ω(x) because it is nonsensical to require a test au-

tomaton to be capable of reaching a blocking state, in order to not block. Finally we

require thatε /∈ L as such a requirement is redundant.

Definition 6.3 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. Letx be a state.

Let L be a language.

(x,L) is a requirement pair if and only if(x,L) fulfills the following properties

(i) L is prefix-free.

(ii) L = /0 if and only ifx 6→ ω.

(iii) L⊆L ω(x).

(iv) ε /∈ L.

We define the relation between continuation pairs.conf. For any two given contin-

uation pairs(x,L),(x,M) we consider(x,L) .conf (x,M) to be true if satisfying(x,M)

implies that(x,L) must also be satisfied. This is the case if for all tracest ∈ M there

exists a tracep ∈ L such thatp⊑ t. If this is the case no matter what tracet is used

to satisfy(x,M), the requirement(x,L) will be satisfiable by some tracep. Because of

this we can consider the nonconflicting requirement(x,M) as implying(x,L). This is

an important concept which will be used extensively while finding the minimal non-

conflicting requirement set.

Example 6.3 Figure 6.2 represents a determistic automaton with a requirement set.

The statexhas the requirementsα and(βα)∗ω, the stateyhas the requirementα(βα)∗ω,

and the state⊥ has the requirement /0. If we look at the requirement(βα)∗ω we will

notice that it is prefix-free. I.E. there is no trace in this language which is a prefix of

another trace in the language. Furthermore all the traces(βα)∗ω lead to a state which

can reach the stateω.
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Figure 6.2: Example of an automaton and its requirement set

We define a relation between requirement tuples.conf. For any two given require-

ment tuples(x,L),(x,M), (x,L).conf (x,M) if the only way that the requirement(x,M)

can be satisfied is if the requirement(x,L) is also satisfied. In this situation it can be

considered that the requirement(x,M) makes the requirement(x,L) redundant.

Definition 6.4 Let (x,L) and(x,M) be two continuation pairs. We define the relation

.conf such that(x,L).conf (x,M) if and only if M ⊆ LΣ∗ω

Example 6.4 Let (x,{α,β}) and (x,{αα}) be two requirements.(x,{α,β}) .conf

(x,{αα}). This is because the only completion of(x,{αα}), is a suffix ofα. If we

instead consider the requirement(x,{αα,β ,γ}) this requirement would be incompara-

ble to (x,{α,β}). This is because(x,{αα,β ,γ}) can be satisfied byγ without satis-

fying (x,{α,β}) where as(x,{α,β}) can in turn be satisfied byα without satisfying

(x,{αα,β ,γ}).

Note.conf was defined for automata in section 2.4.

Lemma 6.2 .conf is a transitive relation.

.conf is a reflexive relation.

.conf is an antisymmetric relation.

Proof. First we will show that.conf is transitive. Letx be a state, and letL1,L2,L3 be

languages such that(x,L1).conf (x,L2).conf (x,L3).

We will prove that(x,L1).conf (x,L3).

L1⊆ L2Σ∗ω ⊆ L3Σ∗ωΣ∗ω = L3Σ∗ω . and therefore(x,L1).conf (x,L2)

Next we will prove that.conf is reflexive.

Let (x,L) be a requirement pair. Clearly it holds thatL⊆ LΣ∗ω and thus(x,L).conf

(x,L) by definition.

Lastly we will prove that.conf is antisymmetric. Let(x,L) and(x,M) be two pairs

such that(x,L).conf (x,M) and(x,M).conf (x,L).
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We will prove thatL ⊆ M. Let s∈ L be a trace. We will show thats∈ M. As

L ⊆ MΣ∗ω there exists a tracet ∈ M such thatt ⊑ s. Furthermore asM ⊆ LΣ∗ω there

exists a tracer ∈ L such thatr ⊑ t. This implies thatr ⊑ s. From the definition of a

requirement pair,L is prefix-free, thereforer = s= t and thuss= t ∈M.

The proof forM ⊆ L is analagous. �

Nonconflicting requirements are also related to one anotherover the→ relation.

For any two nonconflicting requirements(x,L) and (y,M), and traces, it holds that

(x,L)
s
→ (y,M) if s∈ L− L, x

s
→ y, andM = L/s. This is because after the traces,

the trunk automaton will reach the statey, and once it reachs this state it will still be

neccessary to perform at least one trace inM = L/s in order to completeL. We thus

define the transition relation→R(G) for an arbitrary automatonG.

Definition 6.5 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton.

Then→R(G)= {((x,L),σ ,(δ (x,σ),L/σ))|σ ∈ L−L andL ∈ Σ∗∪Σ∗ω}

Example 6.5 Consider the trunk automaton in figure 6.1. The initial conflict normal

form has the nonconflicting requirement({q0},α(αα)∗β+ω). After the eventα, the

requirement will transition from{q1} to {q1,q2}. In addition asα has already been

executed, the new requirement becomes(αα)∗β+ω), thus ({q0},α(αα)∗β+ω)
α
→

({q1,q2},(αα)∗β+ω). Similarly,({q1,q2},(αα)∗β+ω)
α
→ ({q0},α(αα)∗β+ω), and

({q1,q2},(αα)∗β+ω)
β
→ ({q2},β ∗ω). This corresponds to the transitions related to

the initial conflict form in figure 6.1.

In addition if a nonconflicting requirement has a trace in itslanguage which does

not end inω this trace transitions back into the original automaton. For example

({q0},{α})
α
→{q1,q2}.

↓G is a closure relation for sets of requirements. It ensures that for all requirements

(x,L) and(y,M) such that(x,L)→ (y,M), it holds that(y,M)∈↓G (R) if (x,L)∈↓G (R).

Definition 6.6 Let G = 〈Σ,Q,→,Q◦〉 be deterministic automaton. LetR be a set of

requirement pairs ofG.

Then↓G (R) = {(δG(x,s),L/s)|(x,L) ∈ Rands∈ L−L)}

Nonconflicting requirements are grouped into requirement sets. A well-formed re-

quirement set is a set of nonconflicting requirements which is closed under↓G. That is

to say ifR is a requirement set, then for each requirement(x,L) ∈ R if (x,L)→ (y,M)

for some(y,M) then(y,M) ∈ R.

Definition 6.7 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton, andR⊆ Q×2Σ∗ω

be a set of pairs.
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ThenR is a requirement set ofG if the following holds for all(x,L) in R.

(i) (x,L) is a requirement.

(ii) For all (y,M) such that(x,L)→ (y,M) it holds that(y,M) ∈ R.

Example 6.6 We will consider the automatontrunk(G) from figure 6.1. The noncon-

flicting requirement setR= {(q0,α(αα)∗β+ω)} would not be a well-formed require-

ment set oftrunk(G). This is because(q0,α(αα)∗β+ω)→ ({q1,q2},(αα)∗β+ω) and

(q0,α(αα)∗β+ω)→ ({q2},β ∗ω), but neither of these two requirements are contained

within R. The nonconflicting requirement setR′ = {(q0,α(αα)∗β+ω), ({q1,q2},

(αα)∗β+ω),({q2},β ∗ω)} is well-formed however.

For any set of nonconflicting requirementsR, it holds that↓G (R) is a requirement

set. That is to say that closingR under↓G always results in a well-formed requirement

set.

Lemma 6.3 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR be a set of

requirement pairs ofG.

Then↓G (R) is a requirement set ofG.

Proof. Let (x,L) ∈↓G (R).

First we will show that(x,L) is in fact a well-formed requirement ofG as defined

in definition 6.3.

From the definition of↓G there exists(w,J) ∈ R ands∈ J− J such that(w,J)
s
→

(x,L). As (w,J) is a requirement pairJ is prefix-free thereforeJ/s= L is also prefix-

free. This satisfies requirement i. Second, ass∈ J and J/s= L it is the case that

L 6= /0. Furthermore as(w,J) is a requirement pairJ ⊆L ω(w) from requirement iii,

therefore ass∈ J andG is deterministicw
s
→ x→ ω, thus(x,L) satisfies requirement

ii. In addition J ⊆ L ω(w) thereforeJ/s= L ⊆ L ω(w)/s= L ω(x) thus satisfying

requirement iii. Finally ass /∈ J it holds thatε /∈ J/s= L therefore(x,L) satisfies

requirement iv.

Next we will prove that for allt ∈ L, (δG(x, t),L/t) ∈↓G (R). For the first case there

exists(w,J) ∈ R ands∈ J such that(w,J)
s
→ (x,L). δG(w,st) = δG(x, t) furthermore

J/st= L/t therefore(δG(x, t),L/t) ∈↓G (R) from the definition of↓G. �

Next we will show that the relation(x,L) .conf (x,M) is preserved by→. That is

to say if(y,N) and(y,O) are two nonconflicting requirements ands is a trace such that

(x,L)
s
→ (y,N) and(x,M)

s
→ (y,O) then(y,N).conf (y,O) also.

Lemma 6.4 Let (x,L) and(x,M) be two requirement pairs such that(x,L).conf (x,M).
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Figure 6.3: Example requirements

Let s∈ Σ∗ be a trace and let(y,N) and(y,O) be two requirement pairs such that

(x,L)
s
→ (y,N) and(x,M)

s
→ (y,O).

Then(y,N).conf (y,O).

Proof.

M ⊆ LΣω
∗ as(x,L).conf (x,M)

M/s⊆ LΣω
∗/s

O⊆ LΣω
∗/s as(x,M)

s
→ (y,O)

O⊆ L/sΣω
∗ asL is prefix-free

O⊆ NΣω
∗ as(x,L)

s
→ (y,N)

�

Example 6.7 Consider the automaton shown in figure 6.3. Because(0,{αα,αβ}).conf

(0,{αα}) it must also hold that(1,{α,β}).conf (1,{α}).

6.1.2 Requirement Automata

In this subsection we introduce how to construct the standard automata representation

of a trunk automaton and requirement set. We further give several lemmas showing the

conditions upon which states are reached.

The requirement automatonRA(G,R) for a given automatonG and requirement

setR is created by combiningG andR together. To do this we giveRA(G,R) all the

transitions inG as well as all the transitions inR as defined in definition 6.5. We

then connectG to R, firstly by adding theτ transitionx
τ
→ (x,L) for every requirement
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(x,L) ∈ R and secondly by adding the transition(x,L)
σ
→ y for every(x,L) ∈ R, where

σ ∈ L andx
σ
→ y in G.

Definition 6.8 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetRbe a require-

ment set ofG.

ThenRA(G,R) = (Q∪R,Σ,→A,X) where→A is defined such that for allx,y ∈

Q∪R and allσ ∈ Σ∗ω . x
σ
→A y if and only if one of the following holds

• x
σ
→ y.

• x
σ
→R(G) y.

• x= (q,L),σ ∈ L andq
σ
→ y.

Furthermorex
τ
→A y if and only if x∈Q andy= (x,L) such that(x,L) ∈ R.

Remark 6.1 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR be a require-

ment set ofG. Let sbe a trace inΣ∗. Let (x,L) be nonconflicting requirement such that

RA(G,R)
s
⇒ (x,L)

Then(s,L) ∈ CC(RA(G,R)).

Example 6.8 Let us considertrunk(G) from figure 6.1. LetR= {{q0},{α},{q1,q2},

{α},{q1,q2},{β ,ω}}. ThenRA(trunk(G),R) is the final automaton in 6.1.

In order to reason about the automatonRA(G,R) for any given automatonG and

requirement setR, we introduce the following lemmas. Lemma 6.5 shows that forany

given traces, and requirement(x,L), the requirement(x,L) can only be reached if the

statex can also be reached.

Lemma 6.5 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR be a require-

ment set ofG. Let (x,L) ∈ R be a requirement. Letw∈ Q be a state. Lets∈ Σ∗ be a

trace such thatw
s
⇒ (x,L)

Thenw
s
→ x.

Proof. We will prove the claim via induction on|s|.

In the base cases= ε. From the construction ofRA(G,R) the only silent transitions

are of the formy
τ
→ (y,M) where(y,M) ∈ R. Thereforew

ε
→ (x,L) implies thatx= w.

w
ε
→ w.

Now let us consider the case where the property is true for thetraces, we will prove

that it is also true forsσ .

Let (x,L) be a requirement such thatw
sσ
⇒ (x,L). There are only two basic transitions

into (x,L), The first isx
τ
→ (x,L), this case trivially implies thatw

sσ
⇒ x

τ
→ (x,L). In the
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second case(y,M)
σ
→ (x,L) for some(y,M) wherey

σ
→ x andM/σ = L. From the

inductive assumption ifw
s
→ (y,M) thenw

s
→ y

σ
→ x. �

Lemma 6.6 goes on to show that for any given statex, thatRA(G,R) can reachx

under exactly the same circumstances in whichx is reachable inG.

Lemma 6.6 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR be a require-

ment set ofG. Let w,x∈Q be states.

Thenw
s
⇒ x if and only if δG(w,s) = x

Proof. First we will prove that ifδG(w,s) = x thenw
s
⇒ x. This comes directly from

the construction ofRA(G,R) asRA(G,R) contains all the transitions inG.

Now we will prove that ifw
s
⇒ x thenδG(w,s) = x via induction on|s|.

In the base cases= ε. δG(w,ε) = w. From definition 6.8 the onlyτ transitions in

RA(G,R) go to states inR. Therefore it holds thatw
ε
→ y for somey∈Q if and only if

y= w.

Let us assume that the property holds for the traces, we will prove that it must be

true forsσ .

Let x be a state inQ such thatw
sσ
⇒ x.

There are only two types of transitions which reachx, either there existsy∈Q such

thatw
s
⇒ y

σ
→ x or there exists(y,L) ∈ R such thatw

s
⇒ (y,L)

σ
→ x.

In the first case, from the inductive assumptiony= δG(w,s), thereforex must equal

δG(w,sσ).

In the second case there exists(y,L)∈Rsuch thaty
σ
→ x andσ ∈ L wherew

s
⇒ (y,L).

From lemma 6.5,w
s
⇒ y, and from the inductive assumptionw= δG(x◦,s) thereforex

must equalδG(w,sσ). �

We further show that for any two requirement automata, if they both share the same

trunk then for any given statex in that trunk, both requirement automata can reachx

under exactly the same situations.

Corollary 6.1 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR,S be two

requirement sets ofG. Let w,x∈Q be states.

Thenw
s
⇒S x if w

s
⇒R x

Proof. From lemma 6.6 usingR as a requirement set ofG asw
s
⇒R x it follows that

δG(w,s) = x. Again applying lemma 6.6 this time usingSas a requirement set ofG as

δG(w,s) = x it follows thatw
s
⇒S x. �

We further show that for any two requirement automata which share the same trunk,

if one has a requirement for the statex which is reachable after a given traces, and the
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other automaton has a requirement for the statex, that automaton can also reach the

requirement on the traces.

Corollary 6.2 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR,S be two

requirement sets ofG. Let (x,L) ∈ Rand(x,M) ∈ Sbe two requirements.

ThenRA(G,R)
s
⇒ (x,L) implies thatRA(G,S)

s
⇒ (x,M).

Proof. From lemma 6.5 asRA(G,R)
s
⇒ (x,L) it follows thatRA(G,R)

s
⇒ x. Applying

lemma 6.1 asRA(G,R)
s
⇒ x it follows thatRA(G,S)

s
⇒ x. Finally from the construction

of RA(G,S) as(x,M)∈Sit holds thatx
τ
→ (x,M) thereforeRA(G,S)

s
⇒ x

ε
⇒ (x,M). �

Now we show that the set of certain conflicts of a requirement automaton and its

trunk are equivalent.

Lemma 6.7 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton.

ThenNConf(RA(G,R)) =NConf(G).

Proof. Let s be a trace inNConf(RA(G,R)). Let x be a state such thatG
s
→ x. From

lemma 6.6 it holds thatRA(G,R)
s
→ x. As s∈ NConf(RA(G,R)) it must hold that

x is not blocking, therefore there exists some tracetω such thatx
tω
⇒ in RA(G,R).

Thus from lemma 6.6x
tω
→. Thereforex is nonblocking inG and asG is deterministic

s∈NConf(G).

Now we will prove thatNConf(G) ⊆ NConf(RA(G,R)). Let T be a determin-

istic automaton such thatL(T) =NConf(G), we will prove thatRA(G,R)‖T is non-

blocking and thus thatNConf(G)⊆NConf(RA(G,R)). First asL(T) =NConf(G)

andT is deterministic,G‖T is nonblocking.

Let sbe a trace andq andqT be two states such thatRA(G,R)‖T⇒ (q,qT). There

are two cases, eitherq ∈ Q or q ∈ R. In the first caseRA(G,R)
s
⇒ q, therefore from

lemma 6.6 it also holds thatG
s
→ q. ThusG‖T

s
⇒ (q,qT). As G‖T is nonblocking,

(q,qT) is also nonblocking, thus there exists a tracetω such that(q,qT)
tω
⇒ in G‖T.

As RA(G,R) contains all the transitions inG, (q,qT)
tω
⇒ in a RA(G,R) ‖T also. In

the second caseq ∈ R, let (x,L) = q. It holds thatRA(G,R)
s
⇒ (x,L), therefore from

6.5 it must also hold thatG
s
→ x. ThusG‖ T

s
⇒ (x,qT). As G‖ T is nonblocking

(x,qT) is also nonblocking. Furthermore asR is a requirement set ofG it must hold

thatL⊆L ω(x). As (x,qT) is nonblocking inG‖T it holds thatL ω(x) 6= /0, thus from

definition 6.3 it must hold thatL 6= /0, thus there exists a tracet ∈ L, such thatt ∈L ω(x).

As t ∈L ω(x) it holds thatx
t
→ y wherey∈ Q andy is nonblocking. AsG

s
→ x

t
→ y

andG is deterministicst∈NConf(G), therefore((x,L),qT)
t
→ (y,yT) in RA(G,R)‖T

whereyT ∈QT . Furthermore(y,yT) has already been proven nonblocking. �
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We can also show that automata derivation is commutative with the construction of

a requirement automaton with respect to conflict equivalence.

Lemma 6.8 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR be a require-

ment set ofG. Let s be a trace inΣ∗

ThenRA(G,R)/s≃conf RA(G/s,R).

Proof. We will first prove thatRA(G,R)/s.conf RA(G/s,R). Let T be an automaton

such thatRA(G/s,R) ‖T is nonblocking. Lett be a trace such thatRA(G,R)/s‖T
t
→

(y∈Q∪R,yT).

We will show thatRA(G/s,R)‖T
t
⇒ (y,yT). From definitions 2.3 and 6.8 the initial

state set ofRA(G,R)/s is {x ∈ Q∪R|RA(G,R)
s
⇒ x}. Therefore there must exist a

stateq such thatRA(G,R)
s
⇒ q

t
⇒ y becauseRA(G,R)/s

t
⇒ y. There are two cases:

eitherq∈ Q or q∈ R. In the first case from lemma 6.6 it holds thatG
s
⇒ q therefore

q is an initial state ofRA(G/s,R) andRA(G/s,R) ‖T
t
⇒ (y,yT). In the second case

q= (x,L) ∈ R in which case from lemma 6.5 it holds thatG
s
⇒ x, in which casex is in

the initial state set ofRA(G/s,R) andRA(G/s,R)‖T
ε
⇒ ((x,L) = q, )

t
⇒ (y,yT).

As RA(G/s,R) ‖T is nonblocking(y,yT) must be nonblocking. Since(y,yT) was

chosen arbitrarilyRA(G,R)/smust also be nonblocking.

Now we will prove RA(G/s,R) .conf RA(G,R)/s. Let T be an automaton such

thatRA(G/s,R) ‖T is nonblocking. Lett be a trace such thatRA(G/s,R) ‖T
t
→ (y∈

Q∪R,yT).

We will show thatRA(G,R)/s‖T
t
⇒ (y,yT). From definitions 2.3 and 6.8 the initial

state set ofRA(G/s,R) is {x∈Q|G
s
⇒ x}. Therefore there must exist a statex∈Q such

thatG
s
→ x, furthermore asG is deterministic this state is unique. Thusx

t
→ y because

RA(G/s,R)
t
⇒ y. From lemma 6.6 it holds thatRA(G,R)

s
⇒ x thereforex is an initial

state ofRA(G,R)/sandRA(G,R)/s‖T
t
⇒ (y,yT).

As RA(G,R)/s‖T is nonblocking(y,yT) must be nonblocking. Since(y,yT) was

chosen arbitrarilyRA(G/s,R) must also be nonblocking.

�

6.2 Construction

In this section we define how to construct a trunk automaton and a requirement set

for any given automatonG. Subsection 6.2.1 introduces how the trunk automaton is

constructed, in addition to several properties of this trunk automaton. Subsection 6.2.2

describes how to construct the initial requirement set of any given automaton. This
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requirement set can be refined into a unique requirement set using the refinement rules

described in section 6.3.

6.2.1 Trunk

In this subsection we introduce how for any given finite stateautomatonG the trunk

automatontrunk(G) can be constructed. We further show that this automaton is well-

formed, and common for all conflict equivalent automata. Lastly we give some useful

lemmas describing the automaton’s behaviour.

As has been previously stated, a nonconflicting requirementis made up of a state

and a language(x,L) where for all tracess∈ Σ∗ such thatG
s
→ x, the languageL is a

conflicting continuation ofG. Therefore the trunk automaton must be constructed in

such a way that for alls, t ∈ Σ∗ andx in trunk(G), if trunk(G)
s
→ x andtrunk(G)

t
→ x,

then the nonconflicting continuations ofs andt must be equal. To accomplish this the

trunk automaton is created by taking the subset construction of G and merging states

which are conflict equivalent, as will be described in this section.

First we introduce a relation by which state sets are considered conflict equivalent.

Given the automatonA= 〈Σ,Q,→,Q◦〉 and two state setsX1,X2⊆ Q, we considerX1

andX2 to be conflict equivalent if and only if〈Σ,Q,→,X1〉 ≃conf 〈Σ,Q,→,X2〉. This

relation is used to determine which state sets should be merged.

Definition 6.9 Let G = 〈Σ,Q,→,Q◦〉 be an automaton. LetX1,X2 ⊆ Q be two state

sets.X1≃conf X2 if 〈Σ,Q,→,X1〉 ≃conf 〈Σ,Q,→,X2〉.

Definition 6.10 Let G= 〈Σ,Q,→,Q◦〉 be an automaton.

Thentrunk(G) = 〈Σ,Qcon f,→con f, [Q◦]con f〉.

WhereQcon f = 2Q/≃conf∪{⊥,ω}.

All state sets which are in the same conflict equivalence class, are grouped into the

same state via the[.]con f relation. In addition states in the trunk are merged by the

[[.]]con f relation. [[.]]con f also specifically marks out the equivalence class of state sets

which are definitely conflicting as being the dump state⊥.

Definition 6.11 Let G= 〈Σ,Q,→,Q◦〉 be an automaton.

[.]con f : 2Q→Qcon f where[X]con f = {Y ⊆Q|X ≃conf Y}

[[.]]con f : 2Q→Qcon f where[[X]]con f =







⊥ if ε ∈Conf(X)

[x]con f otherwise
whereConf(X) =Conf(〈Σ,Q,→,X〉)

We now describe how the transition relation oftrunk is constructed.
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Figure 6.4: An automatonG and it determinised and trunk automaton

Definition 6.12 Let G= 〈Σ,Q,→,Q◦〉 be an automaton.

→con f: Qcon f×Σω ∩{ω}→Qcon f

δcon f(X̃,σ) =



















ω if X̃ 6=⊥ andσ = ω

[[δdet(X,σ)]]con f if X̃ = [X]con f

⊥ if X̃ =⊥

Lastly we put these two together to form the trunk automaton.

Example 6.9 Figure 6.2.1 shows an automatonG, as well as det(G) andtrunk(G). The

first step to creatingtrunk(G), is to construct det(G). Once we have constructed det(G)

we notice that the state{1,2} is in fact a certain conflict, as 2 is blocking, thus{1,2}

becomes⊥. Because⊥ represents certain conflicts, even though{1,2} can transition

to {1,3} on anα event,⊥ cannot. Furthermore states{1} and {1,3} are conflict

equivalent. This is because both require that any test automaton must be capable of

performing an infinite string ofα events. Thus in the trunk automaton the states{1}

and{1,3} are merged into the state{{1},{1,3}}.

In order to be certain that this is a proper definition of the trunk automaton we must

first ensure that the functionδcon f is well-defined.

Lemma 6.9 Let G= 〈Σ,Q,→,Q◦〉 be an automaton.

Thenδcon f is well-defined.

Proof. Let X̃ ∈ Q̃ andX,Y ⊆Q be such that̃X = [X]con f = [Y]con f, we will prove that

for all σ ∈ Σ, [[δdet(X,σ)]]con f = [[δdet(Y,σ)]]con f. Because[X]con f = [Y]con f it must

hold that〈Σ,Q,→,X〉 ≃conf 〈Σ,Q,→,Y〉 and thusConf(X) =Conf(Y).

There are two cases ofσ . Eitherσ ∈ Conf(X) = Conf(Y) or σ 6∈ Conf(X) =

Conf(Y).

In the first caseσ ∈ Conf(X) = Conf(Y). From theorem 5.2 asσ ∈ Conf(X)

there exists a traces⊑ σ such that( /0,δdet(X,s)) ∈ LC(O,G). From theorem 5.2 as

ε /∈ Conf(X) it holds that( /0,δdet(X,ε)) /∈ LC(O,G), therefore it must be the case

that ( /0,δdet(X,σ)) ∈ LC(O,G). From theorem 5.2 as( /0,δdet(X,σ)) ∈ LC(O,G) it
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holds thatε ∈ Conf(δdet(X,σ)), therefore[[δdet(X,σ)]]con f = ⊥. The proof that

[[δdet(Y,σ)]]con f =⊥ is analagous.

In the second caseσ 6∈ Conf(X) = Conf(Y). From proposition 5.1 it holds that

[[δdet(X,σ)]]con f = [[δdet(Y,σ)]]con f �

Now we must show that for any two automataA andB, if A≃conf B thentrunk(A)

is isomorphic totrunk(B).

Theorem 6.1 Let A〈Σ,QA,→A,Q
◦
A〉,B = 〈Σ,QB,→B,Q

◦
B〉 be two automata such that

A≃conf B.

Then it holds thattrunk(A) = trunk(B).

Proof. We will prove thattrunk(A) is isomorphic totrunk(B).

First we we define the relation≃trunk between states. Let̃X ∈ Q̃A andỸ∈ Q̃B be two

states. It holds that̃X≃trunkỸ if and only if either there existsX⊆QA andY⊆QB such

that[X]con f = X̃, [Y]con f = Ỹ and〈Σ,QA,→A,X〉 ≃conf 〈Σ,QB,→B,Y〉 or X̃ = Ỹ =⊥.

We will prove that for allX̃ ∈ Q̃A, Ỹ, Z̃ ∈ Q̃B such thatX̃ ≃trunk Ỹ andX̃ ≃trunk Z̃, it

must also hold that̃Y = Z̃. From the definition of≃trunk either there must existX ⊆QA,

Y ⊆ QB, andZ⊆ QB such that[X]con f = X̃, [Y]con f = Ỹ, [Z]con f = Z̃, and〈Σ,QA,→A,

X〉 ≃conf 〈Σ,QB,→B,Y〉 ≃conf 〈Σ,QB,→B,Z〉, or X̃ = Ỹ = Z̃ =⊥. In the latter case the

property is proven trivially. From definition 6.10[Y]con f = {W ⊆ QB|W ≃conf Y} and

[Z]con f = {W ⊆ QB|W ≃conf Z}. As 〈Σ,QB,→B,Y〉 ≃conf 〈Σ,QB,→B,Z〉W ≃conf Y is

equivalent toW≃conf Z therefore[Y]con f = {W⊆QB|W≃confY}= {W⊆QB|W≃conf

Z}= [Z]con f, thusỸ = Z̃.

The proof to show that for all̃X ∈ Q̃B, Ỹ, Z̃∈ Q̃A such thatX̃≃trunkỸ andX̃≃trunk Z̃,

it must also hold that̃Y = Z̃ is analagous.

This shows that for any statẽX ∈ Q̃A there can be at most one stateỸ ∈ Q̃B such

that X̃ ≃trunk Ỹ, and vice versa. Therefore we can show that if for alls∈ Σ∗ it holds

that δ A
con f(s) ≃trunk δ B

con f(s), that is enough to show thattrunk(A) and trunk(B) are

isomorphic.

Let s∈ Σ∗ be a trace. We will prove thatδ A
con f(s) ≃trunk δ B

con f(s), via induction on

|s|.

In the base cases= ε. From constructionδ A
con f(ε) = [[Q◦A]]con f and δ B

con f(ε) =
[[Q◦B]]con f. There are two cases, eitherε ∈ Conf(Q◦A) or ε 6∈ Conf(Q◦A). In the

first caseConf(Q◦A) = Conf(A) = Conf(B) = Conf(Q◦B), thereforeδ A
con f(ε) =

[[Q◦A]]con f = ⊥ = δ B
con f(ε) = [[Q◦B]]con f and thusδ A

con f(s) ≃trunk δ B
con f(s). In the sec-

ond case[[Q◦A]]con f = [Q◦A]con f and[[Q◦B]]con f = [Q◦B]con f. From the definition of[.]con f

it must hold thatA ∈ [Q◦A]con f andB ∈ [Q◦B]con f. As A≃conf B thus [[Q◦A]]con f ≃trunk

[[Q◦B]]con f.
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Now we consider the inductive case let us assume that the property holds fors, we

will show that it must hold forsσ .

From the inductive assumptionδ A
con f(s)≃trunk δ B

con f(s), therefore eitherδ A
con f(s) =

δ B
con f(s) = ⊥ or there existsXA ∈ δ A

con f(s) and XB∈ δ B
con f(s) such that〈Σ,QA,→A,

XA〉 ≃conf 〈Σ,QB,→B,XB〉. Let YA ⊆ QA and YB ⊆ QB be two state sets such that

XA→det(A) [σ ]YA andXB→det(B) [σ ]YB. In the first case directly from the definition

of δcon f it holds thatδ A
con f(sσ) = δ B

con f(sσ) = ⊥. From the definition ofδcon f it

holds thatδ A
con f(XA,σ) = [[YA]]con f and δ B

con f(XB,σ) = [[YB]]con f. Here again there

are two cases, eitherσ ∈ Conf(XA) = Conf(XB) or σ 6∈ Conf(XA) = Conf(XB).

In the first caseε ∈ Conf(YA) = Conf(YB) therefore[[YA]]con f = [[YB]]con f = ⊥. In

the second case from proposition 5.1 as〈Σ,QA,→A,XA〉 ≃conf 〈Σ,QB,→B,XB〉, σ ∈
NConf(XA) =NConf(XB), andXA→det(A) [σ ]YA andXB→det(B) [σ ]YB, it must hold

that〈Σ,QA,→A,YA〉 ≃conf 〈Σ,QA,→A,YB〉, therefore[[YA]]con f ≃trunk [[YB]]con f. �

Now we will give some useful lemmas about this trunk automaton.

First for any traces as long as that trace is not a certain conflict inA if there exists

a stateX such that det(A)
s
→ X, then the conflict equivalence class ofX is reachable in

trunk(A) ons.

Lemma 6.10 Let G= 〈Σ,Q,→,Q◦〉. Let X̃ ∈ Q̃. Let X ∈ X̃. Let s∈NConf(X)∩Σ∗

be a trace.

δdet(G)(X,s) ∈ δtrunk(X̃,s).

Proof. We will prove the claim via induction on|s|.

In the base cases= ε. In this caseδcon f(X̃,ε) = X̃, Let Y = δdet(G)(X,ε). Y =

δdet(G)(X,ε), X ≃conf Y thusY ∈ X̃.

Now let us assume we have proven the property for the traces. We will now prove

that it must also hold for the tracesσ . From the inductive assumptionδdet(G)(X,s) ∈

δcon f(X̃,s), as there exists a state set inδcon f(X̃,s) it must hold thatδcon f(X̃,s) 6=

⊥. Let δdet(G)(X,s) = Y and δcon f(X̃,s) = Ỹ. From definition 6.10 it holds that

δcon f(Ỹ,σ) = [[δdet(G)(Y,σ)]]con f. From assumptionsσ 6∈ Conf(X) thereforeε 6∈
Conf(δdet(G)(Y,σ)). Thus [[δdet(G)(Y,σ)]]con f = [δdet(G)(Y,σ)]con f. Therefore it is

the case thatδdet(G)(Y,σ) ∈ [δdet(G)(Y,σ)]con f. �

Lemma 6.11 LetG= 〈Σ,Q,→,Q◦〉. LetX ∈ X̃. Let X̃ = [[X]]con f. Lets∈Conf(X)∩

Σ∗ be a trace.

δcon f(X̃,s) =⊥.

Proof. We will prove the claim via induction on|s|.
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In the base cases= ε andδcon f(X̃,ε) = X̃. From definition[[X]]con f = ⊥ if ε ∈
Conf(X).

Now let us assume that the property holds fors. We will prove that it must also hold

for sσ .

We will consider two cases, in the first cases∈Conf(X) in the seconds 6∈Conf(X).

For the first case by the inductive assumptionδcon f(X̃,s) = ⊥, therefore by definition

δcon f(X̃,sσ) = ⊥. In the second cases∈NConf(G). There must exist someX ⊂ Q

such that thatX
s
→det(G) X, otherwisesσ could not be inConf(X). From lemma 6.10

trunk(G)
s
→ [[X]]con f, and from construction oftrunk(G) [[X]]con f

σ
→ [[δdet(X,σ)]]con f,

assσ ∈Conf(G), ε ∈Conf(δdet(X,σ)), thus[[δdet(X,σ)]]con f =⊥. �

Second for any given automatonG, the trunk ofG has exactly the same noncon-

flicting language.

Lemma 6.12 Let G= 〈Σ,Q,→,Q◦〉.

ThenNConf(G) =NConf(trunk(G))

Proof. First we will prove thatNConf(G) ⊆NConf(trunk(G)). From lemma 6.13

trunk(G).conf G. As a direct consequenceNConf(G)⊆NConf(trunk(G)).

Now we will prove thatConf(G)⊆Conf(trunk(G)).

Let s∈ Conf(G) = Conf(Q◦). From lemma 6.11δtrunk([[Q◦]]con f,s) = ⊥. As

⊥ is blockings∈Conf(trunk(G)). �

Lastly for any given automatonA. The trunk automaton ofA is always less conflict-

ing thanA.

Lemma 6.13 Let G= 〈Σ,Q,→,Q◦〉.

Thentrunk(G).conf G.

Proof. Let T be a test automaton such thatG‖T is nonblocking. We will prove that

C(G)‖T is also nonblocking.

Let s∈ Σ∗ be a trace and(X,xT) be a state such thattrunk(G) ‖T
s
→ (X,xT). Let

(x,xT) be a state such that(G‖T
s
→ (x,xT). As G‖T is nonblocking there must exist

a tracetω such thatstω ∈ NConf(G) and(x,xT)
tω
→. Let Y ⊆ Q be a state set such

that det(G)
st
→ Y. From lemma 6.10C(G)

st
→ [[Y]]con f, asst ∈ L (T) and G‖ T is

nonblockingst ∈ NConf(G). Thereforeε 6∈ Conf(Y) therefore[[Y]]con f 6= ⊥, thus

[[Y]]con f
ω
→ ω, thus(X,xT)

t
→ ([[Y]]con f,yT)

ω
→. �
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6.2.2 The Initial Requirement Set

In this section we introduce how to generate a correct, though not yet unique, contin-

uation set for the automatonG. In addition we will prove that this continuation set is

well-formed, and thatG is conflict equivalent with this requirement set.

The initial continuation set is created in such a way that forevery statẽX in trunk(G),

if the statex in the original automatonG is in the stateX̃, then we giveX̃ the continua-

tion L ω(x)∩L ω
trunk(X̃). In practice this continuation is equal to the marked language

of x minus any certain conflicts. The requirement set is then closed under↓G.

Definition 6.13 Let G = 〈Σ,Q,→,Q◦〉 be an automaton. Lettrunk(G) = 〈Σ,Qtrunk,

→trunk,Q
◦
trunk〉. Let R′ = {(X̃,L ω

G (x)∩L ω
trunk(X̃))|X̃ ∈Qtrunk,X ∈ X̃,x∈ X}

R(G) =↓G (R′)

We must now prove thatR(G) is well-formed according to definition 6.7. To do this

we will prove that all the elements ofR′ are well-formed continuation pairs. After this

has been proven it is enough to use lemma 6.3, to state that↓G (R′) is well-formed.

Lemma 6.14 Let G= 〈Σ,Q,→,Q◦〉 be an automaton. LetR= R(G).

R is a requirement set oftrunk(G)

Proof. First we will prove that all the pairs inR′ = {(X̃,L ω
G (x)∩L ω

trunk(X̃))|X̃ ∈

Q̃trunk,X ∈ X̃,x∈ X} are requirement pairs.

Let (X̃,L ω
G (x)∩L ω

trunk(X̃)) be a pair such that̃X ∈QC,X ∈ X̃, andx∈ X. We will

show that this pair conforms to the definition of a well-formed nonconflicting require-

ment given in definition 6.3.

(i) First L ω(x)∩L ω
trunk(X̃) is prefix-free as it contains only traces which end inω

which is terminal, thus it satisfies condition i.

(ii) The second requirement is thatL ω
G (x)∩L ω

trunk(X̃))= /0 if and only ifL ω
trunk(X̃)=

/0. First we will consider the case whereL ω
trunk(X̃) = /0, the property obviously

holds in this instance as anything intersected with /0 equals /0.

Now we will prove that ifL ω
trunk(X̃) 6= /0 thatL ω

G (x)∩L ω
trunk(X̃)) 6= /0. To do

this we will prove that there must exist at least one tracetω ∈L ω
A (x) wheretω ∈

L ω
trunk(X̃)). First we will show that there exists a tracetω ∈L ω(x)−Conf(X).

From the definition of trunk automata give in definition 6.12 it must hold that

X̃ 6=⊥. This is becauseL ω
trunk(⊥) always equals /0. Furthermore as[[X]]con f 6=⊥,

it holds thatε 6∈ Conf(X), therefore there must exist at least one tracetω ∈
L ω(x)−Conf(X). Furthermore ast ∈NConf(X) andX ∈ X̃, δcon f(X̃, t) 6=⊥,

thereforeδcon f(X̃, t)
ω
→.
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(iii) This requirement comes directly from the definition.

(iv) Fourthly L ω(x)∩L ω
trunk(X̃) only contains traces which end inω, thereforeε

cannot be an element ofL ω(x)∩L ω
trunk(X̃).

As all the pairs in{(X̃,L ω(x)−Conf(X))|X̃ ∈ QC,X ∈ X̃,x ∈ X} are requirement

pairs↓G {(X̃,L ω(x)−Conf(X))|X̃ ∈QC,X ∈ X̃,x∈ X}= R(A) is a requirement set

of trunk(A). �

We now go on to show that all the requirements inR represent nonconflicting re-

quirement of the automatonG.

Lemma 6.15 Let G= 〈Σ,Q,→,Q◦〉 be an automaton. Let(X̃,L) ∈R(G) be a require-

ment. Lets∈ Σ∗∩NConf(G) be a trace such thatRA(trunk(G),R(G))
s
→ (X̃,L).

It holds that(s,L) ∈ CC(G).

Proof. Let T be a test automaton andxT be a state such thatG‖T is nonblocking and

T
s
→ xT . We will show that their existst ∈ L such thatxT

t
→.

First let us assume that(X̃,L) ∈ R′(G). From definition 6.13 it holds thatR′ =

{(X̃,L ω
A (x)∩L ω

trunk(X̃))|X̃ ∈ Qtrunk,X ∈ X̃,x∈ X}. Therefore there exists a state set

X ∈ X̃,x∈ X such thatL = L ω
G (x)∩L ω

trunk(X̃).

From lemma 6.5 it holds thatRA(trunk(G),R(G))
s
→ X̃ asRA(trunk(G),R(G))

s
→

(X̃,L). From lemma 6.10 det(G)
s
→ X whereX ∈ X̃ astrunk(G)

s
→ X̃. As det(G)

s
→ X

it holds thatG
s
⇒ x. ThereforeG‖T

s
⇒ (x,xT). As G‖T is nonblocking it holds that

(x,xT) is nonblocking. Thus there existsuω such that(x,xT)
uω
⇒. We will show that

uω is an element ofL, to do this we will show that it is in bothL ω
G (x) andL ω

trunk(X̃).

As x
uω
⇒ it is the case thatuω ∈L ω

G (x). Now we must show thatuω ∈L ω
trunk(X̃). As

G‖T is nonblocking it holds thatuω 6∈ Conf(X) as det(G)
s
⇒ X. Let Y be the state

set such thatX
u
→ Y. From lemma 6.10 it holds that̃X

u
→ Ỹ, whereỸ 6= ⊥, therefore

Ỹ
ω
→, thereforetω ∈L ω

trunk(X̃) and furthertω ∈ L.

Now we will assume that(X̃,L) ∈R(G). From definitions 6.13 and 6.6 it holds that

R(G) = {(Z̃,N)|(Ỹ,M)→ (Z̃,N) where(Ỹ,M) ∈ R′(G)}. Thus there exists a noncon-

flicting requirement(Y,M) ∈ R′(G) such that(Ỹ,M)
u
→ (X̃,L). Let Y ∈ Ỹ be a state

set. From lemma 6.10 it holds thatY
s
→ X whereX ∈ X̃ asỸ

s
→ X̃. Furthermore as

(ε,M) ∈ CC(〈Σ,Q,→,Y〉 it holds that(ε,L) ∈ CC(〈Σ,Q,→,X〉). Furthermore from

lemma 6.10 det(G)
s
→W whereW ∈ X̃ astrunk(G)

s
→ X̃. Furthermore as bothX and

W are in X̃ it holds thatX ≃conf W. Therefore(ε,L) ∈ CC(〈Σ,Q,→,W〉) and thus

(s,L) ∈ CC(G). �

Now we must prove that for any given automatonG, that A(trunk(G),R(G)) is

always conflict equivalent withG.
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Theorem 6.2 Let G= 〈Σ,QG,→G,Q
◦
G〉. Let trunk= trunk(G). Let R= R(G)

ThenRA(trunk,R)≃conf G, whereRA(trunk,R) is constructed according to the def-

inition 6.8

Proof. First let us prove thatRA(trunk,R) is less conflicting thanG.

Let T be an automaton such thatG‖T is nonblocking. Letsbe a trace inΣ∗ and let

(W̃,xT) be two states such thatRA(trunk,R)‖T
s
→ (W̃,xT).

We will now prove that the state(W̃,xT) is not blocking. EitherW̃ ∈ Ror W̃ ∈ Q̃.

First we consider the case werẽW ∈ Q̃. From lemma 6.6 asRA(trunk,R)
s
→ W̃,

trunk
s
→ W̃, furthermore from lemma 6.13trunk(G) .conf G. Thus there must exist

some tracetω such thatW̃
tω
→trunk, becauseG‖T is nonblocking. Finally from lemma

6.6 it holds thatW̃
tω
→RA asW̃

tω
→trunk.

Next we consider the case where(X̃,L) ∈R. From lemma 6.15 it holds that(s,L) ∈

CC(G) as(X̃,L) ∈ R(G) ands∈ NConf(G) andG
s
⇒ (̃X,L). Therefore asG‖T is

nonblocking, there exists a tracet ∈ L such thatxT
t
→. ((X̃,L),xT)

t
→ (Ỹ ∈Qtrunk,y∈

QT), as this class of states has already been proven nonblockingit holds that((X̃,L),xT)

is nonblocking.

Second let us prove thatG is less conflicting thanRA(trunk,R)

Let T be an automaton such thatRA(trunk,R) ‖ T is nonblocking. Lets be a

trace inΣ∗. Let (x,xT) be a state such thatG‖ T
s
→ (x,xT). It must hold thats∈

NConf(RA(trunk,R)) asG‖T is nonblocking.

From lemma 6.7 it holds thats∈NConf(trunk). Thus from lemma 6.12 it holds

that s ∈ NConf(RA(trunk,R)). Let X be a state set such that det(G)
s
→ X. Let

x ∈ X. From 6.10 it holds thattrunk
s
→ [[X]]con f. From definition 6.13 it holds that

([[X]]con f,L
ω(x)∩L ω([[X]]con f)) ∈ R. Thus from definition 6.8 it is the case that

RA(trunk,R) [[X]]con f
ε
⇒ ([[X]]con f,L

ω(x)∩L ω([[X]]con f)). As RA(trunk,R) ‖T is

nonblocking,xT must be capable of performing at least one trace intω ∈L ω(x), there-

fore (x,xT)
tω
→ �

6.3 Refinement

If we are given a trunk automatonG, as well as a nonconflicting requirement setR, it is

possible to progressively refine the requirement setR into progressively smaller refine-

ment sets using refinement relations. In this section we willdescribe two refinements.

The first refinement is the strongly connected requirements rule. If R andSare two re-

quirement sets such that applying the strongly connected requirement rule toR results

in S thenR≻ψ S. The second refinement is the requirement subsumption rule.Again

if R andS are two requirement sets such that applying the requirementsubsumption
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rule to R results inS thenR≻φ S. We will also prove that the use of each of these

refinements preserves conflict equivalence. We will furthergo on to show that as long

asR is a finite set, it is always possible to iteratively refineR using both the strongly

connected requirement rule and the requirement subsumption rule until we reach an

irreducible requirement set. That is to say a requirement set which can no longer be

refined by eitherψ or φ . Furthermore the number of times the strongly connected re-

quirement rule as well as the requirement subsumption rule will need to be applied to

in order to find this irreducible requirement set will themselves be finite.

6.3.1 The Strongly Connected Requirements Rule

The first refinement rule is the strongly connected requirements rule. For this re-

finement we notice that for a given nonconflicting requirement set R, it is possible

that R may contain two requirements(x,L) and (y,M) such that(x,L)→ (y,M) but

(y,M) 6→ (x,L), that is to say(x,L) and (y,M) are only weakly connected. Because

(x,L) and(y,M) are only weakly connected the requirement(x,L) can be split from

(y,M). We do this by adding every tracess∈ L such that(x,L)
s
→ (y,M) to L, and

then pruning the resulting language ofL back to the shortest accepting traces. This

then leads to a set of nonconflicting requirements such that if (x,L) and(y,M) are con-

nected, then they must also be strongly connected. This transformation will weaken

the requirement(x,L), that is to say that the transformed requirement is less conflicting

than(x,L), yet it does so in such a way that all the conflict information,which has been

removed from(x,L), is still contained in(y,M).

Example 6.10 Take for example the automatonRA(G.R) in figure 6.5. The require-

ment(0,{αβ ,γ}) in this automaton is weakly connected to the requirement(1,{β}),
because of this we can split(0,{αβ ,γ}) from (1,{β}), thus resulting in the automaton

RA(G,S). In order to transform(0,{αβ ,γ}) into (0,{α,γ}), we first take all the traces

which enter the state(1,{β}) from (0,{αβ ,γ}), which in this case is onlyα, and add

them to(0,{αβ ,γ}), giving us(0,{αβ ,γ,α}). The language of this requirement is

not prefix-free, therefore we use the prune function on it, this in turn removes the trace

αβ from the language asα is a prefix of it. Even though the nonconflicting require-

ment(0,{α,γ}) is weaker than(0,{αβ ,γ}), if the requirement(0,{α,γ}) is satisfied

by anα transition it reaches the state 1 which has the requirement(1,{β}), and will

thus have to perform aβ transition. Because of this we can say that the requirement

(0,{αβ ,γ}) is still implied.

Example 6.11 Figure 6.6 shows an example where the strongly connected compo-

nent is larger than a single state. In this example the nonconflicting requirements
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(0,(ββ )∗αα) and (0,β (ββ )∗αα) are strongly connected to one another, but only

weakly connected to the requirement(1,{α}). Because of this they can be trans-

formed into the requirements(0,(ββ )∗α) and(0,β (ββ )∗α) respectively. If we look

specifically at how(0,β (ββ )∗αα) is transformed into(0,β (ββ )∗α), again we add all

traces which enter the state(1,{α}), in this case it is the languageβ (ββ )∗α, which

results in the requirement(0,β (ββ )∗αα ∪β (ββ )∗α), and as all traces in the language

β (ββ )∗αα have a prefix in the languageβ (ββ )∗α this is then pruned back to the re-

quirement(0,β (ββ )∗α). Again each of these requirements is strictly less conflicting

than their original, but it is also still the case that under all circumstances in which the

new requirement is satisfied the state 1 will be reached inRA(G,S). As 1 has the non-

conflicting requirement(1,{α}), it will still be the case that in order for the system as

a whole to be nonblocking it will have to be able to perform theextraα transition.

Example 6.12 Figure 6.7 shows an example where multiple strongly connected com-

ponents are pruned in a single step. In this example there arefour different strongly

connected components.

• (0,α(αα)∗(β ∗ω)) and(1,(αα)∗(β ∗ω)).

• (1,β ∗ω).

• (1,(αα)+(β ∗ω)).

• (2,β ∗ω).

Other than(2,β ∗ω) all of these components are connected to at least one other

strongly connected component, therefore all of these components can be pruned back.

The strongly connected component made up of(0,α(αα)∗(β ∗ω)) and(1,(αα)∗(β ∗ω))

can have all of its traces which lead to the components(2,β ∗ω) pruned back thus giv-

ing us a component made of the requirements(0,α(αα)∗(β |ω)) and(1,(αα)∗(β |ω)).

In the same way(1,β ∗ω) is pruned back to(1,{β ,ω}). Finally the requirement

(1,(αα)+(β ∗ω)) is pruned back to the requirement(1,{α}) as the requirement tran-

sitions to a new strongly connected component as soon as anα event occurs. All of

these operations are commutative with one another, thus allsimplifications can be done

at the same time.

Definition 6.14 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton.

Let (x,L) be a nonconflicting requirement pair.

ψ(x,L) = (x, prune(L∪{s∈ L|(x,L)
s
→ (y,M) 6→ (x,L) for some(y,M)}))

Let Rbe a requirement set ofG. Thenψ(R) = {ψ(x,L)|(x,L) ∈ R}.

Let RandSbe two requirement sets ofG. ThenR≻ψ S if and only if ψ(R) = S.
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Now that we have defined the strongly connected requirementsrule, we must go

on to prove that it only produces well-defined requirements to be used with subsequent

refinement steps, in addition to preserving conflict equivalence.

We will do this by first showing that applyingψ to a single nonconflicting require-

ment, always results in another nonconflicting requirement. We will then show that the

ψ function preserves the→ relation between nonconflicting requirements. Next we

will show that applyingψ to a well-formed requirement set, always results in another

well-formed requirement set. Finally we will prove that therequirement automaton of

the original requirement set is conflict-equivalent to the requirement automaton of the

new requirement set.

Lemma 6.16 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. Let(x,L) be a

requirement set ofG.

Thenψ(x,L) is also a nonconflicting requirement ofG, according to definition 6.3.

Proof. Let (x,M) = ψ(x,L). We will show thatψ(x,L) fulfills all the conditions of

being a requirement described in definition 6.3. From definition 6.14

ψ(x,L) = (x, prune(L∪{s∈ L|(x,L)
s
→ (y,M) 6→ (x,L) for some(y,M)}))

(i) Any language which is the result ofpruneis prefix-free, therefore(x,M) satisfies

condition i

(ii) As (x,L) is a requirement ofG the languageL = /0 if and only if x 6→ ω. We

will prove that M = /0 if and only if L = /0. It is obvious that ifL = /0 then

M = /0 as from definition 6.14 the languageM only contains traces fromL and

/0= /0. Now we will show that ifL 6= /0 thenM 6= /0. LetN = L∪{s∈ L|(x,L)
s
→

(y,O) 6→ (x,L) for some(y,O)}. As L 6= /0 it is also the case thatN 6= /0 asN

is a superset ofL. As N 6= /0 there exists a traces∈ N. From definition 6.2 as

s∈ N, eithers∈ prune(N) or there existsp∈ N such thatp⊑ s. In either case

prune(N) is non empty. AsM = prune(N) = prune(L∪{s∈ L|(x,L)
s
→ (y,O) 6→

(x,L) for some(y,O)}). Thus(x,M) satisfies condition ii.

(iii) As (x,L) is a requirement ofG, L ⊆L ω(x) this implies thatL ⊆L ω(x). As M

only contains traces which are inL, M ⊆ L ⊆L ω(x), therefore(x,M) satisfies

condition iii.

(iv) As (x,L) is a requirementε /∈ L. Furthermoreε /∈ {s∈ L|(x,L)
s
→ (y,M) 6→

(x,L) for some(y,M)} as(x,L)
ε
→ (x,L)→ (x,L). As ε /∈ L∪{s∈ L|(x,L)

s
→

(y,M) 6→ (x,L) for some(y,M)} it must not be inprune(L ∪ {s ∈ L|(x,L)
s
→

(y,M) 6→ (x,L) for some(y,M)}) either. �
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We next go on to show that theψ function preserves the→ relation. Let(x,L) and

(x,M) be two nonconflicting requirements such thatψ(x,L) = (x,M), it will always

hold that if(x,M) can reach another nonconflicting requirement(y,O) using the traces

then(x,L) will also be able to reach a requirement(y,N) using the same trace, and that

ψ(y,N) = (y,O).

Example 6.13 Consider the nonconflicting requirements in example 6.10. Ifwe look

at the requirements(0,(ββ )∗αα) and(0,β (ββ )∗αα) in Ras well as the requirements

(0,(ββ )∗α) and(0,β (ββ )∗α) in S it is the case thatψ(0,(ββ )∗αα) = (0,(ββ )∗α)

andψ(0,β (ββ )∗αα) = (0,β (ββ )∗α). Under all circumstances when(0,(ββ )∗α)→

(0,β (ββ )∗α), it is also the case(0,(ββ )∗αα)→ (0,β (ββ )∗αα).

Lemma 6.17 Let (x,L) and(x,M) be two requirement pairs such thatψ(x,L) = (x,M).

Let s∈ M−M be a trace. Let(y,N) and (y,O) be two requirement pairs such that

(x,L)
s
→ (y,N) and(x,M)

s
→ (y,O)

Thenψ(y,N) = (y,O)

Proof. Let Q be a language such that(y,Q) = ψ(y,N). We will prove thatQ= O.

O= prune(L∪{t ∈ L|(x,L)
t
→ (z,P) 6→ (x,L)})/s

This is because from definition 6.14 it holds that

M = prune(L∪{t ∈ L|(x,L)
t
→ (z,P) 6→ (x,L)}) asM 6= {ε} as there existss∈M−M.

Furthermore as(x,M)
s
→ (y,O) it holds thatM/s= O.

O= prune(L∪{t ∈ L|(x,L)
t
→ (z,P) 6→ (x,L)})/s

= prune(L/s∪{t ∈ L|(x,L)
t
→ (z,P) 6→ (x,L)}/s) from lemma 6.1

= prune(L/s∪{st∈ L|(x,L)
st
→ (z,P) 6→ (x,L)})

= prune(L/s∪{t ∈ L/s|(x,L)
st
→ (z,P) 6→ (x,L)})

= prune(L/s∪{t ∈ L/s|(x,L)
st
→ (z,P) 6→ (x,L)})

= prune(L/s∪{t ∈ L/s|(x,L)
st
→ (z,P) 6→ (y,N)})

This is because(y,N)→ (x,L). We prove this by contradiction. Let us assume that

(y,N) 6→ (x,L). M = prune({t ∈ L|(x,L)
t
→ (z,P) 6→ (x,L)}). As (y,N) 6→ (x,L) it

also holds thats∈ {t ∈ L|(x,L)
t
→ (z,P) 6→ (x,L)}. Thereforeprune({t ∈ L|(x,L)

t
→

(z,P) 6→ (x,L)}) = M must contain some tracep∈M such thatp⊑ s. As M is prefix-
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free this contradicts the assumption thats∈M−M.

O= prune(L/s∪{t ∈ L/s|(x,L)
st
→ (z,P) 6→ (y,N)})

= prune({N∪{t ∈ N|(x,L)
st
→ (z,P) 6→ (y,N)})

= prune({N∪{t ∈ N|(x,L)
s
→ (y,N)

t
→ (z,P) 6→ (y,N)})

= prune({N∪{t ∈ N|(y,N)
t
→ (z,P) 6→ (y,N)})

= Q

This is because as(x,L)
s
→ (y,N) it holds thatL/s= N, and as(x,L)

st
→ (z,P) it also

follows (x,L)
s
→ (y,N)

t
→ (z,P). Furthermore as(x,L)

s
→ (y,N) is true by assumption

it can be removed. LastlyQ= prune({t ∈ N|(y,N)
t
→ (z,P) 6→ (y,N)}) by definition

6.14 �

Now we show that if the strongly connected requirements ruleis used on a well-

formed requirement set that it will always result in anotherwell-formed requirement

set. This is important as it ensures that we can continue using more refinements on the

result of theψ operation.

Lemma 6.18 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetRbe a require-

ment set ofG.

Thenψ(R) is a requirement set ofG.

Proof. Let (x,M)∈ψ(R). From definition 6.14 there exists(x,L)∈Rsuch thatψ(x,L)=

(x,M).

(i) Lemma 6.16 shows that(x,M) must be a requirement ofG.

(ii) Next we will prove that for all(y,O) such that(x,M)
s
→ (y,O) for somes, it must

hold that(y,O) ∈ ψ(R).

As (x,M)
s
→ it holds thats∈M−M. Furthermore asM only contains traces inL

it must also hold thats∈ L. Thus there exists(y,N) such that(x,L)
s
→ (y,N). As

R is a requirement set ofG it holds that(y,N) ∈R. From lemma 6.17 as(x,L)
s
→

(y,N) and (x,M)
s
→ (y,O), it must also hold thatψ(y,N) = (y,O). Therefore

(y,O) must be inψ(R).

�

Finally we must show that for any given trunk automatonG and requirement setR,

thatRA(G,R) ≃conf RA(G,ψ(R)). This ensures thatψ preserves conflict-equivalence.

Because of this all requirement sets which are produced by this rule stay within the
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same conflict equivalence class. Because of this we can be certain that the trunk and

requirement set represent a canonical form of the original automaton’s conflict equiva-

lence class.

Theorem 6.3 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR,S be two

requirement sets ofG such thatR≻ψ S.

ThenRA(G,R)≃conf RA(G,S).

Proof. First we will prove thatRA(G,S).conf RA(G,R). Let T be an automaton such

thatRA(G,R)‖T is nonblocking, let us prove thatRA(G,S)‖T is also nonblocking.

Let s∈ Σ∗ be a trace such that there exists(q,xT) whereRA(G,S) ‖T
s
⇒ (q,xT).

Eitherq∈Q or q∈ S, we will prove that(q,xT) is nonblocking in both cases.

In the first caseq∈ Q. From corollary 6.1 it holds thatRA(G,R) ‖T
s
⇒ (q,xT) as

RA(G,S)‖T
s
→ (q,xT). Since(q,xT) is nonblocking inRA(G,R)‖T there must exist a

tracetω such that(q,xT)
tω
⇒R. From corollary 6.1 it holds thatq

tω
⇒S asq

tω
⇒R therefore

(q,xT) must be nonblocking inRA(G,S)‖T.

In the second caseq∈ S. Let (x,L) ∈ Sbe a requirement such that(x,L) = q. From

definition 6.14 there must exist some requirement(x,N) ∈Rsuch thatψ(x,N) = (x,L)

therefore(x,L) = (x, prune(N∪{t ∈ N|(x,N)
t
→ (y,M) 6→ (x,N) for some(y,M)})).

From corollary 6.2 asRA(G,S)
s
⇒ ((x,L),xT) it also holds thatRA(G,R)

s
⇒ ((x,N),xT).

From remark 6.1 it holds that(s,N) ∈ CC(RA(G,R)) as(x,N) ∈ R andG
s
→ x. There-

fore there must exist some tracet ∈ N such that((x,N),xT)
t
→ asRA(G,R)‖T is non-

blocking. Ast ∈N, it must also be the case thatt ∈ (N∪{t ∈N|(x,N)
t
→ (y,M) 6→ (x,N)

for some(y,M)}). From definition 6.2, ast ∈ (N∪{t ∈ N|(x,L)
t
→ (y,M) 6→ (x,N)})

there must exist some tracep∈ prune(N∪{t ∈N|(x,L)
t
→ (y,M) 6→ (x,N)}) such that

p⊑ t. Therefore((x,L),xT)
p
⇒ (y,yT) for some(y ∈ Q,yT ∈ QT). We have already

proven that(y,yT) must be nonblocking. Therefore((x,L),xT) must be nonblocking.

Let T be an automaton such thatRA(G,S) ‖T is nonblocking, we will prove that

RA(G,R)‖T is also nonblocking.

Let s∈ Σ∗ be a trace such that either there exists(q,xT) whereRA(G,R) ‖T
s
⇒

(q,xT). Eitherq∈Q or q∈ R, we will prove that(q,xT) is nonblocking in both cases.

In the first caseq∈Q. From corollary 6.1 it holds thatRA(G,S)‖T
s
⇒ (q,xT). Since

(q,xT) is nonblocking inRA(G,S) ‖T there must existq
tω
⇒AS. From corollary 6.1 for

all t ∈ Σ∗ if q
tω
⇒AS thenq

tω
⇒AR therefore if(q,xT) is nonblocking inRA(G,R) ‖T it

must also be nonblocking inRA(G,S)‖T.

In the second caseq∈R. Letq= (x,L) and letsbe a trace such thatRA(G,R)‖T
s
⇒

((x,L),xT) for some statexT . We will prove that((x,L),xT) is nonblocking.

Let O(x,L) = |{(y,M)|(x,L)→ (y,M)}|, O(x,L) must be finite if|R| is finite, asR

is closed on→
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We will prove the claim via induction onO(x,L)

In the base caseO(x,L) = 1. From definition 6.14 there must exist a requirement

(x,N) ∈ S such that(x,N) = ψ(x,L). Thus (x,N) = (x, prune(L∪ {t ∈ L|(x,L)
t
→

(y,M) 6→ (x,L)})). For all t ∈ N it holds that eithert ∈ L or (x,L)
t
→ (y,L/t) 6→ (x,L)

wherex
t
→ y. From corollary 6.2 it holds thatRA(G,S) ‖T

s
⇒ ((x,N),xT) therefore

((x,N),xT) is nonblocking. Thus((x,N),xT) must be capable of performing at least

one tracet ∈ N. Thus it holds that((x,L),xT)
t
→. There are two cases, eithert ∈ L or

t 6∈ L. In the first case((x,L),xT)
t
→ (y,yT) wherex

t
→ y, this state has already been

proven nonblocking. In the second case((x,L),xT)
t
→ (y,L/t),yT) wherex

t
→ y. As

(y,L/t) 6→ (x,L) it must hold thatO(y,L/t)< O(x,L) as(x,L) can reach all the require-

ments(y,L/t) can. AsO(x,L) = 1, (y,L/t) = 0. This is absurd as(suc(x, t),L/t)→

(suc(x, t),L/t) thereforet must have been inL.

Let us consider the case whereO(x,L) = n+ 1. From the definition 6.14 there

must exist a requirement(x,N) ∈ S such that(x,N) = ψ(x,L). Therefore(x,N) =

(x, prune(L∪{t ∈ L|(x,L)
t
→ (y,M) 6→ (x,L)})). For allt ∈N it holds that eithert ∈ L or

(x,L)
t
→ (y,L/s) 6→ (x,L) wherex

t
→ y. From corollary 6.2 it holds thatRA(G,S)‖T

s
⇒

((x,N),xT) therefore((x,N),xT) is nonblocking. Thus((x,N),xT) must be capable of

performing at least one tracet ∈ N. Thus it holds that((x,L),xT)
t
→. There are two

cases, eithert ∈ L or t 6∈ L. In the first case((x,L),xT)
t
→ (y,yT) wherex

t
→ y this state

has already been proven nonblocking. In the second((x,L),xT)
t
→ ((y,L/t),yT). As

(y,L/t) 6→ (x,L) it must hold thatO(y,L/t)< O(x,L) as(x,L) can reach all the require-

ments(suc(x, t),L/t) can. From the inductive assumption it holds that(y,L/t) must be

nonblocking, therefore as(x,L)→ (y,L/t) it must hold that(x,L) is also nonblocking.

�

6.3.2 Requirement Subsumption

The second refinement rule is subsumption. If one nonconflicting requirement is less

conflicting than another requirement then the less conflicting requirement is subsumed.

If the requirement setRcontains two requirements(x,L) and(x,M) such that(x,L).conf

(x,M), then the requirement(x,L) can be subsumed by(x,M). This is because all the

blocking information implied by(x,L) is also implied by(x,M). All situations which

cause(x,L) to block, will also cause(x,M) to block. Simply removing(x,L) will result

in a non-well-formed requirement set. However, there is likely to exist at least one re-

quirements(y,N) ∈ R such that(y,N)→ (x,L). Thus if (x,L) is simply removed from

R, the resulting requirement set will no longer be closed under→. For this reason we

must also transform the requirement(y,N). To do this we add any traces, such that

(y,N)
s
→ (x,L) to the language ofN, and then pruneN back to the shortest of these
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traces. In this way we can be certain that(y,N) can no longer reach(x,L).

Example 6.14 An example of this is shown in figure 6.8. The requirement setR con-

tains the requirements(1,{α,β}) and(1,{α}). As (1,{α,β}).conf (1,{alpha}), we

can subsume the requirement(1,{α,β}). At the same time we prune back the require-

ment(0,{αα,αβ}) back to the shortest traces which go through(1,{α,β}) thus get-

ting the requiremnt(0,{α}). This gives us the requirement setS. We can be certain that

this requirement is conflict equivalent withSas while(0,{α}).conf (0,{αα,αβ}), as

soon as(0,{α}) is satisfied byα the requirement(1,{α}) is reached. Thus the re-

quirement(0,{αα}) is implied.

Example 6.15 This will not work for all situations however. Consider the situation

where(x,M)→ (x,L). In this case we would have to transform(x,M), thus mak-

ing it less conflicting. Figure 6.9 shows an example of using this refinement on such

an automaton. In this example the requirement(0,(β ∗α+)∗γ) .conf (0,(β ∗α+)+γ).
However it is not possible to remove(0,(β ∗α+)∗γ), as to do so we must transform the

requirement(0,(β ∗α+)+γ) into (0,β ∗α). Where the original automaton required that

the eventγ must occur after an indeterminate number ofα andβ transitions, the new

automaton does not requireγ to be able to occur at all.

Example 6.16 There are cases however where(x,M)→ (x,L), and it is still possi-

ble to remove(x,M). This is the case if for all tracess∈ L, it holds that(x,M)
s
→

does not go through(x,L). If this is the case we can say that while(x,M) will be

transformed into a weaker requirement, that weaker requirement will still be stronger

than(x,L). Figure 6.10 shows an example of such an automaton. In this automaton

(0,(βα)∗α) .conf (0,α(βα)∗α). Furthermore(0,α(βα)∗α) is transformed into the

requirement(0,{α}). This requirement is weaker than the requirement(0,α(βα)∗α),

but stronger than the requirement(0,(βα)∗α). Furthermore as satisfying the require-

ment(0,{α}) means returning to the state 0 in the trunk, and the state 0 hasthe require-

ment(0,{α}) we can say that the requirement(0,{αα}) is implied, this requirement

is stronger than both requirements.

Because of this we introduce the new stronger relation<conf. In order for the two

requirements(x,L) and (x,M) to be (x,L) <conf (x,M) it must hold that(x,L) .conf

(x,M) and that either(x,M) cannot reach(x,L), or if it can reach(x,L), all traces

which can reach(x,L) from (x,M), will also satisfy(x,L).

Example 6.17 Lastly as any test automatonT which wishes to be nonblocking with

x will need to be able to perform at least one trace inL ω(x) we can say that the re-

quirement(x,L ω(x)) is implied by the trunk. Furthermore these requirements canbe
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Figure 6.8: An application of requirement subsumption.
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Figure 6.9: An incorrect application of requirement subsumption.

used to subsume explicit requirements. Also as implicit requirements are implied by

the trunk which is never modified when we subsume requirements using an implicit

requirement we can use the weaker relation between requirement.conf. Figure 6.11

shows an example of a requirement automaton where a requirement can be subsumed

using an implicit requirement. The requirement(0,{α,β ,ω}).conf (0,L ω(0)= {αω,βω,ω}).
Because of this we can remove(0,{α,β ,ω}) from the requirement setR.

Definition 6.15 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. Let(x,L) and

(x,M) be two requirement pairs ofG. Then(x,L)<conf (x,M) if and only if

• (x,L).conf (x,M).

• For all s∈ L−L, (δ (x,s),M/s) 6= (x,L)
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Figure 6.10: An application of requirement subsumption using the<conf relation.
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Figure 6.11: An application of requirement subsumption using an implicit requirement.
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We also introduce the languageL(x,L) of a requirement.L(x,L)(y,N) is the set of all

traces such that(y,N)→ (x,L).

Definition 6.16 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. Let(x,L) and

(y,N) be requirement pairs.

L(x,L)(y,N) = {s∈ N|((y,N)
s
→ (x,L)}.

We now give the definition of the requirement subsumption rule. A requirement

(x,L) ∈ R is considered to be unnecessary for one of two reasons. The first reason is if

there exists a nonconflicting requirement(x,M) ∈Rsuch that(x,L)<conf (x,M) as has

been previously discussed. The second is if(x,L).conf (x,L ω(x)). This is because the

requirement(x,L ω(x)) is implied by the trunk. Furthermore in this case we can use

the weaker relation.conf. This is because the requirement(x,L ω(x)) is implied by the

trunk rather than being explictly referred to inR. Thus there is no way that(x,L ω(x))

will be transformed.

Definition 6.17 Let R,Sbe requirement sets ofG.

Let (y,N) be a requirement thenφ(x,L)(y,N) = {(y, prune(N∪L(x,L)(y,N)))}.

φ(x,L)(R) = {φ(x,L)(y,N)|(y,N) ∈ R and(y,N) 6= (x,L)}.

R≻φ S if and only if there exists(x,L) ∈ R such that either there exists(x,M) ∈ R

where(x,L)<conf (x,M) or (x,L).conf (x,L ω(x)) andS= φ(x,L)(R).

As with the strongly connected requirements rule, we must prove that require-

ment subsumption produces well-formed requirement sets and that it preserves conflict-

equivalence.

The format for proving this is of the same form as for the previous subsection. We

first prove that applyingφ to a single nonconflicting requirement, always results in

another nonconflicting requirement. We then show that theφ function preserves the

→ relation between nonconflicting requirements. Next we showthat applyingφ to a

well-formed requirement set, always results in another well-formed requirement set.

Finally we will prove that the requirement automaton of the original requirement set is

conflict-equivalent to the requirement automaton of the newrequirement set.

Lemma 6.19 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. Let(x,L) and

(y,M) be two requirements pairs ofG such that(x,L) 6= (y,M).

Thenφ(x,L)(y,M) is a requirement pair ofG.

Proof. Let (y,N) = φ(x,L)(y,M). We will proceed to show that(y,N) satisfies all the

conditions of being a requirement given in definition 6.3.

(i) From the definition ofprune, N = prune(M∪L(x,L)(y,M) must be prefix-free.
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(ii) As (y,M) is a requirement ofG it must hold thatM = /0 if and only ifL ω(x) = /0.

We will prove thatN = /0 if and only if M = /0. It is obvious that ifM = /0 then

N = /0 as from definitionN only contains traces fromM and /0= /0. It is equally

obvious that ifN = /0 thenM = /0. This is becauseN = prune(M∪L(x,L)(y,M),

it is obvious that(M∪L(x,L)(y,M))⊇M andprunecannot remove every trace in

(M∪L(x,L)(y,M)).

(iii) As (y,M) is a requirement ofG, M ⊆L ω(y) this implies thatM ⊆L ω(y). As

N only contains traces which are inM, M ⊆M ⊆L ω(y)

(iv) As (y,M) is a requirementε /∈M. Furthermoreε /∈ L(x,L)(y,M)as(y,M)
ε
→ (y,M)

and(y,M) 6= (x,L) from assumption. Asε /∈M∪L(x,L)(y,M)) it must not be in

prune(M∪L(x,L)(y,M)) either. �

We now show that theφ function preserves the→ relation. This principally has

the same meaning as lemma 6.17 has for the strongly connectedrequirements relation.

Again we are merely showing that if a transformed requirement (x,M) can transition to

another requirement(y,O), then it must also be the case that the original requirement

(x,L) can reach a requirement(y,N) such that(y,N) will be transformed into(y,O).

Lemma 6.20 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. Let(x,L),(y,M),

(y,N) be three requirements pairs ofG such thatφ(x,L)(y,M) = (y,N).

Let s∈ N be a trace.

Thenφ(x,L)(δ (y,s),M/s) = (δG(y,s),N/s)

Proof. Let (δG(y,s),O) = φ(x,L)(δ (y,s),M/s). We will prove thatO= N/s.

N/s= prune(M∪L(x,L)(y,M))/s

= prune(M/s∪L(x,L)(y,M)/s) from lemma 6.1

= prune(M/s∪{t ∈M|(δ (y, t),M/t) = (x,L)}/s) from definition 6.17

= prune(M/s∪{st∈M|(δ (y,st),M/st) = (x,L)})

= prune(M/s∪{t ∈M/s|(δ (y,st),M/st) = (x,L)})

= prune(M/s∪L(x,L)(δG(y,s),M/s))

= O from definition 6.17

�

Again we can show that for any well-formed requirement set, if we subsume a re-

quirement, then the resulting requirement set will also be well-formed. This ensures
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that we can continually apply the strongly connected requirements rule and the require-

ment subsumption rule without problems.

Lemma 6.21 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR be a re-

quirement set ofG. Let (x,L) ∈ R, such that either there exists(x,M) ∈ R where

(x,L)<conf (x,M) or (x,L).conf (x,L ω(x)).

Thenφ(x,L)(R) is a requirement set ofG

Proof. Let (y,N) be a pair inφ(x,L)(R). From definition 6.17 there exists(y,M) 6=

(x,L) ∈ (R) such thatφ(x,L)(y,M) = (y,N).

(i) Lemma 6.16 shows that(y,N) must be a requirement ofG asφ(x,L)(y,M)= (y,N).

(ii) Next we will prove that for all(z,P) such that(y,N)
s
→ (z,P) for somes, it must

hold that(z,P) ∈ ψ(R).

As (y,N)
s
→ it holds thats∈M−M. Furthermore asM only contains traces inM

it must also hold thats∈M. Thus there exists(z,O) such that(y,M)
s
→ (z,O). As

R is a requirement set ofG it holds that(z,O)∈R. From lemma 6.17 as(y,M)
s
→

(z,O) and(y,N)
s
→ (z,P), it must also hold thatψ(z,O) = (z,P). Therefore(z,P)

must be inψ(R). �

Finally we show that requirement subsumption preserves conflict-equivalence. That

is that for any given trunk automatonG and any two requirement setsR andSof that

trunk automaton such thatR≻φ S it holds thatRA(G,R) ≃conf RA(G,S). This ensures

that repeated uses of the strongly connected requirements rule and of the requirement

subsumption rule always result in requirement automata in the same equivalence class.

Theorem 6.4 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR,S be two

requirement sets ofG, such thatR≻φ S.

ThenRA(G,R)≃conf RA(G,S).

Proof. As R≻φ S there must exist a requirement tuple(w,J) ∈ R such that either

(w,J) .conf (w,L ω(w)) or there exists(w,K) ∈ R where(w,J) <conf (w,J), andS=

φ(w,J)(R)
Let T be an automaton such thatRA(G,R) ‖ T is nonblocking, let us prove that

RA(G,S)‖T is also nonblocking.

Let s∈ Σ∗ be a trace and(q,xT)∈Sbe a requirement whereRA(G,S)‖T
s
⇒ (q,xT).

Eitherq∈Q or q∈ S.

In the first caseq ∈ Q. From corollary 6.1 it holds thatRA(G,R) ‖T
s
⇒ (q,xT).

Furthermore from corollary 6.1 for allt ∈ Σ∗ if q
tω
⇒AR thenq

tω
⇒AS therefore if(q,xT)

is nonblocking inRA(G,R)‖T it must also be nonblocking inRA(G,S)‖T.
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In the second caseq ∈ S. Let q = (x,L). From definition 6.17 there exists a

requirement in(x,M) ∈ R such thatφ(x,M) = (x,L) = (x, prune(M ∪ L(w,J)(x,M))).

From corollary 6.1 it holds thatRA(G,R) ‖ T
s
⇒ ((x,M),xT). From remark 6.1 it

holds that(s,M) ∈ CC(RA(G,R)) as (x,M) ∈ R and G
s
→ x. ThereforexT can per-

form some tracet ∈ M asRA(G,R) ‖T is nonblocking. Ast ∈ M∪L(w,J)(x,M) from

definition 6.2 there must exist some tracep∈ prune(M∪L(w,J)(x,M) such thatp⊑ t.

((x,L),xT)
p
⇒ (δG(x, p),δT(xT , p)). This state has already been proven nonblocking.

Let T be an automaton such thatRA(G,S) ‖T is nonblocking, we will prove that

RA(G,R)‖T is also nonblocking.

Let (q,qT) be a state ands be a trace such thatRA(G,R)‖T
s
→ (q,xT).

There are three cases. Firstq∈Q, secondq= (w,J), and thirdq∈ R.

First we will consider the case whereq ∈ Q. From corollary 6.1 asRA(G,R)
s
⇒

(q,xT) it holds thatRA(G,S) ‖ T
s
⇒ (q,xT). Furthermore from corollary 6.1 for all

t ∈ Σ∗ if q
tω
⇒AS thenq

tω
⇒AR therefore as(q,xT) is nonblocking inRA(G,R)‖T it must

also be nonblocking inRA(G,S)‖T.

Second we consider the case whereq = (w,J). From the definition of≻φ , either

(w,J).conf (w,L ω(w)) or there exists a requirement(w,K) ∈ R such that(w,J)<conf

(w,K). In the first case(w,J).conf (w,L ω(w)). From lemma 6.5 it holds thatRA(G,R)‖

T
s
→ (w,xT) asRA(G,R)

s
→ ((w,J),xT). As this state has already been proven non-

blocking there exists a tracetω ∈L ω(w) such that(w,xT)
tω
→. From definition 6.4 as

(w,J) .conf (w,L ω(w) it holds thatL ω(w) ⊆ JΣ∗ω , therefore there must exist some

trace p ⊑ tω such thatp ∈ J. Therefore((w,J),xT)
p
⇒ (δG(w, p),δT(xT , p)). The

state(δG(w, p),δT(xT , p)) has already been proven nonblocking. In the second case

there exists a requirement(w,K) ∈ R such that(w,J) <conf (w,K). From definition

6.17 it holds thatφ(w,J)(R) = S, φ(w,J)(w,K) ∈ S. From definition 6.17 it holds that

φ(w,J)(w,K) = (w, prune(K ∪L(w,J)(w,K))). Let (φ(w,J)(w,K),xT) = (w, I) from corol-

lary 6.2 it holds thatRA(G,S) ‖T
s
→ ((w, I),xT) asRA(G,R) ‖T

s
→ ((w,J),xT). As

((w, I),xT) is nonblocking there must exist a tracet ∈ I such that((w, I),xT)
t
→. From

definition 6.17 it holds thatI = prune(K ∪L(w,J)(w,K)), further from definition 6.2 it

holds thatprune(K ∪L(w,J)(w,K)) ⊆ K ∪L(w,J)(w,K), thereforet must be an element

of eitherK or L(w,J)(w,K). We will first consider the case wheret ∈ K. As (w,J).conf

(w,K) it holds thatK ⊆ JΣ∗ω therefore there existsp ∈ J such thatp⊑ t. Therefore

((w,J),xT)
p
⇒ (δG(w, p),δT(xT , p)) as((w, I),xT)

t
⇒. The state(δG(w, p),δT(xT , p))

has already been proven nonblocking. In the second caset ∈ L(w,J)(w,K) = {u ∈

K|(δ (w,u),K/u) = (w,J)}. Thereforet ∈K and(δ (w, t),K/t) = (w,J). As (w,J).conf

(w,K), it holds thatK ⊆ JΣ∗ω , which further implies thatK ⊆ JΣ∗ω , thereforet ∈ JΣ∗ω .

From the definition of<conf, if t ∈ J−J then(δ (w, t),K/t) 6= (w,J), thereforet 6∈ J−J.

Thereforet ∈ JΣ∗ω−J+J = JΣ∗ω . As t ∈ JΣ∗ω there existsp∈ J such thatp⊑ t. There-
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fore ((w,J),xT)
p
⇒ (δG(w, p),δT(xT , p)). The state(δG(w, p),δT(xT , p)) has already

been proven nonblocking.

Thirdly we consider the case whereq ∈ R. Let (x,L) = q. From definition 6.17

there exists a requirement(x,M) ∈ S such thatφw,J(x,L) = (x,M). From assumption

RA(G,R) ‖T
s
⇒ ((x,L),xT), therefore from corollary 6.2 it holds thatRA(G,S) ‖T

s
⇒

((x,M),xT). As ((x,M),xT) is nonblocking there must exist a tracet ∈ M such that

((x,M),xT)
t
→. From definition 6.17 asφw,J(x,L) = (x,M) it holds that(x,M) =

(x, prune(L∪ L(w,J)(x,L))). As prune(L∪ L(w,J)(x,L)) ⊆ L∪ L(w,J)(x,L) the tracet

must either be inL or in L(w,J)(x,L). In the first case ast ∈ L it holds that((x,L),xT)
t
⇒

(δG(x, t),δT(xT , t)). The state(δG(x, t),δT(xT , t)) has already been proven nonblock-

ing. In he second caset ∈ L(w,J)(x,L) = {u∈ L|(δ (x,u),L/u) = (w,J)}. Thus(x,L)
t
→

(w,J), therefore((x,L),xT)
t
⇒ ((w,J),δT(xT , t)). The state((w,J),δT(xT , t)) has al-

ready been proven nonblocking. �

6.4 Irreducible Requirement Sets

Using the refinement rules introduced in section 6.3 it is possible to refine any finite

requirement set into an irreducible requirement set. This section is divided into two

subsections. Subsection 6.4.1 first defines what it means to be an irreducible require-

ment set, then proves that any finite requirement set can be reduced to an irreducible

requirement set, it then finally describes a few properties of an irreducible requirement

set. Subsection 6.4.2 shows that there is a unique requirement set for every conflict

equivalence class.

6.4.1 Properties

In the previous section we described the strongly connectedcomponent rule as well as

the requirement subsumption rule. We further showed that each successive application

of these rules resulted in well-formed requirement sets, aswell as conflict-equivalent

requirement automata. In this subsection we will show that these two rules can be

used iteratively in order to reach an irreducible requirement set. We will further go

on to show that given a particular trunk automatonG, there exists a unique irreducible

requirement set for each conflict-equivalence class.

We first define the relation≻ between requirement sets which are found by succes-

sive application of the refinement rules described in section 6.3.

Definition 6.18 Let G= 〈Σ,Q,→,Q◦〉 be an automaton. LetR andSbe two require-

ment sets ofG.
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ThenR≻ S if and only if one of the following holds.

(i) R≻ψ S.

(ii) R≻φ S.

(iii) If there exists some requirement setT such thatR≻ T ≻ S.

Lemma 6.22 Let G= 〈Σ,Q,→,Q◦〉 be an automaton. LetRandSbe two requirement

sets ofG such thatR≻ S.

ThenRA(G,R)≃conf RA(G,S).

Proof. This can be proved using induction based upon theorems 6.3 and 6.4 �

We further define what it means for a requirement setR to be irreducible.

Definition 6.19 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR be a well-

formed requirement set with respect toG.

R is ψ-irreducible if and only if for every requirement setS of G, if R≻ψ S then

R= S.

R is φ -irreducible if and only if for every requirement setS of G, if R≻φ S then

R= S.

R is irreducible if and only ifR is bothψ-irreducible andφ -irreducible.

Example 6.18 If we use requirement automata to represent requirement sets, figure

6.12 gives an example of how the strongly connected requirement rule and require-

ment subsumption can be used to simplify a requirement set until it is irreducible. The

example starts with the requirement setR. R can be simplified using the strongly con-

nected requirements rule into the requirement setS as previously shown in example

6.12. After this the requirement(1,(αα)∗(β |ω)) can be subsumed fromS. This is be-

cause(1,(αα)∗(β |ω))<conf (1,{β ,ω}). ThusScan be simplified intoT by removing

(1,(αα)∗(β |ω)) and pruning(0,α(αα)∗(β |ω)) back to the requirement(0,α). Lastly

the requirement(2,β ∗ω) can also be subsumed, this time using the implied require-

ment(2,L ω(2)) which is equal to(2,β ∗ω). While (2,β ∗ω) 6<conf (2,L ω(2) = β ∗ω)

as they both equal one another, as(2,L ω(2)) is a requirement which is implied by the

trunk, we can use the weaker relation.conf to subsume(2,β ∗ω). This transformsT

into the requirement setV which is irreducible.

Furthermore we can be certain thatRA(G,R) ≃conf RA(G,S) ≃conf RA(G,T) ≃conf

RA(G,V). As from theorem 6.3 it holds thatRA(G,R)≃conf RA(G,S) and from theorem

6.4 it holds thatRA(G,S)≃conf RA(G,T) andRA(G,T)≃conf RA(G,V).
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In order to show that successive applications of the refinement rules of section three

result in an irreducible requirement set we will show that ateach step the requirement

rules make the requirement set smaller. To do this we first show that successive ap-

plications of the strongly connected requirements ruleR have no effect. That is to say

if R has been simplified using the strongly connected requirements rule once it cannot

be simplified using the strongly connected requirements rule again. In order for it to

be possible to use the strongly connected requirements ruleagain it is first neccessary

to apply the requirement subsumption rule. Thus a requirement set simplified by the

strongly connected components rule can be considered to be smaller with respect to

whether it can be simplified byψ.

Lemma 6.23 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR,R′,R′′ be

three requirement sets ofG such thatR≻ψ R′ ≻ψ R′′

ThenR′ = R′′

Proof. Let (x,L) be a requirement inR′ such thatL 6= {ε}. We will show for all traces

s∈ L that (δ (x,s),L/s)→ (x,L) if and only if L/s 6= {ε}. Let s∈ L. We will first

show that if(δ (x,s),L/s)→ (x,L) thenL/s 6= {ε}. This is simple as ifL/s= {ε},
(δ (x,s),L/s) can only reachδ (x,s),{ε}). Second we will show that ifL/s 6= {ε}
then (δ (x,s),L/s)→ (x,L). From the construction ofR′ there exists a requirement

pair (x,M) such thatL = prune({t ∈ M|(δG(x, t),M/t) 6→ (x,M)}). As L/s 6= {ε},
L = prune({t ∈M|(δG(x, t),M/t) 6→ (x,M)}), and asL is prefix-freeδG(x,s),M/s)

u
→

(x,M) for someu. The tracesu∈ L. Furthermoreφ(x,M) = (x,L) therefore from

lemma 6.20ψ(δG(x,su),M/su) = (δG(x,su),L/su). As δG(x,su),M/su= (x,M) and

ψ(x,M) = (x,L) it follows that(δG(x,su),L/su) = (x,L), thus(δ (x,s),L/s)
u
→ (x,L).

(δ (x,s),L/s)→ (x,L) if and only if L/s 6= {ε} is equivalent to(δ (x,s),L/s) 6→ (x,L)

if and only if L/s= {ε}.
Let (x,L) be a requirement inR′. We will show thatψ(x,L) = (x,L). In the first

caseL = {ε}. In this caseψ(x,L) = (x,L) directly from the definition ofψ. In the

second caseψ(x,L) = (x, prune({s∈ L|(δ (x,s),L/s) 6→ (x,L)})). As for all s∈ L

(δ (x,s),L/s) 6→ (x,L) if and only if L/s= {ε}. ψ(x,L) = (x, prune({s∈ L|L/s= {ε}))
asL is prefix-freeL/s= {ε} if and only if s∈ L thereforeψ(x,L) = (x, prune(L)).

Again becauseL is prefix-freeprune(L) = L thusψ(x,L) = (x,L).

Lastly we will prove thatR′ = R′′. From assumptionψ(R′) = R′′ therefore it is the

case that{ψ(x,L)|(x,L)∈R′}=R′′. As ψ(x,L) = (x,L) {(x,L)|(x,L)∈R′}=R′ =R′′.

�

We can further show that applying the strongly connected requirements rule to a re-

quirement setRwill never increase the number of requirements inR. Thus the strongly
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connected requirement rule never makesR bigger. Thus applying the strongly con-

nected requirement rule will always result in a requirementset which is either smaller

than or equal toRwith respect to the number of requirements it contains.

Lemma 6.24 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR,R′ be two

requirement sets ofG such thatR≻ψ R′.

Then|R| ≥ |R′|

Proof. This come directly from the definition ofψ. ψ(R) creates at most one tuple for

each pair in the original requirement setR. �

We now show that each application of the requirement subsumption rule strictly

reduces the number of requirements inR.

Lemma 6.25 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR,R′ be two

requirement sets ofG such thatR≻φ R′

Then|R|> |R′|

Proof. This also comes directly from the definition ofφ asR′ can only have at most one

requirement pair for each pair inRexcluding the requirement(x,L). As such|φ(x,L)(R)|
can have at most|R|−1 elements. �

We now define a function with which we can compare the size of two requirement

sets. The function||.|| assigns a number to each requirement set such that require-

ment sets are ordered primarily based upon the number of nonconflicting requirements

they contain and secondarily based upon whether they can be refined by the strongly

connected requirements rule.

Definition 6.20 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR a require-

ment set ofG.

Then||R||= 2|R| if R≻φ R or otherwise||R||= 2|R|+1.

We now show that whenever either the strongly connected requirements rule or

the requirement subsumption rule is applied to a requirement setR, then the resulting

requirement set is always smaller with respect to||.||. As ||.|| cannot be negative, we

can therefore say that for any finite requirement setR, a finite number of applications

of the strongly connected requirements rule or the requirement subsumption rule will

lead to an irreducible requirement set.

Theorem 6.5 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetRandSbe two

requirement sets ofG such thatR≻ SandR 6= S.

Then||R||> ||S||.
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Proof. There are two cases eitherR≻φ S or R≻ψ S. In the first case becauseR 6= S

andR≻φ S it must be the case that||R|| = 2|R|+ 1. From lemma 6.24 it holds that

|R| ≥ |S| and from 6.23S≻φ S, therefore||S|| ≤ 2|R|, and the proposition is proven.

In the second case||R|| either equals 2|R|+ 1 or 2|R|, thus||R|| ≥ 2|R|, and||S||

either equals 2|S|+ 1 or 2|S|, thus ||S|| ≤ 2|S|+ 1. From lemma 6.25 it holds that

|R|> |S|, therefore||S|| ≤ 2(|R|−1)+1, which is equivalent to||S|| ≤ 2|R|−1. Thus

the case is proven. �

Example 6.19 Consider the requirement automata shown in figure 6.12. In this ex-

ample the requirement setR is successively refined using the strongly connected re-

quirement rule and the requirement subsumption rule until it eventually results in the

irreducible requirement setV. The first requirement setR has five requirements and

can be reduced by the strongly connected requirement rule, thus||R||= 2×5+1= 11.

R is then refined using the strongly connected requirement rule into the requirement

set S. This requirement set still has exactly five requirements but can no longer be

reduced by the strongly connected requirement rule, thus||S|| = 10. The requirement

(1,(αα)∗(β |ω)) is then subsumed by(1,{β ,ω}). This results in the requirement set

T. T has four requirements in it and also cannot be refined by the strongly connected

requirements rule, thus||T|| = 8. Finally we subsume the nonconflicting requirement

(2,β ∗ω) using implied requirement(2,L ω(2)). This results in the requirement setV

which has three requirements.||V|| = 6. V cannot no longer be refined by either the

strongly connected requirements rule or the requirement subsumption rule, thus it is

considered irreducible. We further notice that after each step||.|| decreases in size.

Lastly we give some properties of irreducible requirement sets. The first property

applies to requirement sets which are irreducible with respect to the strongly connected

requirement rule. If the requirement setR is ψ irreducible then for every requirement

(x,L) and(y,M) in Rsuch that(x,L)→ (y,M) it holds that(y,M) and(x,L) are strongly

connected.

Lemma 6.26 Let G = 〈Σ,Q,→,Q◦〉 be an automaton, and letR be aψ−irreducible

requirement set ofG. Let (x,L) and(y,M) be two requirements inRsuch that(x,L)→

(y,M).

It holds that(y,M)→ (x,L)

Proof. As (x,L)→ (y,M) there must exist a traces such that(x,L)
s
→ (y,M). As R is

R irreducible,ψ(R) = R, therefore from definition 6.14 there must exist a requirement

(x,N) ∈ R such thatψ(x,N) = (x,L). From lemma 6.17 it must hold that there exists a

nonconflicting requirement(y,O) ∈ R such that(x,N)
s
→ (y,O) andψ(y,O) = (y,M).
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Figure 6.12: Example of four automata such thatR≻ψ S≻φ T ≻φ V
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As (x,L)
s
→ (y,M), it holds thats 6∈ L, and asL is prefix-free it holds that there exists no

tracep⊑ ssuch thatp∈ L. Furthermore ass 6∈ L, ψ(x,N) = (x,L), and(x,N)
s
→ (y,O)

it holds that(y,O)
t
→ (x,N) for some tracet. As (y,O)

t
→ there exists a traceu ∈ O

such thatt ⊑ u. Furthermore as(x,N)
s
→ (y,O) all possible tracesp andv such that

pv= t it is the case that(y,O)
p
→ (., .)

v
→ (x,L)

s
→ (y,O), therefore(y,M)

t
→ to some

requirement(x,P), which from lemma 6.17 is equal toψ(x,N) = (x,P) = (x,L). �

We next show that for any requirement setR which isφ−irreducible, ifR contains

the nonconflicting requirement(x,L) then there exists no nonconflicting requirement

(x,M) ∈ R such that(x,M) is strictly more conflicting than(x,L).

Lemma 6.27 Let G = 〈Σ,Q,→,Q◦〉 be an automaton, and letR be aφ−irreducible

requirement set ofG. Let (x,L) and(x,M) be two requirements inR.

(x,L) 6<conf (x,M)

Proof. Let us assume that(x,L) <conf (x,M). Then according to definition 6.17 it

holds thatR≻φ φ(x,L)(R). From lemma 6.25 it holds that|φ(x,L)(R)| < |R| therefore

φ(x,L)(R) 6= R, thusR is not φ−irreducible. This contradicts our assumptions, thus

(x,L) 6<conf (x,M). �

We further show that for any requirement setRwhich isψ−irreducible, ifRhas the

nonconflicting requirement(x,L), then(x,L) is not less conflicting than(x,L ω(x)).

Lemma 6.28 Let G = 〈Σ,Q,→,Q◦〉 be an automaton, and letR be aφ−irreducible

requirement set ofG. Let (x,L) be a requirement inR.

(x,L) 6.conf (x,L ω(x))

Proof. Let us assume that(x,L) .conf (x,L ω(x)). Then according to definition 6.17

it holds thatR≻φ φ(x,L)(R). From lemma 6.25 it holds that|φ(x,L)(R)| < |R| therefore

φ(x,L)(R) 6= R, thusR is not φ−irreducible. This contradicts our assumptions, thus

(x,L) 6.conf (x,L ω(x)). �

6.4.2 Uniqueness

In this section we show that their is a unique requirement setfor each conflict equiva-

lence class. In addition to this we will show that for any given trunk automatonG, and

any two irreducible nonconflicting requirement setsR andS, RA(G,R) ≃conf RA(G,S)

if and only if R= S. The proof for this is quite involved and is split between several

different lemmas. Here we will give an overview of the proof so that the reader can

have a reasonable understanding about the importance of each individual lemma. The-

orem 6.6 shows that every nonconflicting requirement(x,K) ∈ R is also inS. To do
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this we consider a nonconflicting requirement(x,L) in R such that there exists no re-

quirement inRwhich is&conf (x,L), and(x,K).conf (x,L). BecauseR is an irreducible

requirement set,(x,K) 6<conf (x,L) otherwise(x,K) would have been removed, and thus

(x,K)→ (x,L). Furthermore this implies that(x,L)→ (x,K) again asR is irreducible

any requirements which are not strongly connected will havebeen abstracted. As this

is the case any well-formed nonconflicting requirement set which contains(x,L) must

also contain(x,K), therefore it is enough to show that(x,L) ∈ S.

The picture in figure 6.15 gives a graphical representation of how we find a re-

quirement(x,O) ∈ S such that(x,L) .conf (x,O). Given our nonconflicting require-

ment(x,L) we first use lemma 6.29 in order to find the requirements(y,L′) and(y,O′)

and the traces such that(x,L)
s
→ (y,L′) and (y,L′) .conf (y,O′). We then construct

the nonconflicting requirement(y,M′) which is an element of neitherR or S such

that M′ = L′ ∩O′, this is a nonconflicting requirement which has the propertythat

(y,L′).conf (y,M′).conf (y,O′). We use lemma 6.29 on this to find the tracet and the

requirements(z,M′′) and(z,N′′) such that(y,M′)
t
→ (z,M′′) and(z,M′′).conf (z,N′′).

We further state that there exists a requirement(z,L′′) such that(y,L′)
t
→ (z,L′′) and

M′′ ⊆ L′′. To this we apply the lemma 6.31 to find the nonconflicting requirement

(z,L′/tu) which all three of these requirements converge upon after the traceu. As R is

irreducible and(x,L)
stu
→ (z,L′/tu) there exists a tracev such that(z,L′/tu)

v
→ (x,L).

Furthermore as(y,M′)
tu
→ (x,L) and (y,M′) .conf (y,O′), (y,O′)

tu
→ (x,O) such that

(x,L).conf (x,O).

We can use the same method we used to find(x,O)∈ Ssuch that(x,L).conf (x,O),

to find another requirement(x,P) ∈ R such that(x,O) .conf (x,P). Thus(x,L) .conf

(x,O) .conf (x,P), as.conf is transitive, and the only nonconflicting requirement inR

which is more conflicting than(x,L) is (x,L), (x,P) = (x,L). Furthermore as.conf is

antisymmetric(x,O) = (x,L). Therefore(x,L)∈S. An identical argument can be made

for why every nonconflicting requirement inSmust also be contained inR.

Lemma 6.29 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR,S be two

irreducible requirement sets such thatRA(G,R).conf RA(G,S). Let (x,L) be a require-

ment. Let(x,K) ∈ R be a requirement such that(x,L) .conf (x,K). Let (x,J) ∈ R∪S

be a requirement such thatL⊆ J.

Then there exists a tracet ∈ Σ∗, a requirement(y,L′) such that(x,L)
t
→ (y,L′), and

there exists a requirement(y,O′) ∈ Ssuch that(y,L′).conf (y,O′).

Proof. As x is reachable inG there exists a traces such thatG
s
→ x. Let s be such a

trace.

We will prove the claim by first showing that ifRA(G,R) .conf RA(G,S) it also

holds thatRA(G/s,R) .conf RA(G/s,S). We will then show thatRA(G/s,R) .conf
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RA(G/s,S) can only be true if the requirements(y,L′) and(y,O′) exist.

From theorem 5.1 ifs∈ NConf(RA(G,S)) asRA(G,R) .conf RA(G,S) it would

also hold thatRA(G,R)/s.conf RA(G,S)/s. We will prove thats∈NConf(RA(G,S))

by contradiction. Let us assume thats∈CONF(RA(G,S)). From lemma 6.7 it holds

thatConf(RA(G,S)) =Conf(G). As G is deterministic andG
s
→ x it must hold that

L ω(x) = /0. Note that(x,K) .conf (x, /0). This contradicts our assumption thatR is

irreducible as from lemma 6.28 it holds that(x,K).conf (x,L ω(x)) because(x,K)∈R

by assumption. Therefores∈NConf(RA(G,S)). Furthermore lemma 6.8 shows that

RA(G,R)/s≃conf RA(G/s,R) andRA(G,S)/s≃conf RA(G/s,S), thusRA(G/s,R).conf

RA(G/s,S)

Let T be a deterministic test automaton such thatL(T) = L ω(x)−LΣ∗ω . We will

show thatRA(G,R)‖T is blocking. Asx is the initial state ofRA(G/s,R) and(x,K)∈R

it holds thatRA(G/s,R)‖T
ε
→ ((x,K),Q◦T) whereqT is the initial state ofT. Further-

more as(x,L).conf (x,K) it holds thatK ⊆ LΣ∗ω . As L(T) contains no traces inLΣ∗ω it

follows that((x,K),Q◦T) is blocking. ThereforeRA(G,R)‖T is blocking.

As RA(G/s,R).conf RA(G/s,S) it follows thatRA(G,S)‖T must also be blocking.

Let t be a trace and(q,qT) be a state such thatRA(G/s,S)‖T
t
→ (q,qT). We will show

that (q,qT) is only blocking if q = (y,O′) where(x,L)
t
→ (y,L/t) = (y,L′) such that

(y,L′).conf (y,O′)

We will consider four possible cases oft andq.

(i) t 6∈ LΣ∗ω andq∈Q

(ii) t 6∈ LΣ∗ω andq∈ S

(iii) t ∈ LΣ∗ω andq∈Q

(iv) t ∈ LΣ∗ω andq∈ S

We will show that cases 1−3 are nonblocking, and that for case 4,q= (y,O′).

(i) Let t /∈ LΣ∗ω andq∈ Q. As t /∈ LΣ∗ω it holds thatL ω(qT) is equal tooL ω(x)/t

asL(qT) = L ω(x)/t−LΣ∗ω = L ω(x)/t− /0. FurthermoreL ω(x)/t 6= /0 ast ∈

L ω(x)/t asT
t
⇒, therefore(q,qT) is nonblocking.

(ii) Let t /∈ LΣ∗ω andq=(y,O′)∈S. As t ∈L ω(x) asT
t
→ and(y,O′) is a requirement

set ofG it follows thatO′ 6= /0 from definition 6.3, therefore there exists at least

one traceu ∈ O′. Furthermore as(y,O′) is a requirement ofG, it holds that

O′ ⊆L ω(y) = L ω(x)/t. Thus((y,O′),qT)
u
→ (z,zT) for some state pair(z,zT).

As such states have already been proven to be nonblocking((y,O′),qT) is also

nonblocking.
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(iii) Let t ∈ L andq∈ Q. As L ⊆ J and(x,J) ∈ R∪Sby assumption, it follows that

(x,J)
t
→ (q,J/t) whereJ/t ∈R∪Sas bothRandSare requirement sets. Further-

more as bothRandSare irreducible from lemma 6.28 it holds that(q,J/t) 6.conf

(q,L ω(q)), therefore there exists a traceuω ∈L ω(q) which is not in(J/t)Σ∗ω .

As L/t ⊆ J/t it follows that uω is not in (L/t)Σ∗ω either. Thus(q,qT)
uω
→ as

L(qT) = (L ω(x)/t = L ω(q))− (L/t)Σ∗ω andt ∈L ω(q) but t 6∈ (L/t)Σ∗ω .

(iv) t ∈ L andq= (y,O′) ∈ S. t ∈ L−L asT cannot perform any trace inLΣ∗ω , ther-

erfore there exists a pair(y,L′) such that(x,L)
t
→ (y,L′). Now we will prove

if (y,O′) is blocking that(y,L′) .conf (y,O′). Let u be a trace inO′ such that

u 6∈ (L/t)Σ∗ω . As O′ ⊆L ω(y) it holds that((y,O′),qT)
u
→ (z,zT) for some pair

of states(z∈ Q,zT ∈ QT). As such states have already been proven nonblock-

ing it holds that ifO′ can be perform any traceu 6∈ (L/t)Σ∗ω that ((y,O′),qT) is

nonblocking. Thus if((y,O′),qT) is blockingO′⊆ (L/t = L′)Σ∗ω , which is equiv-

alent to(y,L′).conf (y,O′). As this is the only possible type of blocking state and

(x,L)
t
→ (y,L′) the property holds.

Therefore there must exist(y,L′) and (y,O′) ∈ S such that(x,L) → (y,L′) and

(y,L′).conf (y,O′). �

Lemma 6.30 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR∈ R−G be a

requirement set. Let(x,L),(x,N) ∈ R and(x,M) be three requirement tuples such that

M ⊆ L and(x,M).conf (x,N)

Then there exists a traces∈ L−L such that the following holds.

(i) M/s⊆ L/s

(ii) (x,L/s).conf (x,L)

(iii) (x,M/s).conf (x,L)

(iv) (x,N)
s
→ (x,L)

(v) (x,L/s) ∈ R.

Figure 6.13 show a graphical representation of this lemma. We start with the re-

quirements(x,L),(x,M), and(x,N) which are in a triangular relation such thatM ⊆ L

and(x,N) is more conflicting than both(x,L) and(x,M), we then show that their must

exist some trace traces and requirements(x,L/s),(x,M/s), and(x,N/s= L) such that

these requirements share the same triangular relation.

138



&conf&conf

⊆

s s

s

(x,L) (x,L/s)

(x,M/s)(x,M)

(x,N)

⊆

Figure 6.13: A graphical representation of a triangular relation of Nonconflicting Re-
quirements and how it propogates

Proof. First we will prove that(x,L).conf (x,N). Let t ∈N be a trace. As(x,M).conf

(x,N) it holds thatN⊆MΣ∗ω , furthermore asM⊆ L it must be the case thatN⊆MΣ∗ω ⊆
LΣ∗ω , therefore(x,L).conf (x,N).

From lemma 6.27, as both(x,L),(x,N) ∈ R (x,L) 6<conf (x,N). Furthermore as

(x,L).conf (x,N) there must exist a traces∈ L−L such that(x,N)
s
→ (x,L), otherwise

from definition 6.15 it holds that(x,L) <conf (x,N), this proves requirement iv. As

s∈ L, andR is a requirement set(x,L)
s
→ (x,L/s) ∈ R this proves requirement v. As

M ⊆ L, andM/s⊆ L/s this proves requirement i.

Next we will prove ii, that(x,L/s) .conf (x,L). As (x,L) .conf (x,N), N ⊆ LΣ∗ω ,

therefore ass in bothL andN, N/s⊆ (L/s)Σ∗ω . L = N/s therefore(x,L/s).conf (x,L).

Thirdly we will prove iii, that(x,M/s).conf (x,L). We will first prove thats∈M.

As s∈ N there must exist some tracet ∈ N such thats⊑ t, furthermore asN ⊆MΣ∗ω ,

there must exists a tracep⊑ t, such thatp∈M. Furthermore asM ⊆ L, p∈ L. As both

p⊑ t ands⊑ t, it holds that eitherp⊑ s⊑ t or s⊑ p⊑ t, ass∈ L−L andL is prefix-

free,s⊑ p⊑ t. Therefores∈M, thus(x,M)
s
→ (x,M/s) and as First(x,M).conf (x,N)

thereforeN⊆MΣ∗ω , this implies thatN/s⊆ (M/s)Σ∗ω as bothN andM can performs.

FurthermoreN/s= L therefore(x,M/s).conf (x,L). �

We can now use lemma 6.30 to show that given three requirementtuples in the

triangular relation all three tuples must eventually converge on the same requirement

tuple. Figure 6.14 demonstrates the rationale for this lemma, because from lemma 6.30

given three nonconflicting requirements within the triangular relation we can always

find another three nonconflicting requirements which are in the same triangular rela-

tion which are also less conflicting. AsR is a finite set, we must eventually run out

of less conflicting requirements, therefore the relation must converge on a particular

nonconflicting requirement.

Lemma 6.31 Let G = 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetR∈ R−G be a

requirement set. Let(x,L),(x,N) ∈ R and(x,M) be three requirement tuples such that
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Figure 6.14: A graphical representation of why the triangular relation must eventually
converge on a single nonconflicting requirement

M ⊆ L and(x,M) .conf (x,N). Let | .∗conf (x,L)| be the number of requirements inR

which are.conf (x,L).

Then there exists a traces∈ L−L such thatx= δG(x,s) andL/s= N/s= M/s

Proof. We will prove the claim via induction on|.∗conf (x,L)|.

In the base case| .∗conf (x,L)| = 1. Therefore the only requirement that is less

conflicting than(x,L) is (x,L). From lemma 6.30 asG is a deterministic automa-

ton R∈ R−G, (x,L),(x,N) ∈ R and(x,M) is a requirement tuple, such thatM ⊆ L. and

(x,M).conf (x,N) there existss∈ L such that(x,L/s).conf (x,L), (x,M/s).conf (x,L),

M/s⊆ L/s, and(x,N)
s
→ (x,L). As (x,N)

s
→ (x,L) δ (x,s) = x andN/s= L. Further-

more from the base case assumption(x,L/s) = (x,L) = (x,N/s) as there are no other

requirements inRwhich are less conflicting. Now we must prove thatM/s= L/s. It is

already known thatM/s⊆ L/s therefore we must only prove thatL/s⊆M/s. Let t be a

trace inL/s. As (x,M/s).conf (x,L), andL = L/s, L/s⊆ (M/s)Σ∗ω . Thereforet must

be in (M/s)Σ∗ω . This means that there existsp∈M/s such thatp⊑ t. As M/s⊆ L/s

p∈ L/s and asL/s is prefix-freet = p. As t was chosen arbitrarilyL/s⊆M/s. Thus

L/s= M/s= N/s.

Now let us consider the inductive case where the property holds for|.∗conf (x,L)| ≤

n, we will prove that the property must hold for| .∗conf (x,L)| = n+1. From lemma

6.30 there existss∈ L such that(x,L/s).conf (x,L), (x,M/s).conf (x,L), M/s⊆ L/s,

and(x,N)
s
→ (x,L). As (x,L/s) .conf (x,L) eitherL/s= L or | .∗conf (x,L/s)| ≤ n. In

the first case prove as for the base case, in the second from theinductive assumption

asG is a deterministic automaton,R is irreducible,(x,L),(x,N) ∈ R and (x,M) is a

requirement tuple, such thatM ⊆ L, and (x,M) .conf (x,N) there existst such that

x= δ (x,s) = δ (x, t) andL/st= M/st= N/st. �

Lemma 6.32 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetRandSbe two

irreducible requirement setsRA(G,S).conf RA(G,R). Let (x,L) ∈R. Let (y,L′) ∈Rbe
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a nonconflicting requirement such that(x,L)→ (y,L′). Let (y,O′) ∈ Sbe a nonconflict-

ing requirement such that(y,L′).conf (y,O′).

Then there exists(x,O) ∈ Ssuch that(x,L).conf (x,O).

The proof for lemma 6.32 involves a large number of differentrequirements. As

such figure 6.15 is provided in order to more easily keep trackof all the different re-

quirements and how they relate to one another.

Proof. Let M′ = L′∩O′

We will now prove that(x,M′) .conf (x,O′). Let t be a trace inO′. We will prove

that it is also inM′Σ∗ω . Because(x,L′) .conf (x,O′) it holds thatO′ ⊆ L′Σ∗ω . This

implies that their existsp ∈ L′ andu ∈ Σ∗ω such thatpu= t. As t ∈ O′ it holds that

p∈O′ thereforep∈M′. Thuspu= t ∈M′Σ∗ω . Thus(x,M′).conf (x,O′).

(x,M′) .conf (x,O′). Therefore from lemma 6.29 asG= 〈Σ,Q,→,Q◦〉 is a deter-

ministic automaton. BothR andSare irreducible.(y,M′) is a requirement.(y,O′) ∈ S

such that(y,M′).conf (y,O′). (y,L′)∈S∪Ssuch thatH ⊆N. there exists a tracet ∈ Σ∗,
(z,M′′), and(Z,N′′) ∈ R such that(x,M′)

t
→ (z,M′) and(z,M′′).conf (z,N′′).

Let L′′ = L′/t. From lemma 6.31 asG is a deterministic automaton,S is irre-

ducible. (z,L′′),(z,N′′) ∈ R and (z,M′′) are requirement pairs such thatM′′ ⊆ L′′
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and(z,M′′) .conf (z,N′′). Their exists a traceu such thatz= δ (z,u) and(z,L′′/u) =

(z,M′′/u) = (z,N′′).

Furthermore asS is irreducible, from lemma 6.26 there must exist a tracev such

that(z,L′/tu) = (z,L′′/u)
v
→ (x,L) otherwiseψ would have been applied. Let(x,O) =

(x,O′/tuv). As (y,M′)
tu
→ (z,M′′/u)

v
→ (x,L), tuv∈ M′ furthermore from the con-

struction ofM′ ⊆ O′ thus tuv∈ O′. Therefore(y,O′)
tuv
→ (δ (y, tuv),O′/tuv) = (x,O).

Thus asS is a nonconflicting requirement set,(x,O) must be inS. Furthermore from

lemma 6.4 as(y,L′) .conf (y,O′), tuv∈ L′, (x,L) = (δG(y, tuv),L′/tuv) .conf (x,O) =

(δ (y, tuv),O′/tuv). �

We can now use lemmas 6.29 and 6.32 to prove that for any given trunk automaton

G, there is a unique irreducible requirement set for each conflict-equivalence class.

Theorem 6.6 Let G= 〈Σ,Q,→,Q◦〉 be a deterministic automaton. LetRandSbe two

irreducible requirement sets such thatRA(G,R)≃conf RA(G,S)

Then it holds thatR= S.

Proof. Let (x,K) ∈ R. As R is finite and.conf is antisymmetric there exists a require-

ment(x,L) ∈ Rsuch that(x,K).conf (x,L) and for every(x,M) ∈ Reither(x,L) 6.conf

(x,M) or (x,L) = (x,M).

We will proceed to prove that(x,L) ∈ S.

From lemma 6.29 there exists(y,M) ∈ R and(y,N) ∈ S such that(x,L)→ (y,M)

and(y,M).conf (y,N).

From lemma 6.32 there exists(x,O) ∈ Ssuch that(x,L).conf (x,O).

From lemma 6.29 there exists(y,M) ∈ S and(y,N) ∈ R such that(x,L)→ (y,M)

and(y,M).conf (y,N).

From lemma 6.32 there exists(x,P) ∈ R such that(x,O).conf (x,P).

As .conf is transitive(x,L).conf (x,O).conf (x,P). As the only pair inR which is

more conflicting than(x,L) is (x,L), (x,P) = (x,L). As.conf is antisymmetric(x,L) =

(x,O) = (x,P). Thus(x,L) ∈ S. We will now prove that this implies(x,K) ∈ S.

From lemma 6.27 it holds that(x,K) 6<conf (x,L) asR is irreducible. Furthermore

from definition 6.15 it must be the case that(x,K)→ (x,L) as(x,K).conf (x,L). From

lemma 6.26 it holds that(x,L)→ (x,K) as(x,K)→ (x,L). From definition 6.7,(x,K)∈

SasS is a requirement set,(x,L) ∈ Sand(x,L)→ (x,K). - �

We now have all the material we need to defineR̂, which is the unique irreducible

requirement set for any given automatonG.

Definition 6.21 Let G = 〈Σ,Q,→,Q◦〉 be a finite state automaton. LetR be an irre-

ducible requirement set such thatR(G)≻ R.

142



R̂(G) = R.

We know thatR̂ is a well-defined function because theorem 6.6 shows that there is

a unique irreducible requirement set for each conflict-equivalence class. Futhermore

theorem 6.5 shows that every finite nonconflicting requirement set can be refined to an

irreducible nonconflicting requirement set using the refinement rulesψ andφ .

Theorem 6.7 Let G= 〈Σ,QG,→G,Q
◦
G〉 andH = 〈Σ,QH ,→H ,Q

◦
H〉 be two automata.

Thentrunk(G) = trunk(H) andR̂(G) = R̂(H) if and only if G≃conf H.

Proof.

G≃conf H

⇐⇒ G≃conf H ∧ trunk(G) = trunk(H) from theorem 6.1

⇐⇒ RA(trunk(G),R(G))≃conf RA(trunk(H),R(H))

∧ trunk(G) = trunk(H) from theorem 6.2

⇐⇒ RA(trunk(G), R̂(G))≃conf RA(trunk(H), R̂(H)) from lemma 6.22

∧ trunk(G) = trunk(H) asR(G)≻ R̂(G)

⇐⇒ RA(trunk(G), R̂(G))≃conf RA(trunk(G), R̂(H))

∧ trunk(G) = trunk(H) astrunk(G) = trunk(H)

⇐⇒ R̂(G) = R̂(H)∧ trunk(G) = trunk(H) from theorem 6.6

�
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Chapter 7

Conclusion

Verifying whether or not a DES is nonblocking is an NP-Hard problem [14]. However

with the use of abstraction it is possible to verify large systems in many cases. In order

to verify the nonblocking property, the best equivalence relation to abstract with respect

to is conflict equivalence. In chapter 3 we presented annotated automata as a method

of abstracting automata with respect to conflict equivalence. Annotated automata take

ideas used in failures equivalence, in order to simplify automata with respect to con-

flict equivalence. The chapter further shows that annotatedautomata can be used with

a compositional nonblocking checker in order to verify whether large discrete event

models are nonblocking.

In addition, this thesis set out to gain a greater understanding of conflict equivalence

using some of the ideas first developed in chapter 3. In chapter 5 we introduce an

algorithm for determining whether one automaton is less conflicting than another. This

makes it possible to compare automata with respect to the conflict preorder and also

allows us to determine why a given automaton is not less conflicting than another. One

of the main uses of the algorithm is to establish a contract for an automaton. If an

automatonA is more conflicting than the automatonB the automatonA can be used

as a contract for the automatonB with respect to nonblocking. This is because in

every situation in whichB is blocking, the automatonA is also blocking, therefore if

A is nonblocking in that situation we know thatB is nonblocking also. TheLC pairs

algorithm is used for this purpose in [24]. It is also of interest for those who desire to

refine automata into a less conflicting automaton which performs the same function. A

method of determining whether two automata are conflict equivalent is also neccessary

in order to construct the conflict normal form described in chapter 6.

The conflict normal form allows the simplification of any given finite state automa-

ton down to another finite state automaton which uniquely represents its conflict equiv-

alence. This gives us a much greater idea of what makes two automata conflict equiv-
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alent by being able to focus uniquely on those elements of thestructure of the original

automaton which relate to conflicts. As such the conflict normal form is critical in order

to understand what could make a particular automaton conflicting with another automa-

ton, as well as for the purpose of studying how different automata are similar and/or

different with respect to the situations in which they are conflicting. Furthermore the

conflict normal form creates an excellent foundation for understanding how to simplify

automata with respect to conflict equivalence.

Possible future work includes implementing the method of constructing the conflict

normal form described in chapter 6. Also of interest is the improvement of annotated

automata using the knowlegde of conflict equivalence gainedin chapters 5 and 6. This

is of interest as simplification automata using annotated automata has a worst-case time

complexity ofO(n2) as opposed to the worst case exponential time complexity of the

conflict normal form.

Another interesting task would be to extend the concept of conflict equivalence.

Conflict equivalence makes no assumption about context. In order for two automata to

be conflict equivalent to one another they must equivalent when synchronised with any

arbitrary test automaton. If we take into account extra information about the context

of a model it could be possible to achieve better abstraction. For example a certain

event might only ever be blocked by a specific automaton in a model, even though it is

synchronised on by many others. Finally it would be interesting to investigate how the

conflict normal form could be used in order to construct useful contracts for finite state

automata.
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