-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE
provided by Research Commons@Waikato

EE{, WAIKATO Research Commons

:\ﬁzg::’: T Whare Wananga o Waikaro

http://researchcommons.waikato.ac.nz/

Research Commons at the University of Waikato

Copyright Statement:
The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand).

The thesis may be consulted by you, provided you comply with the provisions of the
Act and the following conditions of use:

e Any use you make of these documents or images must be for research or private
study purposes only, and you may not make them available to any other person.

e Authors control the copyright of their thesis. You will recognise the author’s right
to be identified as the author of the thesis, and due acknowledgement will be
made to the author where appropriate.

e You will obtain the author’s permission before publishing any material from the
thesis.

https://core.ac.uk/display/29202223?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchcommons.waikato.ac.nz/

On Conflicts in Concurrent Systems

A thesis
submitted in partial fullfilment
of the requirements for the degree
of
Doctor of Philosophy
at
The University of Waikato
by

SIMON WARE

THE UNIVERSITY OF

WAIKATO

Te Whare Wananga o Waikato

2013

Abstract

This dissertation studies conflicts. A conflict is a bug in @mment systems where
one or more components of the system may potentially be btbétom completing

their task. This dissertation investigates how noncoirfigccompletions may be used
to characterise the situations in which individual compdsef a system may be in
conflict with other components. The first major contribusaf this dissertation are
new methods of abstracting systems with respect to confactd showing how these
methods may be used to check whether a large system is cdrdkct The second
contribution is a method of comparing whether one systeess $usceptible to conflict
than another. The last major contribution is a method of @sging all conflicts in a

system in a finite and canonical way. The methods developee &pplications for

model checking, refinement, and the development of costfactoncurrent systems.

Contents

1 Introduction 1
1.1 Contributions 3
1.2 Outline e 3

2 Preliminaries 5
21 EventsandTraces i i i i i 5
2.2 Nondeterministic Automata 6
23 Operations e 8
2.4 ConflictEquivalenceo 9
2.5 The SetofCertainConflicts 11
2.6 Nonconflicting Completions 12
2.7 Compositional Nonblocking Verification 14

3 Annotated Automata 24
3.1 Annotated Automata 25

3.1.1 Annotation 25
3.1.2 Unannotation 31
3.1.3 Subsumption 35
3.1.4 Incoming Equivalence 38
3.1.5 Bisimulation 42
3.1.6 AbstractionProcedure 44
3.2 ExperimentalResults oo 46

4 Generalised Nonblocking 51
4.1 Multi-coloured Automata 25
4.2 Generalised Nonblocking 35
4.3 Generalised Nonblocking Equivalence 53

4.3.1 The Generalised Nonblocking Preorder 54
4.3.2 Congruence Properties 54
4.3.3 CharacterisingthePreorder. 56

4.3.4 Relationship to Standard Nonblocking 59
4.4 Canonical Automaton 61
4.4.1 ConstructionfromSemantics. 61
4.4.2 Algorithmic Construction 65
5 Comparing Two Automata with Respect to the Conflict Preorde 70
5.1 The Conflict Preorder and Nonconflicting Completions 71
5.2 LessConflictingPairs 72
5.3 Less Conflicting Pairs and Certain Conflicts 77
5.4 Testingthe ConflictPreorder 8 7
5.5 Algorithm to Compute Less Conflicting Pairs 82
5.6 Implementation 86
5.7 ExperimentalResults oo oL 89
6 Conflict Normal Form 92
6.1 Notation 93
6.1.1 Nonconflicting Requirements 93
6.1.2 RequirementAutomata 100
6.2 Construction. 104
6.2.1 Trunk 105
6.2.2 The Initial RequirementSet 110
6.3 Refinement 112
6.3.1 The Strongly Connected RequirementsRule 3.11
6.3.2 Requirement Subsumption 121
6.4 Irreducible RequirementSets 129
6.4.1 Properties 129
6.4.2 UNIQUENESS i e e e 135
7 Conclusion 144

Chapter 1
Introduction

As the world becomes more and more dependant on electrosiemsy, there is an
increasing need for strong and robust mathematical moedgscribe, to understand,
and to ensure the correctness of these systems. Such madelshisted for years for
most engineering tasks, helping to ensure outcomes whelcarrect, and safe. The
world of computing however has been slow to catch up to erging in this regard, to

a large extent relying upon testing to ensure correctneélssirehan stringent proofs.

One of the key difficulties in describing software is that engral its expected
behaviour changes based upon the context it is in, oftenregudifferent outcomes
dependant upon different inputs. This can often make it kadkscribe what a soft-
ware or hardware system is supposed to do in formal terms.n@ieod of describing
software and hardware systems and how their behaviour evaver time is discrete
event systems (DES). Here the behaviour of a system is 8eslauising finite state au-
tomata (FSA). DESs are also used to describe concurren@revgeperate processes
of a system are represented as seperate FSAs which syrcoonshared events.

DESs can then be examined for common design faults. One autthd the prob-
lem of blocking and conflicts. A system is considered to bekilag, if it is possible
for the system to reach a state where it is no longer capalgerédrming any further
productive activity. This is analagous to asking whetherriodel is free of possible
deadlock and/or livelock situations. In contrast, two orencomponents of a system
are considered to be in conflict, if when run concurrentlydbmponents are blocking.

The naive way of determining whether a model is nonblockglyi manually ex-
ploring the automaton constructed by composing all theraata in the model together.
This is called the monolithic method. Unfortunately in trengral case, the size of this
automaton grows exponentially with the number of FSAs imtioglel, thus making its
construction intractable for larger models. In fact thelgbeen of verifying whether or
not a DES is nonblocking is NP-Hard [14].

1

Large models which would be impossible to check using theatithic approach
in many cases can be checked using a compositional confickeh [11]. A compo-
sitional model checker will iteratively compose a subsed ofiodel, apply abstraction
techniques to simplify the resulting automaton, then refiea process until the entire
model has been composed. Because at each step the modelliesinmpmost cases
it is never necessary for a compositional checker to compasautomaton which is
the same size as the monolithic approach. In order for a ceitiquaal checker to give
the correct result it must use abstraction techniques windures that the simplified
automaton is equivalent to the original automaton with eespo the behaviour which
is being tested. Conflict equivalence is the best equivaleglaéon for compositional
nonblocking verification. Two automata are considered cdrgtjuivalent if they reach
a state of conflict under exactly the same conditions. Cor&@faivalence was first in-
troduced in [25].

This thesis studies the conflict equivalence relation and ih@an be used to ab-
stract automata, as well as to gain a greater understantimigad makes an automaton
conflict with other automata. [11] develops several methafdsimplifying automata
which preserved conflict equivalence in order to verify toallocking property. Be-
fore the work carried out in this thesis it was not understood two processes could
be compared to one another in order to determine whethentbey conflict equiva-
lent, nor was it understood how to derive a unique automatarder to represent a
given conflict equivalence class.

Conflict equivalence is similiar to many other equivalendatiens which can be
used to simplify finite state machines. The most commonlyd weguivalence rela-
tion is language equivalence. Language equivalence detesrwhether two automata
are equivalent to each other based solely upon whether tieegapable of perform-
ing exactly the same sequence of events, i.e. if they both tlessame language. It
is currently well known how to abstract and compare automatia respect to lan-
guage equivalence. [18] outlines how any finite state automean be converted into
a language equivalent automaton which is both minimal anguenusing subset con-
struction and minimization. Abstraction with respect togaage equivalence was used
in [34] in order to verify safety properties. Unfortunatéiynguage equivalence does
not preserve all the information necessary to determindiveinéwo automata will be
conflicting with one another.

Bisimulation considers two automata equivalent to one anafithey both have
equal nondeterministic branching behaviour [26]. Bisirtialais one of the finest
known behavioural equivalences. Bisimulation preservetemlporal logic properties
including nonblocking. This means that bisimulation iager than conflict equiv-
alence, that is to say any two automata which are consideyeidatent with respect

2

to bisimulation are equivalent with respect to conflict @glénce, but not vice versa.
Bisimulation is a well-understood equivalence relationahtas fast algorithms capa-
ble of simplifying automata with respect to it.

Another equivalence relation which is used to compare aatans that of failures
equivalence [26]. Two automata are failures equivalentefytwill reach a deadlock
situation, or fail, under exactly the same situations.Ufas equivalence is also a well-
understood equivalence relation and it has been known fong time how to find
a minimal automaton representation of any particular faguequivalence class. Un-
fortunately failures equivalence is not adequate to retidicdhe conflict information
contained within an automaton, as it does not preserveotiksl The ideas used to
represent failures equivalence can however be extendedéatrconflicts.

Fair testing [2] is the closest equivalence relation to ¢ondlquivalence. Fair test-
ing differs from conflict equivalence in the respect thatyottle test automaton can
determine when the test has passed. This makes fair tessitigrager egivalence re-
lation. It is currently understood how to compare two autamaith respect to fair
testing, however the algorithm has never been implementedrtknowledge, and it is
not understood how to simplify with respect to fair testingiigeneral way.

1.1 Contributions

The most important contributions of this thesis are

New methods of abstracting automata with respect to coeftjatvalence.

A finite canonical characterization of an automaton’s gelssd nonblocking
equivalence class.

An algorithm to calculate whether an automaton is less atinfyj to another.

A finite canonical characterization of an automaton’s conéiguivalence class.

1.2 Outline

This thesis is divided into chapters. Chapter 2 describesadketion used throughout
this thesis as well as key concepts. It introduces finite statomata, parallel composi-
tion, conflict equivalence, nonconflicting completionsd @ompositional verification.

In Chapter 3 a new method of abstracting automata with respecinflict equiva-
lence is introduced. This method converts the automatondoking states with anno-
tations, which are similar to the failures sets used in faglequivalence. The annotated

3

automaton is then simplified using abstraction rules whiekeruse of the annotations.
In addition to this we show how the method can be used in a cowefiiecker in order
to verify whether discrete event models are nonblockind,@wve experimental results
of its use. This chapter is based upon work published in [8p, 3

Chapter 4 investigates the related problem of generalisebdlacking equivalence.
Generalised nonblocking adds to standard nonblockinglihgyao restrict the set of
states from which blocking is checked. This improves theresgive power of non-
blocking but makes it so that less information can be abdafrom an automaton.
Because of this it turns out that generalised nonblockingvatgnce is in fact easier
to charaterise than conflict equivalence. This shows howotopare automata with
respect to generalised nonblocking and proposes a normmahitich can be used to
represent automata with respect to generalised nonblgckiraddition to this it shows
experimental results derived from using this normal formeafy models with respect
to generalised nonblocking. This chapter is based upon malbkshed in [36].

Chapter 5 builds upon the understanding of conflicts develap¢he previous two
chapters to demonstrate how two automata can be compared smother with respect
to conflict equivalence. It also shows experimental restdts using the algorithm de-
veloped to compare automata. In addition it is shown thaatgerithm for comparing
automata with respect to conflict equivalence can be usedrtgpare automata with
respect to fair testing, and that the algorithm has lowee totmmplexity. This chapter
is based upon work published in [37].

Chapter 6 describes the conflict normal form which is a carmapresentation
of a given conflict equivalence class. As the conflict norroahtf represents a unique
representation of any given conflict equivalence classitbEaconsidered to be a form
which keeps only that information which is relevant to cartfli Because of this it
has the potential to be used as a powerful abstraction fafywey nonblocking. In
addition to this however it can be used to be able to undatdbatier what exactly
makes a process conflict with other processes. The work edwethis chapter has yet
to be published.

Chapter 2
Preliminaries

This chapter introduces the notations used throughouthbkisis. Discrete event sys-
tems are modelled using automata, with the possibility efdederminism, which nat-
urally arises from abstraction and hiding [16, 32]. Systeshdviour is described using
languages, with notations taken from the background ofelisevent systems and au-
tomata theory [18, 30]. In section 2.1 it is shown what an ew®and how they can
be concatenated to form traces and languages. Sectionst@hbs how a finite state
automaton is defined and how they relate to languages arestnachis thesis. Fur-
thermore section 2.3 describes several operations whectocemmonly used upon finite
state automata throughout this thesis. Next section 2.dritbes the conflict equiva-
lence relation which is used throughout this thesis. Theepnhof certain conflicts is
described in section 2.5. In addition section 2.6 desciiogsconflict equivalence can
be encapsulated using nonconflicting completions. Firsdistion 2.7 describes how
abstracting an automaton while preserving conflict eqaive¢ can be used to verify
whether a large model is nonblocking.

2.1 Events and Traces

Event sequences and languages are a simple means to delisclete system be-
haviours. Their basic building blocks aegentswhich are taken from a finitelpha-
betX. Two special events are used, Hikent event and theermination eventv. These

are never included in an alphal2etinless mentioned explicitly. For this; =>U {1},

2o =2U{w}, andZ;, = ZU{1,w} are used. The silent evemtrepresents be-
haviour which is local to the automaton in which it can oc@as such other automata

in the model can neither block or observesvents. The termination eveai repre-
sents termination, when an event occurs that means that the model has successfully
terminated.

>* denotes the set of all finiteacesof the form 010%--- o, of events fromZ,
including theempty traces. The concatenatiorof two tracess;t € ¥* is written asst.
A subset? C ¥* is called alanguage The tracesis aprefix of t if if there exists a
traceu such thassu=t. This thesis uses the notatisiC t to signify thatsis a prefix
of t. Traces and languages can also be catenated, for exaimpldstc >* [t € L }.
Natural projection R: 27 — Z* is the operation that deletes all silem) events from
traces.Prefix-closures the operation which saturates a langubgeich that for every
traces € L if the tracet is a prefix ofs thent is also in the prefix-closure df. Thus
L= {t|VseLsuchthat Cs}.

Languagederivation[4] is the operation which describes the behaviour of a lan-
guage after a given trace similiar to language derivatiome Tanguagd. derived
by the traces consists of all the traces whidh can perform after the trace Thus
L/s={t|steL}.

2.2 Nondeterministic Automata

In this thesis, process behaviour is modelled using nonaétestic labelled transition
system®r automata A= (X,Q,—,Q°), whereX is a finite alphabet oéventsQ is a
set ofstates — C Q x 2 ¢ x Q is thestate transition relationandQ° C Q is the set
of initial states A is calledfinite-statef its state sef is finite.

The transition relation is written in infix notation-> y, and extended to traces by
letting x £ x for all x € Q, andx 32 y if x 5725 y for somez € Q. The transition
relation must satisfy the additional requirement that, mdwerx et y, there does not
exist any outgoing transition from. The automatorA is deterministicif |Q°| < 1
and the transition relation contains no transitions latt, and ifx > y; andx >y,
always impliesy; = y».

A statex € Qis considered accepting>'rf9> y for some statg € Q. This is slightly
different from standard automata which have the additistake se@Q™ which contains
all accepting states. The definition allows many equivademtations such as bisim-
ulation and observation equivalence to be expressed moi@sedy and otherwise is
equivalent to the standard mark state definition of automata

To support silent transitiong, = y, with s € 3;*, denotes the existence of a trace
t € 37 " such thai AN y, andsis obtained front by deleting allr events. For a state
setX C Q and a statg € Q, the expressioX = y denotes the existence v X such
thatx = y, andA = y means tha@Q"° 2 y. Furthermorex =y denotes the existence
of a traces such thatx = y, andx = denotes the existence of a stgte Q such that
X=>y.

Figure 2.1: Graphical representations of two equivaletdraata

For a state or state setthecontinuation languages defined as
LX) = {sef|x2}, (2.2)
and likewise thev-marked languageés
LX) ={swew|xZ}. (2.2)

The language and the@-marked language of the automat@Gnare ¥ (G) = £ (Q°)
and Z® = £“(Q°). This is similar to the notion of the language recognized by a
automaton [16] with the addition of am event. Lastly we define theligible event set
of a state. This is the set of events which a state allows tarocc

Elig(x) = {o]x = ywhereo € 5} (2.3)

States are represented as circles and transitions as drebwsen a source and tar-
get state. The names of states and the events associatedangttiions are represented
using floating text located next to their associated stateamisition. If there are two
or more transitions with the same source and target stateaime arrow is used to
represent all such transitions with all the events of thosesitions listed next to the
arrow. Unless otherwise stated the alphabet of such an atbons assumed to be the
union of all events associated with transitions in the grajth the exception of the ter-
mination eventw. In other words it is assumed that the alphabet does not icosarg
events which can never be executed by the automaton, urttessvise stated. Initial
states are identified as states which have an arrow with rreeseutering them. Finally
sometimes automata are represented using marked staesliagw transitions in or-
der to make the graphical representation more concisejdrcéise grayed out circles
represent a marked state.

Example 2.1 Figure 2.2 shows two representations of the same autom&aoae. ex-
plicitly shows anw-transition to represent termination, the other uses aredlm ac-

7

cepting state. Both have the same meaning.

2.3 Operations

The process-algebraic operations of synchronous connmosind hiding are used in
this thesis to compose automagynchronous compositianodels the parallel execu-
tion of two or more automata, and is done using lock-steplayrgsation in the style
of [16].

Definition 2.1 LetG = (Z,Qg, — ¢, Qg) andH = (Z,Q,, =, Q) be automata. The
synchronous produaf G andH is

GHH:<Z7QGXQH7_>7QOGXQ|O—|> (24)

where
(X6, XH) > (Yo, yn) if 0 €2, X %6 Y, and

XH E>H YH,
(X XH) = (Yo, XH) if X6 = Yo;
(X6, XH) — (XG,YH) i X —>H YH;
In synchronous composition, shared events (includimgnust be executed by both
automata synchronously, while other events (includipgre executed independently.
In the notation of this thesis,

G| G2 =2 (xq,%0) if and only if Gi P':(Sg xi fori=1,2, (2.5)

whereR : Z — Z; denotes the natural projection.

Automata with different alphabets can also be composedtaygithem to a com-
mon alphabets first: when an evemtis added to the alphab&t selfloop transitions
x % x are added for all statese Q. Other than chapter 3 it is assumed that automata
are always lifted to a common alphabet before composition.

It is easily confirmed that synchronous composition is a camative and associa-
tive operation.

Hiding is the process-algebraic operation that generalisesatgajection of lan-
guages when nondeterministic automata are consideredg2¢nts that are not of
interest are replaced by silert) transitions ore-moveq18].

Definition 2.2 Let G = (Z,Q,—,Q°) be an automaton, and 1¥tC >. The result of
hidingY'in Gis
G\Y = (Z\V.Q,—~\V,Q%), (2.6)

8

Figure 2.2: Examples of blocking and nonblocking automata.

where— \ Y'is obtained from—by replacing all events il with the silent event.

Automataderivationis an operation which describes the behaviour of an autamato
after a given trace similiar to language derivation. The@a#tonG derived by the trace
sis identical to the automatd@ except that its initial state set consists of the set states
G can reach after the stage

Definition 2.3 For G = (£,Q,—,Q°) ands € Z*, defineG/s= (Z,Q,—,Qzg) where
ng{er|G:S>x}.

The state se@); can be calculated using subset construction.

2.4 Conflict Equivalence

The key liveness property in supervisory control theory] [8Ghe nonblockingprop-
erty. Given an automataoA, it is desirable that every trace i#f (A) can be completed

to a trace inZ“(A), otherwiseA may become unable to terminate. A process that may
become unable to terminate is calleldbcking This concept becomes more interest-
ing when multiple processes are running in parallel—in daise the ternsonflicting

is used instead. In this thesis we use a modified version ofidindlocking property
presented in [30] which can be applied to nondeterministiomata f].

Definition 2.4 An automatorA = (2, Q,—,Q°) is nonblockingf for every statex € Q
and every tracs € $* such thatQ® = x it holds that.Z?(x) # 0. OtherwiseA is
blocking A statex such that?®(x) = 0 is ablocking state Two automata andB are
nonconflictingf A|| B is nonblocking, otherwise they acenflicting

Example 2.2 AutomatonAg in figure 2.2 is nonblocking, as for every state Q which

is reachable using a trase 2* it is always possible to reach the stageand terminate.
As a,, can only be reached after theeevent which is not irz the fact thaty, is blocking
does not makéy blocking. AutomatorBy on the other hand is blocking, because it
can enter statbs after executingx 3, from which is no longer possible to reach a state
where the termination eveni is enabled.

9

Figure 2.3: Example of automata that are not conflict eqeival

Ao a L B, !
a
Ay bcE

Figure 2.4: Two automata that are conflict equivalent.

For an automaton to be nonblocking, it is enough that a tealrstatecan be
reached froneveryreachable state. There is no requirement for terminatide tguar-
anteed. For example, automatdgin figure 2.2 is nonblocking despite the presence of
a possibly infinite loop otr-transitions in stateg. Nonblocking is also different from
“may”-testing [31], which only requires the possibility tdrmination from the initial
state. The testing semantics most similar to nonblockirfghsuld’-testing, which is
also known agair testing[31].

A blocking states is equivalent to eitherdaadlock where the automaton is no
longer capable of doing anything, ofigelock where the automaton can still execute
events but it can never terminate.

To reason about nonblocking in a compositional way, theomatif conflict equiva-
lenceis developed in [25]. According to process-algebraic testheory, two automata
are considered as equivalent if they both respond in the sayé¢o all tests of a certain
type [6]. For conflict equivalence,tastis an arbitrary automaton, and thesponsas
the observation whether or not the test is conflicting withaatomaton in question.

Definition 2.5 Let A and B be two automata.A is less conflictingthan B, written
A <conf B, if, for every automatorT, if B|| T is nonblocking therA|| T also is non-
blocking. A andB areconflict equivalentA ~¢ont B, if A <confB andB <conf A

Example 2.3 AutomatonA; in figure 2.3 isnot less conflicting tham,, sinceA; || T1

is blocking whileBy || Ty is nonblocking. This is becauge || Ty can enter the blocking
state(ap, g1) after executinga. This state is blocking because the evBritan never
be executed after entering the staje In the case oB; however after executing, it
eventually becomes possible to continue usiiftyteansition regardless of whether the
stateb; or by is entered. It can also be shown tBat<.q,; A1 does not hold.

10

Example 2.4 AutomataA, andB; in figure 2.4 are conflict equivalent. For example
let T = (%,Qr,—+,QF) be an automaton such ths || T is nonblocking. It can be
inferred for every statec Qt thatx = yfor somey € Qr. Thisis becaushky 5 by, thus
(bo,X) < (by,X) anda is the only event which can be performeddin Furthermore as
(b1, %) = (bg,y) — (b1,y) thus it can be inferred thgtmust also be able to perform an
a event and by induction that the stateust capable of performing an infinite number
a events followed by aw, this is also wha#, requires to be nonblocking.

The properties of the conflict preord€ions and of conflict equivalence and their
relationship to other process-algebraic relations ardietluin [25]. It is enough to
consider deterministic tests in definition 2.5, and conéipiivalence is is the coarsest
possible congruence with respect to synchronous comgposhtiat respects blocking,
making it an ideal equivalence for use in compositionalfieaiion [12, 35].

2.5 The Set of Certain Conflicts
Every automaton can be associated with a languagertdin conflicts

Definition 2.6 For an automato® = (X, Q,—,Q°), write

CONF(G) = {se =* | for every automatofi such thafl =, it holds that (2.7)
G|| T is blocking} ,
NCONF(G) = {s € Z* | there exists an automatch such thatT = and (2.8)

G|| T is nonblocking} .

CoNF(A) is the set otertain conflictof A. It contains all traces that, when possible
in the test, necessarily cause blocking. Its complem&ibNF(A) is the most general
behaviour of processes that are to be nonconflicting Witlf A is nonblocking, then
Conr(A) =0 andNCoNF(A) = ¥, because in this cage|| U is nonblocking, where
U is a deterministic automaton such th#t®(U) = Z*w. The set of certain conflicts
becomes more interesting for blocking automata.

Example 2.5 Consider again automatdsy in figure 2.2. Obviouslyg 3 € CONF(Bp)
asBy can enter the blocking stabg by executinga 8, and therefore every te$t that
can executer 3 is conflicting withBy. But alsoa € CoNF(Byp), becausd, can enter
stateb, by executinga, from where the only possibility to terminate is by execut-
ing Bw. So any test that can executealso needs to be able to execatg if it is to be
nonconflicting withByp; but such a test is conflicting witBy as explained above. It can
be shown thaCoNF(Bg) = aX*.

11

The set of certain conflicts is introduced in [21], and itsgadies and its relation-
ship to conflict equivalence are studied in [25]. Even if atoenaton is nondetermin-
istic, its set of certain conflicts is language but as shown in example 2.5, it is not
necessarily a subset of the languagéA) of its automaton. An algorithm to compute
the set of certain conflicts for a given finite-state automasgresented in [22].

It can further be shown that an automaton’s nonconflictintgglege is always
prefix-closed.

Lemma 2.1 Let G be an automaton, it holds thaltCoNF(G) = NCONF(G).

Proof. NCoNF(G) C NConr(G) is trivially proven. Lets € NConr(G) be a trace.
As se NCoNF(G) there exists a tradec NCoNF(G) such thas C t. From definition
2.6 as € NCoNF(G), there exists an automatdnsuch thatG || T is nonblocking and
T 5. AssCt it must be the case that 2. Therefores e NCoNF(G). Asswas
chosen arbitrarifNCoNF(G) € NCONF(G). O

Lastly it can be shown that for any given tra&e NCoNF(G) every state which is
reachable by can terminate using a trace MICoNF(G).

Lemma 2.2 Let G be an automatorx be a state and € NConF(G) be a trace such
thatG = x. Then there existse * such thak £ andst NCoNF(G).

Proof. Let s e NCoNF(G) such thatG = Gs. Sinces e NCoNr(G), according to
definition 2.6, there exists a test automafosuch thaG || T is nonblocking and” = xr
for some statecr. ThenG|| T = (x,x7), so there exist$ € =* such thatG|| T =
(X, XT) . Clearlyx ¥ and furthermord@ =, which impliesste NCoNF(G) asG|| T
is nonblocking. O

2.6 Nonconflicting Completions

Automata can be further associated to a set of nonconflicongpletions. Nonconflict-
ing completions are a pair of trace and language. If the ([@a@) is a nonconflicting
completion of the automato@, then for every test automatdanwhich is capable of
performing the trace it must be the case that eith&€rcan continue with at least one
tracet € Cor G|| T is blocking.

12

Definition 2.7 For an automatofs, define

CC(G) = {(c,C) € =* x 2%& | for every test automatof and statecr: if (2.9)

G|| T is nonblocking and = xr then3t € C: xt :t>} :
CC?(G) = {(c,C) € * x 22" | for every test automatoh and statesr : if (2.10)

G|/ T is nonblocking and” < x thendt € C: xt :t>} .

The only difference between GG) and CC’(G) is that CC’(G) only contains
complete traces that end wilh. CC(G) is called thenonconflicting continuation
semanticsand CC’(G) is called thenonconflicting completion semantio$ G. In
both cases, the s€tof nonconflicting continuations or completions cannot eomthe
empty trace.

The concept of derivation which has been applied to bothuaggs and automata
can also be applied to a set of nonconflicting completion®aticuation.

Definition 2.8 For¢ C * x 2% » ands € =*, define
€/s={(t,C)eT* x2*«|(st,C) ¥} . (2.11)

The following is an unpublished proof by Dr Robi Malik. It shewhat the noncon-
flicting completions are preserved after derivation.

Proposition 2.1 Let G be an automaton arckc NCoONF(G) be a trace then,
CC?(G/c)=CC¥(G)/c. (2.12)

Proof. Let G be an automaton arcke NCoNF(G) trace.

First assume thafs,C) € CC*(G/c), and consider a test automatdnand state
y1 such thatG || T is nonblocking and = yr. Then there exists a state such that
T = xr 2 yr. Itfollows that(G/c) || (T /c) is nonblocking a& || T is nonblocking. To
see this let € 2* be a trace an, zr) be a state tuple such th@/c) || (T /c) 5N (z,z1).
As (G/c) || (T/c) = (zzr) it holds thatG || T 2 (zzr). AsG| T is nonblocking it
must hold tha{z zr) is nonblocking. Ad and(z zr) where chosen arbitrarily it must
be the case thdiG/c) || (T /c) are nonblocking. Furthermore &sC) € CC¥(G/c),
(G/c) || (T /c) is nonblocking, and™ /c = yr it holds thatyr = for someu € C. Since
T andyr was chosen arbitrarily, it follows thdtsC) € CC*(G), and thus(s,C) €
CC¥(G)/c.

Conversely, lets,C) € CC?(G) /c. By definition, this means théts C) € CC¥(G).
Consider atest = (Z,Q;, —1,Q7)Z such tha{G/c) || T is nonblocking and 2 x7.

13

A new test automatom® is constructed as follows,
T¢= (X, NCoNF?(G) UQr, »NU—TU—=NT, {€}) (2.13)
where—y and— N7 consist of the transitions

s 5N SO for all so € NCoNF?(G) ; (2.14)

CoNT XS forall X € Q5 . (2.15)

ThenG|| T¢ is nonblocking. To see this, le€ * such thaG|| T¢ = (x&,xT), for some
statesx® of G andx| of TC. If Xl € NConr(G), then by constructione NConr(G),
and givenG = x&, it follows by lemma 2.2 that there exists= =* such that® %
andtv € NConNF(G). Again by construction, and sinééConFr(G) is prefix-closed by
lemma 2.1, it follows thatx®, x|) 2. If on the other hand{ < Qr, then by construc-

tiont = cufor someu € >*, and
G| T = (x¢,0) > (€, %3) = (x°. %) (2.16)

for some stateC of G and somes € Q3. Clearly,G = xS = xC and therefor& /c =
xC. Together withT = x[, this implies(G/c) | T = (x&,x]). Since(G/c) || T is
nonblocking, there existg € £* such that(x®,x]) . Since the statéx®,x|) was
chosen arbitrarily, it follows thaB || T¢ is nonblocking.

By construction ofT ¢, it holds thatT¢ =y ¢ SNt X3 for everyx? € Q3, and since
T =2 xr, it follows thatT¢ =2 x7. SinceG || T is nonblocking andcs C) € CC?(G),
there exists$ € C such thakr =. SinceT was chosen arbitrarily, it follows th&s,C)
CC¥(G/0). 0

As a direct consequence of proposition 2.1dfC) € CC®(G) then it is also the
case thate,C) € CC*(G//c).

Proposition 2.2 Let G = (X£,Q,—,Q°) be an automaton. L&t,C) be a pair of trace
and language such thate NConr(G). It holds that(c,C) € CC®(G) if and only if
(g,C) € CC¥(G//c).

Proof. This comes directly from 2.1. O

2.7 Compositional Nonblocking Verification

The one of the main reasons why conflict equivalence presgmastractions are of
interest is that they can be used to check whether a largersyst concurrent pro-

14

cesses are conflicting or not. The straightforward appré@acheck whether automata
A1, Ao, ... A, are conflicting is to construct the synchronous product

Al Az [l An (2.17)

and check whether it is blocking. This is done by checking tivtiea terminal state
can be reached from every reachable state. Using symbgiresentations such as
BDDs [3] or IDDs [39], this approach has been used to analysg leege models.
Yet, the technique always remains limited by the amount ahorg available to store
representations of the synchronous product. As an alteenabmpositional verifica-
tion [12] seeks to replace automatésn, e.g., by a simpler versiofY;, and analyse the
simpler system
Al Az A (2.18)

If A; andA; are conflict equivalent, then (2.17) is nonblocking if andyon(2.18)
iIs nonblocking. This is a consequence of tengruenceproperties of the conflict
preorder [25]. The following results follow directly frometinition 2.5.

Proposition 2.3 [25] <confiS apre-congruencevith respect td|. That s, ifA <contB,
thenA|| T <coniB|| T for every automatoit .

Proposition 2.4 [25] <conf respects blockingThat is, if A <¢onf B andB is nonblock-
ing, thenA also is nonblocking.

Compositional verification relies on the above two congreegmoperties and the
following simple facts about hiding.

Lemma 2.3 LetA= (3,,Q,, — 4, Qa) be an automaton andC >a.
(i) Ais nonblocking if and only ifA\ Y'is nonblocking.

(i) If B=(Zg,Qg,—g,Qp) is an automaton such thagNY = 0, then(A\Y)| B =
(AlIB)\Y.

Property (ii) shows hovocal events are exploited in compositional verification. A
componen# in a larger system such as (2.17) typically contains cegeemts that are
not used in any of the remaining componeAss...,A,. Such events are local #,
and their identity can be removed. These events can be egplacthe silent evert,
making it possible to simplify the automaton. Compositiovetification is based on
this fact and the congruence properties.

15

outpub out pug outpup outpuh_ output

Co Cn

A Transfer Line
—(e) o f (B T |

An Individual Manufacturing Cell

EMPTY thn

out put,
trn

FILLED; th

out put, M,
trn
tl IDLE IDLE
FILLED>» n mi EMPTY thy
n mh
out puf, gatpuh
tr
! Mth th
FILLED3 WORKING FULL WORKING
MB, My, TBn Th

Figure 2.5: Manufacturing cell example.

Proposition 2.5 LetA= (Z,,Qa, =, Qa) andB = (Z5, Qg, —g, Q) be two automata,
and letY C 2 such thatg N Y = 0. Furthermore, lef' be an automaton such that
A\Y ZconfA'. Then it holds that, i || B is nonblocking ther\ || B is nonblocking.

Proof. LetA’||Bbe nonblocking. Sinca\ Y <c.nA, it follows by proposition 2.3 that
(A\Y) || B <contA' || B, which implies by proposition 2.4 thé\ Y) || B is nonblocking.
Then it follows from lemma 2.3 thdA || B) \ Y = (A\ Y) || B is nonblocking (ii), which
means tha || B is nonblocking (i). O

Proposition 2.5 gives a basic way to exploit the conflict pdeowhen verifying a
composed system to be nonblocking. The following exampbtevsihow such results
can be used to model check a large system of composed automata

Example 2.6 Figure 2.5 shows a discrete event system model of a factdmghws

made up of a series of manufacturing cells. The model ingatvaanufacturing cells,
where the output of the first manufacturing cell is used asrtpet of the second and
so forth. Each manufacturing cell has a machine which doek wothe work pieces
which flow through the factory as well as a test unit which deiees whether the
work on the work piece is satisfactory. In addition there tare buffers used to store

16

work pieces before processing, one for the machine, thenddoo test unit. Given this
representation of the factory it is desirable to determihetiver it is nonconflicting.

The flow of work pieces through theth manufacturing cell is modelled using the
eventsout put,_1, out put, tly, tup, trn,, ml,, andmu,. A work piece entering the man-
ufacturing cell is represented by the event put,_1, which causes the machine buffer
MB, to be filled with one more work piece up to a maximum of threee Work piece
can then be loaded into the machidg represented by thml, event. Once the ma-
chine has finished working, the work piece is placed in thelaffer TB,, with the
eventmuy,. The work piece can now be picked up by the test Tipitising the evertt,.

At this point, the test unit can decide either to acdept pu,) the work piece in which
case it is sent on to the next manufacturing cell, or it caeatehe work piecétr,,) and
have it sent back to the machine buffer so that it can have mork done on it. The
test bufferTB,, will only allow the machineM, to be loaded wheiB,, is empty, this is

to make certain that there will be a place for the work pieckljnto be put when the
machine is finishedVIB,, only allows the test unit to be loaded when there is an empty
space inMB, for similar reasons.

The state space of this model grows exponentially in the mumtof manufac-
turing cells. Whem = 7, the number of reachable states in the model is equal to
approximately 5l billion states, this has been found by BDDs to construct tages
space symbolically. Using compositional verification lthea conflict equivalence,
the system can be proven to be nonblocking for arbitraryesabfn while looking at
far less states.

Composing the automata for the first manufacturing cell pceduhe subsystem

C1=MB1|[My||TBy| T2 (2.19)

with local eventgl,, tun, trn, mly, andmu,, as well as 22 reachable states. These events
are used only in the automata compristyg so they can be hidden, i.e., replaced by the
silent eventr before composing; with further automata. Whil€, has 22 reachable
states, it can be shown to be conflict equivalent to the thiae sbstractiorC) in
figure 2.6,

C1\ {tly,tun, trn, mly, Muh} ~cont C (2.20)

The same process can be applied to the second manufactalinghds will result
C), shown in figure 2.6. The next step of composi@igandC), results in a 15 state
automaton, which after hiding the evemitput can be replaced with the automaton
C’l’2 in figure 2.6. The same process can be applied to@gltb the composition
resulting in an automaton that is identical to b@handC’ , with the exception that
the different automata useutpug, outpup and outpug respectively. This process

17

outpub outpup outpup

outpug output outpug
¢
out put out put out put
‘(\/AC)V/\ >: : :f out pug :
out pup outpub outpub
Cy
output_1 output_1 output_1
i m) : i) : out put_1 :
output, output, output,
o
outpup outpup outpup
‘(\/AC]() : : :E output :
outpup outpup outpup
Cl,
outpup outpup outpup
K X}(> : i :f : out pup :
output, output, output,
C/14,2..,,4,n

Figure 2.6: Abstractions for manufacturing cell example

18

>®>_>

A blocking manufacturing cell

EMPTY tn

outpuh
mly
trn
FILLED, "
outpuf min
trn miy
" IDLE IDLE
FILLED, " EMPTY tln
mly Mt
out puty i trn
trn outpuh
Mth th
FILLED; WORKING FULL WORKING
MB, My TBh Th

Figure 2.7: A manufacturing cell in state of deadlock.

can be repeated for allmanufacturing cells resulting in the automatn,, . . This
automaton is blocking, thus the entire manufacturing celtlet is blocking. Thus it
is possible to use compositional model checking to detezmihether this model is
nonconflicting while at any given step only looking at an aébon with at most 22-
reachable states regardless of how large

The abstraction also highlights, the circumstances, ircvlai manufacturing cell
is potentially blocking. For example if manufacturing c€j has four or more work
pieces in it at one time the manufacturing cell can block.uFeg2.7 highlights one
of the situations in which an individual manufacturing @slblocking. For this figure
the current state of the automaton is coloured black, if tireenit state is both marked
and the current state, the state is coloured half black hayf gt highligts the situation
where both the machine buffer and the test buffer is full. hils ituation neither the
machine nor the test unit may load a work piece, thus neithéneobuffers can be
emptied.

Example 2.7 The dining philosopher’s problem [7] in concurrency is coomly used
to describe the problem of deadlock in concurrent systetrisvdlvesn philosophers
sitting at a circular table with a large bowl of spaghettilie tentre. A fork is placed
between each pair of philosophers, and each philosophereatsvith the two forks
next to him or her. Here they each spend their time pondernirajternatively eating.
In in order for a philosopher to eat they must pick up two forasd they will not

19

tjj

Lj,(j—1) modn,j
ti.i

Pi,(i+1) modn i (i+1) modn

Pj.j
P Pj.(j—1) modn,j

Pi,(i+1) modn

tii

ti,(i+1) modn

Pij,(j—1) modn,j FPj,j

Pj.(j—1) modn,j

Ci FPj.(j-1) modn|

Figure 2.8: Dining philosophers example.

20

put their forks back down until after they have eaten. Becdlusee is only one fork
per philosopher, if the philosophers are unable to comnat@iwith each other this
can lead to a state where none of the philosophers are caplabéing, for example
if all philosophers pick up their left fork. Figure 2.8 shoadliscrete event system
model of the dining philosopher problem which uses a coatdinto remove the pres-
ence of both deadlock and livelock. The diagram in figure B@s the philosophers
Po, . ..,Pn_1 with the forksFy,...,F,_1 between them, and the automata represent and
attempt to control the system such that every philosopheecantually get a chance to
eat. Given this model we would like to prove that it does int fadve the problem. That
is to say it is impossible to reach a situation where it is isgdole for any philosopher
to eat. This can be done by proving that the model is noncdinfiic This is because
only the initial state of this model can terminate, and it bareasily proven that from
the initial state it is possible for any particular philobep can eat.

Access to the forks is modelled using evetitsand p; j, wheret; ; means that
philosopheP takes forkFj, andp; j means that he or she puts it back. The autorRata
fori =0,...,n—1, model the behaviour of each philosopRerafter a thinking phase,
the philosopher gets hungry and signals his or her intertticeat), then he or she
picks up both adjacent forks; (andt; (i, 1) modn), €ats @), puts the forks backp;
andp; (i+1) modn), @nd returns to the thinking phase. The fork autonfgtensures that
Fj can only be picked taken up one philosopher at a time whehessutomatonFp, |
ensures that the philosoph@rcan only put dowrf; after picking it up, this ensures
mutual exclusion. Finally, the coordinata@g sequence access to fofk by the two
philosophers using it, such that the philosopher who getgfyfirst also gets access
first. For example if we consider the coordinator automatumF, it requires that
before either philosophé, or P, may take the forktf o ort1 o) they must first register
their hunger lfp or h;). Once philosophePy has registered his or her hungePif has
not registered hunger before them they may immediately tadeork to o otherwise
they must wait foP; to return the forkpg 1. This is regardless of whether or rigthas
taken the fork yet.

The state space of this model grows exponentially in the rumbf philosophers.
It can be shown that when = 16, the number of reachable states in the model is
greater than 123- 103 using symbolic model checking methods. For larger parame-
ter values it becomes infeasible to model check the systémg esplicit or symbolic
methods. Using compositional verification based on the wbrfteorder, the system
can be proven to be nonblocking for arbitrary values.of

Composing the automata for philosophBgandP; and the shared forlk; produces

21

Figure 2.9: Abstractions for dining philosophers example.

the subsystem
Sy =FPool[Pol|FPoa | F|[Ca || FPya | PL[[FPL2 (2.21)

with local eventsey, to 1, Po,1, t1.1, P1,1, ande; and 52 reachable states. These events
are used only in the automata comprisggso they can be hidden, i.e., replaced by the
silent eventr before composing; with further automata. Whil&; has 52 reachable
states, it can be shown to be less conflicting than (in factflicb equivalent to) the
12-state abstractio8; in figure 2.9,

Si\ {eo.to.1, Po.1,t11, P11, €1} Scont ST - (2.22)

The next step to add the automata for fégkand philosopheP, to the system results
in a 90-state automatdsy o, with new local events. Hiding the local events leads to a
new 13-state abstracti@j , also shown in figure 2.9,

(S1lIF2 | C2||FP22|| P2 || FP23) \ {hy,t12, P12, 122, P2.2,€2} SconfSp2- (2.23)

Repeating this process by including the next fégkand philosopheP; gives a 100-
state automatoB, 3 and an abstractio8, , ; identical toS, , except that the events
for fork F, and philosopheP, are replaced by the corresbonding events for ferk
and philosophePs. By induction, it can be shown that the subsystem consisting o
forksFy,...,F and philosopherBy, ..., R is less conflicting than the abstractiSh

in figure 2.9. Composing this abstraction with the missinganatta for forky gives a
41-state automatofy | Co || S; __;, which is easily shown to be nonblocking.

By repeated application of proposition 2.5 it follows thag tining philosophers
model is nonblocking for all values of > 4. Despite the enormous state space, this

22

is possible without ever considering an automaton with ntbesm 100 states. The
necessary tests for the conflict preorder have been cordpletess than one second
using the implementation described below in section 5.6e fost difficult is the
test for (2.23), which takes 0.34 s to complete. Furthergoerdnce data is given in
section 5.7.

23

Chapter 3
Annotated Automata

As has explained in section 2.4, conflicts can been put into digtinct categories:
deadlocks and livelocks. While it is quite difficult to cateige information about
livelock in a compositional way, this is not the case for deekl

In [16] the set of failures is used to characterise procesgtbgespect to how they
reach a deadlock situation. Failure sets can be used toatease the deadlock infor-
mation contained within an automaton, and minimize witlpees to it. Unfortunately
simplifying an automaton solely with respect to failures\@d guaranteed to preserve
conflict equivalence as livelocks may be hidden.

This chapter introduces annotated automata as a meansgffasgures to simplify
automata with respect to conflict equivalence. An annotatédmaton is a standard
automaton which in which each state is annotated with a satefts. These event sets
are called annotations. An annotation signifies that angraaton which wishes to be
nonblocking with the state which that annotation is assediavith must be able to ex-
ecute at least one event in that annotation. This is sinalaphconflicting completions
mentioned in section 2.6. If an annotated automatas derived from the standard
automatonG the annotations of will be derived from the ready sets of the states in
G, where ready sets are the complement of failure sets. Themaftion contained in
annotations can be used in several abstraction rules asawe@llmodified version of
bisimulation equivalence in order to simplify automatahwigspect to conflict equiva-
lence.

Unlike the later chapters, which seek to fully charactecimeflict equivalence, this
chapter only provides abstraction rules which can be useihplify an automaton
with respect to conflict equivalence. That said the metha®ldped in this chap-
ter are fast abstraction rules which have been shown to b&btapf improving the
performance of compositional conflict checkers. Furtheartbe idea of annotating
states with their ready sets/one step nonconflicting comopleis generalised in future

24

chapters to comparing the full nonconflicting completions.

This chapter is organized into several sections. Sectibdéscribes how a standard
automaton can be converted into an annotated automatomaakcagain. In addition
it describes several abstractions which can be applied notated automata which
preserve conflict-equivalence. Finally section 3.2 givgseeimental results showing
the effectiveness of using the abstractions in a compaositichecker.

3.1 Annotated Automata

This section shows how annotations are used to bring augoimatmore regular form
to make simplification with respect to conflict equivalencereneffective. Using the
running example in figure 3.1, methods to construct an atgmtautomaton are de-
scribed in 3.1.1 and 3.1.2, and three abstraction rulesnplgy annotated automata
are presented in 3.1.3-3.1.5. In 3.1.6, the complete abistingprocedure to simplify
automata using annotations is presented.

3.1.1 Annotation

The states in a nondeterministic automaton carry seveg@idinrequirements charac-
terising their blocking or nonblocking behaviour in compios with other automata.

For illustration, consider statg, in automatonG in figure 3.1. Its eligible event set

is Eligg(qo) = {a, B, y}; note thatB is included because of the silent transitiorgio
Blocking will occur if stateqp is composed with a state that does not enable at least
one of the events, 3, or y. Moreover, due to the silent transitions to stajganddqa,

any state composed witlp also needs to enable at least one event from their sets of
eligible events, Elig(gs) = {a,B} and Eligz(gs) = {a}. In order to capture these
nonblocking requirements in a more concise manner, the thligible event sets are
associated with statg asannotations

Definition 3.1 An annotated automatois a 5-tupleA = (Z,Q,—,Q°,Ann) such that
(Z,Q,—,Q°) is an ordinary automaton withoattransitions, andnnC Q x 2% is the
annotation relationwhich satisfies the following conditions:

(i) for everyx € Q, there exista C 2, such thatx,a) € Ann;
(i) for every (x,a) € Ann, it holds thata C Eliga(X).

An annotation is a set of everdsC Z,, associated with a stakec Q. The intended
meaning of(x,a) € Annis that, if the automaton is in staxeat least one of the events
in a must be enabled in the synchronous composition of the esyisgem in order

25

(a7, {w})

Figure 3.1: Simplification of automatda using annotations giveS ~¢onsU".

26

to avert blocking. The empty set of events can also serve anh@aotation, which is
used to characterise deadlock states. Annotations ar@asimready set§28] or the
complements ofailure sets[16], but they can only be used to partially characterise
conflict equivalence.

The two requirements (i) and (ii) ensure that annotatioqdguwra the idea of non-
blocking requirements correctly. Each state must haveaat lene annotation, and all
annotations must be subsets of the eligible event set of steie. When annotating
automata in practice, every state can be associated withviigligible event set as an
annotation, and this “maximal” annotation does not needetstbred explicitly in an
annotated automaton as it can be inferred from the transitio

The following definition shows how to transform an arbitragndeterministic au-
tomaton into an annotated automaton. - To do this for evextg stin the automaton,
all statesy which x can reach silently are determined. Once these states amenietd
a copy of every outgoing transition gfis created withx as its new source state, in
addition the eligible event set gfis calculated and added xmas an annotation. After
this information has been added to the annotated automHhileat transitions can be
removed without losing any conflict information.

Definition 3.2 Let G = (X£,Q, —,Q°) be an automaton. Trennotated formof G is

A (G) = (Z,Q,—a,Q°,Ann) , (3.1)

where
—>A={(X,G,y)EQxwaQ|x:£>z£>yforsomezeQ}; (3.2)
Ann= { (x,Eligg(y)) | x =y} . (3.3)

The annotated form clearly satisfies the two conditionsn@ @i) in definition 3.1,
becauséx, Eligg(x)) € Annfor everyx € Q, andx = y implies Eligs(y) C Eligg(X).

The annotated form is obtained from the original automatpreplacing all silent
transitions by the transitions originating from the silsatcessor states: if statean
be reached silently from stake then all transitions originating fromare copied to.
Due to this removal of silent transitions, some states magpioe unreachable and then
can be removed. To retain the nonblocking conditions aasetiwith the originally
silently reached states, their eligible event sets are caddeannotations to the start
states of the removed transitions.

Example 3.1 Figure 3.1 shows an automat@mand its annotated forn¥ (G). As each
state can be reached from itself after O silent transitidris,associated with its own

27

{B}

{a,B}
T QOT {a,B,y}
Qa1 02 a.B.y
a,p
03 v Qa Qa {V} Y {w}
G —

Figure 3.2: Two automata with equivalent annotated form

eligible event set as an annotation. The stgteollects all the outgoing transitions gf
andqy, because it is connected to these two states by silentti@rssiand annotations
are added tog for each of these two states. Similaidy,has all the outgoing transitions
and the annotatiofia } of gg. The statesys, q4, andge have been deleted because they
become unreachable after the removal of silent transitions

Complexity 3.1 The annotated form? (G) of G = (Z,Q,—,Q°) has|Q| states, up to
|Q|?|=,| transitions, and up tQ|? annotations. Thus, its size is boundedyQ|?|Z|).
The time complexity to construet/ (G) is dominated by the computation of the transi-
tive closure of the silent transitions, i.©(|Q|3) [27].

Annotation removes information, and it may well happen tiwad different au-
tomata have equal annotated forms. The following propmsghows that this can only
happen if the two original automata are conflict equivalsathe annotation procedure
does indeed yield a standardised form with respect to coefijgivalence.

Proposition 3.1 Let G andH be two automata such that(G) = <7 (H). ThenG ~cons
H.

Example 3.2 In figure 3.2 there are two automaBandG’ with equivalent annotated
forms. The only difference betwed&h andG’ is that the transitiormy B, Qs exists in

G’ but not inG. When the two automata are annotated this difference is redhloow-
ever. This is becaug® is only reachable via transition and therefore is unreachable
in the annotated automaton, furthermore becaqgsé 02 £> gs4 in both automata the
transitiongp £> g4 is added to the annotated automaton in both cases.

Conversely, it is not true that two conflict equivalent auttarfaave the same anno-
tated forms. Annotations cannot be used to characterisiat@guivalence. This is
due to the fact that failures equivalence [16] does not ingpiyflict equivalence, and
the same counterexample as given in [25] applies.

28

Jo

{B}
% {a.B.v}
T
ql a,B,V B a?Bay
g3 Qa
BO—0U (OO (w)
el A(G) = A(G))

Figure 3.3: An automaton which is conflict-equivalent to #wtomata in figure 3.2

Example 3.3 The automatorG” shown in figure 3.3 is conflict equivalent to the au-
tomata in figure 3.2 yet it does not have the same annotated fdihis is because
the annotated automaton G@fhas the annotatiofia, 3} whereas the annotated form
of G” does not. The three automata are conflict equivalent howmeause all three
automata have the annotatipfi} in go. The annotatioq 3} is strictly more restrictive
than the annotatiofa, 8}. Therefore the annotatiofu, 3} is redundant. This is gone
into in more detail in section 3.1.3.

In order to prove proposition 3.1 it is necessary to first prowo lemmas that
describe the relationship between paths in an automatorisaadnotated form.

Lemma 3.1 LetG = (3, Q,—,Q°) be an automaton. Le¥' (G) = (£,Q, —a, Q°,Ann)
be the annotated form @. For all traces € Z* and all eventw € %, the annotated
form has a patht 334 zif and only if there exists a path=> y > zin G, for somey € Q.

Proof. The claim is proved by induction gs|.
In the base cass= ¢, the claim follows directly from the definition (3.2).
For the inductive step, let=tag’. Then note,

sg to'o ta’ a
X=aZ <= X—pzZ <= X—=oay—az forsomeyeQ. (3.4)

By inductive assumptiory tﬁ;A y holds if and only ifx 2 y 3; y for somey’ € Q, and
by (3.2)y 24 z holds if and only ify = Z % z for someZ € Q. Thus, (3.4) becomes
equivalent to,

x2y%yE7%; forsomey,ZcQ <= x27%z forsomeZeQ. O

Lemma 3.2 LetG = (2, Q,—,Q°) be an automaton. Le¥'(G) = (£,Q, —a, Q°,Ann)
be the annotated form @&. Also letx,z€ Q ands e >*.

29

(i) If x= z then there existg € Q such thak = Z and(Z, Eligg(2)) € Ann.

(i) If x>azand(za) € Ann, then there existg € Q such thak = Z and Elig; () =
a

Proof. (i) Let x= z If s= & thenx = z, sox 5 x with (x,Eligg(2)) € Ann by
definition 3.2 (3.3). Otherwise,=to and thusx = y % 7 £ zfor somey,Z € Q. By
lemma 3.1, it follows thak 5 7, and(Z,Eligg(2)) € AnnsinceZ = z.

(ii) Let X >4 z and(z,a) € Ann. By definition 3.2 (3.3), there exist € Q such
thatz= 7 and Eligs(Z) = a. If s= & thenx = z= 7 with Eligg(Z) = a. Otherwise,
s=to and by lemma 3.1, there exists Q such thak = y3> z Thenx= z= Z with
Eligg(Z) = a O

Given these results, it is now possible to prove proposBidn

Proposition 3.1 Let G andH be two automata such that(G) = <7 (H). ThenG ~cons
H.

Proof. LetG = (Z,Qg, —,Qg) andH = (Z,Qy,—4,Qy), and letT = (%, Qr, =,
Q) be an arbitrary automaton.

Assume thatG || T is nonblocking. It is enough to show that this implies that
H || T is nonblocking. Therefore, lete (ZUST)* such thatH | T = (x4,%7). Then

H P:(S; Xy according to (2.5), where: ZU >t — X denotes the natural projection, and

by lemma 3.2 (i), there exists a statg € Qq such that(G) = &/ (H) Py Xa and

(Xa, Eligy (x4)) € Anng = Anng. By lemma 3.2 (i), there also exists a statec Qg
such thaG 2 xg and Eligs(xg) = Eligy (X4). Thus,G|| T = (X, 7).
tw

As G|| T is nonblocking, there exists a trate (XU XZ1)* such that(Xg,xT) =

Clearly,tw = uov for someu € (21 \ %)%, 0 € 54, andv € (5,U ST)*. Thenxg ¢

XG >e, i.e.,0 € Eligg(xs) = Eligy (x4). If 0 = w, then clearlyH || T = (xy,x7) =,
which is enough to show thad || T is nonblocking. Otherwise, i& € Z, letyy €

Qu such thatd 2 ., % . By lemma 3.1, this implies7(G) = o/(H) 25 v

andG 2 v, Sinceu e (57 5)*, it also follows thatG | T 22 (yu,yr) for some
stateyr of T. SinceG || T is nonblocking, there exists a trasec (XU X7)* such that

(YH,yT) =. Therefore,
HIT 2 06,x1) 2 (Y,ym) = (3.5)

Since(xy, xT) was chosen arbitrarily, it follows thét || T is nonblocking. O

30

3.1.2 Unannotation

The annotation procedure can be reversed to obtain an oydintEomaton from a given
annotated automaton. The reverse operation is calladnotatiorand is characterised
by the following definition.

Definition 3.3 Let A= (3, Q,—,Q°,Ann) be an annotated automaton. Ananno-
tated formof A is any automatob) = (Z,Qu,—u, Q°) such that the following proper-
ties hold.

() Qu =QUANM,
(i) x 5u (x,a) for all (x,a) € Ann, and these are the ontytransitions inJ;
(i) If x,y € Q, thenx 5y yif and only if x > y.
(iv) If (x,a) € Annando € a, then(x,a) Su;
(v) If (x,a) Sy y, theno € aandx > y.

The state space of an unannotated form consists of atirijaal statesof the an-
notated automaton plus an additional so-ca#ledotation statdéor each annotation (i),
which is linked to its original state by a silent transitian. (Furthermore, the unan-
notated form contains all the transitions of the annotatédraaton (iii). In addition,
the annotation states must have outgoing transitions fdn egent in their respective
annotation (iv), and these transitions must lead to someesgor state reached by the
same event from the corresponding original state (v).

Given an annotated automatdn an unannotated form can be constructed by in-
cluding the states and transitions according to (i), (i &ii), and by arbitrarily choos-
ing for each annotation stat&,a) and each event € a a transitionx % y, and then
including the transitior(x, a) N y in the unannotated form. There are several possi-
bilities to choose transitions satisfying points (iv) andl put the ambiguity does not
cause problems with conflict-preserving abstraction.

Proposition 3.2 Let A be an annotated automaton, andUgtandU, be unannotated
forms of A. ThenU1 ~¢onfUo.

This proposition which will be proven at the end of this seeticonfirms that unan-
notated forms are well-defined up to conflict equivalencethsocambiguity in defini-
tion 3.3 does not affect the nonblocking property and canxXpoged to minimise
unannotated forms.

31

O V
a3 04 O | O
Wy oy @AYH (G {w}) (G AV (s, {w}) (. Av}) (s, {w})
A Up U, Uj

Figure 3.4: Three possible unanotations of an annotatexhaibn

Example 3.4 Figure 3.4 show an annotated automatalongside three possible unan-
notated forms oA. All three automata the annotatiofte, {3}), (03, {y}), and(qa, { w})
are replaced by annotation states. These annotation stia@esan be reached ly
transitions as defined in definition 3.3. Each annotatiotestaust have at least one
outgoing transition for each event in its annotation. Asahaotation state§s, {y}),
and (q4,{w}). Have only one possible outgoing transition which can besehan
order to fulfill this requirement these states are ideniicél,,U,, andUs. The anno-
tation stateqo, {3}) has two outgoing-transitions which it can choose from in order
to fulfill the requirements of definition 3.3. As such it is gdde to created a valid
unnanotation of the automatdnby choosing to use either/both transitions.

Example 3.5 In figure 3.1, automatob is an unannotated form of the annotated au-
tomatonA”. The three annotations iA” have been replaced by annotation states

(a7, {w}) (ge.{a}), and (go1zs {a'}). Note that the transitiofidoizs {a}) > Go12s
is not included irJ, although it could be inherited fronp; 25,

Complexity 3.2 Given G = (£,Q,—,Q°), an unannotated form of/(G) has up to
|Q| + |Ann| < |Q| + |QJ? states and up td—| 4 |Ann| + [Ann||Z,| < |Q?|Zw| tran-
sitions. Its space complexity i®(|Q|?|%|), and this is also the time complexity to
construct it from an annotated automaton. This worst-casmusual in practice—in
the experiments in section 3.2, the number of states afeamnotation is almost always
less than it was before annotation.

The following result confirms that unannotation is a revesperation of the an-
notation procedure, up to conflict equivalence. Conflict emjence is preserved by
annotation and subsequent unannotation.

Proposition 3.3 Let G be an automaton, and let be an unannotated form of (G).
ThenU ZConf G

32

In the following sections, different methods are presertedimplify annotated
automata. The simplification needs to be carried out in a ictipiteserving way, and
this requires an appropriate notion of conflict equivaleoicennotated automata. The
following definition is justified by propositions 3.2 and 3ahd by the fact that every
annotated automaton has an unannotated form.

Definition 3.4 The two annotated automafa andA, are conflict equivalent, written
A1 ~conf A2, If for every unannotated fortd, of A; and for every unannotated fordy
of Ao it holds tha'[U]_ ~conf U>.

It is now necessary to prove the two key results about unatinat Unannotated
forms are equal with respect to conflict equivalence (pritipos3.2), and conflict
equivalence is preserved when annotating and unannotageig (proposition 3.3).

These results depend on the relationship between tracesanretated automaton
and its unannotated forms, which are first established. L&r8r& shows that every
nonempty path of an annotated automaton corresponds to lavakut path of its
unannotated form. Lemma 3.4 lifts this result to all pathsanefunannotated form,
considering separately the cases of original and annatetd states.

Lemma 3.3 Let A= (Z,Q,—,Q° Ann) be an annotated automaton, andUet= (3,
Qu,—u,Q°) be an unannotated form éf For all traces € >*, all eventso € %, and
all statesx € Q, it holds thatx >3 zif and only if X = y 5y zfor somey € Qu.

Proof. The claim is proved by induction gs|.

First consider the base case €. If x-2 z, it follows directly from definition 3.3 (iii)
thatx 3y z Conversely, ifx =y y -2y z then by definition 3.3 (ii) eithex =y or
X5y Y. If x=y 5 z thenx-> zby definition 3.3 (iii). Ifx—y y, theny = (x,a) € Ann
by definition 3.3 (ii), andx,a) =y >y zimpliesx % z by definition 3.3 (v).

For the inductive step, let=to’, and first assume ‘% y 25 z. By inductive as-
sumption, it follows thak t:G>IU y, and by definition 3.3 (iii) it holds that %y z This
impliesx 'y y %y z Conversely, assume thet3y y Sy z, ie.,

x:t>ux’$lu)/:e>uygu Z. (3.6)

Thenxtﬁ; y' by inductive assumption, and by definition 3.3 (ii), it eithelds that
y =y, and thusy 3y z which impliesy % z by definition 3.3 (iii); or there is an
annotation(y’,a) € Ann such thaty = (y,a), i.e., (Y,a) >y z and thusy > z by
definition 3.3 (v). In both cases,tg y 2z e, x3z O

Lemma 3.4 Let A= (Z,Q,—,Q° Ann) be an annotated automaton, andUet= (3,
Qu,—u,Q°) be an unannotated form &f

33

(i) Foralltracese 2* and all stateg € Q, it holds thatA > x if and only ifU 2 x.

(i) For all tracess € =* and all annotationéx,a) € Ann, it holds thatA > x if and
only if U = (x,a).

Proof. (i) Firstly, if s= ¢, thenA 5 x impliesx € Q° and thusU = x, and conversely
U= xwithxeQ impliesx € Q° by definition 3.3 (ii) and thug\ 5 x. Secondly, if
s=ta, the claim follows immediately from lemma 3.3.

(i) Let (x,a) € Ann. Thenx vy (x,a) by definition 3.3 (ii), and this is the only
way how (x,a) can be reached id. Then the claim follows from (i), becausez Q
and thusA > x if and only ifU = x 5 (x,a). O

The result that two unannotated forms of the same annotatechaton are conflict
equivalent now becomes a consequence of lemmas 3.3 and 3.4.

Proposition 3.2 Let A be an annotated automaton, andUgtandU, be unannotated
forms of A. ThenU; ~¢gntU>.

Proof. Let A= (Z,Q,—,Q° Ann), and letU; = (X, QUANN,—;,Q°) for i = 1,2 be
unannotated forms @. Furthermore, leT = (%, Q;,—+,Qt) be an arbitrary automa-
ton such thatl1 || T is nonblocking. It is enough to show that this implies thaf| T is
nonblocking. Therefore, late (SUST)* such that)s | T = (x,x7), and consider two
cases.

Case 1: = (Xa,a) € Ann.ThenU, P:(S; (Xa, @), which impliesA @ Xa andUq P:(S;
(Xa,a) by lemma 3.4 (ii). Thus)1 || T = ((xa,a),%7), and sinc&Jy || T is nonblocking,
there exists € * such that; || T = ((Xa,a),%7) 2. Writetew = uov with u € (51 \
5)*, 0 € Ly, andve (Z,UST)*. ThenUs || T = ((Xa,8),x7) = ((Xa, @), X) = (Y1, ¥7),
so o € Eligy, ((Xa,a)) = a = Eligy,((Xa,a)) by definition 3.3 (iv) and (v), and thus
(Xa, @) 22 Y2 for someys € Q. ThusUz || T = ((Xa,8),%T) = ((Xa,8),%;) = (Y2,¥7).

If 0 = w, then clearlyJs || T = ((Xa,a),X7) =, which is enough to show thek || T is
nonblocking. Otherwisd), || T =2 (y,,yr) with suo € (SUZT)* andy, € Q, and the
proof continues as iCase 2

Case 2: x€ Q. ThenU, P:(s; x implies A ﬁ x andUq P:(s; x by lemma 3.4 (i).

ThusU; || T = (x,xr), and sinceJ; || T is nonblocking, there exists € £* such that

U | T2 (xx7) 2 (y,yr) wherey € Q. Thereforex Pﬂgl y, which impliesx P
andx Png y by lemma 3.3. Thehly | T = (x,x7) &, and sincex,xr) was chosen

arbitrarily, it follows thatUs || T is nonblocking. O

The second main result about unannotation is that confligivakgnce is preserved
when annotation is followed by unannotation. To prove thiss helpful to first es-
tablish a lemma about annotations, namely that the anmbtaten of an automaton

34

is equal to the annotated form of its unannotation. Due towthg annotated forms
are defined in this thesis, lemma 3.5 only applies to anmbtfmens of an ordinary
automatorG, not to arbitrary annotated automata.

Lemma 3.5 Let G be an automaton, and létbe an unannotated form of (G). Then
o (U) = (G).

Proof. Let &/ (G) = (Z,Q,—,Q°,Ann), letU = (Z,Qu,—u,Q°) be an unannotated
form of &7 (G), and lete/(U) = (Z,Qu, =), Q°,Anny (). It will be shown that
the reachable parts o (G) and.«/(U) are equal, i.e., that> = — /) |o andAnn=
ANNny)0 Where—= o = =) N (Q X Ze x Qu) andAnn, o = ANy) N
(Qx 2%).

First, letx % y. Thenx € Q andx 3y y by definition 3.3 (i), andk =,y y by
definition 3.2 (3.2), anat %,y o Y asx € Q.

Conversely, lek 2,y Y. Thenx € Q andx =y z %y y for somez e Qu by
definition 3.2 (3.2). By definition 3.3 (ii), this means thatheir x = z, which implies
x 3y y andx > y by definition 3.3 (jii), orz= (x,a) >y y, which impliesx >y by
definition 3.3 (v).

Second, lefx,a) € Ann. Thenx € Q andx 5y (x,a) by definition 3.3 (ii) and
Eligy ((x,a)) = a by definition 3.3 (iv) and (v). By definition 3.2 (3.3), it folles that
(x,2) = (x,Eligy ((x,a))) € Annu)jq-

Conversely, letx,a) € Ann,yyq- Thenx € Q, and by definition 3.2 (3.3), there
existsy € Qu such thak = y and Elig, (y) = a. Here,x =, y means that either=y
orx 5y y.

In the casex =y, note thaty = x € Q, and Elig,(y) = Eliga(y) UUza)cann@ =
Eliga(y) by definition 3.1 (ii), and Elig(y) = Eligg(y) by definition 3.2 (3.2). There-
fore, (x,a) = (y,Eligy (Y)) = (¥,Eliga(y)) = (y,Eligg(y)) € Ann.

In the casex y, note thaty € Ann by definition 3.3 (ii). Then it follows from
Eligy (y) = a by definition 3.3 (iv) and (v) thafx,a) =y € Ann. O

Proposition 3.3 Let G be an automaton, and It be an unannotated form o# (G).
ThenU ~cont G.

Proof. By lemma 3.5, it holds that/ (U) = 7 (G), which impliesU ~,nt G by propo-
sition 3.1. 0

3.1.3 Subsumption

Annotations are sets of events that must be enabled to deekihg. More precisely,
when a state is entered, at least one of the events in eachasfribtations needs to be

35

enabled in order to avert blocking. This leads to the obsienv#hat certain annotations
are redundant. For example, if a state has both the annwdtio} and{a,}, then
the latter is implied by the former. The state already rezgigventy to be enabled, so
the fact thata or B needs to be enabled adds no additional information. Thetanno
tion {a,B}, being a superset dfa }, is said to be covered @ubsumedy {a}, and
subsumed annotations can be removed without affectingicoedjuivalence.

This gives rise to the followingubsumption ruleif an annotated automaton con-
tains annotationgx,a) and (x,b) such thata & b, then the annotatiofx,b) can be
removed. The removal of subsumed annotations from an aedotaitomaton pre-
serves conditions (i) and (ii) in definition 3.1, because nodations are added and
annotations can only be removed from states that have maneotie annotation.

Example 3.6 In stateqg of automatone/(G) in figure 3.1, the annotatiofia } sub-
sumes{a,B} and{a,f,y}, and the annotatiofa } in stateq; subsumeda, 3, y}.
The subsumed annotations are struck out in the figure.

Proposition 3.4 Let A= (Z,Q,—,Q°, Ann) andAgp = (Z,Q, —,Q°,Anny) be two
annotated automata such thain,,, C Annand for all(x, a) € Annthere existgs,, C a
such that(x, asyp) € Anngyp. ThenA ~cons Asub

Proof. LetU = (X,QUANN, —y,Q°) andUsyp= (Z, QUANNp, —u sub, Q°) be unan-
notated forms oA andAgyp, respectively. Itis to be shown thdt~,n:Usun Therefore,
letT = (Z,Qy, —1, Q) be an arbitrary automaton.

First, assume that || T is nonblocking, and les € (SUSt)* such thatygyy|| T =

(X, XT). ThenUsubP:(sl x € QUANN,,, Consider two cases.

Case 1: x= (Xa,@) € Anngyp FromUsubP:(sg X = (Xa,a), it follows thatAsubﬁ Xa
by lemma 3.4 (ii), which implie& E Xa becausé\ andAgp have the same transition
relations. Furthermore, sing&,,a) € Anng,, C Ann, it follows by lemma 3.4 (i) that
ue (Xa,a). This impliesU || T = ((xa,a), %), and sinc&J || T is nonblocking, there
existst € 2* such that) || T =2 ((Xa,@),X%T) Y Writetwo=uovwithue (Zr\2)*, 0¢
S, andv e (Z,UZT)* ThenU | T = ((%a,a),x7) = ((Xa,8),%) = (Y,y7), SO0 €
Eligy ((%a,)) = a = Eligy_,((Xa,a)) by definition 3.3 (iv) and (v), anéxa,a) >y sub
Ysub for someysyp € Q. If 0 = w, then clearlyUgy || T = ((Xa,@),%7) =, which is
enough to show thatlsyy|| T is nonblocking. Otherwisé)gp|| T == (Ysub, Y1) With

suo € (ZUZ7)* andysyp € Q, and the proof continues as@ase 2
Case 2: xe Q. FromUsyp =2 x, it follows thatAg,p % x by lemma 3.4 (i), which
impliesA ﬁ X becausé andAgp have the same transition relations, which implies

U P:(S; x again by lemma 3.4 (i). Thed | T = (x,xr), and sincdJ || T is nonblocking,

36

there existsv € =* such that) || T = (x,x7) = (z,zr). This meanx Pgwu z, which

implies x P%w z by lemma 3.3, which impliex Pﬂwsubz becauseA and Agyp have
the same transition relations, which implbeg%wuvsubz again by lemma 3.3. Thus,
Usuo|| T = (x,x7) =, and sincex, xt) was chosen arbitrarily, it follows thétsp|| T

is nonblocking.

Conversely, assume thdlyp|| T is nonblocking, and les € (XU Z7)* such that
P .
U|IT = (xxr). ThenU 22 x c QUANN. Consider two cases.

Case 1: x= (xa,8) € Ann.By assumption there exists,, C a such thatxa, asyp) €

Annyy, FromU P:(S; X = (Xa,a), it follows thatA @ Xa by lemma 3.4 (ii), which im-

. P . .
plies Asubﬂ Xa becauseA and Agp have the same transition relations. Therefore,

UsubP:(S; Xa — (Xa,8sup) by lemma 3.4 (i) and by definition 3.3 (ii). Thublgyp||
T = ((Xa,asub),XT), and sincelsyy || T is nonblocking, there existse £* such that
Usub|| T = ((Xa; @sub), XT) 9 Write tw = uov with u € (ZT\2)*, 0 € %y, andv €
(ZwUZr)*. ThenUsu|| T = ((Xa, Bsup)s XT) = ((Xa, Bsup)s Xr) = (Ysub Y1), i€, 0 €
Eligy,,,((Xa, 8sub)) = asup € a= Eligy ((Xa, a)) by definition 3.3 (iv) and (v), antka, a)
%y yforsomey € Q. If 0 = w, then clearly || T = ((xa,a),%7) =, which is enough
to show that) || T is nonblocking. Otherwisd) || T =2 (y,yr) with suo € (SUZT)*
andy € Q, and the proof continues as @ase 2

Case 2: x¢ Q. FromU @ X, it follows thatA @ x by lemma 3.4 (i), which

N P . . o
|mpI|esAsubﬁ> x becausé andAg phave the same transition relations, which implies

UsubP:(S; x again by lemma 3.4 (i). Thebgy| T 2 (X, %7), and sincéJgyp|| T is

nonblocking, there existe € £* such thalUsp|| T = (x,x7) = (z,zr). This means

X Pﬂf’u,subz, which by lemma 3.3 implies Pﬂw z, both inA andAgp,, andx Pﬂwu yA
Thus,U || T = (x,x7) =, and sincex, x7) was chosen arbitrarily, it follows that || T

is nonblocking. O

Complexity 3.3 The annotated formy/ (G) of G = (Z,Q,—,Q°) has up tgQ| anno-
tations per state, which give3(|Q|?) subsumption tests per state, and the cost of each
test isO(|Z|). So the worst-case time complexity of the subsumption stA(G)

is O(|QJ3|Z|). This makes subsumption one of the most expensive of theaatishs
presented here, but experimental results show that it itwuhile. The subsumption
test is best done immediately while constructing annotatgdmata or introducing
annotations, considerably reducing memory requirements.

37

3.1.4 Incoming Equivalence

Incoming equivalencfl?] identifies two states as equivalent if they have exaittéy
same incoming transitions. The concept is extended to atetbautomata as follows.

Definition 3.5 Let A= (Z,Q,—,Q°,Ann) be an annotated automaton. The incom-
ing equivalence relatiorinc € Q x Q is defined such that ~j,c y if and only if the
following conditions hold.

e xc Q°ifandonlyify € Q°;
e For all statez € Q and all event® € %, it holds thaz-% x if and only ifz-> y.

In [12], incoming equivalence is used as a restriction toenadtain simplification
rules applicable. Due to the improved regularity achiewedimotations, all incoming
equivalent states in an annotated automaton can be mergedn&rging is done using
the standard automaton quotient, with the addition thagrnwmerging several states
into one, the resultant state receives the annotations ofiginal states.

Definition 3.6 Let A= (Z,Q,—,Q°,Ann) be an annotated automaton, andAetC
Q x Q be an equivalence relation. Tlyeotient automatowf A modulo~ is A/~ =
(2,Q/~,—/~,Q° Ann), where

—/~={(x,0,)]) [x 2y} ; (3.7)
Q={{|xeQ}; (3.8)
Ann= {([x],a) | x € Q and there existg ~ xsuch thaf{x,a) € Ann}. (3.9)

Here,[x] = {X € Q| X ~ x} denotes thequivalence classf x € Q with respect to-,
andQ/~ = {[x] | x € Q} is the set of equivalence classes modulo

It is easily confirmed that the quotieAf ~ of an annotated automata@nsatisfies
conditions (i) and (ii) in definition 3.1, because every neetgtate receives annotations
from all its original states, and the eligible events set¢siacreased when merging.

Proposition 3.5 LetA= (Z,Q,—,Q°, Ann) be an annotated automaton. Thetrcons
A/Ninc-

This result is proven later on in this section. The merginghobming equivalent
states can be considered as a generalisation of the siletih@gation rule for normal
automata. This rule states that all incoming equivaleriestavhich have outgoing
T-transitions can be merges [12]. An annotation symboliss#eat transition to an

38

implicit state. When incoming equivalent states are mergeginondeterministic de-
cisions of the predecessor states are deferred by one si@gseed by the merged
annotations.

Example 3.7 The annotated automata@in figure 3.1 is the result of using incoming
equivalence to simplify7 (G). Statesy, andgs are incoming equivalent and have been
merged. The resultant states receives the annotatioqsr} and{a, 3, y}, but only
{a} remains because of subsumption.

Complexity 3.4 The complexity of partitioning an automaton based on incgnaiquiv-
alence i<0(|Q|?|Z|). Two states are equivalent if they have equal sets of incgtném-
sitions, which can be determined efficiently using hash sotikash codes can be set up
in a single pass over all transitions of the automaton, otwitiere are up tfQ|?|Z|,
and the construction of the simplified automaton is achidsednother loop over all
transitions, in the same complexity [12]. However, the nmeggpf some states may
make other states incoming equivalent, so the abstradtionld be repeated to ensure
a minimal result. The maximum number of iteration$@, as each merge except the
last reduces the number of states, so the complexity toroataiinimal abstraction by
incoming equivalence i©(|Q|3|Z|).

To prove the correctness of abstractions based on automgatdrents, such as the
incoming equivalence abstraction, the relationship betwihe traces in an automa-
tonAand its quotien/~ needs to be established. Itis well-known that every traée in
also has a corresponding traceAp~. The following lemma 3.6 is quoted from [12]
and holds for every equivalence relation. Conversely, netyepath in a quotient au-
tomaton exists in the original automaton, but lemma 3.7 shwew such a path can be
obtained if the quotient is constructed using incoming e@jence.

Lemma 3.6 LetA= (Z,Q,—,Q°,Ann) be an annotated automaton, andNet Q x Q
be an equivalence relation. Then, for all statgse Q and all traces € Z* such that
x> yin A, it holds thatlx] = [y] in A/~.

Proof. Letx > yin Awith s= 0y...0,. Then there exists statgs, ..., x, € Q such
that
x:xogxlg---ﬂixn:y. (3.10)

Ok

By definition 3.6, it holds thajii._1] = [x] for eachk=1,....n, which implies[x] > [y]
inA/~. O

Lemma 3.7 Let A = (3,Q,—,Q°,Ann) be an annotated automaton, and xef €
Q/~inc be two states of/~jnc.

39

(i) For allse £* and allo € ¥ such thatx™3 7, there existx € % such that for all
Z € zit holds thatx 2 Z.

(i) For all s€ =* such thath/~inc — Zand for allZ € 7, it holds thatA > 7.

Proof. (i) The claim is proven by induction ojs|.

Base case: s €. As X3 7, there must exist € X andz € 7 such thatx > z. Let
Z € 7. Thenz ~inc Z, and it follows from definition 3.5 that > Z.

Inductive step: s=tg. Assume thak =% 373> Z Thenthere are statgs Yandze z
such thay > z. By inductive assumption, there exists a statex such thaik 4 y. Let
Z € Z. Thenz ~jnc Z, and it follows from definition 3.5 that -5 y 37

(i) Let @° = {[x°] | x* € Q°} be the set of initial states @/ ~inc.

If s= ¢, thenZe Q° and thusz= [x°] for somex® € Q°, which impliesx° € Z. Let
Z € 7. Thenx® ~inc Z, which impliesZ € Q° by definition 3.5 and thus -5 Z.

Otherwises=to for somet € =* ando € £, and there exists& Q° such thak$.
LetZ € Z It follows from (i) that there exists € X such thak ‘% Z. Sincexec Q°, there
existsx® € X such tha® € Q°. Thenx® ~j,c Ximpliesx € Q° and thusA 27 O

Using the above two lemmas and the properties of the pathsasfnotated forms
established in sectio®?, the proof of proposition 3.5 proceeds using similar ideas t
that of theActive Events Rulg2].

Proposition 3.5 Let A= (Z,Q, —,Q°,Ann) be an annotated automaton. Thercony
A/Ninc-

Proof. LetU = (Z,QUANN, —y,Q°) andU = (,Q/~inc UANN, —5,Q°) be unan-
notated forms ofA and A = A/~inc, respectively. It is to be shown that ~confU.
Therefore, lell = (Z,Q;, —, Q%) be an arbitrary automaton.

First, assume that || T is nonblocking, and les € (£Ut)* such thatd | T =

(%,x7). ThenU P:(S; % € Q/~inc UANN. Consider two cases.

Case 1:X = (%,,a) € Ann. Then there existg, € %, such thaix,,a) € Ann. From
U P:(Sg %= (%a,), it follows thatA @ Xa by lemma 3.4 (i), which implie& @ Xa by
lemma 3.7 (i), andJ P:(S; (Xa,a) again by lemma 3.4 (ii). Thus) | T = ((Xa,a),%7),
and sincdJ || T is nonblocking, there existse =* such that) || T = ((Xa,a),xT) £
Write tw = uov with u € (31 \ 2)*, 0 € %4, andv € (S, UST)*. ThenU || T 2
(% @), X7) 2 ((Xa,8), %) > (Y:y7), i.€., 0 € Eligy (%, @) = a= Eligy ((%a,a)) by
definition 3.3 (iv) and (v), and%,,a) = ¥ for somey’e Q/~in.. If 0 = w, then
clearlyU || T = ((%,a),%7) = ((%a,a),X) =, which is enough to show that || T
is nonblocking. Otherwise] || T = ((%a,a),x1) = ((%a,a),%:) = (¥, yr) with suo €
(ZUZT)* andy’e Q/~inc, and the proof continues as@ase 2

40

Case 2:X € Q/~inc. ThenA @ X by lemma 3.4 (i). Then let € X, and it follows

from lemma 3.7 (i) thats 2% x, which impliesU 22 x again by lemma 3.4 (i). Thus,

UlT P:(s; X xT and sinceJ || T is nonblocking, there exists € Z* such thatJ ||

T :; X,XT) = (z,zr). Thenx Pgwu z, with z € Q by definition 3.3. This implies
x W, by lemma 3.3, and thu] i [Z in A/~inc by lemma 3.6, which implies

X =[x Pgwg 2 again by lemma 3.3. Thu || T = (X, xr) =, and sincgX,xr) was

chosen arbitrarily, it follows thad || T is nonblocking.

Conversely, assume thdt|| T is nonblocking, and les € (2UX1)* such thau ||
T = (x,x7). ThenU PO € QUANN. Consider two cases.

Case 1: x= (Xg,&) € Ann. FromU P:(Sg (Xa,@), by lemma 3.4 (ii) it follows that

A P& x., which impliesA 2% [x,] by lemma 3.6. Note thafixs],a) € Annand thus
U :g a) again by lemma 3.4 (ii). Thug] | T = (([xa],a),%7), and sinceJ || T

is nonblocklng, there existse ¥* such thatJ || T = (([xa],a),xT) X Write tw =
uov with u € (Z1\ 2)*, 0 € 5, andv € (Z,UZ7)*. ThenU || T = (([xa],a),x7) =
(([%a],8),%) = (¥,yr), i.e.,0 € Eligg(([Xa],a)) = a= Eligy ((Xa,a)) by definition 3.3
(iv) and (v), and(xa,a) >y y for somey € Q. ThereforeU || T = ((Xq,a),X7) =
((Xa,@), %) 2 (y,y1) With y € Q. If 0 = w, then clearlyU | T = ((xa,a),%7) =,
which is enough to show that || T is nonblocking. Otherwise) || T =2 (y,yr) with
Suo € (XU ZXt)* andy € Q, and the proof continues as@ase 2
P(s)~ P(s)

Case 2: x€ Q. ThenA — x by lemma 3.4 (i), which implieA — [x] by

lemma 3.6. By definition 3.1, there exisis_ Eliga(x) such that(x a) € Ann. Then

([X,a) € Ann, andU :; a) by lemma 3.4 (ii). Thusy || T = (([x,a),xr), and
sinceU || T is nonblocklng, there existse =* such thatJ | T 2 (([X,a),xT) K3
Write tw = uov with u € (51 \ 2)*, 0 € 54, andv e (S,UsT)*. ThenU || T 2
(([¥),),xr) = (([X],a),%) > (§.yr). Clearly,o € Eligg(([x],a)) = a C Eliga(x) =
Eligy (x) by definition 3.3 (iii) and (v). Ifo = w, it already follows thay | T =2

(x,x7) =, i.e.,U || T is nonblocking. Otherwise € Eligy(x) means thak = y for

somey € Q. ThenA P [X] 3 [y] by definition 3.6 andJ P ly] by lemma 3.4 (i).

Thereforel || T =2 ([y],yr), and sincdJ || T is nonblocking, there existg € £* such

thatU || T =2 (y],yr) =. Thenly] P(:V\')>wg, and by lemma 3.7 (i) there exisy5€ |y]

such thaty 4. Thusx 2 y ~inc Y, Which impliesx % y' by definition 3.5, and
x %y ¥ by definition 3.3 (iii). ThusU || T = (x,x7) = (Y,yr) =, and sinceXx, xr)
was chosen arbitrarily, it follows thét | T is nonblocking. O

41

3.1.5 Bisimulation

Bisimulationand observation equivalenc@6] are general tools that have been used
with considerable success to simplify automata during temiing verification [12,
33]. Bisimulation can also be applied to annotated autormath the added restriction
that bisimilar states must have the same annotations. Neless, the removal of silent
transitions can transform several conflict equivalentditeon structures into the same
annotated states, even if they are not originally obsemmaquivalent. So bisimulation
on the annotated automaton can be more effective, pantigwdéier the removal of
subsumed annotations.

Definition 3.7 Let Ay = (%,Q,,—4,Q7,Anry) andAy = (%,Q,, —,,Q5,Anmp) be two
annotated automata. A relatien C Q; x Q2 is called abisimulation betweenA;

and Ay, if the following conditions hold for all states; € Q1 andx, € Q» such that
X1 ~ X2.

e Forallo € %y, if X1 = yi then there existg, € Q. such thay; ~ y» andxz > yo.
e Forallo €y, if X2 > Y then there existg; € Q; such thay; ~ y» andx; > yi.
e ForallaC %, it holds that(x;,a) € Anny if and only if (xz,a) € Anrp.

A; and A arebisimulation equivalenor bisimilar, written A; ~ Ay, if there exists a
bisimulation~ betweenA; andA, such that, for every initial statg € Q] there exists
an initial statex; € Q5 such thak] ~ x3, and vice versa.

Itis easily confirmed that conditions (i) and (ii) in defioiti 3.1 are preserved under
bisimilarity of annotated automata. This is because blainstates always have the
same sets of annotations and eligible events.

Example 3.8 AutomatonA” in figure 3.1 is bisimilar taN'. Stateqyy, g1, andgys have
been merged due to the fact that they have the same annetatidrequivalent outgoing
transitions. Note that this only becomes possible afteotation, subsumption, and
incoming equivalence.

Proposition 3.6 Let A; andA; be annotated automata such tAate Ax. ThenA; ~conf
Ao.

Complexity 3.5 Given an annotated automaton, a coarsest bisimulatiotiarlean
be found in time complexityD(]—|log|Q|) using the algorithm in [10]. The anno-
tated form ofG = (3,Q, —,Q°) hasO(|Q|?|%|) transitions, givingO(|Q|?|Z|log|Q|)
time complexity for its simplification. An initial partitio based on annotations can be
established with lower time complexity.

42

We will now set out to prove proposition 3.6. This is best gowy showing that
the unannotated forms of bisimilar annotated automataianaitar. For this purpose,
the following standard definition of bisimulation for ordiry automata is used [26].

Definition 3.8 Let G = (%,Q,,—4,Q}) andGy = (Z,Q,, —,,Q5) be two automata.
A relation~ C Q1 x Q> is called abisimulationbetweenG; and Gy, if the following
conditions hold for all states; € Q; andx, € Qo such thak; = x,.

(i) For all 0 € 2¢ ¢, If X1 9 y1 then there existy, € Q. such thaty; ~ y, and
X2 £> Yo.

(i) Forall o € 2, If X2 9 y» then there existy; € Q1 such thaty; ~ y, and
X1 % 1.

G1 andG; arebisimulation equivalenobr bisimilar, written G ~ Gy, if there exists a
bisimulation~ betweenG; andG; such that, for every initial statg € Qf there exists
an initial statex; € Q5 such thak] ~ x5, and vice versa.

Although unannotated forms have been shown to be unique opriftict equiva-
lence in proposition 3.2, two unannotated forms of the sanm®i@ated automaton are
not necessarily bisimilar. To prove the result about bisation, a unique unannotated
form is needed.

Definition 3.9 Let A= (3, Q,—,Q°,Ann) be an annotated automaton. T$tandard
unannotatiorof Ais % (A) = (Z,Qu, —u,Q°) whereQy = QUAnnand

—u=—>U{(XT1,(x,a)) € Qx {1} x Ann} U
{((x,@),0,y) €ANNx T, x Q| 0 c aandx >y} (3.11)

The standard unannotation resolves the ambiguity in péwXsnd (v) of defini-
tion 3.3 by simply including all possible transitions foregy annotation state. This
ensures uniqueness at the expense of minimality. It is easgrifirm that, for every
annotated automatadk the standard unannotati@(A) is indeed an unannotated form
of A.

The standard unannotations of bisimilar automata can b&rstebe bisimilar, and
this is enough to complete the proof of proposition 3.6.

Lemma 3.8 Let A = (3,Q,,—,Q7,Anm) and A = (Z,Q,,—,,Q5,Anmp) be two
annotated automata such tiiat~ Ay. Then%/ (A1) ~ % (A).

43

Proof. LetZ (A) = (%,Qu.i, —u.i, Q) whereQu i = Qi UANN fori=1,2, and let~
be a bisimulation betweef; andA;. Consider the relatiorzy C Qu 1 x Qu 2 such
thatx; =~y Xo if and only if one of the following two conditions holds:

X1 € Q1, X2 € Q2, andxy ~ X or (3.12)

there exista C 3, such that; = (X},a) € Anny, X2 = (X5,a) € Anrp, andx} ~ X5 .
(3.13)

It is to be shown thatsy is a bisimulation betweer (A1) and % (Az). To see (i)
in definition 3.8, letx; ~y x> andx; E>U71 y1 for someo € %; . Then either (3.12)
or (3.13) holds.

If (3.12) holds, therx; ~ x> with x; € Q1 andx, € Q2. Then eithery; € Q; or
y1 € Anny. If y; € Qq, then it follows fromxy >y 1 y1 thatxy =1 y1 by definition 3.9.
Sincex; & X, by definition 3.7 there existg € Q. such thatx, 3>2 Yo andy; = yo.
Again by definition 3.9, this implies, E>U,2 Y2, andyi ~y Yy, according to (3.12). If on
the other hangl; € Anny, theno = 1 andy; = (xg,a) for somea C Z, by definition 3.3.
Sincex; = X2 and(xy,a) =Yy1 € Anny, it follows from definition 3.7 thafxz, a) € Annp.
Thenxy —T>U72 (x2,a) by definition 3.9 andy = (x1,a) =~y (X2,a) by (3.13).

If (3.13) holds, therx; = (x3,a) € Anny andxz = (x5, a) € Ann, for somea C X,
andx; ~ x5. Then it follows from(xy, a) E>U71 y1 by definition 3.9 thatr € a, y; € Qq,
andx; 9% y1. Sincex; = X5, there existy, € Q2 such that, 5%, y> andy; ~ y». Then
(X5,) >u.2 y2 by definition 3.9 sincer € a, andy; ~y y» by (3.12) sincey; ~ y».

This shows (i) in definition 3.8. The proof of (ii) is symmetrand the condition on
the initial states follows sincd; ~ A, andA; and% (Ay) have the same initial states.

]

Proposition 3.6 LetA; andA; be annotated automata such tAats Ay. ThenAy ~cons
Ap.

Proof. LetU; be an unannotated form 8§, and letU, be an unannotated form 5.
ThenU1 ~conf Z (A1) = % (A2) ~cont U2 by proposition 3.2 and lemma 3.8. The claim
follows from results in [25], according to which bisimilanmmata are conflict equiv-
alent. O

3.1.6 Abstraction Procedure

This section explains how the above results can be used immaa given automaton
with respect to conflict equivalence. Given an automdaoihe task is to compute a
hopefully smaller abstractio@’ conflict equivalent td.

44

Given the complexity of the annotation procedure, it is adhle to reduce the size
of the input automato® using some standard means before constructing an annotated
form. While not necessarily optimal for conflict equivalenbesimulation or observa-
tion equivalence [26] can be computed efficiently and arenknto achieve significant
reduction, as is the removal of blocking states [12].

After simplification of the input automaton, the next stegascompute its anno-
tated form.e7 (G), which then is simplified in several steps. While construgtine
annotated form, annotations can be checked for subsumetighe fly, suppressing
the generation of any redundant annotations. The reswdtingtated form is next sim-
plified by merging incoming equivalent states, again chegkor subsumption and
removing annotations that become redundant. Then thet issulinimised according
to bisimulation equivalence.

After simplifying the annotated automaton, it is unannedéatio obtain an ordinary
automaton that is conflict equivalent to the input. Theredifferent ways to construct
an unannotated form that satisfies the conditions of defmi8i.3, as there is consid-
erable leeway in how outgoing transitions from annotatitates can be chosen, and
by making clever choices, the new annotation states camirbasimilar to original
states or other annotation states, making it possible tbgusimplify the result.

An example of the abstraction procedure is shown in figure BitomatonG is
first annotated to obtain/ (G), with subsumption being tested on the fly to suppress
some annotations struck out in the figure. Next incoming\edence leads to the ab-
stractionA’, with another annotation being suppressed due to subsomgidiscussed
in example 3.7, and the result is further simplified usingnigation, givingA”.

Since the annotated automaton cannot be simplified further,replaced by its
unannotated forrJ. As explained in example 3.5, the transiti@gi2s {a'}) N Jo12s
is not included inU. This choice makes the statgg, (ds,{a}), and (do12s{a})
observation equivalent, so they can be merged in additicatesqy; and (g7, { w}).
This results in the observation equivalent abstraction Furthermore, the transition
q01253> gs is redundant according to observation equivalence [8] andbe removed,
giving the final result)”.

The abstraction steps in figure 3.1 can be justified by thegsiipns given in the
previous sections. Note that, for every annotated autamahbere exists an unanno-
tated form although it does not always have to be construstpticitly. LetV andV’
be unannotated forms ef (G) andA, respectively. Thef® ~¢qn¢V by proposition 3.3
andV ~¢onfV' ~conf U by proposition 3.4-3.6. Furthermoté,is observation equiva-
lent toU’ andU”, which impliesU ~.on;U” according to [25]. Thus,

G ~contV ﬁcoan/ ~confU gconfUl ZconfUH . (3.14)

45

Overall, the automato® with nine states and 25 transitions is simplified to the confli
equivalent automatod” with three states and seven transitions.

3.2 Experimental Results

A conflict checker using annotated automata has been impleahén the DES soft-
ware tool Supremica [1] and tested on the same set of indlisttale and parametrised
models as used previously in [12]. All these problems haenls®lved successfully,
and the results are shown in Table 5.1.

After simplifying each individual component in a composgdtem, the algorithm
selects aandidateset of automata for composition using strategies desciibg?].
After synchronous composition and hiding of local evertis, result is first simplified
using observation equivalence and by removing obviougsiteconflicts [12]. Then the
annotated form is constructed and simplified using incomaiqgivalence and bisimu-
lation. Subsumption is used during each of these stepsllysiaa unannotated form is
obtained and further simplified by removing states with ailignt outgoing transitions.

TheAnnotating Methodlescribed above has been compared téieristic Method
described in [12]. The heuristic compositional conflictcker of [12] selects and com-
poses candidate sets of automata in the same way as thetargotathod, but it uses
a more straightforward set of abstraction rules to sim@ifiyomata. In addition to the
Certain Conflicts Ruleand observation equivalence, which are part of the prepsing
steps in the Annotating Method, the Heuristic Method alssukeActive Events Rule
the Silent Continuation Ruleghe Only Silent Incoming Rujeand theOnly Silent Out-
going Rul€g12]. All these rules are directly applied to the transismf an automaton,
without computing an annotated form. This makes the rulaplgr to apply, but they
also have somewhat weaker abstraction potential, as it eamdwn that all abstrac-
tions obtained using the above mentioned rules and morengamniciple be achieved
by simplifying an annotated automaton.

To make the Annotating and Heuristic Method comparable; tave been modi-
fied to ensure that both implementations select and compesgaime automata in the
same order, regardless of possible differences in thenetgliate results. This is done
to compare the effects of the different simplification mekhas opposed to comparing
different choices of automata for composition (which oftead to dramatic changes).
However, the chosen order of composition is no longer optimvhich explains the
difference between the results in Table 3.1 and [12].

Table 3.1 shows the experimental results for nonblockintfigation of 14 large
models of industrial-scale applications and 9 very largeupetrised models. Please

46

Table 3.1: Experimental results

Annotating Heuristic
Peak| Total |Time| Peak| Total |Time
Size |States States| [s] |StatesStates [s]
AGV 2.610" |10552 18054 28.1] 1368 4097 4.1
AGVb 2.310 975 1719 0.2| 781 1524 0.1
verriegel3 |9.7.10%8 | 2346 12767 4.7| 285614639 6.8
verriegel3b|1.310° | 2346 11028 4.8 253711976 6.3
verriegel4 |4.510'° | 3703 15286 5.4 267115106 6.1
verriegel4b|6.310%° | 2346 11827 4.6| 253712968 6.3
big_-bmw |3.1.10° 63| 342 0.1 63| 347 0.1
FMS 812544 86| 206 0.0 125 279 0.1
SMS 312 18/ 119 0.0 18 120 0.0
PMS 5.7.108 75 487 0.1 75 492 0.2
IPC 20592 | 107] 195 0.0 107, 195 0.1
ftechnik |1.2108 | 5631 21218 5.9 245015524 4.8
rhonetough1.010'° | 1584 5025 4.1 1584 5026 4.5
AIP 1.010° | 6864 82542 30.3 686877512 24.7
256philo |5.410'%8| 628 77419 21.8
512philo |2.910%37| 628156395 48.1
1024philo |8.510°74| 628314347 96.1
128transfer|1.610°%1| 43| 11115 3.9 42/10966 10.7
256transfer|2.410%2| 43| 22251 10.7 4221974 9.3
512transfer|5.810°%4| 43| 44523 42.6 42|4399Q 34.7
128arbiter |2.810'12| 55| 14669 10.4
256arbiter |5.410%%4| 55/ 29517 31.5
512arbiter |2.1:10*°| 55| 59213 58.1

a7

refer to [12] for a more detailed description of the modelse Table shows the number
of reachable states of the synchronous product of each niSd=), and the number
of states of the largest automaton encountered during csitigomal verification (Peak

States), the cumulative number of states constructed gluanfication (Total States),

and the total verification time in seconds, for both the Aating Method and the

Heuristic Method,

All experiments were run on a standard laptop computer wksé&lz microproces-
sor and 4 GB of RAM, and controlled by state limits. If duringsalaction some syn-
chronous product has more than 10,000 states, its construistaborted and another
set of automata is composed instead. If no suitable set ofveata for composition
can be identified, a final attempt is made to construct andkctiecfull synchronous
product of all remaining automata whether it is nonblockirighis attempt runs out of
memory, the run is aborted and the corresponding tableesrdre left blank.

The annotating conflict checker performs much better tham#uristic method for
the parametrised dining philosophers and tree arbiterd@nady which cannot be solved
by the heuristic method using the given state limits and ickate selection strategy. For
the industrial applications, the two methods yield simiksults, with the Annotating
Method producing a smaller peak number of states in 5 casds$ha Heuristic Method
producing a smaller peak number of states in 4 cases. Trexatiffe is particularly
notable for theAGV andftechnikmodels, where the annotating method results in larger
automata. This seems to be caused by the annotating andataang steps, which
may change the structure of an automaton in such a way thetircestates are no
longer observation equivalent.

Table 3.2 shows some information on the effectiveness ahttieidual steps taken
by the annotating method. First, it shows for each modeldta¢ humber of annotations
created and removed by subsumption. Next, it shows thertotaber of states removed
as unreachable after annotation (Ann.), the number ofsstateoved by merging in-
coming equivalent<{inc) and bisimilar &) states, and the number of states added back
in when constructing unannotated forms (Unann.). Note tha¢fers to simplifica-
tion of annotated automata and is in addition to observaeunvalence simplification,
which is performed on all automata before annotating.

In most cases, annotating helps to remove substantialle st@ites than need to
be added back during unannotation. The data clearly shogvsntportance of the
subsumption step, which is performed directly while canging the annotated form.
While merging incoming equivalent and bisimilar states setarhave a limited effect
for most industrial models, it has a marked effect for som@hefmore regular models
in the dining philosophers and arbiter series.

Theses results show that conflict equivalence preservisggations can be used

48

Table 3.2: Rule Usage

Annotations States

Create |Subsume Ann. | ~jnc ~ |Unann.
AGV +63435 —-58073—-1777 —34| -513 +5
AGVb +328 —-226 -0 -0 -0 +0
verriegel3 +3442 —759 93 -7 —-16| +37
verriegel3b| +3478 777, —-70, -1 —-16/ +19
verriegel4 +3875 —927 —93 13 32| +29
verriegeldb| +4578 —1540 —-122 -1 —67| +42
big_bmw +53 =271 -1 -0 -0 +1
FMS +77 —26| —-24/ -0 -8/ +11
SMS +8 -8 -0 -0 -0 +0
PMS +161 -103 -17[-9 -9 +7
IPC +133 -58 -9 -0 -2 +4
ftechnik +4785 —-856| —26| —O -0 +1
rhonetough +899] —491 -15 -0 -6/ +13
AIP +17303 -6644-1600 —597] —216|+1054
256philo +86128 —33106-—-1756 —874 —9635 +0
512philo |+174192 —67133-3548 -1770—-19491 +0
1024philo |+350320-133683—-7132—-3562—-39203 +0
128transfer| +3721] —-1289 —-129 -0 -0 +1
256transfer| +7433 -2569 —-257, -0 -0 +1
512transfer| +14857 —-5129 —-513 -0 -0 +1
128arbiter | +5479 —-2769-1002 —436 —61| +61
256arbiter | +11043 —-5585-2026 —884 —125 +125
512arbiter | +22179 —11217-4074-1780 —253 +253

49

to verify whether or not large systems are nonblocking. Thether show that dif-
ferent abstraction methods can be superior to one anothdiffénent situations, and
thus that it beneficial to have a multitude of abstractionhods available for different
models. This chapter has introduced the method of absigpatitomata using anno-
tated automata. It further introduces several abstractitas which can be used on an
annotated automata in order to simplify the automaton wiréserving conflict equiv-
alence.

50

Chapter 4

Generalised Nonblocking

Despite its widespread use, the expressive powers of nckiblp are limited. To
overcome its weaknesses, nonblocking has been modified xdadded in several
ways [9, 23, 29].

This chapter is concerned ab@eneralised nonblocking®3], which adds to stan-
dard nonblocking the ability to restrict the set of statesfwhich blocking is checked.
This is useful for the verification of software componentd ahcertain conditions in
Hierarchical Interface-Based Supervisory Control [19, 20F. particular interest for
the purposes of this chapter is how nonconflicting comphesticelate to generalised
nonblocking equivalence.

Comparing two automata with respect to generalised nonbigaquivalence is in
many ways similiar to comparing two automata with respedtéamdard nonblocking
equivalence, but with a simplified semantics. This makesnuah easier equivalence
relation to characterize, while still providing us insigiio conflict-equivalence. In ad-
dition to this, all standard nonblocking problems can alsodpresented as generalised
nonblocking problems. Thus, all methods of simplifying ahoenata with respect to
generalised nonblocking can be potentially be appliedandsdrd nonblocking.

This chapter is organised as follows. Section 4.1 introduvelti-coloured au-
tomata. Section 4.3 introduces a testing equivalence aedrger for generalised
nonblocking, presents a semantic model, and proves resdtst its adequacy and
finiteness. Afterwards, section 4.4 describes the canbaitamaton as a standardised
normal form with respect to generalised nonblocking, armppses an algorithm to
construct it.

51

4.1 Multi-coloured Automata

Because generalised nonblocking uses the propositiom mark states which must
terminate, the definition of automata which we introducedantion 2.2, and is used
throughout the rest of this thesis, is not well suited to igalith generalised non-
blocking. This section gives a definition of multi-colouragtomata and describes how
the major automata operations behave with respect to tihéulti-colouredautomata
extend the traditional concept ofarked stateto multiple simultaneous marking con-
ditions, by labelling states with differenbloursor propositions In most other respect
multi-coloured automata are identical to regular automatee generalised nonblock-
ing property [23] is defined using these propositions. Thiewong definition is intro-
duced in [23] and based on similar ideas in [5, 29].

Definition 4.1 A multi-coloured automatois a tupleG = (3,1,Q,—,Q°, =) where
2 is afinite set okventsll is a finite set opropositionsor colours Q is a set ofstates
— C Q x Z; x Q is thestate transition relationQ® C Q is the set ofnitial states and
=: N — 29 defines the set of marked states for each proposition.irG is called
finite-stateif the state se@ is finite.

Multi-coloured automata behave identically to the aut@eiroduced in section 2.2
in most respects. The main difference is hawnarked languages are defined. For
e N, ther-marked language?™(x) = {se * | x= Z(1) } contains the traces that
lead fromx to some state markexd. The language and the-marked language of an
automatorG are.Z(G) = Z(Q°) andZ™(G) = £™(Q°).

Synchronous compositianodels the parallel execution of two or more automata,
and is done using lock-step synchronisation [16]. Thisesstime operation which was
introduced in section 2.3 except thes also synchronised.

Definition 4.2 Let G = (%,11,Qg, =g, Qg,=g) andH = (Z,M,Qy,—4,Qy,=y) be
multi-coloured automata. Theynchronous producif G andH is

G|/H=(2,M,Qg x Qy,—, Qg x Q=) (4.1)
where . i]
(X, XH) = (Yo,YH) if 0 € Z, Xg =G VG, andXy —H YH;
(XG7XH) _T> (YG,XH) if X —T>G VG
(Xe,XH) = (X, YH) i X —>H YH;
(

and=(m) = =g(m) x =4 (1) for eachm e .

52

Figure 4.1: Generalised nonblocking equivalence.

4.2 Generalised Nonblocking

Nonblocking is generalised in [23], using two propositiansand w. The intended
meaning is thado represents terminal states, whilespecifies a set of states from which
terminal states are required to be reachable. This is irrasirtb standard nonblocking
where terminal states must be reachable from all reachsditess

Definition 4.3 LetG = (Z,M,Q,—,Q°, =) be a multi-coloured automaton with w €
M.

e G is w-nonblockingor standard nonblockingif for all statesx € Q such that
G = x it also holds thak = =(w). OtherwiseG is w-blocking

e Gis (a,w)-nonblocking or generalised nonblocking for all statesx € =(a)
such thatG = x it also holds thak = =(w). OtherwiseG is (o, w)-blocking

4.3 Generalised Nonblocking Equivalence

In the same way that the nonblocking property of a system eaeffied by abstracting
components with respect to conflict equivalence the geisethhonblocking property
can be verified by abstracting with respect to generalisethlocking equivalence.

For example, automataB; in figure 4.1 may be replaced 1§, while preserving
the generalised nonblocking property of the sys@fi Gz || - - - || Gp. If the remainder
G2|| - - - || Gn of the system has am-marked initial state, the composed systerfoisw)-
nonblocking if and only if it can reach a-marked state after executing the trade
or ac, regardless of wheth&; or G} is used.

On the other hand, generalised nonblocking is not preséidis replaced by
in figure 4.1. IfGy || --- || Gn has ana-marked initial state and can only reach an
marked state after executing the traade like automatonT; in figure 4.1, therGy ||
Gz ||+ || Gn is (a,w)-nonblocking whileG] || Gz || -+ || Gn is (a, w)-blocking. This
is the same as conflict equivalence introduced in sectiorwizithe exception that
generalized nonblocking is used instead of nonblocking.

53

4.3.1 The Generalised Nonblocking Preorder

A notion of proces®quivalenceo perform abstractions preserving generalised non-
blocking is described in [23]. This section generalises¢hgefinitions and introduces
apreorder, which makes it possible to reason not only about equivaéoit also about
refinement The definitions are based on the traditional testing fraonky6, 15] that
defines preorders and equivalences relating processes tmasigeir responses tests

In the context of generalised nonblocking, a test can belaitrary automaton, and the
test's response is the observation whether the tgst jie)-nonblocking in combina-
tion with the given automaton or not. Two automata are carsidias equivalent, if the
responses of all tests are equal.

Definition 4.4 Let G andH be two multi-coloured automata wit, w € 1.

e G is less (a,w)-conflicting than H, written G 4 () H, if for every multi-
coloured automaton such thatH || T is (a, w)-nonblockingG|| T alsois(a, w)-
nonblocking.

e G andH are(a, w)-conflict equivalentwritten G >~ 4 ¢, H, if G $4,4) H and
H 5(07(») G.

The relations 4 () defines theyeneralised nonblockingreorder. An automato@
is less(a, w)-conflicting thanH if there are fewer test$ that are(a, w)-blocking in
combination withG than in combination wittH. Two automata aréa, w)-conflict
equivalent if they arga, w)-blocking in combination with exactly the same tests.
Given the compositiorBy || Gz | -+ || Gn, if G1 ~(4,¢) Gj, thenGy can be replaced
by G; without affecting the generalised nonblocking propertyhef composition.

Example 4.1 figure 4.1 shows four multi-coloured automata-marked states are
black whereaso-marked states are gray. States which have no marking assdci
with them have no colouring. Automa@®; andG] in figure 4.1 are(a, w)-conflict
equivalent, whiles; andG/ are not, becaud® || Ty is (o, w)-nonblocking ands] || Ty

is (0, w)-blocking. Furthermore, it can be shown &t < g) G7.

4.3.2 Congruence Properties

An important question concerning preorders suchas ., is their relationship to
process-algebraic operations. For compositional vetifinathe equivalence used must
be well-behaved with respect to synchronous compositiohh@ting. These so-called
congruenceproperties have been established in [25] for standard onckirlg and
in [23] for generalised nonblocking equivalence, and casilyde extended to the
generalised nonblocking preorder.

54

Definition 4.5 Let < be a preorder on the set of multi-coloured automata.

e < is apre-congruencevith respect td| if, for all multi-coloured automat&, H,
andT such thatG < H, it follows thatG || T SH || T.

e < respectqa,w)-nonblockingf, for all multi-coloured automat& andH such
thatG < H, if H is (a, w)-nonblocking therG also is(a, w)-nonblocking.

Proposition 4.1 <4) IS @ pre-congruence with respectfto

Proof. Let G, H, andT be such thats 4, H, and letT’ be an arbitrary multi-
coloured automaton such th@t || T) || T" is (o, w)-nonblocking. Then clearly ||
(TIT)=H|T)IT is (a,w)-nonblocking, and sinc& <4) H it follows that
(GIT)|T' =G| (T||T") is (a,w)-nonblocking. Sinc&l’ was chosen arbitrarily, it
follows thatG || T Sig,e) HII T. O

Proposition 4.2 <4) respectga, w)-nonblocking.

Proof. Note that there exists a multi-coloured automatbsuch thatG ||U = G for
every multi-coloured automatdd. LetG <4,y H, and letH be (a, w)-nonblocking.
ThenH [|U = H is (a, w)-nonblocking. Sincés <4) H, it follows thatG = G ||U
is (a, w)-nonblocking. O

Thus, the generalised nonblocking equivalence is a congeuith respect to syn-
chronous composition and respets w)-nonblocking. This is enough to justify the
correctness of a compositional verification approach sgcth@ one outlined at the
beginning of section 4.3.

Similarly to standard nonblocking [25], the generalisedlilocking preorder turns
out to be the coarsest pre-congruence with respect to symehs composition that re-
spects(a, w)-nonblocking. In other words, any preorder that relatestircoloured
automata according to their generalised nonblocking bebawand preserves syn-
chronous composition is contained in the generalised mokbig preorder. There-
fore, the generalised nonblocking preorder is the bestilplegsrocess refinement for
reasoning about generalised nonblocking.

Proposition 4.3 Let < be a pre-congruence with respect||tavhich respectsa, w)-
nonblocking. TherG < H impliesG <4 ,) H-

Proof. Let G < H, and letT be a multi-coloured automaton such thbll T is (a, w)-
nonblocking. TherG || T < H || T since< is a pre-congruence with respect|toSince
< respects blocking it follows tha® || T is (a,w)-nonblocking. Sinces, H, andT
were chosen arbitrarily, it follows th& <S4 ;) H. OJ

55

4.3.3 Characterising the Preorder

In addition to the test-based definition of a process preprtdes desirable to have a
characterisation that can be derived from the state steicuan automaton [13]. This
section introduces the generalised nonconflicting congretemantics as an algebraic
model of the generalised nonblocking preorder and equicalewhich can be derived
from the state and transitions of a multi-coloured automatosuch a way that the
model can be represented finitely for every finite-stateraaton. This model will be
used in the following section to construct a canonical aatimm.

The following definition restates the generalised nonbiluglpreorder as a state-
based criterion. To check whether an automagois less(a, w)-conflicting than an-
other automator, it is enough to collect theo-marked languages of adt-marked
states ofG and check whethad contains larger languages associated with the same
a-markings. This idea is formalised by the concept of beirgeswise lesga, w)-
conflicting, which turns out to be equivalent to the gensealinonblocking preorder.

Definition 4.6 Let G = (%,11,Qg, =g, Qg,=g) andH = (Z,M,Qy,—4,Qy,=y) be
multi-coloured automata withr, w € M. G is said to bestate-wise leséa, w)-conflict-
ing thanH if the following property holds for everge >*: for everyxg € =g(a) such
thatG = xg there existsy € =n (o) such thaH = xy and 2% (x4) € L% (xg).

Proposition 4.4 LetG = (Z,11,Qg, —¢,Qa, =) andH = (Z,M,Qy, —4,Qy, =) be
multi-coloured automata witbr, w € M. G is state-wise les&, w)-conflicting thanH
if and only if G is less(a, w)-conflicting thanH.

Proof. First assume thab is state-wise leséa, w)-conflicting thanH, and letT =

(Z,M,Q¢,—71,Q%, =) be an automaton such thit|| T is (a, w)-nonblocking. Let
G| T2 (xg,x1) € Zg(a) x =1(a). ClearlyG = xg € =g(a), and sinceG is state-
wise lesga, w)-conflicting thanH, there exists a statg; € =y (a) such thaH = x

and.Z®(xy) € Z9(xg). Thus,H || T = (x4,%7) € Zx(a) x =1(a), and sinceH | T

is (o, w)-nonblocking, there exists a trace ~* such tha{xy, xT) L=y (W) X =7 (W).

Thent € £%(x4) C £%(xg), which impliesxg L6 =c(w), and thereforéxg, xT) 5N

=c(w) x =1(w). Sinces, X, andxt were chosen arbitrarily, it follows tha& || T is

(a, w)-nonblocking.

Second, assume thatis less(a, w)-conflicting thanH. Letse =* andG = xg €
=g(a). Construct a deterministic automatdn= (2,1, Q;,—1,QF, =) such that
ZL(T) =% Z%T) ={s}, and Z?(T) = 2"\ sZ?(xg). SinceT is deterministic,
there exists a unique state € Qr such thafl = x7, which satisfiext € =1 (a) and
L9x7) =3\ L%(xg). ThenG|| T is (a, w)-blocking, becaus6 || T = (xg,X7) €
Ze(0) x Z1(a) andL¥ (xg) N.L%(xr) = 0. SinceG is less(a, w)-conflicting tharH,

56

it follows thatH || T is (a, w)-blocking. This means that there exists *, yq € Qn,
andyr € Qr such thatH || T 2> (yu,y7) € Zh(a) x =1(a) and L (yq) N L2 (yr) =
0. Thenyt € =1(a), and by construction of it follows thatu = s andyt = xt.
This impliesH = yy € Zx(a) and.Z%(yy) N (Z*\ L9(xg)) = L9 (Yu) N.L9(xT) =
LOAY)NZL2yr) =0, i.e.,.2%y4) C L%(xs). Thus,yy satisfies the requirements
given forxy in definition 4.6, sdG is state-wise les&x, w)-conflicting thanH O

Proposition 4.4 is the key to constructing a process-afgelonodel of generalised
nonblocking. Essentially, generalised nonblocking cachseacterised by the sets of
w-marked languages associated with thenarked states or, more precisely, with the
traces leading tor-marked states.

Definition 4.7 LetG= (Z,M,Q,—,Q°, =) be a multi-coloured automaton with w €
M. Thegeneralised nonconflicting completion semantasG is defined as

ces

a,w

)(G) = {(c,C) e Z* x 2% | There existsc € =(a) such thaG = x and (4.2)
S9(X)CCY.

If (c,C) e CCE‘(;?OJ)(G), thenC is called anonconflicting completiofor cin G.

AssumeG contains aro-marked state reachable via trace € =¥, i.e.,G = x €
=(a). Then the marked languag€®(x) of x clearly is a nonconflicting completion
forcin G, i.e.,

(C,.Z?(x)) € CClg 1) (G) - (4.3)

Furthermore, all superlanguages®f’(x) are also nonconflicting completions,
(c,C) € CCly ,)(G) forallC2>.L(x). (4.4)

If Gis finite-state, then there exists only a finite numbeaedtatesx and thus only a
finite number of associated-marked language€’“(x). This means that all noncon-
flicting completions can be obtained as supersets otdtrearked language of some
statex, of which there are only finitely many. Therefore, the follog closure opera-
tions are used.

Definition 4.8 For CCC * x 2%, theupward closureCC' and thereduced formCC
are

CC' = {(c,C) € 2* x 2" | There existgc,C) € CC such tha€ C C' } ; (4.5)
CC'={(c,C) eCC | Forall(c,C') € CC whereC' C Cit holds thatC' =C}. (4.6)

57

Example 4.2 The generalised nonconflicting completion semantics afraatonG;
in figure 4.1is

CCly)(G1) = {(¢,{abac})}" . (4.7)

Example 4.3 The generalised nonconflicting completion semantics adraatonG,

in figure 4.2 is
ccy

(a,0)(G4) = { (@"ab) [n>0}". (4.8)

The w-marked language of the-marked stateyg is .Z2“(qo) = a*b, and since this
state can be reached after any numbern@vents, this language is associated with
all tracesa" for n > 0. The w-marked language of the secondmarked statey; is

L mq) =ab D Z%(q), and as a superlanguage of the already listed language, it is

automatically included in the upward closure.

Not every nonconflicting completion semantics CC can be r&tcocted from its
reduced form C& In infinite structures, it is not guaranteed farC) € CC that there
exists a minimal subs&' C C such that(c,C’) € CC. However, if the set of noncon-
flicting completionsC that appear in CC is finite, then the existence of minimal sigbse
is guaranteed. Thus, @ is a finite-state automaton, then it indeed holds that

e

a,w

\(G)T=cchy ,)(G) . (4.9)

The following main result of this section states that theegalised nonconflict-
ing completion semantics indeed characterises the gésedatonblocking preorder.
If an automatorG is less(a, w)-conflicting than automatoHl, then the generalised
nonconflicting completion semantics Gfis contained in that ofl.

Proposition 4.5 LetG = (Z,1,Qg, —¢,Qg, =) andH = (Z,M,Qy, —4,Qy, =) be
multi-coloured automata withr, w € M. ThenG <4) H if and only if CCE‘(; w)(G) C
CCE‘&@)(H).

Proof. First letG <$4,0) H and(c,C) € CC&M)(G). Then there existsg € =g(a)
such thatG = xg and.Z?(xg) C C. By proposition 4.4G is state-wise lessa, w)-
conflicting thanH, so there existsy € =y (a) such thatH = xy and .£®(x4) C
Z%(xg) CC. This already impliegc,C) CCE’;@)(H).

Second let C%w)(G) C CCE‘;,w)(H). By proposition 4.4, it is sufficient to show
thatG is state-wise les@, w)-conflicting tharH. Therefore, les€ 2* andxg € =g(a)
such thatG = xg. Then(s,.2%(xg)) € CCE’;@)(G) - Cc&w)(H). By definition of
CC&w)(H), there existsy € x(a) such thatH = x4y and . £2(xy) C .£9(xg).
Thus,xy satisfies the conditions of definition 4.6, 6dis state-wise leséa, w)-con-
flicting thanH. OJ

58

4.3.4 Relationship to Standard Nonblocking

The nonconflicting completion semantics introduced in digdim 2.7 can also be ap-
plied to multi-coloured automata.

Definition 4.9 [25] Let G = (Z,1,Q,—,Q°,=) be a multi-coloured automaton with
w € IN. Thenonconflicting completion semantiokG is

CC?(G) = {(c,C) € =* x 2% | For every automatof such thatG|| T is w-
nonblocking andr < x, there exists € C with X =7 =1(w) }

(4.10)

As discussed in section 2.6 the idea of the nonconflictingatetion semantics of
an automatort is that each nonconflicting completion represents a reongrg that
needs to be satisfied by any test that is to be nonblockingnmbawation withG. If
the test can execute the tracassociated with a nonconflicting completiGnthen, in
order to be nonblocking in combination wit the test must be able to terminate with
at least one of the tracés C.

The following result shows that the generalised noncomfliccompletion seman-
tics can be explained in the same way: if a p@&iIC) is contained in the semantics,
then every test that can enter aamarked state after tracemust be able to terminate
with at least one of the traces @) in order to be(a, w)-nonblocking in combination
with G.

Proposition 4.6 LetG=(Z,1,Q,—,Q°, =) be a multi-coloured automaton with w €
M. The generalised nonconflicting completion semantics eaalternatively charac-
terised as

CC?C’X w)(G) = {(c,C) € =¥ x 2*" | For every automatof such thaiG|| T is (4.11)
(ar, w)-nonblocking andl = x € =1(a), there exists € C
with X =71 Z1(w) } .

Proof. Let (c,C) € CCE*(’X@)(G) andT = (X,M,Q;,—1,Q%,=7) such thatG || T is
(ar, w)-nonblocking andT = xr € =1(a). Since(c,C) € CCE‘;@)(G), there exists
x € =(a) such thaG = x and.Z®(x) CC. ThenG| T = (x,x7) € =(a) x =1 (a), and
sinceG|| T is (a, w)-nonblocking there exists= Z* such thatx, xT) 1N Z(w) x =1(w).
This impliesxr :t>T =7(w) andt € £¥(x) CC.

Now let(c,C) € * x 2%, and assume that for every automalos: (2,1, Q¢,—,
Q3, =) such thaiG|| T is (a, w)-nonblocking andr = x € =1(a), there exists € C
such thatx :t>T =1(w). Consider a deterministic automatdn= (>,M,Q;, —,Qf,

59

Ga: Ta:
, a , b a b
Q o1 qQ |0 ri T2

2

Figure 4.2: Standard nonconflicting completion semantiag be not well-founded.

=r)suchthat?(T) =2*, £9(T) ={c}, andZ*(T) =c(Z*\C). There exists exactly
one stater € =7(a), which also satisfie = xr and.Z%(x7) = =*\ C, so there does
not existt € C such thatr = =1(w). By assumption it follows thaB || T is (o, w)-
blocking. Then there exists a state =(a) x =7 (a) suchthaG || T = yand.£%(y) =
0. By construction off, there existx € =(a) such thaly = (x,x7) andG|| T =y =
(X,x7), and furthermore 8= Z“(y) = Z?(x)N.L%(x7) = ZL*(x)N(Z*\ C), which
implies Z“(x) C C. It follows that(c,C) € CC‘(’;,w)(G) by definition. O

This shows that the standard and generalised nonconflictingpletion semantics
are closely related to each other. Yet, there are also irmapodifferences. While the
generalised nonconflicting completion semantics onlyaset via upward closure, in
standard nonblocking there are interdependencies betsta&ss that lead to further
closure properties.

Example 4.4 [25] In order to bew-nonblocking in combination with automat@y, in
figure 4.2, a test must initially be able to accept at leastbtiee tracesb,aab aaah . ..
Therefore, C&(G4) contains the paife,{a*b}). Furthermore, any such test must be
able to executa in its initial state, and any test executiagnitially must also be able
to cope withG4 being put back to its initial statgy by executing the selfloop iqp.
Therefore, such a test also has to accept at least one obtteséiabh aaah aaaab. ..

in its initial state. It follows that C&(G,4) contains all the pairée, {a"a*b}) for n > 1.

This example shows that, even for a finite-state automatenstandard noncon-
flicting completion semantics is not necessawigil-foundegdand in general cannot be
described by listing a finite set of minimal nonconflictingmaetions. For generalised
nonblocking, this is possible. Due to the presence aharkings, there always is the
possibility for a test to be nat-marked for certain states.

Example 4.5 Consider automatoB, in figure 4.2 in combination with te3y. Clearly,

G4 || T4 is (o, w)-nonblocking, because the only reachabkenarked state of the syn-
chronous producB; || T4 is the initial state, from which both automata can terminate
by executing tracab. However, the test, cannot execute any trates {a"a*b} for

n> 1, so unlike the case of standard nonblockifgg{aaa‘b}) ¢ CCE*;7w)(G4).

60

The presence ofr-markings makes the nonconflicting completions for différe
traces independent from each other. This leads to a simguesustic model with a finite
characterisation. It also means that some abstractiosgye$or standard nonblocking
are not applicable to generalised nonblocking.

4.4 Canonical Automaton

For compositional reasoning, it is necessary to modify mata in such a way that
generalised nonblocking equivalence is preserved. THeaciitated by the fact that
the generalised nonconflicting completion semantics carepeesented finitely. This
section explains how the generalised nonconflicting cotigriesemantics can be used
to construct a canonical form for any given finite-state maton, which is generalised
nonblocking equivalent to the original automaton, and shehthe canonical forms of
any two generalised nonblocking equivalent automata araleq

4.4.1 Construction from Semantics

To ensure unigueness, the canonical form is constructedttyifrom the generalised
nonconflicting completion semantics. More precisely, ghewn in the following how
to construct aanonical automatofs’.<7 (CC) for any given model

CCC*x2% . (4.12)

Afterwards, an algorithm will be given to compute the cagahiautomaton for any
given multi-coloured automatda.

The canonical automaton consists of two parts, callediiperandlower automa-
ton. The upper automaton of CC essentially is a minimal detestiiniecogniser of
the language covered by CC,

Z(CC)={ce X" | There exist& C X" such thatc,C) € CC}. (4.13)

The lower automaton consists of minimal deterministic ggasers of all the noncon-
flicting completions in CC, which are linked to transitionsrfrthe corresponding states
in the upper automaton.

To ensure uniqueness, the upper automaton needs to be sediimi such a way
that traces leading to equal nonconflicting completionfienfuture are mapped to the
same state of the upper automaton. The following definitimviges the necessary
equality for any given model CC.

61

Definition 4.10 Let CCC =* x 2%°. Two tracesci,cy € =* are said to bequivalent
moduloCC, writtenc; = Cp, ifforall t € 2* and allC C X*, it holds that(c;t,C) € CC
if and only if (c,t,C) € CC.

Given this definition, the state set of the upper automaton is

UCC = Z(CC)/ECC s (414)
and the transitions of the upper automaton are

[Slec U cc [s0]ce forall so € Z(CC). (4.15)

Here,[s|cc = {§ € Z(CC) | s=¢c S } denotes thequivalence classf smodulo=,
and forL C Z*, the notatiorL /=cc = {[Jcc | S€ L } represents its partition into equiv-
alence classes.

The lower automaton consists of deterministic recognigerall the nonconflicting
completions. It includes states accepting each of theviatig languages,

Vee = {Cw/t | There exists € =* such tha{c,C) € CC,andt €C} . (4.16)

Here,L/s= {t € 2* | ste L } denotes the continuation languagd.af >* afterse >*.
To ensure minimality and thus uniqueness, it is conveneidéntify the states of the
lower automaton with the languages\Vin.. Accordingly, the transitions of the lower
automaton are

L %vecL/o forallL eVeeando e 2NL. (4.17)

A lower-automaton state ib € V¢ is markedw if and only if w € L. This ensures that
the w-marked languages of these states are equal to the langhagegpresent, i.e.,

Z®(Lw)=L foreachLw €V . (4.18)

To complete the lower automaton, each nonconflicting cotigplen CC is associated
with its owna-marked state. The-marked states may only be accessed from the upper
automaton and therefore need to be distinct from any lowtsraaton state. Therefore,
the following additional states are used,

V& = {(C,a) | There existg € =* such thaic,C) € CC} . (4.19)

Given these state sets and transitions, ¢agonical automatorfor CC is con-

62

structed as follows,

¢4 (CC) = (Z,{a,w},Qca —~ca Qcar =ca) (4.20)

where
e Qca= Ucc UVCC Uvgc;

e —[CA]= —[U,cclu—|V,ccluU
{([dec,T,(C,a)) [(c,C) e CCFU
{((C,0),1,Cw) | (C,a) € V& };

o Qza = {[elec}\{0};
e =ca(a) :Vcac;
° ECA(O)) = {C € Veo ’ (L)EC}.

The canonical automaton has a simple regular form, but ibisnecessarily min-
imal. For example, ther-marked states can be merged into their successors, if those
successors do not have other incoming transitions. Thepakér reduction becomes
clear in example 4.6 below.

The following result confirms that the canonical automatonstruction preserves
generalised nonblocking in that the generalised noncdinfjcompletion semantics of
the canonical automaton is equal to the upwards closureeahttdel CC, from which
the automaton was constructed.

Proposition 4.7 Let CCC =* x 2". Then

ccy

(a,w

\(¢.7(CC)) =cCl. (4.21)

Proof. First, let(c,C) CC@’M)(%%(CC)). Then there exists € =ca(a) such that
%.2/(CC) = x and £“(x) C C. By construction, this means thate V2, sox =
(C',a) for some(c’,C') € CC. Also by construction of the upper automaton, since
¢4/ (CC) = x = (C',a), it follows that%.«7 (CC) - [c]cc — (C',a), which implies
(c,C’) € CC. Furthermore by construction of the lower automa@n;: £ (C'w) =
Z9(C,a)) = £%(x) CC, so it follows from(c,C’) € CC that(c,C) € CC.
Second, letc,C) € CC'. Then there exist€ C C such that(c,C') € CC. By
construction of the upper automatdfi,Z (CC) — [c]cc — (C',a) € Zca(a), and by
construction of the lower automato(€’, a) — C'w and Z%((C',a)) = £%(C'w) =
C' CC. Thus, givert¢.«7 (CC) = (C',a) € Zca(a) and £%((C',a)) C C, it follows
by definition of C%,w) that(c,C) € CCE%-,w) (¢ </ (CC)). O

63

The canonical automaton can be constructed for any model GGhéuesult is
only finite-state if the set of nonconflicting completionsGg is finite, and the upper
automaton has a finite-state representation. These comslitein be ensured when CC
is obtained from the generalised nonconflicting completemantics of a finite-state
automaton. In this case, the upper automaton is finite-s&tause of the finite number
of a-states from which nonconflicting completions can origgnand although the set
of nonconflicting completions is typically infinite due towgrds closure, it is enough
to construct the canonical automaton using only minimakoaofiicting completions.

Definition 4.11 Thecanonical formof a finite-state multi-coloured automat@nis
€/ (G) =6/ (CCly) (G)') . (4.22)

As explained above, the canonical form of an autom&aos finite-state as long as
G is finite-state. Given the previous results, it is not diffica show that the canonical
form is unique for all generalised nonblocking equivalastbanata.

Proposition 4.8 Let G andH be two finite-state multi-coloured automata. Then
G~,u H ifand only if €</ (G) =%¢</(H) . (4.23)

Proof. First assume tha® ~ 4 ,) H. It follows that C)(G) = () b
proposition 4.5, which implie®’ <7 (G) :%b@%(cc&w)()) %,@%(CC“’ (H)i)
¢ </ (H) by definition.

Second assume th@t«/ (G) = ¢/ (H). From the fact thaG is finite-state and
proposition 4.7, it follows that

(4.24)

By proposition 4.5, this implie& ~ 4 ¢, H. OJ

Proposition 4.8 shows that the canonical automaton can éx fos identification
of generalised nonblocking equivalent automata. To determvhether two finite-state

64

automata are generalised nonblocking equivalent, it isignoo construct their canon-
ical automata and check whether they are equal.

Canonical automata can also be used to test the generalisbtboking preorder.
To check whethe6 <4) H, it is possible to inspect at-marked states of the syn-
chronous product of the canonical forms@f&andH and compare the associated lan-
guages. For everyp-marked language of an-marked state o5, there needs to be
a sublanguage associated with some correspondingarked state oH. The lan-
guages can be compared polynomially since they are refessdaterministically in
the canonical automata. However, the test for languagesiar requires only a de-
terministic representation for one of the two languagespamed, and it is enough to
construct only the canonical automatontbto check whetheG <4) H.

4.4.2 Algorithmic Construction

In the previous section, the canonical automaton has beaestroccted from a semantic
model CC, and its uniqueness has been established. Thisspatjwoses an algorithm
that, given a finite-state multi-coloured automat®r- (>,1M,Q,—,Q°, =), computes
its canonical forn¥ <7 (G).

The first step in the computation of the canonical automatdhe construction of
the lower automaton, because it contains the languagesiatgsbwith alla-marked
states, which are needed to ensure minimality of the upgensaion.

The lower automaton consists of the minimal determinisgtimognisers of all the
w-marked languages of aft-marked states o5. To construct it, the first step is to
remove fromG all states from where n@-marked can be reached, that is, its state set
is restricted to

Ry={Xx€Q|x—Z(w)}. (4.25)

Then subset construction [18] is used to construct a detéstit recogniseY %t of all
nonconflicting completion languages Gf The subset construction starts with initial
state sets corresponding to eactimarked state and continues until all reachable state
sets have been explored. More precisely,

viet— (5 {w}, 2R ., Q0,Zy) (4.26)

where
o ngonrX,YgRwanderifandonIyifY:{yeRw|X§>y}andY7é(l);
e XeQifandonly if X = {x € Ry | Xq = x} for somexy € =(q);
e Zy(w) = {X CRy | XNZ(w) £0}.

65

This automaton is then minimised using Hopcroft’s alganitfi7] to obtain a unique
and minimal lower automatovi. For each initial statg® of the minimised lower au-
tomaton, a neva-marked state” is created and linked via &transition tox°. These
a-marked state comprise the state\6€t In order to link this automaton to the upper
automaton later, a map is kept that links thenarked states @& to their corresponding
states irv?.

Next, the upper automaton is constructed. In order to erikatét accepts precisely
the Ianguage%(CCE’g w)(G)) = 29%(G), the state set db is restricted to states from
where ano-marked can be reached, i.e., to

Ry ={xeQ|x—=(a)}. (4.27)

Then a second subset construction is used to obtain a detstimirecognisetJ %€t
of Z%(G).

In order to establish uniqueness with respec—t&(«gw(g), for each state set C
Ry in this subset construction, the associated set of minirmatonflicting comple-
tions,

cey

a,w

)(X)={C C Z* | There existc € =* such thatG = X and (c,C) € (4.28)
CCE‘(’M))(G)i} ,

needs to be determined. Therefore, each state€ sethe subset construction is associ-
ated with the set of all initial states of the lower automatatiat have been associated
with somea-marked state contained K. The w-marked languages of these states
are checked for language inclusion, and the initial states@ated with non-minimal
languages are removed from the set of languages associdteX wThe w-marked
languages of the remaining states make up the s%%(@X).

Now the automatot %t is minimised subject to an initial partition based on the
sets (4.28). Two subset statésy C R, can only be merged if
ccv

(a,w

/(X) =CCY 4 (Y). (4.29)

This is done using Hopcroft's algorithm [17] with an initjgértition based on the min-
imised sets ofx-marked states, which satisfies (4.29). The result is a enmgunimal
upper automaton with states partitioned in the coarsesilglesvay that respects .
The final step in the construction of the canonical autom&dno link the upper
and lower automata. Each std¥ of the minimised upper automaton is linked via a
T-transition to all thea-marked states iW? that have been associated with some
marked state dB contained in one of the state sets associated with the metaefX].

66

6%-%&2&31‘17}
3

oS e

‘ ;
{as.a7. 00} Q4~QS-CI8«,Q10,Q11,(112}

Figure 4.3: Example construction of canonical automaton.
67

Example 4.6 Figure 4.3 demonstrates the process of construction of anergcal
form ¢ <7 (G) of automatorG.

The first step is to apply subset construction starting floethreen-marked states
4, s, anda1. This results in the deterministic automai¥ftalso shown in figure 4.3.
Its three initial stategqs}, {d11}, and{ds,qs,qs} correspond to the thre@-marked
states ofG, from which the subset construction originates—thenarked statey, is
expanded tdqs, s, gs} because of its outgoingtransitions.

Next, the intermediate lower automatwfi¢t is minimised using Hopcroft's algo-
rithm, resulting in the lower automatdh After merging, this automaton has only two
initial states: statgg corresponds to the original-marked stategg anddi 1, while v4sg
corresponds to the original-marked statey. It can already be seen that themarked
language of/g is contained in thev-marked language of;ss.

Next, to construct the upper automaton, subset construistapplied td to obtain
its deterministic forntJ %€t Owing to the fact thatr- andw-marked states are reachable
from all states ofG, this automaton is very similar to the intermediate loweoama-
ton V9. The a-marked states df/ %€t are {q4,0s,0s} and {qa,0s,qs, d10,911, d12}-
These states are both associated with the lower-automaitiad statesvg and vasg,
however sinceZ®(vg) C .£%“(v4s8), only vg is considered. Botlr-marked states are
associated with equal sets of lower-automaton initialestaso they may be merged
during minimisation. And indeed, minimisation results e tautomatotJ with only
onea-marked stateissg.

Finally, the upper and lower automata are linked, resultirte canonical automa-
ton ¥ <7 (G). The onlya-marked state of the upper automatomjsg, which is to be
associated witlvg in the lower automaton. Therefore, the newmarked state/g is
created and linked via silent transitionsug andvsg.

It becomes clear that the canonical automaton, althoughueniis not minimal.
Sincevg has only one outgoing-transition that leads to statg with no other incoming
transitions, stateg andvg can be merged while preserving generalised nonblocking
equivalence. Furthermore, the language of lower-automstiatevs; is equal to the
language of upper-automaton statg, and since for lower-automaton states only the
language is relevantiz; can be replaced byp;. This results in the automatc#ie?’,
which is generalised nonblocking equivalente7 (G) and toG.

The algorithm to construct the canonical automaton is egptal. The upper and
lower automaton are obtained through subset constru@imhthe number of states of

68

the canonical automaton is bounded by

Uccl| + [Voe| + V& §2|Q‘+2‘Q|‘|‘E(a>|
=021y . (4.30)

To estimate the number of transitions, note that the uppérl@mer automaton are
deterministic automata linked by twotransitions for eaclw-marked state. Thus, the
number of transitions of the canonical automaton is bouryed

1%][Uoc] + |Z]Veo| + 28| = O(2[29) . (4.31)

The construction of the upper automaton requires testasfguage inclusion to see
whether languages associated to differ@fiharked states are contained in each other.
There are up t(%|E(a) |(|=(a)|—1) pairs ofa-marked states that need to be compared,
and each test in the worst case requires construction ofésymous product of two
deterministic automata with/® states each. The time complexity of the language
inclusion check is determined by the number of transitidrie@synchronous product,
which is bounded byz|(2/Q))2 = |£|4/Ql. In practice, the test can often be completed
much faster, because identical stateSafan be recognised in the subset construction,
and because the test can stop early when language inclgsimt satisfied. Still, the
worst-case time complexity of the algorithm to construet¢hnonical form is

O(|=||=(a)|24?) = O(|2||Q[*4?) . (4.32)

Despite its exponential complexity, subset constructdmown to be well-behaved
iIn many practical cases. In [34], subset construction has lsed for compositional
verification of safety properties of very large discretesvsystems models. Such re-
sults suggest that the canonical automaton may be a useftiibtacompositional veri-
fication of generalised nonblocking.

69

Chapter 5

Comparing Two Automata with
Respect to the Conflict Preorder

In this chapter we introduce a concrete algorithm with wihtichpossible to compare to
arbitrary automata with respect to the conflict preorded, thiis by extension conflict
equivalence.

The ability to compare two automata with respect to conflictiealence is essential
in order to construct a canonical form of automata with respeconflict equivalence,
as will be described in chapter 6. Furthermore, being ableatoulate whether one
automaton is more conflicting than another is useful withie field of supervisory
control. In [24] it is described how to design interface awiéba for subsystems. One
of the requirements for such interfaces is that they shoaileshbre conflicting than their
subsystem.

In this chapter we introduce a state-based method of céileglavhether one au-
tomaton is less conflicting than another usli@ — Pairs. An LC — Pair is a pair of
state sets which represent nonconflicting completions. iga go on to show that
theseLC — Pairs can be used to determine whether an automaton is less cimgflict
than another by looking at a finite number of state sets.

In addition the algorithm to test the conflict preorder hasrbenplemented in the
discrete event systems tool Supremica [1], and has beentoseEunpare several au-
tomata. We give experimental results which show that whigeatigorithm in the worst
case runs in linear exponential time, in practice for manpmata of non-trivial size
the algorithm can calculate an answer within seconds. Astaoyautomata can be
compared with respect to fair testing using conflict eqe@mak it is also possible to
use this algorithm to test fair testing equivalence. In [84]algorithm for testing fair
testing equivalence is presented. While both algorithme hiaear exponential time
complexity, the algorithm presented in this chapter hagfdime complexity than the

70

fair testing algorithm, furthermore the algorithm from tlpaper has not been imple-
mented to the best of our knowledge whereas our algorithm has

In the following, Section 5.1 introduces how nonconflictiogmpletions can be
used to compare automata with respect to the conflict precgdetion 5.2 introduces
less conflicting pairs and shows how they can be used to éeseonconflicting com-
pletions. Section 5.3 shows how less conflicting pairs candael to calculate the set
of certain conflicts of an automaton. Section 5.4 descrilo®g lbss conflicting pairs
can be used to characterise the conflict preorder. Aftersya&dction 5.5 proposes an
algorithm to calculate less conflicting pairs for finitetstautomata. Section 5.6 de-
scribes an implementation of the algorithm. Section 5.8¢més the results from using
the algorithm to compare several automata together.

5.1 The Conflict Preorder and Nonconflicting Comple-
tions

As has already been described in section 2.6 a nonconflicongpletion of the au-
tomatonA is a pair(c,C) of trace and language such that for every test automaton
and stater such thatA|| T is nonblocking andlr = xg it holds thatxr > for some
sw € C. That is in order for a test automaton which is capable ofgrering the trace
c to be nonblocking withA, all processes which can be reached iafter c must be
capable of performing at least one trac€in

In this subsection we introduce how we can use nonconflicorgpletions to test
whether two automata are less conflicting. It is already kmtivat nonconflicting com-
pletions can be used to compare two automata with respeontbat-equivalence, but
it was unknown how to use nonconflicting completions in a ficatalgorithm to com-
pare two automata with respect to conflict-equivalencer@ tere two main problems
in implementing such an algorithm. Firstly in general thefenonconflicting com-
pletions of any given automaton is infinite. Second and mamgortantly previously
is was not known how to calculate for any given tudeC) and automato whether
(c,C) € CC¥(A). In this section we will show how nonconflicting completiczen be
used to test whether two automata are conflict-equivalansubsequent subsections
we will go on to show how nonconflicting completions can becahkdted using.C
pairs.

Theorem 5.1 Let A= (Z,Q,, —,,Qa) andB = (Z,Qg, —5, Q) be two automataA
is less conflicting thaB if and only if for all c € Z* and allxa € Qa such thatA = Xa
it holds that(c, . Z“(xa)) € CC¥(B).

71

Proof. First let us assume that for allc Z* and allxa € Qa such thath = X, it holds
that(c,.£%(xa)) € CC?(B). We will show thatA is less conflicting thai.

Let T be a test automaton such tHat T is nonblocking. Letc be a trace and
(xa, XT) be pair of states such thaf| T = (xa,xt). From definition 2.7 aéc, £%(xa))
€ CC?®(B)) andB || T is nonblocking the stater must be able to do at least one trace
sw € Z%(xa). Therefore(xa,xt) = andA|| T is nonblocking.

Now let us assume thétis less conflicting thaB we will show that for allc € Z*
and allxa € Qa such thatd = x, it holds that(c, 2% (xa)) € CC¥(B).

Letc € X* be a trace anda € Qa be a state such that= Xa. From definition 2.7
it holds that(c,.£%“(xa)) € CC(B) if for any given test automatoh and statesr such
thatB || T is nonblocking andr = x7 thenxt =¥ wheresw € .£%(xa). LetT be an
automaton and state such thaB|| T is nonblocking and 5 XT. AsA =S Xa it holds
thatA|| T = (xa,x7). Furthermore a8 || T is nonblocking andh <cont B it must also
be the case tha || T is nonblocking, therefore there exists a traaec £“(xa) such
that (xa, x7) 3. x7 =5 can do this trace therefofe, £(xa)) € CC?(B). O

5.2 Less Conflicting Pairs

Determining whether or not the pgie,C) for any given languag€ is in fact a non-
conflicting completion is non trivial. In order to be able tetermine whetheC is in

fact a nonconflicting completion of the automaton it is nesseey to identify the sets
of states that the automaton may reach over the langGagEthis is done using the
well-known subset constructiofl8]. To capture termination, the usual powerset state
space is extended by a special s@atentered only after termination.

Definition 5.1 Thedeterministic state spacd automatorA = (X,Q,—,Q°) is
Qiet= U {w}, (5.1)

and thedeterministic transition functiofget: Qu'x (Zu{w}) — QYtfor Ais defined

as
det w, if 0= wandX 2;
o8 (X, 0) = o _ (5.2)
{yeQ|X =y}, otherwise
The deterministic transition functiodf®' is extended to tracesc =* UZ*w in the
standard way. Note th&@#{¢{(X,s) is defined for every tracec =* UZ*w; if none of
the states irX accepts the trace this is indicated by3§¢{(X,s) = 0. This is also true
for termination: ifw is enabled in some state X, then 63°(X, w) = w, otherwise
35X, w) = 0.

72

In order to determine whether or not the langu&gs a nonconflicting completion
of the automatorB, we will use a possibly nondeterministic automatoto represent
the language of. We will then compare the state sets which bat#ndB can reach in
parallel to one another. Therefore, the deterministicditaon function is also applied
to pairsX = (Xa, Xg) of state setXa C Qa andXg C Q.

SR%(X,5) = BAB(Xa, Xe,) = (R (Xa,S), 05 (Xe, 9)) - (5.3)

We now give a definition of less conflicting pairs. A pair oftstaetsXa, Xg) is a
less conflicting pair if and only if the language represerigX, is a nonconflicting
completion of the automaton representedXgy The set of less conflicting pairs is
defined hierarchichally in such a way that lower ranked les¥licting pairs can be
used find higher ranked less conflicting pairs.

Definition 5.2 LetA= (Z,Q,, —,,Qa) andB = (%, Qg, —5, Qg) be automata. The set
LC (A, B) C Qdetx Qe of less conflicting pairgor A andB is inductively defined by

LCO(A,B) ={w} x Q¥ U { (Xa,Xg) | Xg C Qg and there exists
Xg € Xg With #®(xg) =0} ; (5.4)
LC™1(A,B) ={ (Xa,Xg) | there existsxg € Xg such that for alt € =*, if (5.5)
XB Y then there exists C tw such thatc‘i,f%(XA,XB,r) €
LC'(A,B) for somei <n};
LC(AB)=|JLC"(AB). (5.6)

n>0

Remark 5.1 If (Xa,Xg) ¢ LC(A,B), then according to (5.5), for every statg € Xg,
there exist$ € =* such thakg -2, andd9€Y(Xa, Xg, r) & LC (A, B) for all prefixesr C tow.

The idea of definition 5.2 is to classify a pdiXa,Xg) as less conflicting, if the
marked language ofa is anonconflicting completiof25] for the process with initial
statesXg. That is, every test that is nonconflicting in combinationtha@ach of the
states inXg can terminate with at least one trace from the marked lareyhda.
Or conversely, every test that cannot terminate using ariefraces in the marked
language o also is conflicting withXg (see lemma 5.3 below).

The first state seXa of a pair(Xa, Xg) is just used to representanguageof possi-
ble completions. If state se¥a andYa have the same languages, then all p@fs Xg)
and(Ya, Xg) have exactly the same less conflicting status. For the sestatel seiXg
on the other hand, the complete nondeterministic behaisagtevant.

A pair (w,Xg) is considered as “less conflicting” (5.4), since termiratias al-
ready been achieved iA. If Xg contains a stateg such thatZ®(xg) = 0, then

73

(Xa,Xg) also is less conflicting (5.4), because conflict is guarahieég. For other
pairs(Xa, Xg), it must be checked wheth¥g contains a requirement to avert blocking
matching that given by the languageXf (5.5).

Example 5.1 Consider again the automatg andBg in figure 2.2. It is the case that
({ag}, {bo}) € LCY(Ag,Bo). There are three ways to terminate frogpby executingo
orafBworaaPw. Allthree traces are possible &g, each taking the pai{ao}, {bo})

to the deterministic successam, w) € LC%(Ag,Bg). This is enough to confirm that
(5.5) is satisfied.

On the other hand({ag}, {b2}) ¢ LC1(Ag,Bo). From stateay, blocking occurs
with a testT that can only executgw, but this test is nonblocking with,. It holds
thatby l;w where tracg3w has the prefixes, 8, andBw, but 525%0({610}, {bo},€) =
({ao}. {b2}) # LCO(A0,Bo), 85, ({ao}, {bz}, B) = (0, {bs}) ¢ LC°(Ao,Bo), and fi-
nally 53¢t ({ag},{bo},Bw) = (0, w) ¢ LCO(Ag,Bg). Therefore, (5.5) is not satisfied

and({aAgj»B,O{bz}) ¢ LC1(Ao,Bo). It can also be shown théfag}, {b2}) ¢ LC (Ag, Bo).

For alevel-1less conflicting pairXa, Xg) € LC(A B), if Xg does not contain
blocking states, then there must exist a st@te Xg such thatZ“(xg) C .£%“(Xa).
This is not the case for every less conflicting pair, as sonmblocking requirements
are only implicitly contained in the automaton. To show tff, Xg) is a less con-
flicting pair, it is enough to find a state ¥ € Xg that can cover an initial segment
of Z“(Xa), as long as a less conflicting pair ofcaver levelis reached afterwards.

Example 5.2 Consider again automa#g andBsy in figure 2.4. By definition(w, w) €
LCY(A2,By), and following from this,({a1},{bo,b1}) € LC1(A;,B,), because the
marked language @f; is a* w, which also is the marked languagelaf

Now consider the paif{ag},{bo,b1}). Stateag has the marked languagex * w,
l.e., to avert blocking fronag, a test must be able to execute at least one of the traces
in aa™w. Although this language is not directly associated with state inB,, the
nonblocking requirement is implicitly present in stée If blocking is to be averted
from statebs, eventa must be possible. After executirg statebg is entered, from
where it is always possible to silently return to statewith marked language ™ w.
Therefore, in order to avert blocking from stdig it is necessary to execute and
afterwards be able to terminate using one of the traces'iw. This amounts to the
implicit nonblocking requirement to execute a trace fram™ w in stateb;.

Therefore({ao}, {bo,b1}) ¢ LC*(Ag,B), but ({ao},{bo,b1}) € LC?(Ag,By) ac-
cording to (5.5): every trace that leads to a terminal staa Stateb; has the prefixa,
anddgey ({ao}, {bo, b1}, a) = ({a1}, {bo,b1}) € LCH (A2, By).

74

As shown in the example, some nonblocking requirements twalse constructed
using a saturation operation that combines two previougiynd@ nonblocking require-
ments. The leveh of a less conflicting paifXa, Xg) € LC"(A, B) represents the nesting
depth of applications of this saturation operation.

The level of less conflicting pairs can also be seen as megsunagresstowards
termination. When moving to the next level, a strongly cot@@component is exited
and some state combinations become unreachable. The ideagoéss is essential for
conflict semantics. By (5.6), every less conflicting pair nhestn a set. C"(A, B) for
somen € N, even for infinite-state systems.

In the following lemma we shows that under all circumstangbsre (Xa, Xg) is
not inLC (A, B), that there exists an automaton which is both nonblockirig ¥4 and
incapable of performing any trace i#f“(Xa). This automaton is a counterexample
which shows thatZ®(Xa) is not a nonconflicting completion &.

Lemma5.1 Let A= (Z,Q, —,,Qa) andB = (Z,Qg, —g,Qp) be automata. LeX =
(%a.Xe) ¢ LC(A,B). LetB' = (£,Q,—,Q°) Xa[B).

Then there exists a deterministic automaign= (>, Q;, —1, Q5 {x5}) such that
both the following conditions hold.

(i) L2Xa)N L (T)=0.
(i) B'|| T is nonblocking.
Proof. Construct the deterministic automatdn = (%, Q, =, Q7 {X7}) such that
Z(Tx) ={seT' U w| B F(X,r) ¢ LC(A,B) forallr C s} . (5.7)

This language is prefix-closed by construction and nonerbptauseX ¢ LC (A, B).
Therefore,Tx is a well-defined automaton.

(i) Let xa € Xa. If xa 2 for somet € 5%, thenda%(X,tw) = (w,Ys) € LC°(AB) C
LC (A,B) for someYg € Qget by definition 5.1 and 5.2. It follows from (5.7) theb ¢
Z(Tx), and thus(xa,X7) 2 does not hold. Sincee =* was chosen arbitrarily, it
follows that.£®(x,,x;) = 0. ThereforeZ®(Xa) N.Z“(T) = 0.

(ii) Let xg € Xa, Y& € Qg, Y1 € Qr, ands e =* such thaB|| T = (yg,yr). From
(5.7) it follows thatd{%(X,s) ¢ LC(A,B). Let 55%(X,s) =Y. ThenY ¢ LC(A,B),
so there exists a trates X* such thayg ¥ and for allr C t it holds thaté,fg(Y,r) ¢
LC(A,B) (see remark 5.1). Thuss 2 ve ¥ and for all prefixesu C ste, it holds
that 5,‘5’98‘(X,u) ¢ LC(A,B). Thenstw € Z(Tx) according to (5.7), and sinck is
deterministic, it follows that/ =3 Therefore,(ys,yT) t:“>’, As s,xg,yg andyt were
chose arbitrarilyg’ || T is nonblocking. O

75

We further show that if the tupléXa, Xg) € LC (A, B) then for any test automaton
T, and any stater from the automato it must be the case that eith¥p || X7 is
nonblocking orXg || xr can reach a blocking state.

Lemma5.2 LetA= (3,Q,,—4,Qa), B=(Z,Qg,—5,Qg), andT = (X,Q7, —1,Q5F)
be automata, and lef € Qt be a (possibly unreachable) state. For every less conflict-
ing pair (Xa, Xg) € LC (A, B), at least one of the following conditions holds.

(i) Xa= w, orXa C Qa and there existga € Xa such thatZ®(xa,xr) # 0.

(i) There exists stategs € Xg, Y € Qp, andyt € Qt such thatxg,xt) = (Y8, YT)
and.Z%(yg,yr) = 0.

(Here and in the following, the notatio®“(xa,xt) is abused to be a shorthand for
Z9((xa:x7))-)

Proof. As (Xa,Xg) is a less conflicting pair, it holds théXa,Xg) € LC"(A,B) for
somen € N. The claim is shown by induction am

If (Xa,XB) € LCO(A, B) then by (5.4) it holds thaXa = w, or Xg C Qg and there
existsxg € Xg such that?®(xg) = 0. In the first case (i) holds, and in the second case
(ii) holds as(xg, xT) < (Xg,x7) and.Z2(xg,x7) = L% (xg) N.L%(x7) = 0.

Now assume the claim holds for alK n, i.e., for all (Xa, Xg) € LC'(A, B), one of
the conditions (i) or (i) holds, and consideXa, Xg) € LC"1(A,B). By (5.5), there
existsxg € Xg such that for alt € Z*, if xg t:°§ then there exists a prefiC tw such that
63?8‘(XA,XB, r) e LC'(A,B) for somei <n. If Z®(xg,x1) = 0, (ii) follows immediately
as(xg,X7) BN (xg,x1). Therefore assume thaf“(xg,x1) # 0, i.e., there existse Z*
such that(xg, xT) L Thenxg t:“>’, so there exists C tw such thaténgt(XA, Xg,r) €
LCi(A, B) for somei <n. Asr Ctw andxt t:w>, it also holds thakt SN yr for some
yr € Qr. Let 62%‘(XA,XB,r) = (Ya,Yg). By inductive assumption, (i) or (ii) holds for
(Ya,Yg) € LC' (A B) andys.

(i) In this case, eitheYa = w, or Ya C Qa and there existga € Ya andu € Z* such
that (ya,yr) 50 Ya = w, thenéget(XA, r) = Ya = w and according to definition 5.1
there existga € Z* such thatr = raw, and there exists statag € Xa andya € Qa
such thatxa A YA 2 e, (Xa, XT) A% |f there existsya € Ya andu € Z* such that
(YA, ¥7) % then sinceE,i'et(XA,r) = Ya, there existxa € Xa such thatxa = Ya, i.€.,
(Xa,XT) = (Ya,¥7) =. In both cases, (i) holds fdiXa, Xg) andxr.

(ii) If there exists a statgg € Yg such thatyg, y1) = (z8,2r) where.#%(zg,z1) =
0, then since§§'e‘(XB,r) — Yg, there existxg € Xg such thatg — ys, Which implies
(X8, %T) = (YB,Y1) = (Z8,27) With £®(z5,zr) = 0. Thus, (i) holds for(Xa, Xg)
andxr. O

76

We further go on to show that {fXa, Xg) is in LC (A, B) that it is in fact the case
that Z%(Xa) is a nonconflicting completion ofg.

Lemma 5.3 LetA=(3,Q,,—4,Qa), B=(£,Q,—, Xg)[B] be automata. Leta C Qa.
Then(g, £%(Xa)) € CC®(B) if and only if (Xa, Xg) € LC (A, B)

Proof. First we will prove that if(Xa, Xg) ¢ LC (A, B) then(g, £%(Xa)) ¢ CC®(B).

From lemma 5.1 their exists an automatfosuch that?*(Ya) N.Z*(Q3) = 0 and
B|| T is nonblocking. ClearlyT < Q5 therefore(e, Z%(Xa)) ¢ CC*(B).

Second we will prove that ifXa, Xg) € LC (A, B) then(g,.£%“(Xa)) € CC?(B).

LetT = (Z,Qg,—1,QF) be an automaton such thaf| T is nonblocking we will
show thatZ®(Xa) N.Z(Q5) # 0.

As (Xa, Xg) € LC (A, B) from lemma 5.2 either there exists a stgtec Xa such that
L9 (xa) NZ“(Q5) # 0 or there exists stateg € Xg, Ys € Qp, andyr € Qr such that
(xg,XT) = (YB,Y7) @and-Z“(ys,yr) = 0 In the first case a&*(xa) C .£“(Xa) it holds
that. 2% (Xa) N2 (Q7) # 0. In the second cas®|| T = (yB,yr), as.Z“(yg,yr) =0 it
would hold thatB || T is blocking. As this contradicts our assumption abdut must
be the first case.

0J

5.3 Less Conflicting Pairs and Certain Conflicts

Less conflicting pairs can be used to characterise the smrtdin conflictsof an au-
tomaton as defined in 2.5. This shows the close link betweedhflict preorder and
the set of certain conflicts. If a paid, Xg) is a less conflicting pair then, since termi-
nation is impossible from @, conflict must be also presenXgn In this case, every
trace leading to{g must be a trace of certain conflicts. This observation leadbe
following alternative characterisation of the set of certzonflicts.

Theorem 5.2 The set of certain conflicts & = (%, Q, —,Q°) can also be written as
CoNF(B) = {se 2* | (0,55%(Q°,r)) € LC (O, B) for some prefix Cs}, (5.8)

whereO = (3,0, 0,0) stands for the empty automaton.

Proof. First lets € * such that(0, 33¢(Q°,r)) € LC(O,B) for somer C s, and let
T = (%,Q¢,—71,QF) be an automaton such tHat=. It is to be shown thaB|| T is
blocking. SinceT = andr C s, it holds thatT EN xt for some statexr € Q. Since
(0,388YQ°,r)) € LC(0,B), either (i) or (ii) in lemma 5.2 holds. However, (i) is im-
possible as the first state set of the pair is empty, so (iitiesrue. Thus, there exists

77

a statex € 83°(Q°,r) such that(x,xr) = (y,yr) where.Z%(y,yr) = 0. ThenB|| T is
blocking asB|| T = (x,x1) = (Y,yT).
Conversely, les € =* such that(0, 55°(Q°,r)) ¢ LC (O, B) for every prefixr C s.
It is to be shown thas € NCoNF(B). Consider the deterministic automatdnsuch
that
ZL(T)={tez"|(0,63°(Q°,r)) ¢ LC(O,B) forallr Ct}. (5.9)

T is a well-defined automaton a&(T) is prefix-closed by construction. It remains
to be shown thaB || T is nonblocking. LeB | T 5N (x,xt). Thent € £(T), and by
definition of T (5.9), it holds thaf®, 5¢{(Q°,t)) ¢ LC (O, B), and the same holds for all
prefixes oft. Alsox e 6§et(Qo,t), so there exists a tracec £* such thai =, and for
every prefixr C ucw, it holds thatd§%(0, 33°(Q°,t),r) ¢ LC (O, B) (see remark 5.1).
By definition (5.9), it follows thatuw € .Z(T), and sincd is deterministic alsar =
ThereforeB|| T = (x,x7) =, i.e.,B| T is nonblocking. O

The result of theorem 5.2 shows how less conflicting pairegsise certain con-
flicts for the case when two automata are compared, and inicatdn with the al-
gorithm in section 5.5, less conflicting pairs lead to anraléve presentation of the
algorithm [22] to compute the set of certain conflicts.

5.4 Testing the Conflict Preorder

Given the less conflicting pairs for two automa#andB, it is possible to determine
whetherA <.niB. AutomatonAis less conflicting thaB if every testT that is noncon-
flicting in combination withB also is nonconflicting wittA. To check this condition,
it is enough to consider trac&| T = (xg,x7), and check whether termination is also
possible for every statey of A such thatA | T = (xa,xr). This amounts to checking
whether({xa},Xg) € LC (A, B) whenA = x and33¢{(Qg,s) = Xs.

However, this condition does not apply to traces of certairflects. Ifse Conr(B),
then every test that can executsis in conflict withB. In this caseA can still be less
conflicting thanB, no matter whetheh can or cannot execute the traxand terminate
afterwards. This observation leads to the following result

Theorem 5.3 Let A= (Z,Q,, —,,Qa) andB = (Z,Qg, —,Qg) be two automataA
is less conflicting thaB if and only if for all s€ NConr(B) and allxa € Qa such that
A= xa it holds that({xa}, Xg) € LC (A, B), whered3(Q3, s) = Xs.

Proof. We will show that it holds that a € NConF(B) and allxa € Qa such thaA =
Xa it holds that({xa},Xg) € LC (A, B), whered$¢{(Q3,s) = Xg, if and only if it holds
that allc € =* and allxa € Qa such thath = xa it holds that(c, . £%(xa)) € CC¥(B).

78

First we will show that if alls € NConr(B) and allxa € Qa such thatA =2 Xa it
holds that({xa},Xg) € LC (A, B), whered$®(Qg,s) = Xg, then it holds that alt € >*
and allxa € Qa such thatd = x, it holds that(c, . £%(xa)) € CC¥(B).

Letc € Z* be a trace andp € Qp be a state such that = Xa, we will show that
(c, %“XA) € CC¥(B)).

First let us consider the case where Conr(B). In this caseg(c,0) € CC*(B),
which in turn implies thafc, Z“(xa)) € CC®(B) as 0C £ (xa).

Second let us consider the case whereNCoNF(B). In this case from assump-
tion it holds that({xa},Xs) € LC(A,B) € LC(A,B), where53®(Qg,s) = Xs. From
lemma 5.3 it holds thate, Z“(xa)) € CC®(Xg). It then holds from proposition 2.2
that(c,.£%(xa)) € CC¥(B) asc € NConr(B) andd%eB 5 Xg.

Now let us prove that if for alt € 2* and allxa € Qa such thatA = Xa it holds that
(c,.£%(xa)) € CC®(B) it must hold that for als € NConr(B) and allxa € Qa such
thatA = xa it holds that({xa},Xg) € LC (A, B), whered3eY(Qg,s) = Xg.

Letse NCoNF(B) be a trace ansa be a state such that= x, we will show that
it must hold that{xa},Xg) € LC (A, B), whered$e(Qg,s) = Xa.

As A= xa it must hold that's, 2% (xa)) € CC¥(B). As(s,.2%(xa)) € CC¥(B) and
3584(Qg,s) = Xg from proposition 2.2 it must hold thdt, #“(xa)) € CC?(Xg). Fi-
nally fromlemma 5.3 ags, £%(xa)) € CC*(Xg) it must hold that Xa, Xg) € LC (A, B).

0

Example 5.3 Consider again automa#g andBg in figure 2.2. Recall that oNF(Bg) =
aX* from example 2.5, so the only state Ay that can be reached by a traset
CoNF(Bp) is ap. Therefore, it is enough to check the péfiag}, {bo}) according to
theorem 5.3, and it has been shown in example 5.1(ff#at, {bo}) € LC1(Ag, Bo). It
follows thatAg <conf Bo. This conclusion is made despite the fact thigp}, {b2}) ¢
LC (Ao, Bo), becausé{ap}, {b2}) is only reachable by traces € Conr(Bp), n > 2.

When using theorem 5.3 to determine whether an autonmatsriess conflicting
than some blocking automat®) the set of certain conflicts & must be known first.
This can be achieved using theorem 5.2, which makes it degsilzlassify state sets
in the subset construction & as certain conflicts. If a state s¥g C Qg is found
to represent certain conflicts, i.€0,Xg) € LC(O,B) according to theorem 5.2, then
(Xa,Xg) € LC(A,B) for every state seXa C Qa. Successors reached only from such
pairs are also certain conflicts Bfand should not be considered when testing whether
A <conf B according to theorem 5.3.

Example 5.4 Consider again automa#g andB; in figure 2.3. Composing with a
deterministic version oB; results in the following four pairs of states M and sets

79

LC (A]_, Bl) .

a B,y ({aa}, {bs}) w
| S O A QL ¢ e

({20}, {bo}) ({a1,82},{b1,b2})

({aa}, {by,b2})

LC (Az, Bz) .

({20}, {bo, b1})

(0, w)

Figure 5.1: Less conflicting pairs for the automata pairsgare 2.3 and 2.4.

80

of states inB; that should be tested according to theorem 5.3 to determireth&r
A1 Scont B

({20}, {bo}) ({as},{bs;b2}) ({&2},{bs,b2}) ({as},{bs}). (5.10)

All four pairs need to be considered Bsis nonblocking and thu€onr(B;) = 0.

The graph to the left in figure 5.1 shows these four pairs aed teterministic
successors. The four pairs (5.10) are marked as initi@stand the arrows in the graph
represent the deterministic transition function. Althbube deterministic transition
function is defined for all state set pairs and events, artow®, 0) are suppressed for
clarity of presentation.

The following less conflicting pairs to compake to B; are determined from the
graph:

(w,w) € LCO(A1,B1) ; (5.11)
({a0}7 {bO})> ({alﬂ 8.2}, {bla b2})7 ({&3}, {b3}) € LC1<A17 Bl) . (5.12)

For example({ay,az}, {b1,b2}) € LC(A1,B;1), because all the ways to reach termina-
tion from stateby, i.e., all traces inZ%“(b;) = a*Bw take the pai({a1,az}, {b1,b2})
to (w,w) € LC%(A;,B1). No further pairs are found ihC?(A1,B1), soLC (A1, B;)
consists only of the pairs listed above. For exampfey},{b1,b,}) ¢ LC?(Aq,By),
because the tracesfw € .£%“(b1) andyw € £“(b,) do not have any prefixes that
reach a pair i.C1(A,By).

As ({a1},{b1,b2}) ¢ LC(A1,Bs), it follows from theorem 5.3 tha#; is not less
conflicting thanB;.

Example 5.5 Consider again automa#g andB; in figure 2.4. Note thaCoNF(By) =
0. By composingA; with a deterministic version oB,, it becomes clear that the
only pairs that need to be tested to determine whe#ae€ons B2 according to the-
orem 5.3 arg{ap}, {bo,b1}) reached aftee, ({a1},{bo,b1}) reached afteo™, and
({az}, {bo,b1}) reached afteara™.

The graph with these pairs and their deterministic sucesssshown to the rightin
figure 5.1, with the three crucial pairs marked as initiale Tollowing less conflicting
pairs are discovered (see example 5.2):

(w,w) € LCO%(A2,By); (5.13)
({a1}7 {b07b1})> ({a17a2}7{b07b1})7 ({a2}7 {b07 bl}) S LCl(Az, BZ) ; (5-14)
({ao},{bo,b1}) €LC?(A2,Bp) . (5.15)

81

As the three crucial pairs are alllii€C (A, By), it follows from theorem 5.3 thaly <conf
B,.

The result of theorem 5.3 is related to the decision proeetlurfair testing [31].
The fair testing decision procedure starts by composingatitematonA with a de-
terminised form ofB, which gives rise to the same state set combinations that nee
to be considered as in theorem 5.3. From this point on, thentethods differ. The
fair testing decision procedure annotates each state afythehronous product ok
and the determinised form &with automata representing the associated refusal trees,
and searches for matching automata (or more precisely, &chmgproductive sub-
automata within these annotations. The method based on less caomdlipairs avoids
some of the resulting complexity by performing the comptigeision on the flat state
space of the synchronous product of the determinised fofrAsandB.

Another consequence of theorem 5.3 is that{fons B and the trace € NConNF(B)
it must be the case th&l/s <coniB/s.

Proposition 5.1 Let A= (Z,Q,, —,,Qa) andB = (Z,Qg, —5, Q) be two automata,
such that ScontB. Letse NCoNF(B). LetA/s= (3,Q,, —a, Xa) andB/s= (Z, Qg,
—g; XB)

ThenA/s <c¢oniB/s

Proof. We will prove thatA/s <conf B/s using theorem 5.3, by proving that for all
t e NCoNF(B/s) and allya € Qa such thaiA = x, it holds that({xa},Xg) € LC (A, B),
wheredd®(Qg,s) = Xe.

Lett € NCoNF(B/s) be a trace. Leya € Qa be a state such that = ya and
Yg C Qg be a state set such th&t N Yg. As detB) 2 Xg LN Yg — w, ste NCoNF(B).
Furthermore as ded) 3 Xa, Xa L ya. From theorem 5.3 ast € NConr(B) and
A ya, ({yal,Yg) € LC.

Therefore a#\ <cont B, ({ya},Ys) € LC. O

5.5 Algorithm to Compute Less Conflicting Pairs

This section proposes a method to effectively compute gedenflicting pairs for two
given finite-state automaandB. This is done in a nested iteration. Assuming that
the setLC"(A, B) is already known, the s&iC"1(A B) is computed in a secondary
iteration based omore conflicting triples

Definition 5.3 Let A= (Z,Q,, —,,Qa) andB = (3,Qg,—g,Qg) be automata. The
setMC"(A,B) C Q%etx Qgetx Qg of n" level more conflicting tripledor A andB is

82

defined inductively as follows.

MCG(A,B) = {(0,w,x8) | xs € Qg } ; (5.16)
MCﬂHl(A, B) = { (Xa, Xg,X%8) | (Xa,Xs) ¢ LC"(A,B) andxg € Xg and there(5.17)
exists a triplgYa, Ya,Y8) € MCJ,(A,B) ando € % such that
5/3%(XA,XB, o) = (Ya,Ys) andxg = yg } ;

MC"(A,B) = | J MC[}(A,B) . (5.18)

m>0

For a pair(Xa, Xg) to be a less conflicting pair, according to definition 5.2 éhaust
be a statexg € Xg such that every trace that takesto termination inB has a prefix
that leads to another less conflicting pair. A trighéa, X, xg) is considered “more
conflicting” if (Xa,Xg) is not yet known to be a less conflicting pair, and the state
Xg € Xg cannot be used to confirm the above property. Therefore, kB shows
that a triple(Xa, X, Xg) iS nh-level “more conflicting” if and only if the states € Xg
can reach termination without passing through a pairGn.

If (Xa,Xs,Xg) is “more conflicting” for allxg € Xg, then the paifXa, Xg) cannot
be a less conflicting pair. Otherwise, if there exists attleas statexg € Xg such that
(Xa, Xg,Xg) is not “more conflicting”, ther(Xa, Xg) is added to set of less conflicting
pairs in the next iteration. Theorem 5.4 below confirms thresmtness of this approach.

Lemma5.4 LetA= (Z,Q,,—4,Qa) andB = (X,Qg, —5,Qp) be automata, lat € N
and(Xa, Xs,Xs) € QdAEtx Qdet Q. The following statements are equivalent.

() (Xa,Xg,xg) € MC"(A,B);

(i) There exists a tracec Z*wU {&} such thaté,g‘th(XA,XB,s) = (0,w) andxg =,
and 3§ (Xa, Xa, 1) ¢ LC"(A,B) for all prefixesr Cs.

Proof. Firstlet(Xa,Xs,xg) € MC"(A,B), i.e.,(Xa, Xg,Xg) € MC (A, B) for someme
N. It is shown by induction om that (ii) holds.

In the base casem = 0, and by definition(Xa, Xg,xg) € MC{(A,B) means that
(Xa,Xs) = (0, w). Then consides = ¢, and not65£7e,3t(XA,XB,e) = (Xa, Xs) = (0, w)
andxg =. Clearlyr C ¢ impliesr = &, and 35¢/(Xa, Xg,) = (0,w) ¢ LC(A,B) D
LC"(A,B) by lemma 5.2. |

Now consider(Xa, Xs,xg) € MCy,. 1(A,B). It follows from definition 5.3 that
(Xa, Xs) ¢ LC"(A,B) andxg € Xg, and there existéYa, Ys,y8) € MC,(A,B) ando € £
such thaﬁng‘(XA, Xg,0) = (Ya,Yg) andxg 2 yg. By inductive assumption, there exists
atracese Z*wU{€e} such thatég%‘(YA,YB,s) — (0, w) andyg =, and for allr C sit

83

holds thatd§%(Ya, Ye,) ¢ LC"(A,B). Thend{a(Xa, X, 0s) = 335 (Ya, Y, S) = (0, w)
andxg 2 yg =, and for allr C ossit holds thats%(Xa, Xa, 1) ¢ LC(A,B).

Conversely, les € Z*wU {€} such that (ii) holds. This means tha{&(Xa, Xg, s) =
(0, w) andxg =, andé,ngt(XA,XBJ) ¢ LC"(A,B)forallr Cs. ltis shown by induction
onm= |s| that(Xa, Xg, Xg) € MC ,(A, B).

In the base case, whema= 0 ands = &, it holds by definition tha{Xa, Xg) =
355 (Xa, Xe, €) = (0,w) € MC{(A,B).

Now let s= ot such that|t| = m, and 5&'%(XA, Xg,s) = (0,w) and xg =, and
OR%(Xa, Xa,T) ¢ LC"(A,B) for all prefixesr C s. Write 533(Xa, Xg, 0) = (Ya, Yg) and
Xg = yg =>. Thenys = and3gel(Ya, Ya,t) = 53%(Xa, X, 0t) = 55%(Xa, Xa,5) = (0,)
anddg%(Ya,Ys,r) ¢ LC"(A,B) for all r C t. Then(Ya, Y8,y8) € MCT,(A,B) by induc-
tive assumption, and by definition 5.3 it follows thHaa, Xg,xg) € MCy,,1(A,B). O

Theorem 5.4 Let A= (3,Q,, — 4, Qa) andB = (Z,Qg, —g,Qp) be automata, and let
ne N. Then

LC™1(A B) = { (Xa, Xg) € QI x Q| (Xa, Xa,Xg) ¢ MC"(A,B) for somexg € Xg } .
(5.19)

Proof. Let (Xa,Xg) € LC™1(A,B). Then by definition 5.2, there exists € Xg such
that for allt € ~* such thatxg t:“ﬁ, there exists C tw such thatéﬂ?Bt(XA,XB,r) €
LC'(A,B) for somei < n. Equivalently, this means that if there does not exist a
tracet € Z* such thatxg Y and for all prefixes C tw it holds thatégg(XA,XB,r) ¢
LC"(A,B). Then(Xa, Xg,Xxs) ¢ MC"(A, B) because otherwise such a trace would exist
by lemma 5.4.

Conversely, lekg € Xg such tha{Xa, Xg,xg) ¢ MC"(A,B). To check the condition
in definition 5.2 (5.5), considdre * such thatxg % Then clearly3$ei(Xg, tw) =
w. By definition 5.1, it holds that eithed{®{(Xa,tw) = w or 3§&(Xa,tw) = 0. If
59 Xa, tw) = w, thendgel(Xa, Xg, tw) = (w, w) € LCO(A, B). Otherwisedge(Xa, tw) =
0 and thusé;\’th(XA, XB,tcb) = (0, w), and by lemma 5.4 there must exis_ tw such
thaténgt(XA,XB, r) € LC"(A,B) as otherwiséXa, Xg,xg) € MC"(A,B). In both cases,
O8%(Xa, Xa,) € LC'(A,B) for somer C tw andi < n. Sincet € =* with xg ¥ was
chosen arbitrarily, it follows from definition 5.2 (5.5) th&a, Xg) € LC™Y(A B). O

Example 5.6 Figure 5.2 shows a graph representing the more conflictiptps$r to
check whetheA, <cqnf B2 in figure 2.4. The arrows in the graph represent the deter-
ministic transition function in combination with the trainsn relation ofB,. An arrow

(Xa, X8, X8) > (Y, Ya,ys) indicates thabel, (Xa,Xg, o) = (Ya, Ya) andxs = ys.

84

({a1},{bo, b1}, by1) ({al,a;i,{boybl};bl) ({az}, {bo, b1 },b1)

»

({a0}, {bo, b1}, by)
O

({ao}ﬂ{b0>bl}7b0) o)) (({aZ}v{bO-,bl}‘,bo)

Figure 5.2: Calculating more conflicting triples for automas andBs; in figure 2.4.

In the first iteration to computMCO(Az, By), first the triple(0, w, by,) is added to
MC (A2, B2). Next, the tripleg{ao}, {bo, b1}, 00) and({as }, {bo, b1}, bo) are added to
MC?(Az,B,) as they can immediately rea¢d, w, b,,). Finally, ({ag}, {bo,b1},by1) is
also added tMC9(A,B,) as it can reach the tripiga; }, {bo, b1}, bo) € MCI(Az, By).
No further triples are found to be IMIC3(Ay,B,). Therefore,({a1}, {bo,b1},b1) ¢
MCO(Az,B,), so it follows from theorem 5.4 thdfa; }, {bo,b1}) € LC1(A;,B,), and
likewise ({a1,a2}, {bo,b1}), ({az},{bo,b1}) € LCl(Az, Bo).

In the next iteration to computélC (A, B,), we note thai{a;}, {bo,b1},bo) ¢
MC1(Az,B,) as ({a1},{bo,b1}) € LCY(A2,By). ({ao}, {bo,b1},b0) € MC1(Az,By)
because of the transition {®, w,b,,) € MC%(Az,Bz), but now ({ap}, {bo,b1},b1) ¢
MC (A2, B,) becausé{a; }, {bo,b1},bp) ¢ MC1(Az, By). Accordingly, the paif{ag},
{bo,b1}) is added td_C?(Ay, By).

In a final iteration to COI’npUtMCZ(Az,Bz), only one more conflicting triple is
found, (0, w,by,) € MC3(A2,B,). No further pairs are added IiC3(A, B,). At this
point, the iteration terminates, having found exactly tharfess conflicting pairs given
in example 5.5, (5.14) and (5.15).

To determine whether an automatArs less conflicting than an automatBnwe
first needed to determine the set of certain conflictB,aind then find all the state-set
pairs forA andB that are reachable from a pair liKéxa}, Xg) associated with some
trace that is not a certain conflict Bf The more conflicting triples can be constructed
as they are discovered during the backwards search froretménal states.

The complexity of each iteration of the more conflicting fegpcomputation is de-
termined by the number of arrows in the graph, which is bodrng | - |Qg|2- 214l .
2/Qs8l, because the powerset transitions are deterministic,hikioot the case for the
transitions ofB. Each iteration except the last adds at least one less dorgljgair, so
the number of iterations is bounded b2 - 2/Q8l. The complexity of this loop domi-
nates all other tasks of the computation. Therefore, thetaase time complexity to

85

Algorithm 1 Construct Deterministic State Space

1: Stack« {(Q,%‘y Qcé)v (07 Q%)}
2: Pairs<« {(Qa,Qg), (0,Q3)}
3: while Stacks 0 do

4. (Xa,Xg) < Stackpop()
5. forall o€ ZU{w} do
6: (Ya, Yg) < 0981 (Xa, Xz, 0)
7: if (Ya,Yg) ¢ Pairsthen
8: Pairs < Pairsu{(Ya,Ys) }
o: Stackpush(Ya, Ys))
10: end if
11: end for
12: for all xa € Xa do
13: if ({Xa},Xs) ¢ Pairsthen
14: Pairs < Pairsu {({xa},Xs) }
15: StackpusH ({xa},Xg))
16: end if
17: end for

18: end while

determine whetheh < qns B using less conflicting pairs is
O(2| - |Qa|?- 4%/ 41%]) = O(|z| - |Qg|? 22+2%%81) . (5.20)

This shows that the conflict preorder can be tested in lingporential time, as is
the case for the fair testing preorder. Yet, the complexity2(@) is better than the

time complexity of the decision procedure for fair testimghich is O(|Qal - |Qs| -
231Qal+5IQel) [31].

5.6 Implementation

To determine for two automat@ and B whetherA <. B, the implementation per-
forms three steps, presented as separate algorithms. Algstithm 1 computes the
set of reachable state-set pairs, second Algorithm 2 detesmvhich of these pairs are
less conflicting pairs, and third Algorithm 3 examines thenpated pairs to determine
whetherA <.ons B based on theorem 5.3.

In the first step, given two automata= (>,Q,, — 4, Qa) andB = (Z,Qg, =5, Qp).
Algorithm 1 performs a depth-first search to collect thePsets of all reachable state-
set pairgXa, Xg) € QdAetx Q%e‘, using aStackof pairs yet to be expanded. The search
begins with the initial state-set paiQa,Qg) and with (0,Qg), in order to calculate
both the composed deterministic state spac& ahdB and the set of certain conflicts

86

of B according to theorem 5.2. For each state-set P&irXg), the loop in lines 5-11
finds all successors and adds them into the set of pairs. lii@ddhe loop in lines
12-17 adds the pai(§xa}, Xg) for eachxa € Xa. This is done because these pairs have
to be checked for containmentir€ (A, B) according to theorem 5.3.

Algorithm 1 constructs the state-set pairs to detect th@fseg¢rtain conflicts and
to test the less conflicting condition in one iteration. Flacking automata, it may be
more efficient to discover all certain conflicts first and ussm to prune the search for
the remaining pairs.

In the second step, Algorithm 2 calculates thelsgtA, B) of less conflicting pairs
for A andB, using more conflicting triples as described in section 5.5.

The loop in lines 2—6 collects all pairsii€ °(A, B) according to definition 5.2 (5.4)
and adds them to the sk€C. Then the loop starting in line 7 adds to this the pairs in
the next leveLC"(A, B) by collecting the corresponding set of more conflictinglégp
According to definition 5.3 (5.16), this iteration startghwihe triples inMC5(A,B) =
{(0,w,xs) | X8 € Q }, Which can be restricted to states reachedu®s no other tran-
sitions lead taw € Qget. Then the algorithm looks backward to visit the predecessor
of each triple(Xa, Xg, xg). To find pairs(Ya, Yg) such thaﬁg%(YANB, 0) = (Xa,Xg) Iin
line 13 efficiently, it is advisable to remember the backwardnsition relation during
the construction of the state-space in Algorithm 1.

Finally, after all the more conflicting triples for the cuntdevel n are found, the
loop in lines 24-31 adds the new less conflicting pairsLfof(A, B) to the set.C.
According to theorem 5.4, this is done by checking each P&irXg) if there is any
triple (Xa, Xg, xg) ¢ MC{(A, B) with xg € Xg. If a new less conflicting pair is discovered
during this iteration, line 28 ensures that the main loogisigin line 7 is executed once
more to check for less conflicting pairs of the next level.

Lastly, Algorithm 3 is invoked to determine wheth&r<c.s B based on theo-
rem 5.3. The reachable state-set pairs are explored a sgowntb see if the relevant
pairs are in fact less conflicting pairs. In line 5, the seatcps when encountering a
pair (Xa, Xg) with Xa = 0, as such pairs cannot lead to a pdixa},Xs). And when
(0,Xs) € LC(A,B), thenXg and its successors represent certain conflicts according to
theorem 5.2, so according to theorem 5.3, these pairs arexptdred further either.
For the remaining pairéXa, Xg), the loop in lines 6—10 checks for statese Xa such
that({xa},Xg) is not a less conflicting pair—if such a pair exists tecannot be less
conflicting thanB according to theorem 5.3. If no such pair exists, the loopnead
11-17 proceeds to visit the successors. If no relevant(pairt, Xg) ¢ LC (A,B) can
be found after visiting all reachable state-set pairs, therahm terminates and reports
thatA <contB.

87

Algorithm 2 CollectLC-pairs

1. LC«+0
2: for all (Xa,Xg) € Pairsdo

3: if Xa={w} or Xg contains a blocking stathen
4: LC + LCU{(Xa,XB)}

5. endif

6: end for

7: repeat

8 Stack {(0,{w},xs) |BY xg}

9. MC {(0,{w},xg) | BS xg}

10: while Stack# 0 do
11: (Xa, XB, Xg) < Stackpop()

12: forall o € X do

13: for all (Ya,Yg) € Pairs\ LC such tha{&(Ya, Ys,0) = (Xa, Xg) do
14: for all yg € Yg such thag > yg do

15: if (Ya,Ys,yB) ¢ MC then

16: MC + MCU {(YAaYBayB)}

17: StackpusH(Ya, Ys,Ys))

18: end if

19: end for

20: end for

21: end for

22: end while
23: unchanged— true
24: forall (Xa,Xg) € Pairsdo

25: for all xg € Xg do

26: if (Xa,Xs,Xg) ¢ MC then
27: LC «+ LCU{(Xa,XB)}
28: unchanged— false

29: end if

30: end for

31: endfor

32: until unchanged

88

Algorithm 3 Check for Less Conflicting

1: Stack« {(Qa,Qg)}
2: Pairs <+ {(Qx,Q3)}
3: while Stacks# 0 do

4. (Xa,Xg) < Stackpop()
5. if Xa # 0 and(0,Xg) ¢ LC then
6: for all xa € Xp dO
7: if ({Xa},Xs) ¢ LCthen
8: return false
9 end if
10: end for
11: forall 0 € 2U{w} do
12: (Ya,Ys) ¢ 098L(Xa, Xa, 0)
13: if (Ya,Yg) ¢ Pairsthen
14: Pairs < Pairsu {(Ya,Yg)}
15: Stackpush(Ya, Ys))
16: end if
17: end for
18: end if
19: end while

20: return ftrue

5.7 Experimental Results

The algorithm to test the conflict preorder has been testgzhoa of moderately large
automata obtained during attempts at compositional n@kbig verification of dis-
crete event systems models of industrial applications. [IBg results are summarised
in Table 5.1.

The first six test cases are the checks needed to verify thegdamilosophers ex-
ample as discussed in example 2.7. The other automata pagdken obtained during
compositional verification of a manufacturing system macehg abstraction [12, 35].
Each test case seeks to compare an automaton constructeg compositional ver-
ification to a conflict equivalent abstraction that was coteguautomatically. Some
abstractions have been modified to produce test cases vineereriflict preorder is not
satisfied.

Table 5.1 shows for each test case the number of states obétuhtwo automata
composed$tateg, the number of reachable state-set pairs in the combinedrdimis-
tic state spacdrairs), the largest number of more conflicting triples constrdataring
the iterations of Algorithm 2Triples), and the number of less conflicting paitsO-
Pairs). The number in columiLC¥| indicates the number of new pairs discovered at
level k, not the total number of pairs at that level. Furthermore,tdble displays the
execution time Time) of each test, and whether or not the conflict preorder issati

89

fied (Res). All experiments were run on a standard laptop computerguai single
2.3GHz CPU and 3.8 GB of RAM.

Despite the exponential complexity of the algorithm, atltteases except one have
been solved successfully by the implementation, whichgsses automata with a few
thousand states in a matter of seconds. The level of lessatorglpairs, which also has
an exponential worst-case, does not exceed four in anyTthsse results suggest that
the conflict preorder can be tested in a reasonable time fdenately large automata
derived from practical applications.

90

Table 5.1: Experimental results

Instance States |Pairs| Triples LC-Pairs Time| Res.
A ZconiB Qul| 1Qel| IPairs| mc | e et |ie?|ie?itet| [S] |Sconf
St SeonfS; 52 12 19§ 13 21 90 0O 0 0O 0.1Qtrue
Scont St 120 52 80 149 1 25 0O O 0O 0.14 true
Si2 gconfs’m 90 13 483 65 2| 193 221 0O O] 0.19true
S, <contS12 | 13 90 200 1055 1 44 0 O 0 0.33true
S123 ScontSy3| 100 13 529 53 2| 236 14 0 0 0.19true
S’1_23,§Jconf8172;3 13 100 154 1054 1] 34 0 Of 0 0.36true
1.a)| 126 34 280 38 11 52 O 0O 0 0.08 true
b)| 34 126 183 57 87 50 O 0 0 0.04true
2.a)| 102 33 224 33 6/ 47 0 0O 0 0.04true
b)| 33 102 143 120 15 37 0O O 0] 0.02 true
3.a)| 624 615 7800 17618 13 5584 47| 0O 0] 2.6Q true
b)| 615 624 3402 9202 17 2813 O O O 1.17true
4.a)|1141104817318 42876 20511173906 56 0O 5.96 true
b) (1048114117625 45703 16911654990 0 0| 6.09 true
5.a)| 679 431 3538 1362 52 1561222 0O 0] 0.24true
b)| 431 679 1633 1795 59 784 0 O O 0.13true
6.a)| 165 153 1293 686 2 764 0O O O 0.15true
b)| 153 165 871 888 1 6013 O O O 0.12true
7.a)| 306 255 4145 3951 2| 2809128 O 0] 0.69true
b)| 255 306 1889 4522 1] 1500 O] O 0 0.38true
8.a)| 808 59823169 16195 219681 0O O O 4.42true
b)| 598 80811369 22677 2/ 8845 0 0 0 3.11true
9.a)|3853 7855537 10333 2]33231198 50 4632.55 true
b)| 783853 4003-440000 1 out of memory
10. a)|83045927170214 28269245040459 15 O O] 7.38 true
b) (5927830437140 37243202924313 0 0 O] 5.4Q true
11.a)|17731766 5976 3325 328 3734 0] 0 0 0.59true
b) (17661773 5956 3309 335 3720 0] 0O 0| 0.45true
12.a)| 498 487 2777 1756 2| 1367 70 0 0O 0.15true
b)| 487 498 2998 1677 2/ 1583 0 O 0 0.14true
13. a)| 424 392 2176 818 93 98 2 0 0O 0.21true
b)| 392 424 1341 809 87 822810 0 0O 0.15true
14.a)| 385 23113487 44240 2 9253389 0 0] 6.54false
b)| 231 385 5884 33618 2/ 6382 0 O O 4.73true
15.a)| 620 455 4978 9873 14 1774 1] 0O 0] 2.47false
b)| 455 620 3203 5408 19 5389 0 0 O] 0.77true
16.a)| 120 49 1156 750 284 343 0 0 O 0.12false
b)| 49 120 715 715 268 244 0 0 O 0.59true
17.a)| 306 169 5119 5520 2/ 2113 0O O O] 2.28false
b)| 169 306 177Q 2547 2| 949 60 0 O] 0.34true

91

Chapter 6
Conflict Normal Form

Two automataA and B are defined as being conflict equivalent, if when compared
with an arbitrary test automatoh, A || T is nonblocking if and only ifB|| T is also
nonblocking. Two automata are conflict equivalent if andyahthey are conflicting

in exactly the same situations. This describes conflictvedgmce in terms of how two
conflict equivalent automata can be used. It does not hovamsaribe what in the two
automata’s structure causes the automadadB to be conflict equivalent.

Another description of conflict equivalence is the noncatifig completion seman-
tics. This describes conflict equivalence in terms of thessavhich the test automaton
T must be capable of performing in order faf T to be nonblocking. The limita-
tion of this method is that there can be a potentially infimitenber of nonconflicting
completions associated with any given automaton.

The previous chapter describes how to determine whetheota given language
L is in fact a nonconflicting completion of the automatarThe chapter further shows
that for every finite-state automat@ithere is a finite set of languages which need to
be compared for inclusion in the set of nonconflicting cortiptes of A, in order to
determine whethdB is less conflicting thah.

This chapter builds upon this and shows that we can find a fimteimal set of
nonconflicting continuations of the automatan We further show that this minimal
set of continuations uniquely characterises the noncdénfijcontinuations of. This
means that the minimal set of continuations characterié#iseapotential conflicts in
A, and only the potential conflicts ifs. In addition if an automatoB is conflict equiv-
alent with A, it will have an identical minimal set of nonconflicting coniations to
the automatorA. This minimal set will be characterised as the conflict ndrfoan,
which is comprised of &runk automaton, paired with a set of nonconflicting require-
ments based upon thiatuink. This trunk and its nonconflicting requirements minimally
represent the nonconflicting continuationsfof

92

Figure 6.1 shows an example of an automatoand its resulting conflict normal
form, while showing intermediate stepA.is a nonderministic automaton. The trunk
automatortrunk(A) of the automator\ is constructed as a deterministic recogniser of
A’s language, with the exception that all statesrimk(A) are marked. Once the trunk
automaton is constructed, a set of nonconflicting requirgsnefA is also constructed.
For example the statg{1,2},.£%“(1)) represents that any test automaton which can
reach the stat€l, 2} must be capable of performing at least one trac&1(1). This
is represented by the stdté 2} being linked to({1,2},.£%(1)) by at transition. This
set is capable of characterising the nonconflicting congistof A but is not unique,
this is the initial conflict normal form of\. A series of refinement steps is then applied
to this nonconflicting requirement set until it is consiakmeeducible. This irreducible
set combined withirunk(A) uniquely characterises the automa#a nonconflicting
completion and is the conflict normal form Af

This chapter is divided into sections. In the section 6.1neduce requirements,
requirement sets, requirement automata, and all the aotatirrounding them. In
section 6.2 we show how to construct the trunk automatontfaéitial requirement
set for a given automaton. In section 6.3 we show how a reapgin¢ set can be refined
into a simpler equivalent requirement set. In section 6.4h@v that the refinements
in section three can be used to find an irreducible requirésetrwhich is unique for
any given conflict equivalence class. This is combined Wighresults from section 6.2
to show that the trunk and unique requirement set are caalonic

6.1 Notation

6.1.1 Nonconflicting Requirements

In this subsection we introduce the concept of nonconflictequirements. We first
define what a nonconflicting requirement is, next we define diff@rent requirements
relate to one another over, we then define how requirements are grouped together,
finally we show how requirements can be compared to one anothe

A nonconflicting requirement is a pair of state and langudggch nonconflicting
requirement(x,L) is used to represent a set of nonconflicting continuatiorerel
represents the continuation and the statepresents the set of tracgse *|G > x}.
The trunk automatof is the automaton which is used to define the set of states which
reachx. All the nonconflicting requirements for a given normal fowill always have
the same trunk.

We place various restrictions on what can be a nonconflicgggirement in order
to prevent obviously redundant requirements from beingnadt. The first is that the

93

a
e . 0 > e ¥
{0} a {1,2} B {2}
trunk(A)
({0}, .2%(0)) ({1.2},2°({1,2})) ({2},2%(2)

({1,2},2%(1))

Initial requirement automaton &

({1,2},{B,w})

({1,2},{a})
Conflict Normal Form oA

Figure 6.1: Example of an automaton and its Conflict Normahtor

94

language of the requirement must be prefix-free. A langlidgea prefix-free language
if for every traces contained irL, L contains no prefix o$.

Definition 6.1 LetL € Z*w be a language.
L is a prefix-free language if and only if for @t € L, sC t impliess=t.

Example 6.1 LetL = {a,af3,8} be alanguage. This language is not prefix-free. This
is because botlr anda 3 are elements df, while a C a3. Becaused. is not prefix-
free, if L is being used to represent a nonconflicting continuation aveimmediately
statel contains redundant traces. This is because a nonconflaimgnuation is satis-
fied as long as any trace inis accepted by the test automaton. If the test automaton
can performa 3 that automatically implies that can performa. Therefore whenever
the tracea 3 could be used to satisty, the tracex can be used instead. This is because
a is a prefix ofa 3.

LetM = {a,B} be alanguage. This language is prefix-free.

We further define the function prune such that for any giverglegel, we can
find its appropriate prefix-free language.

Definition 6.2 LetL be a language.
prunglL) = {se LVt eLif t C sthens=t}

Example 6.2 Consider the languagésandM from the previous examplprungL) =
M. This is because is a prefix ofa 3, thusa 3 is pruned back to the eveot

A useful property of the prune relation which will be usectlatn in this chapter is
that prune is commutative with language derivation.

Lemma 6.1 LetL be a language. Lete prunglL).
prunglL)/s= prunglL/s).

Proof. First we will prove thatprungL)/s C prunglL/s). Lett € prunglL)/s be a
trace, by definition 2.3 it is the case tish prungL). Thereforest € L and for every
tracep € L such thatp C st it holds thatp = st. Therefore € L/s, and for every trace
p € L/ssuch thatp C t it holds thatp = t, therefore must be a trace iprungL/s).

Next we will prove thatprunglL/s) C prunglL)/s. Lett € prungL/s), by defini-
tiont € L/sand for every trace € L/ssuch thatp C t it holds thatp =t, furthermore
ste L. Asse prungl) by assumption angrungL) is prefix-free for every trace
p € prunglL) such thatp C sit holds thatp = s, therefore there exists n@< L such
that p C s C st, furthermore as there exists no tragec L/s such thatp C t, there
exists no tracesp € L such thatsp C st thereforest € prunglL), and consequently
t € prungl)/s. O

95

Each requirement paix, L) must satisfy several conditions in order for us to con-
sider(x,L) to be well formed. Firstly as has already been stated theuksgel must
be prefix-free. This is because as has been previously shamnguages which are
not prefix-free have traces which are trivially redundargcé&dL = 0 if and only if
Z%(x) = 0, in this case we don’t wish to ugg, L) to express certain conflicts. This
Is because certain conflicts can be more easily and betti#vddaoutside the refine-
ment process for nonconflicting requirements. We also regtiatL C .£“(x), this
has a dual purpose. We restricto traces which are ih(x) because we do not wish
requirements to be capable of performing traces which tlggnat automaton cannot.
We further restricL to traces inZ“(x) because it is nonsensical to require a test au-
tomaton to be capable of reaching a blocking state, in oaeot block. Finally we
require that ¢ L as such a requirement is redundant.

Definition 6.3 Let G = (%, Q,—,Q°) be a deterministic automaton. Lebe a state.
LetL be a language.
(x,L) is a requirement pair if and only {k, L) fulfills the following properties

(i) Lis prefix-free.

(i) L=0ifand only ifx A w.

(i) L C . Z9(x).
(iv) € ¢L.

We define the relation between continuation pgigsn. For any two given contin-
uation pairs(x, L), (x,M) we considerx,L) Sconf (X,M) to be true if satisfyingx, M)
implies that(x,L) must also be satisfied. This is the case if for all tracedM there
exists a trace € L such thatp C t. If this is the case no matter what traices used
to satisfy(x,M), the requirementx, L) will be satisfiable by some traqe Because of
this we can consider the nonconflicting requiremegM) as implying(x,L). This is
an important concept which will be used extensively whil&lifig the minimal non-
conflicting requirement set.

Example 6.3 Figure 6.2 represents a determistic automaton with a reopgnt set.
The statexhas the requirementsand(Ba)* w, the statg has the requirememnt(a)* w,
and the statel has the requirement 0. If we look at the requiremgt)* w we will
notice that it is prefix-free. I.E. there is no trace in thisgaage which is a prefix of
another trace in the language. Furthermore all the trg8es*w lead to a state which
can reach the state.

96

{0}

Figure 6.2: Example of an automaton and its requirement set

We define a relation between requirement tuglgs,s. For any two given require-
ment tuplegx, L), (x,M), (X,L) Sconf (X, M) if the only way that the requireme(x, M)
can be satisfied is if the requiremgmtL) is also satisfied. In this situation it can be
considered that the requiremértM) makes the requiremefi, L) redundant.

Definition 6.4 Let (x,L) and(x,M) be two continuation pairs. We define the relation
Sconf such thatx,L) <conf (x,M) if and only if M C L},

Example 6.4 Let (x,{a,B}) and (x,{aa}) be two requirements(x,{a,B}) Sconf
(x,{aa}). This is because the only completion(@f{aa}), is a suffix ofa. If we
instead consider the requiremért{aa, 3, y}) this requirement would be incompara-
ble to(x,{a,B}). This is becauséx,{aa,f,y}) can be satisfied by without satis-
fying (x,{a,B}) where agx,{a,B}) can in turn be satisfied by without satisfying

(x{aa,B,y}).

Note <conf Was defined for automata in section 2.4.

Lemma 6.2 <.onfiS a transitive relation.
<conf IS a reflexive relation.

Y

<conf IS @an antisymmetric relation.

Proof. First we will show thatScontis transitive. Letx be a state, and lét;, Lo, L3 be
languages such thét, L1) <conf (X,L2) Zconf (X, L3).

We will prove that(x,L1) <conf (X,L3).

L1 C Loy, C L3%y 27, = L3Zy,. and thereforéx,L1) Sconf (X, L2)

Next we will prove thatScons is reflexive.

Let (x,L) be a requirement pair. Clearly it holds that L}, and thugx,L) <conf
(x,L) by definition.

Lastly we will prove thatSconfis antisymmetric. Lefx,L) and(x,M) be two pairs
such that(x,L) <conf (X, M) and(x,M) <conf (X,L).

97

We will prove thatL C M. Letse< L be a trace. We will show thae M. As
L € MZ, there exists a tracee M such that C s. Furthermore ad C L7, there
exists a trace € L such thatr C t. This implies that C s. From the definition of a
requirement paii. is prefix-free, therefore=s=t and thus=t € M.

The proof forM C L is analagous. OJ

Nonconflicting requirements are also related to one anaiher the— relation.
For any two nonconflicting requirements,L) and (y,M), and traces, it holds that
(x,L) > (y,M) if seL—L, x>y, andM = L/s. This is because after the trase
the trunk automaton will reach the stateand once it reachs this state it will still be
neccessary to perform at least one trac®lin= L/s in order to completd. We thus
define the transition relatiorg) for an arbitrary automatoG.

Definition 6.5 Let G = (X£,Q, —,Q°) be a deterministic automaton.
Then—g={((xL),0,(6(x,0),L/0))|lc e L-LandL € Z*UZ*w}

Example 6.5 Consider the trunk automaton in figure 6.1. The initial cobficrmal
form has the nonconflicting requiremefigo}, o (aa)*B* w). After the event, the
requirement will transition fron{g;} to {q1,g2}. In addition asa has already been
executed, the new requirement beconies!)*B* w), thus ({qo}, a(aa)*B+w) =
({01, %2}, (a@)*B* w). Similarly, ({dz, G2}, (a@)*Bw) % ({do}, a(aa)*B*w), and
({a1,q2}, (aa)* BT w) LS ({02}, B*w). This corresponds to the transitions related to
the initial conflict form in figure 6.1.

In addition if a nonconflicting requirement has a trace inarsgguage which does
not end inw this trace transitions back into the original automaton.r &mample

({0}, {a}) = {ar, G2}

Jc is a closure relation for sets of requirements. It ensuraisft all requirements
(x,L) and(y,M) such thatx,L) — (y,M), it holds thatly,M) €] (R) if (x,L) €l (R).

Definition 6.6 Let G = (X,Q,—,Q°) be deterministic automaton. L&be a set of
requirement pairs db.
Thenlg (R) = {(ds(x,S),L/s)|(x,L) e Randse L—L)}

Nonconflicting requirements are grouped into requiremet#. sA well-formed re-
guirement set is a set of nonconflicting requirements whiadiased undefg. That is
to say ifRis a requirement set, then for each requirenfgrit) € Rif (x,L) — (y,M)
for some(y,M) then(y,M) € R.

Definition 6.7 Let G = (%,Q,—,Q°) be a deterministic automaton, aRd- Q x 2%«
be a set of pairs.

98

ThenRis a requirement set @ if the following holds for all(x,L) in R.
(i) (x,L)is arequirement.
(i) Forall (y,M) such thatx,L) — (y,M) it holds that(y,M) € R.

Example 6.6 We will consider the automatamunk(G) from figure 6.1. The noncon-
flicting requirement seR = {(qo, a(aa)*B " w)} would not be a well-formed require-
ment set ofrunk(G). This is becauséyp, a(aa)*B* w) — ({01,092}, (aa)*B" w) and

(qo, a(aa)*BTw) — ({gz2}, B*w), but neither of these two requirements are contained
within R The nonconflicting requirement s& = {(qo,a(aa)*B" w), ({a1,02},
(aa)*Btw), ({0}, B*w)} is well-formed however.

For any set of nonconflicting requiremesit holds that|s (R) is a requirement
set. That is to say that closifgunder) g always results in a well-formed requirement
set.

Lemma 6.3 Let G = (Z,Q,—,Q°) be a deterministic automaton. LBtbe a set of
requirement pairs ob.
Then|g (R) is a requirement set @3.

Proof. Let (x,L) €l (R).

First we will show thatx,L) is in fact a well-formed requirement @& as defined
in definition 6.3.

From the definition oflg there existgw,J) € R ands € J— J such that(w,J) >
(x,L). As (w,J) is a requirement pail is prefix-free thereford/s= L is also prefix-
free. This satisfies requirement i. Second,sasJ andJ/s= L it is the case that
L # 0. Furthermore aéw,J) is a requirement pall C .Z%(w) from requirement iii,
therefore as € J andG is deterministiov - x — w, thus(x, L) satisfies requirement
ii. In additionJ C Z“(w) thereforeJ/s=L C Z¥(w)/s= Z“(x) thus satisfying
requirement iii. Finally as ¢ J it holds thate ¢ J/s = L therefore(x,L) satisfies
requirement iv.

Next we will prove that for alt € L, (dg(x,t),L/t) €lc (R). For the first case there
exists(w,J) € Rands e J such that(w,J) > (x,L). dg(w,st) = d(x,t) furthermore
J/st= L/t therefore(dg(X,t),L/t) €lc (R) from the definition of| . O

Next we will show that the relatiofx,L) <conf (X,M) is preserved by-. That is
to say if(y,N) and(y, O) are two nonconflicting requirements asit a trace such that
(%L) 2 (:N) and(x,M) % (,0) then(y,N) Scont (¥, O) also.

Lemma 6.4 Let(x,L) and(x, M) be two requirement pairs such tatL) <conf(X,M).

99

©0.{aa,aB}) _ (1{a.B})

O{aa}) a (1{a})
Figure 6.3: Example requirements

Lets€ Z* be a trace and ldty,N) and (y,O) be two requirement pairs such that
(L) = (y,N) and(x,M) = (y,0).
Then(ya N) §Conf (y7 O)

Proof.

M C LZ," as(xL) Seont (x,M)
M/sCLZ,"/s
OCLS,*/s as(x,M)-=>(y,0)
OCL/sX," asL is prefix-free
OCNZ,* as(xL)=>(y,N)

O

Example 6.7 Consider the automaton shown in figure 6.3. Bec&0sgra,af}) Sconf
(0,{aa}) it must also hold thatl, {a,B}) Sconf(1,{0}).

6.1.2 Requirement Automata

In this subsection we introduce how to construct the stahdatomata representation
of a trunk automaton and requirement set. We further givers¢lemmas showing the
conditions upon which states are reached.

The requirement automatdRA(G,R) for a given automator® and requirement
setRis created by combinin® andR together. To do this we givRA(G,R) all the
transitions inG as well as all the transitions iR as defined in definition 6.5. We
then connecG to R, firstly by adding ther transitionx 5 (x,L) for every requirement

100

(x,L) € Rand secondly by adding the transitiogL) 5 y for every(x, L) € R, where
oecLandx>yinG.

Definition 6.8 LetG= (Z,Q,—,Q°) be a deterministic automaton. LRbe a require-
ment set ofG.

ThenRAG,R) = (QUR,Z,—a, X) where— 4 is defined such that for alty €
QURand allo € Z,. x£>Ay if and only if one of the following holds

a
e X—Y.

e X _>R(G) V.

e x=(q,L),0eLandg>y.
Furthermorex 4 y if and only ifx € Q andy = (x,L) such tha{x,L) € R

Remark 6.1 Let G = (X£,Q,—,Q°) be a deterministic automaton. LRtbe a require-
ment set ofS. Letsbe a trace irk*. Let(x,L) be nonconflicting requirement such that
RAG,R) = (x,L)

Then(s,L) € CC(RAG,R)).

Example 6.8 Let us considetrunk(G) from figure 6.1. LeR= {{qo},{a},{a1, a2},
{a},{q1,92},{B,w}}. ThenRAtrunk(G),R) is the final automaton in 6.1.

In order to reason about the automaf®A(G, R) for any given automato® and
requirement sefR, we introduce the following lemmas. Lemma 6.5 shows thaafor
given traces, and requiremen(x, L), the requiremengx,L) can only be reached if the
statex can also be reached.

Lemma 6.5 Let G = (£,Q,—,Q°) be a deterministic automaton. LRtbe a require-
ment set ofG. Let (x,L) € Rbe a requirement. Lat € Q be a state. Les < 2* be a
trace such that = (x,L)

Thenw > x.

Proof. We will prove the claim via induction ofs|.

In the base case= €. From the construction ®A(G, R) the only silent transitions
are of the formy = (y,M) where(y,M) € R. Thereforew = (x,L) implies thatx = w.
WS w.

Now let us consider the case where the property is true fardoes, we will prove
that it is also true foso.

Let (x,L) be arequirement such that2 (x,L). There are only two basic transitions
into (x,L), The first isx = (x, L), this case trivially implies that = x < (x,L). In the

101

second caséy,M) > (x,L) for some(y,M) wherey % x andM /o = L. From the
inductive assumption ifv > (y,M) thenw >y % x. O

Lemma 6.6 goes on to show that for any given statthatRA(G,R) can reachx
under exactly the same circumstances in whichreachable irG.

Lemma 6.6 Let G = (£,Q,—,Q°) be a deterministic automaton. Lthe a require-
ment set ofG. Letw, x € Q be states.
Thenw = xif and only if dg(W,s) = X

Proof. First we will prove that if5g(w,s) = x thenw = x. This comes directly from
the construction oRA(G, R) asRA(G, R) contains all the transitions iG.

Now we will prove that ifw = x thendg (W, s) = x via induction on/s).

In the base case= €. dg(W, &) = w. From definition 6.8 the only transitions in
RA(G,R) go to states ifR. Therefore it holds thaw £ y for somey € Q if and only if
y=W.

Let us assume that the property holds for the triaaee will prove that it must be
true forso.

Let x be a state ifQ such thaw = x.

There are only two types of transitions which reachither there existg € Q such
thatw = y -3 x or there existgy, L) € Rsuch thatv = (y,L) 5 x.

In the first case, from the inductive assumptjoa dg(w, s), thereforex must equal
3o (W, 50).

In the second case there exigtd.) € Rsuch thay % xando € L wherew = (y,L).
From lemma 6.5w = y, and from the inductive assumption= Jg(X°,s) thereforex
must equabg (W, s0o). O

We further show that for any two requirement automata, ¥ theh share the same
trunk then for any given statein that trunk, both requirement automata can reach
under exactly the same situations.

Corollary 6.1 Let G = (%,Q,—,Q°) be a deterministic automaton. LB{S be two
requirement sets @b. Letw,x € Q be states.
Thenw 2gx if w=2g X

Proof. From lemma 6.6 using as a requirement set & asw 2R x it follows that
oc(w, S) = x. Again applying lemma 6.6 this time usii®gs a requirement set &f as
3 (W, s) = x it follows thatw =g x. O

We further show that for any two requirement automata whiglresthe same trunk,
if one has a requirement for the statevhich is reachable after a given trageand the

102

other automaton has a requirement for the statdat automaton can also reach the
requirement on the trace

Corollary 6.2 Let G = (2,Q,—,Q°) be a deterministic automaton. LBtS be two
requirement sets db. Let (x,L) € Rand(x,M) € Sbe two requirements.
ThenRA(G,R) = (x,L) implies thatRA(G,S) = (x,M).

Proof. From lemma 6.5 aBA(G,R) = (x,L) it follows thatRA(G, R) = x. Applying
lemma 6.1 aRAG,R) = x it follows thatRA(G, S) = x. Finally from the construction
of RA(G, S) as(x,M) € Sit holds thatx < (x, M) thereforeRAG, S) = x= (x,M). [

Now we show that the set of certain conflicts of a requiremetdraaton and its
trunk are equivalent.

Lemma 6.7 LetG = (%,Q, —,Q°) be a deterministic automaton.
ThenNCoNF(RA(G,R)) = NCONF(G).

Proof. Letsbe a trace ilNConF(RA(G,R)). Letx be a state such th& - x. From
lemma 6.6 it holds thaRA(G,R) - x. As s e NCoNF(RA(G,R)) it must hold that
x is not blocking, therefore there exists some tré@esuch thatx 9 in RA(G,R).
Thus from lemma 6.6 '%. Thereforex is nonblocking inG and asG is deterministic
se NConNF(G).

Now we will prove thatNCoNF(G) C NCoNF(RA(G,R)). Let T be a determin-
istic automaton such thaiT) = NCoNr(G), we will prove thalRAG,R) || T is non-
blocking and thus thaf Conr(G) € NCoNF(RA(G,R)). FirstasL(T) = NCoNF(G)
andT is deterministicG || T is nonblocking.

Let sbe a trace and andgr be two states such thR¥A(G,R) || T = (g,qr). There
are two cases, eithere Q or g € R. In the first casdRA(G,R) = g, therefore from
lemma 6.6 it also holds th& > q. ThusG|| T = (q,q7). As G| T is nonblocking,
(g,qr) is also nonblocking, thus there exists a tré@esuch that(g, gr) YinG |T.
As RA(G,R) contains all the transitions i®, (q,0r) “ina RAG,R) || T also. In
the second casge R, let (x,L) = g. It holds thatRA(G,R) = (x,L), therefore from
6.5 it must also hold thaB = x. ThusG| T = (x,qr). As G|/ T is nonblocking
(x,q7) is also nonblocking. Furthermore BSis a requirement set d& it must hold

thatL C £®(x). As (x,qr) is nonblocking inG || T it holds thatZ“(x) # 0, thus from
definition 6.3 it must hold thdt # 0, thus there exists a trate L, such that € Z®(x).
Ast € .Z9(x) it holds thatx - y wherey € Q andy is nonblocking. AsG -3 x -5y
andG is deterministicst € NCoNF(G), therefore((x,L), o) 4 (y,y7) INRAG,R) | T

whereyr € Qr. Furthermorgy, y7) has already been proven nonblocking. O

103

We can also show that automata derivation is commutativie thé construction of
a requirement automaton with respect to conflict equivaenc

Lemma 6.8 Let G = (X,Q,—,Q°) be a deterministic automaton. LRthe a require-
ment set ofG. Letsbe a trace irk*
ThenRA(G7 R)/S =conf RA(G/S7 R)

Proof. We will first prove thatRA(G,R)/s <conf RAG/s,R). Let T be an automaton
such thaRA(G/s,R) || T is nonblocking. Let be a trace such th&®A(G,R)/s|| T 4
(y € QURYT).

We will show thatRAG/s,R) | T 1 (y,y7). From definitions 2.3 and 6.8 the initial
state set oRA(G,R)/s is {x € QURIRAG,R) = x}. Therefore there must exist a
stateq such thatRAG,R) = q 5N y becauseRA(G,R)/s 5N y. There are two cases:
eitherqe Q or g€ R In the first case from lemma 6.6 it holds tf&at> q therefore
g is an initial state oRA(G/s,R) andRAG/s,R) || T 5N (Y,y1). In the second case
g= (x,L) € Rin which case from lemma 6.5 it holds tHat> x, in which casexis in
the initial state set dRAG/s,R) andRAG/s,R) || T = ((x,L) =q,_) 5N (Y, y7).

As RA(G/s,R) || T is nonblocking(y,yr) must be nonblocking. Sindg,yt) was
chosen arbitrarilRA(G, R) /s must also be nonblocking.

Now we will prove RAG/s,R) <cont RAG,R)/s. Let T be an automaton such
thatRA(G/s,R) || T is nonblocking. Let be a trace such th®A(G/s,R) || T 4 (ye
QURYT).

We will show thatRA(G,R)/s|| T 5 (y,y7). From definitions 2.3 and 6.8 the initial
state set oRA(G/s,R) is {x € Q|G = x}. Therefore there must exist a state Q such
thatG - x, furthermore asS is deterministic this state is unique. Thuss y because
RA(G/s,R) 5N y. From lemma 6.6 it holds th®A(G,R) = x thereforex is an initial
state ofRA(G,R)/sandRAG,R)/s|| T 5N (Y, ¥7)-

As RA(G,R)/s|| T is nonblocking(y,yr) must be nonblocking. Sindg,yr) was
chosen arbitrarilRA(G/s, R) must also be nonblocking.

0

6.2 Construction

In this section we define how to construct a trunk automatah amnequirement set
for any given automatofs. Subsection 6.2.1 introduces how the trunk automaton is
constructed, in addition to several properties of thiskrantomaton. Subsection 6.2.2
describes how to construct the initial requirement set gf gimen automaton. This

104

requirement set can be refined into a unique requiremensseg the refinement rules
described in section 6.3.

6.2.1 Trunk

In this subsection we introduce how for any given finite set®matonG the trunk
automatortrunk(G) can be constructed. We further show that this automatonlis we
formed, and common for all conflict equivalent automata.tlyase give some useful
lemmas describing the automaton’s behaviour.

As has been previously stated, a nonconflicting requirensemiade up of a state
and a languagéx, L) where for all traces € >* such thaiG > x, the languagé. is a
conflicting continuation ofs. Therefore the trunk automaton must be constructed in
such a way that for ai,t € * andx in trunk(G), if trunk(G) = x andtrunk(G) 5 x,
then the nonconflicting continuations ®andt must be equal. To accomplish this the
trunk automaton is created by taking the subset construcii@ and merging states
which are conflict equivalent, as will be described in thisties.

First we introduce a relation by which state sets are consitleonflict equivalent.
Given the automatoA = (2, Q,—,Q°) and two state set&;, Xo C Q, we consideiX;
andX; to be conflict equivalent if and only %, Q, —, X1) ~conf (Z,Q,—,X2). This
relation is used to determine which state sets should beaderg

Definition 6.9 Let G = (Z,Q,—,Q°) be an automaton. Lef;,Xo C Q be two state
SetSX]_ 2COI’lf X2 If <27Q7—>7Xl> 2COI‘]f <Z7Qa_>7X2>'

Definition 6.10 Let G = (£, Q,—,Q°) be an automaton.

Thentrunk(G) = (%, Qconf, —*conf, [Q°]conf)-
Wherchonf = ZQ/ :Conf U{J_, O)}.

All state sets which are in the same conflict equivalencescka® grouped into the
same state via thg]cont relation. In addition states in the trunk are merged by the
[[-]lcont relation. [[.]|cont also specifically marks out the equivalence class of stase se
which are definitely conflicting as being the dump state

Definition 6.11 Let G = (%, Q,—,Q°) be an automaton.
[.]conf : A Qcont Where[X]cont = {Y € Q|X ~cont Y}

1 if £ € CONF(X
[[J]cont : 2° = Qcont Where[[X]]cont = _ ()
[X|cont Otherwise

whereCoNF(X) = CONF((Z,Q,—, X))

We now describe how the transition relationtnfnk is constructed.

105

a
HOH rqa ey
G detG) trunk(G)

Figure 6.4: An automato6 and it determinised and trunk automaton

Definition 6.12 Let G = (£,Q,—,Q°) be an automaton.
—conf: Qeonf X ZewN{ W} — Qcont

w if X L ando = w
5conf(>~(70) = < [[0det(X, 0)]]cont if X = [X]conf
1 if X =1

Lastly we put these two together to form the trunk automaton.

Example 6.9 Figure 6.2.1 shows an automat@nas well as déG) andtrunk(G). The
first step to creatintrunk(G), is to construct d¢G). Once we have constructed (8}
we notice that the statfl, 2} is in fact a certain conflict, as 2 is blocking, th{is 2}
becomesL. Becausel represents certain conflicts, even thoydh2} can transition
to {1,3} on ana event, L cannot. Furthermore statdd} and {1,3} are conflict
equivalent. This is because both require that any test attommust be capable of
performing an infinite string ofr events. Thus in the trunk automaton the stgtes
and{1,3} are merged into the sta{¢ 1}, {1,3}}.

In order to be certain that this is a proper definition of thmkrautomaton we must
first ensure that the functiodon s is well-defined.

Lemma 6.9 LetG = (%, Q,—,Q°) be an automaton.
Thendeont IS well-defined.

Proof. Let X € QandX,Y C Q be such thaK = [X]cont = [Y]cont, We will prove that
forall o € Z, [[dget(X, 0)]]cont = [[Odet(Y, O)]]cont. BecauseX]cont = [Y]cont it must
hold that(>, Q, —, X) ~¢onf (Z,Q,—,Y) and thusCoNr(X) = CoNr(Y).

There are two cases of. Eitherog € CoNF(X) = CoNF(Y) or 0 ¢ CONF(X) =
CoNF(Y).

In the first cases € CoNF(X) = CoNF(Y). From theorem 5.2 ag € CONF(X)
there exists a traceC o such that(0, dget(X,S)) € LC(O,G). From theorem 5.2 as
€ ¢ Conr(X) it holds that(0, dyet(X, €)) ¢ LC(O,G), therefore it must be the case
that (0, dget(X,0)) € LC(O,G). From theorem 5.2 afd, dq4et(X,0)) € LC(O,G) it

106

holds thate € CONF(dyet(X,0)), therefore[[dyet(X, 0)]]cont = L. The proof that
[[Odet(Y, 0)]]cont = L is analagous.
In the second case ¢ Conr(X) = Conr(Y). From proposition 5.1 it holds that

[[Odet(X, 0)]]cont = [[Odet(Y, T)]]cont O

Now we must show that for any two automa&andB, if A ~yns B thentrunk(A)
is isomorphic tarunk(B).

Theorem 6.1 Let A(Z,Q4, — 4, Qa), B = (Z,Qg, —g,Qg) be two automata such that
A zconf B
Then it holds thatrunk(A) = trunk(B).

Proof. We will prove thattrunk(A) is isomorphic tarunk(B).

First we we define the relationg,nk between states. Lét € Qa andY € Qg be two
states. It holds tha ~ nk Y if and only if either there exist& C Qa andY C Qg such
that [X]cont = X, [Y]cont = Y and(Z, Qu, —a, X) ~conf (Z,Qg, —p,Y) or X =Y = L.

We will prove that for allX € Qa, ¥,Z € Qg such thatX ~qynk Y andX ~yunk Z, it
must also hold thaf = Z. From the definition of<nk either there must exist C Qa,
Y C Qg, andZ C Qg such thafX]cont = X, [Y]cont = Y, [Z]cont = Z, and(Z,Qn, — A,
X) ~conf (Z,Qg, —g;Y) ~conf (Z, Qg; —g,Z), or X =Y = Z = L. In the latter case the
property is proven trivially. From definition 6.1%]cont = {W C Qg|W ~cons Y} and
[Z]cont = {W C Q|W ~confZ}. AS(Z,Qg,—p,Y) ~conf (Z,Qp, g, Z) W ~cont Y iS
equivalent toN ~¢ons Z thereforeY]cont = {W C QW ~¢ont Y } = {W C Q|W ~conf
Z} = [Z]cont, thusY = Z.

The proof to show that for al € Qg, Y, Z € Qa such thal ~unk Y andX ~qunkZ,
it must also hold tha¥ = Z is analagous.

This shows that for any staté e Oa there can be at most one stitec Qg such
that X ~yunk Y, and vice versa. Therefore we can show that if forsadl =* it holds
that &%,¢(S) ~trunk O5n¢(S), that is enough to show thatunk(A) andtrunk(B) are

onf conf
isomorphic.
Letse Z* be a trace. We will prove tha‘icAonf(s) ~trunk CBonf(s), via induction on
EF

In the base case= &. From constructiord4,¢(€) = [[Qa]lcont and 65 <(€) =
[[Qgllcont- There are two cases, eithere CoNF(QR) or € € CONF(Qgy). In the
first caseConF(Qa) = CoNF(A) = ConF(B) = ConF(QR), thereforeds (&) =
[[Qallcont = L = 8%1(€) = [[Qgllcont @nd thusdZ,(S) ~uunk Ogyn(S). In the sec-
ond cas€[Qqal]conf = [Qalcont @and[[Qgl]cont = [Qglconf. From the definition of.]cont
it must hold thatA € [QR]cont andB € [Qglcont. AS A ~conf B thus [[Qa]lconf ~trunk

[[Q%]]conf-

107

Now we consider the inductive case let us assume that thepyopolds fors, we
will show that it must hold foso.

From the inductive assumptia¥fy,, (S) ~trunk O5,,¢(S), therefore eithedZ} ¢(s) =
08 n1(S) = L or there existsXa € &n¢(S) and XB € 88 ¢(s) such that(Z,Qu, — ,
Xa) ~conf (Z,Qg, —g,XB). Let Ya C Qa andYg C Qg be two state sets such that
Xa —deta) [0]Ya andXg —qerp) [0]Ys. In the first case directly from the definition
of &ont it holds thatds «(so) = 82 (so) = L. From the definition ofdyons it

conf conf
holds thatdZ,,+(Xa,) = [[Yallcont and 82 ,¢(Xs,0) = [[Ys]lcons. Here again there
are two cases, either € CoNF(Xa) = CONF(Xg) or 0 ¢ CONF(Xp) = CONF(Xg).
In the first case € CONF(Ya) = CoNF(Yg) therefore[[Ya]]cont = [[Y&]]cont = L. In
the second case from proposition 5.1(@sQ,, —a, Xa) ~conf (%, Qg, —g,XB), 0 €
NCONF(Xa) = NCONF(Xg), andXa —gega) [0]Ya andXs —geys) [0]Y8, it must hold

that(Z, Qa —>A7YA> ~conf (2, Qas _>AaYB>: therefore{[Ya]]cont ~trunk [[Y8]]cont- O

Now we will give some useful lemmas about this trunk automato

First for any traces as long as that trace is not a certain conflicAiii there exists
a stateX such that deéd) > X, then the conflict equivalence class)fs reachable in
trunk(A) ons.

Lemma 6.10 LetG = (,Q,—,Q°). LetX € Q. LetX € X. Letse NCoONF(X)NZ*
be a trace.

5de|(G) (X, S) E érunk()’z, S) .

Proof. We will prove the claim via induction ofs|.

In the base case= ¢. In this casedeon(X,€) = X, LetY = dyeyg)(X,£). Y =
Saetc) (X, €), X ~cont Y thusY € X,

Now let us assume we have proven the property for the sadée will now prove
that it must also hold for the trase. From the inductive assumptiardet G)(X,s) €
Sont(X,8), as there exists a state setdgpns(X,s) it must hold thatdeonf(X,Ss) #
1. Let 8det(G)(X,s) =Y and &ont(X,s) = Y. From definition 6.10 it holds that
Seont(Y,0) = [[6detG)(Y,0)]]cont. From assumptioso ¢ Conr(X) therefores ¢
CONF(Ogeqg)(Y,0)). Thus|[dge(c)(Y,0)]lcont = [Ogerc)(Y; O)]cont. Therefore it is
the case thadye(c) (Y, 0) € [Ogerc)(Y; T)]cont- O

Lemma6.11 LetG= (3,Q,—,Q°). LetX € X. LetX = [[X]]cont. Lets€ CONF(X)N
>* be atrace.

5conf(>275) =1.
Proof. We will prove the claim via induction ofs|.

108

In the base case= ¢ and &sonf(X, &) = X. From definition[[X]]cont = L if € €
Conr(X).

Now let us assume that the property holdsgawWe will prove that it must also hold
for so.

We will consider two cases, in the first case CoNF(X) in the second ¢ CONF(X).
For the first case by the inductive assumptﬁgshf(f(,s) = 1, therefore by definition
deont(X,50) = L. In the second casec NConF(G). There must exist somé C Q
such that thaK - geqg) X, otherwiseso could not be inConr(X). From lemma 6.10
trunk(G) = [[X]]cont, and from construction dfunk(G) [[X]]cont — [[3get(X; T)]]cont,
asso € CoNF(G), € € CONF(8ger(X, 0)), thus[[Sget(X, 0)]]cont = L. O

Second for any given automat@) the trunk ofG has exactly the same noncon-
flicting language.

Lemma6.12 LetG = (Z,Q,—,Q°).
ThenNCoNF(G) = NCoNF(trunk(G))

Proof. First we will prove thatNCoNF(G) C NCoNF(trunk(G)). From lemma 6.13
trunk(G) <conf G. As a direct consequen@@CoNF(G) C NCONF(trunk(G)).

Now we will prove thatCoNF(G) C CoNF(trunk(G)).

Let s€ CONF(G) = ConrF(Q°). From lemma 6.18unk([[Q°]]conf,s) = L. As
L is blockings € CoNF(trunk(G)). O

Lastly for any given automatof. The trunk automaton dkis always less conflict-
ing thanA.

Lemma6.13 LetG = (Z,Q,—,Q°).
Thentrunk(G) <cont G.

~

Proof. Let T be a test automaton such tt@t| T is nonblocking. We will prove that
C(G)|| T is also nonblocking.

Letse 2* be a trace an@dX, x7) be a state such thatunk(G) | T = (X,x7). Let
(x,x7) be a state such thaG || T > (x,x7). As G|| T is nonblocking there must exist

a tracetw such thatstw € NConr(G) and (X, xT) X Lety C Q be a state set such

that det(G) Y. From lemma 6.1@C(G) = [[Y]]cont, asste Z(T) andG|| T is
nonblockingst € NCoNF(G). Therefores ¢ CoNr(Y) therefore[[Y]]cont # L, thus

[¥]Jeont % @, thus(X.x7) % (([¥]Jeont.¥7) 4. 0

109

6.2.2 The Initial Requirement Set

In this section we introduce how to generate a correct, thowg yet unique, contin-
uation set for the automatdd. In addition we will prove that this continuation set is
well-formed, and tha® is conflict equivalent with this requirement set.

The initial continuation set is created in such a way thaef@ry stateé in trunk(G),
if the statex in the original automatofs is in the stateX, then we giveX the continua-
tion £(x) N t‘;ﬁnk(f(). In practice this continuation is equal to the marked laiggua
of x minus any certain conflicts. The requirement set is theredesder| .

Definition 6.13 Let G = (Z,Q,—,Q°) be an automaton. Leétunk(G) = (Z, Q;, nk
_>trunk’ Q?runk>' LetR = {(>~(7$é)(x) N t?ﬁ,nk(>~<))|>~< € erunk,x €)~(»X S X}
R(G) =l (R)

We must now prove tha&(G) is well-formed according to definition 6.7. To do this
we will prove that all the elements & are well-formed continuation pairs. After this
has been proven it is enough to use lemma 6.3, to state¢h@) is well-formed.

Lemma 6.14 Let G = (2,Q,—,Q°) be an automaton. L& = R(G).
Ris a requirement set ¢funk(G)

~

Proof. First we will prove that all the pairs iR = {(X, Z2(x) N Z% (X)X €
Qtrunk, X € X, x € X} are requirement pairs.

Let (X, £L(x) N L%, (X)) be a pair such thaX € Qc, X € X, andx € X. We will
show that this pair conforms to the definition of a well-fodnmenconflicting require-

ment given in definition 6.3.

(i) First.2%(x)N.Z£2 . (X) is prefix-free as it contains only traces which endn

which is terminal, thus it satisfies condition i.

(i) The second requirementis thaf®(x)N.Z£%, (X)) =0ifand only if £ (X) =
0. First we will consider the case wheté® (X) = 0, the property obviously

holds in this instance as anything intersected with 0 egfal

Now we will prove that if. 4%, (X) # 0 that.ZL(x) N L2, (X)) # 0. To do
this we will prove that there must exist at least one ttage .£°(x) wheretw €
@ (X)). First we will show that there exists a tratze € 2% (x) — CONF(X).
From the definition of trunk automata give in definition 6.12nust hold that
X # L. Thisis becaus¢/ (L) always equals 0. Furthermore[@s]|cont # L,
it holds thate ¢ ConrF(X), therefore there must exist at least one trewes
Z9(x) — ConF(X). Furthermore asc NConr(X) andX € X, &onf(X,t) # L,

thereforedeont(X,t) 3.

110

(i) This requirement comes directly from the definition.

(iv) Fourthly Z®(x) N.Z% (X X) only contains traces which end m, therefores
cannot be an element ¢F“(x) N .£% (X X).

As all the pairs in{(X,.Z%(x) — ConF(X))|X € Qc,X € X,x € X} are requirement
pairs|g {(X,.Z®(x) — CoNF(X))|X € Qc,X € X,x € X} = R(A) is a requirement set
of trunk(A). O

We now go on to show that all the requirementsRimepresent nonconflicting re-
guirement of the automatda.

Lemma 6.15 Let G = (Z,Q, —,Q°) be an automaton. LéX,L) € R(G) be a require-
ment. Lets € * N NCoNF(G) be a trace such th&A(trunk(G),R(G)) > (X, L).
It holds that(s,L) € CC(G).

Proof. Let T be a test automaton amg be a state such th&|| T is nonblocking and
TS xT. We will show that their exists€ L such thatxr LN

First let us assume tha&X,L) € R(G). From definition 6.13 it holds tha® =
{(X, 22X N L2 (X)X € Quunk, X € X,x € X}. Therefore there exists a state set
X € X,x € X such that. = .Z2(x) N LY, (X).

From lemma 6.5 it holds th&®A(trunk(G), R(G)) - X asRA(trunk(G),R(G)) >
(X,L). From lemma 6.10 déB) > X whereX e X astrunk(G) > X. As detG) > X
it holds thatG = x. ThereforeG|| T = (x,xr). As G|| T is nonblocking it holds that
(x,x7) is nonblocking. Thus there existgo such that(x,xt) =. We will show that
uw is an element ok, to do this we will show that it is in botl¥/®’(x) and trunk()~()

As x = itis the case thatiw € Z£(x). Now we must show thatw € £®, (X). As
G|| T is nonblocking it holds thatiw ¢ ConrF(X) as detG) = X. LetY be the state
set such thak — Y. From lemma 6.10 it holds that - Y, whereY # L, therefore
Y 3, thereforew € £% . (X) and furthettw € L.

Now we will assume thatX, L) € R(G). From definitions 6.13 and 6.6 it holds that
R(G) = {(Z,N)|(Y,M) — (Z,N) where(Y,M) € R(G)}. Thus there exists a noncon-
flicting requirementY,M) € R(G) such that(¥,M) = (X,L). LetY € V¥ be a state
set. From lemma 6.10 it holds th¥t-> X whereX € X asY = X. Furthermore as
(e,M) € CC((Z,Q,—,Y) it holds that(e,L) € CC((Z,Q,—,X)). Furthermore from
lemma 6.10 dé6G) - W whereW € X astrunk(G) = X. Furthermore as botk and
W are inX it holds thatX ~¢onsW. Therefore(g,L) € CC((Z,Q,—,W)) and thus
(s,L) € CC(G). O

Now we must prove that for any given automat@n that A(trunk(G),R(G)) is
always conflict equivalent witks.

111

Theorem 6.2 LetG = (%,Qg, =, Qg). Lettrunk=trunk(G). LetR=R(G)
ThenRAtrunk, R) ~¢ont G, whereRA(trunk R) is constructed according to the def-
inition 6.8

Proof. First let us prove thaRA(trunk, R) is less conflicting thas.

Let T be an automaton such th@t| T is nonblocking. Lesbe a trace irk* and let
(W, x7) be two states such thRIAtrunk,R) || T = (W, xr).

We will now prove that the stat@V, x7) is not blocking. EithetV € RorW < Q.
First we consider the case wafé € Q. From lemma 6.6 aRA(trunk R) S W,
trunk > W, furthermore from lemma 6.18unk(G) <cont G. Thus there must exist
some tracew such thatV t—“’>trunk, becaus& || T is nonblocking. Finally from lemma

6.6 it holds thatV *$ra asW %y runk.

Next we consider the case whe, L) € R. From lemma 6.15 it holds thés, L) €
CC(G) as(X,L) € R(G) ands € NCoxr(G) andG = (X,L). Therefore as || T is
nonblocking, there exists a trate L such thaty 5. (X,L),x7) AN (Y € Qurunk, Y €
Qr), as this class of states has already been proven nonbldtkinigs that((X, L), xr)
is nonblocking.

Second let us prove th& is less conflicting thaRA(trunk, R)

Let T be an automaton such thRAtrunk R) | T is nonblocking. Lets be a
trace inZ*. Let (x,x7) be a state such th&@ || T = (x,xr). It must hold thats e
NConr(RA(trunk,R)) asG|| T is nonblocking.

From lemma 6.7 it holds thate NConr(trunk). Thus from lemma 6.12 it holds
that s € NConF(RAtrunk R)). Let X be a state set such that (8} > X. Let
x € X. From 6.10 it holds thatrunk > [[X]]cont. From definition 6.13 it holds that
([[X]]cont, £ (x) N ZL°([[X]]cont)) € R. Thus from definition 6.8 it is the case that
RAtrunk R) [[XJcont = ([[X]leont; £“(X) N.Z“(([X]Jcon)). As RAtrunk R) || T is
nonblocking xr must be capable of performing at least one tracevir £ (x), there-
fore (x,x1) 9 O

6.3 Refinement

If we are given a trunk automatd@s, as well as a nonconflicting requirement Bett is
possible to progressively refine the requiremeniseto progressively smaller refine-
ment sets using refinement relations. In this section wedesicribe two refinements.
The first refinement is the strongly connected requiremeités if RandSare two re-
guirement sets such that applying the strongly connectpginement rule tdR results
in SthenR -~y S. The second refinement is the requirement subsumption Agjain

if RandS are two requirement sets such that applying the requireswdrgumption

112

rule toRresults inSthenR -, S. We will also prove that the use of each of these
refinements preserves conflict equivalence. We will furieeon to show that as long
asRis a finite set, it is always possible to iteratively reflReising both the strongly
connected requirement rule and the requirement subsumptle until we reach an
irreducible requirement set. That is to say a requiremeniveeeh can no longer be
refined by eithew or ¢. Furthermore the number of times the strongly connected re-
qguirement rule as well as the requirement subsumption rilex@ed to be applied to

in order to find this irreducible requirement set will themss be finite.

6.3.1 The Strongly Connected Requirements Rule

The first refinement rule is the strongly connected requirdseule. For this re-
finement we notice that for a given nonconflicting requiretest R, it is possible
that R may contain two requirementx, L) and (y,M) such that(x,L) — (y,M) but
(y,M) 4 (x,L), that is to say(x,L) and(y,M) are only weakly connected. Because
(x,L) and (y,M) are only weakly connected the requireméxt_) can be split from
(y,M). We do this by adding every traces L such that(x,L) - (y,M) to L, and
then pruning the resulting language loback to the shortest accepting traces. This
then leads to a set of nonconflicting requirements suchttiatli) and(y,M) are con-
nected, then they must also be strongly connected. Thisfoanation will weaken
the requiremen(x, L), that is to say that the transformed requirement is lessictng
than(x,L), yet it does so in such a way that all the conflict informatiohich has been
removed from(x, L), is still contained iny,M).

Example 6.10 Take for example the automat®A(G.R) in figure 6.5. The require-
ment(0,{aB,y}) in this automaton is weakly connected to the requirenignt}),
because of this we can spll, {a B, y}) from (1,{B}), thus resulting in the automaton
RA(G,S). In order to transfornt0, {a B, y}) into (0,{a,y}), we first take all the traces
which enter the statél, {3}) from (0,{af3,y}), which in this case is onlg, and add
them to(0,{apB,y}), giving us(0,{aB,y,a}). The language of this requirement is
not prefix-free, therefore we use the prune function on s, ithturn removes the trace
a3 from the language as is a prefix of it. Even though the nonconflicting require-
ment(0,{a,y}) is weaker tharfO, {a 3, y}), if the requirement0, {a, y}) is satisfied
by ana transition it reaches the state 1 which has the requirertiefi}), and will
thus have to perform # transition. Because of this we can say that the requirement
(0,{aB,y}) is still implied.

Example 6.11 Figure 6.6 shows an example where the strongly connectegba@om
nent is larger than a single state. In this example the ndhctimg requirements

113

(0,(BB)*aa) and (0,B(BB)*aa) are strongly connected to one another, but only
weakly connected to the requiremefit {a}). Because of this they can be trans-
formed into the requirement®, (B3)*a) and (0, 3(BB)*a) respectively. If we look
specifically at how0, B(BB)*aa) is transformed intg0, B(BB)*a), again we add all
traces which enter the statg {a}), in this case it is the languag®f3)*a, which
results in the requireme®, B(BB)* aa UB(BL)*a), and as all traces in the language
B(BB)*aa have a prefix in the languag® B3)*a this is then pruned back to the re-
quirement(0, B(BB)*a). Again each of these requirements is strictly less conilicti
than their original, but it is also still the case that undéciacumstances in which the
new requirement is satisfied the state 1 will be reachd®A(G, S). As 1 has the non-
conflicting requirementl, {a }), it will still be the case that in order for the system as
a whole to be nonblocking it will have to be able to performéx&aa transition.

Example 6.12 Figure 6.7 shows an example where multiple strongly coruecom-
ponents are pruned in a single step. In this example thertoaralifferent strongly
connected components.

 (0,a(aa)*(B*w)) and(1, (aa)*(B*w)).
e (LB w).

e (1,(aa)"(B"w)).

e (28w

Other than(2,3*w) all of these components are connected to at least one other
strongly connected component, therefore all of these compis can be pruned back.
The strongly connected component made u@@od (aa)*(B*w)) and(1, (aa)*(B*w))
can have all of its traces which lead to the componéAt8*w) pruned back thus giv-
ing us a component made of the requiremé@is (aa)*(B|w)) and(1, (aa)*(B|w)).

In the same way(1,3*w) is pruned back tq1,{B3,w}). Finally the requirement
(1, (aa)*(B*w)) is pruned back to the requiremet {a }) as the requirement tran-
sitions to a new strongly connected component as soon aseuent occurs. All of
these operations are commutative with one another, thagwglifications can be done
at the same time.

Definition 6.14 Let G = (%,Q,—,Q°) be a deterministic automaton.
Let (x,L) be a nonconflicting requirement pair.
W(x,L) = (x, prungLU{se L|(x,L) = (y,M) /4 (x,L) for some(y,M)}))
Let Rbe a requirement set &. Theny(R) = {Y(x,L)|(x,L) € R}.
Let RandSbe two requirement sets &. ThenR >~ Sif and only if y(R) =S

114

(O {aBvh) , (LABY) 0,{a,y}) (L{B})

> g
0 ay 1 B2 0 ay 1 B2
RAG,R) RA(G,S)

Figure 6.5: An example of pruning weakly connected comptsen

(0,B(BB) aa)

RAG,R) RAG,S)

Figure 6.6: An example of pruning weakly connected comptswhich contains loops

115

RA(G,S)

Figure 6.7: An example of pruning multiple components atséi@e time

116

Now that we have defined the strongly connected requirenrateés we must go
on to prove that it only produces well-defined requirementset used with subsequent
refinement steps, in addition to preserving conflict eqeneé.

We will do this by first showing that applying to a single nonconflicting require-
ment, always results in another nonconflicting requirem@fa will then show that the
Y function preserves thes relation between nonconflicting requirements. Next we
will show that applyingy to a well-formed requirement set, always results in another
well-formed requirement set. Finally we will prove that tleguirement automaton of
the original requirement set is conflict-equivalent to teguirement automaton of the
new requirement set.

Lemma 6.16 Let G = (Z,Q,—,Q°) be a deterministic automaton. LétL) be a
requirement set db.
Theny(x,L) is also a nonconflicting requirement @f according to definition 6.3.

Proof. Let (x,M) = (x,L). We will show thaty(x,L) fulfills all the conditions of
being a requirement described in definition 6.3. From de&dimié.14
Y(x,L) = (x, prunglLU {s€ L|(x,L) = (¥,M) # (x,L) for some(y,M)}))

(i) Any language which is the result pfuneis prefix-free, thereforéx, M) satisfies
condition i

(i) As (x,L) is a requirement o6 the language. = 0 if and only if x A w. We
will prove thatM = 0 if and only if L = @. It is obvious that ifL = @ then
M = 0 as from definition 6.14 the languadye only contains traces frorh and
0 = 0. Now we will show that if_ @ thenM # 0. LetN = LU{se L|(x,L) >
(y,0) 4 (x,L) for some(y,0)}. AsL # 0 it is also the case th& # 0 asN
Is a superset of. As N # 0 there exists a tracee N. From definition 6.2 as
se N, eithers € prungN) or there existp € N such thatp C s. In either case
prungN) is non empty. A = prungN) = prungLU{se L|(x,L) > (y,0) 4
(x,L) for some(y,O)}). Thus(x,M) satisfies condition ii.

(i) As (x,L) is a requirement 06, L C .£%(x) this implies thal. C .#%®(x). AsM
only contains traces which are in M C L C .Z%(x), therefore(x, M) satisfies
condition iii.

(iv) As (x,L) is a requirement ¢ L. Furthermores ¢ {se L|(x,L) > (y,M) 4
(x,L) for some(y,M)} as(x,L) & (x,L) — (x,L). Ase ¢ LU{seL|(xL)=>
(y,M) # (x,L) for some(y,M)} it must not be inprungL U {s e L|(x,L) >
(y,M) 4 (x,L) for some(y,M)}) either. O

117

We next go on to show that thg function preserves the; relation. Let(x,L) and
(x,M) be two nonconflicting requirements such thjaix,L) = (x,M), it will always
hold that if(x,M) can reach another nonconflicting requiremgn®) using the traces
then(x, L) will also be able to reach a requiremémtN) using the same trace, and that

W(y’ N) = (y7 O)

Example 6.13 Consider the nonconflicting requirements in example 6.1@ellook
at the requirement®, (BB)*aa) and(0, B(BB)*aa) in Ras well as the requirements

(0,(BB)*a) and (0,B(BB)*a) in Sit is the case thaty(0, (BB)*aa) = (0,(BB)"a)
andy(0,B(BB)*aa) = (0,B(BB)*a). Under all circumstances whéf, (B)*a) —

(0,B(BB)*a), itis also the casé0, (BB)*aa) — (0,B(BB) aa).

Lemma 6.17 Let (x,L) and(x,M) be two requirement pairs such thatx, L) = (x,M).
Letsc M—M be a trace Lety,N) and (y,O) be two requirement pairs such that

(x,.L) > (y,N) and(x,M) = (y,0)
Theny(y,N) = (y,0)

Proof. Let Q be a language such that Q) = ¢(y,N). We will prove thatQ = O.

O=prungLU{t e C|(x,L) = (z.P) 4 (x,L)})/s

This is because from definition 6.14 it holds that
= prungLU{t € E|(x L)% (zP) 4 (x,L)}) asM # {&} as there existse M — M.
Furthermore agx,M) = (y,O) it holds thatM /s = O.

O = prungLU{t e L|(x,L) % (zP) 4 (x,L)})/s
= prunglL/suU{t € L|(x,L) 4 (z (z,P) A (x,L)}/s) from lemma 6.1
L)% (zP) A (xL)})

= prunglL/sU{ste L|(x,L) = (z

= pruneL/sU{t € L/s|(x,L) = (,P) 4 (x,L)})
= prungL/sU{t e L/s/(x L) = (z,P) # (x,L)})
= prungL/sU{t e L/s(x.L) = (z,P) # (y,N)})

This is becausé¢y,N) — (x,L). We prove this by contradiction. Let us assume that

(%:N) 4 (xL). M = prung({t € T|(x.L) = (P) A (xL)}). As (&N) /4 (xL) it
also holds thas € {t € L|(x,L) AN (z,P) 4 (x,L)}. Thereforeprune({t € L|(x,L) AN
(z,P) A (x,L)}) = M must contain some tragec M such thatp C s. AsM is prefix-

118

free this contradicts the assumption thaM — M.

O = prungL/su{t € L/s(x,L) = (zP) # (y,N)})
= prung{NU{t e N|(x,L) 3 (zP) 4 (v,

= prung{NU{t e N|(x,L) >

= prung{NU{t € N|(y,N) 5

=Q

This is because a,L) = (y,N) it holds thatL/s= N, and as(x,L) = (z,P) it also
follows (x,L) = (y,N) 4 (z,P). Furthermore agx,L) > (y,N) is true by assumption
it can be removed. Lastl) = prung{t € N|(y,N) LN (z,P) 4 (y,N)}) by definition
6.14 U

Now we show that if the strongly connected requirements isulesed on a well-
formed requirement set that it will always result in anothwedl-formed requirement
set. This is important as it ensures that we can continugyusore refinements on the
result of they operation.

Lemma 6.18 Let G = (£, Q,—,Q°) be a deterministic automaton. LRte a require-
ment set ofG.

Theny(R) is a requirement set @.

Proof. Let(x,M) € ¢/(R). From definition 6.14 there exists, L) € Rsuch thatp(x,L) =
(x,M).

(i) Lemma 6.16 shows thdk, M) must be a requirement @.

(i) Nextwe will prove that for all(y,O) such thatx, M) = (y, O) for somes, it must
hold that(y,O) € ¢/(R).

As (x,M) > it holds thats € M — M. Furthermore ad only contains traces ib
it must also hold thas € L. Thus there existgy, N) such thafx,L) = (y,N). As
Ris a requirement set @ it holds that(y,N) € R. From lemma 6.17 a, L) >
(y,N) and (x, M) > (y,0), it must also hold thaty(y,N) = (y,0). Therefore

(y,0) must be ing(R).
0

Finally we must show that for any given trunk automa@®and requirement s&,
thatRA(G, R) ~¢ont RAG, Y(R)). This ensures thap preserves conflict-equivalence.
Because of this all requirement sets which are produced Byrtité stay within the

119

same conflict equivalence class. Because of this we can karcérat the trunk and
requirement set represent a canonical form of the origintraaton’s conflict equiva-
lence class.

Theorem 6.3 Let G = (2,Q,—,Q°) be a deterministic automaton. LBtS be two
requirement sets @b such thaR -y S.
ThenRA(G,R) ~conf RAG, S).

Proof. First we will prove thaRA(G,S) Scont RA(G,R). Let T be an automaton such
thatRA(G,R) || T is nonblocking, let us prove th&®&AG,S) || T is also nonblocking.

Let s € £* be a trace such that there exiétgxr) whereRAG,S) || T = (g,x7).
Eitherqg € Qorq € S, we will prove that(qg, xt) is nonblocking in both cases.

In the first casey € Q. From corollary 6.1 it holds thaRA(G,R) || T = (q,xr) as
RAG,9) || T - (q,xr). Since(q,xr) is nonblocking inRRA(G,R) || T there must exist a
tracetw such thatg, xt) e From corollary 6.1 it holds thay t:>°Js asq @ therefore
(g, xT) must be nonblocking iIRAG,S) || T.

In the second caspe S Let (x,L) € Sbe arequirement such thg¢ L) = g. From
definition 6.14 there must exist some requiremeniN) € Rsuch thaty(x,N) = (x,L)
therefore(x,L) = (x, prungN U {t € N|(x,N) 4 (y,M) 4 (x,N) for some(y,M)})).
From corollary 6.2 aRA(G, S) = ((x,L),xr) italso holds thaRA(G,R) = ((x,N),xT).
From remark 6.1 it holds thds,N) € CC(RA(G,R)) as(x,N) € RandG > x. There-
fore there must exist some trace N such that((x,N), x7) AN asRAG,R) || T is non-
blocking. Ast € N, it must also be the case that (NU {t € N|(x,N) 4 (Y,M) 4 (x,N)
for some(y,M)}). From definition 6.2, as€ (NU {t € N|(x,L) 4 (y,M) A (x,N)})
there must exist some trapes prungNU {t € N|(x,L) 4 (y,M) 4 (x,N)}) such that
p Ct. Therefore((x,L),xT) 2 (y,yr) for some(y € Q,yr € Qr). We have already
proven thaty, yr) must be nonblocking. Therefoféx, L), xt) must be nonblocking.

Let T be an automaton such thR¥G,S) || T is nonblocking, we will prove that
RA(G,R) || T is also nonblocking.

Let se Z* be a trace such that either there exigisxy) whereRAG,R) | T =
(g,xT). Eitherg € Q or g € R, we will prove that(qg, x7) is nonblocking in both cases.

In the first casg € Q. From corollary 6.1 it holds th&®A(G,S) | T = (g, x7). Since
(g, xT) is nonblocking iINRA(G,S) || T there must exist X as From corollary 6.1 for
allte*if q s thenq 19 \r therefore if(g,xT) is nonblocking iINRAG,R) || T it
must also be nonblocking RA(G,S) || T.

In the second cagpe R. Letq= (x,L) and letsbe a trace such th®A(G,R) | T =
((x,L),xr) for some stater. We will prove that((x,L),xr) is nonblocking.

Let O(x,L) = [{(y,M)|(x,L) = (y,M)}|, O(x,L) must be finite if|R| is finite, asR
is closed on—

120

We will prove the claim via induction o®(x, L)

In the base cas®(x,L) = 1. From definition 6.14 there must exist a requirement
(x,N) € S such that(x,N) = @(x,L). Thus (x,N) = (x, prungL U {t € L|(x,L) 4
(y,M) 4 (x,L)})). For allt € N it holds that eithet € L or (x,L) Ly, L/t) A (x,L)
wherex - y. From corollary 6.2 it holds thaRAG,S) | T = ((x,N),xr) therefore
((x,N),xT) is nonblocking. Thug(x,N),xt) must be capable of performing at least
one tracd € N. Thus it holds that(x,L),x7) . There are two cases, eitfteg L or
t ZL. In the first casé(x,L),xr) 4 (Y,y1) wherex 4 y, this state has already been
proven nonblocking. In the second cds$e, L),xT) 4 (y,L/t),yr) wherex 4 y. As
(y,L/t) 4 (x,L) it must hold thaD(y,L/t) < O(x,L) as(x,L) can reach all the require-
ments(y,L/t) can. AsO(x,L) =1, (y,L/t) =0. This is absurd at&uaqx,t),L/t) —
(sugx,t),L/t) thereforet must have been ih.

Let us consider the case whe@Ex,L) = n+ 1. From the definition 6.14 there
must exist a requiremerik,N) € S such that(x,N) = @¢/(x,L). Therefore(x,N) =
(x, prungLU{t € L|(x,L) AN (y,M) 4 (x,L)})). Forallt € N it holds that eithet € L or
(x,L) AN (y,L/s) 4 (x,L) wherex - y. From corollary 6.2 it holds th®AG,9) ||T =
((x,N),x7) therefore((x,N),xr) is nonblocking. Thug(x,N),xt) must be capable of
performing at least one trace= N. Thus it holds that(x,L),xT) . There are two
cases, eithere L ort £ L. In the first cas€(x,L),x7) 4 (Y, y1) wherex 4 y this state
has already been proven nonblocking. In the seddrd.),xT) 4 ((y,L/t),yr). As
(y,L/t) 4 (x,L) it must hold thaD(y,L/t) < O(x,L) as(x,L) can reach all the require-
ments(sudx,t),L/t) can. From the inductive assumption it holds that /t) must be
nonblocking, therefore ax,L) — (y,L/t) it must hold thatx, L) is also nonblocking.

0J

6.3.2 Requirement Subsumption

The second refinement rule is subsumption. If one noncanflicequirement is less
conflicting than another requirement then the less conflgatequirement is subsumed.
If the requirement sd® contains two requiremen(s, L) and(x, M) such thatx, L) <conf
(x,M), then the requiremertk, L) can be subsumed kix,M). This is because all the
blocking information implied byx, L) is also implied by(x,M). All situations which
causegx, L) to block, will also causéx, M) to block. Simply removingx, L) will result

in a non-well-formed requirement set. However, there isljiko exist at least one re-
quirementgy,N) € Rsuch thatly,N) — (x,L). Thus if(x,L) is simply removed from
R, the resulting requirement set will no longer be closed uréde For this reason we
must also transform the requiremegtN). To do this we add any tracg such that
(y,N) > (x,L) to the language o, and then prun& back to the shortest of these

121

traces. In this way we can be certain tfyaiN) can no longer reactx,L).

Example 6.14 An example of this is shown in figure 6.8. The requiremenfRsebn-
tains the requirementd, {a,B}) and(1,{a}). As (1,{a,B}) <conf(1,{alpha}), we
can subsume the requiremétt{a,3}). At the same time we prune back the require-
ment(0,{aa,aB}) back to the shortest traces which go throygh o, 3}) thus get-
ting the requiremntO, {a }). This gives us the requirement &tWe can be certain that
this requirement is conflict equivalent wias while(0,{a}) <cont (0,{aa,ap}), as
soon as(0,{a}) is satisfied bya the requirementl,{a}) is reached. Thus the re-
quirement0,{aa}) is implied.

Example 6.15 This will not work for all situations however. Consider theusition
where (x,M) — (x,L). In this case we would have to transforfxyM), thus mak-
ing it less conflicting. Figure 6.9 shows an example of ushig tefinement on such
an automaton. In this example the requirem@h{B*a™)*y) <cont (0,(B*a™)Ty).
However it is not possible to remov®, (B*a™)*y), as to do so we must transform the
requirementO, (B*a™*)"y) into (0, 3*a). Where the original automaton required that
the eventy must occur after an indeterminate numbewcindf transitions, the new
automaton does not requiygo be able to occur at all.

Example 6.16 There are cases however whéreM) — (x,L), and it is still possi-
ble to remove(x,M). This is the case if for all tracese L, it holds that(x,M) -
does not go througlix,L). If this is the case we can say that while M) will be
transformed into a weaker requirement, that weaker reonaing will still be stronger
than(x,L). Figure 6.10 shows an example of such an automaton. In thdsragon
(O, (Ba)*a) <conf (0,a(Ba)*a). Furthermorg0,a(Ba)*a) is transformed into the
requirementO, {a }). This requirement is weaker than the requirem@nt (Ba)*a),
but stronger than the requiremégt (Ba)*a). Furthermore as satisfying the require-
ment(0,{a}) means returning to the state 0 in the trunk, and the state hbasquire-
ment(0,{a}) we can say that the requiremdit {a a }) is implied, this requirement
Is stronger than both requirements.

Because of this we introduce the new stronger relatigghs. In order for the two
requirementgx, L) and (x,M) to be (X,L) <conf (X,M) it must hold that(x,L) <conf
(x,M) and that either(x,M) cannot reachx,L), or if it can reach(x,L), all traces
which can reactix, L) from (x, M), will also satisfy(x,L).

Example 6.17 Lastly as any test automatdnwhich wishes to be nonblocking with
x will need to be able to perform at least one trace4t(x) we can say that the re-
quirement(x, Z“(x)) is implied by the trunk. Furthermore these requirementsbean

122

(0,{00,0[3}) (1,{G,B}) (0,{0})

a

O
(1,{a}) (L{a})
RAG,R) RAG,S)

Figure 6.8: An application of requirement subsumption.

(0,(B*a™)*y)

=

o
<

[ERN

RAG,R) RAG,S)

Figure 6.9: An incorrect application of requirement subptiom.

used to subsume explicit requirements. Also as implicitir@gnents are implied by

the trunk which is never modified when we subsume requiresnesing an implicit
requirement we can use the weaker relation between reqeliefonr. Figure 6.11

shows an example of a requirement automaton where a regntezan be subsumed

using an implicit requirement. The requiremédit{a, B, w}) <conf (0, Z“(0) = {aw, Bw, w}).
Because of this we can remo@ {a, 3, w}) from the requirement s&.

Definition 6.15 Let G = (%,Q,—,Q°) be a deterministic automaton. LetL) and
(x,M) be two requirement pairs @. Then(x,L) <conf (X,M) if and only if

e (X,L) <conf(X,M).
e ForallseL—L, (6(x,5),M/s) # (x,L)

123

+ logay
T
0
a,B B
RAG,R) RAG,S)

Figure 6.10: An application of requirement subsumptiomgshe< s relation.

(0,{a,B,w})
a,p
—0O0——0O
0 apB 1 o apB 1
RAG,R) RA(G,S)

Figure 6.11: An application of requirement subsumptiomgsin implicit requirement.

124

We also introduce the languagg, |) of a requirementL,) (y,N) is the set of all
traces such thdt, N) — (x,L).

Definition 6.16 Let G = (3, Q,—,Q°) be a deterministic automaton. Let L) and
(y,N) be requirement pairs.

Lien) (%:N) = {s€ NJ((%,N) = (x.L)}.

We now give the definition of the requirement subsumptioe.ruh requirement
(x,L) € Ris considered to be unnecessary for one of two reasons. Bhesfirson is if
there exists a nonconflicting requiremértM) € R such thai(x,L) <conf (X,M) as has
been previously discussed. The second (8,if) Sconf (X,-Z“(X)). This is because the
requirementx, £“(x)) is implied by the trunk. Furthermore in this case we can use
the weaker relatiortcon. This is because the requiremértZ“(x)) is implied by the
trunk rather than being explictly referred tofa Thus there is no way thgx, £ “(x))
will be transformed.

Definition 6.17 Let R, Sbe requirement sets @&.

Let (y,N) be a requirement they,) (Y, N) = {(y, prungNU LxL) (y,N))}.

(p(X,L)(R) = {cp(X,L)(y7 N)|(y7 N) € Rand(y7 N) 7& (X7 L>}

R >4 Sif and only if there existgx,L) € Rsuch that either there existg, M) € R
Where(X, L) <conf (X7 M) or <X7 L) Sconf (Xu gw(x)) andS= (p(XL)(R)

As with the strongly connected requirements rule, we musveithat require-
ment subsumption produces well-formed requirement setsat it preserves conflict-
equivalence.

The format for proving this is of the same form as for the pvasisubsection. We
first prove that applyingp to a single nonconflicting requirement, always results in
another nonconflicting requirement. We then show thatgHanction preserves the
— relation between nonconflicting requirements. Next we stiwat applyinge to a
well-formed requirement set, always results in anotheil-feeined requirement set.
Finally we will prove that the requirement automaton of thiginal requirement set is
conflict-equivalent to the requirement automaton of the reyjuirement set.

Lemma6.19 Let G = (2,Q,—,Q°) be a deterministic automaton. Lét,L) and
(y,M) be two requirements pairs & such thatx,L) # (y,M).
Thengy)(y,M) is a requirement pair db.

Proof. Let (y,N) = @,)(y;M). We will proceed to show thaly,N) satisfies all the
conditions of being a requirement given in definition 6.3.

() From the definition oforune N = prungM ULy y(y, M) must be prefix-free.

125

(i) As (y,M) is arequirement o& it must hold thaM = 0 if and only if £“(x) = 0.
We will prove thatN = 0 if and only if M = 0. It is obvious that ifM = 0 then
N = 0 as from definitiorN only contains traces froml and® = 0. It is equally
obvious that ifN = 0 thenM = 0. This is becaus® = prung M UL(x,L)(y,M),

it is obvious thaf{M ULy)(y,M)) 2 M andprunecannot remove every trace in
(MUL (s M)).

(i) As (y,M) is a requirement o6, M C #%(y) this implies thaM C £ %(y). As
N only contains traces which areh, M C M C .Z%(y)

(V) As (y,M)is arequirement ¢ M. Furthermore ¢ L, \(y,M)as(y,M) £ (v, M)
and(y,M) # (x,L) from assumption. As ¢ MUL)(y,M)) it must not be in
prungM UL (Y, M)) either. O]

We now show that thep function preserves thes relation. This principally has
the same meaning as lemma 6.17 has for the strongly conmecferdements relation.
Again we are merely showing that if a transformed requirenei) can transition to
another requiremertt, O), then it must also be the case that the original requirement
(x,L) can reach a requiremefit N) such that'y, N) will be transformed intqy, O).

Lemma 6.20 Let G = (Z,Q,—,Q°) be a deterministic automaton. LetL),(y,M),
(¥;N) be three requirements pairs@fsuch thaig, | \(y,M) = (y,N).
Letse N be a trace.

Thengy)(3(y;s),M/s) = (da(y;S),N/s)
Proof. Let (3c(Y,S);0) = @ty)(0(Y;S),M/s). We will prove thatO = N/s.

N/S= prune(M UL (y.M))/s
= prungM/sUL 1)(Y,M)/s) from lemma 6.1
= prungM/su{t € M|(d(y,t),M/t) = (x,L)}/s) from definition 6.17
= prungM/su{st e M|(d(y,st),M/st) = (x,L)})
= prune(M/sU {t € M/8(8(y.st),M/st) = (x,L)})
= pruneM/sUL) (3(%:9),M/))
=0 from definition 6.17

O

Again we can show that for any well-formed requirement getiel subsume a re-
qguirement, then the resulting requirement set will also le#-ftermed. This ensures

126

that we can continually apply the strongly connected resjuénts rule and the require-
ment subsumption rule without problems.

Lemma 6.21 Let G = (£,Q,—,Q°) be a deterministic automaton. LBtbe a re-
quirement set ofc. Let (x,L) € R, such that either there existg,M) € R where
(%,L) <cont (X, M) or (X, L) Sconf (X,-Z?(X)).

Thengy) (R) is a requirement set &

Proof. Let (y,N) be a pair ing(x,L)(R). From definition 6.17 there existy,M) #
(X7 L) S (R) such thatp(X,L) (y7 M) = (y7 N)

() Lemma 6.16 shows thay,N) must be a requirement &as@y) (y,M) = (y,N).

(i) Next we will prove that for all(z, P) such thaiy,N) - (z, P) for somes, it must
hold that(z,P) € Y/(R).

As (y,N) = it holds thatse M — M. Furthermore aM only contains traces i
it must also hold thas € M. Thus there exist&, O) such thaty,M) = (z,0). As
Ris a requirement set @ it holds that(z,O) € R. From lemma 6.17 ag,M) N
(z,0) and(y,N) = (z P), it must also hold tha(z,O) = (z,P). Therefore(z, P)
must be inY(R). O

Finally we show that requirement subsumption preservelicbaquivalence. That
is that for any given trunk automatdh and any two requirement sa&sandS of that
trunk automaton such th& >, Sit holds thatRA(G, R) ~conf RA(G,S). This ensures
that repeated uses of the strongly connected requiremdaetamd of the requirement
subsumption rule always result in requirement automatadrsame equivalence class.

Theorem 6.4 Let G = (3,Q,—,Q°) be a deterministic automaton. LB{S be two
requirement sets dg, such thaR -, S.
Then RIA(G, R) :Conf RA(G, S) .

Proof. As R~ Sthere must exist a requirement tugie,J) € R such that either
(W, J) Sconf (W,-Z%(w)) or there existgw,K) € Rwhere(w,J) <conf (W,J), andS=
Pw) (R)

Let T be an automaton such thR®(G,R) || T is nonblocking, let us prove that
RA(G,9) || T is also nonblocking.

Letse 2* be atrace an(h, x7) € Sbe a requirement wheRA(G, S) || T = (g, 7).
Eitherge Qorqe S

In the first casey € Q. From corollary 6.1 it holds thaRAG,R) || T = (g,x).
Furthermore from corollary 6.1 for alle Z* if g t:>wAR theng t:>C°AS therefore if(q,xT)
is nonblocking iRRA(G,R) || T it must also be nonblocking iIRA(G,S) || T.

127

In the second casg € S Let q= (x,L). From definition 6.17 there exists a
requirement in(x,M) € R such thatp(x,M) = (x,L) = (X, prung§M UL 3)(X,M))).
From corollary 6.1 it holds thaRAG,R) | T = ((x,M),xr). From remark 6.1 it
holds that(s,M) € CC(RAG,R)) as (x,M) € RandG > x. Thereforex; can per-
form some tracé € M asRA(G,R) || T is nonblocking. As € MULy,3) (X, M) from
definition 6.2 there must exist some trgee prune(M ULy, 3)(X,M) such thatp C t.
((X,L),xT) 2 (dc(x, p), or (X1, p)). This state has already been proven nonblocking.

Let T be an automaton such thR¥G,S) || T is nonblocking, we will prove that
RA(G,R) || T is also nonblocking.

Let (g, qr) be a state ansbe a trace such th®AG,R) || T = (q,x7).

There are three cases. Figst Q, secondy = (w,J), and thirdg € R.

First we will consider the case wheges Q. From corollary 6.1 aRA(G,R) 2
(g,x7) it holds thatRA(G,S) || T = (g,x). Furthermore from corollary 6.1 for all
te>*ifq t:‘*’>A5thenq @ \r therefore agq,xr) is nonblocking inRA(G,R) || T it must
also be nonblocking iIRAG,S) || T.

Second we consider the case whare (w,J). From the definition of-, either
(W, J) <conf (W, -Z%(w)) or there exists a requiremefw, K) € R such thatw,J) <con
(w,K). Inthe first casew,J) <conf(W,-Z%(w)). Fromlemma 6.5 it holds th&A(G, R) ||
T > (wxr) asRAG,R) > ((w,J),x7). As this state has already been proven non-
blocking there exists a trateyo € .£“(w) such thatw,xr) % From definition 6.4 as
(W, J) <conf (W, Z“(w) it holds that.Z“(w) C JZ},, therefore there must exist some
trace p C tw such thatp € J. Therefore((w,J),x7) 2 (dc(W, p),dr(XT,p)). The
state(ds(w, p), o1 (X1, p)) has already been proven nonblocking. In the second case
there exists a requiremefiy,K) € R such that(w,J) <conf (W,K). From definition
6.17 it holds thatpy,;)(R) = S @ug)(WK) € S From definition 6.17 it holds that
Aw.y) (W, K) = (w, prungK UL, 3)(W,K))). Let (@) (W, K),xr) = (w,I) from corol-
lary 6.2 it holds thaRAG,S) || T > ((w,1),x7) asRAG,R) | T = ((w,J),x7). As
((w,1),x7) is nonblocking there must exist a trace | such that((w,),xt) L. From
definition 6.17 it holds that = prungK U Ly, (W, K)), further from definition 6.2 it
holds thatprungK ULy, 3 (W,K)) € KULy3)(W,K), thereforet must be an element
of eitherK or L, 3)(w, K). We will first consider the case where K. As (W,J) Sconf
(w,K) it holds thatK C JZ7, therefore there existp € J such thatp C t. Therefore
(w,.3),xr) & (36(w, p), &r (xr, p)) as((w1),xr) =. The state(Gs(w, p), &1 (xr, p))
has already been proven nonblocking. In the second task ;) (W K) = {u €
K|(d(w,u),K/u) = (w,J)}. Thereford € Kand(d(w,t),K/t) = (w,J). As(W,J) Sconf
(w,K), it holds thatk C JZ,, which further implies thaK C JZ%,, thereforet € JZ,.
From the definition ok copy, if t € J—J then(d(w,t),K /t) # (w,J), therefore ¢ J—J.
Thereforet € J5%, —J+J = J5,. Ast € 5, there existg € J such thaip C t. There-

128

fore ((w,J),xT) 2 (dc(W, p), Ot (XT,p)). The state(dg(w, p),dr (X1, p)) has already
been proven nonblocking.

Thirdly we consider the case wheges R. Let (x,L) = q. From definition 6.17
there exists a requireme(®,M) € Ssuch thatg, j(x,L) = (x,M). From assumption
RAG,R) || T 2 ((x,L),xr), therefore from corollary 6.2 it holds thRA(G,S) || T =
((x,M),xT). As ((x,M),xT) is nonblocking there must exist a trace M such that
((X,M),x1) . From definition 6.17 aspva(x,L) = (x,M) it holds that(x,M) =
(X, prung(L ULy 3)(X,L))). As prungL ULy (L)) € LULw(XL) the tracet
must either be i orin L, 5)(x,L). In the first case as< L it holds that((x,L),xt) a8
(dc(X,t), 07 (xT,t)). The statg d(x,t), dr(X7,t)) has already been proven nonblock-
ing. In he second cases L, (x L) = {ue L|(5(x,u),L/u) = (w,J)}. Thus(x,L) 4
(w,J), therefore((x,L),xT) 5N (W, J), Ot (x7,t)). The state((w,J), or(xT,t)) has al-
ready been proven nonblocking. O

6.4 Irreducible Requirement Sets

Using the refinement rules introduced in section 6.3 it issfiide to refine any finite
requirement set into an irreducible requirement set. Tédicn is divided into two
subsections. Subsection 6.4.1 first defines what it means &mlrreducible require-
ment set, then proves that any finite requirement set cancheed to an irreducible
requirement set, it then finally describes a few propertiesorreducible requirement
set. Subsection 6.4.2 shows that there is a unique requitesee for every conflict
equivalence class.

6.4.1 Properties

In the previous section we described the strongly connestiathonent rule as well as
the requirement subsumption rule. We further showed thet saccessive application
of these rules resulted in well-formed requirement setsyelsas conflict-equivalent
requirement automata. In this subsection we will show thasé two rules can be
used iteratively in order to reach an irreducible requiretre=t. We will further go
on to show that given a particular trunk automa@rthere exists a unique irreducible
requirement set for each conflict-equivalence class.

We first define the relation between requirement sets which are found by succes-
sive application of the refinement rules described in se@ia.

Definition 6.18 Let G = (£,Q,—,Q°) be an automaton. L& andS be two require-
ment sets of5.

129

ThenR - Sif and only if one of the following holds.
() Ry S
(i) R~ S
(i) If there exists some requirement sesuchthaR >~ T >~ S

Lemma 6.22 LetG = (£,Q,—,Q°) be an automaton. L&andSbe two requirement
sets ofG such thaR - S,
ThenRA(G,R) ~¢onf RAG, S).

Proof. This can be proved using induction based upon theorems €.8.4n OJ

We further define what it means for a requirement&d be irreducible.

Definition 6.19 Let G = (%, Q,—, Q") be a deterministic automaton. LRte a well-
formed requirement set with respect@o

Ris y-irreducible if and only if for every requirement sgof G, if R~y Sthen
R=S

Ris @-irreducible if and only if for every requirement sgwof G, if R~ Sthen
R=S

Ris irreducible if and only iR is bothy-irreducible andp-irreducible.

Example 6.18 If we use requirement automata to represent requiremesit gtire
6.12 gives an example of how the strongly connected reqeinemule and require-
ment subsumption can be used to simplify a requirement $eétus irreducible. The
example starts with the requirement BetR can be simplified using the strongly con-
nected requirements rule into the requirement&as previously shown in example
6.12. After this the requiremeiil, (aa)*(B|w)) can be subsumed fro® This is be-
causgl, (aa)*(B|w)) <cont(1,{B,w}). ThusScan be simplified int@ by removing
(1, (aa)*(B|w)) and pruning 0, a (aa)*(B|w)) back to the requiremenid, a). Lastly
the requirement2, 3*w) can also be subsumed, this time using the implied require-
ment(2,.£“(2)) which is equal tq2, 3*w). While (2, B*w) Zconf (2,-Z%(2) = B*w)
as they both equal one another(as#“(2)) is a requirement which is implied by the
trunk, we can use the weaker relatigons to subsume2, *w). This transformsT
into the requirement s&t which is irreducible.

Furthermore we can be certain tH#(G, R) ~conf RAG, S) ~cont RA(G, T) ~conf
RA(G,V). As from theorem 6.3 it holds th&®A(G, R) ~¢onf RA(G, S) and from theorem
6.4 it holds thaRA(G, S) ~conf RAG, T) andRA(G, T) ~¢onf RA(G,V).

130

In order to show that successive applications of the refimenudes of section three
result in an irreducible requirement set we will show thag¢ath step the requirement
rules make the requirement set smaller. To do this we firsivghat successive ap-
plications of the strongly connected requirements Rileave no effect. That is to say
if R has been simplified using the strongly connected requireswale once it cannot
be simplified using the strongly connected requirements aghin. In order for it to
be possible to use the strongly connected requirementsgalim it is first neccessary
to apply the requirement subsumption rule. Thus a requinerset simplified by the
strongly connected components rule can be considered tanbkes with respect to
whether it can be simplified by.

Lemma 6.23 Let G = (Z,Q,—,Q°) be a deterministic automaton. LBtR R’ be
three requirement sets Gfsuch thaR >y R >~y R’
ThenR =R’

Proof. Let (x,L) be a requirement iR such that # {&}. We will show for all traces
se L that (8(x,s),L/s) — (x,L) if and only if L/s# {€}. Letse L. We will first
show that if(8(x,s),L/s) — (x,L) thenL/s# {e}. This is simple as iL/s= {&},
(6(x,8),L/s) can only reachd(x,s),{e}). Second we will show that it /s # {€}
then (8(x,s),L/s) — (x,L). From the construction dR there exists a requirement
pair (x,M) such thatL = prung{t € M|(dg(x,t),M/t) 4 (x,M)}). AsL/s# {e},
L = prung{t € M|((x,t),M/t) /4 (x,M)}), and ad_ is prefix-freedg(x,s),M/s) —
(x,M) for someu. The tracesue L. Furthermorep(x,M) = (x,L) therefore from
lemma 6.20@(dg (X, su), M /su) = (dg(X,su),L/su). As dg(X,su),M/su= (x,M) and
W(x,M) = (x,L) it follows that (3 (x,su),L/su) = (x,L), thus(5(x,s),L/s) = (x,L).
(0(x,8),L/s) — (x,L) if and only if L/s # {&} is equivalent tod(x,s),L/s) 4 (x,L)
if and only ifL/s= {&}.

Let (x,L) be a requirement iR. We will show thaty(x,L) = (x,L). In the first
caseL = {€}. In this casa(x,L) = (x,L) directly from the definition ofy. In the
second cas&J(x,L) = (x, prung{s € L|(3(x,s),L/s) 4 (x,L)})). As for allse L
(3(x,9),L/s) 4 (x,L)ifand only ifL/s= {€}. P(x,L) = (x, prung{seL|L/s={€}))
asL is prefix-freeL/s= {€} if and only if s € L therefore(x,L) = (x, prungL)).
Again becaust is prefix-freeprunglL) = L thusy/(x,L) = (x,L).

Lastly we will prove thaR = R’. From assumptio(R') = R’ therefore it is the
case tha{y(x,L)|(x,L) e R} =R’. Asy(x,L) = (x,L) {(x,L)|(x,L) e R} =R =R".

U

We can further show that applying the strongly connectedirements rule to a re-
guirement seR will never increase the number of requirement&irThus the strongly

131

connected requirement rule never makebigger. Thus applying the strongly con-
nected requirement rule will always result in a requirensattwhich is either smaller
than or equal tdR with respect to the number of requirements it contains.

Lemma 6.24 Let G = (Z,Q,—,Q°) be a deterministic automaton. LBtR be two
requirement sets & such thaR >y R.
Then|R| > |R]|

Proof. This come directly from the definition af. ¢/(R) creates at most one tuple for
each pair in the original requirement $&t O

We now show that each application of the requirement subsampule strictly
reduces the number of requirement&in

Lemma 6.25 Let G = (Z,Q,—,Q°) be a deterministic automaton. LBtR be two
requirement sets & such thaR >y R
Then|R| > |R]|

Proof. This also comes directly from the definition@fisR' can only have at most one
requirement pair for each pair Riexcluding the requiremeifx,L). As suchi@y) (R)|
can have at mosR| — 1 elements. O

We now define a function with which we can compare the size ofregquirement
sets. The function|.|| assigns a number to each requirement set such that require-
ment sets are ordered primarily based upon the number obndiiating requirements
they contain and secondarily based upon whether they caefined by the strongly
connected requirements rule.

Definition 6.20 Let G = (Z,Q,—,Q°) be a deterministic automaton. LRt require-
ment set ofG.
Then||R|| = 2|R| if R~y Ror otherwisg|R|| = 2|R| + 1.

We now show that whenever either the strongly connectedinegents rule or
the requirement subsumption rule is applied to a requirésetiR, then the resulting
requirement set is always smaller with respecti io. As ||.|| cannot be negative, we
can therefore say that for any finite requirementRed finite number of applications
of the strongly connected requirements rule or the requerdraubsumption rule will
lead to an irreducible requirement set.

Theorem 6.5 LetG = (Z,Q, —,Q°) be a deterministic automaton. LR&andSbe two
requirement sets @ such thaR > SandR# S
Then||R|| > [|S]].

132

Proof. There are two cases eithBr~, Sor R~y S In the first case becaust# S
andR >, Sit must be the case thiR|| = 2|R| + 1. From lemma 6.24 it holds that
IR > |§ and from 6.235 - S, therefore||S|| < 2|R|, and the proposition is proven.
In the second casgR|| either equals [R| + 1 or 2R|, thus||R|| > 2|R|, and||]|
either equals & + 1 or 2§, thus||S| < 2|§ + 1. From lemma 6.25 it holds that
IR| > |9, thereforg|§| < 2(|R| — 1) + 1, which is equivalent tg|S|| < 2|R| — 1. Thus
the case is proven. O

Example 6.19 Consider the requirement automata shown in figure 6.12. meki
ample the requirement s&is successively refined using the strongly connected re-
quirement rule and the requirement subsumption rule urgNveéntually results in the
irreducible requirement s&t. The first requirement s& has five requirements and
can be reduced by the strongly connected requirement huig||R|| =2x 5+ 1=11.

R is then refined using the strongly connected requiremestinib the requirement
setS. This requirement set still has exactly five requirementsdaun no longer be
reduced by the strongly connected requirement rule, ff8lis= 10. The requirement
(1, (aa)*(B|w)) is then subsumed by, { B, w}). This results in the requirement set
T. T has four requirements in it and also cannot be refined by tbagly connected
requirements rule, thu$T|| = 8. Finally we subsume the nonconflicting requirement
(2,8*w) using implied requiremen(2,.£“(2)). This results in the requirement 3ét
which has three requirementgV|| = 6. V cannot no longer be refined by either the
strongly connected requirements rule or the requiremedpgisuption rule, thus it is
considered irreducible. We further notice that after edep|$.|| decreases in size.

Lastly we give some properties of irreducible requiremes$.sThe first property
applies to requirement sets which are irreducible witheeso the strongly connected
requirement rule. If the requirement $ets irreducible then for every requirement
(x,L) and(y,M) in Rsuch thatx,L) — (y,M) it holds that(y,M) and(x, L) are strongly
connected.

Lemma 6.26 Let G = (£,Q,—,Q°) be an automaton, and I&be ay—irreducible
requirement set db. Let (x,L) and(y,M) be two requirements iR such thaix,L) —
(y,M).

It holds that(y,M) — (x,L)

Proof. As (x,L) — (y,M) there must exist a tracesuch thatx,L) > (y,M). AsRis
Rirreducible,y(R) = R, therefore from definition 6.14 there must exist a requineime
(x,N) € Rsuch thatp(x,N) = (x,L). From lemma 6.17 it must hold that there exists a
nonconflicting requiremertty, O) € R such that(x,N) = (y,0) andy(y,0) = (y,M).

133

RAG,T)

RAG,V)

Figure 6.12: Example of four automata such tRaty S>¢ T =V

134

As (x,L) > (y,M), it holds thats ¢ L, and ad_ is prefix-free it holds that there exists no
tracep C ssuch thatp € L. Furthermore as¢ L, (y(x,N) = (x,L), and(x,N) = (y,0)

it holds that(y, O) 4 (x,N) for some trace. As (y,O) Y there exists a trace € O
such that C u. Furthermore agx,N) - (y,0) all possible tracep andv such that
pv=t it is the case thafy,0) 5 (.,.) % (x,L) > (y,0), therefore(y,M) - to some
requirementx, P), which from lemma 6.17 is equal 9(x,N) = (x,P) = (x,L). O

We next show that for any requirement &avhich is ¢—irreducible, ifR contains
the nonconflicting requiremenk, L) then there exists no nonconflicting requirement
(x,M) € Rsuch thatx, M) is strictly more conflicting thaifx, L).

Lemma 6.27 Let G = (%,Q,—,Q°) be an automaton, and I&be a@—irreducible
requirement set db. Let (x,L) and(x,M) be two requirements iR.

(X, L) Zconf (X, M)

Proof. Let us assume thdix,L) <conf (X,M). Then according to definition 6.17 it
holds thatR -4 @y 1)(R). From lemma 6.25 it holds thai,) (R)| < |R| therefore
(p(X7L)(R) # R, thusR is not ¢—irreducible. This contradicts our assumptions, thus
(X, L) Zconf (X, M). O

We further show that for any requirement Bawhich is(/—irreducible, ifR has the
nonconflicting requiremeri, L), then(x, L) is not less conflicting thafx, £ “(x)).

Lemma 6.28 Let G = (%,Q,—,Q°) be an automaton, and I&be ag—irreducible
requirement set db. Let (x,L) be a requirement iR.

(%, L) ZLeonf (X, -L?(x))

Proof. Let us assume thdk,L) <conf (X,-Z“(x)). Then according to definition 6.17
it holds thatR >4 @,)(R). From lemma 6.25 it holds thédy,) (R)| < |R| therefore
@xL)(R) # R, thusR is not p—irreducible. This contradicts our assumptions, thus

(%, L) Zeont (X, ZL9(x)). 0

6.4.2 Uniqueness

In this section we show that their is a unique requirementasetach conflict equiva-
lence class. In addition to this we will show that for any giteunk automatois, and
any two irreducible nonconflicting requirement sBtandS, RA(G, R) ~¢ont RAG, S)

if and only if R= S The proof for this is quite involved and is split betweenesaV
different lemmas. Here we will give an overview of the proofthat the reader can
have a reasonable understanding about the importanceofredicidual lemma. The-
orem 6.6 shows that every nonconflicting requiremerkK) € R is also inS. To do

135

this we consider a nonconflicting requiremértL) in R such that there exists no re-
quirement inrRwhich is2cont (X, L), and(x, K) <conf (X,L). Becaus&is an irreducible
requirement setx, K) Zconf (X, L) otherwise(x, K) would have been removed, and thus
(x,K) — (x,L). Furthermore this implies thdk,L) — (x,K) again asRRis irreducible
any requirements which are not strongly connected will Hzaen abstracted. As this
is the case any well-formed nonconflicting requirement detkwvcontaingx, L) must
also contain(x,K), therefore it is enough to show that L) € S

The picture in figure 6.15 gives a graphical representationow we find a re-
quirement(x,0) € Ssuch that(x,L) <conf (X,0). Given our nonconflicting require-
ment(x,L) we first use lemma 6.29 in order to find the requireménts’) and(y,0’)
and the traces such that(x,L) > (y,L’) and (y,L’) <conf (y,O). We then construct
the nonconflicting requiremerit, M’) which is an element of neitheéR or S such
that M’ = L' N O/, this is a nonconflicting requirement which has the propénst
Y, L") Zcont (s M") Zconf (Y,O'). We use lemma 6.29 on this to find the tra@nd the
requirementgz,M”) and(z, N") such thatly, M’) 4 (zzM") and(z,M") <conf (z,N").
We further state that there exists a requiremerit”) such that(y,L’) 4 (z, L") and
M” C L”. To this we apply the lemma 6.31 to find the nonconflicting meuent
(z, L' /tu) which all three of these requirements converge upon afeetréfteu. AsRis
irreducible and(x,L) sty (z,L'/tu) there exists a trace such that(z, L' /tu) ~ (x,L).
Furthermore agy,M’) Y (x,L) and (y,M") <cont (¥,O), (y,0) Y (x,0) such that
(%,L) Sconf (X, 0).

We can use the same method we used to({n@) € Ssuch thai(x,L) <conf (X, O),
to find another requiremertk, P) € R such that(x, O) <conf (X,P). Thus(X,L) Scont
(X,0) <conf (X,P), as<cont is transitive, and the only nonconflicting requiremenRin
which is more conflicting thafx, L) is (x,L), (x,P) = (x,L). Furthermore asconf IS
antisymmetriqx, O) = (x,L). Thereforgx,L) € S. Anidentical argument can be made
for why every nonconflicting requirement 8must also be contained R

Lemma 6.29 Let G = (£,Q,—,Q°) be a deterministic automaton. LBtS be two
irreducible requirement sets such tR#(G,R) <confRA(G,S). Let(x,L) be a require-
ment. Let(x,K) € R be a requirement such that L) <conf (X,K). Let (x,J) € RUS
be a requirement such thiaC J.

Then there exists a trates >*, a requirementy, L) such thatx,L) - (y,L'), and
there exists a requiremefy, O') € Ssuch thaty, L") <cons (Y, O).

Proof. As x is reachable irG there exists a tracesuch thaiG > x. Letsbe such a
trace.

We will prove the claim by first showing that RA(G,R) <cont RAG,S) it also
holds thatRAG/s,R) <cont RAG/s,S). We will then show thaRA(G/s,R) <conf

136

RA(G/s,S) can only be true if the requirementgL’) and(y,O') exist.

From theorem 5.1 i € NCoNF(RA(G,S)) asRA(G,R) <conf RAG,S) it would
also hold thaRA(G,R) /s <conf RA(G, S)/s. We will prove thatse NCoNF(RA(G,S))
by contradiction. Let us assume thleet CONF(RA(G,S)). From lemma 6.7 it holds
that CoNF(RA(G, S)) = CoNF(G). As G is deterministic and - x it must hold that
Z?(x) = 0. Note that(x,K) <conf (X,0). This contradicts our assumption tHatis
irreducible as from lemma 6.28 it holds tHatK) <conf (X,-Z¥(X)) becauséx,K) € R
by assumption. Thereforee NCoNF(RAG,S)). Furthermore lemma 6.8 shows that
RA(G,R)/s~contRAG/s,R) andRA(G,S) /S ~cont RA(G/S,S), thusRAG/s,R) Sconf
RAG/s,S)

Let T be a deterministic test automaton such @) = £ (x) — LZ%,. We will
show thaRA(G,R) || T is blocking. Asxis the initial state oORA(G/s,R) and(x,K) € R
it holds thatRA(G/s,R) | T = ((x,K),Q%) whereqr is the initial state off . Further-
more agx, L) Sconf (X, K) it holds thatk C L>7,. AsL(T) contains no traces ibZ}, it
follows that((x,K), Q%) is blocking. Therefor&A(G,R) || T is blocking.

AsSRAG/s,R) <confRA(G/s,9) it follows thatRA(G, S) || T must also be blocking.
Lett be a trace an@l, gqr) be a state such thRAG/s,S) || T 4 (g,97). We will show
that (q,qr) is only blocking ifq = (y,0’) where(x,L) 4 (y,L/t) = (y,L’) such that
(V,L') Scont (%,O)

We will consider four possible casestadinda.

() t ¢ (5, andqeQ
(i) t¢LZ,andge S
(i) telZ,andgeQ
(iv) teLZ,andge S
We will show that cases- 3 are nonblocking, and that for case4s (y,O').

(i) Lett ¢ LY}, andge Q. Ast ¢ LY, it holds that#®(qr) is equal toaZ®(x) /t
asL(gr) = Z?°(x)/t —LZ}, = Z“(x)/t — 0. FurthermoreZ“(x)/t # 0 ast €
L9 (x)/t asT L therefore(q, gr) is nonblocking.

(i) Lett¢LZ: andg=(y,0') € S Ast € £¥(x)asT AN and(y,0’) is arequirement
set of G it follows that O’ # 0 from definition 6.3, therefore there exists at least
one traceu € O'. Furthermore agy,O') is a requirement of5, it holds that
O C Z9(y) = £%(x)/t. Thus((y,O),qr) — (zzr) for some state paifz, z7).

As such states have already been proven to be nonblo¢kin@), gr) is also
nonblocking.

137

(iii) Lett e Landge Q. AsL C Jand(x,J) € RUSby assumption, it follows that
(x,J) 4 (g,Jd/t) whered/t € RUSas bothRandSare requirement sets. Further-
more as bottiR andSare irreducible from lemma 6.28 it holds that J/t) Zconf
(9,-2%(q)), therefore there exists a traoe € £“(q) which is not in(J/t)%},.
As L/t C J/t it follows thatucw is not in (L/t)=%, either. Thus(g,qr) = as
L(ar) = (£°(X)/t = 2°(q)) - (L/1)Z;, andt € £¥(q) butt & (L/t)Z;,.

(iv) teLandg= (y,0) € S t e L—LasT cannot perform any trace ir>;,, ther-
erfore there exists a paif, L) such that(x,L) 4 (y,L"). Now we will prove
if (y,0@) is blocking that(y,L") <conf (y,O). Letu be a trace in0’ such that
ud (L/1)s%. As O’ C Z%(y) it holds that((y,O'),qr) ~ (z zr) for some pair
of states(z€ Q,zr € Qr). As such states have already been proven nonblock-
ing it holds that ifO’ can be perform any traae¢ (L/t)Z;, that((y,O'),qr) is
nonblocking. Thusif(y,0'),qr) is blockingOQ’' C (L/t =L')Z},, which is equiv-
alentto(y, L") <cont(y,). As this is the only possible type of blocking state and
(x,L) 4 (y,L’) the property holds.

Therefore there must exigy,L’) and (y,0') € S such that(x,L) — (y,L’) and
(¥, L") Scont (¥, 0'). O

Lemma 6.30 Let G = (%,Q,—,Q°) be a deterministic automaton. LBtc R; be a

requirement set. Letx, L), (x,N) € Rand(x,M) be three requirement tuples such that
M C L and(X7 M) SCOI‘lf (X7 N)

Then there exists a trasec L — L such that the following holds.
(i) M/sCL/s
(i) (%,L/s) Sconf (%,L)
(i) (x,M/s) Scont (X, L)
(iv) (x,N) > (xL)

(v) (x,L/s)eR

Figure 6.13 show a graphical representation of this lemmae.sft with the re-
quirementgx, L), (x,M), and(x,N) which are in a triangular relation such thatC L
and(x,N) is more conflicting than botfx, L) and(x,M), we then show that their must
exist some trace traceand requirement&, L/s), (x,M/s), and(x,N/s= L) such that
these requirements share the same triangular relation.

138

(M) —> > (x,M/s)

| |

| |

7/ | !

Zconf IN Zconf N

s | s |

. |

‘ S ‘ S ‘
(%N) ———> (x,L) —— (X%,L/s)

Figure 6.13: A graphical representation of a triangulaatreh of Nonconflicting Re-
quirements and how it propogates

Proof. First we will prove thatx,L) <conf (X,N). Lett € N be a trace. A$x,M) <cons
(x,N) it holds thatN C MZX},, furthermore a8/ C L it must be the case thBtC MZ}, C
LX), therefore(x, L) Sconf (X,N).

From lemma 6.27, as botfx,L), (X,N) € R (X,L) #£conf (X,N). Furthermore as
(%, L) <conf (x,N) there must exist a tracee L — L such tha(x,N) > (x, L), otherwise
from definition 6.15 it holds thatx,L) <conf (X,N), this proves requirement iv. As
se L, andRis a requirement sdi, L) = (x,L/s) € Rthis proves requirement v. As
M C L, andM /s C L/sthis proves requirement i.

Next we will prove ii, that(x,L/s) Sconf (X,L). AS (X,L) Sconf (X,N), N C L%,
therefore asin bothL andN, N/sC (L/s)Z;,. L = N/stherefore(x,L/s) Sconf (X, L).

Thirdly we will prove iii, that(x,M/s) <conf (X,L). We will first prove thats € M.
As s e N there must exist some trate N such thas C t, furthermore adN C M%),
there must exists a trageC t, such thap € M. Furthermore aM C L, p € L. As both
pCtandsCt, it holds that eithepCsCtorsC pCt, asse€ L—L andL is prefix-
free,sC pCt. Thereforese M, thus(x,M) = (x,M/s) and as Firstx, M) <cons (X, N)
thereforeN C M%), this implies thalN /s C (M/s)Z}, as bothN andM can perforns.
FurthermoreN /s = L therefore(x,M/s) <conf (X,L). O

We can now use lemma 6.30 to show that given three requiretuplgs in the
triangular relation all three tuples must eventually cageeon the same requirement
tuple. Figure 6.14 demonstrates the rationale for this lagrbacause from lemma 6.30
given three nonconflicting requirements within the trialaguelation we can always
find another three nonconflicting requirements which ardvendame triangular rela-
tion which are also less conflicting. ARis a finite set, we must eventually run out
of less conflicting requirements, therefore the relatiorsiraonverge on a particular
nonconflicting requirement.

Lemma6.31 Let G = (%,Q,—,Q°) be a deterministic automaton. LBtc R; be a
requirement set. Lgix, L), (x,N) € Rand(x,M) be three requirement tuples such that

139

S s s
(M)~ (Mg (M/ST) s
~conf I(‘W < conf I}\ I
(%N) ———> (x,L) ———> (X

Figure 6.14: A graphical representation of why the triaaguoélation must eventually
converge on a single nonconflicting requirement

M C L and(x,M) Sconf (X,N). Let| <z ¢ (X,L)| be the number of requirements i
which are<cons (X, L).
Then there exists a trases L — L such tha = dg(x,s) andL/s=N/s=M/s

Proof. We will prove the claim via induction on<y < (X, L)

In the base case<i s (X,L)] = 1. Therefore the only requirement that is less
conflicting than(x,L) is (x,L). From lemma 6.30 a& is a deterministic automa-
tonRe R;, (x,L),(x,N) € Rand(x,M) is a requirement tuple, such thdtC L. and
(X, M) <conf (X,N) there exists € L such tha(x L/S) <conf(X,L), (X,M/S) <conf (X, L),
M/sC L/s, and(x,N) = (x,L). As (x,N) = (x,L) 5(x,s) = xandN/s= L. Further-
more from the base case assumptigrl/s) = (x,L) = (x,N/s) as there are no other
requirements iflR which are less conflicting. Now we must prove thats=L/s. Itis
already known thatl /s C L /stherefore we must only prove thiafsC M/s. Lett be a
trace inL/s. As (X,M/s) <conf (X,L), andL =L/s,L/sC (M/s)Z;,. Therefore must
be in(M/s)Z;,. This means that there exigtsc M/ssuch thapp Ct. AsM/sC L/s
p € L/sand ad /sis prefix-freet = p. Ast was chosen arbitrariliy/sC M/s. Thus
L/s=M/s=N/s.

Now let us consider the inductive case where the propergysiior| <2 ¢ (X, L)] <
n, we will prove that the property must hold fo1<% ¢ (X,L)| = n+1. From lemma
6.30 there existse L such thatx,L/s) Sconf (X%, L), (X,M/S) Sconf (X,L), M/SC L/s,
and(x,N) = (x,L). As (x,L/s) <conf (x,L) eitherL/s=L or | < Seont X% L/s)| < n. In
the first case prove as for the base case, in the second fromdihetive assumption
asG is a deterministic automatomR is irreducible,(x,L), (x,N) € Rand (x,M) is a
requirement tuple, such thdd C L, and (x,M) <conf (X,N) there existd such that
X=0(x,8) = &(x,t) andL/st=M/st= N/st. O

Lemma 6.32 LetG = (X,Q,—,Q°) be a deterministic automaton. LR&andSbe two
irreducible requirement seBA(G, S) <conf RAG,R). Let(x,L) € R. Let(y,L’) € Rbe

140

r--r-—-————>—>>">""">""™"""""""™"""""™>"""">"">""™>""™""">"""7" 77~~~ 7=~ A r-—-———~>~">"~>">"=7=777= A
| | | |
| | | |
l 1 (207 |
		‘
I Lo I		
\ Lo \		
\ Lo \		
	-	
(Z7 L//) I Scont (Z’ M/,): Sconf (Z, N//) :	tu	
	R 4	
A :		
v	: v !	
: t [t	:	
: !/ : Sconf / Sconf : :		
\ (y7 L) P2 (y, M) < \ (y, O,)		
S		
s		
1		
(xL) Seont . (x,0)		
L J L J

Figure 6.15: A graphical representation of lemma 6.32.

a nonconflicting requirement such th{atL) — (y,L’). Let (y,0’) € Sbe a nonconflict-
ing requirement such théy, L') <cont (v, O).
Then there exist&, O) € Ssuch thaix, L) Sconf (X,0).

The proof for lemma 6.32 involves a large number of differaguirements. As
such figure 6.15 is provided in order to more easily keep tckl the different re-
guirements and how they relate to one another.

Proof. LetM' =L'Nn0O

We will now prove that(x, M’) <conf (x,0'). Lett be a trace ir0’. We will prove
that it is also inM'Z},. Becausegx, L") <conf (Xx,0') it holds thatO' C L'Z},. This
implies that their existp € L’ andu € X}, such thatpu=t. Ast € O it holds that
p € O thereforep € M’. Thuspu=t € M’Z},. Thus(x,M’) <cons (X, O').

(X, M’) <cont (X,0). Therefore from lemma 6.29 &= (Z,Q,—,Q") is a deter-
ministic automaton. BotR andSare irreducible(y,M’) is a requirement(y,0’) € S
such thaty,M") <conf(y,O'). (y,L’) € SUSsuch thaH C N. there exists a tradec *,
(z,M"), and(Z,N") € Rsuch thaix,M’) - (z,M') and(z, M") <conf (z,N").

Let L” = L'/t. From lemma 6.31 a€ is a deterministic automator§ is irre-
ducible. (zL"”),(z,N”) € R and (z M") are requirement pairs such thist’ C L”

141

and(z,M") <cont (z_ N"). Their exists a trace such thaz = d(z,u) and(z, L"/u) =
(zzM” Ju) = (z,N").

Furthermore a$is irreducible, from lemma 6.26 there must exist a traseich
that(z, L' /tu) = (z,L” /u) - (x,L) otherwisey would have been applied. Lét,O) =
(x,0 /tuv). As (y,M) L (z,M”/u) 2 (x,L), tuv e M’ furthermore from the con-
struction of M’ C O/ thustuv € O. Therefore(y,0') ¥ (5(y,tuv), 0’ /tuv) = (x,0).
Thus asSis a nonconflicting requirement s¢k, O) must be inS. Furthermore from
lemma 6.4 agy,L’) <conf (¥,O), tuve L/, (x,L) = (da(y,tuv), L’ /tuv) <conf (X,0) =
(8(y,tuv), 0’ /tuv). O

We can now use lemmas 6.29 and 6.32 to prove that for any givak automaton
G, there is a unique irreducible requirement set for each ictitjuivalence class.

Theorem 6.6 LetG = (2,Q,—,Q°) be a deterministic automaton. LRandSbe two
irreducible requirement sets such tR(G, R) ~¢oni RAG,S)
Then it holds thaR= S,

Proof. Let (x,K) € R. AsRis finite and<cqnt is antisymmetric there exists a require-
ment(x,L) € Rsuch thatx,K) <conf (X,L) and for every(x,M) € Reither(x,L) Zconf
(X,M) or (x,L) = (x,M).

We will proceed to prove thak,L) € S

From lemma 6.29 there existg,M) € Rand(y,N) € Ssuch that(x,L) — (y,M)
and(y,M) Sconf (Y;N).

From lemma 6.32 there exists,O) € Ssuch thatx,L) <conf (X, O).

From lemma 6.29 there existg,M) € Sand(y,N) € R such that(x,L) — (y,M)
and(y,M) Scon (Y, N).

From lemma 6.32 there exists, P) € R such that(x,0) Sconf (X, P).

As <contis transitive(x, L) Sconf (X,0) Sconf (X,P). As the only pair irR which is
more conflicting tharix, L) is (x,L), (X,P) = (X,L). As <confiS antisymmetrigx,L) =
(x,0) = (x,P). Thus(x,L) € S We will now prove that this impliegx,K) € S

From lemma 6.27 it holds thak,K) <conf (X,L) asRis irreducible. Furthermore
from definition 6.15 it must be the case ttiatKk) — (x,L) as(X,K) <conf (X,L). From
lemma 6.26 it holds thdk, L) — (x,K) as(x,K) — (x,L). From definition 6.7(x,K)
SasSis arequirement sefx,L) € Sand(x,L) — (x,K). - O

We now have all the material we need to defiyavhich is the unique irreducible
requirement set for any given automatén

Definition 6.21 Let G = (Z,Q,—,Q°) be a finite state automaton. LBtbe an irre-
ducible requirement set such tHiG) > R.

142

R(G) =R

We know thatR is a well-defined function because theorem 6.6 shows thet the
a unique irreducible requirement set for each conflictaegjance class. Futhermore
theorem 6.5 shows that every finite nonconflicting requinetnset can be refined to an
irreducible nonconflicting requirement set using the refiaat rulesyy and .

Theorem 6.7 Let G = (Z,Qg, =, Qg) andH = (Z,Qy, —, Qp) be two automata.
Thentrunk(G) = trunk(H) andR(G) = R(H) if and only if G ~¢oni H.

Proof.
G ~contH

= G ~confH Atrunk(G) = trunk(H) from theorem 6.1
<= RAtrunk(G),R(G)) ~cont RA(trunk(H),R(H))

Atrunk(G) = trunk(H) from theorem 6.2
= RAtrunk(G),R(G)) ~cont RAtrunk(H),R(H)) from lemma 6.22

Atrunk(G) = trunk(H) asR(G) >~ R(G)
= RAtrunk(G),R(G)) ~¢onf RAtrunk(G),R(H))

Atrunk(G) = trunk(H) astrunk(G) =trunk(H)
— R(G) = R(H) Atrunk(G) = trunk(H) from theorem 6.6

143

Chapter 7
Conclusion

Verifying whether or not a DES is nonblocking is an NP-Hardlpem [14]. However
with the use of abstraction it is possible to verify largetegss in many cases. In order
to verify the nonblocking property, the best equivalendatien to abstract with respect
to is conflict equivalence. In chapter 3 we presented anedt@titomata as a method
of abstracting automata with respect to conflict equivadernnotated automata take
ideas used in failures equivalence, in order to simplifyoendta with respect to con-
flict equivalence. The chapter further shows that annotat#odmata can be used with
a compositional nonblocking checker in order to verify wiegtlarge discrete event
models are nonblocking.

In addition, this thesis set out to gain a greater undergtgraf conflict equivalence
using some of the ideas first developed in chapter 3. In ch&ptee introduce an
algorithm for determining whether one automaton is lesdlioting than another. This
makes it possible to compare automata with respect to thifictqoreorder and also
allows us to determine why a given automaton is not less @binflj than another. One
of the main uses of the algorithm is to establish a contracafoautomaton. If an
automatonrA is more conflicting than the automat&ithe automatorA can be used
as a contract for the automat@with respect to nonblocking. This is because in
every situation in whichB is blocking, the automatoA is also blocking, therefore if
A is nonblocking in that situation we know thBtis nonblocking also. Th&C pairs
algorithm is used for this purpose in [24]. It is also of irtstrfor those who desire to
refine automata into a less conflicting automaton which per$che same function. A
method of determining whether two automata are conflictvedent is also neccessary
in order to construct the conflict normal form described iatler 6.

The conflict normal form allows the simplification of any givenite state automa-
ton down to another finite state automaton which uniquelyesgnts its conflict equiv-
alence. This gives us a much greater idea of what makes tvoonaité conflict equiv-

144

alent by being able to focus uniquely on those elements détitueture of the original
automaton which relate to conflicts. As such the conflict redfiorm is critical in order

to understand what could make a particular automaton ctinfiievith another automa-
ton, as well as for the purpose of studying how different mata are similar and/or
different with respect to the situations in which they areftoting. Furthermore the
conflict normal form creates an excellent foundation forenstanding how to simplify
automata with respect to conflict equivalence.

Possible future work includes implementing the method ostacting the conflict
normal form described in chapter 6. Also of interest is thpriorement of annotated
automata using the knowlegde of conflict equivalence gametiapters 5 and 6. This
is of interest as simplification automata using annotatéoaata has a worst-case time
complexity ofO(n?) as opposed to the worst case exponential time complexitiyeof t
conflict normal form.

Another interesting task would be to extend the concept ofliod equivalence.
Conflict equivalence makes no assumption about context.derdor two automata to
be conflict equivalent to one another they must equivalemngynchronised with any
arbitrary test automaton. If we take into account extrarimf@tion about the context
of a model it could be possible to achieve better abstractfeor example a certain
event might only ever be blocked by a specific automaton in dely@ven though it is
synchronised on by many others. Finally it would be intengsto investigate how the
conflict normal form could be used in order to construct ussdatracts for finite state
automata.

145

Bibliography

[1] Akesson, K., Fabian, M., Flordal, H., Malik, R.: SupremicanHategrated envi-
ronment for verification, synthesis and simulation of dierevent systems. In:
Proc. 8th Int. Workshop on Discrete Event Systems, WODESpp6 384—385.
Ann Arbor, MI, USA (2006)

[2] Brinksma, E., Rensink, A., Vogler, W.: Fair testing. In: Uee, S.A. Smolka
(eds.) Proc. 6th Int. Conf. Concurrency Theory, CONCUR OHCS vol. 962,
pp. 313-327. Springer (1995)

[3] Bryant, R.E.: Graph-based algorithms for Boolean functizamipulation. IEEE
Trans. Comput35(8), 677—691 (1986)

[4] Brzozowski, J.A.: Derivatives of regular expressionsACM 11(24), 481-494
(1964). DOI 10.1145/321239.321249

[5] Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model CheckiMIT Press (1999)

[6] De Nicola, R., Hennessy, M.C.B.: Testing equivalences focpsses. Theoretical
Comput. Sci34(1-2), 83-133 (1984). DOI 10.1016/0304-3975(84)90113-0

[7] Dijkstra, E.W.: Hierarchical ordering of sequentialopesses. Acta Infl(2),
115-138 (1971)

[8] Eloranta, J.: Minimizing the number of transitions witkspect to observation
equivalence. BIT31(4), 397—419 (1991)

[9] Fabian, M., Kumar, R.: Mutually nonblocking supervisargntrol of discrete
event systems. In: Proc. 36th IEEE Conf. Decision and Con@DIC '97, pp.
2970-2975. San Diego, CA, USA (1997)

[10] Fernandez, J.C.. An implementation of an efficient athan for bisimulation
equivalence. Sci. Comput. Programmih@ 219-236 (1990)

146

[11] Flordal, H., Malik, R.: Modular nonblocking verificatiousing conflict equiva-
lence. In: Proc. 8th Int. Workshop on Discrete Event SysfaWSDES '06, pp.
100-106. Ann Arbor, MI, USA (2006)

[12] Flordal, H., Malik, R.: Compositional verification in sevisory control. SIAM
J. Control and OptimizatioA8(3), 1914-1938 (2009). DOI 10.1137/070695526

[13] van Glabbeek, R.J.: The linear time — branching time spetl: The semantics
of concrete, sequential processes. In: J.A. Bergstra, AA&@A. Smolka (eds.)
Handbook of Process Algebra, pp. 3-99. Elsevier (2001)

[14] Gohari, P., Wonham, W.M.: On the complexity of supeoviscontrol design in
the RW framework. IEEE Trans. Syst., Man, Cybern. (2000)

[15] Hennessy, M.: Algebraic Theory of Processes. MIT P(&888)
[16] Hoare, C.A.R.: Communicating Sequential Processes.tiPeeHall (1985)

[17] Hopcroft, J.E.: Annlogn algorithm for minimizing states in a finite automaton.
In: Z. Kohavi, A. Paz (eds.) Theory of Machines and Compuresti@p. 189—-196.
Academic Press, New York, NY, USA (1971)

[18] Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduatido Automata Theory,
Languages, and Computation. Addison-Wesley (2001)

[19] Leduc, R., Malik, R.: A compositional approach for venfyg hierarchical
interface-based supervisory control. In: Proc. 10th Inbrk&hop on Discrete
Event Systems, WODES'10, pp. 114-120. Berlin, Germany (R01DOI
10.3182/20100830-3-DE-4013.00019

[20] Leduc, R.J., Brandin, B.A., Lawford, M., Wonham, W.M.: Irhechical interface-
based supervisory control—part I: Serial case. IEEE Transom. Controls0(9),
1322-1335 (2005)

[21] Malik, R.: On the set of certain conflicts of a given langaa In: Proc. 7th Int.
Workshop on Discrete Event Systems, WODES ’'04, pp. 277-R8Rns, France
(2004)

[22] Malik, R.: The language of certain conflicts of a nondeteristic process. Work-
ing Paper 05/2010, Dept. of Computer Science, University akato, Hamilton,
New Zealand (2010)

147

[23] Malik, R., Leduc, R.: Generalised nonblocking. In: Préth Int. Workshop on
Discrete Event Systems, WODES '08, pp. 340-34bteBorg, Sweden (2008).
DOI 10.1109/WODES.2008.4605969

[24] Malik, R., Leduc, R.: Hierarchical interface-based swsory control using the
conflict preorder. In: Proc. 11th Int. Workshop on Discreteefit Systems,
WODES 12, pp. 163-168. Guadalajara, Mexico (2012)

[25] Malik, R., Streader, D., Reeves, S.: Conflicts and fairingst Int. J. Found.
Comput. Scil7(4), 797-813 (2006). DOI 10.1142/S012905410600411X

[26] Milner, R.: Communication and concurrency. Series in Cotap Science.
Prentice-Hall (1989)

[27] Nuutila, E.: Efficient Transitive Closure Compuation iarge DigraphsActa
Polytechnica Scandinavica, Mathematics and Computing igirk&ering Series
vol. 74. Finnish Academy of Technology, Helsinki, Finlari®95)

[28] Olderog, E.R., Hoare, C.A.R.: Specification-oriented getics for communicat-
ing processes. Acta In23(1), 9-66 (1986)

[29] de Queiroz, M.H., Cury, J.E.R., Wonham, W.M.: Multi-tésd supervisory con-
trol of discrete-event systems. In: Proc. 7th Int. WorksloopDiscrete Event
Systems, WODES ’'04, pp. 175-180. Reims, France (2004)

[30] Ramadge, P.J.G., Wonham, W.M.: The control of discre@esystems. Proc.
IEEE77(1), 81-98 (1989)

[31] Rensink, A., Vogler, W.: Fair testing. Information andr@putation2052), 125—
198 (2007). DOI 10.1016/j.ic.2006.06.002

[32] Roscoe, A.W.: The Theory and Practice of Concurrencyntitre-Hall (1997)

[33] Su, R., van Schuppen, J.H., Rooda, J.E., Hofkamp, A.Tnddoflict check by
using sequential automaton abstractions based on weakvabea equivalence.
Automatica46(6), 968—978 (2010). DOI 10.1016/j.automatica.2010.22.0

[34] Ware, S., Malik, R.: The use of language projection fanpositional verification
of discrete event systems. In: Proc. 9th Int. Workshop oci@te Event Systems,
WODES 08, pp. 322-327. @eborg, Sweden (2008). DOI 10.1109/WODES.
2008.4605966

148

[35]

[36]

[37]

[38]

[39]

Ware, S., Malik, R.: Compositional nonblocking verificat using annotated au-
tomata. In: Proc. 10th Int. Workshop on Discrete Event Syst@&VODES '10, pp.
374-379. Berlin, Germany (2010). DOI 10.3182/20100830E3-4D13.00060

Ware, S., Malik, R.: A process-algebraic semantics fmeyalised nonblocking.
In: Proc. CATS 2011—Computing: The Australasian Theory Sysnpua, pp.
75-84. Perth, Australia (2011)

Ware, S., Malik, R.: A state-based characterisatiorhef¢onflict preorder. In:
Proc. 10th Int. Workshop on the Foundations of Coordinatiandguages and Soft-
ware Architectures, FOCLASA 2011, pp. 34-48. Aachen, Geyn(2011). DOI
10.4204/EPTCS.58.3

Ware, S., Malik, R.: Conflict-preserving abstraction adalete event systems
using annotated automata. Discrete Event Dyn. &#), 451-477 (2012).
DOI 10.1007/s10626-012-0133-3

Zhang, Z.H., Wonham, W.M.: STCT: An efficient algorithirfsupervisory con-
trol design. In: B. Caillaud, P. Darondeau, L. Lavagno, X. Xed<g.) Synthesis
and Control of Discrete Event Systems, pp. 77—100. KluwedZ20

149

