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Abstract	
	

This	 thesis	developed	a	practical	methodological	 framework,	which	 integrated	 the	

bio‐physical	and	socio‐economic	processes	within	the	food	system	across	different	

scales.	The	framework	provides	a	useful	tool	for	the	assessment	of	food	security	and	

possible	 adaptation	 related	 to	 climate	 change.	 It	 was	 applied	 in	 China,	 a	 country	

with	 rapid	economic	growth	and	a	 large	population,	 in	order	 to	 evaluate	multiple	

dimensions	 of	 food	 security	 related	 to	 climate	 change	 and	 socio‐economic	

development	in	the	future.		

	

In	 the	 framework,	 an	 improved	 bio‐physical	 crop	 model	 was	 coupled	 with	 an	

improved	 food	 economic	model	 by	 scaling	 up	 from	 the	 farm	 level	 to	 the	 national	

level.	 The	 bio‐physical	 crop	 model	 was	 developed	 from	 the	 site‐based	 Decision	

Support	System	for	Agrotechnology	Transfer	(DSSAT)	model	in	order	to	investigate	

the	 impacts	 of	 climate	 change	 on	 physical	 production	 of	 a	 crop	 only	 related	 to	

environmental	 factors.	 The	 food	 economic	 model	 was	 developed	 from	 a	 partial	

equilibrium	 economic	 model,	 China's	 Agricultural	 Policy	 Simulation	 Model	

(CAPSiM).	 This	 was	 done	 in	 order	 to	 simulate	 the	 response	 of	 a	 socio‐economic	

system	 to	 the	 negative	 consequences	 on	 a	 food	 economic	 system	 from	 the	 bio‐

physical	change	in	crop	production	due	to	climate	change.	

	

Case	 studies	 of	 China	 and	 the	 Jilin	 province	 were	 investigated	 by	 applying	 the	

framework.	The	 impacts	of	climate	change	on	yield	and	phenology	of	maize	under	

multiple	greenhouse	gas	emission	scenarios	were	studied	at	provincial	and	national	

levels	 in	three	time	periods,	2020s,	2050s,	2070s,	using	the	improved	bio‐physical	

crop	model.	In	general,	maize	yield	reduction	due	to	climate	change	ranges	from	‐3%	

in	 2020	 to	 ‐14%	 in	 2070.	 The	worst	 yield	 is	 ‐20.5%	 in	 2070	produced	 under	 the	



ii	
 

A1FI	 scenario.	 Food	 security	 for	 China	 until	 2050	 was	 projected	 under	 multiple	

climate	 change	 and	 socio‐economic	 scenarios	 by	 using	 the	 food	 economic	model,	

and	analyzed	with	respect	to	food	availability,	food	price	and	the	system	resilience	

to	 sudden	 disasters.	 Modelled	 climate	 change	 impacts	 on	 food	 availability	 in	 this	

study	are	minimal,	producing	only	a	23	Mt	(~8%)	gap	between	supply	and	demand	

for	maize	by	2050.	The	socio‐economic	system	will	compensate	 for	the	 impacts	of	

climate	change	on	the	self‐sufficiency	of	grains	by	about	8%	of	total	production	for	

the	 whole	 country.	 The	 impacts	 on	 single	 grain	 would	 cause	 the	 prices	 of	 other	

grains	 to	 rise	 in	 future.	 The	 effectiveness	 of	 potential	 adaptation	 measures	 was	

assessed	 quantitatively	 at	 both	 farm	 and	 national	 levels.	 Uncertainties	 among	

different	scenarios	are	discussed	for	China	and	the	Jilin	province.		
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1. Chapter	1	Introduction	and	Background	
 

1.1 Introduction	
	

This	 thesis	 concerns	 the	 impacts	 of	 climate	 change	 on	 food	 security	 and	 the	

corresponding	 optional	 adaptations.	 The	 aim	 of	 the	 thesis	 is	 to	 develop	 an	

integrated	assessment	framework	to	combine	the	effects	of	bio‐physical	and	socio‐

economic	 factors	 involved	 in	 food	 security	 and	 climate	 change.	 A	 case	 study	was	

carried	out	for	China’s	food	security	assessment	using	maize	as	the	key	crop.	On	the	

bio‐physical	side,	the	impacts	of	climate	change	on	maize	production	were	analysed	

by	using	a	spatial‐explicit	crop	model	at	provincial	and	national	scales.	On	the	socio‐

economic	 side,	 the	 responses	 of	 the	 national	 grain	market	 to	 those	 impacts	were	

simulated	 by	 a	 partial	 equilibrium	 food	 policy‐economic	 model	 on	 major	 food	

products.	For	comparison	purposes,	scenarios	of	vital	features	in	relation	to	national	

food	 security,	 e.g.	 grain	 supply‐demand	balance	 and	 grain	 prices,	were	 developed	

with	 and	without	 consideration	 of	 climate	 change	 impacts.	 Adaptation	 options	 to	

climate	change	are	also	discussed	at	both	farm	and	national	levels.		

	

In	Chapter	1,	the	research	associated	with	impacts	of	climate	change	on	agriculture	

and	food	security	is	reviewed,	as	well	as	the	methods	in	the	integrated	assessments	

of	impacts	of	climate	change	and	the	models	simulating	the	bio‐physical	process	of	

crop	 production	 and	 the	 agricultural	 economic	 system.	 Based	 on	 the	 literature	

review,	several	questions	are	posed	for	 the	 integrated	assessment	of	 food	security	

under	climate	change	in	this	thesis.	

	

In	Chapter	2,	the	historical	path	of	food	security	in	China	and	the	challenges	brought	

by	 climate	 change	 and	 economic	 growth	 are	 reviewed.	 The	 methodology	 for	
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integrating	 the	 bio‐physical	 and	 socio‐economic	 processes	 of	 food	 systems	

associated	with	climate	change	is	then	introduced.		

	

In	 Chapter	 3,	 the	 improved	 version	 of	 the	 DSSAT	 model	 for	 simulating	 the	 bio‐

physical	process	of	crop	production	for	spatial	studies	is	introduced.					

	

In	 Chapter	 4,	 the	 impacts	 of	 climate	 change	 on	 maize	 were	 projected	 using	 the	

improved	 DSSAT	 for	 the	 case	 study	 of	 Jilin,	 China,	 and	 the	 effects	 of	 potential	

adaptation	options	are	analysed	at	farm	level.	Uncertainty	among	different	climate	

change	scenarios	is	discussed.		

	

In	 Chapter	 5,	 the	 impacts	 of	 climate	 change	 on	maize	 simulated	 by	 the	 improved	

DSSAT	are	discussed	for	the	whole	of	China.	The	regional	difference	and	uncertainty	

are	then	addressed	by	province.	

	

In	 Chapter	 6,	 the	 partial	 equilibrium	model	 for	 simulating	 the	 food	 economy	 and	

policy	is	introduced	in	detail.	Assumptions	and	constructing	data	for	the	model	are	

described.	

	

In	Chapter	7,	food	security	of	China	in	the	next	few	decades	is	analysed	with	respect	

to	 three	 dimensions.	 The	 risks	 brought	 by	 climate	 change	 to	 food	 security	 and	

potential	 adaptations	 at	 the	 national	 level	 are	 discussed.	 Uncertainties	 among	

climate	change	and	socio‐economic	scenarios	are	also	considered.		
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In	Chapter	8,	the	main	findings	and	projections	are	summarised	and	future	research	

areas	are	suggested.	

	

1.2 Background	
 

Food	 security	 is	 one	 of	 the	 basic	 needs	 of	 human	 beings	 and	 is	 essential	 for	 a	

sustainable	 economic	 world.	 The	 relationship	 between	 climate	 change	 and	 food	

systems	 is	 manifold	 because	 of	 the	 complicated	 interactions	 among	 climatic,	

environmental,	social	and	economic	aspects.	Against	the	background	of	accelerating	

global	climate	change,	the	study	on	food	security	assessment	in	China,	which	has	the	

largest	population	in	the	world,	has	a	special	significance	in	terms	of	regional	socio‐

economic	 development,	 as	 well	 as	 making	 contributions	 to	 the	 climate	 change	

scientific	research	field.		

	

1.2.1 Food	security:	definition	and	measurement	
 

There	 are	 several	 of	 meanings	 of	 the	 term	 “food	 security”	 in	 the	 literature.	

Commonly,	 food	 security	 is	 used	 to	 describe	 whether	 a	 country,	 community,	 or	

household	 has	 enough	 food	 to	 “satisfy”	 its	members’	 demand.	However,	 the	 term	

food	security	has	a	much	richer	meaning	than	this	when	we	further	question	on	how	

easily	 and	 to	 what	 extent	 people	 are	 satisfied.	 Usually,	 it	 merely	 addresses	 the	

capacity	of	domestic	food	supply,	which	is	the	physical	availability	of	food	without	

taking	 into	 account	 its	 economic	 availability	 governed	 by	 market	 prices.	 At	 the	

household	 and	 individual	 scale,	 food	 nutrition	 and	 preference	 also	 need	 to	 be	

considered	 as	 the	 vital	 components	 of	 “security”,	 which	 the	 narrow	 definition	 of	

food	security	fails	to	cover.		
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A	comprehensive	definition	of	food	security	was	given	by	the	Food	and	Agriculture	

Organization	(FAO)	in	the	World	Food	summit	in	1996.	It	stated	that	“food	security	

exists	when	all	people,	at	all	 times,	have	physical	and	 economic	access	 to	 sufficient,	

safe	and	nutritious	food	to	meet	their	dietary	needs	and	food	preferences	for	an	active	

and	 healthy	 life”	 (FAO,	 1996).	 This	 definition	 requires	 the	 security	 not	 only	 for	

individual	or	household	but	also	at	national,	regional	and/or	global	levels,	as	well	as	

the	satisfaction	in	both	food	quantity	and	quality.		

Based	 on	 the	 FAO’s	 definition,	 the	 international	 research	 programme	 of	 Global	

Environmental	 Change	 and	 Food	 Systems	 (GECAFS)	 suggested	 that	 food	 security	

could	be	measured	by	three	dimensions	(GECAFS,	2006):		

 food	 availability,	with	 the	 elements	 related	 to	 production,	 distribution	 and	

exchange		

 food	 access,	 with	 the	 elements	 related	 to	 affordability,	 allocation	 and	

preference	

 food	utilization,	with	 the	 elements	 related	 to	 nutritional	 value,	 social	 value	

and	food	safety		

The	stability	of	these	three	status	variables	is	also	an	essential	measurement	in	the	

assessment	of	food	security.	Food	stability	indicates	that	a	population,	household	or	

individual	 should	 not	 risk	 losing	 access	 to	 food	 from	 sudden	 shocks,	 e.g.	 the	

economic	or	climatic	crisis,	or	cyclical	events,	e.g.	seasonal	food	insufficiency	(FAO,	

2007a).		

In	 the	2010	 special	 issue	on	 food	 security	 in	 Science,	Barrett	 (2010)	 suggested	 to	

divide	 the	 security	 in	 supply	 and	 demand	 side	 separately.	 In	 his	 article,	 several	

other	 indicators	of	 food	 security	besides	 the	 three	aspects	mentioned	above	were	

summarized	and	proposed,	 including	 inter‐	and	 intra‐household	 food	distribution,	

the	food	preference	and	values	due	to	socio‐cultural	reasons,	the	employment	status,	

coping	capability	to	insufficiency,	food	diversity,	the	different	demand	among	all	age	

groups,	and	the	spatial	patterns	and	trends	of	food	security.	The	food	insecurity	was	
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thought	 to	 be	 associated	 with	 disasters,	 which	 act	 locally	 and	 are	 therefore	 not	

captured	in	aggregated	food	availability	.at	the	national	level		

In	 the	 review	 of	 Schidhuber	 and	 Tubiello	 (2007),	 the	 authors	 discussed	 and	

assessed	opinions	about	the	measurements	of	food	security.	They	suggested	that	the	

three	 dimensions	 of	 food	 security	 based	 on	 the	 FAO	 concept	 have	 a	 number	 of	

advantages,	especially	in	practice:	the	three	dimensions	have	clear	meaning	and	are	

easily	 calculated,	 and	 the	 data	 and	 parameters	 required	 are	 available,	 easily	

obtained,	and	consistent	in	history.			

			

1.2.2 Food	security	and	climate	change:	fact	and	opinion	
 

Scientific	 research	 and	 observations	 have	 provided	 more	 and	 more	 evidence	 of	

global	warming	and	climate	change	over	the	world:	the	average	surface	temperature	

is	 likely	 to	 increase	 by	 about	 1.1	 to	 6.4	 ºC	 between	1990‐2100,	 and	 the	warming	

trend	is	projected	to	accelerate	(IPCC,	2007a);	even	with	a	high	uncertainty,	climate	

variability	 is	 also	 predicted	 to	 increase,	 especially	 extreme	 weather	 events	 will	

become	even	more	extreme	and/or	frequent	(IPCC,	2001b;	Knutson	&	Tuleya,	2004;	

Meehl	 et	 al.,	 2000).	 As	 a	 result,	 the	 global	 environment	 has	 been	 experiencing	 a	

broad	range	of	impact	from	such	changes,	such	as	fresh	water	scarcity,	land	use	and	

cover	change,	sea	level	rise,	ecological	degradation.	

	

As	one	of	 the	 important	driving	 forces,	 the	changes	 in	climatic	and	environmental	

systems	have	various	influences	on	food	security:		

	

The	 physical	 production	 process	 of	 crop	 and	 livestock	will	 be	 affected	 by	 the	

changes	 in	 temperature,	 water	 availability,	 CO2	 concentration,	 and	 climate	

variability.		
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Increases	in	temperature	affects	the	plant	bio‐physical	process	(Lin,	1996;	Scherm	&	

Van	Bruggen,	1994),	changes	growth	seasons	at	different	latitudes	(Chmielewski,	et	

al.,	 2004;	 Chmielewski	 &	 Rötzer,	 2002;	 Tucker	 et	 al.,	 2001),	 and	 alters	 the	

distribution	 of	 agro‐ecological	 zone	 shifts	 towards	 poles	 (Rosenzweig	 &	 Hillel,	

2005).	 The	 direct	 impact	 of	 temperature	 on	 crop	 productivity	 varies	 in	 agro‐

ecological	 zones	 depending	 on	 the	 differences	 between	 the	 initial	 environmental	

temperature	 and	 the	 optimal	 temperature	 for	 crop	 growth	 (Kurukulasuriya	 &	

Rosenthal,	2003).	The	direct	 impact	on	productivity	 in	 the	 livestock	sector	will	be	

more	frequent	incidences	of	heat	stress	(Nienaber	et	al.,	1999;	West,	2003)	and	the	

increased	risk	of	animal	diseases	due	to	warmer	temperature.		

	

The	 results	 from	 observation	 and	 modelling	 research	 indicate	 that	 the	 warming	

trend	would	also	lead	to	increasing	surface	evaporation	which	changes	soil	moisture	

conditions	and	accelerate	both	seasonal	and	 inter‐annual	hydrological	cycles	 (Frei	

et	al.,	1998;	Huntington,	2006;	Kattenberg	et	al.,	1996),	and	the	transpiration	from	

crops	is	increasing	as	well.	That	leads	to	a	change	in	the	pattern	of	precipitation,	and	

thus	 water	 availability	 for	 agriculture	 may	 decline.	 Estimations	 indicate	 that	 the	

annual	 global	 evaporation	 from	 food	 production	 regions	 would	 double	 in	 the	

coming	25	to	50	years	(Postel,	1998;	Rockström,	2003).	In	the	semi‐arid	regions	like	

the	western	areas	of	Jilin	province	in	China,	field	experiments	show	that	the	periodic	

water	deficits	 for	crops	could	be	more	than	200mm,	resulting	 in	 low	yield	 in	rain‐

fed	dryland	 (Qu	et	al.,	2005).	 In	 the	northeast	and	north	China	 the	effect	of	water	

stress	on	rain‐fed	crops	could	increase	to	about	65%	in	coming	decades	because	of	

the	expected	increase	in	soil‐moisture	deficit	and	the	decrease	in	precipitation	(Tao,	

et	 al.,	 2003b).	 Even	 the	 relatively	 water‐rich	 areas	 would	 face	 the	 decline	 of	

reliability	 of	 obtaining	 water	 because	 of	 the	 potential	 large	 changes	 in	 water	

demand	from	climate	change	impact	on	agriculture	(Rosenzweig	et	al.,	2004).	Hence	

the	 irrigation	requirement	 for	 food	production,	which	 is	 the	dominant	withdrawal	

from	rivers	and	aquifers	(Gleick,	1993),	will	face	with	the	major	challenge	for	future	

grains	supply	and	agricultural	freshwater	management	(Postel,	2003;	Rockström	et	

al.,	1999).						
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On	 the	 other	 hand,	 the	 rising	CO2	 concentration	will	 increase	photosynthesis	 rate	

and	improve	water	use	efficiency	of	crops	by	reducing	evapotranspiration.	However,	

the	 net	 result	 may	 be	 moderated	 by	 an	 increase	 in	 weeds	 at	 the	 same	 time.	

Numerous	studies	have	been	conducted	to	estimate	such	agronomic	effects	on	crops	

and	grass	productivity	(Amthor,	2001;	Fuhrer,	2003).	Although	observations	of	an	

increase	in	rapid	production	throughout	the	world	might	be	explained	by	the	carbon	

fertilization	effects,	 the	 impacts	of	rising	CO2	concentration	on	crop	yields	are	still	

uncertain	(Kurukulasuriya&	Rosenthal,	2003).		

	

Climate	 variability	 and	 extremes	 are	 often	 associated	 with	 an	 intensified	

hydrological	cycle.	Water	resources	 for	 irrigation	are	 likely	to	be	more	variable	or	

even	 sharply	 reduced.	 This	 would	 exacerbate	 the	 already	 existing	 water	 crisis,	

especially	 in	 arid	 and	 semi‐arid	 regions	 (Rosenzweig	 et	 al.,	 2004;	 Burton,	 2001),	

such	 as	 the	 farming‐grazing	 transition	 zones	 in	 northeast	 China.	 The	 climatic	

deviations	are	likely	to	induce	more	frequent	incidence	of	pests	and	diseases,	which	

would	damage	crop	(Rosenzweig	et	al.,	2001)	and	livestock	production	(Darwin	et	

al.,	1995;	Sirohi	&	Michaelowa,	2007).	In	addition,	increases	in	rainfall	intensity	can	

lead	 to	 higher	 rates	 of	 soil	 erosion	 (Molnar,	 2001)	 and	 leaching	 of	 fertilizer	

chemicals,	resulting	in	soil	degradation.		

	

Climate	and	environment	changes	would	also	influence	the	economic	dimension	

of	food	production,	which	is	tightly	associated	with	production	and	adaptation	

practices.	

	

Extra	 inputs	 and	 investments	 might	 be	 required	 to	 maintain	 current	 normal	

cropping	 in	 the	 food	 system.	 More	 fertilizer	 and	 pesticides	 will	 be	 used	 due	 to	

increasing	 decomposition	 rate	 and	 pest	 disease	 risk	 under	 higher	 temperature	

(Rosenzweig	 &	 Hillel,	 2000,	 Reilly,	 2003).	 Increasing	 investment	 for	 construction	

and	 operation	 of	 agricultural	 infrastructure	 is	 also	 required	 to	 offset	 the	 more	

frequent	 and	 intensive	 disasters	 (FAO,	 2007b).	 For	 a	 better	 response	 to	 future	
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climate	 conditions,	 investment	 in	 breeding,	 variety	 selection	 and	 improvement	 of	

facilities	are	also	expected	to	increase.	The	availability	of	natural	resources	crucial	

for	 food	 production	 are	 threatened	 by	 the	 climate‐change‐induced	 environmental	

change,	such	as	losses	in	arable	land	(Barton	et	al.,	2004),	and	thus	demands	more	

effort	for	effective	natural	resource	management.	

	

In	 general,	 the	 crop	production	 in	 tropical	 and	 subtropical	 areas	 is	more	 likely	 to	

suffer	from	unfavourable	conditions	due	to	droughts,	while	poleward	regions	where	

agriculture	 is	 currently	 limited	 by	 the	 short	 growing	 period	might	 benefit	 (IPCC,	

2001a,	 2007b).	 Global	 assessments	 of	 the	 climate	 change	 impacts	 on	 agriculture	

have	 reported	 that	 the	whole	 loss	 ranges	 from	 −2.5%	 to	 −0.7%	 in	 terms	 of	 food	

supply	and	from	−0.047%	to	0.010%	in	terms	of	agricultural	welfare	in	the	case	of	a	

doubling	of	 CO2	 concentration,	 employing	either	 simplified	or	 complex	adaptation	

processes	at	national	or	global	scales	(Fischer	et	al.,	1994;	Harasawa,	2003;	Kane	et	

al.,	1992;	Reilly	&	Schimmelpfennig,	1999;	Schimmelpfennig,	1996).	Regionally,	the	

results	 derived	 from	 diverse	 climate	 scenarios	 demonstrate	 a	 range	 from	 severe	

negative	 effects	 to	 potential	 increase	 in	 yield,	 and	 the	 welfare	 changes	 between	

−5.48%	 and	 2.73%	 (Bosello	 &	 Zhang,	 2005;	 Matthews,	 1997;	 Parry	 et	 al.,	 1999;	

Parry	et	al.,	2004).	The	impacts	at	sites	also	vary	widely	within	a	region,	particularly	

for	 countries	with	 vast	 territories,	 such	 as	 the	 United	 States	 (Adams	 et	 al.,	 1999;	

Adams	et	al.,	1995)	and	China.		

	

With	 regard	 to	 China,	 simulations	 (see	 Table	 1‐1)	 from	 both	 global	 and	 regional	

studies	 indicated	 that	 impacts	 on	 China’s	 food	 production	 could	 be	 significant.	

Studies	from	the	crop	responses	to	different	levels	of	CO2	concentration,	heat	stress	

and	water	use	in	specific	sites	or	regions,	based	on	crop	model	simulation	and	field	

and	chamber	experiments,	indicated	that	crop	yield	depends	more	heavily	on	water	

constraints	than	on	other	agro‐meteorological	factors	(Bai	&	Lin,	2003).	Significant	

differences	 in	 projected	 yield	 derived	 from	 different	 crop	 models	 were	 found	

between	irrigated	and	rain‐fed	regions,	especially	in	the	north	and	northeast	plains	
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(Sun	et	al.,	2005;	Xiong	et	al.,	2005),	and	the	limitation	in	water	availability	would	be	

of	utmost	importance	for	future	enhancement	of	crop	productivity	in	China.	Heating	

benefits	 gained	 from	 increasing	 temperature	would	be	offset	 in	 the	north‐eastern	

region,	if	sufficient	irrigation	could	not	be	guaranteed	during	the	dry	season	(Jin	et	

al.,	1994;	Wen	et	al.,	2005).	Some	researchers	believe	that	water	availability	 is	the	

primary	 reason	 for	 the	 fluctuation	 in	 grain	production	 (Hu,	 1998;	 Shi,	 1997).	The	

model	 simulation	 also	 suggested	 that	 incremental	 climate	 variability	may	 cause	 a	

considerable	 decrease	 in	 wheat	 yield	 in	 north	 China	 (Chen	 et	 al.,	 2004).	 The	

changing	climate	variability	 in	 future	could	reduce	crop	productivity,	 e.g.	 in	maize	

(Wang	&	Lin,	1996),	and	hence	affect	the	stability	of	food	security.		 	
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Table	1‐1	Impacts	of	climate	change	on	food	production	in	China:	simulations	
under	SRES	scenarios.	

	
Impacts	on	crop	productivity	

(%	change)	

Impacts	on	welfare	

(%	change)	

Kane	et	al.	(1992)	 −20	~−10%	 1.28	~−5.48	%	

Tsigas	et	al.	(1997)	 −17%	without	CO2	fertilizer	effect	

3%	with	CO2	fertilizer	effect	

−7.23%	without	CO2	fertilizer	

effect	

0.54%	with	CO2	fertilizer	effect	

Parry	et	al.	(1999)	 −2.5%	~	2.5%	 	

Harasawa	et	al.	

(2003)	
Rice	 Wheat	

Other	

grains	 Other	crops	 −0.21%	
−0.25%	 −3.97%	 −1.39%	 0.07%	

Parry	et	al.	(2004)	
−30	~	0	%without	CO2	fertilizer	effect	

−5%	~	10%	with	CO2	fertilizer	effect	
	

Lin	et	al.	(2005)	

	 Rice	 Wheat	 Maize	

	

with	CO2	

fertilizer	

effect	

−2.9%	~	

7.8%	

	

4.5%	~	

40%	

−2.2	%	~	

20%	

without	

CO2	

fertilizer	

effect	

−28.6%	~	

−1.1%	

−21.7%	~	

−0.5%	

−36.4%	~	

0.2%	

	
	

The	 impacts	 of	 climate	 change	 on	 the	 food	 system	 involve	 food	 production,	 and	

distribution	 and	 consumption	 processes	 that	 are	 critical	 for	 effective	 food	 access	

and	 utilization.	 Food	 production	 is	 the	 basis	 of	 food	 availability.	 However,	 food	

security	 also	 depends	 on	 food	 access	 and	 food	 utilization.	 The	 climate	 change	

impacts	 on	 food	 access	 and	 utilization	 are	 influenced	 by	 the	 uneven	 changes	 in	

climate	systems	and	the	disequilibrium	in	socio‐economic	systems	among	regions.		
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The	 state	 of	 food	 access	 mainly	 depends	 on	 food	 affordability	 and	 allocation	

(GECAFS,	2006).	With	a	potential	increase	in	costs	for	food	production	and	storage,	

lower‐income	 groups	 in	 both	 rural	 and	 urban	 areas	 would	 face	 higher	 risk	 of	

inadequate	access	due	to	unaffordable	pricing	during	a	 long	period,	e.g.	studies	by	

Parry	et	al.	(1999;	2004).	Simulating	global	crop	production	and	international	trade	

processes	 under	 SRES	 scenarios,	 the	 substantial	 increases	 in	 risk	 of	 hunger	 in	

poorer	 nations	 in	 future	 would	 not	 only	 result	 from	 regional	 differences	 in	 crop	

production,	but	also	from	economic	barriers.	The	effective	access	to	sufficient	food	

depends	on	adequate	 income	of	households,	 favourable	market	 infrastructure	and	

affordable	 price,	 as	 well	 as	 on	 physical	 factors	 (GECAFS,	 2006).	 The	 regional	

difficulty	in	food	supply	for	a	period	characterized	by	unfavourable	weather	and	the	

inter‐regional	 exchange	 of	 different	 staples	 among	 crop	 belts	 would	 put	 more	

pressure	on	transport	systems,	while	climate	change	would	place	a	further	strain	on	

transport	 infrastructure	 (IPCC,	 2001b).	 For	 example,	 warming	 climate	 conditions	

are	 expected	 to	 reduce	 the	 operational	 lifetime	 of	 infrastructures	 and	 in	 turn	

increase	 food	 price,	with	 storms	 hampering	 normal	 circulation	 of	 goods	 (Perry	&	

Symons,	1991,	1994).		

	

Food	 utilization	 involves	 how	 food	 is	 used	 and	 processed	within	 households,	 and	

the	 diversity	 of	 food	 consumption	 (GECAFS,	 2006).	 Since	 food	 is	 produced	 and	

consumed	 locally	 in	 many	 developing	 regions,	 food	 utilization	 changes	 with	 the	

seasonal	climate	variation,	e.g.	there	would	be	copious	quantities	of	food	supplied	in	

harvest	 season,	while	 in	 the	 rest	of	 the	 year	 food	 consumption	would	be	 reduced	

due	to	lower	food	availability.	If	droughts	or	floods	occurred	in	the	harvest	season,	

the	usual	balance	of	nutrition	would	be	affected	through	the	year	as	well.	Meanwhile,	

agricultural	communities	in	such	regions	are	also	the	victims	of	unstable	cash	flow	

and	in‐kind	income.	The	fluctuation	of	crop	production	within	one	year	or	between	

years	could	lead	to	reduced	purchasing	power	for	food.	Therefore	the	instability	of	

food	access	and	utilization	often	occur	together	in	this	situation	varying	with	inter‐

annual	climate	change.		
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In	 addition,	 the	 coping	 strategies	 for	 other	 purposes,	 such	 as	 attempts	 to	 reduce	

carbon	 emissions,	 would	 affect	 food	 consumption	 in	 an	 underlying	 manner	 by	

rigorously	 competing	 for	 limited	 capital	 and	 natural	 resources.	 The	 promotion	 of	

bio‐fuels	 extracted	 from	 crops	 in	 the	United	 States	 has	 a	 great	 influence	 on	 grain	

consumption	as	food	resource	by	causing	fluctuation	of	maize	prices	in	international	

markets	(Blythe,	2007;	Cassman,	2007).	The	interruption	of	the	normal	global	food	

trade,	which	is	one	of	the	important	options	for	alleviating	shortage	of	regional	food	

supply,	could	put	regional	food	access	at	risk.	

	

1.2.3 Food	security	and	climate	change:	methodologies	and	modelling	

	

In	the	past	decades,	scientists	have	made	significant	advances	in	modelling	in	fields	

related	 to	 food	 security	 assessment.	 According	 to	different	methodologies,	 former	

modelling	exercises	appear	two	directional,	which	can	be	called	the	“bio‐physically	

oriented”	and	“economically	oriented”.	The	first	category	stresses	the	ecological	and	

biological	sides	of	crop	response	to	climate	change,	while	the	other	strand	of	studies	

concentrates	 on	 the	 economic	 mechanism	 in	 food	 systems	 oversimplifying	 the	

natural	processes	in	the	food	system.	However,	with	the	development	of	computer	

capacity	 and	 software	 flexibility,	 larger	 and	more	 complex	modelling	 frameworks	

have	been	built,	 decreasing	 some	 of	 the	 boundaries	 across	multi‐disciplines.	 Such	

integrated	 assessment	 models	 (see	 Table	 1‐3)	 serve	 to	 incorporate	 climatic	 and	

environmental	 conditions,	 crop	growth	 information	and	socio‐economic	 situations	

in	 a	 balanced	 and	 coherent	 manner,	 enabling	 either	 a	 bottom‐up	 exercise	 by	

developing	sub‐models,	or	a	top‐down	analysis	of	the	overall	picture	of	the	system.		

	

In	 an	 integrated	 model	 system,	 sector‐specific	 methods	 and	 models	 should	 be	

considered	at	first.	An	integrated	model	system	for	food	security	assessment	taking	

into	consideration	climate	change	and	adaptation	at	least	requires	crop	models	for	

estimating	 potential	 food	 productivity,	 food	 economy	 models	 for	 describing	
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distribution	 and	 consumption	 processes,	 and	 a	 component	 for	 describing	 the	

responses	 of	 the	 human	 dimension.	 The	methods	 and	models	 for	 simulating	 crop	

responses,	 the	 food	 economy	 and	 human	 responses	 will	 be	 discussed	 in	 the	

following.	

	

Treatment	of	crop	response:	

	
1)	In	terms	of	scaling	direction,	there	are	two	categories	of	methods	to	describe	the	

changes	in	crop	production	under	different	climatic	conditions.	

	

In	 the	 top‐down	 approach,	 which	 is	 based	 on	 the	 spatial	 analogue	 assumption	

(which	means	there	is	no	variation	of	relationship	of	climate	and	crop	productivity	

over	 relatively	 large	 regions),	 crop	 productivity	 is	 not	 simulated	 directly	 by	

modelling	 physiological	 processes,	 but	 is	 derived	 statistically	 by	 observations	 at	

different	latitudes	or	in	different	periods	of	a	year.	The	differences	in	observed	yield	

of	 the	 same	 crop	 between	 latitudes	 and	 periods	 could	 be	 considered	 as	 the	 crop	

reaction	to	changes	in	climatic	conditions	(Darwin,	1999;	Mendelsohn	et	al.,	1994).	

However,	the	representativeness	of	data	used	and	the	ability	of	statistical	tools	for	

this	spatial	analogue	method	could	be	problematical	(Schimmelpfennig	et	al.,	1996).	

	

Since	 they	 employ	 different	 indicators,	 the	 predictions	 produced	 by	 bio‐physical	

process	 based	 models	 usually	 are	 different.	 Statistical	 models	 are	 thought	 be	 an	

alternative	 tool	 to	 provide	 systematic	 evaluation	 of	 model	 performance,	 by	 just	

using	 historical	 yield	 and	 simplified	 weather	 variables.	 Lobell	 &	 Field	 (2007)	

developed	a	series	regression	model	of	crop	yield	from	FAP	statistical	database	and	

gridded	 temperature	 and	 precipitation	 from	 CRU	 climate	 database.	 Their	 models	

showed	good	capabilities	to	simulate	the	inter‐seasonal	variability	of	yield,	but	poor	

relationships	of	the	aggregated	data.	Applying	the	models,	a	full	probabilistic	study	

of	crop	yield	responses	to	changes	in	temperature,	precipitation	and	CO2	were	done	

for	wheat,	maize,	barley	under	SRES	A1B	scenario	(Tebaldi	&	Lobell,	2008).	Lobell	&	
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Burke	(2010)	also	assessed	the	agreement	between	CERES‐Maize	and	three	kinds	of	

statistical	 model	 (time	 series,	 panel,	 and	 cross‐sectional)	 in	 Sub‐Saharan	 Africa	

under	 two	 special	 climate	 change	 scenarios.	 The	 statistical	 models	 based	 on	

multiple‐site	 training	 performed	 better	 than	 the	 CERES‐Maize	 in	 simulation	 of	 a	

large	spatial	area.		

	

For	the	bottom‐up	approach,	it	is	basically	grounded	on	the	bio‐physical	crop	model	

simulating	 the	 actual	 growth	 process	 providing	 a	 site‐based	 yield,	 then	 using	

different	up‐scaling	methods	to	form	the	geographical	differentials.	One	solution	is	

projecting	the	potential	crop	distribution	by	the	vegetation	distribution	model,	e.g.	

MAPPS	(Neilson,	1993,	1995),	and	the	LPJ	model	(Criscuolo	et	al.,	2003).	This	kind	

of	model	 is	usually	ecologically	based,	and	can	give	 the	potential	crop	distribution	

taking	 both	 the	 climatic	 variables	 and	 soil	 conditions	 into	 consideration.	 This	

method	is	widely	used	for	estimation	of	the	crop	production	changes	in	a	particular	

region	 in	 assessment	 studies	 (Adams	 et	 al.,	 1999;	 Adams	 et	 al.,	 1995).	 Another	

aggregation	 method	 relies	 on	 results	 from	 land	 use	 and	 land	 cover	 models.	 The	

consideration	of	soil	conditions	depends	on	availability	of	a	consistent	soil	database.	

Some	studies	 (Parry	et	 al.,	 1999;	Parry	et	 al.,	 2004)	used	 the	agro‐ecological‐zone	

analysis,	while	other	assessments	consider	the	yield	without	employing	aggregation	

(Alcamo	et	al.,	2007).	These	methods	only	capture	more	average	changes	for	larger	

scales,	and	also	ignore	the	possible	consequences	from	farming	practices.	For	more	

reasonable	 regional	 food	 supply	 estimations,	 the	 effects	 of	 farm	management	 and	

the	economic	factors	need	to	be	added	as	potential	modification	factors.	

	

The	bio‐physically	based	crop	growth	models	explicitly	describe	how	a	given	vegetal	

specimen	grows	and	reproduces	when	external	climatic	variables	change	with	 the	

plant	 physiology	 models.	 Such	 kinds	 of	 models	 have	 been	 developed	 from	 the	

primary	 individual	 plant	model	 that	 has	 its	 specific	 structure	 for	 a	 crop,	 like	 the	

CERES	family	models	(Ritchie	et	al.,	1989;	Godwin	et	al.,	1989),	and	SOYGRO	(Jones	

et	al.,	1988),	to	crop	template	models,	like	the	CROPGRO	(Boote	et	al.,	1998).	Some	

systematic	 frameworks,	 like	 DSSAT	 (Jones	 et	 al.,	 2003),	 incorporating	 those	 crop	
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growth	models	with	proper	cropping	practices,	could	simulate	the	cropping	process	

under	 approximately	 realistic	 conditions,	 contributing	 to	 better	 decision	 in	 field	

management.	 Another	 example	 is	 the	 GLAM	 model,	 a	 general	 large‐area	 model,	

developed	by	Challinor	et	al.	 (2004).	 It	 is	based	on	 large	spatial	scales	rather	than	

the	 farm	 or	 plot	 l	 scale.	 So	 the	 parameters	 of	 GLAM	 are	 simpler	 than	 the	 DSSAT	

group	models.	Challinor's	group	using	 this	model	studied	 impacts	on	crop	yield	 in	

the	 tropics	 (Challinor	 &	Wheeler,	 2008;	 Koehler	 et	 al,	 2013),	 the	 crop	 genotypic	

responses	 to	 temperature	 change	 (Challinor,	 2007),	 and	 the	 probabilistic	

forecasting	of	crop	failure	due	to	uncertainties	in	climate	change.	Foley	et	al	(1998)	

developed	a	method	to	simulate	climate‐vegetation	feedback	mechanisms,	coupling	

a	 GCM	 (General	 Circulation	 Model)	 model,	 GENESIS,	 and	 a	 dynamic	 global	

vegetation	 model,	 IBIS.	 Resorting	 to	 the	 coupling	 method,	 they	 assessed	 the	

feedbacks	 of	 the	 vegetation	 cover	 and	 net	 primary	 productivity	 and	 climate	

variables,	 evaluating	 the	 carbon	 cycle	 of	 atmosphere‐biosphere	 system	 (Delire	 &	

Foley,	2003).		

	

This	 group	 of	methods	 and	models	 can	 provide	 the	 bio‐physical	 productivities	 of	

different	 crops	 under	 given	 climatic	 and	 environmental	 conditions	 as	 the	 initial	

estimation	of	yields	for	further	projection	of	total	crop	production.	

	

2)	In	economic‐based	models,	such	as	IMPACT‐WATER	(Rosegrant	et	al.,	2005),	the	

crop	yield	is	estimated	with	respect	to	rain‐fed	and	irrigated	land,	with	the	inherent	

assumption	 that	 water	 stress	 is	 the	 primary	 natural	 constraint	 on	 yield.	 In	 the	

CAPSiM	model	(Huang	&	Li,	2003),	the	weather	or	climate	variables	are	not	directly	

considered,	 and	 only	 the	 statistical	 erosion	 and	 salinization	 as	 the	 endogenous	

terms	in	supply‐side	equations	are	used.		
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Treatment	of	the	economic	dimension:		

	
For	food	supply‐demand	projections,	many	economic	models	have	been	developed,	

including	partial	equilibrium	agricultural	sector	models	(also	known	as	macro	food	

economy	 model),	 general	 equilibrium	 economic	 models	 (GEMs),	 and	 the	

international	 trade	 simulation	 system	 (e.g.	 IIASA	 BLS	 used	 by	 Parry	 et	 al.,	 2004;	

1999).	 Although	 there	 is	 a	 trend	 in	 usage	 from	 partial	 sectoral	 to	 general	

equilibrium	 in	 recent	 economic	 assessments	 (Bosello	 &	 Zhang,	 2005),	 the	 partial	

one	 which	 is	 powerful	 in	 simulating	 the	 substitute	 process	 within	 agricultural	

sectors	and	is	also	characterized	by	its	high	disaggregation	of	crop	varieties,	is	still	

the	optimal	frame	for	food	security	projection.		

	

The	classical	model	for	macro	food	economy	is	usually	operated	in	a	basic	structure	

with	 balance	 between	 food	 supply	 and	 demand	 at	 national	 or	 international	 level.	

The	amount	of	production	and	consumption	depend	on	endogenous	variables,	such	

as	prices	of	agricultural	products,	and	exogenous	variables	that	could	be	the	shocks	

from	natural	 systems	(e.g.	 climate	variation)	or	 from	socio‐economic	systems	(e.g.	

population	growth	and	policy	change).	If	the	balance	is	broken	by	any	changes	in	the	

variables,	 the	 price	 mechanics	 would	 drive	 readjustment	 in	 production	 or	

consumption	until	 the	system	evolves	 to	a	new	equilibrium	condition.	This	partial	

equilibrium	 model	 cannot	 describe	 the	 responses	 and	 feedbacks	 from	 other	

economic	 sectors,	 such	 as	 the	 relocation	 of	 resource	 and	 capital.	 When	 labour	

migrates	between	sectors,	it	requires	a	special	linkage	to	describe	such	cross‐sector	

effects.	 Examples	 of	 such	 equilibrium	 models	 are	 shown	 in	 Table	 1‐4.	 Several	

studies	have	projected	China’s	food	supply	and	demand	based	on	these	models	(see	

Table	2‐1),	and	much	research	has	contributed	to	comparisons	of	their	assumptions,	

model	 structures,	 database	 and	 results	 (Barney	 et	 al.,	 1999;	 Zhang,	 2003).	 The	

conclusions	 suggest	 that:	 a)	 the	 natural	 resource	 disciplines	 in	 economic	 models	

simplifying	 prices	 and	 substitution	 processes,	 and	 the	 alternative	 use	 of	 land	 and	
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water,	need	 to	be	 introduced;	b)	purchasing	decisions	are	also	 important	 for	 final	

food	balance,	and	more	details	are	required	in	future	food	economic	models.		

	

The	 General	 Equilibrium	 economic	 Models	 (GEMs),	 which	 deal	 with	 the	 entire	

economic	 part	 with	 the	 optimal	 distribution	 of	 resources	 when	 the	 profit	 is	

maximized	under	perfect	competition	 in	all	markets,	are	developed	 for	analysis	of	

international	trade	policy	in	the	first	instance,	but	could	also	be	used	to	investigate	

the	explicit	results	of	economic	fluctuations	due	to	climate	change.	Kane	et	al.	(1992)	

and	 Reilly	 et	 al.	 (1994)	 have	 studied	 impact	 assessment	 on	 global	 agriculture	 by	

using	the	SWAPSIM	world	food	model.	It	is	worthwhile	noting	that	the	national	and	

partial	 equilibrium	 studies	 report	 higher	 impacts	 than	 global	 and	 general	

equilibrium	 studies.	 For	 one	 thing,	 the	 substitute	 procedure	 between	 agricultural	

and	non‐agricultural	sectors	and	international	trade	effect	smoothen	the	losses	in	a	

certain	 sector	 due	 to	 regional	 climate	 change.	 Another	 reason	 is	 that	 the	 general	

equilibrium	models	 take	account	of	 the	welfare	of	all	 the	agents	within	 the	whole	

economic	system,	which	means	the	losses	of	one	agent	would	be	balanced	out	by	the	

gains	 for	 another,	 and	 the	 net	 effect	 is	 finally	 weakened.	 At	 the	macro	 scale,	 the	

modelling	work	requires	a	much	larger	coverage	in	sectors	of	economy	as	well	as	a	

special	consideration	of	effects	of	international	market	and	trade	as	the	background	

of	regional	analysis	in	terms	of	economy,	and	then	at	a	more	disaggregated	scale	the	

regional	impacts	of	climate	change	would	be	incorporated.	However,	it	is	difficult	to	

satisfy	the	large	requirement	of	data	in	economy	for	these	kinds	of	model.	

	

An	 alternative	 method	 could	 be	 used	 to	 incorporate	 the	 extensive	 inter‐sectoral	

effects	 into	 food	production	processes,	such	as	the	IIASA	BLS	framework,	which	 is	

composed	 of	 35	 national	 level	models	 for	 food	with	 a	 particular	module	 for	 food	

economy	 and	 a	 simplified	 module	 for	 the	 rest	 of	 the	 major	 economic	 sectors	

(Fischer	et	al.,	1994;	Parry	et	al.,	1999;	Parry	et	al.,	2004).	It	should	be	noted	that	the	

national	and	partial	equilibrium	studies	report	higher	impacts	with	respect	to	global	

and	general	equilibrium	studies.	The	substitute	procedure	between	agricultural	and	
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non‐agricultural	sectors	and	the	international	trade	effect	smoothed	the	losses	in	a	

certain	sector	due	to	regional	climate	change.		

	

The	main	emphasis	of	these	economy	modelling	exercises	is	on	predicting	the	total	

amount	of	 food	supply	and	demand,	although	the	processes	related	 to	 food	access	

and	 utilization	 are	 not	 well	 discussed	 in	 detail	 especially	 the	 distribution	 and	

consumption.	Some	parts	of	the	existing	models	indeed	could	be	applied	for	access	

and	utility	assessment.	For	example,	the	division	of	urban	and	rural	demand	could	

detect	 the	 effects	 of	 different	market	 infrastructure	 on	 food	 access,	 and	 a	 careful	

consideration	 of	 livestock	 production	 would	 help	 further	 assessment	 on	 food	

utilization.	 However,	 such	 descriptions	 on	 a	 large	 scale	 provide	 little	 information	

about	 local	 food	 security	 and	 are	 powerless	 in	 terms	 of	 local	 policy	 making	 and	

adaptation.	 Therefore,	 further	 efforts	 in	 the	 economic	 dimension	 should	 focus	 on	

developing	modules	for	food	access	and	utilization	for	the	purpose	of	regional	and	

local	sustainable	development.		

	

Because	of	the	difficulty	in	direct	economic	evaluation,	the	methods	to	incorporate	

the	 impacts	 of	 climate	 change	 on	 food	 balance	 into	 economic	models	 are	 usually	

oversimplified,	 or	 not	 even	 considered.	 The	 simple	 treatment	 is	 to	 impose	 the	

changes	 in	 climatic‐related	 variables	 as	 an	 exogenous	 shock	 onto	 the	 production	

function.	For	example,	changes	in	land	stock	due	to	disasters,	erosion,	or	salinization,	

could	 be	 added	 directly	 into	 the	 supply‐side	 equations	 if	 the	 model	 structure	

permitted,	like	in	CAPSiM.		

	

Treatment	of	the	human	dimension:		

	
The	 human	 dimension	 in	 this	 study	 mainly	 refers	 to	 the	 adaptation	 processes.	

Modelling	the	adaptation	processes	relies	on	two	tools,	one	is	a	cost‐benefit	analysis	

tool	 to	 identify	 possible	 adaptation	 options	 and	 evaluate	 their	 costs	 and	 benefits,	
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and	 another	 is	 a	 decision	 making	 tool	 which	 usually	 consists	 of	 a	 programming	

decision	function	and	proper	rules.		

	

Leary	 (1999)	 provided	 a	 cost‐benefit	 analysis	 framework	 for	 policy	 making.	

Adaptation	 polices	 are	 evaluated	 with	 the	 assumption	 that	 future	 climates	 were	

known	with	 certainty	 (see	Table	 1‐2).	 At	 each	 scenario,	 the	monetary	measure	 of	

social	welfare	is	calculated	from	all	household	welfare,	and	outcomes	compared	and	

ranked.	Based	on	a	utility	 function,	social	welfare	can	be	 transformed	represented	

by	 money	 metric.	 By	 comparing	 the	 differences,	 the	 welfare	 changes	 in	 climate	

scenarios	and	adaptation	policies	can	be	obtained.		

	

Table	1‐2	An	example	of	the	cost‐benefit	analysis	metric	of	different	scenarios.	

Adaptation	Policy	
Climate	state

C0																																														C1	

A0	 Present	climate
Present	adaptation	policy	

Altered	climate	
Present	adaptation	policy	

A1	 Present	climate	
New	adaptation	policy	

Altered	climate	
New	adaptation	policy	

 

	

Another	 topic	 on	 human	 dimension	modelling	 is	 also	 tightly	 associated	with	 land	

and	water	resources	management,	which	refers	to	land	and	water	resource	changes	

(mainly	 described	by	 vegetation	 cover	models	 and	hydrological	models)	 and	 land	

and	water	use	(simulated	by	land	and	water	use	models).	

	

Constant	 effort	 is	 devoted	 to	 simulating	 climate‐related	 land	 use	 and	 land	 cover	

change	in	food	production,	leading	to	three	approaches.		

	

1)	 With	 the	 consideration	 of	 the	 fact	 that	 land	 has	 specific	 features	 in	 different	

locations	 due	 to	 different	 climate	 and	 soil	 properties,	 the	 form	 of	 production	

function	within	land	use	variables	depends	on	the	unique	agro‐ecological	zone	(Lee,	
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2004).	However,	the	difference	in	land	value	within	the	agro‐ecological	zone	cannot	

be	identified	by	this	‘climate‐inside’	method.		

	

2)	Instead	of	that	inside	method,	a	direct	measure	of	changes	in	land	value	induced	

by	 climate	 variation	 is	 attempted	 and	 is	 based	 on	 the	 Ricardian	 approach	 with	

regard	 to	 the	 FARM‐GIS	 system	 (Darwin,	 1999),	 which,	 however,	 fails	 to	 fully	

control	 the	 impact	 of	 important	 non‐climate‐related	 variables	 that	 could	 also	

explain	the	variation	in	farm	incomes.	Its	assumption	of	costless	adjustment	is	likely	

to	 result	 in	underestimating	 the	damages	or	overestimating	 the	benefits.	The	 first	

two	methods	are	both	based	on	the	spatial	analogous	concept.		

	

3)	 The	 third	 possible	 solution	 is	 developed	 by	 assembling	 all	 the	 production	 and	

economic	processes	 concerned	 into	one	autonomous	 land	use	model,	which	could	

simulate	 the	allocation	process	of	 land	resources,	and	 this	routine	 is	preferred	 for	

integrated	models,	 like	 the	 land	 cover	 in	 the	 IMAGE	model	 (Alcamo,	 et	 al.,	 2007,	

1998)	and	the	land	use	management	module	in	the	IMPEL	model	(Rounsevell,	1999;	

Giupponi	et	al.,	1998).	The	 treatment	of	 land	use	change	 is	built	on	more	 realistic	

decision	 processes	 in	 this	 method	 in	 which	 the	 land	 resource	 allocation	 is	

determined	 by	 land	 demands	 and	 certain	 land	 use	 rules.	 In	 existing	 models,	 the	

decision	rules	are	based	on	the	qualified	estimation	of	land	values	or	classification,	

and	the	quantitative	land	value	is	further	required	to	be	included	into	such	rules	by	

estimating	 the	economic	value	of	 the	outputs	 from	a	certain	type	of	 land	 from	the	

food	economy	models.	

	

For	water	resource	management	related	to	food	security,	the	common	treatment	of	

water	use	and	hydrological	process	in	an	integrated	model	system	is	coupling	to	a	

special	 water	 model	 simulating	 both	 physical	 land	 hydrological	 processes	 and	

artificial	water	allocation	and	use,	such	as	the	WaterGAP	model	in	the	GLASS	Model	

(Alcamo,	et	al.,	1997,	2003b)	and	the	WSM	model	in	IMPACT‐WATER	(Rosegrant	et	

al.,	2005,	2002)	for	water	availability	and	use.	The	water	use	module	usually	takes	

into	account	basic	socio‐economic	factors	that	lead	to	domestic	regional,	individual,	
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industrial	and	agricultural	water	use,	and	estimates	the	water	use	balance,	coupling	

water	demand	 in	specific	 sectors	with	so‐called	water	 supply	 that	 is	derived	 from	

simulations	in	hydrological	models	or	statistical	estimations.		

	

A	 number	 of	 studies	 contribute	 to	 water	 modelling	 and	 assessment	 both	 at	 the	

global	and	basin	level.	These	take	advantage	of	recent	developments	in	hydrological	

science	 and	 system	 modelling	 technology,	 as	 well	 as	 the	 application	 of	 remote	

sensing	 at	 multiple	 scales	 for	 data	 collection,	 and	 provide	 a	 substantial	 basis	 for	

integrated	 basin	management	 (PODIUM,	 IWMI),	 crop	water	modelling,	 and	water	

scenario	 analysis	 (WEAP	model,	 Raskin	 et	 al.,	 1992)	 for	 irrigation	 in	 agriculture.	

Liao	 (2004)	 considered	 the	 demand	 for	 irrigation	 due	 to	 the	 growth	 of	 grain	

production	by	coupling	the	CAPSiM	and	PODIUM	models,	a	policy	model	for	water	

distribution,	 and	 highlighted	 the	 regional	 food	 and	water	 security	 in	 the	 north	 of	

China.	However,	this	study	only	produced	possible	policies,	and	did	not	give	further	

assessment	 of	 the	 applicability	 and	 efficiency.	 Because	 the	 modelling	 for	 water	

resource	is	usually	based	on	river	basin	levels,	the	examination	of	the	relationship	

between	 water	 availability	 and	 food	 supply	 needs	 an	 aggregated	 study	 at	 multi‐

scales.	 Recently,	 Gosling	&	Arnell	 (2011)	 proposed	 a	 new	hydrological	method	 to	

simulate	 the	 global	 river	 run	 off	 using	 the	 Macro‐scale‐Probability‐Distributed	

Moisture	model.09	 (Mac‐PDM.09).	 This	method	 is	 able	 to	 produce	 daily	 runoff	 at	

grid	level,	a	range	of	hydrological	indicators,	e.g.	average	annual	and	monthly	runoff,	

the	coefficient	of	variation	of	annual	runoff,	 the	annual	runoff	exceeded	 in	90%	of	

years,	 and	 the	 parameters	 of	 a	 GEV	 (Generalized	 Extreme	 Value)	 distribution	 for	

annual	maximum	monthly	and	daily	runoff.		
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Table	1‐3	The	frameworks	of	integrated	assessment	models	and	applicable	modules.	

Integrated	system	
Integrated	

scale	
Objective	 Components	

GLASS	(Alcamo,	et	al.,	
2007,	2003a)	

National	level	
Estimate	
environment	stress	

IMAGE‐	climate	driver;	GAEZ;	WaterGAP	(hydrology	+	water	
use)	

IMPACT‐WATER	
(Rosegrant	et	al,	2005)	

Regional/	
river	basin	

Project	food/water	
security	

IMPACT	(Economic	based	food	balance	);	WSM	(Semi‐
physical	based	water	balance	)	

IMPEL	(Rounsevell,	
1999)	

Regional	 Predict	land	use	
EuroSCEN(climate	baseline	generator);	Access	(soil‐crop	
process);	Impeleuro(land	degradation);	Land	use	
management	module	

SIM	(Krol	et	al,	2006)	 Regional	
Water	scarcity	in	
semi‐arid	area	

Hydrological	dynamic	model;	Empirical	crop	yield	function;	
Agro‐economy	described	by	mathematical	optimization;	
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Table	1‐3	The	frameworks	of	integrated	assessment	models	and	applicable	modules	(continued).	

Agricultural/crop	modules	 Scale	 Features	

GAEZ	(Fischer	et	al,	2000)	 Global	 Agro‐ecological	zone	approach	based	
DSSAT	(J.	Reilly	et	al.,	2003;	Tsuji	et
al,	1994)	

Site‐based Bio‐physical	based	crop	models;	uniform	soil	module;	cropping	practice	supported	

AVIM	(Ji,	1995)	 Site‐based Bio‐physical	and	dynamic;	explicit	boundary‐layer‐dynamic	process
EuroAccess(Giupponi	et	al,	1998) Site‐based Bio‐physical	and	dynamic;	explicit	soil	process	(	water	&	nutrition	exchange)
LPJ	(Sitch	et	al	2003)	 Site‐based Using	10	plant	functional	types	modelled	by	the	rules	used	in	equilibrium	

biogeography	models	
GLAM	(Challinor,	2004)	 Large	area Median	complex	process	of	crop	growth,	simplified	for	large	areas,	fixed	

parameters	for	sub‐regions,		
EPIC	(Williams	et	al,	1983)	 farm	level	 Featured	soil	water	process	and	soil	erosion;	long‐term	projection	capability	
Water	Modules	 Scale	 Features	

SWAT	(Arnold	et	al,	1998)	 River	basin	
level	

Physical	based	(	water	exchange,	physical/chemical	process	in	soil,	crop	chemical	
process);	with	land	use	scenarios;	

WaterGAP		(Alcamo	et	al,	2003b)	 Global	 Hydrological	module	(	explicit	geographic	solution);	Water	use	module	(scenario‐
based/sector‐based	use	intensity)	

SWAP	(Kroes	et	al,	2000)	 one‐dimensional	physically	based;	transport	supported;	simple	interaction	with	
crop	growth	

Mac‐PDM.09	(Arnell	et	al,	1999) Physical	based;	macro‐scale;	probability	distributed;	calculated	on	grid	level
PODIUM		(IWMI)	 Scenario	(with	respect	crop,	cultivating	pattern)	based;	limited	physical	process;	
WSM	(Rosegrant	et	al	,	2005)	 Water	supply	(limited	physical	process);	water	demand	
WEAP	(Raskin	et	al,	1992)	 River	basin	

level	
Water	allocation	at	river	basin	scale;	limited	physical	process

Economic	modules	 	 See	Table	1‐4		
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Table	1‐4	Comparison	of	the	macro‐partial	equilibrium	model	of	the	agricultural	sector.	

Model	 Scale	 Features		 Parameter		
Equations

Supply Demand

CAPSiM	(Huang
&	Li,	2003)	

National	
Partial	
equilibrium;	12	
crops,	7	livestock	

Economically	
estimated	

Sown	area(Input/output	prices;	
climate	&	other	shocks)	Yield	(Tech;	
irrigation;	erosion;	salinity;	ect.)	

Food	(urban;	rural),Feed,	
Seed,	Industrial,	Waste	

IMPACT	
(Rosegrant	et	
al,	1995)	

National	

Partial	
equilibrium;	35	
countries	and	
regions;	17	
commodities	

Synthetic	
Harvested	Area	(	crop	prices;	
harvested	area	changes)	Yield	
(input/output	prices;	tech	trend)	

Food,	Feed,	Industrial		

OECF	model	
(OECD,	1995)

Provincial	
Single	equation;	
30	provinces;	5	
major	crops	

Synthetic	
Given	assumed		Area/	Yield	change	
trends	

Food,	Seed,	Loss	(The	
change	rates	are	assumed	
from	basic	level	and	
empirical)	

CPPA(USDA	
ERS,	1994,	
1997)	

provincial	
level	for	
China		

Partial	
equilibrium,	
separated	urban	
&	rural	demand;	
6	region;	34	
commodities	

Economically	
estimated	

Cropping	area	(	expected	prices;	
expected	yields),	Yield	(	trend,	
input/output	prices,	research	stock,	
irrigated	area)	

Food,	Explicit	Feed,	Other	
demand	
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Table	1‐4	Comparison	of	the	macro‐partial	equilibrium	model	of	the	agricultural	sector	(Continued).	

Model	 Scale	 Features	 Parameter	
Equations	

Supply	 Demand	

World	Grains	
Model_World	

Bank	(Mitchell	et	
al.,	1997)	

National	

Partial‐equilibrium	net	
trade	model	Wheat,	rice,	
and	7	coarse	grains;	All	
sectors	demand;	15	
countries+9	regions	

Economically	
estimated	

Revenues(t‐1),	ending	stock(t‐1),	
trendTotal	cropland	harvested,	
commodity	revenue(t‐1),	
trendHarvested	area	

Trend	of	total	
food	
consumption,	net	
import,	and	stock		

WB_Nyberg	
Model	(GTAP+	
water	constraints	
model,	Nyberg,	

1997)	

Global		

General	equilibrium	
economic	model	
consideration	of	climate	
change	(FARM),		water	
constraint;	45	regions;	
7agricultural	commodities,	
and	non‐food	products	

Synthetic	
(income	

elasticity	derived	
from	function	

CDE)	

Production	(calculated	by	economic	
factors,	i.e.	land,	labour,	and	
physical	&	human	capital;	resources	
constraints	factors;	technology	
change	factor,	i.e.	TFP),	and	yield	
growth	rate	(calculated	by	water	
constraints)	

Food,	feed,	seed,	
and	waste	

BLS	(Parry	et	al,	
1999)		

	

General	equilibrium	
economic	model;	world	
level;	35	regions;	annual	
increment;	9	aggregated	
agricultural	commodities	
and	1	aggregated	non‐
agricultural	commodity		

Synthetic	

Supply	does	not	adjust	
instantaneously	to	new	economic	
conditions	;Yield	modelled	by	only	
by	fertilizer	application	

Food,	feed,	and	
net	import;	
imposed	
consistent	
financial	flows	
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1.3 Problem	and	Objective	

1.3.1 Problem	statement	

In	 this	 section,	 the	 issues	 from	 existing	 research	 are	 discussed,	 and	 the	 research	

demands	are	addressed.		

	

Climate	 change	 is	 a	 global	 phenomenon,	 but	 the	 impact	 and	 the	 associated	

adaptation	 measures	 take	 place	 locally.	 Hence,	 regional	 and	 local	 research	 is	

required	to	support	adaptation	assessment	for	regional	and	local	benefits.	The	wide	

range	 of	 conclusions	 in	 global	 assessment	 studies	 mainly	 provide	 a	 direction	 for	

long‐term	 strategy,	 but	 have	 limited	 use	 to	 reveal	 the	 short‐term	 climate	 change	

impacts	 on	 food	 production,	 which	 is	 essential	 for	 adaptation	 policy	 making.	

Therefore,	analyses	of	potential	 impacts	 in	the	next	10,	20,	or	50	years	need	to	be	

taken	into	account	urgently	as	well	as	those	over	the	next	100	years.	

	

Climate	 change	 impacts	 on	 food	 security	 are	 reflected	 in	 both	 bio‐physical	 and	

socio‐economic	dimensions.	An	explicit	description	of	bio‐physical	processes	of	crop	

growth	models	under	actual	 climate	 change	over	 time	 is	 the	basis	at	 regional	 and	

local	 scale.	 In	 order	 to	 address	 the	 impacts	 of	 the	 economic	 dimension,	 it	 is	

necessary	to	consider	farmers’	responses	to	deal	with	different	adaptation	options	

at	 multi	 temporal	 and	 spatial	 scales,	 such	 as	 the	 long‐term	 agricultural	 policy	 at	

regional	scale,	short‐term	cropping	practice	at	farm	level,	and	long‐	or	short‐	term	

disaster‐resisting	activity.	

	

Temperature,	 precipitation,	 and	water	 availability	 are	 the	most	 critical	 factors	 for	

local	 crop	 productivity.	 So	 far,	 most	 researchers	 have	 been	 focused	 on	 the	 food	

availability	 due	 to	 the	 biophysical	 consequence	 of	 climate	 change	 impact.	 For	



27 
 

example,	for	the	case	study	in	Jilin	province,	it	is	necessary	to	pay	attention	to	water	

stress	on	crop	growth.		

	

Compared	to	studies	in	food	availability,	fewer	quantitative	assessments	have	been	

conducted	 to	 investigate	 climate	 change	 impacts	 on	 food	 access	 and	 utilization,	

which	are	critical	indicators	of	regional	and	local	food	security.	Interactions	among	

multi	 spatial	and	 time	scales	 in	 food	access	and	utilization	need	 to	be	highlighted.	

Analysis	tools	are	required	to	capture	the	quantitative	information	with	respect	to	

regional	 and	 household	 levels,	 such	 as	 changes	 in	 income	 and	 food	 consumption	

pattern	 due	 to	 inter‐annual	 climate	 fluctuations,	 and	 allocation	 changes	 of	 food	

products	at	regional	scale	due	to	shifts	in	agro‐ecological	zones	in	the	long	term.	To	

assess	 food	 utilization,	 it	 is	 necessary	 to	 model	 the	 changes	 in	 dietary	 and	

consumption	structure	due	to	income	increase	or	other	prices	or	non‐price	drivers.	

	

In	 contrast	 to	 climate	 change	 scenario	 that	 has	 model	 projections	 for	 this	 whole	

century,	the	projection	period	of	economically‐oriented	studies	is	usually	5‐20	years	

in	 steps	of	 1	 year	or	5	 years.	Therefore,	 the	 future	 focus	 of	 the	 projection	period,	

considering	the	duration	of	adaptive	practice,	might	range	from	5~20	years,	and	for	

policy	flexibility,	to	20~50	years	for	long	term	change	in	natural	factors.		

	

In	 terms	 of	 spatial	 coverage,	 studies	 on	 Chinese	 food	 security,	 generally	 aim	 for	

macro	 policy	 for	 national	 benefits,	 ignoring	 the	 effects	 at	 regional	 and	 local	 level.	

The	food	insecurity	for	impoverished	groups	of	population	in	specific	regions,	such	

as	 agriculture‐dominant	 and	 environmental	 vulnerable	 regions,	 should	 be	

highlighted	 for	 the	 local	 capability	 building	 and	 sustainable	 development	 with	

strengthening	resilience	against	increasing	risk	due	to	climate	change.		

	

In	terms	of	uncertainty,	the	risk	existing	in	scenario	development	and	in	modelling	

structure	 should	 be	 further	 analyzed,	 especially	 when	 adaptation	 strategies	 are	

taken	 into	 consideration.	 The	 climate	 system	 is	 inherently	 uncertain;	 hence	 the	
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climate	 change	 projections	 are	 characterized	with	 high	 uncertainties.	 In	 addition,	

the	 socio‐economic	 projections	 and	 any	 economic	 model	 results	 also	 involve	

uncertainties,	 since	 there	 are	 many	 empirical	 assumptions	 on	 both	 economic	

parameters	 and	 processes.	 It	 is	 important	 to	 discuss	 the	 range	 of	 uncertainty	 in	

impact	 assessments	 to	 support	 the	 decision‐making	 process	 in	 relation	 to	

adaptation.	On	the	farm	level,	it	is	possible	to	use	the	risk	analysis	of	climate	change	

impacts	 on	 the	 crop	 yield	 or	 production	 to	 investigate	 the	 uncertainties	 among	

climate	 change	 scenarios.	 On	 the	 national	 level,	 an	 analysis	 of	 potential	 range	 of	

projections	 coupling	 climate	 change	 and	 socio‐economic	 scenarios	 could	 be	

examined	 in	 order	 to	 tell	 the	 policy	makers	 the	 possible	 best	 and	worst	 status	 of	

food	security	in	future.		

	

Numerical	 studies	 assessing	 the	 impacts	 of	 climate	 change	 reflect	 the	 qualitative	

effects	 of	 adaptation,	 the	 empirical	 studies	 investigating	 adaptation	 behaviours	

suggest	 the	 possible	 adaptation	 options	 under	 the	 given	 situations,	 and	 the	

theoretical	 studies	 that	build	 conceptual	 frames	of	adaptation	provide	 the	general	

rules	 to	 assess	 the	 adaptation.	 However,	 there	 is	 still	 a	 research	 requirement	 to	

evaluate	 the	 costs	 and	 benefits	 of	 adaptation	 options	 quantitatively	 to	 support	

efficient	decision‐making	and	effective	adaptation.	

	

To	 assess	 the	 possible	 adaptation	 options	 in	 a	 quantitative	 manner,	 not	 only	

estimations	 of	 the	 costs	 and	 benefits	 are	 necessary	 including	 the	 analyses	 of	 the	

effects	 of	 such	 options	 in	 the	 short	 and	 long	 terms,	 but	 also	 considering	 the	

uncertainties	in	climate	change	under	different	scenarios.		

	

Current	 efforts	 mainly	 attempt	 to	 cope	 with	 the	 stresses	 in	 the	 short‐term	 in	 an	

immediate	 manner,	 i.e.,	 crop	 switching	 to	 reduce	 the	 vulnerability	 of	 crop	

production	 to	 water	 shortage,	 but	 little	 attention	 has	 so	 far	 been	 devoted	 to	 the	

options	for	sustainable	development	in	the	long	term.		
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More	 systematic	 treatment	 of	 adaptation	 activities	 across	 scales	 should	 be	

particularly	concentrated	on,	 such	as	how	will	 the	regional	 land	use	options	affect	

the	farmers’	 land	use	strategies,	and	how	will	 the	changes	 in	water	distribution	at	

regional	level	influence	the	farming	water	management.	

 

1.3.2 Research	objective	
	

The	overall	objective	of	this	research	is	to	assess	the	potential	risk	of	food	security	

at	national	and	local	scales	related	to	future	climate	change,	and	to	provide	possible	

adaptation	 options	 for	 regional	 sustainable	 development,	 by	 developing	 an	

integrated	assessment	model	system.		

	

In	 responding	 to	 the	 above	 objective,	 the	 research	 focussed	 on	 answering	 the	

following	two	questions.		

	

Question	1:	How	will	the	food	availability,	food	price	and	the	resilience	of	Chinese	

food	system	are	affected	by	climate	change?	

	

Question	2:	What	are	the	possible	adaptation	options	for	reducing	the	vulnerability	

and	 improving	the	Chinese	food	security	situation	at	national	and	farm	levels,	and	

how	 would	 these	 adaptations	 trade‐off	 the	 climatic	 change	 impacts	 on	 food	

availability,	price	and	system	resilience?	

	

	

To	 answer	Question	 1,	 the	 bio‐physical	 and	 socio‐economic	 processes	 involved	 in	

the	food	system	were	modelled	and	integrated.	

	

 To	 simulate	 crop	 production,	 a	 bio‐physical	 crop	 production	 model	 was	

developed	 by	 improving	 the	 DSSAT	 model	 (Jones	 et	 al.,	 2003;	 Tsuji	 et	 al.,	

1994).	
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 Considering	the	limitation	on	time,	only	the	climate	change	impacts	on	maize	

production	 is	 considered	 in	 this	 thesis	 as	 a	 case	 study.	 The	 maize	 is	 the	

primary	 feed	 resource	 for	 meat	 production	 in	 China	 (China	 Animal	

Agriculture	Association,	2001).	The	 future	meat	demands	would	contribute	

the	most	important	part	to	the	increase	in	total	food	demands,	as	the	income	

keeps	growing	for	both	urban	and	rural	population	and	their	requirements	to	

high	protein	food	(Zhao	et	al,	2006).		

 To	 simulate	 the	 socio‐economic	 processes	 related	 to	 the	 food	 security	

situation	at	the	national	scale,	an	economic	model	was	developed	based	on	a	

partial	 equilibrium	 food	 economic	model,	 the	 CAPSiM	model	 (Huang	 &	 Li,	

2003).	

 The	 integrated	 model	 is	 tested	 by	 a	 case	 study	 of	 China.	 The	 impacts	 of	

climate	 change	 on	 food	 security	 is	 assessed	 by	 three	 indicators:	 1)	 the	

availability	of	grains,	which	is	represented	by	the	supply	and	demand,	2)	the	

affordability	 of	 grains,	 which	 is	 reflected	 by	 the	 prices	 of	 main	 grain	

commodities,	3)	the	resilience	of	food	system	to	sudden	disasters.		

	

To	 answer	 Question	 2,	 the	 following	 adaptation	 options	 were	 considered:	 crop	

variety	 switching,	 improving	water	use,	 increasing	 the	 investments	 in	 agricultural	

research,	 and	 increasing	 the	 investments	 in	 irrigation	 infrastructure	 by	 the	

government.		

	

1.4 Contribution	
	

Though	 it	 is	expected	 that	 the	climate	change	will	have	significant	 impact	on	 food	

security	 at	 regional	 and	 global	 levels,	 there	 are	 lacks	 of	 tools	 that	 integrate	

biophysical	 and	 economic	 impact	 consequences	 and	 provide	 quantitative	

assessment	information	to	support	effective	adaptation.	Food	security	is	one	of	the	

basic	 needs	 of	 human	 beings	 and	 is	 essential	 for	 a	 sustainable	 economic	 world.	

Against	 the	 background	 of	 accelerating	 global	 climate	 change,	 the	 study	 on	 food	
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security	assessment	in	China	has	its	special	significance	in	terms	of	regional	socio‐

economic	 development,	 as	 well	 as	 making	 contributions	 to	 the	 climate	 change	

scientific	research	field.	The	main	contributions	of	this	thesis	are	given	below.	

	

In	 terms	 of	 methodology,	 a	 model	 framework	 integrating	 bio‐physical	 and	 socio‐

economic	processes	of	the	food	system	was	developed	to	assess	food	security	on	a	

national	 scale,	 in	order	 to	provide	policy‐makers	with	 the	required	 information	 to	

achieve	sustainable	development	at	both	local	and	national	levels.		

	

With	respect	to	the	integrated	model,				

 the	information	on	impacts	of	climate	change	at	local	levels	was	successfully	

incorporated	into	the	processes	at	a	large	spatial	scale,	e.g.	national	level;		

 the	effectiveness	of	potential	adaptations	was	measured	for	both	farmers	and	

government	 to	 reduce	 the	 negative	 consequences	 of	 climate	 change	 and	

socio‐economic	conditions;	

 the	food	security	was	assessed	in	terms	of	general	availability,	food	price	and	

the	resilience	on	a	year‐by‐year	basis;		

 the	combined	effects	of	multiple	climate	change,	socio‐economic	conditions,	

and	 policy	 were	 coupled	 into	 one	 solution,	 facilitating	 analysis	 and	

comparison	of	multiple	scenarios.	

	

This	study	also	investigated	model	improvement	by:			

 improving	the	site‐based	bio‐physical	model	to	a	spatial	one	that	is	able	to	be	

applied	in	a	spatial	simulation	with	more	reasonable	planting	and	irrigation	

schemes;	

 adjusting	 the	 food	 economic	model	 to	 fix	 some	 elasticities	 automatically	 in	

order	to	simulate	the	changes	in	dietary	pattern	in	the	long	run	projections;	
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 altering	the	yield	equation	in	the	food	economic	model	so	that	the	impacts	of	

climate	change	can	be	incorporated	into	economic	processes	directly	as	well	

as	in	the	calculation	of	yield.	

The	 integrated	framework	was	developed	 into	one	program	package,	written	with	

Fortran90	language.		

	

With	 respect	 to	 key	 findings,	 this	 thesis	 focused	 on	 the	 integrated	 assessment	 of	

food	 security	 and	 climate	 change.	 Impacts	 of	 climate	 change	 on	 bio‐physical	

production	of	maize	were	 carried	out	 in	 Jilin	province	 (local	 level)	 and	 the	 entire	

China	 (national	 level).	 Integrated	 assessment	 of	 food	 security	 of	 China	 (national	

level)	was	carried	out	for	future	decades.	The	findings	of	case	study	included:	

 Impacts	on	maize	yield	and	on	its	phenology	in	the	 long	term	to	the	2070s.	

By	the	bio‐physical	model,	the	maize	yield	was	projected	to	decrease	15%	or	

more	by	2050	in	the	major	areas	of	Jilin	province,	and	to	reduce	10%	on	the	

average	over	the	whole	China	under	climate	change	without	considering	the	

CO2	fertilizer	effects.	The	reduction	in	maize	yield	is	likely	to	be	produced	by	

the	significant	shrink	in	grain	filling	period.			

 Calculations	 and	 discussion	 of	 the	 probabilistic	 range	 of	 the	 maize	 yield	

under	six	SRES	scenarios	in	three	projection	periods.	90%	of	projections	on	

maize	yield	using	120	climate	change	scenarios	derived	from	20	GCM	models	

and	6	SRES	emission	scenarios	supported	the	conclusion	above.	

 Quantitative	 assessment	 of	 the	 effectiveness	 of	 adaptation	 options	 at	 farm	

level.	 Improving	 irrigation	 may	 maintain	 the	 current	 production	 level	 of	

maize,	but	in	the	long	run	introducing	new	maize	cultivars	and	adjusting	the	

sowing	 schedule	 might	 be	 required	 to	 offset	 the	 influences	 of	 warming	

climate	on	maize.			

 Analysis	of	the	future	food	security	in	China	for	four	main	grains	and	seven	

livestock	 products	 with	 respect	 to	 three	 aspects	 of	 food	 security	 until	 the	
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middle	of	 the	21st	century.	The	supply	and	demand	of	 the	main	grains	will	

move	towards	a	tight	balance	in	the	future.	The	self‐sufficiency	ratio	of	maize	

may	even	 reduce	 to	92%	 in	2050	due	 to	 climate	 change	 impacts.	The	 food	

access	 is	 threatened	by	 the	rising	prices	of	main	grains	 in	 the	decades.	The	

unstable	 status	 of	 food	 security	 due	 to	 a	 sudden	 shock	may	 last	 for	 years	

longer	under	climate	change.		

 Discussion	of	 the	 resilience	of	 the	 socio‐economic	 system	 to	 the	damage	of	

climate	change	under	multiple	scenarios.	The	bio‐physical	impacts	of	climate	

change	on	a	crop	might	slightly	weakened	by	the	socio‐economic	system.		

 Measurement	 of	 the	 uncertainties	 in	 food	 security	 of	 China	 among	 climate	

change,	 socio‐economic	 and	 policy	 scenarios.	 The	worst	 projection	 of	 food	

security	 would	 occur	 under	 the	 high	 growth	 scenario	 of	 both	 income	 and	

population	with	A1FI	emission	scenario,	while	the	best	occurs	under	the	low	

growth	of	income	and	population	with	B1	emission	scenarios.	The	difference	

of	these	two	projections	of	food	prices	might	be	significantly	large.			

 Trials	 and	 testing	 of	 the	 improvements	 in	 food	 security	 by	 implementing	

adaptations	through	effective	agricultural	policy.	Supplementary	investment	

in	 agricultural	 research	 and	 irrigation	 services	 would	 help	 to	 alleviate	 the	

risks	on	 food	security	due	 to	climate	change	and	the	growth	of	 income	and	

population,	remaining	the	prices	of	grains	on	the	current	level.		

	

The	 improvements	 in	 the	 bio‐physical	 model	 and	 the	 case	 study	 on	 impacts	 of	

climate	change	on	bio‐physical	production	of	maize	in	Jilin	province	(Chapter	3	and	

Chapter	4)	has	been	published	as	a	Journal	paper	(Wang,	M.,	Li,	Y.,	Ye,	W.,	Bornman,	

J.	 F.,	 Yan,	 X.	 (2011)	 Effect	 of	 climate	 change	 on	 maize	 production,	 and	 potential	

adaptation	measures:	 a	 case	 study	 in	 Jilin	 Province,	 China.	 Climate	 Research,	 46:	

223‐242).	

Some	sections	in	Chapters	1,	2,	3,	4	and	8	contributed	to	the	technical	report	of	the	

Asian‐Pacific‐Network	 for	 Global	 Change	 Research	 CAPaBLE	 Project	 CRP2008‐
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02MY‐Yan	(Li,	Y.,	Ye,	W.,	Yin,	C.,	Wang,	M.	(2008)	Integrated	model	development	for	

water	and	food	security	assessment	and	a	case	study	in	Jilin	province.).		
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2 Chapter	2	Case	Study	and	Methodology	
 

2.1 Case	study	
	

Globally,	the	food	security	of	China	plays	an	important	role	for	world	food	security.	

Because	of	its	huge	food	demand	and	fast	economic	growth,	China	has	been	a	critical	

player	 in	 the	world	 grain	markets	 and	will	 become	more	 influential	 in	 future.	 In	

China,	a	large	fraction	of	the	population	and	national	output	is	dependent	on	natural	

resources,	 and	 is	 very	 sensitive	 to	 climate	 change.	 A	 challenging	 issue	 in	 regional	

sustainability	 is	 to	 identify	 the	 potential	 impacts	 on	 it	 associated	 with	 climate	

change.		

	

There	 has	 been	 periodic	 and	 recursively	 growing	 concern	 over	 China’s	 grain	

security	by	scholars,	national	leaders	and	the	public	since	the	middle	1990s	(Brown,	

1995;	Huang	&	Rozelle,	1995;	Haung	et	al.,	1999;He	et	al.,	2004;	Huang	et	al.,	2006;	

MOA,	2004).	Academics	have	expressed	different	opinions	and	views	on	the	current	

policies	and	the	concern	about	grain	security.	Several	questions	have	been	raised.	Is	

China’s	 grain	 supply	 a	 serious	 problem?	 What	 is	 the	 likely	 situation	 regarding	

China’s	grain	security	in	the	next	three	decades?	What	are	the	key	determinants	of	

China’s	future	grain	security?	Can	China	rely	on	long‐term	productivity	growth	for	

grain	security?		

 

2.1.1 Current	food	security	status	of	China	
	

Since	the	beginning	of	reform	and	the	opening	up	policy	in	the	late	1970s,	China	has	

maintained	a	steady	growth	in	food	production,	and	achieved	a	general	equilibrium	

in	demand	and	supply.	In	the	late	1990s,	domestic	grain	production	was	around	500	

million,	and	the	national	grain	reserves	were	higher	than	95%	to	be	self‐sufficient.	

The	increase	of	grain	production	is	about	1.96%	which	is	faster	than	the	population	
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growth	 in	 the	 same	period	 (Li,	 2013).	 In	 recent	 years,	 the	 self‐sufficiency	of	main	

staples	 has	 fallen	 to	 88.4%	 and	 the	 soybean	 self‐sufficiency	 is	 only	 18.1%	 (Han,	

2013).	 The	 latest	 Global	 Food	 Security	 Index	 published	 by	 The	 Economist	

Intelligence	 Unit	 (Please	 see	 details	 on	 their	 web	 site	

http://foodsecurityindex.eiu.com/Country)	 shows	 that	 the	 food	 security	 of	 China	

has	 generally	 good	 performance,	 with	 the	 43th	 place	 in	 affordability,	 the	 41th	 in	

availability	and	the	43th	in	quality	and	safety	by	global	ranking.	In	2002,	per	capita	

possession	of	grain	was	about	356	kg,	and	annual	average	consumption	was	about	

51	kg	for	meat	products,	34	kg	for	aquatic	products	and	330	kg	for	vegetables	per	

person.	The	everyday	per	capita	nutritional	intake	has	surpassed	the	world	average	

of	2750	kilocalories,	with	more	than	70	g	protein	and	52	g	fat	per	day	(MOA,	2004).	

After	 six	 successive	 years	 of	 falling	 grain	 prices,	 the	 grain	 price	 increased	 in	 late	

2003	 and	 in	 the	 spring	 of	 2004.	 It	 is	 also	 noted	 that	 the	 food	 demand	 of	 the	

immigrants	from	rural	is	growing	very	significantly,	about	119.14	kg	higher	than	the	

rural	residents	and	51.04	kg	higher	than	the	urban	residents	in	a	survey	in	2013	led	

by	 the	Development	Research	Center	 of	 the	 State	Council	 of	 China	 (DRC)	 in	 2013	

(Han,	2013).		

	

Many	agricultural	officials	and	scholars	claimed	that	China’s	grain	supply	was	facing	

a	 great	 challenge	 and	 predicted	 that	 China	 would	 encounter	 grain	 crises	 in	 the	

coming	 years.	 The	 underlying	 factors	 affecting	 food	 supply	 of	 China	 include	 the	

rapid	 income	 growth,	 changes	 in	 food	 preference,	 the	 land	 use	 competition,	 the	

shortage	 of	 water	 resource,	 intensive	 climate	 change,	 and	 the	 uncertainties	 in	

international	food	markets.	The	urbanization	rate	in	2012	is	about	53%	and	would	

be	 rising	 to	 the	 peak	 of	 70%~75%	 in	 2030s	 (Han,	 2013).	 In	 response	 to	 these	

concerns,	 the	 government	 recently	 launched	 several	 policies	 to	 promote	 grain	

production.	 An	 income	 transfer	 scheme	 with	 more	 than	 100	 billion	 RMB	 was	

implemented	 in	 2004	 through	 a	 “Grain	 direct	 subsidy”	 program	 that	 distributed	

cash	to	farmers	in	grain	production	areas	(Xiao,	2005;	Sun	et	al,	2012).	Much	stricter	

control	 of	 non‐agricultural	 land	 use	 is	 underway.	 Maize	 export	 subsidies	 were	

completely	eliminated	in	April	2004.	New	contracts	to	import	grain	were	signed	in	



37 
 

late	2003	and	early	2004	despite	world	cereal	prices	being	higher	than	the	domestic	

prices.	The	“Grain	for	Green”	program	(Li,	2004)	was	scaled	down	substantially	 in	

2004	(Xu	et	al,	2006;	Liu	&	Wu,	2010).		

	

During	 the	 past	 decades,	 the	 purchasing	 power	 of	 Chinese	 consumers	 increased	

rapidly	 with	 the	 annual	 GDP	 increase	 rate	 at	 more	 than	 7%.	 The	 total	 poverty	

population	was	also	reduced	to	about	29	million	by	2001	(Huang	&	Yang,	2006),	and	

the	Engel	coefficients	of	rural	and	urban	family	have	declined	to	46.2%	and	37.7%	

in	2002	(MOA,	2004;	Zhang,	2005).	This	indicates	a	significant	improvement	in	the	

aggregate	household	food	security	of	China	in	recent	years.	However,	the	section	of	

the	population	in	poverty	is	thought	to	be	increasing	to	128	million	under	the	new	

standard	in	2011	in	the	report	of	Chinese	Academy	of	Sciences	(CAS,	2012).			

	

2.1.2 Future	food	security	of	China	
	

China	has	enormous	potentials	for	food	production	growth	in	the	coming	years.	The	

improvement	of	medium	and	low	yielding	farmlands	that	are	about	2/3	of	the	total	

area	of	farmland	will	promote	the	rise	in	both	yield	and	total	production	of	grains.		

	

However,	 there	 is	 still	 the	 challenge	 to	 ensure	 food	 security	 over	 long	 periods	 of	

time.		

	

The	population	of	China	is	projected	to	grow	from	about	1.3	to	1.5	billion	in	2030,	

and	the	urbanization	rate	would	also	increase	to	about	60%	by	2020	(MOA,	2004).	

Increased	 population,	 urban	 populations	 in	 particular,	 and	 improved	 income	will	

boost	a	considerable	increase	in	food	demand	including	animal	products,	vegetables,	

fruits,	 and	 oil	 (Huang	 &	 Bouis,	 1996).	 The	 projections	 of	 grain	 production	 and	

consumption	based	on	food	economic	models	are	shown	in	Table	2‐1.	Besides	this	

upgrading	trend	in	consuming	structure,	the	food	quality	and	safety	levels	need	to	

be	 improved	 in	 future.	 On	 the	 supply	 side,	 China	 is	 facing	 severe	 constraints	 for	
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grain	 production:	 the	 shortage	 of	 cultivated	 land	 and	water	 resources	 have	 been	

deteriorating	 through	 heavy	 degradation,	 e.g.	 20%	of	 farmland,	 50%	of	 grassland	

and	33%	of	fresh	water	area	have	degraded	(MOA,	2004).		

	

A	 study	by	Zhang	 (2005)	 indicated	 that	 in	 the	 coming	20	 years	 the	 import	 of	 not	

only	cash	crops	(such	as	oilseed	and	sugar)	but	also	grains	will	increase	greatly	due	

to	 China’s	 fast‐growing	 consumption.	 It	 is	 predicted	 that	 China	will	 import	 about	

560	Mt	of	maize	in	2020,	which	is	about	10%	of	global	maize	production	in	2006,	a	

large	volume	uneasily	buffered	by	the	world	grain	market	nowadays	or	even	in	the	

future	(Huang	&	Yang,	2006).	As	one	of	the	most	important	food	production	areas	in	

the	country,	the	Northeast	of	China	produces	more	than	15%	of	the	grain	and	about	

one	 third	 of	 the	 total	marketable	 grains	 and	 soybean	 (Zhou,	 2005),	 and	will	 thus	

become	a	sensitive	region	for	food	security	in	China.	
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Table	2‐1	The	projected	grain	production	and	consumption	in	China	based	on	using	
economic	models	without	considering	the	factors	related	to	climatic	change.	

	 Production	(Mt)	 Consumption	(Mt)	 Net	Import	(Mt)	

Huang	et	al.	

(1999)	

2002			442	

2004			456	

2005			464	

	

460	

468	

484	

	

17.9	

19.6	

19.8	

	

USDA	

(ERS,	1994,	1997)	

2002			397	

2004			412	

2005			419	

	

418	

436	

445	

	

9.9	

12.0	

13.8	

	

Mitchell	et	al.	

(1997)	

2005			445	

2010			482	

	

460	

503	

	

15.6	

21.6	

	

OECD	

(OECD,	1995)	

2005			503	

2010			511	

	

572	

648	

	

69.1	

136.0	

	

Nyberg	et	al.	

(1997)	

2005			493	

2020			662	

	

516	

731	

	

23	

69	

	

Rosegrant	et	al.	

(1995)	

2020			707	

	

739	

	

32	

	

Chen	

(1997)	

2000	

2020	

2030	

	

	

15	

35	

50	

	

Kang	

(1998)	

2000	

2010	

2020	

2030	

	

33	

83	

138	

91	
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Table	2‐1	The	projected	grain	production	and	consumption	in	China	based	on	using	
economic	models	without	considering	the	factors	related	to	climatic	change	
(continued).	

	 Production	(Mt)	 Consumption	(Mt)	 Net	Import	(Mt)	

Liao	and	Huang	

(2004)	
2020							496	 511	 	

Ma	and	Niu	(2009)	 2010	

2015	

2020	

516	

532	

547	

	

Lu	et	al	(2010)	 2015							537	

2020							536	

571	

595	
	

Zhang	(2012)	 2020							550	 570‐660	 	

	 	 Self‐sufficiency	 Net	import	(Mt)	

Han	(2013)	 2020	Rice	

												Wheat	

												Maize		

												Soybean	

2035	Rice		

											Wheat		

											Maize	

											Soybean	

101%	

99%	

92%	

20%	

102%	

100%	

84%	

17%	

	

	

19.87	

69.06	

	

	

50.36	

89.28	
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China	is	facing	the	threat	of	food	insecurity	to	different	degrees	with	similar	socio‐

economic	 changes	 and	 natural	 problems.	 The	 low	 level	 productivity	 in	 the	

agriculture	 sector,	 transition	 of	 economy,	 degradation	 in	 the	 environment,	 and	

climate	 change	 are	 likely	 the	 main	 reasons	 that	 could	 lead	 to	 unstable	 food	

production	 and	 increased	 rural	 poverty	 (Alcamo	 et	 al.,	 2003b;	 FAO,	 1997;	 MOA,	

2004;	 Zhou,	 2005).	 During	 recent	 years,	 its	 grain	 production	 has	 been	 unsteady	

against	 agricultural	 structural	 adjustment	 and	 disaster	 shocks	 (Liu	&	 Chen,	 2000;	

Shi,	1997);	and	with	the	rapid	development	of	the	economy	and	continual	growth	in	

population,	the	increasing	demand	for	the	quantity	and	quality	of	food	will	require	

greater	 output	 from	 the	 food	 system	 (Huang	 et	 al.,	 1996,	 1999).	 That	 will	 place	

heavier	pressure	on	both	limited	natural	resources	and	transforming	of	agricultural	

sectors	than	ever	before	(Barney	et	al.,	1999;	Huang	et	al.,	1995).	

	

The	 weak	 anti‐disaster	 capability	 due	 to	 insufficient	 agricultural	 infrastructure	

accounts	for	large	losses	in	grain	production	(Yang	et	al,	2006;	Jiang	et	al,	2006;	Lu	

et	al,	2009;	"Assessment	Report	on",	2011;	Jia	et	al,	2011;	Zhang	&	Wang,	2011).	In	

half	of	Chinese	provinces,	the	grain	loss	due	to	natural	disasters	is	larger	than	10%	

in	 the	past	 (Zhang	&	Wang,	 2011).	 	 There	 are	 also	 small‐scale	 and	 scattered	 food	

production	units	that	are	economically	more	vulnerable	with	respect	to	marketing	

(Ma	 &	 Cui,	 2005;	Wang,	 2005;	 He	 &	Wang,	 2012).	 The	 frequent	 extreme	 climate	

events	 and	 climate	 change	 over	 longer	 time	 periods	 would	 impose	 negative	

influences	 on	 the	 already	 burdened	 environment	 for	 agriculture,	 and	 result	 in	

negative	effects	on	agriculture	(Fu	et	al,	2002;	Deng	et	al,	2002).	In	addition,	climate	

and	environmental	changes	at	both	global	and	regional	scales	will	have	significant	

impact	on	the	food	security	for	this	country	(Lin	&	Wang,	1994;	Liu	et	al,	2010;	Zhao	

et	al,	2010,	Wu	&	Luo,	2010;	Yuan	et	al,	2011;	Pan	et	al,	2011).		

	

Firstly,	the	changes	in	average	climate	conditions,	such	as	the	warming	trend,	could	

affect	 crop	 production	 directly	 and	 indirectly.	 The	 site‐based	 observation	 records	

over	China	 in	 the	 last	20	years	show	that	no	matter	what	crop	managements	 that	
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were	practiced	or	what	cultivars	adopted,	the	increase	in	temperature	has	reduced	

the	main	staple	yields,	particularly	in	the	north	where	unfavourable	precipitation	in	

the	growing	season	exacerbates	losses	(Tao	et	al.,	2006);	also,	global	warming	will	

induce	stronger	surface	evaporation	and	plant	transpiration,	which	would	increase	

irrigation	demand	and	contribute	further	to	the	water	scarcity	in	semi‐arid	regions	

(Rosenzweig	et	al.,	2004).	Such	as	 in	 the	northeast	plain	 in	China,	 the	agricultural	

water	demands	have	been	increasing	due	to	the	soil	drying	trend	and	the	significant	

changes	 in	 soil‐moisture	 variability	 in	 the	 last	 half	 century	 (Tao	 et	 al.,	 2003a).	 In	

future,	the	agricultural	sector	might	encounter	heavy	impacts	on	the	economy	with	

the	large	competition	for	water	resource	from	other	sectors.		

	

Secondly,	the	changes	in	variability	of	extreme	events	have	produced	more	frequent	

severe	disasters	in	this	region	(Qian	&	Zhu,	2001;	Zhai	et	al.,	1999),	such	as	droughts,	

floods,	spread	and	incidence	of	pests	and	diseases,	increasing	agricultural	loss	(Liu	

&	Chen,	 2000;	 Shi,	 1997;	 Zhu	&	Yang,	 2001).	According	 to	 the	historical	 data,	 the	

annual	 average	 loss	 of	 grain	 production	 caused	 by	 agro‐meteorological	 disasters	

(including	droughts,	floods,	wind	and	hail,	low	temperature)	increased	from	2.1%	of	

total	 production	 in	 the	 1950s	 to	 about	 5%	 in	 the	 1990s	 (Hu,	 1998).	 The	 multi‐

annual	droughts,	besides	the	decline	in	material	inputs	into	agriculture,	might	be	the	

first	critical	threat	 for	Chinese	grain	production	 in	future,	particularly	 in	semi‐arid	

areas	such	as	the	northwest	part	of	Jilin	Province	(Wang	et	al.,	2003).	

	

Agricultural	production	is	not	only	the	major	resource	of	food	but	also	the	principal	

source	of	people’s	income,	so	food	security	has	very	close	connection	with	the	local	

economic	 development.	 Considering	 that	 agriculture	 in	 China	 largely	 depends	 on	

natural	 resources	and	climate	conditions	and	because	of	poorer	resilience	of	 local	

economy,	the	food	system	in	China	would	be	highly	vulnerable	to	climate	change	in	

the	next	decades.	

	

As	Krol	et	al.	(2006)	stated,	the	assessment	studies	on	the	impacts	of	climate	change	

in	 developing	 semi‐arid	 regions	 called	 for	 an	 integrated	 approach.	 Because	 of	
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climate	 change	and	 its	 consequent	 strong	 restrictions	on	utility	of	 land	and	water	

resources	as	well	as	few	short‐term	options	available	for	local	communities	in	such	

regions,	the	study	should	include	not	only	the	understanding	of	climate	impacts	on	

bio‐physical	 food	 production,	 but	 also	 analysis	 of	 agricultural	 economy,	 natural	

resources	management,	 and	 social	 impacts.	 The	 integrated	model	 system	 has	 the	

ability	 to	 analyse	 the	 associative	 consequences	 of	 possible	 adaptation	 options	 by	

coupling	the	bio‐physical	and	the	socio‐economic	 information,	as	suggested	by	the	

IPCC	report	(IPCC,	2001b).	This	would	become	a	useful	tool	to	link	climate	change	

science	with	food	security	assessment	and	sustainable	development.	

	

	

2.1.3 Current	food	security	status	of	Jilin	province	

	
Jilin	Province	(N	40°52′	~	46°18′,	E	121°38′	~	131°19′)	is	located	in	the	middle	

part	of	Northeast	China.	The	total	area	of	Jilin	is	187,400	km2,	which	is	about	2%	of	

the	total	area	of	 the	country	(Figure	2‐1).	The	 last	60	years	have	seen	remarkable	

growth	in	agricultural	production	and	food	security	improvement	of	Jilin	(He	et	al.,	

2003),	but	at	 significant	expense	 to	 the	environment	and	natural	 resources.	 It	has	

been	widely	recognised	that	this	unsustainable	development	mode	cannot	continue.	

Furthermore,	it	is	evident	that	drought,	the	biggest	agriculture	disaster	for	Jilin,	has	

become	more	severe	with	the	changing	climate.	

	

As	one	of	the	most	important	grain	production	regions	of	China,	Jilin	has	less	than	2%	

of	 the	 national	 population,	 but	 since	 the	 1980s	 produced	 more	 than	 4%	 of	 the	

national	total	grains.	Although	the	amount	of	grain	production	in	Jilin	takes	a	 little	

proportion	of	the	total	country	production,	it	produces	the	biggest	trade	grains	for	

exporting	 to	other	provinces	 in	China.	 In	 fact,	 Jilin’s	grain	production	has	a	steady	

trend	of	assimilating	higher	shares	of	the	national	grain	production	in	the	last	three	

decades.	 At	 around	 1,000	 kg	 per	 capita,	 Jilin’s	 grain	 production	 is	 the	 highest	 in	

China.		
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Maize	is	the	most	important	grain	crop	in	Jilin	and	also	the	one	that	historically	has	

had	 the	 fastest	 development,	 from	 less	 than	 1.5	 Mt	 during	 the	 1950‐1960s	 to	

increasing	10	times	and	more	to	15	Mt	after	1980,	peaking	at	19.24	Mt	in	1998,	and	

consistently	above	70%	of	Jilin’s	total	grain	production	since	the	1980s.	On	average,	

it	has	accounted	for	13.25%	of	the	national	maize	production	during	1981‐2005.	

	

The	total	grain	production	in	Jilin	Province	was	25	Mt	in	2005,	about	five	times	that	

as	 in	1949	(Figure	2‐2)	with	 the	dramatic	 increase	 in	yield	contributing	 largely	 to	

the	 increase	 rather	 than	 the	 change	 in	 sown	 area.	 In	 general,	 after	 the	 low	 level	

evolvement	 during	 the	 1950s	 to	 1960s	 with	 the	 weak	 agricultural	 infrastructure	

and	technology,	the	trend	in	average	yield	of	all	grains—including	maize,	wheat,	rice,	

coarse	 grains,	 legumes	 and	 tuber,	 have	 gone	 up	 rapidly	 in	 the	 late	 1970s,	 and	

reached	a	stable	high	level	around	5700	kg/ha	in	the	1990s	(Figure	2‐3),	because	of	

a	steady	improvement	in	investment	in	agricultural	sectors,	land	ownership	reform	

and	other	agricultural	policy	changes.		

	

The	 fast	 increase	 in	 grain	 production	 in	 Jilin	 was	 achieved	 mainly	 through	 the	

improvement	 of	 agricultural	 management,	 i.e.,	 irrigation	 and	 fertilizer	 utilization,	

without	 significant	 change	 of	 the	 grain	 sown	 area	 (Figure	 2‐6,	 and	 Figure	 2‐7).	

Starting	at	around	4.5	million	ha,	 the	 total	 sown	area	decreased	slightly	up	 to	 the	

late	1990s,	but	regained	all	the	lost	area	after	that.	However,	the	irrigated	area	was	

almost	 doubled	 from	 0.087	million	 ha	 in	 1949,	 to	 1.63	million	 ha	 in	 2006,	while	

fertilizer	use	increased	50	times	more	from	0.06	Mt	to	3.2	Mt	for	the	same	period.	

Correspondingly,	the	average	grain	yield	in	Jilin	stayed	at	a	relative	low	level	during	

the	1950s	and	1960s,	but	went	up	very	 rapidly	and	 reached	a	 stable	high	 level	of	

5,800	kg/ha	after	the	1990s.	

	

The	annual	natural	disaster	affected	ratio	is	defined	as	the	area	affected	by	disasters	

divided	 by	 the	 total	 sown	 area	 of	 grains	 and	 usually	 treated	 as	 the	 integrated	

estimation	 of	 the	 main	 agro‐meteorological	 disasters	 (including	 flood,	 drought,	
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heavy	wind	 and	 hailstorms,	 and	 low	 temperature	 damage).	 Figure	 2‐5	 shows	 the	

ratio	 for	 historical	 data,	 which	 demonstrates	 a	 significant	 influence	 of	 climate	

related	disasters	on	grain	production.	On	average,	the	natural	disaster	affected	area	

due	to	abnormal	climatic	conditions	increased	from	less	than	30%	of	the	total	sown	

area	before	1980	to	about	45%	over	the	past	25	years,	increasing	the	risk	of	grain	

production	in	Jilin	Province.	It	is	also	noted	that	intensive	drought	became	the	major	

disaster	especially	in	recent	decades	along	with	the	aridification	of	this	region.	

	

	

	

	

	

Figure	2‐1	The	county	map	of	Jilin	province,	China.	
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Figure	2‐2	The	annual	series	of	total	grain	production	of	Jilin	Province	from	1949	to	
2005.	
Sources:	 the	 crop	database	developed	 from	 the	 statistical	 yearbooks	published	by	
the	National	Bureau	of	Statistics	of	China	and	China’s	agricultural	Database	by	the	
Ministry	of	Agriculture	of	China	(http://zzys.agri.gov.cn/nongqing.asp)	
	

	
Figure	2‐3	The	annual	series	of	the	average	yield	of	grains	during	1949‐2005	in	Jilin	
Province.	
The	blue	line	is	the	original	average	yield	of	grains,	and	the	purple	one	is	the	trend.	
Sources:	 the	 average	 yield	 of	 grains	 is	 derived	 from	 the	 crop	 database	 developed	
from	 the	 statistical	 yearbooks	 published	 by	 the	 National	 Bureau	 of	 Statistics	 of	
China	 and	 China’s	 agricultural	 Database	 by	 the	 Ministry	 of	 Agriculture	 of	 China	
(http://zzys.agri.gov.cn/nongqing.asp).		 	
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The	annual	turbulence	and	time	trend	are	separated	from	the	census	of	yield	using	

the	 linear	moving	 average	method	 (Xue	et	 al.,	 2003),	 and	 then	 the	 stability	of	 the	

yield	 and	 the	 risk	 of	 variation	 can	 be	 calculated	 through	 the	 probability	 analysis	

tools.	This	 time	 trend	of	yield,	often	called	 the	 trend	yield,	 could	be	considered	as	

the	 agent	 of	 the	 food	production	 capability	 in	 a	 certain	period,	 and	 its	 variability,	

called	 the	 meteorological	 yield,	 would	 represent	 the	 yield	 mainly	 attritutable	 to	

climate‐related	factors.	Then	the	relevant	meteorological	yield	can	be	defined	as	the	

increase	 or	 reduction	 ratio	 of	 meteorological	 yield	 to	 the	 trend	 yield	 can	 be	

introduced	to	measure	the	climate	risk	of	food	production.	Ten	kinds	of	crops	have	

been	selected	 in	this	analysis,	 including	main	grains,	coarse	grains,	soybean,	 tuber	

and	cash	crops.			

	

Despite	 the	 increasing	 trend	 of	 intensity	 of	 natural	 disasters,	 the	 meteorological	

yield,	 calculated	 by	 the	method	of	 Xue	 et	 al.	 (2003),	 varied	more	 after	 1980	 than	

before	(see	Fig.	2‐3).	The	variability	of	annual	trend	yield	did	not	increase	between	

1980	 and	 2005,	 according	 to	 the	 above	 analysis.	 The	 changes	 in	 the	 relevant	

meteorological	yield	between	the	two	periods,	i.e.	1949‐1979	and	1980‐2005,	show	

that	the	probability	of	yield	reduction	seems	smaller	in	the	latter	periods,	especially	

the	risk	of	20%	and	30%	losses	that	were	reduced	in	the	latter	period	(Table	2‐2).		

	

Table	2‐2	The	occurrence	of	risk	probability	of	yield	reduction	caused	by	climate	
related	disasters.	

Reduction	ratio	of	yield	 Occurrence	probability	
1949‐1979	 1980‐2005	

>	30%	 0.08%	 0%	
>	20%	 3.24%	 0.09%	
>	10%	 13.08%	 6.11%	
>	5%	 27.31%	 22.33%	
*	 Occurrence	 probability:	 the	 probability	 of	 the	 occurrence	 of	 four	 reduction	 levels,	 i.e.	
larger	than	30%,	20%,	10%	and	5%.	Firstly,	the	reduction	events	in	history	were	obtained	
based	on	the	statistics	from	1949	to	2005.	Secondly,	the	numbers	of	these	events	under	4	
different	 levels	 were	 calculated.	 Thirdly,	 the	 probability	 of	 the	 occurrence	 of	 reduction	
events	 were	 calculated	 for	 4	 different	 levels	 separately.	 Finally,	 the	 probabilities	 of	 the	
occurrence	of	reduction	event	 in	 two	periods,	1949‐1979	and	1980‐2005	were	compared	
by	their	reduction	levels.			 	
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Figure	2‐4	The	annual	variation	of	meteorological	yield	of	grains	during	1949‐2005	
in	Jilin	Province.	

	

The	 stabilization	 of	 the	 yield	 of	 main	 grains	 in	 Jilin	 in	 recent	 decades	 could	 be	

largely	 explained	 by	 the	 increased	 financial	 and	 resource	 investment	 in	 the	

agricultural	 sector.	 The	 statistical	 data	 (Figure	 2‐6)	 show	 that	 fertilizer	 input	

increased	more	than	10	times	during	1965	to	2005,	 from	less	than	50	t/ha	to	700	

t/ha;	 a	 similar	 trend	 appears	 in	 the	 series	 of	 rural	 electricity	 consumption;	 there	

was	also	an	increase	in	agricultural	machinery	after	the	late	1970s;	and	the	effective	

irrigated	area	grew	rapidly	during	the	late	1970s	and	the	late	1990s	(Figure	2‐7)	as	

the	result	of	human	response	to	the	intensive	droughts	in	those	periods.			

	

Further	analysis	of	each	of	the	staples	shows	that	the	reduction	risk	of	maize	(Figure	

2‐8‐a),	the	major	crop	in	Jilin	Province,	behaves	differently	from	other	main	grains,	

such	as	wheat,	soybean	and	rice	(Figure	2‐8‐b,	c,	and	d),	which	might	be	caused	by	

the	 larger	 instability	 of	 input	 into	 maize	 production	 because	 of	 the	 higher	

commercialization	of	maize	than	the	other	grains	in	Jilin	Province.	It	indicates	that	

the	 turbulence	 of	 yield	 due	 to	 climate	 factors	 could	 be	 smoothed	 or	 amplified	 by	
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economic	factors	such	as	the	transfer	of	agricultural	investment	and	labour	related	

to	crop	price	variation.	

	

To	sum	up,	the	results	of	the	background	analysis	show	that	for	food	security,	 it	 is	

vital	to	address	the	instability	of	food	supply	due	to	the	climate‐related	risk	in	food	

production,	 especially	 the	 risk	 due	 to	 intensive	 droughts.	 However,	 the	 statistical	

tools	used	in	the	above	analyses	are	unable	to	identify	the	respective	contribution	of	

each	of	the	input	variables,	and	the	data	on	the	affected	area	are	not	precise	enough	

for	quantifying	the	intensity	of	disasters	in	practice.	Thus	the	turbulence	of	yield	or	

production	due	to	climate	variation	cannot	be	separated	from	the	entire	variation	in	

a	 quantitative	 manner.	 A	 modelling	 method	 might	 be	 a	 possible	 solution	 to	 the	

problems.	Also,	 a	higher	 resolution	database	needs	 to	be	 constructed,	 from	which	

the	new	indices	for	measuring	impacts	of	disasters	on	crop	yield	or	production	can	

be	derived.	

	

	

Figure	2‐5	The	 series	 of	 climate	disaster‐affected	 area	 ratio	during	1949‐2005	 in	
Jilin	Province.	
The	affected	area,	defined	as	the	area	that	experiences	more	than	10%	reduction	of	
yield	due	to	natural	disasters,	is	derived	from	China’s	agriculture	Database	where	
the	records	from	1966‐1968	are	absent. 
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Figure	2‐6	The	 series	of	 fertilizer	 and	 rural	 electricity	 consumption	during	1965‐
1998	in	Jilin	province.	
The	blue	line	is	fertilizer	consumption	in	unit	of	sown	area	of	crop,	and	the	purple	
one	is	the	rural	electricity	consumption	in	unit	of	sown	area	of	crop.	
Source:	China’s	Natural	Resource	for	Scientific	Research	Database.	
	

	

Figure	2‐7	The	series	of	agricultural	machinery	total	power	and	effective	irrigated	
area	during	1965‐1998	in	Jilin	province.	
The	purple	 line	represents	 the	agricultural	machinery	 total	power	 in	unit	of	sown	
area	of	crop,	and	the	blue	one	is	the	effective	irrigated	area.	
Source:	China’s	Natural	Resource	for	Scientific	Research	Database.	
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Figure	2‐8	The	probability	density	function	of	the	yield’s	increase	or	reduction	ratio	
for	maize	(a),	wheat	(b),	soybean	(c),	and	rice	(d),	during	 two	periods,	1949‐1979	
and	1980‐2005.	
The	blue	lines	represent	the	functions	in	the	first	period,	and	the	purple	lines	are	
those	in	the	second	period.		

	

In	 conducting	 climate	 change	 impact	 assessments	 and	 sustainable	 development	

evaluation	in	China,	two	essential	questions	need	to	be	addressed:	(1)	the	impacts	of	

climate	change	scenarios	on	various	aspects	of	food	security	in	the	selected	region;	

and	(2)	the	effects	of	the	various	adaptation	options	available	to	reduce	the	adverse	

consequences	of	climate	change	and	 to	 improve	sustainability.	Finding	answers	 to	

these	two	questions	can	be	approached	through	integrated	modelling.		

	

2.2 Methodology	
 

In	 this	 section,	 I	 provide	 my	 integrated	 framework	 for	 the	 assessment	 of	 food	

security,	and	briefly	introduce	two	built‐in	specific	models	in	that	framework.		
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2.2.1 Overall	model	structure	
	

The	aim	was	 to	 integrate	climatic,	biophysical,	environmental,	and	socio‐economic	

information	 for	 food	 security	 assessment	 under	 the	 concept	 frame	 as	 shown	 in	

Figure	2.9.	

	

The	integrated	model	system	included	

 a	bio‐physical	crop	model	to	capture	the	impact	of	climate	change	

 a	macro‐scale	partial	food	economic	model	

	

The	physical	climate	change	scenarios	produced	by	SimCLIM	(Warrick,	2005),	were	

incorporated	 into	 the	 integrated	 system	 as	 the	 climatic	 driver.	 The	 effects	 of	 the	

socio‐economic	 changes	 on	 food	 are	 described	 in	 three	 inter‐connected	

components—	food	availability,	access	and	utilization.	The	adaptation	options	will	

be	proposed	and	assessed	for	both	regional	and	local	government	and	farmers.	The	

links	of	 drivers,	 food	 security,	 and	 adaptation	 options	 across	 spatial	 scales	within	

the	integrated	system	are	shown	in	Figure	2‐9.		
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Figure	2‐9	The	integrated	framework	developed	in	the	thesis.	

	

2.2.2 Modelling	the	bio‐physical	process	of	crop	production	

	
The	 bio‐physical	 crop	 production	model	was	developed	based	on	 the	well‐known	

DSSAT	model	(Jones	et	al.,	2003;	Tsuji,	1998;	Tsuji	et	al.,	1994)	which	can	simulate	

crop	 growth	 based	 on	 bio‐physical	 processes,	 development	 and	 yield	 of	 a	 crop	

growing	 on	 a	 uniform	 area	 of	 land	 under	 simulated	management,	 changes	 in	 soil	

water,	carbon,	and	nitrogen	over	time.		

	

The	 DSSAT‐CSM	 (the	 Decision	 Support	 System	 for	 Agrotechnology	 Transfer‐	

Cropping	 System	Model)	 is	 composed	 of	 7	modules.	 The	 core	 is	 the	 bio‐physical	

dynamic	modules	of	 crop	growth,	CROPGRO	crop	 template	module	and	 individual	

plant	 modules.	 The	 CROPGRO	 approach	 has	 a	 common	 source	 code	 for	 different	

species,	while	 each	 of	 the	 individual	 plant	modules	 is	 developed	 for	 specific	 crop	

varieties,	 such	 as	 the	 CERES‐Maize,	 and	 Wheat	 and	 Barley	 model.	 The	 weather	
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module	 can	 read	 or	 generate	 daily	 weather	 data.	 The	 information	 on	 soil	 water,	

temperature,	 carbon	 and	 nitrogen,	 and	 dynamics	 is	 integrated	 in	 a	 single	 soil	

module,	and	the	exchange	processes	of	energy,	water	and	nutrition	within	the	soil‐

plant‐atmosphere	 system	are	 simulated	 in	 SPAM	 (Soil‐Plant‐Atmosphere	Module).	

Field	 operations,	 like	 planting	 and	 harvesting,	 inorganic	 and	 organic	 fertilizer	

application,	 and	 irrigation,	 are	 determined	 in	 a	management	module.	 The	 system	

also	includes	a	pest	module	to	process	pest	and	disease	damage	on	crop	growing	in	

a	semi‐empirical	way.	In	the	latest	version	of	DSSAT,	the	crop	growing	process	and	

environmental	 control	 process	 are	 connected	 through	 a	 single	 interface,	 the	 land	

unit	module,	integrating	the	outputs	from	the	rest	of	the	modules,	such	as	weather	

and	 soil	 conditions,	 Leaf	 Area	 Index	 (LAI)	 and	 phenological	 information,	 in	 a	

uniform	area.		

	

The	 improvement	 of	 DSSAT	 required	 for	 this	 study,	 involved	 correcting	 the	

parameters	 of	 bio‐physical	 process	 and	 soil	 properties	 for	 water‐stress	 areas,	

improving	model	 to	apply	 in	 spatial	 simulation,	modification	on	 irrigation	 scheme	

and	sowing	scheme.		

	

The	DSSAT	model	was	selected	for	five	reasons:	1)	it	provides	a	detailed	process	of	

crop	growth	based	on	bio‐physical	mechanism,	2)	the	model	runs	at	grid	level,	so	it	

is	possible	to	do	high‐resolution	spatial	analysis,	3)	the	cropping	managements,	i.e.	

irrigation,	 fertilization,	 	 and	 plant	 schedule,	 are	modelled	 very	 well,	 which	 is	 the	

most	important	characteristic	required	in	assessment	of	adaptation	quantitively,	4)	

the	model	 has	 been	 verified	 widely	 for	 many	 locations	 in	 China	 and	many	 other	

countries	in	the	past,	and	5)	it	also	supports	to	simulate	a	group	of	plants	(i.e.	rice,	

wheat,	 beans,	 sugarcane,	 potato	 and	 sunflower)	 except	 maize,	 so	 that	 the	 study	

framework	 is	 probably	 extended	 to	 other	 plants,	 which	 is	 necessary	 to	 do	 full	

assessment	of	food	security.	

	

Details	of	the	bio‐physical	model	are	in	Chapter	3.		
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2.2.3 Modelling	the	food	economic	system	
	

The	development	of	a	macro‐scale	partial	food	economic	module	was	based	on	the	

partial	 equilibrium	 model,	 CAPSiM	 (Huang	 &	 Li,	 2003).	 CAPSiM	 is	 a	 typical	

agricultural	 economy	 model	 for	 long‐term	 economic	 policy	 planning	 and	

agricultural	 commodity	 projection.	 It	 has	 a	 clear	 conceptual	 structure	 including	

specific	 components	 for	 presenting	 the	 domestic	 production,	 demand,	 trade	 and	

market	clearing.	All	cross‐price	impacts	are	considered	in	both	demand	and	supply	

functions.	 The	 structural	 change	 in	 Chinese	 economy	 is	 projected	 by	 explicitly	

modelling	 the	 rural	 and	 urban	 demand	 in	 separated	 equations.	 The	 model	

development	 was	 initiated	 in	 1989	 and	 has	 been	 continually	 updated	 with	 new	

demand	and	supply	elasticities	estimated	by	CCAP’s	primary	survey	and	secondary	

data	resources.		

	

The	 basic	 frame	 of	 the	 macro‐scale	 food	 security	 module	 is	 built	 on	 a	 partial	

equilibrium	 economic	 model,	 in	 which	 crop	 production	 was	 estimated	 as	 the	

product	 of	 crop	 yield	 and	 sown	 area	 related	 to	 producers’	 prices,	 investment	 and	

environmental	 constraints.	Grain	demand	was	 calculated	as	 the	 sum	of	 food,	 feed,	

seed	 and	 other	 demand	 mainly	 depending	 on	 consumers’	 prices,	 population	 and	

income	 level,	and	 the	supply	and	demand	equations	will	be	 finally	 linked	by	price	

variables.	 Some	 equations	 would	 be	 slightly	 modified	 to	 stress	 the	 impacts	 of	

climate	change	and	variability	on	food	economy.		

	

The	driving	 force	and	detailed	 function	 form	are	shown	 in	Figure	2‐10	at	national	

level.	The	national	level,	the	climate	change	and	extreme	events,	agricultural	policy,	

income	 and	 population	 growth	will	 play	 a	 role	 as	 the	 exogenous	 shocks	 that	will	

drive	the	changes	in	food	supply‐demand	balance.	The	sown	area	is	determined	by	

the	 input	 and	 output	 prices	 and	 shocks	 due	 to	 changes	 in	 land	 use.	 The	 yield	 is	

specified	economically	as	functions	of	technology	stock,	the	effective	irrigated	area,	

and	shocks	due	to	climate	change	simulated	by	the	bio‐physical	model.	The	climate	

change	 effect	would	 be	directly	 incorporated	 into	 food	production	 at	 the	national	
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level.	 Also,	 the	 impacts	 of	 extreme	 climate	 on	 yield	 will	 be	 identified	 by	 the	

statistical	 disaster	 in	 the	 historical	 census.	 The	 output	 of	 the	 national	 level	 food	

security	model	provides	 the	volume	of	supply	and	demand	of	grains	and	 livestock	

products	and	the	national	equilibrium	prices	of	main	grains	on	a	yearly	basis.	

	
Details	of	the	food	economic	model	are	in	Chapter	6.	

	

	
	
Figure	2‐10	Structure	of	the	economic	model	assembly	in	the	thesis.	
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3 Chapter	3	Improved	DSSAT	Model:	Model	
and	Modification1	

 

3.1 Introduction	
	

Maize	production	is	the	mainstay	of	agriculture	in	Jilin	Province	as	well	as	for	China	

nationally.	Therefore	the	producing	capacity	of	maize	concerns	the	food	sufficiency	

as	 well	 as	 the	 rural	 income	 in	 this	 region.	 This	 section	 investigates	 the	 climate	

change	impact	on	maize	production	in	the	coming	decades.	The	spatial	distribution	

of	 maize	 yield	 and	 its	 temporal	 variation	 under	 the	 baseline	 climate	 and	 future	

change	 scenarios	 are	 simulated	 by	 a	 physically	 based	 crop	model.	 A	 bio‐physical	

model	 is	 selected	 because	 the	 objective	 of	 this	 study	 was	 to	 identify	 adaptation	

options	by	assessing	impact	due	to	climate	change.	Hence,	it	was	essential	that	the	

change	signals	in	the	maize	growing	period	(e.g.	planting	date,	maturity	period,	etc.)	

could	be	detected	and	 the	maize	 response	 to	 cropping	practices	 (such	as	planting	

density,	irrigation	and	fertilization)	could	be	quantitatively	examined.	

	

The	 CERES	 Maize	 was	 selected	 in	 this	 study	 after	 reviewing	 a	 number	 of	 crop	

models.	The	CERES	Maize	site‐based	crop	model	built	 in	DSSAT	(Decision	Support	

System	 for	 Agrotechnology	 Transfer,	 Hoogenboom	 et	 al.,	 2004)	 is	 operated	 on	 a	

daily	time	step	and	takes	into	account	the	effects	of	cultivar,	cropping	management,	

weather,	 soil	 moisture	 and	 nutrition	 on	 maize	 in	 its	 simulation	 (Jones	 &	 Kiniry,	

1986).	 In	 addition,	 the	 cultivar	 is	 modelled	 with	 explicit	 genotype	 coefficients.		

Therefore,	the	CERES	Maize	has	the	ability	to	provide	information	on	the	changes	in	

essential	 signals	 (e.g.	 planting	 date	 and	 maturity	 period)	 under	 different	 climate	

change	scenarios	and	the	quantitative	crop	response	to	cropping	practices	(such	as	

                                                            
1	Chapter	3	has	been	published	as	a	part	of	a	Journal	paper	(Wang,	M.,	Li,	Y.,	Ye,	W.,	Bornman,	J.	F.,	
Yan,	X.	(2011)	Effect	of	climate	change	on	maize	production,	and	potential	adaptation	measures:	a	
case	study	in	Jilin	Province,	China.	Climate	Research,	46:	223‐242). 
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planting	 density,	 irrigation	 and	 fertilization),	 which	 is	 required	 for	 adaptation	

option	identification.		

	

In	addition,	the	model	has	been	widely	validated	across	different	climates	and	soils	

for	 different	 varieties	 (Wu	 et	 al.,	 1989;	 Maytin	 et	 al.,	 1995;	 O’Neal	 et	 al.,	 2002;	

Gungula	et	al.,	2003;	Soler	et	al.,	2007;	Braga	et	al.,	2008).	 In	 Jilin,	 Jin	et	al.	 (1996;	

2002)	used	it	in	the	projection	of	maize	yields	at	specific	locations	based	on	a	double	

CO2	 climate	 scenario	 derived	 from	 three	 GCMs,	 and	 suggested	 several	 adaptation	

options.	 It	 was	 also	 employed	 by	 Xiong	 et	 al.	 (2005;	 2007)	 to	 predict	 the	 future	

maize	 production	 in	 China	 under	 2	 emission	 scenarios	 with	 the	 daily	 outputs	 of	

PRECIS	 regional	 climate	 model	 at	 50×50	 km	 resolution.	 In	 this	 chapter,	 the	

description	 is	 given	 of	 the	 CERES	Maize	model	 that	was	 employed	 for	 simulating	

maize	 growth,	 development	 and	 yield	 by	 using	 improved	 weather	 generator	 and	

climate	scenarios.	

	

3.2 DSSAT	model	

 

The	 DSSAT	 (Decision	 Support	 System	 for	 Agro‐technology	 Transfer)	 model	 was	

originally	 developed	 for	 assessing	 the	 impacts	 of	 agro‐technology	 applications	 on	

agricultural	 systems	 under	 different	 environmental	 conditions	 by	 integrating	

information	 of	 crop,	 soil,	 weather,	 and	 cultivating	 applications,	 and	 now	 has	

collected	16	kinds	of	 crop	models	 simulating	 crop	growth,	development	and	yield	

and	diverse	models	describing	water	and	chemical	transfer	in	the	soil‐atmosphere‐

plant	 system	 with	 special	 consideration	 of	 diverse	 cultivating	 methods	 and	 the	

applications	of	irrigation	and	fertilization.	The	model	is	coded	by	Fortran90.		
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3.2.1 Model	structure	

	

The	 components	 of	 the	 DSSAT	 model	 as	 shown	 in	 Figure	 3‐1	 chiefly	 include	 5	

modules:	 a	 weather	 module	 for	 reading	 or	 generating	 daily	 weather	 variables	

driving	the	crop	growth	module;	a	soil	module,	which	calculates	and	integrates	the	

state	 information	 of	water	 and	 chemicals	 (mainly	 carbon	 and	 nitrogen)	 in	 soil;	 a	

crop	 module,	 which	 is	 the	 key	 module	 of	 DSSAT	 for	 simulating	 crop	 growth	 by	

computing	 the	 photosynthesis	 rate	 on	 leaf	 or	 canopy	 scale	 (CERES	 or	 CROPGRO	

modules);	 a	 soil‐plant‐atmosphere	 module	 (SPAM),	 which	 processes	 the	 water	

exchange	 among	 soil,	 plant	 and	 atmosphere,	 and	 computes	 the	 impacts	 of	 soil	

evaporation	and	plant	evapotranspiration	on	crop	development;	and	a	management	

module,	controlling	the	cultivating	operations	conveyed	to	crop	models,	e.g.	planting	

schedules,	fertilization,	and	irrigation.		

	

Figure	3‐1	The	structure	of	the	DSSAT	model	(Source:	
http://www.stoorvogel.info/tradeoffs/course/course_4.html).	
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3.2.2 CERES‐Maize	model	

	

The	 CERES‐Maize	model	 in	DSSAT	 simulates	 plant	 growth	 by	 phenological	 stages	

(including	 germination,	 emergence,	 juvenile,	 floral	 induction,	 silking,	 grain	 filling,	

and	maturity),	which	are	determined	by	thermal	periods	(in	growing	degree	days,	

i.e.	 GDD).	 The	 daily	 dry	matter	 production	 is	 calculated	 based	 on	 the	 intercepted	

photosynthetically	 active	 radiation	 (400‐700	 nm),	 which	 is	 a	 function	 of	 the	 leaf	

area	 index	 (LAI),	 and	 is	 also	 modified	 according	 to	 the	 water,	 nitrogen,	 and	

temperature	 stress.	 The	 final	 grain	 yield	 depends	 on	 the	 plant	 population,	 kernel	

number	per	plant,	and	kernel	weight.	The	GDDs	in	the	key	stages,	kernel	numbers	

and	 potential	 kernel	 growth	 rate	 are	 defined	 by	 the	 genotype	 parameters	 of	 a	

specific	cultivar	calibrated	by	the	local	observations.		

	

3.2.3 Input	requirement	and	output	

	

3.2.3.1 Input	requirement	

The	minimum	 input	 data	 set	 for	 the	 operation	 of	 the	 DSSAT	model	 discussed	 by	

Jones	 et	 al.	 (2003),	 requires	 5	 aspects	 of	 the	 contents	 about	 the	 geographical	

information,	 weather	 data,	 properties	 of	 soil,	 cultivar	 types,	 initial	 conditions	 of	

environment	and	management	of	planting	 (e.g.	 the	planting	schedule	and	method,		

applications	 of	 irrigation	 and	 fertilizer).	 The	 details	 about	 required	 inputs	 are	

shown	in	Table	3‐1.	

 

3.2.3.2 Output	

The	 output	 variables	 include	 the	 daily	 and	 seasonal	 simulations	 of	 weather,	 soil	

water,	 carbon	 and	 nitrogen	 content	 in	 soil,	 plant	 biomass	 and	 grain	 yield,	 and	 N	

uptake	by	plants.	 	
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Table	3‐1	The	input	data	sets	for	the	DSSAT	model.	

	 Input	variables		
Initial	conditions	 Initials	of	soil	water,	nitrate	and	ammonium	

Cultivar	 Genotype	coefficients	

Geographic	
information	

The	latitude,	longitude	and	elevation	of	the	site;	
The	major	obstruction	to	the	sun;	
	

Weather	 Daily	solar	radiation,	maximum	and	minimum	air	
temperature,	precipitation	
	

Soil	 Average	annual	soil	temperature	and	its	amplitude;	
Soil	surface	albedo,	the	coefficients	associated	with	
evaporation,	hydraulic	conductivity,	and	drainage;	
Soil	texture,	water	release	characteristics,	organic	matter,	soil	
pH	and	drainage	class	by	layer;	
	

Management	 Planting	and	harvest	date,	planting	depth	and	method,	row	
spacing,	plant	population;	
Irrigation	(date,	method,	amount	and	depth);		
Inorganic	fertilizer	type;	date,	method	and	amount	of	
application;	
Residue	(organic	fertilizer)	and	its	application;	
Tillage;	
Environmental	adjustments	

	
 

3.3 Data	and	construction	of	the	input	dataset	

 

3.3.1 Geographical	information	

	

The	latitude	of	the	site	is	the	main	geographic	parameter	required	in	the	model	 in	

order	 to	 calculate	 and	 adjust	 the	 variables	 related	 to	 weather.	 Some	 parameters	

such	as	slope	and	coefficient	of	the	obstruction	to	the	sun	(e.g.	nearby	mountains)	
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can	 also	 affect	 the	 simulation	 at	 a	 single	 field,	 but	 in	 this	 study	 they	 were	 not	

considered	because	it	focused	on	the	overall	picture	of	crop	production	in	a	region	

and	its	changes	over	time,	not	on	a	single	site	simulation.	

	

3.3.2 Weather	

	

The	DSSAT	requires	daily	weather	to	drive	the	crop	growth	process,	however,	if	the	

daily	 data	 is	 not	 available,	 it	 also	 allows	 using	 built‐in	 weather	 generation	 to	

produce	 daily	weather,	 given	monthly	 data	 (i.e.	 the	monthly	 total	 solar	 radiation,	

maximum	 and	 minimum	 air	 temperature,	 and	 precipitation).	 In	 this	 study,	 only	

climate	 data	 is	 available	 for	 both	 baseline	 and	 future	 period.	 In	 this	 section,	 the	

method	how	to	produce	the	baseline	and	future	climate	variables	for	DSSAT	input	is	

introduced.		

	

The	 baseline	 climate	 data	 of	 1961	 to	 1990	were	 obtained	 from	 the	 CRU	 (Climate	

Research	Unit,	University	of	East	Anglia)	and	the	global	climatology	dataset	(New	et	

al.,	2002)	through	linear	interpolation	of	the	spatial	resolution	from	1010	minutes	

to	 55	 minutes	 grids.	 The	 solar	 radiation	 was	 estimated	 from	 the	 CRU	 sunlight	

hours	following	the	method	of	Tong	et	al.	(2005),	and	the	max	and	min	temperature	

were	calculated	from	the	mean	temperature	and	its	diurnal	range	(New	et	al.,	2002).		

	

Generally,	the	solar	radiation	cannot	be	obtained	directly	from	the	climatic	database,	

so	 it	 needs	 to	 be	 calculated	 from	 the	 daily	 sunshine	 duration	 by	 the	 following	

equations:	

∙ ⁄ 		 (Eq.	3‐1)	

where	R	 is	 the	 daily	 total	 solar	 radiation,	Qn	 ( / )	 is	 the	maximum	daily	 solar	

radiation,	 n	 and	 N	 are	 daily	 sunshine	 duration	 and	 daily	 duration	 of	 possible	
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sunshine,	 respectively,	 and	 the	 parameters,	 	and	 ,	 are	 related	 to	 atmosphere	

quality.	The	empirical	value	of	the	sum	of	 	and	 	is	0.75.	The	maximum	daily	solar	

radiation,	Qn	,	is	computed	based	on		

		 (Eq.	3‐2)	

where	 24 60 60	 ,	 	is	the	solar	constant	(1367	 / ),	 	is	the	sun‐earth	

distance,	and	 	is	the	sunset	hour	angle,	 cos tan tan ,	where 	is	the	

latitude	and	 	is	the	declination	of	the	sun.	

	

The	 climate	 change	 scenarios	 are	 obtained	 from	 the	 projections	 of	 20	 General	

Circulation	 Models	 (GCMs)	 and	 6	 SRES	 emission	 scenarios	 by	 using	 the	 pattern	

scaling	method.	The	scenarios	of	future	monthly	temperature	and	precipitation	are	

generated	as	follows: 

	∆ 	 ∙ 	∆ 	 	 (Eq.	3‐3)	

	 ∙ 	∆ / ∙ ∆ 	 (Eq.	3‐4)	

where	 Temp0	 (or	 Temp1)	 and	 Prec0	 (or	 Prec1)	 are	 the	 baseline	 (or	 future)	

temperature	 and	 precipitation;	 ∆Temp	 (or	 ∆Prec),	 the	 change	 pattern,	 is	 the	

localized	 change	 in	 temperature	 (or	 precipitation)	 to	 per	 unit	 global	 warming,	

generated	through	standardizing	the	GCM	simulation	outputs	to	the	corresponding	

global	mean	 temperature	 changes;	∆GMT,	 the	 scalar,	 is	 the	 change	of	 global	mean	

temperature	increase	in	a	future	time	slice.		

	

The	 20	 GCM	 change	 patterns	 in	 the	 IPCC	 AR4	 Climate	 Model	 Inter‐comparison	

Project	 (CMIP)	 (Covey	 et	 al.,	 2003)	 and	 6	 SRES	 scenarios	 (Special	 Report	 on	

Emissions	Scenarios,	IPCC,	2000),	i.e.	A1B,	A1FI,	A1T,	A2,	B1,	and	B2	were	used	for	

the	ensemble,	with	a	total	ensemble	size	of	120	scenarios.	The	GCM	change	patterns	

were	interpolated	from	the	original	resolution	of	2.52.5	degrees	to	55	minutes	in	

order	to	simulate	the	crop	change	with	high	resolution,	and	years	2020,	2050	and	
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2070	were	selected	to	reveal	the	impacts	of	climate	change	on	maize	production	at	

different	future	times.	The	SRES	dataset	offers	different	global	warming	projections	

(Figure	3‐2)	 corresponding	 to	different	GHG	emission	 scenarios	and	 the	 low,	mid,	

and	 high	 climate	 sensitivities	 (Wigley,	 2003).	 Only	 the	 SRES	 global	 temperature	

projection	with	middle	 climate	 sensitivity	was	 used	 to	 generate	 the	 spatial	mean	

changes.	 The	 middle	 climate	 sensitivity	 is	 the	 median	 value	 of	 the	 future	 global	

warming	range	predicted	by	the	GCMs	(refer	to	IPCC	2010	for	more	detail).	The	area	

average	 changes	 of	 temperature	 and	 precipitation	 of	 6	 SRES	 emission	 scenarios	

from	baseline	 climate	 for	 Jilin	 is	 shown	 in	Table	 3‐2.	Detail	 of	 the	 pattern	 scaling	

method	can	be	found	in	Mitchell	et	al.	(1999),	Mitchell	(2003),	Wigley	(2003)	and	Li	

et	al.	(2009).	

	

Table	3‐2	The	area	average	changes	of	temperature	(°C)	and	precipitation	(%	of	
baseline	precipitation)	of	the	6	SRES	emission	scenarios	from	the	baseline	climate	
for	Jilin	province.	

Scenario	 A1B	 A1FI A1T A2 B1 B2	

	 Temp.	 Temp.	 Temp.	 Temp.	 Temp.	 Temp.	

2020	 0.58		 0.62		 0.79		 0.57		 0.63		 0.74		

2050	 1.82		 2.03		 1.97		 1.59		 1.41		 1.64		

2070	 2.67		 3.46		 2.59		 2.63		 1.94		 2.23		

	 Prec.	 Prec.	 Prec.	 Prec.	 Prec.	 Prec.	

2020	 2.71	 2.79	 3.1	 2.98	 2.98	 3.06	

2050	 3.84	 4.54	 5.07	 5.3	 5.42	 5.6	

2070	 6.13	 6.85	 7.2	 7.52	 7.61	 7.76	
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Figure	3‐2	Global	 average	 temperature	 under	 IPCC	 illustrative	 6	 SRES	 (medium)	
scenarios.	

	

3.3.3 Soil	

The	input	soil	data	for	the	DSSAT	involves	6	coefficients	describing	the	properties	of	

the	whole	 soil	 profile,	 and	14	 coefficients	 of	 soil	 properties	 at	 each	 layer	 (see	 the	

Table	3‐3).		

	

The	spatial	soil	parameters	are	derived	from	two	datasets:	1)	the	ISRIC‐WISE	(WISE,	

Batjes,	 2006)	 database	 (55	 arc‐minutes)	 which	 provides	 a	 lot	 of	 essential	

parameters	required	by	DSSAT	within	the	100	cm	deep	five‐layer	soil	profiles	(see	

Table	3‐3);	and	2)	Soil	and	terrain	database	for	China	which	is	based	on	the	Soil	Map	

of	 China	 at	 a	 scale	 1:1	 million	 (Shi	 et	 al.,	 2004;	 Zhang	 &	 Zhao,	 2008).	 Some	

parameters	that	these	datasets	do	not	offer	directly	were	produced	using	the	rules	

and	methods	described	in	Section	4.1.1.1.		
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3.3.4 Cropping	management	

The	major	cropping	practice	considered	in	DSSAT	includes	planting	density,	sowing	

date,	 fertilizer	 application,	 and	 irrigation	application.	The	applications	of	 fertilizer	

and	 irrigation	 are	 needed	 to	 setup	 the	 date	 and	 amount	 to	 be	 applied.	 Details	 of	

cropping	 management	 in	 Jilin	 and	 China	 are	 introduced	 in	 Chapters	 4	 and	 5,	

respectively.		

Table	3‐3	The	main	soil	parameters	required.	

Code	 Property	 Unit	 WISE	

SALB	 Soil	surface	albedo	 	 	
U	 First	stage	evaporation	coefficient	 mm/day	 	
SWCON	 Whole	profile	drainage	rate	coefficient	 	 	
CN	 Runoff	curve	number		 	 	
DMOD	 Factor	to	adjust	the	mineralization	rate	for	atypical	soil	 	 	

SLPF	
The	relative	reduction	of	growth	due	to	poor	soil	
fertility		

	 	

DS	(I)	 Depth	of	the	layer	I	 cm	 *	
LL	(I)	 Lower	limit	volumetric	moisture	content	of	the	layer	I	 cm3/cm3	 	
DUL	(I)	 Drained	upper	limit	moisture	content	of	the	layer	I	 cm3/cm3	 	
SAT	(I)	 Field	saturated	moisture	content	of	the	layer	I	 cm3/cm3	 	
WR	(I)	 Root	hospitality	factor		 	 	
SWCN	(I)	 Saturated	hydraulic	conductivity	of	the	layer	I	 cm/h	 	
BD	(I)	 Bulk	density	of	the	layer	I	 g/cm3	 *	
OC	(I)	 Organic	carbon	content	of	the	layer	I	 %	 *	
TOTN	(I)		 Total	nitrogen	content	of	the	layer	I	 %	 *	
CLAY	(I)	#	 Percentage	of	clay	in	the	layer	I	 %	 *	
SILT	(I)	#	 Percentage	of	silt	in	the	layer	I	 %	 *	
STONES	(I)	#	 Coarse	fraction	in	the	layer	I	 %	 *	
PH	(I)	 pH	in	water	of	the	layer	I	 	 *	
CEC	(I)	 Cation	exchange	capacity	of	the	layer	I	 cmol/kg	 *	

#	It	accepts	the	USDA	(United	States	Department	of	Agriculture)	definition	of	particle	
size	 in	 the	 DSSAT	model,	 i.e.	 sand	 (0.05~2	mm),	 silt	 (0.002~0.05	mm),	 and	 clay	
(0.001~0.002	 mm).	 The	 particles	 with	 the	 size	 larger	 than	 2	 mm	 are	 known	 as	
stones	(or	gravels).		
Asterisk	(*)	in	the	last	column	indicates	that	the	parameter	can	be	obtained	directly	
from	the	database.		 	
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3.3.5 Genotype	parameter	

	

The	 CERES	 Maize	 model	 in	 DSSAT	 requires	 6	 coefficients	 to	 describe	 a	 crop	

genotype	 that	 are	 essential	 factors	 for	 crop	 growth	 and	 yield	 formation.	 Four	 of	

them	 (P1,	 P2,	 P5,	 and	 PHINT)	 control	 the	 timing	 of	 phenological	 stages,	 and	 the	

other	two	(G2	and	G3)	characterize	the	potential	yield	under	optimal	conditions.	

	

P1	is	the	thermal	duration	(the	degree	days	above	the	base	temperature	of	8°C)	in	

the	 juvenile	 phase	 and	 characterizes	 growth	when	 the	 plant	 does	 not	 respond	 to	

changes	in	photoperiod.	The	value	of	P1	for	the	late	maturing	varieties	is	larger	than	

that	for	the	early	varieties.		

	

P2	 describes	 the	 photoperiod	 sensitivity	 associated	 with	 delayed	 growth	 under	

unfavourable	long,	daylight	condition.	It	is	expressed	by	the	delayed	ratio	of	growth	

due	to	a	one	hour	increase	over	the	threshold	photoperiod	(supposed	to	be	12.5	h).	

	

P5	 is	 defined	 as	 the	 cumulative	 period	 when	 the	 environmental	 temperature	 is	

above	 8°C	 during	 the	 mature	 stage,	 indicating	 the	 duration	 of	 the	 reproductive	

phase.	The	coefficient	should	probably	be	set	as	the	higher	value	for	late‐maturing	

cultivars	than	for	the	early‐maturing	types.	

	

G2	is	the	potential	kernel	number	per	plant	under	the	optimal	condition.		

	

G3,	 the	 kernel	 growth	 rate	 (mg/day),	 shows	 the	 filling	 rate	 under	 the	 optimal	

condition.	For	most	of	the	Chinese	cultivars,	the	range	of	G3	is	from	8	to	11.		



68 
 

	

In	 addition,	 the	phyllochron	 interval	 (PHINT)	defines	 the	 interval	 in	 thermal	 time	

between	successive	leaf	tip	appearances.		

	

Details	about	how	to	calibrate	genotype	parameters	of	current	maize	cultivars	will	

be	discussed	in	the	next	Chapter	(see	Section	4.2).		

	

3.4 Modification	

	

3.4.1 Weather	generation	

	

For	 the	 purpose	 of	 spatial	 impact	 analysis,	 the	 CERES	 Maize	 model	 was	 further	

developed	 with	 spatial	 simulation	 capability.	 The	 stochastic	 weather	 generator	 –

SIMMETEO	embedded	 in	DSSAT,	was	used	 to	produce	daily	weather	 for	each	grid	

cell	from	the	monthly	climate	data,	including	maximum	and	minimum	temperature,	

monthly	precipitation,	monthly	numbers	of	wet	days	and	solar	radiation.		

	

The	 stochastic	 weather	 series	 generated	 in	 SIMMETEO	 is	 associated	 with	 the	

random	seed	used	in	each	run.	The	simulations	with	the	same	monthly	climate	data	

but	different	random	seeds	produce	very	different	yields.	Experiments	using	1000	

random	 seeds	 indicated	 that	 the	 mean	 of	 the	 cumulative	 simulated	 yield	 will	

become	less	variable	as	more	runs	were	being	taken	into	the	sample.	Four	tests	with	

different	groups	of	random	seeds	(the	first	120	results	of	the	1000	runs	are	given	in	

Figure	 3‐3)	 suggest	 that	 the	mean	 value	 of	 the	 cumulative	 simulations	 converged	
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after	 100	 random	 seed	 runs.	 Therefore,	 the	 average	 of	 100	 cumulative	 runs	with	

different	random	seeds	was	used	in	this	study.	

	

Figure	 3‐3	 The	 cumulative	 mean	 simulated	 yield	 of	 1000	 runs	 at	 a	 site	 with	 4	
groups	of	1000	random	seeds.	Only	the	first	120	runs	are	shown.	

	

3.4.2 Irrigation	scheme	

	

The	irrigation	practice	was	also	re‐organized,	 in	order	to	examine	the	effect	of	the	

total	 irrigation	 and	 application	 frequency	 on	 maize	 growth	 and	 production.	

Irrigation	in	DSSAT	was	originally	applied	in	two	ways:	1)	automatic	irrigation	that	

provides	 optimal	 water	 covering	 the	 estimated	 soil	 water	 deficiency,	 and	 2)	

scheduled	irrigation	based	on	presetting	of	application	date	and	amount.	In	practice,	

the	 automatic	 irrigation	method	may	 require	 an	 irrigation	 amount	 exceeding	 the	

official	quota,	the	maximum	irrigation	amount	allowed	for	maize	production	by	the	

local	 government	 (Provincial	 water	 quota,	 2010).	 In	 the	meantime	 the	 scheduled	

method	is	also	not	applicable	for	the	spatial	simulation,	because	it	does	not	take	into	

account	the	actual	climate	and	soil	conditions.		
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Therefore,	 a	 2‐run	 process	was	 designed	 in	 this	 study	 for	 each	 grid	 to	 assign	 the	

irrigation	 date	 and	 apply	 water	 amount	 properly.	 In	 the	 first	 run,	 the	 automatic	

irrigation	feature	 in	DSSAT	was	employed	to	estimate	the	total	water	requirement	

(Q1	 in	 mm)	 and	 irrigating	 frequency	 (F1)	 for	 four	 growth	 stages	 (i.e.	 before	

emergence,	juvenile,	tasseling	and	flowering,	filling),	and	the	ratio	of	water	demand	

(Ratio,	%)	for	each	stage.	In	the	second	run,	the	given	irrigation	quota	(Qf	 in	mm),	

which	was	likely	less	than	Q1,	was	assigned	into	four	stages	according	to	P1s,	then	

the	 irrigation	amount	 in	each	phase	(Irr2‐phase	 in	mm)	was	obtained.	 In	order	 to	

irrigate	evenly	in	each	phase,	the	maximum	amount	for	each	irrigating	in	a	certain	

phase	(Irr2_max	in	mm)	was	calculated	by	the	F1	and	the	Irr2‐phase.	

/ 		 	 (Eq.	3‐5)	

∙ 	 	 (Eq.	3‐6)	

_ / 	 (Eq.	3‐7)	

The	real	irrigation	is	applied	when	the	available	water	in	the	top	soil	is	less	than	60%	

of	saturated	volumetric	water	content,	and	the	applied	amount	is	between	the	soil	

water	 deficit	 estimated	 in	 DSSAT	 and	 the	 Irr2_max.	 This	 2‐step	 method	 has	 the	

advantage	of	 allowing	 the	 irrigation	water	 to	be	properly	 allocated,	 depending	on	

the	specific	growth	condition.	Irrigation	application	efficiency	applied	in	this	study,	

which	is	the	ratio	of	the	volumetric	water	available	for	crop	to	the	quota,	is	0.4	for	

the	furrow	irrigation	system	in	China	as	suggested	by	Su	&	Liu	(2006).	
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4 Chapter	4	Impacts	of	Climate	Change	on	
Maize:	a	Case	Study	of	Jilin,	China2	

 

4.1 Introduction	

	

In	 this	 chapter,	 the	 impacts	 of	 climate	 change	 on	 maize	 in	 Jilin	 province	 were	

predicted	by	applying	the	improved	DSSAT	model.	Firstly,	two	cultivars	used	in	Jilin	

were	calibrated.	Then	the	impact	on	yield	and	phenology	in	the	2020s,	2050s,	and	

2070s	is	discussed.	Uncertainties	in	maize	yield	among	six	climate	change	scenarios	

are	 also	 projected.	 In	 the	 last	 section,	 three	 adaptation	 options	 at	 farm	 level	 are	

assessed.			

	

4.1.1 Data	

 

To	meet	the	data	requirements	of	DSSAT,	the	input	dataset	of	soil	and	management	

for	 Jilin	 province	 were	 constructed.	 The	 parameters	 of	 soil	 properties	 were	

produced	 based	 on	 the	 ISRIC‐WISE	 dataset.	 Most	 of	 the	 management	 data	 was	

derived	 from	 NBS	 yearbooks	 and	 the	 rest	 is	 the	 empirical	 estimation	 from	 local	

contacts.	County	location	in	Jilin	province	is	given	in	Figure	2‐1.		

	

4.1.1.1 	Soil	

 

In	 Jilin,	 the	 soil	 parameters	 derived	 from	 the	 ISRIC‐WISE	 (WISE,	 Batjes,	 2006)	

database	(55	arc‐minutes)	were	used,	providing	most	of	the	parameters	required	

by	DSSAT	within	the	100‐cm	deep	five‐layer	soil	profiles	(see	Table	3‐3).	

	

                                                            
2	Chapter	4	has	been	published	as	a	part	of	a	Journal	paper	(Wang,	M.,	Li,	Y.,	Ye,	W.,	Bornman,	J.	F.,	
Yan,	X.	(2011)	Effect	of	climate	change	on	maize	production,	and	potential	adaptation	measures:	a	
case	study	in	Jilin	Province,	China.	Climate	Research,	46:	223‐242).	
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There	are	14	soil	classes	of	WISE	classification	for	the	case	region	(Table	4‐1),	and	

the	soil	distribution	 is	 shown	 in	Figure	4‐1.	Other	parameters	not	provided	 in	 the	

WISE	database	were	estimated,	depending	on	the	following	guidelines.	

	

Table	4‐1	Categories	of	soil	profile	in	WISE	database.	

ID	 Code	
3964	 Be
3992	 Kh
4195	 Gm	
4225	 Lo	
4286	 Bc	
4234	 Lg	
4312	 Ch	
4343	 Hg	
4346	 Hh	
4364	 Bk	
4400	 Kl
4429	 We
4444	 Zm	
6997	 WR	

 

	

Figure	4‐1	The	soil	profiles	of	ISRIC‐WISE	in	Jilin	Province.   
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SALB	

The	value	of	the	soil	surface	albedo	(SALB)	can	be	estimated	from	the	colour	of	the	

surface	soil	layer	(Gijsman	et	al.,	2007),	shown	in	Table	4‐2.			

	

Table	4‐2	SALB	under	different	soil	colours.	

Colour		 SALB	

Black	 0.09	

Brown	 0.13	

Grey		 0.13	

Red		 0.14	

Yellow		 0.17	
 

 

U	

The	 value	 of	 U,	 the	 first	 stage	 evaporation	 coefficient,	 is	 speculated	 from	 the	 soil	

texture	of	the	1st	layer	(Iglesias,	2006).	In	this	case,	the	value	is	determined	by	the	

texture	and	the	percentage	of	particles	of	the	1st	layer	(Table	4‐3).		

	

Table	4‐3	U	value	according	to	soil	texture.	

Texture		 Properties	of	1st	layer	 U	(and	its	range)	

Coarse	textured	 Sandy	and	>30%	sand	 7	(5	~	8)	

Medium	textured	 Loams	and	<30%	clay	 9	(8	~	11)	

Medium	textured	 Loams	and	>30%	clay	 11	(8	~	11)	

Medium	–	heavy	textured	 Clay		 12	(10	~	12)	
Note:	in	order	to	identify	the	differences	among	soil	classes,	the	value	of	U	adopted	
is	distinctive	for	each	texture	class.	
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SWCON	

The	 drainage	 coefficient	 (SWCON)	 is	 associated	 with	 the	 soil	 drainage	 class	

provided.	In	the	WISE	database,	the	drainage	capacity	is	classified	into	7	levels	(see	

Table	4‐4).	

	

Table	4‐4	SWCON	estimation	for	different	drainage	class.	

Drainage	class	 Code	in	WISE	 SWCON	
Excessively		 E	 0.8	

Somewhat	excessively	 S	 0.8	

Well		 W	 0.6	

Moderately	well		 M 0.4

Somewhat	poorly	 I	 0.2	

Poorly		 P	 0.05	

Very	poorly		 V	 0.005	

 

CN	

The	runoff	curve	number	(CN)	describes	the	runoff	potential	of	the	soil,	depending	

on	both	the	 infiltration	and	permeability	of	 the	whole	soil	profile	and	the	slope	as	

stated	in	the	USDA	technique	release.	Because	of	the	insufficient	description	of	such	

properties	in	the	WISE	database,	it	has	to	be	estimated	by	the	drainage	class	and	the	

1st	 layer	 texture	 instead	 (Table	 4‐5	 and	 4‐6).	 The	 impact	 of	 the	 slope	 on	 runoff	

potential	is	not	considered	here.	

	

Table	4‐5	CN	in	USDA	references.	

Soil	group	 0~5%	 5~10%	 >	10%	

A	 64	 68	 71	

B	 76	 80	 83	

C	 84	 88	 91	

D	 87	 91	 94	
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Table	4‐6	CN	estimated	based	on	the	drainage	class	and	the	1st	layer	texture.	

Texture	(1)		 Drainage	class CN	

Sandy,	>30%	sand	 W	 76	

Clay		 I	 84	

Clay		 P 87	

Other		 	 76	

Note:	The	14	soil	classes	in	Jilin	province	only	refer	to	3	levels	of	drainage,	so	only	
the	corresponding	CN	value	is	given	here.	

	

SAT,	LL,	DUL	

The	 saturated	 moisture	 content	 (SAT)	 and	 the	 two	 threshold	 parameters	 of	 the	

moisture	content,	LL	and	DUL,	can	be	calculated	from	the	texture	at	layer	I	(Saxton,	

1986).	 Considering	 the	 relation	 between	 the	 soil	 texture	 and	 SAT,	 LL,	 or	 DUL	

developed	by	Gijsman	(Table	4‐7),	 the	SAT	 is	 set	by	 the	average	of	 the	upper	and	

lower	value	for	each	texture,	and	the	lower	(or	upper)	threshold	value	was	obtained	

as	the	input	LL	(or	DUL).	

	

WR	

The	WR	refers	to	the	root	distribution	weighing	factor	that	reflects	the	relative	root	

growth	in	each	soil	layer.	This	parameter	is	supposed	to	be	an	exponential	function	

of	the	centre	depth	of	the	I‐th	layer,	shown	as	the	following	equation:	

/ 		 (Eq.	4‐1)		

where	 	is	the	depth	(cm)	to	the	centre	of	the	I‐th	layer.	

	

Because	 the	 above	 relation	 usually	 applies	 to	 deep	 and	well‐drained	 soil	 without	

chemical	and	physical	stresses,	the	WR	was	modified	to	a	smaller	value	according	to	

soil	 constraints,	 e.g.	 it	 declined	 by	 70%	 for	 the	 stone‐based	 soil	 with	 the	 organic	
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carbon	 less	 than	 0.3	 extreme	 restrictions	 in	 the	 soil	 environment.	 In	 the	 surface	

layer,	the	WR	was	set	as	1.00.		

	

SWCN	

The	saturated	hydraulic	conductivity	(SWCN)	of	the	I‐th	layer	was	calculated	using	

the	software	SPAW	(Saxton	&	Rawls	2006,	Saxton	&	Willey	2005).		

	

Table	4‐7	Estimated	BD,	LL,	DUL,	and	SAT	based	on	soil	texture	(Gijsman,	DSSAT	
4.02	Manual,	2004).	

Texture	 Code			 LL	 DUL	 SAT	 	BD	(g/cm3)	

Clay		 C	 0.22~0.346		 0.33~0	.467	 0.413~0.488	 1.129~1.512

Clay	loam	 CL		 0.156~0.218 0.282~0.374 0.417~0.512	 1.243~1.502

Loam	 L		 0.083~0.156 0.222~0.312			 0.415~0.501	 1.245~1.483			

Loamy	sand	 LS		 0.059~0.11					 0.137~0.185			 0.355~0.416	 1.353~1.629

Sand		 S		 0.055~0.085		 0.123~0.158			 0.374~0.4	 1.446~1.574			

Sandy	clay	 SC		 0.195~0.294			 0.276~0.389			 0.376~0.409	 1.501~1.593		

Sandy	clay	loam	 SCL		 0.132~0.191			 0.213~0.304 0.36~0.418	 1.475~1.636

Silt		 SI		 0.096~0.099			 0.299~0.307			 0.442~0.488	 0.978~1.464			

Silt	clay	 SIC		 0.224~0.326			 0.379~0.456			 0.455~0.489	 1.307~1.446		

Silt	clay	loam	 SICL		 0.155~0.219			 0.324~0.392			 0.448~0.511	 1.248~1.464		

Silt	loam	 SIL		 0.082~0.152			 0.24~0.333					 0.439~0.547	 0.968~1.464			

Sandy	loam	 SL		 0.066~0.133			 0.164~0.243			 0.348~0.499	 1.142~1.647		
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4.1.1.2 Cropping	Management	
	

In	 this	 case,	 the	 planting	 density	 (6	 plants/m2)	was	 set	 to	 the	 same	 value	 for	 the	

whole	 area;	 and	 the	 fertilizer	application	was	obtained	 from	 the	 county	 statistical	

data.	Only	 the	ammonium	nitrogen	 fertilizer	 is	 considered	 in	 the	 fertilization.	The	

total	 nitrogen	 application	 (kg/ha)	 in	 each	 county	 is	 the	 average	 annual	 chemical	

fertilization	consumption	derived	from	the	county	agriculture	census	(Statistics	Jilin,	

1998‐2007),	 and	 applied	 evenly	 during	 the	 growing	 season.	 The	 sowing	 date	 is	

determined	by	the	revised	sowing	scheme	described	below.	The	irrigation	is	applied	

following	 the	 scheme	 introduced	 in	 Section	 3.4.2,	 and	 the	 local	 water	 quota	 for	

agriculture	is	350	mm	(Provincial	water	quota,	2010).		

	

	

Figure	4‐2	The	amount	of	N	fertilizer	applied	by	county	in	Jilin	Province	(kg/ha).	
Source:	Jilin	statistical	yearbooks	from	1998	to	2007.	

	

Sowing	scheme	
	

The	 planting	 management	 was	 changed	 slightly	 for	 the	 Jilin	 case	 study.	 In	 the	

original	CERES	maize	model,	maize	 is	automatically	 sown	 if	both	soil	 temperature	

and	 soil	moisture	 exceed	 a	 given	 threshold.	 This	 rule	 is	 not	 appropriate	 for	 large	

areas	of	 Jilin,	where	 the	 required	soil	water	condition	could	not	be	 fulfilled	 in	 the	
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normal	 dry	 spring	 in	 spite	 of	 the	 appropriate	 soil	 temperature.	 Therefore	 the	

planting	 date	was	 revised,	 based	mainly	 on	 the	 soil	 temperature	 conditions:	 once	

the	average	soil	temperature	was	higher	than	7°C	in	5	successive	days,	which	is	the	

lower	limit	of	soil	temperature	for	maize	emergence	(Song	et	al.,	2006),	an	irrigation	

was	applied	on	the	planting	day	if	the	soil	water	content	was	below	the	threshold	of	

20%	of	saturated	volumetric	water	content	and	then	the	seed	is	sown. 

	

4.2 Calibration	of	maize	cultivars	

 

4.2.1 Issues	in	the	simulation	in	a	large	area	

	

The	CERES	Maize	model	was	widely	calibrated	and	validated	in	China,	but	in	most	of	

them	 the	 genotype	 parameters	 were	 estimated	 from	 single	 observation	 site	

experiments	(Yang	et	al.,	2006;	Yu	et	al.,	2006).	Some	studies	expanded	the	spatial	

scale	to	provincial	(Wu	et	al.,	1989)	and	country‐wide	(Xiong	et	al.,	2007;	Cui,	2005),	

relying	on	the	site‐observed	genotype	as	the	representative	for	a	large	region,	such	

as	 Cui	 (2005)	who	 universalized	 the	 genotype	 estimated	 by	 the	 observed	 data	 at	

Dunhua	to	the	whole	Jilin	province.	Xiong	et	al.	(2007)	examined	the	accuracy	of	one	

representative	cultivar	in	Jilin	by	comparing	the	simulation	derived	by	the	nearest	

weather	 station	 with	 the	 county	 census	 in	 50	 ×	 50	 km	 grids,	 and	 pointed	 out	 a	

significant	uneven	overestimation	of	 the	mean	annual	yield.	 Such	biases	 in	 spatial	

simulations	may	be	caused	by	the	homogeneous	application	of	the	cultivar	obtained	

from	 a	 site	 to	 a	 region,	 where	 the	 actual	 maize	 cultivars	 in	 the	 eastern	 area	

(including	 Panshi,	 Baishan,	 and	 Tonghua)	 are	 quite	 different	 from	 those	 in	 the	

western	and	middle	area	(including	Tongyu,	Changling,	Shuangliao,	Changchun	and	

Siping),	corresponding	to	the	different	solar	radiation	and	thermal	potentials	(Luo	

et	al.,	2000).	

	

Because	 the	mismatch	of	using	data	 from	single	agricultural	experimental	stations	

to	the	regional	census	data	for	generating	spatial	distributions	of	crop	genotype	for	
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a	process‐based	crop	model	like	CERES‐Maize	requires	extensive	observed	stations	

that	 cover	 the	 spatial	 area	 of	 interest,	 such	 a	 requirement	 is	 seldom	 satisfied	 for	

most	crop	production	research.	An	alternative	approach	is	to	classify	the	area	into	

different	 zones	 based	 on	 pre‐defined	 crop	 production	 related	 factors,	 such	 as	

identifying	 the	 crop	 zones	 based	 on	 specific	 agro‐ecological	 characteristics	 (AEZ)	

(Xiong	 et	 al.,	 2008)	 and	 for	 each	 classified	 zone,	 single	 and/or	 multi	 observed	

station	data	can	be	used	to	generate	its	crop	genotype.	Since	this	study	is	focused	on	

the	 climate	 change	 impact,	 it	 appears	 that	 it	would	be	much	more	 appropriate	 to	

classify	 the	 zoning	 of	 maize	 cultivar	 based	 on	 climate	 characteristics.	 However,	

there	are	not	enough	available	observation	stations	in	Jilin	to	support	a	selection	of	

maize	cultivars	for	each	conventional	climate	zone	(Luo	et	al.,	2000).	Consequently,	

only	two	distinctive	maize	cultivar	zones	are	found	through	calibration,	and	based	

on	 these	 zones,	 cultivars	 are	 selected	 and	 the	 maize	 model	 is	 calibrated,	 as	

described	below.		

	

4.2.2 Solution	

	

Considering	the	spatial‐heterogeneity	of	the	maize	cultivar,	the	genotypes	used	for	

the	thesis	study	were	calibrated	and	validated	by	multi‐year	observation	(including	

yield,	planting	date	and	harvest	date)	at	11	agro‐meteorological	stations	located	in	

the	 different	 regions	 of	 Jilin	 (in	 Table	 4‐9).	 The	 required	 data,	 including	 daily	

weather	 records	 (maximum	and	minimum	air	 temperature,	precipitation,	 sunlight	

duration,	 and	 relative	 humidity)	 and	 the	 observed	 crop	 data	 from	 1996	 to	 2006	

(annual	 yield,	 planting	 date	 and	 harvest	 date),	 were	 obtained	 from	 the	 China	

Meteorological	Data	Sharing	Service	System	(http://cdc.cma.gov.cn/index.jsp).		

	

The	evaluating	indicator	( )	was	a	combination	of	two	indexes,	which	are	used	for	

genotype	 selection.	 The	 mature	 date	 index	 ( )	 defines	 the	 difference	 in	

eI

mI
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physiological	stage	between	simulation	and	observation,	and	the	yield	index	( )	is	

used	to	evaluate	the	fit	of	the	simulated	yield	to	the	observations:		

⁄ ⁄ 			(Eq.	4‐2)	

Thus,	a	smaller	 	or	 	indicates	a	better	estimate	of	yield	or	mature	date	using	a	

certain	cultivar.		

	

An	iteration	method	is	applied	to	obtain	the	optimal	cultivar	(Figure	4‐3).	Firstly,	30	

trial	genotypes	were	sampled	within	the	reference	range	using	the	uniform	design	

method	(Zhang	et	al.,	2004)	at	each	iterative	step.	The	initial	reference	ranges	of	P1,	

P2,	 P5,	 G2,	 and	 G3	 are	 from	 DSSAT	 documents	 (Table	 4‐8).	 Secondly,	 a	 new	

narrower	range	for	sampling	trial	genotypes	is	decided	from	the	cultivars	with	the	

two	 smallest	 s	 from	 the	 30	 trials;	 and	 the	 iteration	 was	 completed	 when	 the	

difference	 between	 the	 upper	 and	 lower	 range	 of	 genotype	 coefficients	 was	 less	

than	the	5%	of	its	magnitude.		

	

yI

yI mI

eI
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Figure	4‐3	Iteration	steps	to	get	the	optimal	genotypes	using	the	spatial	

observations.	

	

Taking	account	of	the	average	 	at	11	stations	in	11	years	(from	1996	to	2006),	it	

was	found	that	the	range	of	physiological	coefficients	(P1,	P2	and	P5)	at	the	stations	

located	 in	 the	 west	 and	 middle	 areas	 shows	 a	 different	 trend	 from	 those	 in	 the	

southeast.	 Therefore,	 two	 groups	 of	 genotype	 coefficients	 (Table	 4‐8)	 were	

estimated	for	two	different	areas,	with	5	calibrated	sites	for	the	late	cultivar	and	6	

sites	 for	 the	 slightly	 early	 cultivar,	 respectively	 (Table	 4‐9).	 The	 bias	 of	 the	

simulated	 yield	 (or	 growing	 seasons)	 at	 most	 stations	 drops	 in	 the	 ±10%	 of	 its	

observed	value	(provided	in	Table	4‐9)		

No

The initial ranges of 5 gene coefficients (P 1, P 2, P 5, G 2, G3 )

Produce 30 trial geno-types by the uniform design method

Yield Simulation

Calculate Ie ;
Find out the genotypes with the two smallest Ie s

The i -th ranges of gene coefficients

If (the differences between the
ranges of these two genotypes
are smaller than 5% of the initial
upper range) then

The final range of gene coefficients

The coefficients are the average of the final range

Yes

eI
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Table	4‐8	The	maize	genotype	coefficients.	

Genotype	coefficient	

Initial	

reference	

range	

Cultivar	

Late	 Early	

P1	 The	 thermal	 time	 from	 seeding	
emergence	to	the	end	of	Juvenile	stage	
(degree	 days	 above	 the	 base	
temperature	of	8	°C	in	juvenile	stage)	
	

125~400 280	 270	

P2	 The	photoperiod	sensitivity	associated	
with	 the	 delayed	 growth	 under	 the	
unfavourable	long‐daylight	condition	
	

0.1~0.8	 0.3	 0.3	

P5	 The	 thermal	 time	 from	 silking	 to	
physiological	 maturity	 (degree	 days	
above	 base	 temperature	 of	 8	 °C	 in	
mature	stage)	
	

500~900	 790	 700	

G2	 The	 potential	 maximum	 number	 of	
kernels	per	plant	
	

500~850 720	 720	

G3	 The	kernel	 filling	 rate	under	optimum	
conditions	(mg/day)	
	

5~12	 8.5	 8.5	

PHINT	 The	 interval	 in	 thermal	 time	 between	
successive	leaf	tip	appearances	

35~75	 38.9	 38.9	
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Table	4‐9	Calibration	at	11	agro‐meteorological	stations.	

Station	 Long.a	 Lat.a	 Alt.b	 Cultivar	 c	 c	

Changling	 123.97	 44.25	 190.4	 Late	 0.55	 0.94	

Nongan	 125.16	 44.41	 190.0	 Late	 0.92	 1.03	

Yushu	 126.53	 44.83	 206.0 Late 0.87 1.06	

Lishu	 124.3	 43.35	 160.0	 Late	 1.05	 1.05	

Jian	 126.15	 41.1	 177.7	 Late	 0.94	 0.96	

Shulan	 126.93	 44.42	 252.0	 Early	 0.87	 1.06	

Yongji	 126.56	 43.7	 232.4 Early 0.99 0.95	

Dunhua	 128.2	 43.37	 523.7	 Early	 1.23	 1.13	

Liaoyuan	 125.08	 42.92	 254.0	 Early	 1.05	 1.01	

Meihekou	 125.63	 42.53	 341.5	 Early	 0.94	 0.94	

Huadian	 126.75	 42.98	 264.2 Early 0.9 1.0	

a	Latitude	north	and	longitude	east	in	degrees	and	decimals	
b	Altitude	in	metres	
c	The	11	year	mean	ratio	of	simulations	to	observations 
  	

/sim obsY Y /sim obsM M



84 
 

4.2.3 Maize	cultivars	in	Jilin	

	

The	 boundary	 between	 the	 late	 and	 early	 cultivar	 (shown	 by	 the	 bold	 curve	 in	

Figure	 4‐4)	 was	 decided on  the	 following	 criteria:	 1)	 the	 calibration	 at	 11	 agro‐

meteorological	sites;	2)	the	maize	variety	distribution	in	Northeast	China	estimated	

from	the	local	climate	temperature	conditions	by	Luo	et	al.	(2000),	which	suggests	

that	the	optimal	maize	varieties	in	the	eastern	area	(including	Panshi,	Baishan,	and	

Tonghua)	 are	 quite	 different	 from	 those	 in	 the	west	 and	middle	 areas	 (including	

Tongyu,	Changling,	Shuangliao,	Changchun	and	Siping);	and	3)	the	conformability	of	

the	annual	yield	simulation	to	its	statistic	with	respect	to	the	two	cultivars	in	each	

county.	 Basically,	 the	 cultivar	 selection	 based	 on	 the	 11	 sites	 that	 have	 reliable	

observed	daily	weather	data	and	crop	records	is	the	top	criterion	among	the	three	

in	 determining	 the	 boundary,	 followed	 by	 local	 observations,	 and	 finally	 the	

comparison	 of	 yield	 simulations	 obtained	 by	 gridded‐climate	 data	 with	 county	

census	of	yield.	 

	

To	 validate	 the	model	 for	 spatial	 simulation,	 the	 census	 yields	 and	 simulations	 at	

county	 level	were	 compared.	 The	 annual	 yield	was	 simulated	with	 the	 CRU	 time‐

series	 climate	data	 from	1990	 to	2002	 (Mitchell	&	 Jones,	2005),	 the	 two	 cultivars	

obtained,	as	well	as	the	soil	properties	and	crop	management	mentioned	above.	The	

county	level	yield	was	obtained	by	aggregating	the	yield	simulation	for	grids	where	

maize	is	sown.	The	percentage	of	maize	sown	area	in	5	×	5	minutes	grid	(Figure	4‐4)	

was	obtained	from	the	Global	18	Major	Crops	dataset	in	1992	(Leff	et	al.,	2004).	The	

annual	 county	maize	yield	data	 is	 the	census	date	 from	1990‐2002	(Statistics	 Jilin	

Province,	1990‐2002).	
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Figure	4‐4	The	maize	sown	area	percentage	of	each	grid	in	Jilin	Province.	
The	boundary	of	early	and	late	maize	cultivars	is	marked	by	the	bold	curve,	on	the	
left	of	which	the	late	cultivar	is	sown,	and	on	the	right	is	the	early	cultivar.	
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Table	4‐10	Comparison	of	mean	bias	in	yield	simulations	to	county	census	under	

two	cultivars.	

Region	 County	 Mean	bias	a	 Cultivar	b	

	 	 Early	 Late	 	

Baicheng	 Baicheng	 −5.7%	 −9.2%	 Late	

	 Daan	 18.4%	 −2.5%	 Late	

	 Taonan	 −6.5%	 23.4%	 Late	

	 Tongyu	 40.9% 71.1% Late	

	 Zhenlai	 −0.7%	 16.6%	 Late	

Songyuan	 Changling	 28%	 12.1%	 Late	

	 Fuyu	 24.4%	 −8.7%	 Late	

	 Qianan	 13.1% −5.8% Late	

	 Qianguo	 10.9%	 −7.8%	 Late	

Changchun	 Changchun	 10%	 −7.05%	 Late	

	 Dehui	 15.9%	 −1.8%	 Late	

	 Jiutai	 21.5%	 −4.9%	 Late	

	 Nongan	 32%	 17.4%	 Late	

	 Yushu	 23.1%	 −8.1%	 Late	

Siping	 Gongzhuling	 43.2%	 30%	 Late	

	 Lishu	 48.1% 36.3% Late	

	 Shuangliao	 24.7% 7.9% Late	

	 Siping	 54.2%	 44.4%	 Late	

	 Yitong	 34.5%	 19.5%	 Late	

 

a	Mean	bias	is	the	average	difference	between	the	simulated	yield	and	the	county	
census	from	1990	to	2002.	
b	The	cultivar	in	each	county	finally	used	in	the	present	study.	
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Table	4‐10	Comparison	of	mean	bias	in	yield	simulations	to	county	census	under	

two	cultivars	(continued).	

Region	 County	 Mean	bias	a	 Cultivar	b	

	 	 Early	 Late	 	

Jilin	 Huadian	 14.5%	 −4.8%	 Early	

	 Jiaohe	 10.1%	 −1.7%	 Early	

	 Jilin	 11.3%	 −7.7%	 Early	

	 Panshi	 −0.8% 16.2% Early	

	 Shulan	 16%	 −3%	 Early	

	 Yongji	 −2.1%	 18.4%	 Early	

Liaoyuan	 Dongfeng	 −9.9%	 10.2%	 Early	

	 Dongliao	 25.3% −7.7% Early	

	 Liaoyuan	 22.1%	 51.3%	 Early	

Baishan	 Baishan	 18%	 24.7%	 Early	

	 Changbai	 53.1%	 56.9%	 Early	

	 Fusong	 −8.8%	 10.7%	 Early	

	 Jingyu	 −9.2%	 21.5%	 Early	

a	Mean	bias	is	the	average	difference	between	the	simulated	yield	and	the	county	
census	from	1990	to	2002.	
b	The	cultivar	in	each	county	finally	used	in	the	present	study.	
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Table	4‐10	Comparison	of	mean	bias	in	yield	simulations	to	county	census	under	

two	cultivars	(continued).		

Region	 County	 Mean	bias	a	 Cultivar	b	

	 	 Early	 Late	 	

Tonghua	 Huinan	 14.6%	 −1%	 Early	

	 Jian	 20.8%	 35.7%	 Early	

	 Liuhe	 21.5%	 −5.5%	 Early	

	 Meihekou	 14.8% −2.8% Early	

	 Tonghuashi	 42.6%	 69.7%	 Early	

	 Tonghuaxian	 19.9%	 41.2%	 Early	

Yanji	 Antu	 23.1%	 17.6%	 Early	

	 Dunhua	 15.9% 15.5% Early	

	 Helong	 25.4%	 32.1%	 Early	

	 Hunchun	 49.8%	 53.2%	 Early	

	 Longjing	 31.2%	 34.9%	 Early	

	 Tumen	 35.3%	 39.3%	 Early	

	 Wangqing	 15.1%	 14.6%	 Early	

	 Yanji	 26%	 33.2%	 Early	

a	Mean	bias	is	the	average	difference	between	the	simulated	yield	and	the	county	
census	from	1990	to	2002.	
b	The	cultivar	in	each	county	finally	used	in	the	present	study.	

	

	

	

	 	



89 
 

A	comparison	was	made	of	the	mean	and	standard	deviation	(SD)	from	the	12‐year	

simulations	to	the	county	census	yields	(Figure	4‐5).	The	mean	yield	simulations	are	

about	10%	lower	on	average	than	the	reported	county	statistics.	The	relative	bias	in	

the	central	part,	ranging	from	−18%	to	11%,	is	moderate,	which	indicates	that	the	

model	performed	a	 reasonable	 estimation	of	mean	yield	 in	 the	major	maize	 sown	

area.	However,	there	was	a	significant	overestimation	in	low	level	yield	counties	(e.g.	

Tongyu	 in	 the	west	 dryland	 area,	 and	 counties	 close	 to	 eastern	mountains)	 and	 a	

slight	underestimate	in	the	high	level	yield	area	(Figure	4‐5‐a),	i.e.	the	Siping	region.	

The	spatial	correlation	coefficient	of	the	aggregated	simulations	with	the	47‐county	

census	reaches	0.6(passed	the	99%	confidence	level,	two‐tailed	t‐test).	With	regard	

to	the	SD	of	the	12‐year	yield,	the	simulated	values	are	much	smaller	than	that	of	the	

census	for	most	counties,	except	those	where	mean	yields	are	overestimated	(Figure	

4‐5‐b).		

	

a. b. 	

Figure	4‐5	The	bias	of	the	mean(a)	and	SD(b)	of	yield	simulations	to	the	county	
census.	
The	annual	county	yield	is	derived	from	the	Yearbooks	of	Jilin	Province	from	1990	
to	2002.		

	

In	 general,	 the	 former	 simulation	 in	 the	 literature	 significantly	 overestimated	 the	

mean	 yield,	 while	 a	 slightly	 lower	 estimation	 was	 found	 in	 this	 study.	 This	 is	

probably	 attributed	 to	 the	 differences	 in	 daily	 weather	 resource	 and	 aggregation	

approach.		
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 In	 contrast	with	 the	daily	 observations,	 the	SIMMETEO	stochastic	weather	

generator	used	in	the	present	study,	and	as	suggested	by	Soltani	et	al.	(2003),	

has	some	weakness	in	reproducing	maximum	and	extreme	temperatures,	as	

the	 result	 of	 which	 the	 final	 simulated	 yield	 sensitive	 to	 the	 daily	

temperature	 amplitude	 (Dubrovský	 Žalud	 et	 al.,	 2000)	may	 be	 lower	 than	

the	observed.		

 In	addition,	the	gridded	simulations	were	aggregated	to	country	level	in	the	

current	study,	which	may	have	introduced	some	errors	due	to	this	rescaling	

process.		

	

4.3 	Impacts	of	climate	change	on	maize	production	

 

This	study	was	mainly	focused	on	the	impact	from	the	changes	of	the	monthly	mean	

temperature	 and	 total	 precipitation,	 with	 other	 climate	 variables,	 such	 as	 solar	

radiation	and	wind	speed,	being	kept	at	the	baseline	level.	The	possible	fertilization	

effect	 of	 the	 rising	 CO2	 concentration	 is	 not	 included	 in	 our	model,	 because	 of	 its	

uncertainty	 in	 the	 field	 experiments	 considering	 the	 contemporary	 temperature	

increase	and	the	limits	of	water	supply	(Elliott,	2013).		

	

The	median	value	of	climate	change	projections	shows	a	consistent	warming	trend	

and	increased	precipitation	during	the	maize	growing	season	(Apr.	–	Sept.,	Figure	4‐

8).	The	temperature	increases	to	a	little	above	0.6,	1.6	and	2.4°C	in	the	years	2020,	

2050	 and	 2070,	 respectively,	 with	 slight	 spatial	 variations,	 and	 the	 total	

precipitation	 increases	 around	 2.3,	 6.2	 and	 9.0%,	 correspondingly.	 The	 warming	

trends	 in	April,	August,	 and	September	are	moderately	higher	 than	 in	 the	other	3	

months	(May,	June	and	July),	whereas	85%	of	the	precipitation	increase	happens	in	

May,	August,	and	September.		
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(a)	

(b)	
Figure	4‐6	The	total	precipitation	(mm)	during	the	growing	season	(from	April	to	
September)	in	the	baseline	(a)	and	in	the	year	2050	(b).	

	

(a)	

(b)	
Figure	4‐7	The	average	of	maximum	temperature	(°C)	during	the	growing	season	in	
the	baseline	(a)	and	in	year	2050	(b).	
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Figure	4‐8	The	baseline	climate	and	the	median	climate	change	scenarios	in	Jilin	
Province	in	2020,	2050,	2070.	
Temp.	 (°C)	 is	 the	 average	monthly	 temperature	 during	 the	maize	 growing	 season	
(from	Apr.	to	Sep.);	Prec.	(mm)	is	the	total	precipitation	during	the	growing	season;	
and	P/PET	 is	 the	 ratio	of	 total	precipitation	 to	 the	potential	 evaporation	 in	maize	
during	the	growing	season.	

	

Although	both	temperature	and	precipitation	increase,	it	is	the	change	of	the	dry	or	

wet	status	that	 is	more	pertinent	to	crop	yield.	The	change	in	dry	or	wet	status	 in	

the	 growing	 season	 was	measured	 by	 looking	 at	 the	 ratio	 of	 precipitation	 (P)	 to	

potential	 evaporation	 (PET),	 i.e.	 P/PET.	 The	 monthly	 potential	 evaporation	 was	

calculated	using	the	monthly	average	temperature	by	the	Thornthwaite	method	(Ma	

et	 al.,	 2005).	 There	 is	 a	 clear	 correlation	 between	maize	 yield	 and	 P/PET	 for	 the	

central	and	western	areas	(Baicheng,	Songyuan,	Changchun,	and	Siping).	For	all	the	

regions	in	Jilin	province,	the	P/PET	ratio	is	projected	to	decrease	in	the	future.	The	

PET	 is	 mainly	 decided	 by	 temperature.	 In	 Jilin,	 the	 decrease	 means	 that	 the	

magnitude	 of	 PET	 increase	 due	 to	 high	 temperature	 is	 bigger	 than	 the	 rainfall	

increase.	 In	 the	middle	 area,	 the	 total	PET	 from	April	 to	 September	 surpasses	 the	

precipitation,	which	 implies	an	enhanced	aridification	trend	for	all	 regions	of	 Jilin.		
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The	current	semi‐dry	area	in	the	central	region	is	likely	to	become	even	drier,	and	

the	present	dry	west	may	undergo	a	larger	water	deficit	in	the	coming	decades.		

	

	

Figure	4‐9	The	change	in	maize	yield	responding	to	future	decline	in	P/PET	during	
the	 growing	 season	 (form	 Apr.	 to	 Sep.)	 in	 Baicheng,	 Songyuan,	 Changchun,	 and	
Siping.	
The	yield	change	(each	point)	is	aggregated	at	county	scale.	

 

4.3.1 Impact	on	yield	

In	 general,	 the	 future	 yield	 is	 projected	 to	 decrease	 in	 the	 main	 sown	 area,	 but	

increase	in	a	few	counties	in	the	eastern	area.	The	wide	western	and	central	regions,	

including	 Baicheng,	 Songyuan,	 Changchun,	 Siping,	 and	 parts	 of	 Liaoyuan	 and	 the	

Jilin	 District,	 are	 likely	 to	 experience	 a	 significant	 yield	 reduction	 due	 to	 the	

increasing	dryness.	The	largest	reduction	tends	to	be	about	1.1,	2.1	and	2.7	t/ha	in	

the	 years	 2020,	 2050	 and	 2070,	 respectively,	 for	 the	 central	 cropping	 area	 that	

covers	Changchun,	most	of	Songyuan	and	the	northern	part	of	Siping	(Figure	4‐10).		
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Figure	4‐10	The	simulated	maize	yield	(t/ha)	at	baseline	and	its	change	in	2020,	
2050,	and	2070	

	

In	 contrast,	 a	 favourable	 rise	 in	 yield	 emerges	 for	 the	 current	 marginal	 maize‐

growing	regions	in	the	eastern	mountainous	areas.	Some	unsuitable	areas	at	present	

could	have	a	doubled	maize	yield	in	2050.	It	is	worth	noting	that	in	the	southeast	of	

Tonghua	and	part	of	Yanji,	the	future	change	in	yield	is	initially	projected	to	go	up	in	

2020	but	fall	again	by	around	2.0	t/ha	towards	the	end	of	this	century.		

	

Temporally,	 the	 projected	 yield	 change	 suggests	 a	 significant	 difference	 from	 one	

region	to	another	in	the	evolvements	along	with	climate	change.		

	

In	the	regions	with	the	downward	trend,	the	reduction	of	regional	average	yield	in	

central	 counties	 (Songyuan,	 Changchun,	 Liaoyuan,	 and	 Siping)	 is	 projected	 to	 be	

about	 10%	 in	 2020	 but	 more	 than	 20	 and	 30%	 in	 2050	 and	 2070,	 respectively	

(Table	 4‐11).	 For	 the	 Jilin	 District	 and	 Tonghua,	 the	 reduction	 is	 less	 obvious	



95 
 

initially	but	becomes	significant	towards	the	middle	and	end	of	the	century.	For	the	

two	eastern	regions,	Yanji	and	Baishan,	there	appears	to	be	a	large	benefit	in	maize	

production	during	the	first	fifty	years.	However,	the	gains	are	likely	to	be	retarded	

towards	 the	 end	 of	 the	 century	 because	 the	 potential	 productivity	 of	 the	 existing	

cultivar	 would	 have	 been	 fully	 exploited	 in	 line	 with	 the	 corresponding	 local	

temperature	increases.		

Table	4‐11	The	maize	yield	projections	(t/ha)	in	2020,	2050	and	2070	using	20	
GCMs	under	6	SRES	emission	scenarios.	

Region	 	 Baseline (t/ha) 2020 2050 2070	

Baicheng	 Mediana	 5.08	 4.34	(−14.6%) 3.66	(−27.9%)	 3.26	(−35.9%)

	 Rangeb	 	 3.80	~ 4.55 2.60	~ 4.17 1.85	~	3.92	

Songyuan	 Median	 6.94	 6.33	(−8.7%) 5.27	(−23.9%)	 4.66	(−32.8%)

	 Range	 	 5.67	~ 6.64 3.92	~ 5.85 3.00	~	5.45	

Changchun	 Median	 8.15	 7.33	(−10.0%)	 6.02	(−26.2%)	 5.33	(−34.6%)	

	 Range	 	 6.77	~ 7.68 5.00	~ 6.72 4.03	~	6.22	

Siping	 Median	 7.14	 6.35	(−11.0%) 5.26	(−26.4%)	 4.64	(−35.0%)

	 Range	 	 5.76	~ 6.64 4.07	~ 5.86 3.21	~	5.38	

Liaoyuan	 Median	 7.14	 6.46 (−9.5%) 5.43	(−23.9%)	 4.88	(−31.6%)

	 Range	 	 6.04	~ 6.71 4.66	~ 5.93 3.89	~	5.48	

Jilin	District	 Median	 6.98	 6.76	(−3.2%) 5.96	(−14.6%)	 5.33	(−23.6%)

	 Range	 	 6.50	~ 6.90 5.12	~ 6.50 4.09	~	6.13	

Baishan	 Median	 4.23	 4.75	(12.2%) 5.60	(32.3%)	 5.71	(34.8%)

	 Range	 	 4.51	~ 5.03 5.27	~ 5.86 4.85	~	5.97	

Tonghua	 Median	 7.06	 7.04	(−0.3%)	 6.39	(−9.6%)	 5.73	(−18.9%)	

	 Range	 	 6.86	~ 7.13 5.49	~ 6.79 4.41	~	6.45	

Yanji	 Median	 4.16	 4.62	(11.1%) 5.18	(24.6%)	 5.15	(23.9%)

	 Range	 	 4.45	~ 4.82 4.79	~ 5.34 4.05	~	5.43	

a	The	median	yield	of	120	projections	by	20	GCMs	under	6	SRES	scenarios,	and	the	
reduction	ratios	to	baseline	yield	are	given	in	parenthesis.		
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4.3.2 Uncertainty	in	yield	projection	

 

Figure	 4‐11	 displays	 the	 predictions	 under	 each	 scenario	 in	 order	 to	 identify	 the	

uncertainty	within	specific	SRES.	In	the	yield	reduction	areas,	the	biggest	reduction	

is	projected	by	the	A1T	scenario	in	2020,	but	 is	overtaken	by	the	A1FI	scenario	 in	

2070.	The	projection	of	the	B1	scenario	has	the	smallest	reduction	for	most	of	the	

area	in	most	future	periods.	With	regard	to	the	positive	change	areas	of	Baishan	and	

Yanji,	 the	differences	 among	 six	 SRES	projections	 are	much	 less	 than	 those	 in	 the	

areas	with	reduced	yield.	The	lowest	yield	is	projected	by	the	B1	group	simulations	

for	Baishan	in	2050,	but	is	again	overtaken	by	the	A1FI	group	simulations	in	2070.	

For	Yanji,	 the	A1FI	group	simulation	consistently	has	the	lowest	forecasting	for	all	

time	periods.		

	

The	 probabilities	 of	 six	 reduction	 levels	 (5,	 10,	 20,	 30,	 40,	 and	 50%	 reduction	

relative	 to	 the	 baseline	 yield)	 to	 quantify	 the	 likelihood	 of	 yield	 change	 were	

investigated.	The	probability	density	distribution	of	120	regional	yield	simulations	

(from	20	GCMs	under	6	SRES)	was	estimated	by	the	Gauss	kernel	method	(Parzen	

1962),	 and	 then	 the	 cumulative	probability	of	 each	 reduction	 level	was	 calculated	

(Figure	4‐12).	Results	showed	that	Baicheng	is	most	vulnerable	 to	climate	change.	

For	the	same	reduction	rates,	this	region	demonstrates	the	highest	probabilities	for	

all	 future	 time	 periods	 simulated.	 In	 contrast,	 the	 Jilin	 District	 has	 the	 most	

resilience.	Its	2020	reduction	was	projected	to	be	less	than	10%	for	all	simulations,	

and	a	relative	small	probability	that	it	would	have	a	50%	reduction	by	2070.	Apart	

from	 the	 Jilin	 District,	 other	 maize‐growing	 regions	 all	 gave	 more	 than	 90%	

probability	to	have	a	10%	reduction	for	2050,	and	a	20%	reduction	for	2070.	
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Figure	4‐11	The	projected	range	of	maize	yield	of	9	regions	under	6	SRES	(A1B,	
A1FI,	A1T,	A2,	B1,	and	B2).	
The	black	cross	is	the	median	yield	of	20	projections,	and	the	colour	bar	shows	the	
10th	and	90	th	percentile	range.	The	baseline	yield	is	shown	as	the	black	line.	
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Figure	4‐12	The	probability	of	maize	yield	reduction	of	6	regions	in	2020,	2050	and	
2070.	
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4.3.3 Impact	on	phenological	features	

 

Climate	change	also	has	an	 impact	on	the	maize	phenology,	 since	 the	 temperature	

change	influences	the	schedule	of	maize	sowing,	flowering	and	grain‐filling.		

	

4.3.3.1 Planting	date	

Spatially,	 the	 sowing	 date	 of	 maize	 will	 slightly	 advance	 in	 future	 due	 to	 the	

warming	 trend	 in	 spring.	 The	 average	 result	 of	 100	 runs	 under	 the	 median	

projection	of	climate	change	reveals	that	the	sowing	date	will	be	1.5,	3,	and	4	days	

earlier	 in	 2020,	 2050,	 and	 2070,	 respectively,	 than	 the	 baseline	 for	 the	 main	

cropping	areas,	and	the	advance	in	the	eastern	regions	even	exceeds	one	week	after	

2050	but	with	quite	high	spatial	variability	(see	Figure	4‐13).	The	advances	 in	the	

eastern	regions	are	due	to	the	comparatively	 lower	sowing	temperature	threshold	

of	April	and	May	that	could	be	easily	surpassed	in	future	warming.	Phenologically,	

the	 early	 sowing	 helps	 to	 prolong	 the	maturity	 season	 of	 the	 current	 early	maize	

cultivar	in	the	east	and	is	a	favourable	change	for	maize	yield.		

 

4.3.3.2 Flowering	date	

Similar	 to	 the	sowing	date	changes,	 there	 is	also	an	advance	 in	 flowering	date	but	

with	a	more	homogeneous	pattern	for	the	whole	province.	The	flowering	dates	are	2,	

3	and	4	days	earlier	for	2020,	2050	and	2070	(see	Figure	4‐14).	
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Figure	4‐13	The	maize	sowing	date	at	baseline	and	its	changes	in	2020,	2050	and	
2070	(negative	value	means	advanced	date).	

	

 
Figure	4‐14	The	simulated	flowering	date	(days	after	being	sown)	at	baseline	and	
its	probable	advances	(in	earlier	days,	negative)	in	2020,	2050	and	2070.	
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4.3.3.3 Maturity	period		

As	distinctive	from	the	changes	in	sowing	and	flowering	phases,	the	entire	number	

of	maturity	days	(from	sowing	to	harvest)	is	predicted	to	shrink	in	the	central	and	

western	plains,	ranging	from	about	10	to	30	days	shorter	 in	the	next	few	decades,	

but	be	 lengthened	by	8~22	days	 in	 the	eastern	mountainous	areas	covering	Yanji,	

Baishan	and	part	of	Tonghua	(see	Figure.	4‐15).	

Figure	4‐15	The	simulated	number	of	maturity	days	(days	after	being	sown)	at	
baseline	and	its	probable	advances	(in	earlier	days,	negative)	in	2020,	2050	and	
2070.	

	

	

4.3.3.4 Grain	filling	period	

Despite	 the	advance	 in	both	sowing	and	 flowering	dates	(1	 to	5	days	earlier),	 it	 is	

the	changes	in	the	reproduction	phase	(periods	after	flowering,	including	tasseling	

and	 grain‐filling)	 that	may	 contribute	 to	most	 of	 the	 changes	 in	maize	 phenology	

(10~30	 days	 shorter	 in	middle‐western	 areas	 and	 8~22	 days	 longer	 in	 the	 east).	

Hence,	 it	 is	 likely	 that	 the	 varied	 length	 of	 the	 reproduction	 phase	may	 link	with	
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yield	changes.	 In	this	part	of	 the	study,	the	single	run	simulation	of	both	yield	and	

growth	phases	at	selected	sites	was	calculated	and	analysed.	

	

Four	 sites	 were	 chosen	 for	 this	 experiment,	 two	 in	 the	 far	 west	 (Baicheng	 and	

Tongyu),	 and	 two	 in	 the	 east	 (Dunhua	 and	 Huadian).	 Three	 periods	 of	 growing	

phase	are	considered:	the	period	from	sowing	to	tasseling,	from	the	first	tasseling	to	

the	beginning	of	grain‐filling,	and	from	grain‐filling	to	maturity.		

	

Evidently	 at	 both	 Baicheng	 and	 Tongyu,	 the	 shrinking	 of	 the	maize‐filling	 period	

takes	 more	 than	 half	 of	 the	 overall	 reduction	 of	 the	 growth	 season,	 while	 the	

simulations	at	Dunhua	and	Huadian	show	performance	in	the	reversed	manner:	the	

grain‐filling	is	prolonged	despite	the	shortening	trend	in	the	periods	from	sowing	to	

flowering	(Figure	4‐16).	We	may	conclude	that	the	possible	increase	in	maize	yield	

in	 eastern	 cold	 counties	 is	mainly	 attributed	 to	 the	 improvement	of	 local	 thermal	

conditions,	as	the	regional	warming	develops,	which	could	significantly	extend	the	

grain‐filling	phase.	The	physiological	mechanism	for	the	prolonged	period	of	grain	

filling	in	Dunhua	and	Huadian	in	DSSAT	is:	the	increased	temperature	in	these	sites	

prolongs	 the	 period	 when	 temeperature	 is	 above	 the	 threshold	 temperature	 at	

which	the	grain	filling	would	start.		

	

It	is	also	worth	noting	that,	since	the	maize	yield	in	some	western	counties	is	likely	

to	 decrease	 in	 the	 future,	 even	 in	 the	 automatic	 irrigating	 test,	 in	 which	 the	

irrigation	 supplies	 enough	 water	 for	 maize	 growth,	 such	 a	 reduction	 in	 yield	 is	

probably	 not	 caused	 by	 the	 deficient	water	 supply,	 but	 induced	 by	 the	 shortened	

grain‐filling	period.		
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Figure	 4‐16	 The	 maize	 yield	 and	 phenological	 indicators	 under	 two	 irrigating	
strategies	at	four	selected	sites.	
The	line	and	symbols	show	the	simulated	yield	obtained	using	automatic	and	
controlled	(in	blue	and	red)	irrigation.	

	

4.4 Adaptation	options	at	farm	level	

 

As	discussed	previously,	 the	 changes	 in	dryness	and	 length	of	 grain	 filling	are	 the	

two	main	factors	that	have	major	influences	on	the	future	maize	yield	change	in	Jilin	

province.	Therefore	any	effective	adaptation	options	need	to	have	these	two	factors	

properly	addressed.	Alteration	of	 the	current	 irrigation	practice,	such	as	adding	 to	

the	total	applied	water,	is	the	most	obvious	measure	against	the	dryness	trend,	and	

the	assessment	of	this	option	is	now	discussed	in	detail.	
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4.4.1 Improving	irrigation	strategy	

 

A	 test	 of	 the	 gradual	 increase	 of	 the	 total	 water	 supply	 by	 raising	 the	 irrigation	

quota	from	the	present	350	to	750	mm	with	an	increment	of	50	mm	was	carried	out	

for	 sites	 Baicheng	 and	 Tongyu,	 both	 in	 the	 western	 areas.	 It	 is	 evident	 that	 the	

increase	in	total	irrigation	helped	to	maintain	the	present	maize	yield	with	climate	

change	 for	 western	 regions	 (Figure	 4‐17).	 For	 Baicheng,	 the	 irrigation	 quota	 is	

required	to	increase	approximately	30%	in	2020,	and	be	nearly	doubled	in	2050,	in	

order	 to	 acquire	 the	 baseline	 level	 yield.	 However,	 in	 2070,	 even	 the	 largest	

irrigation	 level	 cannot	produce	 the	 baseline	 level	 yield.	The	 situation	 seems	 to	be	

worse	in	Tongyu,	where	the	yield	lost	cannot	be	compensated	for	by	the	increased	

irrigation	quota	after	2050,	as	the	yield	is	limited	by	the	current	genotype	due	to	the	

shortened	 grain	 filling	 period.	 The	positive	 effect	 is	more	 significant	 initially	with	

the	irrigation	quota	increasing	from	350	to	550	mm,	but	less	so	for	higher	levels	of	

irrigation.		

	
Figure	4‐17	The	effects	of	total	irrigation	enhancement	on	maize	yield	at	Baicheng	
and	Tongyu.	
The	experiments	were	carried	out	100	times	for	each	site	under	the	median	climate	
change	scenario.	The	median	result	of	those	runs	is	in	the	yellow	line	and	symbols,	
and	 the	 ranges	 between	 the	 1st	 and	 3rd	 quartiles	 and	 between	 the	 10th	 and	 90th	
percentile	are	respectively	marked	by	the	grey	and	orange	bars.	
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4.4.2 Introducing	new	cultivars	or	changing	the	planting	schedule	

	

Since	 the	yield	reduction	 in	the	western	area	 likely	resulted	 from	the	 fact	 that	 the	

current	 cultivar	 cannot	 take	 advantage	 of	 future	warmer	 temperatures	 even	with	

sufficient	 water	 supply,	 experiments	 were	 carried	 out	 to	 investigate	 the	

performance	of	a	series	of	maize	cultivars	 that	are	adjusted	to	 the	 longer	growing	

season	as	global	warming	develops.	The	experiments	excluded	the	influences	of	soil	

water	 and	 nutrition	 on	 yield	 by	 assuming	 optimal	 irrigation	 and	 fertilization	

conditions,	in	order	to	limit	the	study	to	the	phenological	effect	only.	

	

As	mentioned	in	Section	3.3.5,	the	phenological	timing	in	the	CERES‐maize	model	is	

controlled	mainly	by	the	coefficients	P1,	P2,	and	P5.	In	our	experiments,	P1,	P2	and	

P5	are	assigned	with	7,	3	and	8	different	levels,	respectively	(Table	4‐12),	so	in	total	

168	 cultivars	 (7×3×8)	were	 tested.	 The	 genotype	 coefficients,	 G2,	 G3,	 and	 PHINT,	

were	kept	on	the	same	current	level.	Therefore,	the	differences	among	the	simulated	

yields	are	attributed	to	the	alterations	in	phenological	coefficients	(P1,	P2,	and	P5)	

of	maize	cultivars.	The	yield	and	length	of	the	juvenile	and	reproduction	phase	were	

simulated	using	168	new	cultivars	at	Baicheng,	which	is	located	in	the	dry	western	

area.		

	

Both	 the	 effects	 of	 increasing	 a	 single	 coefficient	 and	 changing	 multi‐coefficients	

were	 examined.	 Increasing	 the	 photoperiod	 sensitivity	 to	 unfavourable	 daylight	

(with	 larger	 values	 of	 P2)	 had	 little	 impact	 on	 the	 maize	 growth	 with	 whatever	

levels	of	P1	and	P5	were	used.	If	only	the	juvenile	phase	was	elevated,	the	yield	was	

projected	 to	 increase	 slightly	 in	 future	 and	 the	period	 from	 flowering	 to	maturity	

was	 extended.	 The	 yield	 projection	 of	 all	 these	 cultivars	 appears	 as	 a	 downward	

time	trend	in	the	future,	except	the	case	in	which	P1is	360	and	P5	is	1100	or	1150.	

An	 increase	 in	 P5	 has	 a	 clear	 positive	 effect	 on	 yield,	 particularly	 with	 low	 P1	



106 
 

(Figure	4‐18,	P1=280).	For	about	every	50	GDD	change	in	P5,	the	grain	filling	phase	

has	 a	 one	 week	 extension	 before	 2050	 and	 a	 3‐day	 extension	 after	 2050.	 The	

combined	effect	of	 increasing	P1	and	P5	 improves	 the	maize	yield	even	 further	as	

shown	 in	 Figure	 4‐18,	 P1=320	 and	 P1=360.	 Within	 the	 suggested	 range	 in	 the	

DSSAT	document,	the	maximum	yield	in	year	2020	occurs	when	P1	is	320	and	P5	is	

1000	 or	 1100,	 if	 the	 seed‐breeding	 technology	 becomes	 available.	 For	 2050,	 the	

cultivar	that	has	the	highest	yield	is	the	one	with	P5	at	1150.		

	

Table	 4‐12	 Genotype	 coefficients	 sensitivity	 experiments	 for	 selecting	 potential	
maize	cultivars.	

Genotype	coefficient	 Value	

P1	 280,	300,	320,	340,	360,	380,	400	

P2	 0.3,	0.5,	0.7	

P5*	 790,	850,	900,	950,	1000,	1050,	1100,	1150	

*	 The	 value	 of	 P5	 suggested	 in	 the	 DSSAT	 document,	 ranges	 from	 0	 to	 1000;	
however,	 3	 values	 of	 P5	 larger	 than	 1000	 were	 tested	 in	 order	 to	 identify	 any	
possible	cultivars	with	the	best	yield	in	the	future.		

	

In	addition	to	the	genotype	coefficient	sensitivity	experiment,	five	existing	cultivars	

calibrated	 in	 previous	 studies	 on	 Chinese	 maize	 were	 tested.	 There	 are	 three	

alternative	cultivars	which	were	originally	cropped	in	warmer	climate	regions,	and	

which	might	 slow	down	 the	maize	 reduction	 trend	 in	 the	 coming	 decades	 in	 Jilin	

province,	as	shown	in	Figure	4‐18‐d.	In	the	control	run,	the	spring	maize,	JilinLate,	

which	 is	 calibrated	 in	 Section	 4.2.3	 (P1=280,	 P2=0.3,	 P5=790,	 G2=720,	 G3=8.5,	

PHINT=38.9)	was	used.	The	alternative	cultivars	include:	Jiao3danjiao	(Xiong	et	al.,	

2007),	 a	 spring	 cultivar	 from	 Southwest	 China,	 with	 P1=320,	 P2=0.3,	 P5=900,	



107 
 

G2=700,	 G3=9.2,	 PHINT=38.9;	 Huangbao1	 (Yang	 et	 al.,	 2006,	 P1=300,	 P2=0.3,	

P5=640,	G2=740,	G3=14,	PHINT=60)	and	Luyu13	(Nakayama	et	al.,	2006,	P1=320,	

P2=0.3,	P5=620,	G2=720,	G3=11,	PHINT=45),	which	are	summer	cultivars	maturing	

faster	 than	 the	 spring	 maize	 JilinLate	 now	 planted	 in	 Northeast	 China.	 All	 these	

alternative	 cultivars	 tested	 are	originally	 cropped	 in	 the	area	quite	 far	 away	 from	

Jilin	province.	More	realistic	alternative	cultivars	should	be	the	spring	cultivars	from	

the	 southern	 part	 of	 Northeast	 China.	 However,	 the	 genotype	 coefficients	 in	 the	

related	studies	are	unavailable.	

	

 

Figure	4‐18	Yield	projections	of	possible	maize	cultivars	at	the	Baicheng	site	under	
the	baseline,	2020,	2050	and	2070	climates	using	different	genotype	parameters.	
Cultivars	in	(a),	(b),	and	(c),	have	different	values	of	P1	and	P5	with	the	same	values	
of	 P2,	 G2,	 G3	 and	 PHINT	 (P2=0.3,	 G2=720,	 G3=8.5,	 PHINT	 =38.9);	 (d)	 represents	
planting	 the	cultivar	 in	spring/summer.	The	genotype	parameters	 in	 (d):	 JilinLate,	
P1=280,	 P2=0.3,	 P5=790,	 G2=720,	 G3=8.5,	 PHINT=38.9;	 Jiao3danjiao,	 P1=320,	
P2=0.3,	P5=900,	G2=700,	G3=9.2,	PHINT=38.9;	Huangbao1,	2006,	P1=300,	P2=0.3,	
P5=640,	G2=740,	G3=14,	PHINT=60;	and	Luyu13,	P1=320,	P2=0.3,	P5=620,	G2=720,	
G3=11,	PHINT=45.		
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If	using	a	 revised	automatic	 sowing	scheme	 in	which	maize	 is	 sown	 in	spring,	 the	

production	potentials	of	the	spring	cultivar	Jiao3danjiao	are	higher	than	JilinLate	for	

all	of	the	test	periods,	under	optimal	irrigation	and	fertilization	schemes,	because	it	

requires	much	more	 thermal	accumulation.	Huangbao1	produces	a	higher	 level	of	

yield	than	the	JilinLate	for	its	large	values	of	G2	and	G3,	which	determine	the	grain	

numbers	 and	 potential	 daily	 growth	 of	 grains.	 Introducing	 Luyu13	 generated	 a	

slight	yield	improvement	in	2050	and	2070,	given	its	high	G2,	G3	and	P1.		

	

The	 two	 summer	 cultivars	 (Huangbao1	 and	 Luyu13)	 produce	 significant	 yield	

increase	 in	 the	 future	 if	sown	 in	summer,	on	Jun	10th,	 the	present	normal	sowing	

date	 in	 the	 North	 China	 Plain.	 However,	 for	 the	 baseline	 period,	 only	 Luyu13	

produces	 higher	 yield	 compared	 to	 JilinLate.	 This	 means	 that	 in	 future	 summer	

maize	may	be	cropped	well	in	Jilin	province.	But	the	potential	of	changing	cropping	

schemes	needs	to	be	carefully	investigated	in	future	research.	

	

4.5 Summary	and	discussion	

 

In	the	case	study	of	Jilin,	which	is	the	most	important	grain‐producing	province,	the	

maize	 yield	 is	 highly	 likely	 to	 decline	 in	 the	 western	 and	 central	 regions	 but	 to	

increase	 in	 the	 east	 in	 future	 under	 climate	 change.	 The	 growing	 season	 will	 be	

reduced	in	the	central	and	western	parts,	leading	to	a	shortened	grain‐filling	period.	

The	 average	 maize	 yield	 in	 the	 west	 and	 central	 regions	 is	 thus	 projected	 to	

decrease	15%	or	more	by	2050	as	predicted	by	90%	of	the	120	projected	scenarios.	

Two	 potential	 adaptation	 strategies,	 i.e.	 improving	 irrigation	 facilities	 and	

introducing	cultivars,	were	identified	from	the	vulnerability	assessment	and	further	

tested	 for	 the	 reduction	 areas.	 The	 results	 reveal	 that	 the	 increase	 in	 effective	

irrigation	 by	 upgrading	 the	 irrigation	 system	would	 help	 to	maintain	 the	 current	
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production	level,	but	in	the	 long	run,	maize	cultivars	need	to	be	 introduced	in	 line	

with	the	future	warming	climate	to	maintain	the	current	yield	level.	

	

The	 CO2	 fertilization	 effect	 resulted	 in	 quite	 different	 simulations	 of	 maize	

production	when	different	irrigation	strategies	were	used.	

	

I	 added	 a	CO2	 fertilization	 effect	 in	 the	DSSAT	 simulation,	which	 resulted	 in	quite	

different	simulations	of	maize	production	when	different	irrigation	strategies	were	

used	 (see	 B.8	 and	 B.9).	 With	 sufficient	 irrigation	 (automatic	 irrigation	 setup	 in	

DSSAT,	and	water	demand	is	fully	satisfied),	the	CO2	effect	is	about	2‐3%	on	average	

for	 the	 whole	 Jilin	 province.	 When	 irrigation	 is	 limited	 (with	 irrigation	 quota	

considered	and	 irrigation	 is	 applied	 as	 that	described	 in	 Section	3.4.2),	 in	 the	dry	

western	area	of	Jilin,	the	CO2	fertilizer	effect	is	shown	quite	large,	while	in	eastern	

area	 where	 the	 water	 demand	 could	 be	 fulfilled	 even	 by	 limited	 irrigation,	 the	

fertilizer	 effect	 is	 still	 small.	 For	 example,	 in	 Baicheng	 (a	 western	 county),	 the	

reduction	in	maize	yield	during	2050s	is	30.5%	in	A1FI	without	CO2	considered,	but	

only	5.5%	with	CO2	considered.	But	in	Baishan	(a	county	in	east	Jilin),	the	CO2	effect	

resulted	in	about	3%	increase	in	maize	yield	under	the	same	scenario.		

	

Higher	 CO2	 level	 is	 thought	 to	 increase	 the	 leaf	 stomatal	 resistance,	 and	 thus	 the	

water	loss	in	crop	transpiration	is	reduced.	In	the	limited	irrigation	run,	which	can	

only	 provide	 about	 50%	 of	 the	 ideal	 water	 demand,	 water	 stress	 on	 biomass	

production	 are	 reduced	 significantly	 because	 of	 the	 CO2	 effect	 on	 stomatal	

resistance.	

	

To	explain	how	does	CO2	influences	maize	growth	under	different	irrigations	in	this	

model,	we	did	 the	 single‐run	 simulations	 at	123.46E	 longitude	 and	45.6N	 latitude	
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(in	 the	 dry	 western	 area)	 where	 the	 CO2	 fertilization	 effect	 is	 40%	 with	 limited	

irrigation,	 using	 1)	 the	 automatic	 irrigation	 which	 provides	 as	 much	 water	 as	

demand	 (called	 “well	 irrigation	 condition”)	 and	 2)	 the	 irrigation	 method	 in	 this	

study	(described	in	Section	3.4.2),	in	which	the	total	amount	of	irrigation	is	limited,	

as	referred	as	“limited	irrigation”.		

	

In	the	automatic	irrigation	run,	the	crop	was	very	well	watered,	and	the	simulated	

daily	 biomass	 productions	 with	 or	 without	 CO2	 effect	 had	 only	 small	 differences	

from	each	other	(bottom	left	in	B.6).	But	in	the	limited	irrigation	run,	which	can	only	

provide	about	50%	of	the	ideal	water	demand,	water	stress	on	biomass	production	

(the	sudden	drop	in	top	left	of	B.6)	are	reduced	significantly	because	of	CO2	effect	on	

stomatal	 resistance.	 Higher	 CO2	 levels	 are	 thought	 to	 increase	 the	 leaf	 stomatal	

resistance,	and	thus	the	water	loss	in	crop	transpiration	is	reduced.		

	

The	Fig.	B.7	gives	an	example	of	sudden	drop	in	daily	biomass	production	caused	by	

water	stress	under	insufficient	irrigation	experiments.	Given	the	same	irrigation,	the	

water	stress	on	the	52‐nd	day,	the	biomass	production	with	concerning	CO2	effect	is	

larger	 than	 that	without	CO2	 effect.	 Similar	 case	 also	happens	on	 the	55‐th,	64‐th,	

and	67‐th	day.	Such	a	difference	in	daily	biomass	is	cumulated	day	by	day,	and	then	

results	 in	 great	 differences	 of	 the	 total	 biomass	 production	 and	 yield	 formation.	

Whether	 this	 significant	 CO2	 effect	 under	 insufficient	 irrigation	 regime	 is	 realistic	

needs	to	be	tested	both	by	model	design	and	field	experiments.	
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5 Chapter	5	Impacts	of	Climate	Change	on	
Maize:	a	Case	Study	of	China	

 

5.1 Introduction	

The	simulations	by	the	improved	DSSAT	model	were	also	carried	out	for	the	whole	

of	China	(10	km×10	km)	in	order	to	reveal	the	impacts	of	climate	change	in	the	main	

maize	 growing	 areas,	 e.g.	 the	Northeast	 spring	maize	 area,	 the	 North	 China	 Plain	

(NPC)	summer	maize	area,	and	the	Southwest	area	spring	maize	area.	

	

The	provincial	average	of	the	simulated	yields	was	calculated	by	

, ∑ ∙
,
		 	 (Eq.	5‐1)	

	

where	 .	The	 igrid	 is	 the	number	of	 grid,	 iprov	 (iprov=1,	…,	31)	

denotes	 the	 province,	 and	 it	 presents	 the	 it‐th	 year.	 The	 Areaigrid	 is	 the	 maize	

cropping	 area	 of	 the	 igrid‐th	 cell.	 The	 simulated	 national	 yield	 (Yield0,	 it)	 was	

obtained	by		

, ∑ , ∙ ,

∑ ,
		 (Eq.	5‐2)	

	

where	 Yieldiprov,	it	 is	 the	 provincial	 average	 yield	 obtained	 above,	Areaiprov,	it	 is	 the	

sown	area	of	maize	in	the	iprov‐th	province	at	year	it.	Areaiprov,	it	is	derived	from	the	

China	statistical	yearbooks	(Statistics	NBS,	2007).		
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5.1.1 Input	data	and	climate	scenarios	

	

In	 this	 chapter,	 the	 same	 input	 data	 and	 climate	 scenarios	 were	 used	 as	 for	 Jilin	

province,	except	for	the	soil	and	management	data.		

	

5.1.1.1 Soil	data	

In	the	simulation	of	China,	the	soil	data	derived	from	the	Soil	Map	of	China	at	scale	

1:1	million	(Shi	et	al.,	2004;	Zhang	&	Zhao,	2008)	were	used.	The	soil	profile	in	this	

soil	 map	 offers	 most	 soil	 properties	 required	 by	 DSSAT,	 and	 the	 rest	 of	 the	

properties	were	estimated	by	the	methods	described	in	Chapter	4.		

	

5.1.1.2 Cropping	management	data	

	

The	management	data	for	sowing	date,	irrigation	quota,	total	fertilization	and	maize	

cultivars	 were	 obtained	 by	 province,	 as	 shown	 in	 Table	 5‐1,	 and	 the	 genotype	

parameters	 of	 maize	 cultivars	 are	 given	 in	 Table	 5‐2.	 The	 planting	 density	 (6	

plants/m2)	 was	 set	 to	 the	 same	 value	 for	 the	 study	 area.	 Only	 the	 ammonium	

nitrogen	fertilizer	was	considered	in	the	fertilization	and	applied	evenly	during	the	

growing	 season.	 The	 irrigation	 was	 applied	 following	 the	 scheme	 described	 in	

Section	3.4.2.	The	province	location	in	China	is	given	in	Figure	5‐4.		
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Table	5‐1	Management	and	cultivar	settings	in	the	whole‐of‐China	simulation.	

No.	 Province	 Sowing	date	 Irrigation	quota*	 Fertilization**	 Cultivar		

(Julian	day)	 (mm)	 (kg/ha/year)	 code	

1	 Beijing	 160	 150	 428	 1

2	 Tianjin	 160	 180	 357	 1

3	 Hebei	 160	 300	 317	 1

4	 Shanxi	 160	 300	 234	 1

5	 Inner	Mongolia	 116	 350	 151	 2

6	 Liaoning	 106	 315	 303	 2

7	 Jilin	 110	 350	 265	 2

8	 Heilongjiang	 116	 310	 135	 2

9	 Shanghai	 109	 570	 357	 3

10	 Jiangsu	 109	 570	 431	 1

11	 Zhejiang	 109	 52.5	 296	 3

12	 Anhui	 109	 570	 301	 1

13	 Fujian	 109	 52.5	 453	 3

14	 Jiangxi	 109	 52.5	 215	 3

15	 Shandong	 160	 265	 395	 1

16	 Henan	 160	 210	 338	 4

17	 Hubei	 109	 90	 358	 3

18	 Hunan	 109	 90	 240	 3

*The	provincial	irrigation	quota	was	collected	from	the	official	water	consumption	
quota	determined	by	specific	province	governments	(Provincial	water	quota,	2010).		
**The	annual	fertilizer	use	was	calculated	by	the	total	consumption	of	chemical	
fertilization	and	the	cropping	area,	both	of	which	are	derived	from	the	China	
statistical	yearbooks	(Statistics	NBS,	1995‐2005).			
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Table	5‐1	Management	settings	used	in	the	whole‐of‐China	simulation	(continued).	

No.	 Province	 Sowing	date	 Irrigation	quota*	 Fertilization**	 Cultivar		

(Julian	day)	 (mm/year)	 (kg/ha/year)	 code	

19	 Guangdong	 109	 68	 389	 3 

20	 Guangxi	 109	 180	 278	 3 

21	 Hainan	 109	 68	 361	 3 

21	 Hainan	 109	 68	 361	 3 

22	 Chongqing	 116	 90	 211	 5 

23	 Sichuan	 106	 97.5	 223	 6 

24	 Guizhou	 106	 97.5	 155	 5 

25	 Yunnan	 106	 97.5	 215	 7 

26	 Xizang	 158	 510	 142	 8 

27	 Shaanxi	 160	 375	 317	 1 

28	 Gansu	 116	 750	 185	 1 

29	 Qinghai	 158	 510	 138	 1 

30	 Ningxia	 116	 510	 232	 1 

31	 Xinjiang	 148	 510	 258	 1 

*The	provincial	irrigation	quota	was	collected	from	the	official	water	consumption	
quota	determined	by	specific	province	governments	(Provincial	water	quota,	2010).		
**The	annual	fertilizer‐use	was	calculated	by	the	total	consumption	of	chemical	
fertilization	and	the	cropping	area,	both	of	which	are	derived	from	China	statistical	
yearbooks	(Statistics	NBS,	1995‐2005).			
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Table	5‐2	The	genotypic	parameters	of	maize	cultivars	used	for	the	whole‐of‐China	
simulation.	

Cultivar	Code	 P1	 P2	 P5	 G2	 G3	 PHINT	

1	 280	 0.3	 850	 700	 8	 38.9	

2	 280	 0.3	 790	 720	 8.5	 38.9	

3	 280	 0.3	 750	 700	 8	 38.9	

4	 280	 0.3	 900	 700	 8	 38.9	

5	 320	 0.3	 750	 700	 8	 38.9	

6	 320	 0.3	 900	 700	 8	 38.9	

7	 280	 0.3	 650	 700	 8	 38.9	

8	 320	 0.3	 650	 700	 8	 38.9	

 

	

5.2 Impacts	of	climate	change	on	maize	production	in	China	

 

Figure	 5‐1	 gives	 the	 simulation	 of	maize	 yield	 under	 the	 baseline	 climate	 (1960‐

1990),	corresponding	to	an	obvious	maize	zone	in	China	from	the	northeast	plain	to	

the	 southwest	 areas.	 Comparing	 the	 census	 yield,	 as	 shown	 in	 Figure	 5‐2,	 the	

baseline	 simulation	 performs	 moderately	 well	 in	 the	 North	 China	 Plain	 (NCP),	

Northeast	areas,	and	central	south	areas.	In	the	main	cultivating	provinces	of	maize,	

i.e.	 Jilin,	 Heilongjiang,	 Liaoning,	 Shandong,	 Hebei,	 Henan,	 Inner	 Mongolia,	 and	

Sichuan	 (those	 provinces	 contribute	 about	 70%	 of	 the	 total	 maize	 production	 of	

China,	see	Figure	5‐2),	the	bias	of	simulated	yield	to	the	statistics	is	about	17%	on	

average.	 	The	model	does	not	produce	qualified	simulations	 in	the	minor	cropping	

areas	of	maize	like	Fujian	and	Jiangxi,	and	in	those	small	provinces	like	Tianjin	and	

Chongqing.	 The	 worst	 simulations	 appeared	 in	 Xizang,	 Qinghai,	 Xinjiang,	 and	

Ningxia,	 which	 were	 extremely	 lower	 than	 the	 statistical	 yield.	 The	 model	
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performance	to	simulate	the	maize	yield	in	major	maize‐cropping	regions	(i.e.	Jilin,	

Shandong,	 Hebei,	 Heilongjiang,	 Henan,	 Liaoning,	 and	 Inner	 Mongolia)	 was	

moderately	 well	 for	 both	 spring	 and	 summer	 cultivars,	 except	 for	 the	

overestimation	of	the	spring	cultivar	in	Sichuan	province,	Southwest	China.		

	

The	 underestimation	 in	 some	 provinces,	 i.e.	 Xinjiang,	 Xizang,	 Qinghai,	 is	 likely	 to	

have	been	caused	by	1)	 the	unsuitable	cultivars	employed,	2)	 the	 inaccurate	daily	

weather	generated,	 and	3)	 the	unsuitable	 sowing	date.	The	parameters	of	 current	

cultivars	 used	 were	 originally	 calibrated	 in	 other	 spring	 maize	 areas.	 The	 daily	

weather	was	generated	rather	than	actual	observations.	The	weather	generator	was	

not	 tested	 for	 Xizang	 and	 Qinghai	 at	 their	 higher	 elevations,	 so	 it	 may	 produce	

extreme	values	that	would	affect	the	growth	process.	The	sowing	date	is	fixed	in	this	

simulation,	thus	if	the	initial	weather	condition	is	not	suitable,	the	growth	will	stop	

quickly	and	no	grain	will	be	produced,	which	would	cause	the	extremely	low	yield.	

However,	 considering	 the	 planting	 area	 of	 maize	 (see	 Fig.	 5‐4)	 in	 these	 three	

provinces,	 the	maize	 is	 rarely	 planted,	 so	 this	 underestimation	may	not	 affect	 the	

final	results	at	a	country	level.		
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Figure	5‐1	The	simulation	of	maize	yield	in	China	under	the	baseline	climate.	

 

	

 
Figure	5‐2	The	provincial	average	yield	(blue	bars	are	the	simulated	yields	and	
orange	bars	are	the	census	yields	from	1995	to	2005).	
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Figure	5‐3	The	share	of	provincial	(a)	maize	production	and	(b)	sown	area	
historically	(1995	–	2005).	

 

	

	

Figure	5‐4	The	percentage	of	sown	area	in	maize	in	each	grid.	
The	percentage	 in	grid	 is	 the	ratio	of	maize‐cropping	area	 to	the	 total	area	of	 that	
grid.		
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5.2.1 Impacts	on	yield	and	maturity	period	

	

The	projection	of	maize	production	was	then	carried	out	for	the	years	2020,	2050,	

and	 2070.	 All	 the	 settings	 of	 model	 were	 as	 exactly	 the	 same	 as	 mentioned	 in	

Chapter	3	and	Chapter	4	except	those	proposed	in	section	5.1.	And	no	adaptations	

were	applied	in	projection.			

	

The	 maize	 yield	 in	 major	 cropping	 areas	 is	 projected	 to	 fall	 significantly	 in	 the	

coming	decades,	 i.e.	2020s,	2050s,	and	2070s.	The	average	reduction	of	yield	over	

the	whole	 of	 China	 is	 about	 3%	 in	 the	 2020s,	 10%	 in	 the	 2050s,	 and	 14%	 in	 the	

2070s,	 respectively,	 under	 the	 median	 climate	 change	 scenario.	 In	 general,	 the	

northeast	spring	maize	and	the	north	summer	maize	may	decline	by	about	15%,	20%	

and	25%	in	2020,	2050,	and	2070,	respectively.	The	absolute	reduction	 in	yield	 is	

about	600	kg/ha	in	the	Northeast	and	NCP	areas,	and	300	kg/ha	on	average	in	the	

Southwest	provinces.	The	most	important	provinces	for	maize	production,	Jilin	and	

Shandong,	may	suffer	the	largest	reduction,	about	30%	of	the	baseline	yield	by	the	

year	2070.	In	contrast,	future	climate	change	has	favourable	effects	on	maize	yield	

in	 the	areas	along	the	northeast	 to	southwest	maize	zones,	 including	 the	marginal	

areas	of	Northeast	China,	northern	parts	of	Hebei,	parts	of	Shaanxi	and	Shanxi,	and	

the	boundary	areas	of	the	Chengdu	plain	in	Sichuan.		
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Figure	5‐5	The	 changes	 in	 simulated	maize	 yield	 in	 (a)	 2020,	 (b)	 2050,	 (c)2070	
under	the	median	climate	change	scenario.		

(a)	2020	

(b)	2050	

(c)	2070	
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Figure	5‐6	The	 changes	 in	 days	 to	maturity	 in	 (a)	 2020,	 (b)	 2050,	 (c)	 2070.	 The	
negative	values	mean	that	the	maturity	period	is	shortened,	and	the	positive	values	
shows	increased	maturity	period.	

(a)	2020	

(b)	2050	

(c)	2070	



122 
 

The	 change	 in	 maturity	 periods	 has	 a	 quite	 similar	 spatial	 pattern	 to	 the	 yield	

variations:	in	those	areas	where	maize	yield	is	likely	to	decline,	the	growth	days	to	

maturity	 are	 also	 shortened	 significantly,	 and	 the	 significant	 shrinking	 in	 growth	

days	 spatially	matches	 the	 large	 falls	 in	maize	yield.	The	 spring	maize	 area	 in	 the	

Northeast	 suffers	 the	biggest	 reduction	 in	maturity	period.	The	growing	season	of	

maize	is	likely	to	increase	just	in	the	neighbouring	areas	of	the	Chinese	maize	zone	

where	the	 thermal	condition	 is	 the	key	 factor	 limiting	maize	cropping,	such	as	the	

western	 mountain	 areas	 of	 Sichuan	 and	 Xinjiang,	 and	 the	 border	 land	 between	

Hebei	 and	 Inner	 Mongolia.	 The	 growing	 season	 in	 DSSAT	 was	 decided	 by	 the	

cumulative	 temperature	 above	 a	 base	 value	 and	 the	 parametersP1,	 P2,	 and	 P5	 of	

genotype.	When	the	cumulative	temperature	is	calculated	to	satisfy	the	requirement	

on	 P1/P2/P5,	 the	 crop	 growth	 will	 move	 to	 the	 next	 phase,	 and	 if	 temperature	

below	a	certain	lower	criteria,	the	growth	will	cease.	So	with	warming	climate,	the	

crop	 has	 longer	 period	 with	 temperature	 above	 the	 base	 before	 the	 falling	

temperatures	prevent	growth.	The	improvements	in	thermal	conditions	induced	by	

warming	 climate	 in	 those	 areas	 may	 produce	 a	 prolonged	 growing	 season	

synchronous	with	the	increasing	yield	of	maize.	For	example,	an	extension	of	10~20	

days	 in	maize	growth	will	bring	about	1000	kg/ha	 increase	 in	western	Sichuan	 in	

the	 year	 2020.	 The	 maturity	 days	 will	 be	 increasing	 rapidly	 from	 2020	 to	 2070,	

whereas	 the	 rise	 in	yield	 is	projected	 to	vary	very	 slightly	 in	different	 time	 slices,	

remaining	 at	 the	 1000~2000	 kg/ha	 level	 through	 the	 coming	 decades.	 This	

indicates	 that	 the	 profitable	 effect	 on	 maize	 production	 produced	 by	 a	 warming	

climate	 is	 not	 only	 narrowed	 in	 a	 quite	 small	 spatial	 scope,	 but	 also	 limited	 in	

particular	time	periods.	

	

5.2.2 Uncertainty	among	six	climate	change	scenarios	

 

As	 mentioned	 in	 Chapter	 3,	 six	 emission	 scenarios	 and	 20	 GCMs	 were	 used	 to	

generate	 full	 scale	 climate	 change	 scenarios	 in	 China.	 In	 this	 section,	 the	 climate	
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change	pattern	under	a	specific	emission	scenario	is	only	the	median	one	produced	

by	 all	 20	 GCMs.	 The	 national	 average	 yield	 of	 projections	 was	 calculated	 by	 the	

method	 described	 in	 Section	 5.1,	 considering	 the	 historical	 contribution	 of	 each	

province	to	the	total	maize	production.		

	

On	average,	 the	national	yield	 is	projected	 to	keep	 falling	 in	all	provinces	 through	

the	 21st	 century,	 especially	 if	 the	 rapid	 reduction	 occurs	 under	 the	 A1FI	 scenario	

after	2020s	(Figure	5‐7).	The	total	reduction	in	2020,	2050,	and	2070	is	3%,	9%	and	

14%	of	the	baseline	level,	respectively.	The	projections	under	A1B,	A1T,	and	A2	are	

very	close	to	the	median	projection	by	the	year	2070,	and	the	B1	and	B2	emission	

scenarios	 may	 produce	 smaller	 reductions	 in	 the	 long	 run.	 The	 six	 emission	

scenarios	 could	 result	 in	 quite	 different	 projections	 of	 maize	 yield	 in	 the	 whole	

country.	The	difference	between	the	worst	prediction	of	maize	yield	under	A1FI	and	

that	under	B1	will	be	more	than	10%	of	the	baseline	yield	in	year	2070.	
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Figure	5‐7	The	average	simulated	maize	yield	of	China	under	the	six	climate	
scenarios	and	their	median	in	years	2020,	2050,	and	2070	(time	series).	

 

	
Figure	5‐8	The	reduction	ratio	of	average	simulated	maize	yield	of	China	under	the	
six	climate	scenarios	and	their	median	in	years	2020,	2050,	and	2070.		

4000

4200

4400

4600

4800

5000

5200

5400

5600

2000 2010 2020 2030 2040 2050 2060 2070

N
a
ti
o
n
a
l a
ve
ra
g
e
 y
ie
ld
 (k
g/
h
a
)

Year

Median
A1B
A1FI
A1T
A2
B1
B2

‐22%

‐20%

‐18%

‐16%

‐14%

‐12%

‐10%

‐8%

‐6%

‐4%

‐2%

0%

Median A1B A1FI A1T A2 B1 B2

2020

2050

2070



125 
 

	
Figure	5‐9	The	range	of	maize	yield	projections	under	the	6	SRES	emission	
scenarios	in	2020,	2050,	and	2070	by	20	GCMs.	
The	projected	yield	under	the	median	climate	change	scenario	is	marked	by	the	
crosses.	

	

The	 responses	 of	 provincial	 average	 yield	 to	 the	 six	 emission	 scenarios	 are	 very	

different	 from	 those	 at	 the	 national	 scale.	 Seventeen	 provinces	 were	 chosen	 that	

were	 located	 in	 the	main	 areas	 of	maize	 production	 which	 are	 the	 northern	 and	

southern	parts	of	the	North	China	Plain	(NCP‐1	and	NCP‐2,	summer	maize	area),	the	

Northeast	 spring	 maize	 area,	 and	 the	 Southwest	 spring	 maize	 area.	 The	 yield	

projection	 of	 Hebei	 province	 in	 NCP‐1	 varies	 in	 a	 much	 smaller	 range	 than	 the	

national	 average,	while	 the	 yield	 of	 Shanxi	 increases	with	 a	 bigger	 variation.	 The	

different	climate	change	scenarios	may	produce	greater	variances	in	the	provinces	

of	 NCP‐2,	 except	 Jiangsu,	 than	 in	 the	 whole	 country.	 The	 largest	 variances	 of	

provincial	yield	among	climate	change	scenarios	appears	in	the	Northeast	areas,	and	

the	average	variance	of	Heilongjiang,	Jilin	and	Liaoning	is	about	938	kg/ha,	14%	of	
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the	baseline	yield.	Compared	to	the	other	three	areas,	the	Southwest	area	is	likely	to	

keep	a	considerably	stable	level	of	maize	yield	in	the	future.	Figure	5‐9	reveals	that	

the	spring	maize	in	the	very	northern	area	of	China	is	seriously	affected	by	the	local	

warming	climate,	but	the	influences	on	spring	maize	in	the	southwest	area	are	quite	

small.	The	 summer	maize	 in	 the	northern	parts	of	NCP	 seems	 to	benefit	 from	 the	

positive	effects	of	climate	change	with	a	higher	irrigation	level	(300	mm),	and	that	

in	 the	 southern	 parts	 of	 NCP	 with	 irrigation	 of	 only	 about	 200	 mm,	 is	 probably	

stressed	by	the	rising	temperature.		

 

5.3 Summary	

 

When	 the	 climate	 change	 impact	 is	 considered,	 maize	 yield	 is	 likely	 to	 drop	

significantly	 in	the	main	cropping	provinces	of	China.	 In	major	cropping	areas	(i.e.	

Jilin,	Heilongjiang,	Liaoning,	Shandong,	Hebei,	Henan,	Neimeng,	and	Sichuan),	there	

will	be	a	significant	drop	in	yield	for	either	spring	or	summer	cultivars.	The	average	

reduction	 of	 yield	 is	 about	 3%	 in	 the	 2020s,	 10%	 in	 the	 2050s,	 and	 14%	 in	 the	

2070s,	 respectively,	 under	 the	 median	 climate	 change	 scenario.	 In	 the	 first	 two	

important	areas	of	maize	production	(Jilin	and	Shandong),	maize	yield	is	predicted	

to	decline	by	about	30%	of	 the	baseline	yield	 in	the	year	2070.	The	future	climate	

change	 has	 favourable	 effects	 on	maize	 yield	 in	 the	 areas	 along	 the	 northeast	 to	

southwest	maize	 zone,	 including	 the	marginal	 areas	 of	 Northeast	 China,	 northern	

parts	of	Hebei,	parts	of	Shaanxi	and	Shanxi,	and	the	boundary	areas	of	the	Chengdu	

plain	in	Sichuan.		

	

In	those	areas	where	maize	yield	is	likely	to	decline,	the	growth	days	to	maturity	are	

also	shortened	significantly.	The	spring	maize	area	in	the	Northeast	will	suffer	the	

biggest	reduction	in	maturity	period,	about	20	days	shorter	in	the	worst	case	by	the	
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year	2070.	The	improvements	in	thermal	condition	induced	by	a	warming	climate	in	

those	 areas	 may	 produce	 a	 prolonged	 growing	 season	 synchronous	 with	 the	

increasing	yield	of	maize.	But	the	profitable	effect	on	maize	production	produced	by	

a	 warming	 climate	 is	 not	 only	 narrowed	 in	 a	 quite	 small	 spatial	 scope,	 but	 also	

limited	in	particular	time	periods.		

	

The	difference	between	the	lowest	prediction	of	maize	yield	under	climate	scenario	

A1FI	and	that	of	the	highest	yield	under	B1	will	be	more	than	10%	of	the	baseline	

yield	by	year	2070.	The	responses	of	the	provincial	average	yield	to	the	six	emission	

scenarios	are	very	different	from	those	on	the	national	scale.	

	

The	 impacts	 on	 maize	 production	 due	 to	 climate	 change	 in	 the	 entire	 China	 are	

predicted	to	be	considerably	significant	 in	future	decades	by	the	bio‐physical	crop	

model,	potentially	raising	the	risk	of	food	insecurity	in	China.	How	would	the	socio‐

economic	system	respond	to	 the	possible	yield	reduction	of	a	 crop?	Are	 there	any	

strategies	 that	 the	 government	 can	 take	 to	 slacken	 or	 offset	 the	 negative	

consequences?	 In	 the	 next	 two	 chapters,	 a	 food	 economic	model	 is	 developed	 in	

order	 to	model	 the	 food	 economy	 taking	 climate	 change	 impacts	 into	 account	 to	

answer	these	questions.		
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6 Chapter	6	Food	Economic	Model	
 

6.1 Introduction	

	

Due	 to	 its	 large	 population	 and	 fast	 economic	 development,	 China’s	 food	 security	

has	 attracted	 intensive	 and	 extensive	 research	 during	 the	 last	 decades,	 both	

nationally	and	internationally,	because	such	an	issue	has	significant	implications	for	

global	food	security.	Most	research	was	concerned	mainly	with	economic	reactions	

and	 consequences	 under	 the	 assumption	 of	 stable	 crop	 productivity	 with	 normal	

climate	status.	Recently,	 there	has	been	 increasing	demand	 for	assessments	of	 the	

impacts	 of	 climate	 change	 on	 China’s	 food	 security,	 in	 order	 to	 support	 potential	

adaptation	planning.	Although	some	researchers	(Tao	et	al.,	2003b;	Lin	et	al.,	2005;	

Xiong	 et	 al.,	 2007a;	 Xiong	 et	 al.,	 2007b;	 Li	 et	 al.,	 2011)	 have	 investigated	physical	

impacts	on	crop	production	under	diverse	climate	change	scenarios	for	China’s	food	

security,	 there	 are	 still	 research	 demands	 of	 incorporation	 of	 the	 bio‐physical	

impact	into	the	socio‐economic	system.		

	

The	 most	 important	 change	 in	 Chinese	 society	 is	 the	 extensive	 urbanization	 in	

recent	 decades,	 which	 has	 induced	 an	 increase	 in	 food	 demand,	 especially	 the	

demand	for	“good	quality”	food	(high‐protein	and	healthier	food),	such	as	meat	and	

dairy	 products.	 Nowadays,	 China's	 economy	 is	 characterised	 by	 the	 interwoven	

influences	 of	 the	 powerful	 centralized	 policy	 and	 the	 increasing	market	 economic	

forces	 after	 the	 1978	 reforms.	 Therefore	 the	 food	 economy	 in	 China	 is	 not	 only	

controlled	 by	 the	 normal	 market	 mechanics,	 but	 also	 strongly	 affected	 by	

agricultural	 policy	 and	 government	 investments	 in	 agricultural	 sectors.	 Such	

characteristics	of	food	economy	need	to	be	carefully	considered	in	a	food	economic	

model.		
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Huang	&	Li	(1999)	suggested	a	model,	CAPSiM,	which	simulates	the	actual	market	of	

food	products	with	consideration	of	the	influences	of	economic	and	policy	factors	on	

the	 agricultural	 sector.	 The	 food	 market	 in	 their	 model	 is	 described	 as	 an	

equilibrium	 process	 including	 the	 prices	 of	 food	 commodities,	 policy	 factors	 (e.g.	

investment	in	agriculture	and	technology	stock),	environmental	influences,	land	and	

labour	prices,	urbanization,	and	market	development.	Based	on	the	CAPSiM	model,	

Huang	 &	 Chen	 (1999)	 studied	 the	 influences	 of	 trade	 liberalization	 on	 China’s	

agriculture	and	grain	self‐sufficiency	after	joining	the	WTO,	including	the	effects	of	

specific	macro‐economic	 policies	 on	 the	 agricultural	 sector,	 farmer’s	welfare,	 and	

food	 self‐sufficiency.	 The	 model	 is	 built	 on	 the	 price	 mechanics	 by	 which	 the	

variables	 of	 food	 supply	 and	 demand,	 including	 changes	 in	 crop	 yield,	 are	mainly	

determined	 by	 prices	 of	 food	 commodities	 and	 agricultural	 inputs	 (i.e.	 fertilizer,	

labour	and	land)	in	addition	to	the	non‐price	factors	such	as	government	investment,	

subsidy,	and	income.		

	

However,	in	reality,	only	the	sown	area	of	a	certain	crop	is	determined	by	the	prices	

of	 commodities,	 labour,	 and	 land.	 The	 crop	 yield	 actually	 depends	 on	 the	 bio‐

physical	 productivity	 of	 a	 specific	 cultivar,	 agricultural	 technology	 (e.g.	 cropping	

management),	 and	 environmental	 factors	 (e.g.	 soil	 and	 climate	 conditions),	 not	

those	prices	used	in	the	CAPSiM	model.		

	

Therefore,	an	 improved	model	was	developed	 for	 the	 thesis	study	by	constructing	

the	 function	 of	 crop	 yield	 with	 only	 those	 non‐price	 factors,	 e.g.	 investment	 in	

agricultural	research,	investment	in	irrigation	facilities	and	environmental	stresses.	

Investment	 in	agricultural	 technology	represents	the	effects	of	upgrading	cultivars	

for	yield	and	development	of	cropping	management,	and	investment	in	constructing	

irrigation	systems	representing	the	growth	of	irrigation	efficiency	and	the	increase	

in	 high‐potential	 croplands,	 being	 the	 most	 crucial	 variables	 to	 guarantee	 stable	

crop	production.		
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In	order	 to	 incorporate	 the	climate	change	 impacts	 into	 the	 food	economic	model,	

the	changes	in	yield	of	a	certain	crop	simulated	by	the	improved	DSSAT	model	were	

firstly	aggraded	from	grids	up	to	national	level	as	described	in	Section	5.1.	This	was	

then	 added	 into	 the	 improved	 yield	 function	 of	 the	 food	 economic	 model	 as	 the	

environmental	 stress.	 For	 coupling	 of	 the	 improved	DSSAT	 into	 one	 package,	 this	

food	 economic	 model	 was	 developed	 using	 Fortran90.	 Details	 of	 the	 model	

integration	are	discussed	in	this	chapter. 

 

6.2 Module	structure	

	

Following	the	modelling	approach	of	Huang	&	Li	(1999),	the	food	economic	model	in	

this	research	describes	an	economic	system	including	the	production,	consumption,	

international	 trade	 of	 11	 crops	 and	 7	 livestock	 products.	 It	 has	 two	 major	

components,	 food	 supply	 and	 demand.	 The	 supply	 component	 simulates	 the	

response	 of	 crop	 and	 livestock	 production	 to	 the	 producer‐side	 prices,	 internal	

input,	and	external	shocks.	The	demand	component	calculates	food	consumption	for	

rural	and	urban	communities	given	income	and	consumer‐side	prices,	the	demand	

for	feed,	seed,	industry,	and	waste.		

	

Crop	and	livestock	supply	and	production	are	determined	by	the	producer	price,	the	

prices	of	other	competing	commodities	(e.g.	wheat,	maize	and	other	grains	are	the	

competing	 commodities	 for	 rice),	 the	 prices	 of	 internal	 inputs	 (i.e.	 fertilizer	 and	

labour),	 empirical	 input	 (i.e.	 investment	 in	 agricultural	 technology	 and	 irrigation	

systems),	and	the	external	shocks	(i.e.	natural	disasters,	impacts	of	climate	change,	

and	agricultural	policy).	The	internal	inputs	are	determined	by	the	economic	system,	

while	 the	empirical	 inputs	and	external	shocks	are	exogenous	non‐market	 factors,	

added	by	external	drivers,	e.g.	government	and	environment.	



131 
 

	

The	 consumption	 of	 crop	 and	 livestock	 were	 simulated	 separately	 for	 urban	 and	

rural	 communities	 using	 different	 elasticities.	 It	 is	 a	 function	 of	 income,	 its	

consumer	 prices,	 the	 prices	 of	 other	 substitute	 commodities,	 and	 the	 market	

development.	 The	 market	 system	 in	 urban	 communities	 is	 assumed	 to	 be	 well	

developed,	and	the	effects	of	market	development	were	only	considered	in	the	rural	

community.		

	

In	general,	the	production	and	consumption	equations	are	assumed	to	be	modelled	

by	the	Cobb‐Douglas	function,		

	 ∙ ∏ 		 (Eq.	6‐1)		

where	 	is	the	quantity	of	input	factors,	e.g.	capital	and	labour;	Q	is	the	quantity	of	

output;	and	 	and	 are	the	empirical	parameters.	The	parameter	 	is	a	scale	factor	

to	evaluate	the	long‐term	level	of	output	productivity,	which	is	usually	taken	as	the	

productivity	 measuring	 the	 long‐term	 improvement	 in	 technology;	 and	 the	

parameter	 is	usually	called	economic	elasticity,	 indicating	 the	percentage	change	

of	Q	with	per	unit	change	of	 .	

	

The	logarithmic	form	of	the	Cobb‐Douglas	function	is:	

	 ∑ ∙ 		 (Eq.	6‐2)	

Its	differential	form	with	respect	to	time:	

∙ ∑ ∙ 		 (Eq.	6‐3)	

Thus	the	percentage	change	in	 	between	the	year	t	and	t+1	can	be	easily	calculated	

by		

∑ ∙ ,

,
			 (Eq.	6‐4)	
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where	
Δ
	(or		

Δ ,

,
)	is	the	percentage	change	of	Q	(or	Xi)	between	the	year	t	and	t+1,	

Δ 	and	Δ , , , .	 If	 the	 variable	 Xi	 is	 the	 input	 factor	

represented	 in	 index	 numbers,	 	
Δ ,

,
	is	 namely	 the	 relative	 change	 of	Xi	 in	 the	 t+1	

year	to	its	base	value	in	the	year	t.			

	

For	index	numbers,	it	is	usually	taken	as	the	index	value	of	100	in	the	base	year,	and	

the	index	values	in	the	other	years	are	expressed	as	the	percentage	of	the	base	year.	

The	index	value	is	obtained	by	

% % ⁄ 			 (Eq.	6‐5)	

where	Xt	is	the	price	in	this	case.		

	

Obviously,	the	time	variation	of	the	Cobb‐Douglas	function	is	greatly	simplified	into	

a	simple	and	clear	 linear	equation	by	 introducing	the	 index	number.	Therefore,	all	

the	 input	 factors	 that	are	 in	 the	 similar	 form	of	 the	Cobb‐Douglas	 function	can	be	

transformed	into	index	numbers	in	model	simulations.	Resorting	to	the	logarithmic	

form	of	the	Cobb‐Douglas	function,	the	annual	increase	in	any	economic	variable	is	

easily	described	and	calculated.		

	

6.2.1 Food	production	
 

The	 production	 equations	 for	 crop	 and	 livestock	 products	 are	 introduced	 in	 this	

section.		
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6.2.1.1 Crop	production	

A	crop's	production	is	determined	by	its	sown	area	multiplied	by	the	yield,	as	well	

as	 the	external	shocks,	such	as	the	natural	disasters,	 the	 investment	 in	agriculture	

and	government	subsidy.	

	

The	sown	area	of	a	crop	is	assumed	to	react	to	its	own	price,	the	other	crops'	prices	

and	input	factors’	prices,	as	well	as	subsidy.		

	

The	crop	yield	is	not	just	determined	by	the	physical	environmental	factors,	e.g.	the	

impacts	of	climate	change,	but	also	by	the	investments	in	agriculture	and	cropping	

management	systems,	e.g.	investment	in	improving	agricultural	techniques,	and	the	

effective	irrigation	area.	

	

The	equations	of	area,	yield	and	production	are	assumed	to	follow	the	Cobb‐Douglas	

function,	as	in:	

Area:	

,
, ∙ ,

, ∙ ,
, ∙ ,

, 	

(Eq.	6‐6)	

Yield:	

,
, ∙ ∏ ,

, ∙ ,
, 	 	 	 	 										(Eq.	6‐7)	

Production:	

, , ∙ , ∙ ∏ , , 		 	 	 	 	 										(Eq.	6‐8)	
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Thus,	we	can	get	their	variant	forms:		

∆ , ,⁄ ∑ , ∙ ∆ , , ∑ , ∙ ∆ , ,

∑ , ∙ ∆ , , 		

(Eq.	6‐9)	

∆ , ,⁄ ∑ , ∙ ∆ , , , ∙ ∆ , , 		
	

(Eq.	6‐10)	

∆ , , ∆ , ,⁄ ∆ , ,⁄ ∑ , ∙ ∆ , , 		

(Eq.	6‐11)	

where		

, ,	 , ,	and	 , 	are	the	sown	area,	yield,	and	production	of	the	ic‐th	crop	at	the	

t‐th	time	slice,	

, ,	is	the	producer‐side	price	of	the	jc‐th	crop	at	the	t‐th	time	slice,	

, ,	is	the	price	of	input	factors	(i.e.	labour,	land,	fertilizer,	when	jc=1,	2,	3)	at	the	t‐

th	time	slice,	

, ,	 is	 the	 exogenous	 shock	 on	 sown	 area	 change,	 i.e.	 the	 price	 subsidy	 for	

planting	a	crop	(jc=1),	and	the	agriculture	tax	(which	was	cancelled	after	2005,	jc=2),		

, ,	is	the	exogenous	shock	on	crop	yield,	including	the	investments	in	agricultural	

research	(jc=1)	and	the	area	of	effective	irrigation	(jc=2),	

, ,	is	the	yield	corruption	of	the	ic‐th	crop	due	to	climate	change,	in	this	study,	

only	maize	reduction	induced	by	climate	change	was	used,	
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, ,	is	the	exogenous	shock	on	total	production	of	the	jc‐th	crop	at	the	t‐th	time	

slice,	i.e.	the	investments	in	support	services	of	agriculture	(jc=1),	 in	farm	facilities	

(jc=2),	and	in	rural	relief	fund	(jc=3),	

, ,	 , ,	 , ,	 are	 the	elasticities	of	 the	produce	prices	of	crops,	 the	 input	

prices	and	the	external	shocks	to	per	unit	change	in	sown	area,	yield	and	production.	

	

A	total	of	11	crops	(ic=1,...,	11)	were	considered:	1)	rice	(the	milled	ratio	of	paddy	to	

rice	 is	 1:0.7),	 2)	wheat,	 3)	maize,	 4)	 tubers	 (sweet	 potato	 and	 potato),	 5)	 coarse	

grains,	6)	soybean,	7)	oil	crops	(in	raw	seeds),	8)	sugar	crop	(in	raw	products),	9)	

vegetables,	10)	cotton	(in	raw	products)	and	11)	fruits.	

	

The	yield	change	due	to	climate	change	( , )	is	summarized	from	the	projections	

in	 2020	 and	 2050	 given	 in	 Chapter	 5.	 The	 average	 status	 of	 food	 security	 under	

climate	change	impact	of	the	coming	decades	could	be	measured	by	the	insufficient	

supply	to	the	total	demand,	which	is	produced	by	the	climate‐driven	changes	in	crop	

yield.		

	

6.2.1.2 Livestock	production	

The	 livestock	production	 is	a	 function	of	 the	prices	of	meat	products,	 input	prices	

such	 as	 fodder	 and	 labour,	 and	 shocks	 such	 as	 support	 policies	 and	 diseases.	

Depending	on	the	feed	efficiencies	and	fodder	resources,	the	livestock	production	in	

China	 has	 three	 modes,	 i.e.	 backyard	 mode,	 specialized	 household	 mode	 and	

commercial	 mode	 (Tian	 &	 Chudleigh,	 1999).	 Generally,	 the	 backyard	 mode	 is	

thought	to	be	a	fully‐feed‐use	but	low‐efficiency‐in‐output	feeding	system,	while	the	

commercial	 mode	 is	 highly	 efficient	 in	 output	 but	 not	 efficient	 in	 feed	 use.	 The	

specialized	household	feeding	is	a	combination	of	the	two	modes.		
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It	is	assumed	that	the	livestock	production	has	a	similar	function	formula	to	the	crop	

production,	but	the	grain‐meat	ratios	and	the	grains’	shares	are	different	(Zhao	et	al.,	

2006).	As	the	livestock	sectors	are	becoming	specialized	and	concentrated	in	recent	

decades,	the	proportion	of	share	of	the	three	modes	in	meat	output	has	changed	and	

will	continue	to	change	in	future.	Therefore	the	livestock	production	component	in	

this	 model	 requires	 inputs	 of	 the	 growth	 rate,	 grain‐meat‐conversion	 ratios	 and	

grains’	shares	in	fodder	of	each	mode.	Three	feeding	modes	were	applied	in	swine	

production,	 while	 only	 the	 specialized	 household	 and	 commercial	 mode	 were	

applied	in	other	livestock	productions.	A	fixed	development	rate	for	specialized	and	

commercial	 modes	 was	 used,	 based	 on	 a	 national	 planning	 for	 livestock	 sectors	

(MOA,	2001).	It	is	a	moderate	estimation	of	meat	production	growth,	with	only	pork	

products	produced	under	backyard	mode.			

	

Livestock	production	in	variation	form:		

∆ , , ∑ , ∙ ∆ , , ∑ , ∙

∆ , ,⁄ ∑ , ∙ ∆ , , 		

(Eq.	6‐12)	

where		

, ,	is	the	production	of	the	im‐th	livestock	at	the	t‐th	time	slice,	

, ,	is	the	producer‐side	price	of	the	jm‐th	livestock	product	at	the	t‐th	time	slice,	

, ,	is	the	input	price	(i.e.	jm=1	for	labour,	jm=2	for	fodder)	at	the	t‐th	time	slice.	

Since	the	main	feeding	resource	is	maize	and	its	products	in	China,	the	forage	price	

is	assumed	to	equal	to	the	maize	price,	
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, ,	is	the	external	shock	on	livestock	production,	i.e.	the	government	subsidy	

in	livestock	sectors	(jm=1),	and	the	disease	damage	(jm=2),	

, ,	is	the	elasticity	of	livestock	product'	prices,	input	prices	and	the	external	

shocks	to	per	unit	change	in	livestock	production,		

7	livestock	products	(nmeat=7)	were	considered,	i.e.	1)	pork,	2)	beef,	3)	mutton,	4)	

poultry,	 5)	 egg,	 6)	 dairy	 products	 (all	 the	 dairy	 products	 were	 converted	 to	 the	

equivalent	of	liquid	fresh	milk),	and	7)	aquatic	products.		

	

The	ratio	of	feed	mode	was	calculated	by		

, , , , ∙ , , 		 (Eq.	6‐13)	

with	the	condition		

∑ , , 		 (Eq.	6‐14)	

where	 , , 	is	 the	 ratio	 of	 the	 imode‐th	 feeding	 mode	 in	 the	 im‐th	

livestock	 production	 at	 the	 t‐th	 time	 slice,	 and	 , , 	is	 the	 growth	

rate	of	the	imode‐th	feeding	mode	in	the	im‐th	livestock	production	at	the	t‐th	time	

slice.	imode	denotes	the	three	feeding	modes:	1)	backyard,	2)	specialized	household,	

and	3)	commercial.		

	

6.2.2 Food	demand	
	

Food	demand	is	determined	by	the	food	consumption,	feed,	seed,	industry	use,	and	

waste.		
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6.2.2.1 Food		

The	per	 capita	 food	 consumption	 is	 assumed	 to	be	a	 function	of	 consumer	prices,	

per	 capita	 income,	 and	 market	 development	 with	 respect	 to	 urban	 or	 rural	

consumers.		

	

Since	the	economic	reform	in	the	early	1980s,	the	grain	circulation	system	of	China	

has	 gradually	 transformed	 from	 the	 strong	 planning‐domination,	 where	 state	

controls	purchasing	and	distribution	to	the	current	overall	open	market	after	2004.	

The	current	dietaries	in	urban	and	rural	areas	are	quite	different.	The	rural	market	

of	food	economy	is	not	yet	fully	developed	in	China.	A	large	number	of	farmers	have	

only	 small	 arable	 land	 areas	 under	 traditional	 intensive	 cultivation,	 and	

decentralization	management	with	 considerably	 low	 levels	 of	mechanization.	 The	

outputs	of	their	own	farm	are	still	their	main	food	source,	and	just	partial	amounts	

of	 products	 are	 sold	 and	 purchased.	 The	 high	 quality	 food,	 like	 dairy	 and	 aquatic	

products,	 is	 hardly	 accessible	 in	 remote	 rural	 areas	 due	 to	 under‐developed	

transport	 systems	and	retail	businesses	 (see	Eq.	6‐15	and	Eq.	6‐16).	Therefore	an	

index	 on	market	 development	was	 introduced	 into	 the	 consumption	 equation	 for	

rural	consumers.		

	

Food	 consumption	 equations	 were	 developed	 separately	 for	 urban	 and	 rural	

markets	with	different	elasticities.	The	average	per	capita	demand	was	calculated,	

weighted	by	 the	 rural	and	urban	population.	The	 food	consumption	equations	are	

shown	as	follows:		

Urban:	 , ∙ ∏ ,
, ∙ 		 	 (Eq.	6‐15)	

Rural:	 , ∙ ∏ ,
, ∙ ∙ 		 	

	 	 	 	 	 	 	 	 	 	 (Eq.	6‐16)	
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Then,	 we	 can	 get	 a	 uniform	 equation	 of	 urban	 and	 rural	 communities	 in	 the	

variation	form:		

∆ , , ∑ , ∙ ∆ , , ∙ ∆ ⁄ ∙
∙ ∆ ⁄ 			 	 	 	 	 	 	 	 (Eq.	6‐

17)	

where		

, ,	 is	 the	 population‐weighted	 per	 capita	 consumption	 of	 the	 ic‐th	 food	

commodity	at	the	t‐th	time	slice,	

, ,	and	 , ,	are	the	per	capita	consumptions	of	the	ic‐th	food	commodity	at	the	t‐

th	time	slice	for	rural	and	urban	communities,	respectively,		

, ,	and	 , ,	are	the	consumer‐side	prices	of	the	 ic‐th	food	commodity	at	the	t‐th	

time	slice	for	rural	and	urban,	

,	and	 ,	are	the	per	capita	incomes	at	the	t‐th	time	slice	for	rural	and	urban	

communities,	

,	is	the	rural	food	market	development	index	at	the	t‐th	time	slice,	

, ,	and	 , ,	are	the	price	elasticities	of	the	jc‐th	food	commodity	to	per	unit	

change	in	demand	of	the	ic‐th	food	product	for	rural	and	urban	areas,		

	and	 ,	are	the	income	elasticities	to	the	demand	of	the	ic‐th	crop	in	rural	

and	urban	areas,		

,	the	sign	of	rural	or	urban	areas,	 when	it	is	the	urban	equation,	 ,	when	

it	is	rural,		

ic	and	 jc	 (=1,…,ncrop+nmeat),	 is	 the	 index	 of	 food	 commodities	 concerned	 in	 the	

model,	 including	 rice,	 wheat,	 maize,	 tubers,	 coarse	 grain,	 soybean,	 oil,	 sugar,	

vegetables,	 other	 food	 products	 (i.e.	 fruits),	 non‐food	 products	 (i.e.	 cotton),	 pork,	

beef,	mutton,	poultry,	egg,	dairy,	and	aquatic	products.		

 0 1
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And	then	the	total	food	consumption	was	calculated	by		

, ∙ , ∙ , 			 	 (Eq.	6‐18)		

, , ∙ 			 	 	 	 (Eq.	6‐19)	

where		

, ,	is	the	total	demand	of	the	ic‐th	food	commodity	at	the	t‐th	time	slice,	

,	is	the	total	population	at	the	t‐th	time	slice,	

	and	 ,	are	the	shares	of	rural	and	urban	population	at	the	t‐th	time	slice.	

	

6.2.2.2 Feed		

In	 this	model,	grains	used	as	 feed	sources	 included	rice,	wheat,	maize,	 tubers,	and	

coarse	 grains.	 Given	 the	 livestock	 production	 in	 each	 feeding	mode,	 feed	 demand	

was	computed	by	the	grain‐meat	conversion	ratios	and	the	grain	shares	of	feeding,		

, , ∑ , ∙ , , ∙ , , ∙ , , 		

(Eq.	6‐20)	

, ∑ , , 		

(Eq.	6‐21)	

where		

, 	is	the	total	feed	demand	in	the	ic‐th	grain	at	the	t‐th	time	slice,	

, , 	is	the	feed	demand	in	the	ic‐th	grain	under	the	imode‐th	mode	at	the	t‐

th	time	slice,	

, 	is	the	im‐th	livestock	production	at	the	t‐th	time	slice,	
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, , 	is	the	 imode‐th	mode	share	of	the	 im‐th	live	production	at	the	t‐th	

time	slice,	

, , 	is	the	feed	meat	conversion	ratio	of	the	im‐th	meat	under	the	imode‐th	

mode	at	the	t‐th	time	slice,	

, , 	is	 the	 ic‐th	 grain	 share	 of	 the	 total	 feed	 use	 in	 the	 im‐th	 meat	

production	under	the	imode‐th	mode,	

imode	 denotes	 the	 index	 of	 feeding	 modes,	 1)	 the	 backyard	 feeding	 mode,2)	 the	

specialized	household	feeding	mode,	3)	the	commercial	feeding	mode,		

ic	 is	 the	 index	of	 feed	grains	(i.e.	rice,	wheat,	maize,	 tubers,	and	coarse	grain).	The	

soybean	and	its	by‐products	are	not	included	in	feed	demand,	since	the	primary	use	

of	soybean	in	China	is	edible	oil	and	is	not	consumed	directly	in	feeding	livestock,			

im	is	the	index	of	livestock	products,	i.e.	pork,	beef,	mutton,	poultry,	egg,	dairy	

product,	aquatic	product.	

	

6.2.2.3 Seed,	industry	use	and	waste	

Seed	demand	is	determined	by	the	crop	sown	area	and	the	seed	used	per	hectare.	

The	 latter	 was	 estimated	 to	 be	 the	 same	 for	 all	 of	 China.	 The	 annual	 industry	

demand	 was	 determined	 by	 the	 demand	 of	 the	 previous	 year	 and	 an	 assumed	

growth	rate	was	estimated	from	the	historical	census	data.	The	grain	waste,	which	is	

the	 loss	after	harvest,	during	processing	and	 transporting,	was	assigned	a	 ratio	of	

the	total	production	for	a	certain	crop.	The	estimations	of	grain	loss	are	from	10%	to	

about	3%	of	 total	grain	production	(State	Council	of	China,	1996).	The	moderately	

low	estimation,	i.e.	5%,	is	taken	as	the	initial	waste	share	of	total	grain	production,	

and	 is	 assumed	 to	 be	 reduced	by	 about	 1%	per	 year	 in	 the	 future	because	of	 the	

improvements	in	crop	processing	and	transferring.		
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Seed:	 	 , , ∙ , 		 	 	 	 	 (Eq.	6‐22)	

	 	 , , ∙ , 		 	 	 (Eq.	6‐23)	

Industry:	 , , ∙ , 		 (Eq.	6‐24)	

Waste:	 , , ∙ , 		 	 	 	 (Eq.	6‐25)	

	 	 , , ∙ , 		 	 	 (Eq.	6‐26)	

where		

, ,	is	the	seed	demand	of	the	ic‐th	crop	at	the	t‐th	time	slice,	

, ,	is	the	industry	demand	of	the	ic‐th	crop	at	the	t‐th	time	slice,	

, ,	is	the	ic‐th	crop’s	loss	at	the	t‐th	time	slice,	

, ,	is	the	seed	demand	per	ha	of	the	ic‐th	crop	at	the	t‐th	time	slice,	

, ,	is	the	loss	share	of	the	ic‐th	crop’s	total	production	at	the	t‐th	time	slice,	

, ,	is	the	growth	rate	of	 , ,	

, ,	is	the	annual	growth	rate	of	industry	demand	of	the	ic‐th	crop	at	the	t‐th	

time	slice,	

, ,	is	the	growth	rate	of	 , ,	

, ,	is	the	sown	area	of	the	ic‐th	crop	at	the	t‐th	time	slice,	

, ,	is	the	ic‐th	crop’s	production	at	the	t‐th	time	slice.		

	

6.2.2.4 Total	grain	demand	

When	food	consumption,	feed,	seed,	and	industry	demand,	and	waste	were	obtained,	

the	total	demand	for	grain	was	calculated,		
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, , , , , , 			 (Eq.	6‐27)	

where		

, ,	is	the	total	demand	of	the	ic‐th	crop	at	the	t‐th	slice,		

ic	 =	 1,	 ......,	 11,	 is	 the	 crop	 index:	 1)	 rice,	 2)	wheat,	 3)	maize,	 4)	 tubers,	 5)	 coarse	

grains,	6)	soybean,	7)	oil	crops,	8)	sugar	crops,	9)	vegetable,	10)	cotton,	11)	fruits.		

	

6.2.3 Stock	and	trade	
 

Besides	 the	 aspects	 of	 supply	 and	 demand	 introduced	 above,	 stock	 and	 trade	 are	

also	 necessary	 components	 in	 the	 food	 market.	 Only	 grain	 stock	 and	 trade	 were	

considered	in	the	model.		

	

6.2.3.1 Grain	stock	

The	 grain	 stock	 is	 a	 function	 of	 the	 growth	 of	 grain	 demand,	 the	 stock	 of	 the	

previous	year,	and	the	domestic	prices	of	grain	products.	In	the	long‐term	planning,	

the	increase	in	grain	stock	is	a	linear	function	of	grain	consumer	price,	but	the	short‐

term	storage	strategy	is	a	little	different:	it	is	the	stock	ratio	of	total	production	that	

is	a	 linear	 function	of	consumer	price.	Moreover,	 the	realistic	stock	strategy	at	 the	

national	scale	 is	 to	keep	a	storage	which	 is	about	5%	to	30%	of	 the	production	of	

each	grain.	Therefore,	if	the	calculated	stock	exceeds	the	upper	limit	(in	which	case	

the	 domestic	 price	 of	 that	 crop	 is	 likely	 to	 decrease),	 the	 exceeding	 part	 will	 be	

forced	to	export	in	order	to	maintain	stock	within	a	reasonable	range	of	production.	

In	contrast,	if	it	is	less	than	5%	of	the	production,	the	deficient	amount	will	be	filled	

from	the	import.		

, , ∙ 1 ∙ , , ∙ , ∙ ∆ , , 	

(Eq.	6‐28)	
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where		

, ,	is	the	ic‐th	grain’s	stock	at	the	t‐th	time	slice,	

, ,	is	the	ic‐th	grain’s	total	consumption	at	the	t‐th	time	slice,	

,	is	the	price	elasticity	of	the	change	in	the	ic‐th	grain	stock	at	the	t‐th	time	slice,	

,	is	always	given	a	negative	value,	since	it	requires	selling	an	amount	of	storage	

as	consumer	price	increases	in	order	to	raise	domestic	supply,	

, ,	is	the	ic‐th	grain’s	consumer	price	at	the	t‐th	time	slice,		

0, 	1),	 is	 the	 switch	 of	 long	 or	 short	 term	 stock	 strategy.	 In	 the	 long	 term	

(when	 0),	the	change	in	grain	stock	follows	 , , ∙ , ,	

while	 in	 the	 short	 term	 (when	 1 ),	 it	 will	 be	

, ,⁄ , ,⁄ ∙ , .	 The	 short	 term	 strategy	 is	

applied	in	the	projection	of	less	than	five	years.		

	 1, …… , 6 	denotes	the	grains’	index,	and	includes	1)	rice,	2)	wheat,	3)	maize,	4)	

tubers,	5)	coarse	grains,	6)	soybean.	The	stocks	of	other	crops	and	food	items	were	

not	considered	in	this	model.		

	

6.2.3.2 International	trade	

The	import	and	export	of	grains	between	domestic	and	international	markets	were	

computed	 after	 completing	 the	 simulation	 of	 production	 and	 all	 demands	 for	 the	

food	products.	In	the	trade	component,	the	annual	change	in	import	and	export	are	

determined	 by	 the	 difference	 between	 world	 price	 and	 domestic	 price	 and	 the	

change	 in	 total	 demand,	 as	 shown	 in	 Eq.	 3	 and	 Eq.	 4.	 The	 world	 price	 is	 firstly	

transformed	to	 the	domestic	currency	with	 the	agricultural	subsidy	deducted.	The	

total	demand,	 , 	in	Eq.	5	is	the	demand	after	deducting	(or	adding)	the	import	

and	export	quantity	from	(or	into)	the	 , 	obtained	in	Section	6.2.2.4.		
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Import	

∆ , , ∙ ∆ , , ∆ , , ∆ , , 		
	 	 	 	 	 	 	 	 	 	 (Eq.	6‐28)	,	

Export		

∆ , , ∙ ∆ , , ∆ , , ∆ , ,   

                    (Eq.	6‐29)	,	

Total	demand	

, , , , 	 	 	 	 	 	 (Eq.	6‐30)	,	

where	 , 	(or	 , )	is	the	import	(or	export)	amount	of	the	ic‐th	grain	in	the	

t‐th	year,	 , 	(or	 , )	is	the	import	(or	export)	price	and	 , 	is	the	domestic	

price.	 To	 solve	 this	 problem,	 two	 more	 equations	 of	∆ , , 	and	

∆ , , 	are	required.		

	

Based	on	Eq.	6‐30,	we	can	get		

∆ , , ∆ , , ∆ , , ∆ , , 		

(Eq.	6‐31)	

and	after	introducing	 , ,	it	is	transformed	into		

∆ , , ∆ , , ∙ , , ∆ , , ∙

, , ∆ , , ∙ , , 	.	

(Eq.	6‐32)	
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If	 , , 			 	 	 	 (Eq.	6‐33)	

	 , , 				 	 (Eq.	6‐34)	

and	 	 , , 				 	 (Eq.	6‐35)		

Eq.	 6‐28	 and	 Eq.	 6‐29	 will	 become	 a	 set	 of	 two	 equations	 with	 two	 unknown	

variables,	i.e.	∆ , , 	and	∆ , , 	,	

1 ∙ ∆ , , ∙ ∆ , ,

∙ ∆ , , ∆ , , ∙ ∆ , , 	

(Eq.	6‐36)	

∙ ∆ , , 1 ∙ ∆ , ,

1 ∙ ∙ ∆ , , ∆ , , ∙ ∆ , , 	

(Eq.	6‐37)	

So	its	solution	is	obtained		

∆ , ,

∙ ∆ , , ∆ , , ∙ ∆ , ,

∙ ∙ ∆ , , ∆ , , / 1

	

(Eq.	6‐38)	

∆ , ,

1 ∙ ∙ ∆ , , ∆ , , ∙ ∆ , ,

∙ ∙ ∆ , , ∆ , , / 1

	

(Eq.	6‐39)	
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The	import	and	export	prices	( , 	and	 , )	were	computed	by	the	following	

formulae:	

, , ∙ ∙ , 			 (Eq.	6‐40)	

, , ∙ ∙ , 			 (Eq.	6‐41)	

where		

, 	is	 the	 CIF	 price,	 the	 price	 of	 the	 products	 at	 ports,	 which	 includes	

transportation	price	and	insurance	cost;	

, 	is	the	FOB	price,	the	price	of	departing	products	without	shipping	freight	and	

insurance	charges;	

,	is	the	exchange	rate	at	the	t‐th	time	slice;	

, 	and	 , 	are	 the	 producer	 subsidy	 of	 the	 ic‐th	 food	

commodity	at	the	t‐th	time	slice;	

, 	(or	 , )	is	the	import	(or	export)	of	the	ic‐th	food	commodity	at	the	t‐th	

time	slice;	

,	is	the	elasticity	of	substitution,	which	indicates	the	percentage	change	in	import	

or	export	when	the	changes	in	domestic	consumer	prices	are	faster	or	slower	than	

the	changes	in	world	market	prices.		

	

6.2.4 Running	model	

 

This	food	economic	model	 is	designed	to	run	yearly.	 It	has	two	running	modes:	1)	

calibration	 mode,	 in	 which	 the	 key	 variables,	 i.e.	 production,	 sown	 area,	 food	

consumption,	and	demand	in	other	usages,	would	be	computed	separately	on	supply	

and	 demand	 sides	 using	 exogenous	 producer’s	 and	 consumer’s	 prices,	 and	 these	
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calculations	 are	 only	 carried	 out	 one	 time	 in	 a	 year	 without	 running	 the	 market	

clearing	mechanics;	and	2)	market	clearing	mode,	in	which	the	price	reaction	within	

the	economic	 system	 to	 those	 changes	 in	 exogenous	 inputs	 is	 considered,	 and	 the	

price	 of	 food	 commodities	 will	 be	 adjusted	 until	 the	 entire	 system	 reaches	 an	

“equilibrium”	status,	 in	which	the	total	supply	would	be	roughly	equal	 to	the	 total	

demand.	 In	 the	market	 clearing	mode,	 the	 supply	and	demand	were	 calculated	by	

the	 endogenous	prices	 of	 food	 commodities,	 i.e.	 the	 equilibrium	price.	 In	practice,	

the	equilibrium	prices	in	a	certain	year	would	be	found	after	many	times	of	iteration.	

	

6.2.4.1 Market	clearance	

At	the	market	clearing	status,	the	total	supply	of	a	food	commodity	needs	to	satisfy	

(or	quasi	equals	to)	its	total	demand,	as	shown	in	the	following	equation:			

, , , 	

, , , , , , , 	

(Eq.	6‐42)	

The	equilibrium	prices	of	 food	commodities	each	year	can	be	obtained	under	 that	

market	clearing	status.	In	other	words,	the	procedure	to	reach	a	market	clearance	is	

a	process	 to	search	a	proper	group	of	 food	prices	under	which	 the	supply	of	each	

food	 commodity	 quasi‐equals	 its	 demand	 separately.	 Mathematically,	 it	 requires	

solving	a	set	of	11	equations	with	18	variables	(including	the	prices	of	11	crops	and	

7	 livestock	 products).	 Theoretically,	 the	 change	 in	 equilibrium	 price	 for	 one	 food	

commodity	 can	 be	 calculated	 by	 solving	 its	 own	 supply‐demand	 equation,	 when	

other	variables	are	kept	as	constant.		

	

Figure	6‐1	shows	how	to	obtain	that	theoretical	solution	of	equilibrium	status	can	

be	 obtained	 in	 the	 case	 where	 the	 supply	 and	 demand	 of	 only	 one	 commodity	

change	in	the	food	market	from	time	slice	(t)	to	slice	(t+1).	The	point	A	at	which	the	
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supply	curve	(St)	and	demand	curve	(Dt)	cross,	shows	the	status	where	supply	and	

demand	both	have	the	value	of	Q*0	which	ideally	is	equal	to	each	other	at	the	price	of	

P*0	 in	 the	year	 t.	However,	 in	 the	 year	 (t+1)	when	 the	 supply	 and	demand	curves	

move	on	due	to	the	change	in	inputs,	the	equilibrium	price	P*0	in	the	year	t	cannot	

be	kept	at	the	new	equilibrium	point	B.	Now,	we	do	not	know	the	new	equilibrium	

price	P*1,	but	it	can	be	calculated	by	the	following	method.		

	

Firstly,	 the	 interim	 supply	 (point	 C)	 and	 demand	 (point	 D)	 under	 the	 P*0	 can	 be	

obtained	by	(an	example	of	a	grain	product)	equations	of	Area	and	Yield	in	Section	

6.2.1.1.	If	Δ , , , 	for	all	the	variables,	then	

Δ ,

,
,

Δ ,

,
,

Δ ,

Δ ,
,

Δ ,

,

,
Δ

,
Δ ,

,
,

Δ ,

,

	

(Eq.	6‐43)	

and,		

Δ ,

,

∙
Δ

,

Δ ,

,
∙

Δ
	

(Eq.	6‐44)	

	

Thus,	when	P*0=0,	the	interim	supply	and	demand	are	
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	(Eq.	6‐45)	
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Δ
	

	(Eq.	6‐46)		

where	 ,
∗ 	and	 ,

∗ 	are	 the	supply	and	demand	of	 the	 ic‐th	 grain	product	at	 the	

equilibrium	status	of	 the	 t‐th	 year,	and	so	 ,
∗ 	=	 ,

∗ =	 ,
∗ .	The	 ,

∗ 	and	 ,
∗ 	are	

corresponding	equilibrium	prices	of	 the	grain	products	except	 the	 ic‐th	 grain,	 and	

,
∗ 	=	 ,

∗ 	=	 ,
∗ .	

	

Letting	

∑ ,
,

,
∑ ,

,

,
∑ , ,

,

,

∑ ,
,

,
			 	 	 	 	 	(Eq.	6‐47)	

and	

∙ ∙ 		 	(Eq.	6‐48)	

then	Eq.	6‐45	and	Eq.	6‐46	become	
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∗ 			 (Eq.	6‐50)	

That	is		

, ,
∗ ∑ ,

,

,
∗ 		 	 (Eq.	6‐51)	

, ,
∗ ∑ ,

,

,
∗ 		 	 (Eq.	6‐52)	

	
Figure	6‐1	The	equilibrium	of	supply	and	demand	functions.	
Source:	Huang	&	Li	(1999).	

	

The	 equilibrium	 price	 would	 increase	 in	 the	 (t+1)‐th	 year	 from	 P*0	 to	 P*1	 as	 the	

supply	and	demand	curves	move,	and	the	new	equilibrium	amount	 ,
∗ 	(i.e.	Q*1	

in	 Figure	 6‐1),	 obviously	 is	 computed	 by	 the	 known	 , 	and	 , ,	 and	 the	

unknown	Δ ,
∗

,
∗

,
∗ 	(i.e.	 ∗ ∗	in	 Figure	 6‐1)	 based	 on	 the	 St+1	 and	

Dt+1	curves,	the	slope	of	which	at	point	C	and	D	are	known	as	 , 	and	 , ,	
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∗ 			 (Eq.	6‐53)	

Thus	the	unknown	Δ ,
∗ can	be	solved	as	

Δ ,
∗ ,

∗
, ,

, ∙ , , ∙ ,
	 	 (Eq.	6‐54)	

and	then	 ,
∗ 	can	be	calculated	by	Eq.	8.		

	

Eq.	 8	 and	 Eq.	 9	 give	 the	 theoretical	 solution	 of	 the	 equilibrium	 in	 a	 new	 supply‐

demand	status	only	if	the	price	of	a	product	changes	and	the	other	prices	are	kept	at	

the	 previous	 equilibrium	 status.	 Therefore,	 in	 the	 case	 where	 supply‐demand	

relations	of	all	products	change,	repeated	calculating	of	Eq.	8	and	Eq.	9	is	required	

for	 thousands	 of	 iterations	 until	 a	 group	 of	 prices	 that	 can	 satisfy	 the	 market	

clearing	 condition	 for	 all	 the	 products	 at	 the	 same	 time	 was	 found.	 In	 actual	

numerical	computation,	the	new	supply‐demand	balance	is	supposed	to	be	reached	

when	the	difference	between	the	calculated	supply	and	demand	is	less	than	99%	of	

demand,	which	 is	 the	 quasi‐equal	 status	 or	 balance	 (i.e.	 quasi‐equilibrium	 in	 this	

thesis).	

	

6.2.4.2 Limitation	on	area	

As	mentioned	in	Chapters	1	and	2,	the	arable	land	of	China	was	declining	in	the	past,	

and	still	faces	the	challenge	from	competition	of	land	used	for	industry	and	housing	

construction	even	after	strict	government	policy	on	non‐agricultural	land	use.	Thus	

it	was	necessary	to	include	an	environmental	limitation	on	total	sown	area	into	the	

model,	apart	from	the	economic	factors.	The	upper	limit	of	the	total	sown	area	of	all	

crops	was	set	by	the	total	arable	land	in	history	(about	120	million	ha,	derived	from	

NBS	yearbooks).		
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6.2.4.3 Limitation	on	food	consumption	

As	the	economy	is	growing,	the	dietary	intake	will	change	due	to	increasing	income	

and	 rapid	 urbanization	 and	 modernization.	 This	 means	 that	 the	 elasticities	 of	

demand	 may	 be	 different	 from	 the	 current	 situation.	 It	 therefore	 requires	 a	

mechanic	 added	 into	 the	 food	 consumption	 component	 of	 the	 model	 in	 order	 to	

capture	 the	 pattern	 change	 in	 diet.	 Details	 of	 the	 mechanic	 will	 be	 discussed	 in	

Section	7.2.4.		

	

6.3 Assumption	and	data	

	

Some	of	 the	data	required	by	the	 food	economic	model	cannot	be	derived	directly	

from	the	NBS	census	or	 the	statistical	yearbooks	of	MOA	and	 there	are	also	many	

missing	records	 for	existing	data.	Since	a	complete	 input	data	set	was	required	by	

the	model,	 it	 was	 necessary	 to	 construct	 the	 input	 data	 based	 on	 those	 available	

from	the	NBS	census	with	the	assumptions	below	that	used	in	constructing	the	input	

data.		

	

6.3.1 Assumptions	

 

6.3.1.1 Inflation	and	CPI		

Inflation	is	a	crucial	 factor	in	preparing	the	datasets	of	prices	and	income.	Usually,	

the	CPI	(consumer	price	index)	is	taken	as	an	indicator	of	inflation	rate	in	economic	

statistics.	 CPI	 reflects	 the	 changes	 in	 the	 cost	 of	 a	 fixed	 group	 of	 products	 and	

services,	i.e.	

	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 		 	 	 	
		 (Eq.	6‐55)	
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The	detailed	calculation	method	of	CPI	in	the	National	Bureau	of	Statistics	of	China	
is	given	at		
http://www.stats.gov.cn/tjzs/CPI/t20090219_402557357.htm	

	

The	 real	 growth	 of	 all	 variables,	 i.e.	 price	 index,	 income,	 and	 investment,	 can	 be	

calculated	 by	 their	 nominal	 growth	 from	 the	 statistic	 yearbooks	 and	 its	

corresponding	CPI,		

/ 		 	 (Eq.	6‐56)	

Thus	the	index	number	of	the	variable’s	real	value	in	year	t+1	is,	

	

/

/
	

∙
1
⁄

	

⁄
	

	 	 	 	 	 	 	 	 (Eq.	6‐57)	

The	 variables	 in	 monetary	 form,	 i.e.	 prices,	 income,	 and	 investment,	 were	 pre‐

processed	by	the	CPI	indices	using	the	index	equation	above.		

	

6.3.1.2 Price	inputs	in	production	function	

The	historic	 labour	price	 for	both	 crop	and	animal	husbandry	 is	measured	by	 the	

average	wage	of	agricultural	labours	(RMB/year)	from	Chinese	statistic	yearbooks.	

In	 future	 projections,	 the	 rural	 income	 is	 used	 as	 a	 surrogate	 of	 the	 labour	 price	

based	 on	 the	 strong	 relationship	 between	 the	 indices	 of	 rural	 income	 and	

agricultural	wage	in	the	historical	census.	Figure	6‐2	gives	the	labour	price	indices	
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and	rural	income	indices	from	1980	to	2007,	the	changes	in	two	indices	match	up	to	

each	other	very	well	after	1986	with	a	Pearson	correlation	coefficient	of	0.86.	

	

The	price	of	chemical	fertilizer	for	projections	is	partially	determined	by	the	GDP	

growth,	which	historically	has	a	weak	correlation	with	the	fertilizer	price	index	(see	

Figure	6‐3).		
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Figure	6‐2	The	labour	price	index	and	rural	income	index	historically	(1980‐2007,	
preceding	year	=100).	
The	Pearson	correlation	coefficient	of	two	variables	is	0.61.	Source:	Statistics	NBS,	
2007.		
	

	

Figure	6‐3	The	relationship	of	historical	fertilizer	price	index	and	GDP	index	(1978‐
2007,	preceding	year	=100).	
The	Pearson	correlation	coefficient	of	these	two	variables	is	0.55.	The	original	data	
are	derived	from	statistical	yearbooks	of	China	(Statistics	NBS,	2007).			
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6.3.1.3 Income	

The	 annual	 growth	 rate	 of	 per	 capita	 income	 (urban	 and	 rural)	 in	 the	 future	 is	

supposed	to	be	determined	by	the	per	capita	GDP	growth	rate.	The	historical	census	

(in	 Figure	 6‐4)	 indicates	 a	 strong	 relationship	 between	 the	 indexes	 of	 GDP	 and	

income	(urban	and	rural).	Details	of	this	relationship	are	discussed	in	Ch7.		

	

Figure	6‐4	The	historical	census	of	urban	and	rural	per	capita	income	growth	index,	
and	GDP	index	(1978‐2007).	
Urban	 income	 is	 the	 urban	 disposable	 income	 and	 rural	 income	 is	 the	 rural	 net	
income	in	Chinese	yearbooks.		
	

6.3.2 Historical	data	

	

This	section	discusses	the	calibration	of	the	elasticities	used	in	the	food	model	and	

the	validation	of	 the	model	performance	 in	simulating	crop	supply	and	demand	of	

the	historical	census	data	from	1983	to	2007.		
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6.3.2.1 Price	index	

Some	 prices	 index	 data,	 i.e.	 chemical	 fertilizer	 and	 forage	 prices,	 are	 recorded	 in	

Statistical	yearbooks	(Statistics	NBS,	1990‐2007).	The	producer	price	of	agricultural	

commodities	 is	 taken	 as	 the	 purchasing	 price	 indexes	 of	 farm	 products.	 The	

consumer	price	of	urban	and	rural	residents	in	yearbooks	is	not	detailed	enough	for	

11	 crops	 and	 7	 livestock	 commodities.	 Thus	 average	 consumer	 price	 indexes	 are	

firstly	 reconstructed	 from	 the	market	 price	 based	 on	 the	 Development	 Report	 of	

Chinese	Agriculture	(MOA,	2007)	and	Statistics	NBS	(2007).	The	consumer	prices	in	

urban	and	rural	markets	are	then	derived	by	using	the	corresponding	CPI	deflators	

obtained	from	Statistics	NBS	(2007).	The	producer	or	consumer	price	index	of	crops	

and	 livestock	products	was	 adjusted	by	 the	CPIs	 to	 remove	 the	 effect	 of	 inflation.	

The	average	wage	of	agricultural	staff	in	NBS	yearbooks	was	used	as	the	indicator	of	

labour	price.		

	

6.3.2.2 Shocks	

The	“shocks”	on	crop	and	livestock	production	are	exogenous	inputs,	except	for	the	

agricultural	subsidy,	which	is	the	policy	employed	only	if	the	projected	production	

of	 crops	 is	 lower	 than	 a	 threshold.	 Currently,	 agricultural	 subsidy	 is	 available	 for	

farmers	who	grow	grain	products	or	oil	 crops,	 to	help	maintain	 the	national	95%	

self‐sufficient	 ratio	 of	 grain	 production	 in	 the	 medium	 term	 and	 an	 improving	

domestic	supply	of	edible	oil.	In	this	study,	the	subsidy	on	the	prices	of	grain‐cotton‐

oil	products	was	considered	as	a	measure	of	the	“yellow”	box	subsidy	policy	under	

the	 WTO	 frame	 (definition	 of	 “yellow”	 box	 by	 WTO:	 http://www.wto.org/).	 The	

agricultural	subsidy	supporting	a	reasonable	total	cropping	area,	is	derived	from	the	

annual	 subsidy	 cost	 on	 grain‐cotton‐oil	 products	 (Financial	 yearbooks	 of	 China,	

2010);	 the	 stimulators	 of	 yield	 improvement,	 which	 includes	 the	 investment	 in	

agricultural	 technology	 from	 the	national	 account	 (namely	 the	 “Nong‐ye‐ke‐ji‐san‐

xiang”	 fee	 in	 Financial	 yearbooks	 of	 China)	 and	 the	 growth	 in	 effective	 irrigation	



159 
 

area	which	is	supposed	to	represent	the	capability	to	maintain	normal	yield	levels	in	

droughts;	the	factors	contributing	to	the	total	crop	production,	i.e.	the	investments	

in	the	agriculture	support	sector	(such	as	the	meteorology	service),	the	investments	

in	reserved	cropping	land	infrastructure,	and	investments	in	the	financial	support	to	

rural	residents,	were	also	obtained	from	Financial	yearbooks	of	China.	

	

6.3.2.3 Crop	yield	(t/ha),	sown	area	(ha),	and	production	(t)/livestock	
production	(t)	

At	the	national	scale,	the	average	historical	crop	yield	is	calculated	by	the	total	sown	

area	 and	 production	 records	 from	 Statistics	 NBS	 (2007).	 Among	 the	 11	 crops	

considered	in	this	model,	 the	total	production	and	sown	area	of	starch	crops	were	

considered	 as	 the	 summary	 of	 potato	 and	 sweet	 potato	 in	 yearbooks.	 The	 NBS	

yearbooks	only	provide	the	sum	statistics	of	all	kinds	of	beans,	so	the	soybean	data	

are	 obtained	 from	 the	 crop	 database	 provided	 by	 MOA	 (available	 at	

http://www.zzys.gov.cn/nongqing.aspx).	 The	 bean	 crops	 except	 soybean	 are	

considered	as	part	of	the	coarse	grains.	The	meat	productions	of	pork,	beef,	mutton	

and	poultry	are	the	slaughtered	weight	outputs	without	head,	feet	and	offal	in	NBS’	

survey.	The	aquatic	products	include	fish	and	shellfish	(converted	as	the	equivalent	

amount	in	fish).		

	

6.3.2.4 Per	capita	consumption	(kg/capita/year)	

NBS	yearbooks	 include	the	per	capita	consumption	of	 the	total	grain	consumption	

but	not	 food	products	 for	 each	 food	 category.	However,	 the	 consumption	of	 some	

individual	 grain	 can	 be	 found	 at	 province	 level	 in	 several	 years.	 A	 per	 capita	

consumption	 of	 grain	 data	 was	 therefore	 constructed	 based	 on	 the	 average	 food	

consumption	per	reference	man	per	day	in	a	nation‐wide	food	intake	survey	(Zhai	et	

al.,	2005),	 the	household	food	demand	in	Fan’s	studies	(1994a,	1994b),	the	survey	

on	grain	demand	(Gao,	2004)	and	the	data	from	the	China	Rural	Household	Survey	
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Statistical	Yearbooks.	The	starch	and	tubers	are	classified	as	one	statistical	category	

in	the	NBS	yearbook,	but	this	research	only	considered	the	consumption	of	tubers,	

because	the	consumption	of	processed	starch	products	is	small.	 In	NBS	yearbooks,	

the	 total	 soybean	demand	 includes	direct	 food	consumption,	 soybean	product	and	

soybean	 oil	 demands	 in	 statistical	 data.	 The	 soybean	 oil	 is	 also	 included	 in	 the	

vegetable	oil	category,	and	in	this	study	the	ratio	of	soybean	oil	consumption	to	the	

total	vegetable	oil	consumption	remains	at	the	historical	level.		The	beef	and	mutton	

consumptions	 are	 classified	 in	 one	 category	 for	 some	 years	 in	 the	NBS	 yearbook,	

and	they	were	separated	into	two	parts	based	on	their	proportions	derived	from	the	

census	available	from	provincial	yearbooks.		

	

All	the	grains	were	measured	in	raw	grain	terms	to	be	coincident	with	the	units	of	

production	 statistics	 (the	 conversion	 factors	 are	 shown	 in	 Appendix	 A.9).	 The	

vegetable	 oil	was	 converted	 into	 raw	 oil	 crop	weight	with	 an	 average	 conversion	

ratio	 of	 0.43	 (see	 details	 in	 Appendix	 A.1).	 The	 sugar	 output	 productivity	 was	

assumed	 as	 0.1225	 (see	 details	 in	 Appendix	 A.1).	 Dairy	 products	were	 calculated	

into	 equivalent	 milk.	 All	 the	 food	 item	 consumption	 was	 measured	 in	 weight	

(kg/capita/year).		

	

Some	factors	may	affect	the	accuracy	of	food	per	capita	consumption:	1)	for	urban	

residents,	 all	 those	statistics	 reflect	 the	purchasing	quantity,	without	 consumption	

in	restaurants	(eating‐out	consumption),	while	food	consumption	of	rural	residents	

is	 likely	 to	 be	 more	 accurate,	 since	 it	 covers	 all	 the	 actual	 consumption	 of	 both	

purchasing	or	self‐output	of	food;	2)	the	statistics	of	meat	consumption	are	thought	

to	be	over‐reported	during	the	1980s	and	1990s	(Fuller	et	al.,	2000),	so	it	may	not	

match	to	the	surveyed	production	and	the	actual	feed	demand;	3)	uncertainty	in	the	

reproduced	soybean	consumption	results	from	the	lack	of	the	survey	on	soybean	oil	

consumption.	
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6.3.2.5 Per	capita	income	(RMB/capita/year)		

Urban	 income	 used	 in	 this	 study	 is	 the	 per	 capita	 disposable	 income	 in	 NSB	

yearbooks,	and	the	income	of	rural	residents	is	per	capita	annual	net	income	of	rural	

households.	Income	data	in	yearbooks	are	the	nominal	values,	so	all	the	income	was	

then	transformed	to	their	real	values	by	taking	into	account	of	the	CPI	deflator	for	

this	study.	

	

6.3.2.6 Population	(million)		

The	urban	population	in	the	NSB	dataset	denotes	the	normal	resident	in	cities	and	

towns,	 and	 the	 rural	 population	 refers	 to	 the	 population	 other	 than	 urban	

population.	 Thus	 the	 population	 seasonally	 shifting	 between	 urban	 and	 rural	 is	

regarded	as	the	rural	population.	Uncertainty	in	estimating	food	demand	is	caused	

by	 this	 inaccurate	 population	 classification,	 since	 rural	 workers	 who	may	 live	 in	

cities	and	towns	are	not	included	in	the	urban	population.		

	

6.3.2.7 Feed	factors		

The	proportion	of	the	three	feed	modes	in	the	feed	industry,	 the	proportion	of	the	

grain	 share	 in	 feed	 and	 the	 meat	 conversion	 ratio	 were	 obtained	 from	 the	 meat	

production	 survey	 and	 previous	 studies	 (China	 Animal	 Agriculture	 Association,	

2001;	Zhao,	2006;	Fuller,	1997).	Estimations	of	these	three	factors	were	collected	in	

1996,	2004	and	2006,	and	it	was	assumed	that	there	was	no	significant	difference	in	

the	feeding	mode	and	efficiency	before	and	after	1996.	All	the	feed	factors	are	given	

in	Appendix	A.7	and	A.8.		
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6.3.2.8 CIF	and	FOB	price	

In	 this	 study,	 the	 import	 price	 was	 obtained	 from	 FAPRI	 (2009)	 and	 FAO‐OECD	

outlooks	 (2008,	 2009).	 The	 consumer	 price	 in	 the	 rural	market	was	 taken	 as	 the	

export	 price.	 The	 trade	 subsidy	 in	 agricultural	 products	 is	 simply	 set	 to	 zero	 for	

simplification.		

	

6.4 Model	performance	

	

The	elasticities	used	 in	 the	model	were	collected	 from	the	 literature	(Huang	et	al.,	

1996;	Huang	&	Li	1999;	Huang	2004),	and	were	estimated	based	on	the	data	in	the	

1980s	and	1990s.	Slight	adjustments	were	done	to	these	elasticities	on	the	grounds	

of	 the	 longer	 data	 series	 from	 the	 1980s	 to	 2007	 compared	 to	 those	 of	 previous	

studies	(usually	before	2000).	Details	are	given	in	Appendix	A.		

	

Simulations	 from	 the	 economic	 model	 were	 validated	 by	 comparing	 with	 the	

adjusted	 census	 described	 in	 Section	 6.3.	 Simulations	 in	 comparison	 included	 the	

simulated	supply	and	demand	of	4	main	staples	(i.e.	rice,	wheat,	maize,	tubers)	and	

7	livestock	products	(pork,	beef,	mutton,	poultry,	egg,	dairy,	and	aquatic	food),	the	

simulated	area	and	yield	with	the	census	data	from	1984	to	2007.	The	simulations	

were	calculated	 in	the	calibration	mode	of	 the	model,	and	 the	 inputs	 in	equations,	

e.g.	 the	prices	of	producer	and	consumer,	prices	of	 inputs,	 income,	CPI,	and	policy	

items,	were	derived	from	real	census	data.		

	

6.4.1 Historical	supply‐demand	balance	

	

The	history	of	 food	 supply	 and	demand	 is	 given	as	 a	 reference	 (4	main	 staples	 in	

Figure	6‐5,	and	7	livestock	products	in	Figure	6‐6).		



163 
 

	

In	general,	the	historical	supply	of	4	staples	can	successfully	satisfy	the	total	demand.	

The	average	 self‐satisfy	 ratio	was	101%	for	 rice,	 97%	 for	wheat,	104%	 for	maize,	

and	 110%	 for	 tubers	 during	 1984	 to	 2007.	 Only	wheat	 had	 to	 be	 imported	 from	

overseas,	but	 the	 large	volume	of	 import	 (more	than	10%	of	supply)	 in	 the	1980s	

shrank	to	an	acceptable	small	level	(less	than	1%	of	supply)	in	the	late	1990s.	Food	

consumption	and	 feed	demand	of	grains	are	 two	 important	parts	of	 total	demand.	

The	 ratio	 of	 food	 consumption	 to	 total	 demand	 was	 decreasing	 slowly,	 as	 feed	

demand	in	all	grain	staples	were	growing	quickly	after	the	late	1990s.		

	

Because	 there	 is	 a	 lack	 of	 statistics	 for	 food	 demand,	 the	 food	 demand	 data	 are	

approximately	 derived	 from	 national	 census	 in	 NBS	 yearbooks.	 The	 derived	 total	

demand	 has	 a	 systematic	 bias	 to	 the	 supply.	 An	 unknown	 component	 calculated	

from	the	average	of	the	biases,	was	added	to	demand	(see	Figure	6‐5).	

	

As	to	livestock,	the	availability	of	all	meat	products	was	optimistic	in	the	past.	Pork,	

poultry	and	eggs	were	the	main	protein	resources	for	Chinese,	and	their	growth	was	

steady	despite	the	increasing	rate	becoming	lower	from	the	late	1990s.	The	demand	

for	other	meat	accelerated	after	the	1990s,	especially	the	explosive	growth	in	dairy	

demand	starting	from	the	year	2000	(see	Figure	6‐6).				
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Figure	6‐5	The	supply	and	demand	of	4	main	staples:	 census	vs	 simulation	 (from	
1983	to2007).	
The	 unknown	 item	 is	 the	 average	 bias	 between	 the	 census	 supply	 (=	 census	
production	+	census	import)	and	the	adjusted	census	demand.	Unit	ton	is	the	metric	
tonne	(1000	kg).	
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Figure	6‐6	Historical	production	and	consumption	of	livestock	products	(from	1983	
to	2007).	Unit	ton	is	the	metric	tonne	(1000	kg).	
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6.4.2 Model	performance	

	

The	 performance	 of	 this	 food	 economic	 model	 was	 measured	 by	 comparing	 the	

model	results	to	the	historical	sown	area,	yield,	production,	and	food	consumption	

by	 urban	 and	 rural	 communities.	 The	 comparison	 of	 census	 and	 simulations	 of	

production	and	per	capita	consumption	of	4	main	grains	(i.e.	rice,	wheat,	maize	and	

tuber)	are	given	in	this	section.	The	rest	of	the	results	are	shown	in	Appendix	B.		

	

The	model	simulation	in	this	chapter	is	operated	in	calibration	mode,	which	means	

that	 the	production	 and	 consumption	were	 calculated	 separately	based	on	 census	

producer	 and	 consumer	 prices.	 In	 general,	 the	 improved	 food	 economic	 model	

works	well	 in	 the	 simulation	of	both	 supply	 and	demand	 (Figure	6‐7,	 6‐8).	 In	 the	

simulation	of	grain	production,	the	average	bias	to	census	data	is	1%	for	rice,	0.8%	

for	wheat,	0.3%	for	maize,	and	5%	for	tubers.	With	respect	to	variability,	the	model	

results	had	a	larger	variance	than	the	census.	In	the	simulation	of	consumption,	the	

model	 has	 good	performance	 for	 rice	 and	wheat.	 For	maize,	 rural	 consumption	 is	

slightly	overestimated	by	the	model	with	the	major	underestimations	occurring	 in	

1994	 and	2000	 (Figure	6‐8).	 For	 tubers,	 the	 consumption	 is	 overestimated	 in	 the	

year	2003,	which	is	likely	due	to	the	discontinuous	census.			

	

Good	 performance	 provides	 some	 confidence	 for	 the	model	 to	 be	 used	 for	 future	

work.	More	importantly,	the	model	includes	sufficient	information	of	price,	income	

and	 other	 policies	 for	 simulation,	 which	 is	 critical	 for	 climate	 change	 impact	

assessment	on	food	security.		

	

In	Fig.	6‐8,	compared	with	rice	and	wheat,	the	relationship	between	simulated	and	

observed	data	 for	maize	 is	weaker.	The	observed	consumption	data	was	obtained	

from	 the	 Chinese	 Statistical	 Bureau.	 The	 statistics	 about	 rice	 and	 wheat	 food	

consumption	 are	 much	 more	 accurate	 and	 smoothing	 than	 maize,	 because	 some	
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part	of	the	real	maize	consumption	is	for	the	processed	food,	and	the	other	part	of	

maize	 consumption	 is	 eaten	 directly.	 	 So	 the	 maize	 observation	 data	 is	 not	

smoothing	in	some	years,	and	thus	it	shows	some	outliers	from	the	1:1	Line	in	Fig.	

6‐8.			

	

In	this	section,	the	model	was	run	in	the	calibration	mode,	because	1)	we	have	the	

real	prices	from	census	data	for	use	in	calculating	supply	and	demand,	and	2)	those	

census	prices	can	be	considered	as	the	equilibrium	prices	historically.		

	

In	 Chapter	 7,	 the	 model	 will	 run	 in	 the	 market	 clearance	 mode,	 in	 which	 the	

production	and	consumption	are	calculated	by	the	endogenous	equilibrium	price	to	

investigate	the	climate	change	impact	on	national	scale	food	security	in	the	terms	of	

availability	and	prices.		
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Figure	6‐7	Historical	 (ProductionObs)	 and	 simulated	 (ProductionSim)	production	
of	4	main	staples	(i.e.	rice,	wheat,	maize,	tubers).	Unit	ton	is	the	metric	tonne	(1000	
kg).	
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Figure	6‐8	Historical	and	simulated	per	capita	(ca)	consumption	of	4	main	staples	
(i.e.	rice,	wheat,	maize,	tubers).	
The	urban	and	rural	data	are	shown	in	blue	and	red.	The	grey	line	in	the	figure	is	the	
1:1	line	of	the	historical	and	simulated	data.		
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7 Chapter	7	Impacts	of	Climate	Change	on	
Food	Security:	a	Case	Study	of	China	

 

7.1 Introduction	

 

China’s	 food	 security	 was	 analysed	 in	 this	 chapter	 for	 the	 next	 few	 decades.	

Projections	 of	 food	 production,	 consumption	 and	 prices	 under	 multiple	 climate	

change	and	socio‐economic	scenarios	were	generated	by	the	food	economic	model	

described	in	Chapter	6.	In	the	projections,	the	food	economic	model	runs	in	market	

clearing	mode,	in	which	the	prices	of	food	commodities	are	calculated	by	the	model	

and	 the	 supply	 and	 demand	 in	 the	 future	 are	 then	 computed	 based	 on	 these	

endogenous	prices.		

	

The	 climate	 change	 impact	 on	 food	 security	 was	 assessed	 in	 terms	 of	 food	

availability,	accessibility	and	stability,	with	food	utilization	being	further	discussed	

in	 Chapter	 8.	 The	 chapter	 is	 organised	 as	 follows:	 Section	 7.2	 introduces	 socio‐

economic	and	climate	change	scenarios	used	in	generating	the	projections.	Results	

of	 projections	 and	 food	 security	 are	 analysed	 in	 Section	 7.3.	 In	 Section	 7.4,	 two	

adaptation	options	are	assessed	at	the	national	scale	for	coping	with	climate	change.	

Section	 7.5	 discusses	 uncertainties	 and	 several	 extreme	 cases	 within	 projections.	

Finally,	 the	 future	 food	 security	 of	 China	 with	 respect	 to	 climate	 change	 is	

summarized	in	section	7.6.		
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7.2 Scenarios	

 

In	 order	 to	 construct	 macro‐economic	 and	 policy	 scenarios,	 a	 few	 projections	 of	

macro‐economic	indicators	in	the	coming	decades	were	collected	from	a	wide	range	

of	 literature,	 including	 OECD‐FAO	 agricultural	 outlooks	 (OECD‐FAO	 2007,	 2008,	

2009),	USDA	agricultural	projections	(USDA	2009),	USDAERS	International	Macro‐

economic	 Dataset	 (USDA	 ERS	 2009),	 FAPRI	 world	 agricultural	 outlooks	 (FAPRI	

2007,	 2008,	 2009),	 World	 Bank	 global	 economic	 prospects	 (Word	 Bank	 2009),	

World	Bank	China	research	papers,	IMF	world	economic	outlook	(IMF	2009)	as	well	

as	 from	 Chinese	 research,	 and	 the	 national	 government's	 prospective.	 All	 the	

scenarios	were	compiled	from	2005	to	2050.		

	

7.2.1 GDP	and	income	scenarios	

 

No	 direct	 projection	 of	 China’s	 income	 was	 found	 from	 the	 literature.	 However,	

historically	 there	 is	 a	 strong	 relationship	 between	 GDP	 and	 income	 and	 it	 is	

relatively	 easy	 to	 collect	 reliable	 predictions	 of	 GDP.	 Therefore	 the	 future	 income	

was	estimated	based	on	that	relationship	(see	Section	7.2.1.2).		

	

Furthermore,	 changes	 in	 per	 capita	 income	 and	 input	 prices	 (i.e.	 fertilizer	 and	

labour	 prices)	 were	 assumed	 to	 be	 dependent	 on	 GDP	 variation,	 making	 it	 very	

important	 to	construct	proper	GDP	scenarios.	The	predictions	of	GDP	growth	rate	

from	previous	 research,	 as	 the	 reference,	 are	 given	 in	 Figure	 7‐1.	 Based	 on	 these	

projections,	four	growth	scenarios	of	Chinese	real	GDP	before	the	middle	of	the	21st	

century	(see	Figure	7‐2)	were	reconstructed.		
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7.2.1.1 GDP	growth	scenarios		

The	projections	of	GDP	were	sourced	in	the	short	and	long	terms	from	the	literature.	

Of	the	ten	predictions	that	were	used	there	was	a	similar	moderate	down	trend	of	

GDP	growth	rate	before	2020,	except	for	the	projection	from	the	USDA	International	

Macroeconomic	 dataset	which	 predicts	 a	 slight	 increase	 in	 GDP	 growth	 rate	 after	

2015.	Different	projections	gave	different	rates	of	GCP	increase.		

	

Three	GDP	growth	scenarios	(high,	mid,	and	low)	were	constructed	for	this	research.	

The	high	scenario	is	the	most	optimistic	projection,	of	which	the	annual	growth	rate	

of	GDP	 remains	 about	7%	 in	2050.	Under	 the	 low	 scenario,	 GDP	 growth	 rate	will	

decline	 rapidly	 until	 2030	 and	 remain	 only	 at	 4%.	 Under	 the	 mid	 scenario,	 GDP	

growth	rate	will	remain	at	a	steady	level	before	2030	and	then	decrease,	smoothing	

to	5.5%	in	2050.		

	

In	addition,	a	"Best	guess"	scenario	was	constructed	from	the	World	Bank	projection	

(2009).	 It	 has	 a	 downdrift	 from	 a	 higher	 growth	 level	 in	 the	 initial	 years	 to	 the	

lowest	growth	 level	of	all	 those	scenarios	 in	the	 final	year	2050.	 It	 is	 the	so‐called	

"soft	 landing"	 that	 the	 Chinese	 government	 is	 expecting	 during	 the	 economic	

transfer	period.	This	was	taken	as	the	best	projection	of	GDP	for	this	study.		
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Figure	7‐1	Projections	of	real	GDP	growth	from	the	literature.	
The	dotted	line	is	the	census	data	(from	1980	to	2007)	from	Statistics	NBS.*	USDA	
dataset	is	the	USDA	International	Macroeconomic	Dataset	
(http://www.ers.usda.gov/data‐products/international‐macroeconomic‐data‐
set.aspx).		

	
Figure	7‐2	The	historical	and	projected	GDP	annual	growth.	
The	dotted	line	is	the	historical	line	from	1980	to	2007.The	coloured	lines	show	five	
scenarios	of	GDP	growth	estimated	from	the	sources	given	above:	the	low	prediction	
is	made	up	 from	FAPRI	 (2008)	and	 the	median	projection	of	He	et	 al.	 (2002),	 the	
mid	is	from	USDA	(2018)	and	USDA	International	Macroeconomic	Dataset,	and	the	
high	is	from	FAPRI	(2009)	and	World	Bank	(2009).		 	
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7.2.1.2 Income	scenarios		

Historically,	 the	 per	 capita	 income	 has	 a	 strong	 relationship	with	 per	 capita	 GDP	

(Figure	7‐3).	The	coefficient	of	determination	(R2)	for	the	urban	(or	rural)	income	to	

GDP	 regression	 is	 0.99	 (or	 0.97)	 Future	 income	 growth	 was	 projected	 based	 on	

scenarios	of	GDP	and	its	relationship	with	GDP	as	shown	in	Figure	7‐4.			

 

	

Figure	7‐3	Relationship	of	per	capita	GDP	and	income	(1978	‐	2007).	
The	 solid	 line	 shows	 the	 linear	 regression	of	per	 capita	GDP	and	urban	 (or	 rural)	
income.	 The	 future	 per	 capita	 income	 was	 calculated	 by	 0.218 ∙

321.7	and	 0.734 ∙ 353.7.		
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Figure	7‐4	Scenarios	of	income	annual	growth.	
The	 solid	 line	 is	 the	 best	 guess	 scenario,	 and	 the	 shaded	 areas	 show	 the	 range	of	
possible	income	growth.		

	

7.2.2 Policy	scenarios	

	

As	mentioned	in	Chapter	1,	the	main	challenge	of	climate	change	for	food	security	is	

the	 potential	 decline	 in	 yield	 due	 to	 changes	 in	 bio‐physical	 processes	 and	water	

usage	in	a	warming	environment.	Responding	to	these	negative	impacts,	the	feasible	
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compared	 to	 the	mid,	because	historically,	 the	 initial	growth	of	effective	 irrigation	

area	was	relatively	small.		

	

Table	7‐1	Policy	scenarios	used	in	projections.	Only	two	policy	scenarios	were	
considered	in	the	thesis.	The	annual	growth	rates	of	policy	scenario	are	applied	in	
Eq.	6‐47	in	projection.		

Annual	growth	rate	(%)	 Low Mid High

Investment	in	Agricultural	Research	(PL1)	 3	 5	 10	

Effective	Irrigation	Area	(PL2)	 0.4	 1.5	 2.0	
 

	

7.2.3 Population	and	urbanization	scenarios	

Considering	 the	population	control	policy	 in	China,	 the	change	 in	 its	population	 is	

usually	 projected	 to	 follow	 the	 same	 pattern,	 peaking	 at	 some	 point	 before	 the	

2050s	(see	 the	previous	projections	 in	Figure	7‐5).	However,	 the	 time	point	when	

the	population	summit	occurs	and	the	peak	value	are	quite	different	in	the	existing	

studies.	The	projections	from	the	Chinese	State	Family	Planning	Commission	(SFPC)	

and	 United	 Nations	 (UN)	 were	 used	 in	 this	 study	 (Figure	 7‐7).	 The	 best	 guess	

scenario	 of	 the	 total	 population	was	 the	 estimation	 from	 SFPC;	 the	 low,	mid,	 and	

high	scenario	were	obtained	from	the	UN	projection.	

	

Since	the	rapid	urbanization	is	likely	to	result	in	reduced	birth	rates,	the	urbanized	

process	is	a	factor	affecting	the	total	population	growth	pattern.	It	was	assumed	that	

the	 total	 population	 and	 urbanization	 were	 not	 independent	 in	 this	 study.	 The	

urbanization	may	 be	 indirectly	 affected	 by	 the	 GDP	 growth	 rate.	 However,	 policy	

forcing	is	assumed	as	the	main	driver	of	urbanization	in	China.	Therefore	the	high	

(or	 low)	 growth	 scenario	 of	 population	was	 assumed	 to	match	 the	 low	 (or	 high)	

urbanization	scenarios.		
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Projections	 of	 China	 urbanization	 in	 the	 literature	 are	 shown	 in	 Figure	 7‐6.	 The	

scenarios	of	urban	population	share	used	in	the	thesis	(Figure	7‐8)	are:	1)	The	best	

guess	 and	 low	 scenarios	 are	 derived	 from	 China's	 12th	 5‐year	 Plan	 (National	

People's	 Congress,	 2002),	 and	 2)	 the	median	 and	 high	 scenarios	 are	 from	Huang	

(1999).		
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Figure	 7‐5	 Projections	 from	 the	 literature	 of	 the	 Chinese	 population	 before	 the	
middle	of	the	21st	century.	
The	 dotted	 line	 is	 the	 best	 guess	 scenario	 of	 population	 used	 in	 the	 thesis.	 The	
sources	 for	 other	 projections	 are:	 UN	 (‐Low,	 Median,	 and	 High)	 from	 World	
population	prospect	‐	2008	revision	population	database	(http://esa.un.org/unpp/	
p2k0data.asp);	 State	 Council's	 Program	 of	 Action	 for	 Sustainable	 Development	 in	
China	in	the	Early	21st	Century	(State	Council	of	China,	2003);	Men	&	Zeng	(2004);	
He	 et	 al.	 (2002);	 FAPRI	 (2007);	 FAPRI	 (2008);	 USDA	 (2009);	 Rozelle	 &	 Huang	
(1999);	 Jiang	et	 al.	 (2009);	Huang	 (1999);	 Li	 (1997);	 SFPC	 (State	Family	Planning	
Commission,	http://www.sfpc.gov.cn);	Chinese	census	(NBS	yearbooks).		
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Figure	7‐6	Projections	from	the	 literature	of	urban	share	of	population	before	the	
middle	of	the	21st	century.	
The	dotted	line	is	the	Best	guess	scenario	used	in	the	thesis.	The	other	lines	are	the	
predictions	 derived	 from	 different	 sources:	 	 Huang	 (1999);	 the	 12th	 5‐year	 Plan	
(2002);	He	et	al.	(2007);	Jiang	et	al.	(2009);	Chinese	census	(NBS	yearbooks).		
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Figure	7‐7	The	population	scenarios	used	in	the	thesis.	
The	 Best	 guess	 scenario	 is	 the	 estimation	 from	 SFPC,	 and	 the	 low,	mid,	 and	 high	
scenarios	were	obtained	from	the	UN	population	projection.	

	
Figure	7‐8	The	scenarios	of	urban	population	share	used	in	the	thesis.	
The	Best	 guess	 and	 low	 scenarios	 are	 derived	 from	12th	 5‐year	Plan	 (2002),	 and	
median	and	high	scenarios	are	from	Huang	(1999).		
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7.2.4 Nutrition	standard	

	

In	 the	 original	 CAPSiM	 model,	 the	 change	 in	 per	 capita	 food	 consumption	 is	

calculated	 from	 the	 changes	 in	 income	 and	 consumer	 prices	 of	 food	 commodities	

with	 the	 fixed	 elasticities	 ( 	
,
,	 , , ,	 and	 ,in	 Eq.	 1	 and	Eq.	 2,	 see	

Section	6.2.2.1),	which	may	 lead	 to	unreasonable	projection	 in	both	 the	 short	 and	

long	run.		

	

For	 future	 projections	 the	 elasticities	 are	 kept	 the	 same	 as	 calibrated	 against	 the	

observation	 in CAPSiM.	 For	 a	 fully	 developed	 food	 market	 economy,	 it	 may	 be	

appropriate	 to	 use	 fixed	 elasticities	 in	 the	 long‐term	 projection.	 However,	 for	 an	

economy	 where	 marketization	 is	 still	 under	 development,	 the	 elasticities	 will	

obviously	 not	 remain	 the	 same	 in	 the	 long	 run.	 Also,	 in	 the	 short	 term,	 the	 huge	

variation	 in	 price	 caused	 by	 a	 sudden	 shock	 does	 not	 alter	 consumers'	 dietary	

pattern,	 and	 the	 demand	 for	 food	 is	 relatively	 rigid	 compared	 with	 demands	 for	

other	 commodities,	 which	 may	 also	 lead	 to	 unreasonable	 simulations	 using	 fixed	

elasticities.		

	

For	 example,	 with	 a	 sudden	 shock	 such	 as	 the	 economic	 crisis	 of	 2007,	 a	 large	

variation	of	price	may	produce	a	 simulated	 rapid	 reduction	 in	 food	demand	using	

the	 fixed	 elasticities.	 However,	 the	 actual	 response	 of	 food	 demand	 to	 the	 sudden	

rise	in	prices	is	very	limited.		

	

In	 the	 long‐term	projection,	 for	 developing	 countries	 like	 China,	 the	 elasticities	 in	

the	middle	21st	Century	obviously	would	not	be	the	same	as	for	the	1990s.	As	per	

capita	 income	of	both	urban	and	rural	 residents	continues	 to	 increase,	 the	Engel’s	

coefficient	 (see	 definition	 in	Appendix	B.1)	 is	 likely	 to	decrease	more	 rapidly	 and	

food	 preference	 will	 also	 change.	 If	 using	 the	 current	 elasticities,	 a	 dramatic	
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alteration	 in	 food	demand	will	occur:	a	very	 fast	 reduction	 in	grain	demand	and	a	

rapid	 rise	 in	 consumption	 of	 livestock	 products	 which	 even	 may	 unrealistically	

exceed	the	current	nutrition	standard	of	developed	countries.		

	

Against	this	background	a	modification	was	introduced	to	the	CAPSiM	by	adjusting	

the	elasticities	dynamically	to	scale	for	the	per	capita	consumption	in	a	proper	range	

for	the	both	short	and	long	term:			

 To	 estimate	 the	 reasonable	 range	 of	 food	 consumption,	 a	 "nutrition	

standard"	was	constructed	as	the	ideal	food	consumption	in	the	future	based	

on	the	income	scenario	and	the	food	consumption	pattern	of	China,	which	is	

described	in	Section	7.2.4.1.		

	

 To	adjust	 the	elasticities	 in	 the	demand	side	equation,	a	series	of	rules	and	

thresholds	of	food	consumption	were	built	into	the	market	clearing	mode	of	

the	 food	 economic	 model.	 At	 each	 step	 when	 a	 new	 simulation	 of	

consumption	was	obtained,	it	was	compared	to	the	nutrition	standard.	If	the	

simulation	of	grain	demand	was	much	smaller	than	the	standard,	the	income	

elasticities	 of	 grain	 demand	 (here	 it	 refers	 to	 rice,	 wheat	 and	maize)	 was	

adjusted	 to	keep	 the	declining	rate	of	 the	computed	grain	consumption	not	

larger	 than	the	standard	rate;	 if	 the	simulated	demand	 in	 livestock	product	

was	much	larger	than	the	nutrition	standard,	the	elasticities	were	adjusted	to	

a	smaller	value.	The	iteration	of	adjustment	was	repeated	until	the	simulated	

consumption	 fell	within	 the	 range	 of	 10%	 less	 or	more	 than	 the	 "nutrition	

standard".	

	

7.2.4.1 Development	of	the	nutrition	standard		

Food	consumption	is	not	only	dependent	on	economic	factors,	e.g.	per	capita	income	

and	commodity	prices,	but	is	also	controlled	by	the	diet	preference	associated	with	
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culture	 and	geographic	 location.	A	 cross‐country	 study	 (Ikegami,	 2005)	 suggested	

that	 the	past	 trend	 in	 food	 consumption	 could	be	divided	 into	 three	patterns:	 the	

western	style	of	EU	and	NAFTA	countries,	the	Japanese	style	of	Japan	and	Korea,	and	

the	 Chinese	 styles	 of	 Mainland	 China,	 Hong	 Kong	 and	 Taiwan.	 It	 was	 therefore	

reasonable	 to	 predict	 the	 future	 China	 food	 consumption	 from	 the	 current	

consumption	 patterns	 of	 the	 Chinese‐inhabited	 regions	 but	 with	 higher	 GDP	 and	

income	 levels	 than	 China.	 There	 are	 three	 options	 to	 be	 considered,	 i.e.	 Taiwan,	

Hong	Kong,	and	Macau.	Following	Ikegami's	suggestion,	in	this	thesis,	the	historical	

dietary	 pattern	 of	 income‐food‐consumption	 in	 Taiwan	 was	 used	 to	 estimate	 the	

future	trend	of	 food	preference	in	China,	because	Taiwan's	pattern	is	more	similar	

to	China	than	Hong	Kong	or	Macau.		

	

Firstly,	 this	 assumption	 was	 examined	 using	 the	 historical	 census	 of	 Taiwan	 and	

China,	and	then	a	nutrition	standard	of	China	in	the	future	was	developed.	

	

The	 historical	 income	 and	 per	 capita	 food	 consumption	 of	 Taiwan	 (1952,	 1965,	

1975,	1985,	and	1989–2009)	were	collected	from	the	Taiwan	Statistic	Data	Books	

and	Husbandry	census	(from	the	online	resource:		

http://www.cepd.gov.tw/encontent/m1.aspx?sNo=0001453		and					

http://www.coa.gov.tw/view.php?catid=207).	 The	 historical	 data	 of	 China	 (1983–

2007)	was	obtained	from	the	Chinese	Statistic	Yearbooks.	All	the	income	data	were	

converted	to	US	dollars	(USD)	using	the	annual	average	exchange	rate.		

	

It	was	assumed	that	the	per	capita	consumption	of	food	commodities	may	vary	with	

the	disposable	income	following	the	Cobb‐Douglas	function,	

, ∙ 	 	 (Eq.	7‐1),	
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where	 , 	is	 the	per	capita	consumption	of	 the	 ic‐th	 food	commodity	 in	 the	 t‐th	

year,	and	 	is	the	per	capita	disposable	income	(in	USD)	in	the	t‐th	year,	the	

parameter	 	is	a	scale	to	represent	the	effects	of	the	factors	besides	income,	and	 	is	

the	income	elasticity	of	food	demand,	which	is	the	measurement	of	the	percentage	

change	in	the	demand	of	a	food	commodity	responding	to	the	change	in	income.		

	

The	 proper	 parameters,	 α	 and	 β,	 of	 the	 consumption	 pattern	 of	 Chinese	 were	

estimated	by	the	historical	Chinese	and	Taiwanese	data	(the	blue	diamond	and	red	

asterisk,	 respectively,	 shown	 in	Figure	7‐9).	The	solid	 line	 is	 the	regression	of	per	

capita	income	and	food	consumption	in	the	form	of	Eq.	10,	showing	how	much	the	

consumption	demand	 for	 a	 certain	 food	 commodity	will	 change	 as	 the	disposable	

income	increases	on	average.		

	

Figure	7‐10	gives	the	per	capita	urban	and	rural	income	of	Taiwan	and	China	in	the	

past	 and	 the	 future	 incomes	 of	 China	 under	 the	 best	 guess	 growth	 scenario.	 The	

growth	of	Chinese	per	capita	income	seems	to	follow	the	historical	trend	of	Taiwan,	

but	will	not	surpass	the	current	income	level	of	Taiwan	for	the	study	period	of	this	

research.	 Thus	 it	 is	 acceptable	 to	 use	 this	 scenario	 to	 project	 values	 of	 per	 capita	

food	consumption	in	the	future.		
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Figure	 7‐9	 The	 historical	 relationship	 of	 per	 capita	 disposable	 income	 and	 food	
consumption	of	China	and	Taiwan.	
The	 historical	 data	 are	 from	 the	 Chinese	 statistics	 yearbooks	 (1983	 to	 2007)	 and	
from	the	online	database	of	the	Taiwan	census	(1952,	1965,	1975,	1985,	and	1989–
2009).	The	solid	line	shows	the	relationship	of	food	consumption	and	income	in	the	
Chinese	style	of	food	consumption.		
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Figure	7‐10	The	per	capita	disposable	income	of	China	(CN)	and	Taiwan	(TW)	for	
both	urban	and	rural	regions.	
The	Chinese	data	before	2007	are	the	historical	statistics,	and	from	2008	to	2050	is	
the	best	guess	projection	of	future	income.	The	data	of	Taiwan	are	all	the	statistics.		

	

Now,	the	 ideal	 food	consumption	in	the	future	then	can	be	calculated	by	the	given	

income	scenarios	in	Eq.	11.		

,

,
∙ 	 	 (Eq.	7‐2),	

where	
Δ ,

,
	is	the	percentage	change	in	food	consumption	of	the	ic‐th	commodity	in	

the	 t‐th	 year,	Δ 	,	 the	 percentage	 change	 in	 disposable	 income	 of	 the	 ic‐th	

commodity	 in	 the	 t‐th	 year,	 is	 obtained	 from	 the	 income	 scenarios.	 The	 income	

elasticity	of	food	demand,	 ,	has	been	already	estimated	by	the	historical	data.		

	

7.2.4.2 Scenarios	of	impact	on	maize	yield	

From	 results	 in	 Chapter	 5,	 the	 physical	 reduction	 of	 maize	 yield	 due	 to	 climate	

change	 is	summarized	over	 the	whole	of	China	by	6	SRES	emission	scenarios	 (see	
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Table	7‐2).	Based	on	 this	 table,	a	continuous	 time	series	of	 reduction	of	yield	was	

produced	on	the	assumption	that	the	reduction	of	yield	is	linear	between	two	time	

slices.			

	

Table	 7‐2	 Yield	 reduction	 of	 maize	 in	 China	 under	 different	 climate	 change	
scenarios.	The	reduction	scenarios	were	obtained	from	the	results	in	Chapter	5.		

	
%	Reduction	in	yield	

Scenario	 2020	 2050	 2070	

Median	 −2.98%	 −9.23%	 −14.32%	

A1B	 −2.64%	 −9.89%	 −15.35%	

A1FI	 −2.84%	 −11.19%	 −20.57%	

A1T	 −3.75%	 −10.88%	 −14.86%	

A2	 −2.58%	 −8.4%	 −15.1%	

B1	 −2.91%	 −7.3%	 −10.63%	

B2	 −3.49%	 −8.7%	 −12.49%	

 

	

7.3 Future	food	security	of	China	with	and	without	climate	change	

	

Given	the	scenarios	of	income,	population,	and	agricultural	policy	and	the	per	capita	

food	demand	limitation,	projections	of	supply	and	demand	of	4	main	staples	(i.e.	rice,	

wheat,	maize,	and	tuber)	were	made	using	the	model	described	in	Chapter	6.	In	the	

projection,	 the	 food	 economic	 model	 ran	 in	 market	 clearing	 mode,	 in	 which	 the	

prices	of	food	commodity	were	calculated	by	the	model,	and	the	supply	and	demand	

in	 the	 future	were	 then	 computed	based	on	 these	endogenous	prices.	The	market	

clearance	was	applied	to	4	main	staples	and	7	livestock	products	in	this	research.	



188 
 

	

To	 examine	 the	 response	 of	 the	 economic	 system	 to	 the	 bio‐physical	 impact	 on	

maize	 caused	 by	 climate	 change,	 all	 the	 projections	were	 investigated	 by	 running	

the	economic	model	for	two	cases:	1)	without	the	impacts	of	climate	change;	2)	with	

the	impacts	of	climate	change	on	maize	added	as	one	shock	in	the	economic	model.		

	

Ideally,	 a	 comprehensive	 assessment	 of	 the	 food	 security	 under	 climate	 change	

requires	taking	the	impacts	of	climate	change	on	all	main	staples	into	consideration.	

However,	 given	 the	 enormity	of	 the	 task	 this	was	not	done	 for	 the	 current	 thesis.	

Instead,	 one	 representative	 staple	 was	 chosen	 to	 give	 an	 example	 of	 such	 an	

assessment.	 Maize	 was	 chosen	 for	 this	 study	 for	 two	 reasons:	 firstly,	 the	

fundamental	 studies	 on	 modelling	 the	 bio‐physical	 growth	 of	 maize	 is	 extensive,	

affording	the	possibility	of	model	simulation	with	a	reliable	precision	level;	secondly,	

the	feed	demand,	most	of	which	is	produced	from	maize,	will	likely	increase	rapidly	

with	the	economic	and	population	growth	of	China	in	the	next	decades,	with	maize	

production	becoming	the	most	important	emerging	issue	threatening	food	security	

in	China.	 	The	interpretation	of	results	did	not	consider	the	climate	change	impact	

on	other	food	commodities.		

	

In	this	thesis,	food	security	is	assessed	from	three	aspects:	

 the	balance	of	supply	and	demand,	to	assess	the	overall	food	availability	with	

considered	the	impacts	on	a	single	crop,	maize	

 the	change	in	price	of	staples,	to	assess	one	dimension	of	the	food	access	

 the	impact	duration	of	a	single‐year	disaster,	to	assess	the	resilience	of	food	

supply.	

In	 addition,	 the	 impacts	 of	 climate	 change	 on	 a	 single	 crop	might	 transfer	 to	 the	

supply/demand	and	price	of	other	crops	and	such	ripple	effects	were	also	analysed.		

	

As	mentioned	in	Chapter	1,	the	reasonable	socio‐economic	projections	for	decision‐

makers	are	about	twenty	to	fifty	years.	Thus	the	analysis	was	focused	on	the	period	
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from	 current	 to	 the	middle	 of	 this	 century.	All	 the	 projections	 start	 from	2008	 to	

2050.	

	

In	order	to	reflect	the	uncertainties	in	projections,	several	groups	of	socio‐economic	

scenarios	were	used	to	drive	the	model.	The	"Best	guess"	scenario	was	based	on	the	

best	guess	scenarios	of	 income,	population,	the	mid	scenario	of	agricultural	policy,	

the	future	input	prices	(i.e.	fertilizer	and	labour	prices)	and	the	assumed	import	and	

export	prices	calculated	by	the	method	(see	Section	6.3.1),	and	other	settings,	which	

were	the	same	as	those	in	simulations	from	1983	to	2007as	discussed	in	Chapter	6.	

The	remaining	groups	of	scenarios	were:			

 "	+	P1high	(or	low)"	means	using	"	Best	guess	"	settings	except	the	high	(or	

low)	scenario	of	investment	in	agricultural	research	(P1);	

 "	+	P2high	(or	low)"	means	using	"	Best	guess	"	settings	except	the	high	(or	

low)	scenario	of	growth	of	effective	irrigation	area	(P2);	

 "	+	IMhigh	(or	low)"	means	using		"	Best	guess	"	settings	except	the	high	(or	

low)	growth	scenario	of	income;		

 "		+	POPhigh	(or	low)"	means	using	"	Best	guess	"	settings	except	the	high	(or	

low)	growth	scenario	of	population;		

 "	 +	Disaster2019	 (/2029/2039/2049)"	means	using	 "	Best	 guess	 "	 settings	

and	 adding	 a	 disaster	 on	 maize	 production	 in	 the	 year	 2019	

(/2029/2039/2049);	

 "	 +	 Disaster2019onAll	 (/2029/2039/2049)"	 means	 using	 "Best	 guess"	

settings	and	adding	a	disaster	on	all	4	main	staples'	production	 in	 the	year	

2019	(/2029/2039/2049).	

	

Similarly,	the	impacts	under	different	climate	change	scenarios	were	labelled	as:		

 "	+	CC0",	using	the	impact	of	climate	change	under	the	median	scenario	of	six	
SRES;	

 "	 +	 CCAB	 (AF/AT/A2/B1/B2)",	 using	 the	 impacts	 under	 the	 A1B	
(A1FI/A1T/A2	/B1/B2)	emission	scenario.	
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7.3.1 Food	supply‐demand	balance	

 

The	 supply‐demand	 balance	 reflects	 the	 overall	 availability	 of	 a	 food	 commodity.	

The	simulated	balance	results	of	4	main	staples	(rice,	wheat,	maize,	and	tuber)	and	7	

livestock	products	(pork,	beef,	mutton,	poultry,	egg,	dairy	and	aquatic)	are	discussed	

in	this	section.		

	

7.3.1.1 Without	climate	change	

Without	 considering	 climate	 change	 and	 using	 the	 best	 guess	 scenario,	 the	 total	

supply	of	4	main	staples	can	satisfy	the	total	demand	in	general	(Figure	7‐11).	The	

overall	 food	availability	of	China	 in	 the	next	 few	decades	 is	moderately	optimistic.	

The	production	of	rice,	wheat,	and	tubers	can	fulfil	the	demand	in	most	years	of	the	

projection	 period.	 The	 supply	 and	 demand	 of	maize	 will	 be	 in	 a	 so‐called	 "tight"	

balance	with	the	self‐sufficiency	ratio	remaining	between	95%	and	100%	in	the	long	

term.		

	

Results	indicate	that	rice	and	wheat	demand	is	going	to	decrease	in	future,	but	the	

demand	 for	maize	 and	 tubers	will	 rise.	 The	demand	 for	 rice,	wheat,	 and	maize	 as	

food	will	decrease,	while	 the	 consumption	of	 livestock	products	as	 food	will	 grow	

steadily	 (Figure	 7‐13).	 Tuber	 consumption	 as	 food	 remains	 at	 the	 same	 level	 as	

before	2007.		The	demand	for	all	grains	as	feed	increases,	especially	the	demand	for	

maize	 will	 increase	 very	 quickly	 with	 an	 astonishing	 absolute	 quantity.	 The	

demands	 for	 seed,	 industry,	 and	 waste,	 only	 play	 a	 very	 small	 part,	 and	 the	

international	 trade	 volume	 (including	 export	 and	 import)	 is	 small.	 Only	 maize	

requires	importing	thousands	of	tonnes,	on	average	about	1%	of	the	total	supply.			
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Increasing	feed	demand	for	grains	throughout	the	projection	period	is	caused	by	the	

growth	of	 livestock	 consumption.	 In	Figure	7‐13,	 it	 is	obvious	 that	 the	production	

and	 consumption	 of	 all	 livestock	 products	 have	 steady	 growth	 before	 2050	 along	

with	income	growth	and	changing	diet.	The	peak	of	meat	demand	occurs	later	than	

the	 total	 population	 summit	 around	 2032.	 Besides	 pork	 and	 poultry,	 which	 are	

traditionally	 the	main	protein	 resource,	demand	 for	 the	 rest	of	 the	meat	products	

has	 even	 kept	 rising	 in	 years	 close	 to	 2050.	 This	 is	 because	 income	 growth	 and	

urbanization	play	the	primary	role	in	dietary	transfer.	That	means,	without	climate	

change,	 food	availability	 in	China	 in	 the	next	decades	would	mostly	be	decided	by	

the	demand	side	factors,	e.g.	income	and	urbanization.		

	

7.3.1.2 With	climate	change	

	

In	 the	 cases	where	 impacts	 of	 climate	 change	 are	 considered,	 the	 supply‐demand	

balance	 is	 disrupted	 for	 maize.	 Figure	 7‐12	 gives	 the	 projections	 of	 supply	 and	

demand	 for	 the	main	 staples	 with	 addition	 of	 impacts	 on	maize	 in	 the	 economic	

model.	There	is	no	significant	change	for	the	balance	of	rice,	wheat	and	tubers	from	

the	ripple	effects	of	climate	change	impact	on	maize.	This	indicates	that	little	impact	

on	maize	 has	 transferred	 to	 the	 other	 staples	with	 respect	 to	 the	 supply‐demand	

balance.	The	production	of	maize	shows	steady	drawdown	for	the	reduction	of	yield	

due	to	climate	change.	The	gap	between	total	supply	and	demand	grows	even	larger	

quickly	after	2030s.	The	self‐satisfy	ratio	of	maize	is	reduced	from	99%	in	2008	to	

about	92%	in	2050.					
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Figure	7‐11	Simulated	supply‐demand	balance	of	4	main	staples	under	the	"Best	guess"	scenario.	
Simulation	is	from	1984	to	2007,	and	the	projection	is	from	2008	to	2050.	Unit	ton	is	the	metric	tonne	(1000	kg).	
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Figure	7‐12	Simulated	supply‐demand	balance	of	4	main	staples	under	the	"Best	guess"	scenario	and	the	median	scenario	of	
climate	change.		
Simulation	is	from	1984	to	2007,	and	the	projection	is	from	2008	to	2050.	Unit	ton	is	the	metric	tonne	(1000	kg).	
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Figure	7‐13	Projections	of	supply‐demand	balance	of	livestock	products	under	the	
Best	guess	scenario.	
Simulation	is	from	1983	to	2007,	and	the	projection	is	from	2008	to	2050.	Unit	ton	
is	the	metric	tonne	(1000	kg).		 	
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Table	7‐3	Projections	of	supply	and	demand	(Mt)	for	the	main	food	commodities.	

	 	 2000	

(census)	

2020		

(without	CC)	

2050		

(without	CC)	

Rice	 Production	 188	 169	 139	

Food	 122	 85	 47	

Feed	 30	 50	 59	

Other	

demand	
9.4	 8.4	 6.7	

Net	import	 −2.7	 	 	

Wheat	 Production	 99.6	 101	 90	

Food	 77	 54	 33	

Feed	 18.7	 34	 45	

Other	

demand	
5.8	 5.4	 4.6	

Net	import	 0.7	 	 	

Maize	 Production	 106	 180	 228	

Food	 32	 17	 8.2	

Feed	 79.4	 151	 203	

Other	

demand	
5.2	 8.3	 9.9	

Net	import	 −10.4	 2.7	 0.6	

Self‐sufficiency	

ratio	(%)	

	 2000s		

(census)	

2020s		

(projected)	

2040s		

(projected)	

	 	 	 Without	

CC	

With	

CC	

Without	

CC	

With	

CC	

Rice		 99% 100%	 100% 100%		 100%

Wheat		 	 94%	 99%	 99%	 100%	 100%	

Maize		 	 104%	 98%	 95%	 98%	 90%	
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It	 is	 interesting	 to	 note	 that	 in	 economic	 systems,	 the	 reduction	 in	 production	 of	

maize	 due	 to	 climate	 change	 after	 price	 adjustment	 is	 a	 little	 smaller	 than	 the	

simulation	from	the	bio‐physical	model.	The	projected	reduction	from	the	economic	

model	is	about	1.65%	and	8.84%	for	2008	and	2050,	respectively,	in	contrast	to	the	

bio‐physical	model	which	gave	3.39%	in	2008	and	9.23%	in	2050.		

	

Within	the	economic	system	the	reduction	due	to	climate	change	simulated	by	the	

bio‐physical	process	 is	 traded‐off	slightly	 through	the	 internal	price	adjustment	 in	

the	market	clearance	process.	When	production	is	likely	to	decline	to	less	than	the	

total	demand,	the	price	will	be	adjusted	to	rise,	reacting	to	stimulate	production	(e.g.	

increase	 the	 sown	 area)	 and	 suppress	 consumption.	 The	 increase	 in	 maize	 price	

leads	 to	an	 increase	 in	sown	area	of	maize	and	the	small	decline	 in	both	 food	and	

feed	demand.	The	demand	will	be	relatively	rigid	in	the	future,	and	the	influences	of	

the	rising	price	are	mainly	reflected	in	changes	in	sown	area	(see	Figure	7‐14).	

	

	

Figure	7‐14	Changes	in	sown	area	of	4	main	staples	with	and	without	climate	
change.	
Simulation	is	from	1983	to	2007,	and	projection	is	from	2008	to	2050.	
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This	section	only	discusses	the	demand	and	supply	balance	by	adding	the	impacts	of	

climate	 change	 on	 a	 single	 crop	 in	 the	 system	 as	 an	 indicator	 of	 climate	 change	

impact	 on	 the	 overall	 food	 availability.	 It	 was	 found	 that	 the	 impact	 of	 climate	

change	 on	 a	 single	 crop	 just	 affected	 its	 own	 availability	 and	 that	 impact	 effect	 is	

reduced	 by	market.	 But	 could	 the	 impacts	 transfer	 to	 other	 crops	 in	 other	ways?	

Will	climate	change	impact	on	food	access?	To	answer	these	questions,	the	changes	

in	price	with	and	without	climate	change	are	examined	in	the	next	section.		

	

7.3.2 Change	in	price	

	

In	this	section,	changes	in	price	of	the	main	staples	with	and	without	climate	change	

impacts	are	discussed.		

	

The	 price	 used	 is	 the	 equilibrium	 price	 calculated	 by	 the	 economic	 model	 in	 its	

market	 clearing	mode.	 Theoretically,	 the	 equilibrium	 price	 is	 found	 by	 the	model	

when	 the	 supply	 of	 a	 commodity	 equals	 its	 demand	 (this	 status	 is	 called	

equilibrium).	Practically,	when	the	error	between	supply	and	demand	is	less	than	99%	

of	demand,	the	equilibrium	(also	known	as	the	quasi	equilibrium)	is	reached.		

	

The	model	 process	 that	 looks	 for	 the	 equilibrium	price	 is	 described	 in	 Chapter	 6.	

However,	 there	 are	 some	 issues	 in	 the	 searching	 process.	 Firstly,	 a	 reasonable	

searching	range	of	price	was	introduced	to	overcome	unreasonable	extremely	high	

or	 low	 prices;	 secondly,	 the	 searching	 for	 optimal	 solutions	 is	 stopped,	 if	 the	 so‐

called	 quasi‐equilibrium	 cannot	 be	 reached	 using	 the	 prices	 within	 the	 searching	

range,	 in	 which	 case,	 the	 prices	 are	 taken	 as	 the	 equilibrium	 solution	 if	 the	

difference	between	the	simulated	supply	and	demand	no	longer	decreases.		

	

It	may	be	noted	 that	 the	 total	 supply	of	maize	does	not	 satisfy	 the	demand	due	 to	

climate	change	impact	(Figure	7‐12).	Theoretically,	supply	and	demand	should	be	in	
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balance	 if	 no	 constraints	 are	 imposed	 on	 the	 economic	 model.	 However,	 in	 the	

model,	 there	 are	 some	 limitations:	 1)	 the	 adjustment	 in	price	 is	 limited	 to	 certain	

ranges	 in	the	historical	census	as	mentioned	in	the	paragraph	above;	2)	 the	future	

demand	 is	 highly	 dependent	 on	 income	 level	 (controlled	 by	 the	 large	 income	

elasticity	 and	 the	 nutrition	 standards	 described	 in	 Section	 7.2.4).	 It	 also	 does	 not	

react	very	sensitively	to	price	(controlled	by	the	small	price	elasticities),	and	these	

elasticities	 are	 also	 based	 on	 their	 historical	 value.	 A	 thorough	 examination	 was	

made	to	investigate	which	limitation	was	the	primary	source	leading	to	the	balance	

gap.	 To	 test	 the	 first	 limitation,	 the	 searching	 range	 of	 prices	 in	 the	 model	 was	

enlarged,	without	 changing	 the	model	 performance.	 To	 test	 the	 second	 limitation,	

the	 nutrition	 standards	 in	 the	model	were	 disabled.	 The	 gap	 disappeared	 but	 the	

projections	of	grain	demand	soared	to	an	unreasonably	high	level.	Thus	the	nutrition	

standards	 projection	 was	 the	main	 reason	 the	 model	 did	 not	 balance	 in	 realistic	

socio‐economic	settings.	In	reality,	improvement	of	nutrition	would	be	slowed	down	

as	the	food	price	increases	become	too	high.	In	modelling,	it	means	there	must	be	a	

process	added	 to	adjust	 the	nutrition	standards	by	altering	both	 income	and	price	

elasticities	properly.	However,	it	is	currently	difficult	to	model	this	process,	because	

no	 existing	 research	 has	 been	 conducted	 on	 altering	 those	 elasticities	 in	 other	

developing	countries.	In	addition,	the	alteration	could	not	be	accomplished	by	using	

the	 Chinese	 historical	 data.	 On	 one	 hand,	 one	 would	 argue	 that	 the	 economic	

consequence	of	climate	change	impact	on	maize	is	so	severe	that	it	could	make	the	

model	deficient	for	periods	close	to	the	middle	of	the	century.	On	the	other	hand,	it	

implies	 that	 climate	 change	 will	 likely	 have	 significant	 impact	 on	 future	 food	

utilization	in	China,	which	may	lead	to	a	significant	alteration	of	nutrition	standards.	

	

Nevertheless,	 the	economic	model	was	designed	 from	the	current	China	economic	

system	and	ran	with	the	most	reasonable	economic	settings	that	could	be	projected	

so	far.	Its	results,	to	a	large	degree,	indicate	the	direction	of	climate	change	impact	

on	China’s	food	security	in	the	future,	as	discussed	below	(Figure	7‐15).		
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The	price	index	is	a	measure	of	relative	change	in	price	from	the	base	year.	In	this	

case,	 the	 previous	 year	 is	 set	 as	 the	 base	 year.	 Thus,	 if	 the	 price	 index	 in	 year	 t	

equals	100,	it	means	the	price	in	year	t	does	not	change	compared	to	the	previous	

year	 (t‐1);	 if	 the	 price	 index	 is	 larger	 than	 100,	 the	 absolute	 price	 rises,	 and	 vice	

versa.		

	

On	 average,	 the	 price	 indexes	 of	 rice	 and	wheat	 are	 smaller	 than	 100,	 decreasing	

slowly	 for	 both	 crops	 with	 and	 without	 climate	 change,	 but	 then	 they	 start	 to	

increase	slightly	in	the	last	few	years	before	2050,	influenced	by	the	ripple	effects.	In	

contrast,	for	maize	the	price	index	is	likely	to	increase	under	climate	change,	soaring	

unprecedentedly	after	2040	 to	a	value	of	116	 in	 the	year	2050,	whereas	 the	price	

will	 keep	 falling	 towards	 a	 value	 of	 94	 in	 2050	 in	 the	 same	 period	when	 climate	

change	 is	 not	 taken	 into	 account.	 The	 tuber	 price	 index	 was	 less	 than	 100	 and	

decreasing	similarly	 to	rice	and	wheat	under	the	scenario	without	climate	change.	

However,	it	keeps	on	a	stable	level	close	to	100.		

	

Thus	if	climate	change	is	not	considered	in	the	projections,	 the	absolute	price	of	4	

staples	 will	 fall	 at	 an	 accelerating	 rate.	 In	 scenarios	 with	 climate	 change,	 the	

absolute	price	of	rice	and	wheat	decreases	with	a	slightly	slow	rate	until	2045,	and	

then	the	decreasing	trend	remains	at	the	low	level.	The	absolute	price	of	maize	will	

keep	rising,	and	soar	after	2040.	The	tuber	price	will	likely	stay	at	a	stable	level	even	

with	climate	change	

	

.	
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Figure	7‐15	Projections	of	the	price	index	for	4	main	staples	to	the	year	2050	(time	series).	
The	price	index	in	year	2005,	2006,	and	2007	is	the	value	in	the	NBS	census,	and	the	remainder	of	the	series	is	the	projected	
equilibrium	price	index.	The	value	larger	than	100	means	that	the	price	increases,	and	less	than	100	means	the	price	declines	
compared	to	the	previous	year.		
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Figure	7‐16	Projections	of	the	price	index	for	maize	to	the	year	2050	under	different	scenarios.	
The	price	index	in	year	2005,	2006,	and	2007	is	the	value	in	the	NBS	census,	and	the	remainder	of	the	series	is	the	projected	
equilibrium	price	index.	The	dotted	line	is	the	index	value	of	100,	which	means	no	change	in	price.
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Figure	7‐17	Projections	of	the	price	index	of	4	main	staples	from	2008	to	2050	(box	plot).	
The	top	and	bottom	of	the	box	is	the	75%	and	25%	percentiles,	respectively.	The	dashed	
line	through	the	box	gives	the	maximum	and	minimum	values.		
	

	

	

The	variance	of	 the	price	 index	 for	wheat	 and	maize	 after	2045	becomes	much	 larger	 in	

scenarios	with	climate	change	compared	to	that	without	climate	change.	The	instability	of	

price	change	may	bring	consumers	more	financial	risks	apart	from	the	rise	in	prices.		

	

From	 the	 box	 plot	 (Figure	 7‐17),	 the	median	 values	with	 climate	 change	 are	marginally	

larger	than	those	under	best	guess	scenario	and	the	whole	population	of	prices	moves	to	a	

larger	level.	It	is	suggested	that	the	level	of	the	declining	trend	in	price	will	be	reduced	with	

climate	 change.	 In	 other	 words,	 although	 the	 prices	 are	 still	 decreasing	 under	 climate	
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change,	rice	and	wheat	are	at	a	higher	price	level	than	that	under	the	Best	guess	scenario	

without	climate	change.		

	

In	contrast	to	the	food	availability,	it	appears	that	it	will	be	a	challenge	to	maintain	the	food	

access	 as	 usual	 for	 all	 the	 main	 staples	 by	 adding	 climate	 change	 impact	 on	 price.	 The	

challenge	is	reflected	in	two	respects:	one	is	that	food	prices,	in	general,	are	likely	to	be	at	a	

higher	 level	 for	 all	 projections	 with	 climate	 change	 than	 without	 climate	 change,	 and	

secondly,	the	larger	fluctuations	in	price	time	series	may	burden	consumers	with	financial	

problems.		

	

	

7.3.3 Impact	of	disaster	

	

Resilience	 is	 an	 important	 dimension	 of	 food	 security.	 The	 concept	 of	 "resilience"	 is	

originally	introduced	by	the	ecologist	Buzz	Holling	(1973).	It	is	defined	by	the	capability	of	

a	natural	system	return	to	balance	status	from	damage.	In	ecology,	the	resilience	is	related	

to	but	different	from	the	concept	of	"stability"	and	"the	ability	to	maintain	a	steady	state"	

(Adger,	2000).	It	describes	the	system	function	being	able	to	absorb	the	turbulence	before	

system	status	change	(Holling	et	al.,	1995)	or	the	recovery	rate	of	a	system	from	turbulence.	

Besides	resilience,	the	stability	of	a	system	also	includes	the	resistance	process	(Peterson	

et	al.,	1998).		

	

In	this	thesis,	it	is	measured	by	the	duration	the	food	system	takes	to	return	to	a	balanced	

status	after	 suffering	a	 sudden	shock	 (for	example,	a	drought	or	 flood	disaster	damaging	

grain	 production).	 In	 this	 section,	 three	 questions	 are	 addressed	 in	 order	 to	 probe	 this	

situation	further:		

	

1. In	the	Chinese	food	system,	how	much	and	how	long	would	a	sudden	shock	on	the	

supply‐side	affect	food	availability	and	food	prices?		
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2. Considering	 climate	 change,	 how	 would	 the	 duration	 of	 the	 impact	 of	 disaster	

change?	

3. In	 the	extreme	case	where	all	main	staples	are	damaged	by	disasters,	what	would	

the	main	impacts	be?	

	

7.3.3.1 Disasters	in	history	

Firstly,	 it	was	assumed	that	disasters	in	future	would	have	the	same	scale	as	those	in	the	

past.	All	disaster	 information	was	sourced	from	the	historical	census	of	the	Chinese	grain	

production.	Disaster	was	measured	by	 the	variability	of	grain	production.	 In	 this	 section,	

only	rice,	wheat	and	maize	were	considered	because	the	production	of	tubers	does	not	vary	

much	historically.		

	

The	 variability	 was	 calculated	 by	 the	 ratio	 of	 census	 data	 of	 production	 to	 trend	 of	

production,	i.e.	(census−trend)/trend.	The	trend	of	production	was	produced	by	the	linear	

moving	average	method	suggested	by	Xue	et	al.	(2003).	The	census	data	from	1949	to	2005	

was	 derived	 from	 NBS	 yearbooks.	 The	 production	 trend	 of	 three	 staples	 historically	 is	

given	in	Figure	7‐18	and	the	variability	is	summarized	in	Table	7‐3.	Historically,	the	largest	

disasters	 caused	 8.9%,	 10%	 and	 11.7%	 reduction	 in	 the	 production	 of	 rice,	 wheat,	 and	

maize,	respectively.		
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Figure	7‐18	The	historical	census	of	production	of	3	main	staples	from	1949	to	2007.	
The	trend	was	calculated	by	the	linear	moving	average	method	given	by	Xue	et	al.	(2003).	
Unit	ton	is	the	metric	tonne	(1000kg).	

	

Table	7‐4	Historical	variability	of	production	of	3	main	staples	from	1949	to	2005.	

	 Variability	(%	of	production)	

Rice	 −8.9	~	6.8	

Wheat	 −10	~	13.4	

Maize	 −11.7	~	12.3	
 

	

7.3.3.2 Impacts	of	disaster	on	food	security	

The	impact	durations	were	then	tested	when	adding	a	one‐year	disaster	only	to	maize	and	

adding	a	one‐year	disaster	to	all	three	staples	(i.e.	rice,	wheat	and	maize).	The	projections	
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were	 carried	 out	 under	 the	 scenarios	 with	 and	 without	 climate	 change.	 To	 capture	 the	

temporary	differences	 as	 climate	 change	develops,	 disaster	was	 considered	 in	 respective	

years:	2019,	2029,	2039	and	2049.			

	

Disaster	only	applied	to	maize	

	

From	 the	 supply‐demand	 charts	 (Figure	 7‐19),	 disasters	 on	 maize	 do	 not	 result	 in	 any	

significant	negative	effects	on	rice,	wheat,	and	maize,	but	only	lead	to	a	large	loss	of	maize	

supply	in	that	year.	The	unbalanced	status	of	maize	only	occurs	in	the	disaster	year	without	

climate	change,	but	is	likely	to	last	at	least	for	one	year	after	the	disaster	when	considering	

impacts	of	climate	change.	 If	a	disaster	happens	in	2039,	 the	unbalanced	status	(with	the	

self‐sufficiency	ratio	less	than	95%)	would	likely	last	for	three	years.	Thus	a	sudden	shock	

on	a	specific	staple	has	very	 limited	 impacts	on	 food	availability,	and	 the	supply‐demand	

balance	 could	 be	 recovered	 very	 quickly	 in	 one	 or	 two	 years	 in	 general.	 However,	 as	

impacts	of	climate	change	become	more	intensive	towards	the	middle	of	this	century,	the	

resilience	of	Chinese	food	systems	to	recover	from	a	disaster	will	be	weakened.		

	

With	regard	to	price,	the	disaster	signal	appears	on	the	price	index	of	all	staples	as	shown	

in	Figures	7‐21,	7‐22,	7‐23,	and	7‐24.	Firstly,	the	variance	of	price	index	becomes	slightly	

larger	after	the	disaster	year,	but	the	disaster	does	not	alter	its	trend	for	any	of	the	staples.	

This	means	 that	 the	 impact	duration	of	disaster	 lasts	 longer	on	price	variability	but	does	

not	change	the	basic	trend	of	price.	Secondly,	when	climate	change	is	considered,	a	disaster	

may	not	only	lead	to	an	increased	trend	in	price	index	of	maize,	but	also	result	in	intensive	

variation	of	that	index	in	the	following	decades.	Thirdly,	when	disaster	occurs	with	climate	

change,	the	longer	its	impacts	will	last	and	the	larger	will	be	the	fluctuations	of	price	index.	

If	disaster	were	added	in	year	2039,	the	variation	in	maize	price	index	would	last	for	about	

five	years	on	a	high	level	(i.e.	the	annual	growth	of	price	index	from	2039	to	2043	would	

remain	 at	 the	 value	 of	 120	 in	 Figure	 7‐23),	 meaning	 that	 the	 real	 price	 would	 keep	

increasing	with	an	accelerating	rate	for	years	after	2039.	
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Disaster	applied	to	three	staples	

	

This	section	examines	the	enhancement	of	the	disaster	scale	by	adding	the	largest	disasters	

in	history	of	the	three	staples	at	one	time.		

	

For	rice	and	wheat,	the	basic	trend	of	price	will	likely	decline	in	the	future,	but	would	shift	

to	 rise	 for	years	by	 the	 reinforced	disaster	 shock.	 For	 example,	 in	 the	 case	 for	2039,	 the	

price	 index	 of	 rice	 keeps	 above	 the	 100	 level	 for	 4	 years	with	 climate	 change.	 A	 similar	

phenomenon	 happens	 to	 tubers.	With	 regard	 to	maize,	 the	 price	 increase	 responding	 to	

disaster	damage	from	climate	change	becomes	worse.	Its	price	index	in	impact	duration	of	

disaster	has	a	significantly	high	value,	twice	that	even	when	climate	change	is	considered.				

	

In	conclusion,	a	sudden	shock	on	food	supply	will	affect	both	food	availability	and	access.	

The	 impact	 on	 food	 availability	 is	 milder	 and	 shorter	 than	 on	 food	 access,	 and	 it	 will	

transfer	 among	 all	 the	 staples	 in	 the	market	 by	 price	mechanisms.	 The	 duration	 of	 that	

impact	on	food	access	could	last	for	a	number	of	years.	The	impact	will	 likely	deteriorate	

due	to	climate	change	and	last	even	longer.	Even	for	those	staples	that	have	an	optimistic	

prospect	for	food	security,	the	price	may	keep	rising	for	long	periods.		
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Figure	7‐19	Projected	supply‐demand	balance	of	maize	with	disaster	on	maize	in	the	years	
2019,	2029,	2039,	and	2049.	
Simulation	is	from	1984	to	2007,	and	the	projection	is	from	2008	to	2050.	Unit	ton	is	the	
metric	tonne	(1000kg).	
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Figure	7‐20	Projected	supply‐demand	balance	of	maize	with	disaster	on	all	4	main	staples	
in	the	years	2019,	2029,	2039,	and	2049.	
Simulation	is	from	1984	to	2007,	and	the	projection	is	from	2008	to	2050.	Unit	ton	is	the	
metric	tonne	(1000kg).	
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Figure	7‐21	Projections	of	the	indexed	rice	price	with	disaster	in	the	years	2019,	2029,	2039,	and	2049.	
The	projections	are	from	2008	to	2050,	and	price	indexes	in	2005,	2006,	and	2007	are	from	the	NBS	census.		
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Figure	7‐22	Projections	of	the	indexed	wheat	price	with	disaster	in	the	years	2019,	2029,	2039,	and	2049.	
The	projections	are	from	2008	to	2050,	and	price	indexes	in	2005,	2006,	and	2007	are	from	the	NBS	census.		
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Figure	7‐23	Projections	of	the	indexed	maize	price	with	disaster	in	the	years	2019,	2029,	2039,	and	2049.	
The	projections	are	from	2008	to	2050,	and	price	indexes	in	2005,	2006,	and	2007	are	from	the	NBS	census.		
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Figure	7‐24	Projections	of	the	indexed	tuber	price	with	disaster	in	the	years	2019,	2029,	2039,	and	2049.	
The	projections	are	from	2008	to	2050,	and	price	indexes	in	2005,	2006,	and	2007	are	from	the	NBS	census.		
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7.4 Adaptation	options	at	national	level	

	

In	Chapter	4,	the	adaptations	options	were	discussed	at	farm	level	in	Jilin	province,	

using	the	bio‐physical	model,	DSSAT.	Those	adaptations	are	detailed	and	feasible	for	

farmers,	and	their	effects	are	highly	affected	by	the	local	environmental	conditions	

and	traditional	agricultural	structure.		

	

From	a	macroscopic	point	of	view,	the	adaptation	options	are	now	considered	at	the	

national	 level	 in	 this	 section	 through	 examining	 the	 effects	 of	 two	 agricultural	

policies	 to	alleviate	 the	 impacts	of	 climate	change	on	 food	security	at	 the	national	

level.	 Investment	 in	 agricultural	 research	 (P1)	 reflects	 the	 optimal	 potential	

increase	 of	 crop	 yield,	 and	 effective	 irrigation	 (P2)	 area	 represents	 the	 effect	 of	

irrigation	 facilities	 that	help	 to	 realize	 that	potential.	 In	 the	 food	economic	model,	

these	 two	 policies	 were	 placed	 into	 the	 equation	 of	 yield.	 They	 can	 therefore	 be	

taken	as	the	factors	on	the	supply	side.		

	

Although	many	 other	macro	 policies	may	 also	 provide	 adaptation	 options	 against	

climate	 change,	 the	 reasons	 for	 choosing	 these	 two	policies	were:	 1)	 they	 are	 the	

most	 crucial	 factors	 in	 agricultural	 sectors,	 and	well	 established	 systematically	 in	

China’s	 agricultural	 sector;	 2)	 it	 is	 easy	 to	 quantify	 them	and	 to	 collect	 data	 from	

each	year’s	census,	so	that	it	is	possible	to	track	and	validate.		

	

The	two	policies	were	investigated	for	their	independent	effect	as	well	as	for	their	

coupling	effects.	The	growth	in	P1	was	10%	with	the	high	scenario,	a	doubling	of	the	

value	 used	 in	 the	 Best	 guess	 scenario.	 The	 growth	 in	 P2	 is	 2%	 under	 the	 high	

scenario,	and	about	30%	higher	than	the	value	for	the	Best	guess.		

	

In	 terms	 of	 food	 availability,	 the	 production	 loss	 of	 maize	 due	 to	 climate	 change	

could	 be	 recovered	 partly	 by	 applying	 the	 high	 level	 of	 P1	 and	 coupling	 the	 high	

level	 of	 P1	 and	 P2,	 resulting	 in	 the	 improvement	 of	 the	 self‐sufficiency	 ratio	 by	
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about	2%	under	the	these	settings.	But	the	single	effect	of	P2	was	not	sufficient	to	

compensate	for	the	bio‐physical	loss	by	climate	change.			

	

	

Figure	7‐25	Price	index	of	maize	with	applied	adaptations.	
Projections	are	from	2008	to	2050,	and	the	data	in	years	2005,	2006	and	2007	are	
from	NBS	yearbooks.		 	
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In	terms	of	food	access,	the	high	scenarios	of	a	single	P1	and	coupling	P1	&	P2	will	

suppress	 the	 price	 index	 of	maize	 close	 to	 the	 neutral	 value	 of	 100,	 as	 shown	 in	

Figure	7‐25.	This	means	that	the	proper	agricultural	policies	are	able	to	successfully	

move	the	price	to	a	stable	status.		

	

In	 summary,	 improving	 P1	 (supplement	 investment	 in	 agricultural	 research)	 is	

effective	 in	 a	 trade‐off	 of	 climate	 change	 impacts,	 for	 both	 food	 availability	 and	

access.	The	high	growth	of	P2	(increasing	effective	irrigation	area)	will	bring	some	

improvement	to	food	access,	but	its	effect	is	much	weaker	than	P1	for	the	given	high	

scenario.		

	

7.5 Uncertainties	among	scenarios	

 

The	 climate	 system	 is	 inherently	 uncertain;	 hence	 the	 climate	 change	 projections	

are	characterized	with	high	uncertainties	 (as	was	discussed	 in	Section	3.3.2,	4.3.2,	

and	 5.2.2).	 In	 addition,	 the	 socio‐economic	 projections	 and	 any	 economic	 model	

results	also	involve	uncertainties.	It	is	important	to	discuss	the	range	of	uncertainty	

in	 impact	 assessments	 to	 support	 the	 decision‐making	 process	 in	 relation	 to	

adaptation.		

	

In	 this	 section,	 the	 uncertainties	 underlying	 climate	 change	 and	 socio‐economic	

scenarios	(i.e.	population,	 income	and	policy	scenarios)	are	discussed.	Because	the	

uncertainties	 cannot	be	 fully	 reflected	by	 the	 supply‐demand	balance	 in	 the	quasi	

equilibrium	status,	only	the	results	of	price	index	are	given.			

	

The	uncertainty	in	the	food	economic	model	is	discussed	in	Chapter	8.		
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7.5.1 Uncertainty	among	climate	change	scenarios	
 

Six	climate	change	scenarios	were	used,	according	to	the	six	emission	scenarios	by	

IPCC	SRES	 (2000),	 to	produce	 the	damage	on	bio‐physical	production	of	maize	 as	

presented	in	Chapter	5.	Also,	the	median	scenario	of	those	climate	change	scenarios	

was	constructed	as	a	representative	in	simulations	and	projections	for	convenience.		

	

In	 general,	 the	 maize	 price	 is	 projected	 to	 keep	 rising	 under	 all	 climate	 change	

scenarios.	 The	 optimistic	 projection	 appears	 under	 the	 B1	 scenario.	 The	 first	 two	

highest	 prices	 are	 projected	 by	 the	 A1T	 scenario	 before	 2040	 and	 by	 the	 A1FI	

scenario	 after	 2040.	 Projections	 under	 all	 the	 scenarios	 look	 similar	 until	 2030,	

when	 the	 disagreement	 becomes	 significant.	 The	 gap	 between	 the	 lowest	 and	

highest	projections	of	price	index	is	about	15%	in	2050.		

	

	
Figure	7‐26	The	indexed	equilibrium	price	of	maize	under	different	climate	change	
scenarios.	
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7.5.2 Uncertainty	among	socio‐economic	scenarios	

	

To	examine	 the	uncertainties	 among	 socio‐economic	 scenarios,	 extreme	 scenarios	

were	 considered:	 the	 highest	 growth	 of	 income	 and	 population,	 and	 the	 lowest	

growth	of	these	two.		

	

The	fundamental	pattern	of	food	availability	does	not	change	too	much	among	the	

six	 socio‐economic	 scenarios.	Only	 under	 the	 scenario	with	 the	highest	 growth	of	

both	income	and	population,	does	the	self‐sufficiency	ratio	of	maize	decline	to	about	

90%	 after	 2045	 with	 climate	 change.	 In	 this	 case,	 as	 income	 is	 increasing	 and	

population	is	moving	over	the	peak	summit	around	2045,	the	increase	of	sown	area	

driven	by	price	mechanics	is	no	longer	able	to	catch	up	to	the	demand	for	livestock	

products,	and	the	yield	loss	due	to	climate	change	aggravates	insufficient	production.		

	

For	food	access,	the	high	growth	in	income	(IM)	and	population	(POP)	will	magnify	

the	increase	of	the	maize	price	if	considering	climate	change	(Figure	7‐27),	but	they	

are	not	the	drivers	that	push	up	the	price.	The	maize	price	index	will	rise	by	10%	to	

15%	with	climate	change,	under	the	high	scenario	for	IM	and	POP.		Without	climate	

change,	the	results	are	nearly	the	same	as	the	Best	guess,	staying	below	the	value	of	

100.	

	

7.5.3 Extreme	cases	

Several	 extreme	 cases	 when	 coupled	 with	 scenarios	 of	 climate	 change,	 income,	

population	and	policy	are	given	in	Figures	7‐29	to	7‐33.			

	

The	worst	 case	 in	 the	 group	 is	 that	which	has	 the	 low	 level	 of	 agricultural	 policy	

with	 the	 highest	 growth	of	 IM	 and	POP	under	 the	A1FI	 scenario.	 In	 this	 case,	 the	

price	 of	 maize	 keeps	 to	 a	 high	 growth	 rate,	 about	 15%~20%,	 during	 the	 whole	
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projection	period.	The	best	case	is	that	which	has	the	high	level	of	policy	with	low	

IM	and	POP	growth	under	the	B1	scenario.	In	the	best	case,	the	price	index	remains	

at	a	low	level,	its	value	being	less	than	100	for	almost	the	whole	projection	period.		
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Figure	7‐27	Maize	
equilibrium	price	
under	different	
socio‐economic	
scenarios	(time	
series).	
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Figure	7‐28	Maize	equilibrium	price	under	different	socio‐economic	scenarios	(box	
plot).	
The	top	and	bottom	of	the	box	show	the	75%	and	25%	percentiles.	The	vertical	line	
through	the	box	gives	the	maximum	and	minimum	values.		
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Figure	 7‐29	 Maize	 equilibrium	 price	 under	 coupling	 of	 extreme	 scenarios	 for	
income,	population,	and	climate	change	(box	plot).		
The	top	and	bottom	of	the	box	show	the	75%	and	25%	percentiles.	The	vertical	line	
through	the	box	gives	the	maximum	and	minimum	values.	 
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Figure	7‐30	
Maize	equilibrium	
price	under	
coupling	of	
extreme	scenarios	
for	income,	
population,	and	
climate	change	
(time	series).	
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Figure	7‐31	Maize	
equilibrium	price	
under	coupling	of	
extreme	scenarios	
for	income,	
population,	climate	
change	and	policy,	
part	1	(time	series).	
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Figure	 7‐32	 Maize	 equilibrium	 price	 under	 coupling	 of	 extreme	 scenarios	 for	
income,	population,	climate	change	and	policy,	part	1	(box	plot).	
The	top	and	bottom	of	the	box	show	the	75%	and	25%	percentiles.	The	vertical	line	
through	the	box	gives	the	maximum	and	minimum	values.		
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Figure	7‐33	Maize	
equilibrium	price	
under	coupling	of	
extreme	scenarios	
for	income,	
population,	climate	
change	and	policy,	
part	2	(time	series).	
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Figure	 7‐34	 Maize	 equilibrium	 price	 under	 coupling	 of	 extreme	 scenarios	 for	
income,	population,	climate	change	and	policy,	part	2	(box	plot).	
The	top	and	bottom	of	the	box	show	the	75%	and	25%	percentiles.	The	vertical	line	
through	the	box	gives	the	maximum	and	minimum	values.		

	

7.6 Summary	

	

In	this	chapter	the	projections	of	the	food	system	using	the	economic	model	under	

multiple	scenarios	of	climate	change,	income,	population	and	policy	were	discussed.	

The	 future	 food	 security	 of	 China	 was	 assessed	 for	 its	 availability	 access	 and	

stability,	based	on	the	projections	of	food	supply,	demand,	and	price.			

The	main	results	are	summarized	as	follows:		
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The	supply	and	demand	of	the	main	grains	of	China	will	turn	to	a	"tight"	balance	in	

the	 next	 few	 decades.	 The	 "tight"	 balance	 means	 the	 self‐sufficiency	 of	 a	 certain	

grain	 ranges	 from	 95%	 to	 90%.	 	 However,	 food	 access	 and	 the	 stability	 of	 food	

security	are	likely	to	suffer	from	the	pressure	caused	by	climate	change.		

	

The	impacts	of	climate	change	on	bio‐physical	production	of	a	single	crop	will	likely	

be	 slightly	 alleviated	 through	 the	 economic	 process	 due	 to	 the	 price	 adjustment	

helping	to	spread	those	impacts	from	a	single	crop	to	its	substitute	crops.		

	

The	impacts	of	climate	change	are	predicted	to	be	limited	to	an	acceptable	range	in	

the	next	twenty	to	thirty	years,	but	their	intensity	will	rise	significantly	close	to	the	

middle	of	this	century.		

	

The	impact	of	a	sudden	shock	on	the	food	security	will	last	longer,	when	the	impacts	

of	climate	change	are	taken	into	account.		

	

Improving	agricultural	policies	is	 likely	to	reduce	the	negative	effects	produced	by	

either	 climate	 change	 or	 the	 growth	 of	 income	 and	 population.	 The	 continuing	

increase	of	investment	in	agricultural	research	is	likely	to	result	in	the	reduction	of	

food	security	risk.		

	

The	 uncertainties	 among	 climate	 change	 and	 socio‐economic	 scenarios	 could	 be	

large	 with	 respect	 to	 food	 access.	 Therefore	 it	 is	 crucial	 that	 government	 adopts	

proper	adaptations	as	early	as	possible	to	ensure	the	food	security	of	China	 in	the	

next	few	decades.	 	
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8 Chapter	8	Conclusion,	Discussion	and	
Outlook	

 

The	impacts	of	climate	change	on	agriculture	and	the	food	security	of	China	are	both	

hot	topics	discussed	separately	by	agricultural	science	researchers	and	economists	

since	 the	 1990s.	 In	 recent	 years,	 integrated	 assessment	 methods	 focussing	 on	

impact	research	of	climate	change	have	been	developed	and	applied	to	a	wide	range	

of	areas,	including	water	management,	land	use,	and	agriculture.	For	both	scientific	

practical	 applications,	 integrated	 methods	 have	 distinct	 advantages	 in	 impact	

research	of	climate	change	where	several	natural	and	socio‐economic	systems	are	

considered.	This	 typically	 involves	 extensive	 sets	of	 data	 and	models,	 all	 of	which	

require	 updating	 as	 scientific	 understanding	 and	 information	 improve	 (Warrick,	

2009).	 Several	attempts	have	been	done	 to	 incorporate	agriculture,	 food	economy	

and	climate	change	in	many	ways	as	outlined	in	Chapter	1.	The	urgent	demand	for	

searching	and	evaluating	adaptation	options	to	climate	change	by	governments	and	

shareholders	 is	 increasing.	 In	 this	 respect,	 computable	 models	 are	 useful	 and	

efficient	tools	to	assess	quantitatively	the	effectiveness	of	adaptations.	

	

The	 goal	 of	 this	 thesis	 was	 to	 develop	 an	 integrated	 model	 to	 assess	 the	 food	

security	 of	 China	 under	 climate	 change	 by	 coupling	 the	 bio‐physical	 and	 socio‐

economic	 processes,	 and	 to	 investigate	 how	 food	 security	 will	 be	 challenged	 by	

climate	 change	 and	 economic	 development	 in	 future	 decades,	 and	 how	 certain	

adaptations	can	reduce	the	vulnerability	of	food	systems.		

	

8.1 Discussion	and	future	work	

In	this	research,	a	framework	was	developed	for	the	integrated	assessment	of	food	

security	 under	 climate	 change,	 within	 which	 the	 information	 of	 bio‐physical	 and	
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socio‐economic	 processes	 was	 coupled	 across	 farm	 and	 national	 levels.	 This	

information	was	aggregated	up	 from	 the	 local	 to	 the	national	 level	 because	of	 the	

emphasis	on	impacts.	

	

Compared	 to	 previous	 studies	 on	 the	 isolated	 bio‐physical	 and	 socio‐economic	

aspects,	this	thesis	 is	an	attempt	to	couple	these	two	fields	using	a	new	integrated	

model	method	to	investigate	the	impacts	of	climate	change	on	the	crop	production	

and	 the	 consequent	 refection	 from	 food	 market.	 The	 integrated	 method	 is	 an	

original	dynamic	and	systemic	method	to	incorporate	the	bio‐physical	yield	with	the	

input	 of	 an	 economic	 model,	 which	 allows	 the	 projection	 of	 indicators	 of	 food	

security	in	year‐by‐year	steps.		

	

By	applying	this	integrated	model,	the	thesis	not	only	gave	the	impacts	on	the	food	

availability	 but	 also	 discussed	 the	 impacts	 on	 food	 price	 and	 the	 resilience	 of	

Chinese	food	system	in	the	future,	which	has	not	been	studied	by	other	researchers.	

Multiple	climate,	policy	and	socio‐economic	scenarios	and	their	combinations	were	

also	 discussed	 in	 details,	 which	 is	 a	 comprehensive	 analysis	 of	 uncertainties	 in	

impact	 researches.	The	most	distinctive	 contribution	are	 some	adaptation	options	

both	on	farm	and	country	level	were	assessed	quantitatively	in	this	thesis,	resorting	

to	the	advantages	of	bio‐physical	model.		

	

In	Chapter	4	 and	Chapter5,	 the	 impacts	of	 climate	 change	on	bio‐physical	 yield	of	

maize	are	simulated	in	Jilin	province	and	the	whole	China.	The	yield	reduction	due	

to	 climate	 change	 in	 main	 production	 provinces	 is	 about	 17%	 in	 2020s,	 slightly	

larger	 than	 the	 projection	 of	 irrigated	maize	 from	Xiong	 (2009).	 Both	 projections	

were	calculated	by	the	DSSAT	model	and	similar	global	warming	scenarios,	except	

the	different	irrigation	methods	applied:	I	used	much	detailed	the	irrigation	scheme	

with	 considering	 the	 irrigation	 quota	 in	 reality,	 which	 may	 result	 in	 much	 more	
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strict	limitation	on	water	sufficiency	of	crop.		On	the	regional	scale,	as	mentioned	in	

Chapter	 4,	 the	 DSSAT	 model	 using	 my	 improved	 sowing	 and	 irrigating	 scheme	

performed	 much	 better	 in	 Jilin	 province	 than	 the	 original	 version	 which	 Xiong	

(Xiong	et	al,	2007)	used.	But	in	some	area,	especially	Xinjiang,	the	simulation	in	this	

thesis	underestimated	the	maize	yield,	but	Xiong	et	al.	gave	a	moderate	estimation	

in	their	paper.	 	The	previous	authors	did	not	investigate	that	detailed	indicators	of	

changes	in	growing	phase	of	maize	in	China.	My	projected	sowing	date,	about	5	days	

in	advance	of	current	conditions	in	2050s	is	possible,	in	accordance	with	the	recent	

observations	by	the	local	contacts	in	Jilin	province.		

	

Considering	 crop	 model	 selection,	 using	 another	 model	 could	 produce	 different	

results	to	the	current	projections,	even	if	the	model	calibrated	carefully	based	on	the	

same	 observations.	 As	mentioned	 before,	 Lobell	 &	 Burke	 (2010)	 compared	 three	

types	 of	 statistical	model	 and	CERES‐Maize	model.	 The	 results	would	 not	 only	 be	

affected	 by	 changes	 in	 climate	 variability	 but	 also	 the	 variables	 with	 high	 spatial	

variation,	 like	 the	 cultivar	 used	 in	 different	 regions,	 and	 the	 noise	 in	 weather	 or	

climate	data.	 Compared	 to	 the	other	bio‐physical	 based	model	 used	 in	 this	 thesis,	

the	application	of	fertilizer	and	irrigation	and	the	planting	schedule	was	considered	

in	daily	steps,	and	the	simulation	of	DSSAT	was	highly	sensitive	to	the	irrigation	and	

planting	 schedule	 in	 the	 thesis.	 So,	 if	 using	 the	model	 with	 different	 bio‐physical	

processes	 and	 without	 considering	 these	 cropping	 strategies,	 the	 results	 may	 be	

different.					 

	

In	 comparison	 of	 economic	 projections	 without	 considering	 climate	 change,	 the	

total	grain	supply	and	demand	in	2020s	in	this	thesis	has	the	same	magnitude	as	the	

most	 previous	 projections	 (Liao	&	Huang,	 2004;	 Lu	 et	 al,	 2010;	 Zhang,	 2012),	 i.e.	

about	 	 700	 Mt	 of	 supply	 and	 730	 Mt	 of	 total	 demand.	 For	 specific	 crops,	 the	

projected	 increase	 in	 maize	 demand	 matches	 with	 the	 latest	 projections	 by	

International	Global	Council	(IGC,	2013)	quite	well,	with	the	annual	growth	rate	of	
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about	5%	in	the	next	5	years.	The	harvested	area	for	rice	projected	by	Wailes	and	

Chavez	 (2012)	will	 decline	 from	29.8	 to	 28.	 3	million	ha	 by	 2021,	which	 is	much	

slower	than	my	projections,	since	the	base	yield	(4.59	t/ha)	they	used	is	much	lower	

than	the	Chinese	statistic	(about	6.5	t/ha)	that	I	employed	in	the	thesis.	Comparing	

the	 OECD	 outlook	 (OECD,	 2013),	 my	 projection	 of	 wheat	 production	 and	

consumption	 is	 10%	 smaller	 than	 the	OECD	 results.	 It	might	 be	 caused	 by	 1)	 the	

different	staring	year	of	projection	with	different	initial	conditions;	my	simulations	

started	from	the	average	of	2004‐2007	and	theirs	started	from	the	very	recent	2013,	

2)	 the	 different	 estimation	 of	wheat	 consumption	method.	 The	 original	 statistical	

consumption	data	from	Chinese	Statistical	Bureau	was	adjusted	by	considering	the	

some	other	household	surveys	with	local	information	(see	details	in	Chapter	6)	and	

was	not	used	directly	in	my	thesis.	The	international	trade	projection	of	all	grains	in	

my	thesis	is	much	smaller	than	all	of	the	studies	mentioned	above,	because	the	food	

prices	 in	 international	market	were	 fixed	 by	 external	 scenarios	 but	 not	 produced	

internally	by	the	model	system.	This	is	the	shortcoming	of	this	model,	I	must	admit.		

	

Some	 limitations	 of	 this	model	 should	 be	 revisited;	 because	 the	main	 goal	 of	 this	

thesis	was	to	develop	a	model,	the	food	security	was	not	fully	assessed	at	this	stage.	

As	 mentioned	 in	 Chapter	 1,	 the	 four	 aspects	 of	 food	 security	 include:	 food	

availability,	 food	access,	 food	utilization	and	stability	of	supply.	Without	modelling	

the	other	sectors	in	economic	model,	the	income	input	is	not	obtained	internally	and	

the	distribution	process	of	 food	products	 is	not	 included,	so	 the	 food	access	 is	not	

fully	assessed	by	the	projections	of	food	prices.	The	food	utilization	and	the	stability	

of	 food	 security	 is	 not	 discussed	 in	 the	 thesis	 either.	 Furthermore,	 only	maize	 is	

considered,	 so	 it	 must	 be	 confessed	 that	 the	 assessment	 is	 only	 a	 test	 for	 the	

integrated	model.		

	

The	 scaling	up	method	allowed	 for	only	one‐way	 responses	 to	be	assessed:	 in	 the	

economic	modelling	 system,	 the	 national	 government	 is	 able	 to	 react	 to	 the	 local	

events,	 but	 cannot	 obtain	 feedback	 from	 the	 farmers.	 Moreover,	 in	 the	 current	
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assessment	 of	 food	 access,	 only	 price	 is	 considered,	 and	 thus	 it	 cannot	 reflect	 the	

actual	 food	access	 for	different	 income	groups.	Obviously,	 the	poor	 family	 is	more	

vulnerable	than	the	rich	facing	the	same	increase	in	food	price.	Therefore,	it	will	be	

useful	 to	 build	 a	 household	 consumption	 model	 connected	 to	 the	 food	 economic	

model,	to	simulate	how	income	affected	the	consumption	pattern	of	a	family,	as	well	

as	to	simulate	how	the	rural	family	would	respond	to	the	macro	agricultural	policy.			

	

The	 economic	model	 developed	 in	 this	 thesis	was	 designed	 for	 the	 national	 level,	

and	 does	 not	 capture	 the	 local	 or	 household	 level	 information.	Much	more	 effort	

needs	 to	 be	 devoted	 to	 aspects	 of	 food	 access	 and	 utilization	 in	 future.	 For	 food	

access,	the	household	budget	process	should	be	predicted	based	on	an	investigation	

of	 food	price	and	 income,	and	the	distribution	of	crops.	The	market	 infrastructure	

and	the	evaluation	of	the	transport	system	would	be	taken	into	account	to	evaluate	

the	 amount	 and	 frequency	 of	 food	 consumption.	 In	 particular,	 for	 the	 purpose	 of	

sustainable	development,	a	practicable	index	system	to	measure	the	stability	of	all	

these	 three	 aspects	 is	 required.	 Compared	 to	 studies	 of	 food	 availability,	 few	

quantitative	 assessments	 have	 been	 conducted	 to	 investigate	 climate	 change	

impacts	on	 food	utilization,	which	are	critical	 indicators	of	 regional	and	 local	 food	

security.	It	is	worth	highlighting	interactions	among	multi	spatial	and	time	scales	in	

food	 utilization.	 Analytical	 tools	 are	 required	 to	 capture	 the	 quantitative	

information	 with	 respect	 to	 regional	 and	 household	 levels,	 such	 as	 changes	 in	

income	and	food	consumption	pattern	due	to	inter‐annual	climate	fluctuations,	and	

allocation	changes	of	food	products	at	regional	scale	due	to	shifts	in	agro‐ecological	

zones	 in	 the	 long	 term.	 Therefore,	 a	micro‐economic	model	 grounded	 in	 the	 local	

context	should	be	developed	in	order	to	investigate	food	consumption	patterns	with	

changes	in	price	and	income	at	the	household	level.	Further	attempts	would	lead	to	

incorporating	 food	 security	 at	 the	 household	 level	 with	 farm‐level	 adaptation	

options,	 e.g.	 the	 interactions	 among	 cropping	 diversity,	 self‐use	 rate	 of	 outputs,	

income,	 and	 nutrition	 level	 at	 inter‐annual	 scales.	 A	 module	 to	 describe	 the	
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allocation	and	transportation	of	 food	products	between	regions	 is	also	required	 in	

future.	

	

The	current	food	economic	model	is	a	partial	equilibrium	model	that	considers	the	

four	 main	 grains.	 The	 availability	 of	 other	 grains	 and	 crops	 and	 non‐food	

commodities	were	not	included.	It	would	therefore	be	feasible	in	future	research	to	

add	 soybean	and	oil	 crops	and	 crucial	non‐food	 commodities,	 e.g.	 fuel	 and	 cotton,	

into	the	market	clearance	mode.		

	

Adaptations	in	the	thesis	focused	on	the	agricultural	research	and	irrigation	at	both	

local	and	national	scales.	More	options	should	be	included	in	the	future,	e.g.	subsidy	

for	grain‐producers,	and	introduction	of	carbon	credits.	However,	it	may	be	difficult	

to	access	proper	data.	In	order	to	address	the	impacts	on	the	economic	dimension	at	

the	 farm	 level,	 it	 is	necessary	 to	consider	 farmer	response	by	simulating	decision‐

making	 processes	 which	 can	 deal	 with	 different	 adaptation	 options	 at	 multi	

temporal	and	spatial	scales,	such	as	the	long‐term	water	and	land	management	at	a	

regional	 scale,	 short‐term	cropping	practice	at	 farm	 level,	 and	 long‐	or	 short‐term	

disaster‐resisting	activity	at	both	levels.	

	

With	 regard	 to	 measuring	 adaptation,	 even	 using	 the	 high	 level	 of	 P2	 policy	

(increasing	 effective	 irrigation	 area)	 the	 shortage	 of	 maize	 supply	 produced	 by	

climate	 change	 is	 unlikely	 to	 be	 retrieved.	 In	 the	 next	 stage,	 a	 higher	 level	 of	 P2	

policy	needs	to	be	tried	in	order	to	find	out	a	proper	point	at	which	the	gap	could	be	

filled.	 Then	 a	 cost‐benefit	 analysis	 of	 the	 adaptations	 could	 be	 undertaken,	 and	

which	 would	 also	 allow	 comparison	 of	 the	 advantage	 and	 disadvantage	 from	

importing	or	the	self‐sufficiency	ratio.		

	

Some	 new	 cultivars	 used	 in	 Section	 4.4.2	 are	 theoretical.	 Using	 these	 theoretical	

cultivars	was	an	attempt	to	explore	which	phenological	parameters,	i.e.	P1,	P2,	and	
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P5,	would	be	the	most	important	in	maize	yield	in	a	warming	environment.	It	is	only	

provide	 some	 suggestions	 for	breeding	or	 gene	 engineering	 to	 respond	 to	 climate	

change,	 but	 it	 is	 uncertain	 that	 all	 the	 theoretical	 cultivars	 could	 be	 created.	

Obviously,	based	on	Figure4‐18,	the	larger	P1	and	P5	parameter	will	produce	higher	

yield	level	in	Jilin	case.	It	means	that	the	new	cultivars	requiring	longer	thermal	time	

in	 both	 juvenile	 and	mature	 stage	will	 be	 the	 optional	 cultivars	 in	 future.	 In	 fact,	

introducing	 new	 cultivars	 has	 already	 happened	 in	 Northeast	 China,	 e.g.	 in	 Jilin	

(from	local	contact).	Maize	cultivars	are	rich	in	gene	storage:	like	in	DSSAT	there	are	

more	 than	 40	 cultivars	 available	 for	 use	 (Jones,	 2003).	 Genetic	 engineering	 and	

breeding	 is	developing	very	 fast	and	Chinese	government	 is	more	open‐minded	to	

introducing	new	cultivars	and	to	genetic	engineering	than	European	countries.	The	

first	 documentation	 of	 State	 Council	 of	 China	 in	 2010	 aims	 to	 promote	 the	

industrialization	 of	 new	 genetically‐modified	 cultivars.	 Chinese	 government	 has	

very	positive	attitude	to	push	farmers	to	use	new	cultivars:	Every	county	 in	China	

has	 its	 own	 branch	 to	 promote	 and	 guide	 farmers	 to	 use	 new	 cultivars.	 So	 it	 is	

possible	for	China	to	maintain	productivity	by	switching	to	new	cultivars.	

	

Due	to	limitations	of	data	and	time,	only	the	impacts	on	maize	were	discussed	in	this	

thesis.	In	future,	it	will	be	worthwhile	to	add	the	impacts	on	rice	and	wheat	in	food	

economic	models.		

	

The	bio‐physical	process	of	livestock	production	was	not	included	in	the	framework.	

In	future,	it	should	be	possible	to	add	a	grazing	model	which	can	describe	the	bio‐

physical	 growth	 of	 grass	 linked	 to	 land	 use	 (like	 the	 Atmosphere‐Vegetation	

Interaction	Model	developed	by	Ji,	1995)	and	livestock	production.		

	

A	 risk	 analysis	 of	 yield	 reduction	 was	 presented	 in	 Chapter	 4,	 showing	 that	 the	

probability	of	an	event	provides	very	useful	information	for	policymakers.	A	full	risk	

analysis	 of	 food	 security	 related	 to	 uncertainties	 in	 climate	 change	 and	 socio‐

economic	 scenarios	 could	 be	 done	 at	 a	 later	 stage	 by	 applying	 the	 toolkit	 for	

probabilistic	 calculation	 developed	 in	 Chapter	 4.	 It	 requires	 repeating	 the	



237 
 

projections	 under	 multiple	 yield	 reduction	 scenarios,	 which	 would	 be	 quite	 time	

consuming.		

	

Although	 the	 effect	 of	 increased	 CO2	 on	 crop	 growth	 was	 investigated	 and	 a	

noticeable	compensation	effect	was	demonstrated	on	yield,	these	simulation	results	

were	 not	 included	 in	 this	 thesis,	 because	 of	 the	 uncertainties	 in	 current	 CO2‐

enhancement	 experiments	 (Kurukulasuriya	&	Rosenthal,	 2003).	 Further	 fieldwork	

and/or	 laboratory‐based	 experiments	 are	 required	 to	 validate	 the	modelled	 CO2‐

enhancement	effects	for	computer	modelling	and	simulation.	

	

To	 sum	 up,	 additional	 work	 on	 some	 of	 the	 issues	 and	 future	 research	 areas	

discussed	above	will	strongly	depend	on	data	availability	and	computing	power.	

 

8.2 Conclusion	

	

This	thesis	developed	a	practical	methodological	framework	that	integrated	the	bio‐

physical	and	socio‐economic	processes	within	the	food	system	across	scales.	It	was	

applied	in	China,	a	country	with	rapid	economic	growth	and	a	 large	population,	 in	

order	to	assess	multiple	dimensions	of	food	security	related	to	climate	change	and	

socio‐economic	development.		

	

In	 the	 framework,	 an	 improved	 bio‐physical	 crop	 model	 was	 coupled	 with	 an	

improved	 food	 economic	model	 by	 scaling	 up	 from	 the	 farm	 level	 to	 the	 national	

level.	 The	 bio‐physical	 crop	 model	 was	 developed	 from	 a	 site‐based	 Decision	

Support	System	for	Agrotechnology	Transfer	(DSSAT)	model	in	order	to	investigate	

the	 impacts	of	climate	change	on	the	bio‐physical	production	of	a	crop	taking	 into	

account	 environmental	 factors.	 The	 food	 economic	 model	 was	 developed	 from	 a	

partial	 equilibrium	 economic	model,	 China's	 Agricultural	 Policy	 Simulation	Model	
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(CAPSiM),	 in	 order	 to	 simulate	 the	 response	 of	 the	 socio‐economic	 system	 to	 the	

negative	consequences	on	 the	 food	economic	system	from	bio‐physical	 changes	 in	

crop	production	due	to	climate	change.	

	

8.2.1 Impacts	of	climate	change	on	maize	

	

In	the	case	study	of	Jilin,	which	is	the	most	important	grain‐producing	province,	the	

maize	 yield	 is	 highly	 likely	 to	 decline	 in	 the	 western	 and	 central	 regions	 but	 to	

increase	in	the	east	under	climate	change.	The	growing	season	will	be	reduced	in	the	

central	and	western	parts,	 leading	 to	a	shortened	grain‐filling	period.	The	average	

maize	 yield	 in	 the	west	 and	 central	 regions	 is	 thus	 projected	 to	 decrease	 15%	or	

more	 by	 2050	 as	 predicted	 by	 90%	 of	 120	 projected	 scenarios.	 Two	 potential	

adaptation	 strategies,	 i.e.	 improving	 irrigation	 facilities	 and	 introducing	 cultivars,	

were	 identified	 from	 the	vulnerability	 assessment	and	were	 further	 tested	 for	 the	

reduction	 areas.	 The	 results	 revealed	 that	 the	 increase	 in	 effective	 irrigation	 by	

upgrading	the	irrigation	system	would	help	to	maintain	the	current	production	level,	

but	in	the	long	run,	the	maize	cultivars	need	to	be	introduced	in	line	with	the	future	

warming	climate.	

	

With	respect	to	the	whole	of	China,	the	maize	yield	in	major	cropping	areas	(i.e.	Jilin,	

Heilongjiang,	 Liaoning,	 Shandong,	 Hebei,	 Henan,	 Neimeng,	 and	 Sichuan,	 which	

historically	 contribute	 about	 70%	 of	 the	 total	 maize	 production	 of	 China)	 is	

projected	 to	 fall	 significantly	 in	 the	 coming	 decades,	 for	 either	 spring	 or	 summer	

cultivars.	The	average	reduction	of	yield	is	about	3%	in	the	2020s,	10%	in	the	2050s,	

and	 14%	 in	 the	 2070s	 under	 the	 median	 climate	 change	 scenario.	 In	 the	 two	

important	areas	of	maize	production‐	Jilin	and	Shandong,	the	maize	yield	is	likely	to	

decline	by	about	30%	of	the	baseline	yield	in	the	year	2070.	Future	climate	change	

is	 projected	 to	 have	 favourable	 effects	 on	 maize	 yield	 in	 the	 areas	 along	 the	

northeast	to	southwest	maize	zone,	including	the	marginal	areas	of	Northeast	China,	
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northern	parts	of	Hebei,	parts	of	Shaanxi	and	Shanxi,	and	the	boundary	areas	of	the	

Chengdu	plain	in	Sichuan.	In	those	areas	where	maize	yield	is	likely	to	decline,	the	

growing	days	to	maturity	are	also	shortened	significantly.	The	spring	maize	area	in	

the	Northeast	suffers	the	largest	reduction	in	maturity	period,	about	20	days	shorter	

in	the	worst	case	in	the	year	2070.	Improvements	in	thermal	conditions	induced	by	

a	 warming	 climate	 in	 those	 areas	 may	 produce	 a	 prolonged	 growing	 season	

synchronous	with	 the	 increasing	 yield	 of	maize.	However,	 the	 profitable	 effect	 on	

maize	 production	 produced	 by	 a	 warming	 climate	 is	 not	 only	 narrowed	within	 a	

quite	 small	 spatial	 scope,	 but	 also	 limited	 in	 certain	 time	 periods.	 The	 difference	

between	the	worst	prediction	of	maize	yield	under	A1FI	and	that	under	B1	will	be	

more	than	10%	of	the	baseline	yield	in	the	year	2070.	The	response	of	the	provincial	

average	yield	to	the	six	emission	scenarios	is	very	different	from	that	on	the	national	

scale.	

	

8.2.2 Food	security	of	China	related	to	climate	change	

This	relationship	can	be	summarised	as	follows:	

	

 The	supply	and	demand	of	the	main	grains	of	China	will	likely	move	towards	a	

"tight"	 balance	 in	 the	 next	 few	 decades.	However,	 food	 access	 and	 stability	 of	

food	security	are	likely	to	suffer	the	pressure	caused	by	climate	change.	The	self‐

sufficiency	ratio	of	maize	will	likely	drop	less	than	92%	in	2050.		

	

 The	impacts	of	climate	change	on	bio‐physical	production	will	likely	be	slightly	

alleviated	through	the	economic	process.	Price	adjustment	helps	to	spread	those	

impacts	from	a	single	crop	to	its	substitute	crops.		

	

 The	 impacts	of	climate	change	are	predicted	to	be	 limited	 in	 the	next	20	to	30	

years,	but	their	intensity	will	likely	increase	dramatically,	close	to	the	middle	of	

this	century.		
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 When	 the	 impacts	 of	 climate	 change	 are	 considered,	 it	 will	 take	 3	 or	 4	 years	

longer	 for	 the	 food	 system	 to	 return	 a	 balance	 status	 after	 a	 sudden	 than	 the	

baseline	setting.		

	

 Improving	agricultural	policies	is	likely	to	reduce	the	negative	effects	produced	

by	 either	 climate	 change	 or	 the	 growth	 of	 income	 and	 population.	 The	

continuing	increase	of	investment	in	agricultural	research	will	assist	in	reducing	

food	security	risks.		

	

 The	uncertainties	among	climate	change	and	socio‐economic	scenarios	could	be	

large	with	respect	to	food	access.	Therefore	it	is	crucial	for	government	to	adopt	

proper	adaptations	as	early	as	possible	 to	ensure	the	 food	security	of	China	 in	

next	few	decades.		
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10 Appendix	A	Parameters	in	the	Food	
Economic	Model	

 

A.1	Conversion	rates	of	raw	food	materials	into	commercial	
products		

Raw	material	 Commercial	product		

1	kg	raw	paddy‐rice	 0.7	kg	milled	rice	

1	kg	raw	soybean	 0.15	kg	soybean	oil	

1	kg	oil	crop	output	a	 0.43	kg	vegetable	oil	

1	kg	sugar	crop	output	b	 0.1225	kg	sugar	

1	kg	milk	powder	 7	kg	milk	fluid	

a	 Oil	 crops	 include	 oilseed,	 peanut,	 sesame	 seed,	 sunflower,	 and	 palm	 (except	
soybean).	 Here,	 their	 average	 oil	 productivity	 is	 taken	 as	 0.43,	 retrieved	 from	
http://www.lengzoer.com/	
b	Sugar	crops	include	sugar	beet	and	sugar	cane.	Their	sugar	productivity	is	11.9%	
and	12.3%,	respectively,	retrieved	from	http://www.ynsugar.com.		
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A.2	Income	elasticity	of	demand	

Urban	 Rural Urban		 Rural	

Rice	 ‐0.18	 ‐0.03 Fruits	 0.15	 0.8

Wheat	 ‐0.15	 ‐0.01 Nonfood	 0.2	 0.2

Maize	 ‐0.18	 ‐0.05 Pork	 0.04	 0.15

Tubers	 ‐0.12	 ‐0.05 Beef	 0.15	 0.22

Coarse	Grain	 ‐0.12	 ‐0.03 Mutton	 0.15	 0.2

Soybean	 ‐0.15	 0.1 Poultry	 0.12	 0.5

Oil	 0.13	 0.12 Egg	 0.11	 0.3

Sugar	 ‐0.12	 ‐0.15 Milk	 0.15	 0.5

Vegetables	 ‐0.05	 ‐0.12 Fish	 0.15	 0.5
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A.3	Cross	price	elasticity	of	demand	in	urban	areas	

Rice	 Wheat	 Maize Tubers Other	grain Soybean	 Oil	crop Sugar	crop Vegetables Fruits Non‐food

Rice	 ‐0.02	 0.008 0.0003 0.0002 0.0003 ‐0.0002	 0.0005 ‐0.0005 ‐0.002 0.0012 0.0155

Wheat 0.0051	 ‐0.0125 0.0003 0.0003 0.0003 ‐0.0003	 0.0008 ‐0.0003 ‐0.0012 0.0006 0.014

Maize 0.0103	 0.0181 ‐0.028 0.0005 0.002 0	 0.0009 0.0002 ‐0.0005 0.0018 0.0084

Tubers	 0.0104	 0.0197	 0.0006	 ‐0.025	 0.002	 0	 0	 0	 ‐0.0002	 0	 0.0002	

Other	grain 0.005	 0.0089 0.0009 0.0007 ‐0.028 ‐0.0001	 0.0009 0.0002 ‐0.0005 0.0018 0.0153

Soybean ‐0.001	 ‐0.0018 0 0 ‐0.0001 ‐0.0125	 0.0003 0.0002 0.0008 0.0011 0.0079

Oil	crop ‐0.0009	 ‐0.0002 0 0 ‐0.0001 ‐0.0002	 ‐0.02029 ‐0.0007 ‐0.0023 ‐0.0001 0.0018

Sugar	crop ‐0.0037	 ‐0.0035 0 0 ‐0.0001 ‐0.0001	 ‐0.002 ‐0.012 0.0015 0.003 0.0038

Vegetable ‐0.0032	 ‐0.0038 ‐0.0001 ‐0.0001 ‐0.0002 ‐0.0004	 ‐0.0013 0.0001 ‐0.0103 0.0136 ‐0.0169

Fruits ‐0.0024	 ‐0.0039 ‐0.0001 ‐0.0001 ‐0.0001 ‐0.0006	 ‐0.0014 0.0001 0.0172 ‐0.00808 ‐0.0479

Non‐food	 ‐0.0027	 ‐0.0038	 ‐0.0001	 ‐0.0001	 ‐0.0002	 ‐0.0008	 ‐0.0014	 ‐0.0004	 ‐0.0046	 ‐0.0039	 ‐0.02023	

Pork ‐0.00058	 ‐0.00074 ‐0.00002 0 ‐0.00002 ‐0.00006	 0.00036 0.00002 0.00038 ‐0.0002 ‐0.003

Beef	 ‐0.0034	 ‐0.0067 0 0 0 ‐0.0003	 0.0016 0.0004 ‐0.0018 ‐0.0029 ‐0.0376

Mutton ‐0.0034	 ‐0.0064 0 0 0 0.0006	 0.0016 0.0006 ‐0.0018 ‐0.0029 ‐0.0501

Poultry ‐0.0033	 ‐0.0045 ‐0.0001 0 ‐0.0001 ‐0.0004	 0.0036 0.0001 ‐0.0008 0.0021 ‐0.0149

Egg	 ‐0.0019	 ‐0.0036 0 0 0 0.0001	 0.0021 0.0004 0.0008 0.0011 ‐0.002

Dairy ‐0.00143	 ‐0.00203 ‐3.33E‐05 ‐3.33E‐05 ‐0.0001 ‐0.00027	 ‐0.001 ‐0.0002 ‐0.00127 ‐0.00207 ‐0.01183

Aquatic ‐0.003	 ‐0.0041 ‐0.0001 ‐0.0001 ‐0.0002 0	 0.0012 ‐0.0001 ‐0.0013 0.0013 ‐0.0237
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A.3	Cross	price	elasticity	of	demand	in	urban	areas	(continued)	

Pork	 Beef	 Mutton Poultry Egg Dairy Aquatic	

Rice	 ‐0.003	 ‐0.0003	 ‐0.0002 ‐0.001 ‐0.0003 0.0001 ‐0.0003

Wheat ‐0.0025	 ‐0.0006	 ‐0.0004 ‐0.0011 ‐0.0009 0.0001 ‐0.0004

Maize 0.0011	 0.0005	 0.0003 0.0006 0.001 0.0003 0.0002

Tubers	 0	 0	 0	 0	 0	 0	 0	

Other	grain 0.0021	 0.0006	 0.0004 0.0006 0.0011 0.0001 0.0002

Soybean 0.0019	 0.0002	 0.0006 0.0004 0.0009 0.0005 0.0028

Oil	crop 0.0077	 0.0006	 0.0004 0.005 0.0019 ‐0.0004 0.0033

Sugar	crop 0.002	 0.0005	 0.0005 0.001 0.001 0.0002 0.001

Vegetable 0.0021	 ‐0.0002	 ‐0.0002 ‐0.0004 ‐0.0002 0.0001 ‐0.0001

Fruits ‐0.0064	 ‐0.0008	 ‐0.0005 0.0003 ‐0.0008 ‐0.0011 0.0004

Non‐food	 ‐0.0074	 ‐0.0009	 ‐0.0007	 ‐0.0021	 ‐0.0016	 ‐0.0003	 ‐0.0027	

Pork ‐0.00104	 0.00058	 0.00046 0.00016 ‐0.00012 0.00002 0.00046

Beef	 0.0342	 ‐0.0129	 0.0137 0.0107 0.0008 ‐0.0003 ‐0.0014

Mutton 0.0411	 0.0205	 ‐0.01357 0.0107 ‐0.0002 ‐0.0003 ‐0.0014

Poultry 0.0017	 0.0028	 0.0018 ‐0.01733 0.0058 ‐0.0003 0.0037

Egg	 ‐0.0014	 0.0004	 0.0001 0.0083 ‐0.00963 0.0033 0.0021

Dairy ‐0.00213	 ‐0.00027	 ‐0.00017 ‐0.00103 0.0017 ‐0.00285 ‐0.00097

Aquatic 0.0031	 ‐0.0004	 ‐0.0003 0.0023 0.0003 ‐0.0002 ‐0.00834
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A.4	Cross	price	elasticity	of	demand	in	rural	areas	

Rice	 Wheat	 Maize Tubers Other	grain Soybean Oil	crop Sugar	crop Vegetable Fruits Non‐food

Rice	 ‐0.00933	 0.005 0.001 0.0005 0.001 ‐0.0004	 0.0001 ‐0.0005 ‐0.0015 0.0005 0.004

Wheat 0.0051	 ‐0.00917 0.0011 0.0005 0.0011 ‐0.0005	 0.0006 ‐0.0003 ‐0.0021 0.0004 0.0027

Maize 0.0104	 0.0108 ‐0.025 0.001 0.005 0	 0.0007 0.0002 ‐0.0003 0.0013 0.0068

Tubers	 0.0147	 0.0144	 0.0031	 ‐0.028	 0.005	 0	 0	 0	 ‐0.0002	 0	 0.005	

Other	grain 0.0142	 0.0147 0.0075 0.0025 ‐0.028 ‐0.0001	 0.0008 0.0002 ‐0.0002 0.0014 ‐0.0046

Soybean ‐0.0047	 ‐0.0057 ‐0.0005 ‐0.0002 ‐0.0004 ‐0.01505	 0.0002 0.0002 0.0002 0.0011 0.0171

Oil	crop ‐0.0045	 ‐0.0024 ‐0.0008 ‐0.0004 ‐0.0005 ‐0.0003	 ‐0.023 ‐0.0002 ‐0.0046 0.0002 0.0068

Sugar	crop ‐0.0194	 ‐0.0126 ‐0.0006 ‐0.0005 ‐0.0005 ‐0.0001	 ‐0.002 ‐0.01 0.0015 0.003 0.0052

Vegetable ‐0.01	 ‐0.011 ‐0.0016 ‐0.0005 ‐0.001 ‐0.0005	 ‐0.0031 0.0001 ‐0.007 0.0101 ‐0.0054

Fruits ‐0.0069	 ‐0.007 ‐0.0008 ‐0.0007 ‐0.0005 ‐0.0003	 ‐0.001 0.0005 0.0239 ‐0.01116 ‐0.0317

Non‐food	 ‐0.0139	 ‐0.0139	 ‐0.0024	 ‐0.0009	 ‐0.0019	 ‐0.0008	 ‐0.0023	 ‐0.0003	 ‐0.0045	 ‐0.0026	 ‐0.04515	

Pork ‐0.00128	 ‐0.00124 ‐0.00028 ‐0.0001 ‐0.00014 ‐0.00008	 0.0003 0.00002 ‐0.00014 ‐0.00012 ‐0.00326

Beef	 ‐0.0086	 ‐0.0085 ‐0.0015 ‐0.0005 ‐0.0009 0	 0.0013 0.0003 ‐0.0047 ‐0.0024 ‐0.0255

Mutton ‐0.0095	 ‐0.008 ‐0.0017 ‐0.0005 ‐0.0009 0.0009	 0.0013 0.0005 ‐0.0047 ‐0.0024 ‐0.0289

Poultry ‐0.00485	 ‐0.00475 ‐0.0009 ‐0.00025 ‐0.0006 ‐0.00005	 0.00165 0.0001 ‐0.00185 0.0013 ‐0.0142

Egg	 ‐0.007	 ‐0.0078 ‐0.0008 ‐0.0004 ‐0.0005 0.0004	 0.001 0.0004 ‐0.0018 0.0006 0.0032

Dairy ‐0.00473	 ‐0.00397 ‐0.00023 ‐0.0003 ‐0.0004 0.000233	 ‐0.00103 3.33E‐05 ‐0.00287 ‐0.00147 ‐0.01547

Aquatic ‐0.0139	 ‐0.0122 ‐0.0019 ‐0.0006 ‐0.0012 0.0008	 0.0009 0.0002 ‐0.0048 0.0021 ‐0.021
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A.4	Cross	price	elasticity	of	demand	in	rural	areas	(continued)		

Pork	 Beef	 Mutton Poultry Egg Dairy Aquatic	

Rice ‐0.0005	 ‐0.0001	 ‐0.0001 ‐0.0004 ‐0.0005 0 ‐0.0007	

Wheat ‐0.0004	 ‐0.0001	 ‐0.0001 ‐0.0004 ‐0.0006 0 ‐0.0005	

Maize ‐0.0004	 0	 ‐0.0001 ‐0.0003 0.0001 0.0002 ‐0.0001	

Tubers	 0	 0	 0	 0	 0	 0	 0	

Other	grain 0.0022	 0.0001	 0.0001 ‐0.0003 0.0002 0.0001 0	

Soybean 0.0008	 0.0004	 0.0007 0.0008 0.0013 0.0005 0.0028	

Oil	crop 0.0075	 0.0004	 0.0003 0.0021 0.0003 0 0.0011	

Sugar	crop 0.002	 0.0005	 0.0005 0.001 0.001 0.0002 0.001	

Vegetable ‐0.0027	 ‐0.0006	 ‐0.0004 ‐0.0011 ‐0.001 ‐0.0002 ‐0.0011	

Fruits ‐0.0077	 ‐0.0009	 ‐0.0006 0.0016 ‐0.0004 ‐0.0003 0.0015	

Non‐food	 ‐0.0146	 ‐0.0008	 ‐0.0006	 ‐0.0022	 ‐0.0014	 ‐0.0002	 ‐0.0016	

Pork ‐0.00107	 0.00026	 0.00018 0.00062 0.00036 0.00004 0.00038	

Beef 0.0241	 ‐0.01079	 0.0097 0.0087 0.0036 ‐0.0003 ‐0.0013	

Mutton 0.0251	 0.0145	 ‐0.01147 0.0087 0.0026 ‐0.0003 ‐0.0013	

Poultry 0.0114	 0.00175	 0.00115 ‐0.00382 0.0043 ‐0.00015 0.00185	

Egg 0.0178	 0.0018	 0.0009 0.0098 ‐0.01895 0.0048 0.0012	

Dairy 0.000233	 ‐0.0004	 ‐0.00027 ‐0.001 0.010833 ‐0.00453 ‐0.00077	

Aquatic 0.0111	 ‐0.0006	 ‐0.0004 0.0034 0.0004 ‐0.0002 ‐0.00067	
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A.5	Price	elasticity	of	crop	sown	area	

Rice	 Wheat	 Maize Tubers Other	grain Soybean Oil	crop Sugar	crop Vegetable Fruits	 Cotton

Rice	 0.28	 ‐0.066 ‐0.044 ‐0.0137 ‐0.0137 ‐0.0137	 ‐0.0137 ‐0.0137 ‐0.0137 ‐0.0137 ‐0.0137

Wheat ‐0.074	 0.26 ‐0.0378 ‐0.011 ‐0.011 ‐0.011	 ‐0.011 ‐0.011 ‐0.011 ‐0.011 ‐0.011

Maize ‐0.0611	 ‐0.0473 0.26 ‐0.0115 ‐0.0115 ‐0.0115	 ‐0.0115 ‐0.0115 ‐0.0115 ‐0.0115 ‐0.0115

Tubers	 ‐0.0457	 ‐0.0329	 ‐0.028	 0.22	 ‐0.0126	 ‐0.0126	 ‐0.0126	 ‐0.0126	 ‐0.0126	 ‐0.0126	 ‐0.0126	

Other	grain ‐0.0629	 ‐0.0445 ‐0.0417 ‐0.0179 0.26 ‐0.0088	 ‐0.0088 ‐0.0088 ‐0.0088 ‐0.0088 ‐0.0088

Soybean ‐0.0425	 ‐0.0307 ‐0.0253 ‐0.0116 ‐0.0077 0.1	 0.008 0.008 0.008 0.008 0.008

Oil	crop ‐0.0376	 ‐0.0272 ‐0.0224 ‐0.0103 ‐0.0068 0.0071	 0.4 ‐0.0657 ‐0.0657 ‐0.0657 ‐0.0657

Sugar	crop ‐0.2859	 ‐0.2052 ‐0.1703 ‐0.0786 ‐0.0517 0.0541	 ‐0.4993 0.59 0.2923 0.2923 0.2923

Vegetable ‐0.0517	 ‐0.0376 ‐0.0292 ‐0.0138 ‐0.0103 0.0091	 ‐0.0867 0.0528 0.34 ‐0.0563 ‐0.0563

Fruits ‐0.075	 ‐0.0543 ‐0.0425 ‐0.0202 ‐0.0149 0.0133	 ‐0.1254 0.0749 ‐0.0839 0.38 0.008

Cotton	 ‐0.0828	 ‐0.0597	 ‐0.0512	 ‐0.0232	 ‐0.0137	 0.0166	 ‐0.1574	 0.0929	 ‐0.1201	 0.0112	 0.3	
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A.6	Price	elasticity	of	livestock	production	

Pork	 Beef	 Mutton Poultry Egg Dairy	 Aquatic

Pork	 0.5	

Beef	 0.5	

Mutton	 0.5

Poultry	 0.55

Egg	 0.55

Dairy	 5.5	

Aquatic	 0.5
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A.7	The	share	of	feeding	modes	in	livestock	production	

Livestock	 Mode	 2005	 After	2015	
	 	
Pork	 Backyard 0.217 0.17	
	 Specialized	 0.483	 0.38	
	 Commercial	 0.3	 0.45	
Beef	 Backyard 	
	 Specialized	 0.8	 0.7	
	 Commercial 0.2 0.3	
Mutton	 Backyard 	
	 Specialized	 0.8	 0.7	
	 Commercial	 0.2	 0.3	
Poultry	 Backyard 	
	 Specialized 0.35 0.3	
	 Commercial	 0.65	 0.7	
Egg	 Backyard 	
	 Specialized	 0.6	 0.5	
	 Commercial	 0.4	 0.5	
Dairy	 Backyard 	
	 Specialized	 0.7	 0.6	
	 Commercial	 0.3	 0.4	
Aquatic	 Backyard 	
	 Specialized	 0.6	 0.55	
	 Commercial 0.4 0.45	
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A.8	The	use	share	of	grains	in	the	feed	industry	

Livestock	 Mode Rice Wheat Maize Tubers Other	
Pork	 Backyard	 0.29 0.13 0.19 0.15 0.04	
	 Specialized	 0.31 0.15 0.15 0.13 0.04	
	 Commercial	 0.08	 0.03	 0.58	 	 	
Beef	 Backyard	 	 	 	 	 	
	 Specialized	 	 0.06	 0.15	 0.04	 0.09	
	 Commercial	 	 0.02	 0.6	 	 	
Mutton	 Backyard	 	 	
	 Specialized	 	 0.06	 0.15	 0.04	 0.09	
	 Commercial	 	 0.02	 0.6	 	 	
Poultry	 Backyard	 	 	 	 	 	
	 Specialized	 0.13	 0.05	 0.17	 0.06	 0.12	
	 Commercial	 0.01 0.02 0.55 	
Egg	 Backyard	 	 	 	 	 	
	 Specialized	 0.14	 0.04	 0.17	 0.05	 0.1	
	 Commercial	 0.02	 0.02	 0.53	 	 	
Dairy	 Backyard	 	 	 	 	 	
	 Specialized	 	 0.06 0.16 0.04 0.09	
	 Commercial	 	 0.02	 0.6	 	 	
Aquatic		 Backyard	 	 	 	 	 	
	 Specialized	 	 0.08	 0.25	 0.03	 0.08	
	 Commercial	 	 0.04	 0.18	 	 	
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A.9	The	feed‐meat	conversion	rates	in	three	feeding	modes	

Livestock	 Mode	 2005	 After	2015	
	 	
Pork	 Backyard 2.1 2.1	
	 Specialized	 2.9	 2.9	
	 Commercial	 3.5	 3.5	
Beef	 Backyard	 	 	
	 Specialized	 1.5	 1.5	
	 Commercial 2.5 2	
Mutton	 Backyard	 	 	
	 Specialized	 1.5	 1.5	
	 Commercial	 2.5	 2	
Poultry	 Backyard	 	 	
	 Specialized 2.5 2.5	
	 Commercial	 2	 2	
Egg	 Backyard	 	 	
	 Specialized	 2	 2	
	 Commercial	 2.5	 2.2	
Dairy	 Backyard 	
	 Specialized	 0.4	 0.4	
	 Commercial	 0.3	 0.3	
Aquatic	 Backyard	 	 	
	 Specialized	 1.8	 1.8	
	 Commercial 2 1.8	
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11 Appendix	B	Terms,	Definitions	and	Figures	
 

B.1	Terms	and	definitions	

term	 Definition

Grain		 Rice,	wheat,	maize,	tubers,	other	coarse	grains	and	
beans	(including	soybean)	

Fine	grain		 Rice	and	wheat	

Coarse	grain	 sorghum,	millet,	oats,	and	miscellaneous	beans,	
except	maize	

Starch	 Tubers	including	sweet	potato	and	potato	

Engel’s	coefficient	 The	%	of	expenditure	on	food	in	the	total	
consumption	expenditure.	

Engel’s	coefficient	=	

	

Cobb‐Douglas	function	 ∙ ∏ 	,	where	 	is	the	quantities	of	input	

factors,	such	as	capital,	labour,	and	land;	the	Q	is	the	

quantity	of	output;	and	 	and	 	are	the	empirical	

parameters.		

 

	

	

%100
ndituremptionExpeTotalConsu

eOnFoodExpenditur
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B.2	Historical	(AreaObs)	and	simulated	(AreaSim)	sown	area	of	4	main	staples	(i.e.	
rice,	wheat,	maize,	tuber).		
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B.3	Historical	(YieldObs)	and	simulated	(YieldSim)	yield	of	4	main	staples	(i.e.	rice,	
wheat,	maize,	tuber).		
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B.4	Historical	(ProductionObs)	and	simulated	(ProductionSim)	production	of	
livestock	products.		
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B.5	Historical	and	simulated	per	capita	consumption	of	livestock.	The	urban	and	
rural	are	shown	in	blue	and	red	dot	separately.	The	gray	line	in	the	chart	is	the	1:1	
line	of	the	historical	and	simulated	data.	
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B.6	The	biomass	productions	of	maize	under	the	limited	and	sufficient	irrigation	at	a	
sample	grid	(123.46E	longitude	and	45.6N	latitude),	with	and	without	considering	
CO2	fertilizer	effect.	On	the	left,	two	figures	are	daily	biomass	productions(g/day):	
the	top	chart	gives	the	daily	biomass	production	under	limited	irrigation	(with	an	
annual	irrigation	quota	=	350mm	)	scenario;	and	the	bottom	one	gives	that	under	
sufficient	irrigation	(or	called	well	irrigation,	provide	enough	water	to	crop)	
scenario	the	.	On	the	right	are	the	cumulative	biomass	productions(g/day).		
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B.	7	An	example	of	water	stresses	on	daily	biomass	production	of	maize	caused	by	
insufficient	water	irrigation	at	a	sample	grid	(123.46E	longitude	and	45.6N	latitude),	
with	and	without	considering	CO2	fertilizer	effect.		
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B.8	The	different	between	the	reduction	of	baseline	maize	yield	with	and	without	
considering	CO2	fertilization	effect	under	the	sufficient	irrigation	and	A1FI	climate	
scenario	in	2020,	Jilin	province.	The	positive	value	means	the	reduction	with	
considering	CO2	effect	is	lower	than	that	without	considering	CO2	effect.	

	

	

B.9	The	different	between	the	reduction	of	baseline	maize	yield	with	and	without	
considering	CO2	fertilization	effect	under	the	limited	irrigation	(annual	irrigation	
quota	=	350mm)	and	A1FI	climate	scenario	in	2020,	Jilin	province.	The	positive	
value	means	the	reduction	with	considering	CO2	effect	is	lower	than	that	without	
considering	CO2	effect.	

 


