

Working Paper Series
ISSN 1177-777X

Text Categorization and Similarity Analysis:
Similarity measure,

Architecture and Design

Michael Fowke1, Annika Hinze1, Ralf Heese2

Working Paper: 12/2013
December 2013

© 2013 Michael Fowke, Annika Hinze, Ralf Heese
1Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand
2 Pingar International Ltd.

152 Quay St, Auckland, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1

Categorization and Similarity Analysis:
Similarity measure, Architecture and Design.

Michael Fowke1, Annika Hinze1, Ralf Heese2

1University of Waikato, Hamilton, New Zealand
2Pingar International Ltd, Auckland, New Zealand

Abstract
This research looks at the most appropriate similarity measure to use for a document classification problem. The goal is
to find a method that is accurate in finding both semantically and version related documents. A necessary requirement
is that the method is efficient in its speed and disk usage. Simhash is found to be the measure best suited to the
application and it can be combined with other software to increase the accuracy. Pingar have provided an API that will
extract the entities from a document and create a taxonomy displaying the relationships and this extra information can
be used to accurately classify input documents. Two algorithms are designed incorporating the Pingar API and then
finally an efficient comparison algorithm is introduced to cut down the comparisons required.

1. Introduction
Document classification and provenance has become an
important area of computer science as the amount of
digital information is growing significantly. Software is
now required to show similarities between documents (i.e.
document classification) and to point out duplicates and
possibly the history of each document (i.e. provenance).
This honours project is done with Pingar who are a
company based in Auckland who aim to help organise the
growing amount of unstructured digital data. Pingar
provided the Pingar API and taxonomy generator which
are software tools that assist with document classification.
Pingar also provided a document corpus to use for testing
of the software to be created.
The intended outcome of the system is the ability to find
the strength of semantic relationships and version
relationships between an input document and any of the
documents in the corpus. If a company has a collection of
documents, they will be able to use the software to
analyse a new document and find semantically related
documents and if it is a version of an existing document.
The literature review [1] covered a number of different
existing implementations that attempted to classify
documents and make it easier for a user to organise their
digital information. This report follows on from the
literature review and is a more extensive look at the
different similarity measures. The similarity measures are
analysed on their ability to find related documents both
semantically and in version. The measures are also
analysed on their speed and disk space required. The aim
is to fully understand each and to choose the most
appropriate to implement in the design of the software.
The reminder of the document is structured as follows.
We start with some background on the project. The next
section looks at each of the different similarity measures
used to classify documents. The approaches are analysed
on a set of criteria to determine the most appropriate. This
method was then chosen and the rest of the document
covers the research using this method. By the end of the

report the design of the software can begin based on the
conclusions found in the research.

2. Background
This covers the background and resources that are
required to understand the research problem.

2.1 Example documents
Throughout the report, five example documents will be
used to illustrate how each of the similarity measures
performs. As input text examples, the short documents
[2], [3], [4] shown in the appendix are used. Figure 1
shows the relationship between each of the documents.

Figure 1: Relationship between documents

2.2 Semantic technology
Pingar have provided two of their semantic technology
software: Pingar API for extracting entities from a
document collection and a Taxonomy generator for
finding relationships between extracted entities. These
two technologies will be used to generate more accurate
classifications than using the document text alone.
An example to illustrate the technology is one using
document 3. The Pingar API extracts Jason Dufner and
Keegan Bradley as entities from the document. These
entities are related as they are both people and the API
returns this information which is visualised in Figure 2.
The entities are the objects and the taxonomy gives the
semantic relationships between them.

Figure 2: Output from API and taxonomy

2

2.3 Software structure
As an outcome of the literature study reported in [1], the
overall structure of the document classification software
was designed as shown in Figure 3. The blue rectangles in
Figure 3 are software and include the Pingar API and
taxonomy generator as well as the software that will be
created. The green ovals show the output from the Pingar
software. The input to the system is shown at the top and
is a document to be analysed. The output from the system
is shown at the bottom and is the document with
calculated relationships. The grey rectangle is the
similarity measure which is the main topic of this report.
As shown in Figure 3, the software will receive a static
input document with the aim of identifying which
documents in the document corpus are semantically
related and which ones are versions of the same text. As
only the content of the static documents is known (no
history data), the only classification strategy available is
content analysis. The outcome of the software will be a
set of relationships between the input document and
documents within the collection. Each relationship will
have a value from 0.0-1.0 to show how strong the
relationship is between documents.
Input Data: Pingar provided a document corpus the
software will be tested on. Static input documents mean
that the software is unaware of any interactions a person
has made with the documents before classification. A
single input document will be compared against the
documents in the corpus.
Pingar Software: will be used to initially analyse the
documents. More information about the Pingar API and
taxonomy generator is given in section 2.2. The software
will produce a taxonomy and a set of named entities with
location references. The taxonomy shows the
relationships between the extracted entities (e.g. a
hierarchical structure). The API also gives information on
which documents an entity occurs in. Named entities are
phrases that contain the names of persons, organizations
and locations [5].
The classification software: will use these entities from
the Pingar API and taxonomy generator as well as the
original document text to output the similarities between
the input document and documents in the corpus. These
outputs are both required and are then fed into the
software.
Distance measure: This is the component of the system
that takes the input and determines the distance between
two documents i.e. their similarity. The measure will
determine the strength of the relationship between each
document.
Output data: The output will be a list of relationship
values between the input document and each of the
documents in the corpus. The values will be between 0.0
and 1.0 to show the strength of the relationship with 1.0
being a perfect match and 0.0 being no relation. A version
relationship is a closer relationship than being
semantically related so values from Ɵ - 1.0 are reserved
for documents being related by version. The symbol Ɵ is
a placeholder as it is not yet known what value should be
the lower range of the version relationship. A score of Ɵ
means a weak version relationship. Scores below Ɵ are

given to documents with no version relationship. Only
document relationships will be shown that are over a
certain threshold i.e. 0.5.

Figure 3: Overall structure of the software

2.4 Example of system
When document 3 is fed into the system, the extracted
entities include golf, major, Jason Dufner and New York.
The taxonomy will also identify that New York is a
location and Jason Dufner is a person. This information is
then input to the software to be created as well as the
original document text. The system has access to a corpus
of pre-processed documents that will be compared to the
input document. These are processed so the computation
time is minimised. The software created will take the
input document and information from Pingar software and
use the distance measure to find any documents in the
corpus that are related. If Document 4 is in the corpus
then one of the relationships output will be that document
4 has a high semantic relationship with document 3. This
is due to document 4 sharing common entities such as
golf and Jason Dufner. Details on the similarity measure
are provided in the next section.

3. Similarity Approaches
The similarity measure is the remaining part to finalise
before the software can be built. This is the measure that
will determine to which extend two static input
documents are related. To make an informed decision for
the most appropriate similarity measure a number of
criteria are introduced to help identify the best approach
(section 3.1). Each of the measures analysed is then
discussed in its design and illustrated using the example
scenario from section 2.1. A table at the end of this
chapter will summarise the performance of each
measurement. Each approach is awarded a ++ or + to
show very well performing or fairly well performing or a
-- or - to show very poorly performing or slightly bad
performance.

3.1 Assessment criteria
The following criteria are used to evaluate the similarity
measures.
1)Accurately find versions of the same document
The similarity approach must accurately identify that
versions of the same document are related. A version is a
document with mainly the same content with only a few
extra words inserted or removed. Documents 1 and 2 are
versions as the first two paragraphs in document 2 have
only a couple of extra words and document 2 has an

3

extra paragraph at the end. A similarity approach is
awarded ++ if it is capable of finding document versions
using the initial document text alone and a single + if it
can find versions but only by incorporating the Pingar
API.
2) Accurately find semantically related
documents
The similarity approach must accurately identify that two
documents that share a high number of common themes
and topics are semantically related. Documents 3 and 4
are semantically related as they are both talking about
Jason Dufner winning his first PGA Championship title.
A similarity approach is awarded a ++ if it can find
semantically similar documents from the initial document
text alone, and a single + if it can only when the Pingar
API is incorporated.
3) To produce a smaller representation of the input
document (disk space)
The space required to store digital information is
increasing and the method chosen should represent the
input document in a more compact form without losing
important information. The software should use as little
disk space as possible so this criterion is necessary. A
similarity measure is awarded a mark between ++ and --
based on how compact a document becomes with ++
being maximum compression.
4) Number of comparisons required
Speed of algorithm is very important, particularly when
the software is run on a large number of documents. The
computation time is heavily dependent on how many
comparisons are required between documents. The greater
the number of comparisons or operations required to find
similar documents, the less efficient and slower the
algorithm will be. The software should be able to find
related documents with as few comparisons as possible. A
similarity measure is awarded a mark between ++ and --
with ++ being a very low number of comparisons
required.
5) Speed of comparisons
The number of comparisons required impacts speed but
also the time taken for each of the comparisons. This
criteria rates each approach on the computational
complexity of each comparison required between the
documents. The software should be able to do each
comparison quickly as this will likely cause the entire

software to run quickly. A similarity approach is awarded
a mark between ++ and -- with ++ being a very quick
time for each comparison.

3.2 Sim Hash
The first similarity approach looked at was the Simhash
algorithm, described by Charikar [6]. They argue that the
amount of information currently is large and we should
not be looking to compare entire documents but rather
creating smaller representations of each document, which
will then be compared. Hashing is an example of this
strategy as the content is represented by hashes which
leads to greater disk space efficiency and speed. Simhash
is calculated by applying a family of hash functions to
each of the input phrases and the output is a value
between 0 and 1. 1 shows that documents are identical
and 0 shows that documents are very different. Charikar
states that the similarity between two sets produced by
using the family of hash functions can be estimated by
counting the number of matching coordinates in their
corresponding hash vectors. Similarity estimation is based
on a test of equality of hash function values.
An implementation of the simhash algorithm is provided
as on a separate website [7]. It also describes why a
simhash algorithm is much more effective than a normal
hashing algorithm. A normal hashing algorithm will give
very different hashing values if the input phrase differs
only slightly. Simhash will compute similar hash values
for the first two paragraphs of documents 1 and 2. Normal
hashing would not do this due to the few extra words and
word reordering.
Simhash works well for finding different versions of the
same document. Two different versions of documents are
likely to be the same for large sections of text with one
having additional text or text removed. Figure 4 shows
the first portion of shingles (2 letter pairs) extracted from
the first paragraph of documents 1 and 2 when ordered
alphabetically. The simhash value is calculated using the
sum of the hash values of each of the shingles. Despite
the different word ordering and slightly different words,
both documents share most of the shingles so the hash
value will be very similar. The extra paragraph in
document 2 cannot be matched with document 1 but two
paragraphs is enough to show a version. Simhash also
performs well when words have different endings.
Document 1 uses official and document 2 officially yet

Figure 4: Shingles from documents 1 and 2

_
_

_
_
_
_

_
_

_

_
_

_

_

_
_

_

_

_

_

_
_

_

_

_

_

_

_

_

_

_
_

_

_
_

4

simhash can identify that the majority of the word is the
same.

Simhash would not work so well in finding documents
that are related semantically when used on the original
text. When analysing the entire document simhash is
unable to identify the key concepts to compare between
documents. Also simhash is looking at the words
themselves and not at the meaning of the words.
Documents 3 and 4 are related semantically and share a
number of common key words but simhash is unaware
what the key words are. Document 3 uses the term
winning score and document 4 uses leading score which
will not be determined as the same by simhash which is
looking at the letters and words. The Pingar API would
make Sim Hash accurate in this area. Creating a hash
value of the phrase created by joining all of the extracted
entities together gives a very compact representation of
the key concepts in the document. For Document 3 this
would mean hashing golf, Jason Dufner etc. This one
hash value is all that would be required to compare this
document with others in the collection of documents.
There are other variations that could be used such as
calculating the simhash value for all the extracted
concepts in each of the paragraphs in the document. This
would again be compact as only one number per
paragraph would be required.
Simhash performs well on the criteria required by the
similarity measure. As stated previously it is able to find
documents that are related in version. It is also able to
identify documents that are semantically related but only
by using the output of the Pingar API as an input to
hashing. A major advantage of simhash is its small
representation of a document. When identifying versions
of documents then simhash will give a single number per
chunk (likely a sentence). This means the entire document
can be represented by a list of values such as document 5

being represented by 5 hash values. When identifying
semantically related documents, a document can be
represented by a single number being the hash of the
extracted concepts from the document. The power of
using numbers instead of text is really exploited in the
next stage of the algorithm. Once the chunks of text have
been turned into hash values, the chunks can be ordered
based on the numerical value of the hash. This saves time
in the search for related documents. Finding versions
using simhash involves a number of comparisons with
each of the chunks needing to be checked against each
chunk in another document. With the ordering of the
hashed chunks it reduces the number of comparisons
required as each chunk only requires checking against
hash values that are similar in value. The number of
comparisons becomes efficient due to the ability to order
numbers. The computation required in each comparison is
also minimal. Each comparison involves finding the
number of bits difference between two numbers which is
easy and fast to compute.

3.3 Clustering using Wikipedia guidance
The next method considered is to use Wikipedia to cluster
the documents. A similar approach was used as by Huang
in [8] and [9]. Wikipedia is becoming an increasingly
useful resource for clustering documents as it is a huge,
well structured collection of information. Knopp et al.
state that Wikipedia has been explored in a number of
natural language processing tasks in the last years [10].
Huang uses Wikipedia and the links to related pages to
generate relationships between concepts. This information
can then be used to supervise the normally unsupervised
method of clustering. Using the extra semantic
information found through Wikipedia analysis produced
far more accurate clusters than the clustering algorithm
could alone.
The Wikipedia part of the method would not be required
as the Pingar API gives the same output. Huang used

Figure 5: Clustering using documents 3 and 4

Figure 6: Words from documents 1 and 2

5

Wikipedia to find the relationship between concepts in a
document which the Pingar API does also. Concepts from
document 5 such as physical exercise and obesity would
be found to be related using Wikipedia which the Pingar
API will also find. This is a clever technique however it is
not required in this software as the Pingar API does this.
Of more relevance is the technique that Huang used for
finding the similarity of documents once Wikipedia was
used for finding the relationship between concepts. Huang
states that concepts are clustered according to their pair-
wised semantic relatedness as computed from Wikipedia.
Active learning is then applied to documents using the
clustered concepts to derive a "keep together" or
"separate" relationship. From our example documents it
would find that golf and PGA championships are concepts
that should be kept together and golf and bikes are likely
to be separated. The report describes the method used to
determine if a document was related to a cluster of
concepts. The weighting of a cluster involves a
calculation using the number of occurrences of a concept.
This is one method that can be used to find the
relationship between a document and concepts but it is
essentially a word frequency approach which is addressed
further in the next method on word frequency.
Huang uses Cop-Kmeans clustering algorithm (a variation
of the k-means algorithm) to cluster the documents. Cop-
kmeans uses the relationships as stated above to guide the
clustering but underneath it still uses the simple k-means
algorithm. Huang states that the clustering algorithm can
only relate documents that use identical terminology, and
important semantic relations between terms such as
acronyms, synonyms, hypernyms, spelling variations and
related terms are all ignored. This means that clustering is
not able to find documents to be related unless they share
exact words as the algorithm is not aware of synonyms
and other important language characteristics. Clustering
would not identify that winning score and leading score
from documents 3 and 4 are related. Clustering could be
extended to look at only the concepts extracted by the
Pingar API and synonyms to resolve this issue.
Clustering would be able to identify semantically related
documents if it used only the extracted concepts rather
than the entire document. As stated by Huang [8],
clustering can only relate documents that use identical
terminology and will miss semantic relations. Huang also
states that the terms used by clustering are usually single
word terms which causes the algorithm to miss important
concepts that are more than one word. These issues
would be solved by using the extracted concepts from the
Pingar API. Documents 3 and 4 are related semantically
and Figure 5 shows how clustering can identify this
relationship. The entities are extracted and clustering
represents each document by a d-dimensional vector with
each dimension being the presence of an extracted entity.
These vectors will be compared and related documents
grouped accordingly. Analysing the text alone will not
find that concepts like golf title and golf trophy are related
so synonyms from the Pingar API need to be used to find
these concepts to be related.

Clustering is unable to find documents to be versions as
this involves using far too many dimensions in the d-
dimensional vector. When looking for versions, the entire
document text needs to be analysed as it is not just the
extracted entities that are important. This would mean
thousands of dimensions in the vector which is
impractical. It would also become similar to a word
frequency approach which is discussed in the next
section.
Clustering only meets some of the criteria. It is unable to
identify versions as it cannot handle the high number of
dimensions required in the vector representation. It is able
to identify documents that are related semantically using
the modification above that involves clustering using only
the extracted concepts from the Pingar API. Clustering is
able to represent the document in a more compact form as
it considers a document as only containing a number of
key terms. This is not quite as small as the single
numerical value used by simhash but still an efficient use
of disk space. Clustering treats the entire document as a
whole and there is no implementation of clustering that
involves breaking the document into chunks therefore the
number of comparisons is small. The comparisons
between documents are also fast and efficient as a value is
calculated for each document and compared to the mean
value of each cluster and grouped accordingly.

3.4 Word Frequency
The final method introduced in the literature review was a
technique using word frequency [11]. Stanford University
used a system that uses word frequencies to detect
plagiarism. The technique could identify if a submitted
document was a copy of one already in their databases of
documents (i.e. version). This is similar to the technique
using simhash in that it is looking at the original
document text. This method compares documents based
on how many times certain words appear and if two
documents are versions of each other and are very similar
then they will have similar word frequencies.
Word Frequency works well in finding different versions
of the same document using only the original document
text with a few modifications. Documents 1 and 2 are
versions of each other as it is clear the first two
paragraphs are very similar and Figure 6 shows how this
works. The figure shows the words from the first
paragraphs of documents 1 and 2. Even though the word
ordering differs and there are a few different words, when
ordered alphabetically it is clear that most of the words
are common therefore the documents are versions. If the
word frequency was analysed over the entire document
text then two versions of the same document will not
appear related if one document contains an extra section
with completely different terms and word ratios.
Document 2 has the extra paragraph on Tiger Woods and
Lindsey Vonn and when analysed as an entire document
the word frequencies would not be matching. Analysing
the document by paragraph would show that the first two
paragraphs of each document are versions.
This method would find documents that are semantically
similar by using a method similar to that used by simhash.
Word frequency using only the original text would not
work as it focuses on words and not synonyms and

6

misspellings. Documents 3 and 4 are very similar
semantically and a word frequency approach would not
work as it is looking at the entire document and not just
the concepts which is all that matters for semantically
related documents. It is also unaware of terms like
winning score and leading score which are used in the
different documents but mean the same thing. When the
Pingar API is combined with a word frequency method
then these issues are resolved. The Pingar API extracts
the concepts from a document and these can be compared
to the concepts of another document. If one document
contains the same concepts (or synonyms) as another
document then they are likely related semantically.
A word frequency approach does not meet all the criteria.
It does meet the major criteria of being able to find
versions of a document as long as it is implemented by
breaking the document into chunks. It also meets the
major requirement of finding semantically related
documents as it can compare the presence of key concepts
between documents when combined with the Pingar API.
This approach does not perform so well on the remaining
three criteria. Representing the document in a more
compact way is an important requirement of the software.
When looking for versions, this method would represent a
document by a word frequency for each chunk (likely a
paragraph) in the text. This is not reducing the size of the
document at all. When looking for semantic relatedness
this method would be better in that a document would be
related by only a small set of main concepts. This is still
not as compact as the simhash method which only
requires a single hash value for all the concepts
combined. This method will involve a number of
comparisons between the chunks in different documents.
The difference between this and simhash is that the
chunks are likely to be paragraphs in this algorithm and
sentences in a simhash implementation. As a result less
chunks need comparing. But then as the chunks are
represented by word counts rather than numbers, every
chunk will need comparing whereas simhash can be much
smarter about which chunks need comparing by ordering
the chunks numerically. There is little ordering that can
be applied to word counts except for partial alphabetical
ordering. As a result the total number of comparisons
would be similar. The speed of each comparison would be
slow as each chunk would need comparing on the
presence of different words and the count for each.

3.5 Summary of approaches
The performance of the three similarity approaches is
summarised in Figure 7 and simhash receives the best
score based on the assessment criteria.

 Figure 7: performance on required criteria

The Simhash method is the only one that performed
positively in the 5 criteria. Clustering is unable to identify
versions of a document which is a major requirement of
the project and for this reason it is not considered. The
major differences between simhash and word frequency
comes in the way they process documents and the speed
and space required. Simhash represents a document by a
list of hash values when trying to identify versions which
is a compact representation. Document 1 would be
represented by 3 hash values, 1 for each sentence in the
document. This list can then be sorted so the comparison
of chunks between documents can be done efficiently.
Word frequency does not use a compact representation
and instead looks at a word count for each chunk in a
document. Doc 1 would be represented by a list of word :
frequency pairs. This increases the space required and
each chunk has no natural ordering to aid computation
speed. The algorithm would need to check every chunk
against every other chunk.
Figure 8 shows the difference in disk space required by
the two methods and figure 9 shows how these values
were calculated. The values were calculated for document
2. Both the approach to finding semantically related
documents and versions of the same document consume
over 10 times the disk space using word frequency.

 Figure 8: disk space required for documents

Figure 9: calculation of bytes required

It was shown above that simhash performs better than
word frequency in storage space required. The quality of
the classification is also crucial in the decision making
process. Simhash and word frequency are now compared
on their accuracy. The statistics of interest are the
precision and recall of the algorithms. The precision
statistic shows the percentage of documents that are
returned as similar that are in fact similar. i.e. true
positives/ (true positives + false positives). Recall shows
the percentage of similar documents that are returned by
the algorithm. i.e. true positives / (true positives + false
negatives). The f measure is the combination of these two
statistics to give an overall accuracy reading.
Sood [12] states that simhash algorithms have good recall
but tend to have a low precision. This means that the
algorithm is able to identify almost all the documents that
are related and return them as related. So it is likely
documents 3 and 4 will be identified as related. The

Simhash Word frequency

Finding versions 12 bytes 497 bytes
Finding semantically relatedness 4 bytes 48 bytes

Simhash Word frequency

 (32 bits per hash value = 4 bytes) (Average word is 6 letters = 6 btyes)
Version: Version:

 = 3 sentences * 4bytes Each paragraph is represented by a list of word-occurrences
pairs i.e. golf-2. The word requires on average 6 bytes and the
number 1 byte so 7 bytes per word. Document 1 has 24
different words in paragraph 1, 26 different words in paragraph
2 and 21 different words in paragraph 3.
= 24*7 + 26*7 + 21 * 7

 = 12 bytes = 497 bytes

Semantically Semantically:

= 8 extracted entities into 1 hash 6 bytes per each of the 8 entities extracted

 = 4 bytes = 6 * 8 = 48 bytes

Simhash Clustering Word frequency
Accurately find versions of documents ++ -- ++

Accurately find semantically related documents + + +

Create a smaller representation of a document ++ + -
Efficient number of comparisons required. + ++ +

Good speed of comparison ++ + -
Total +8 +3 +2

7

1537307734 = 0 1 0 1 1 0 1 1 1 0 1 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 0 1 1 0
1218804829 = 0 1 0 0 1 0 0 0 1 0 1 0 0 1 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1

algorithm can struggle in that it returns a number of false
positives which are documents that it decides are related
that should not be. It may find documents 4 and 5 to be
related where they should not be. Sood worked with a
recall percentage of 95% and found the algorithm to be
fast but it did return a number of false-positives. Simhash
receives a mid range f measure to reflect the high recall
but lower precision. The precision can be improved with
tightening up the criteria for documents to be related. If
the recall percentage is lowered to 90% by only including
documents that are more closely related such as
documents 1 and 2, the number of false-positives will
reduce. This is the concept of a ROC curve (Receiver
Operating Characteristic) where the threshold used for
deciding whether documents are related is altered and the
changes in true positive and false positive rates are
monitored. There are also ways of introducing the Pingar
API which should increase the precision of the algorithm.
The recall for a word frequency algorithm is high as it
will find documents to be related even if the words in the
sentence are reordered or a few extra words are inserted.
Like the simhash algorithm, the issues arise with word
frequency having a lower precision. Paragraphs can have
very similar word frequencies and thus appear as related
but in fact not be versions at all. The f measure will be
mid range again to reflect the high recall but lower
precision.

Word frequency and simhash perform similarly in terms
of recall and precision but the main difference between
the two is in disc usage and also speed of comparisons.
Simhash is able to work much quicker and with the use of
less space so for these reasons it is chosen as the
similarity measure to use. Testing can be done in the
implementation to determine the threshold to use for
accuracy to get the most useful results regarding recall
and precision.

4. Sim hash implementation
The next stage is to work out exactly how to apply the
simhash method for the highest accuracy. The question of
this research is how to best combine the Pingar API and
simhash method to find document similarity in semantics
and in version. Matpalm [7] had an implementation of the
simhash algorithm which this research is based on. This
section outlines the initial implementation of the simhash
algorithm

4.1 Initial algorithm
This is the algorithm used initially to calculate the
simhash of chunks in a document. At each stage the idea
is described as well as any experimentation done to find
the best version. The simhash value used was the number
of bits difference between two generated hash values,
Figure 10 illustrates this difference in bits. The arrows
represent the bits which differ in the numbers. The
difference in bits in these two hash values is 8.

Figure 10: Difference in bits of sim hash values

Break the phrases up into features
This part of the algorithm involves breaking the input
phrases into smaller chunks called shingles with a few
letters. The example given broke the text into two letter
shingles and this was the method created and used
initially. The two letter shingles include spaces and no
duplicate shingle is included. An example phrase is
"Tiger Woods has reportedly divorced his wife Elin
Nordegren" from document 1 and figure 11 shows this
broken into shingles.

'Figure 11: Document 1 in 2 letter shingles

Hash each feature
It was suggested that a 32-bit hashing algorithm was used.
This length was chosen to be long enough so that clashes
did not occur with different input being hashed to the
same output. The length was also short enough to be
computationally efficient. Testing was done with 16 and
64 bit algorithms also. The larger the hash value the
greater the bit difference between related phrases but it
increased linearly compared to the difference between
two other phrases. This means the bit difference between
two different sets of phrases may have been 4 and 8 with
32 bit and 8 and 16 with 64 bit so the results did not
reveal any further information.
The Java [13] hashing function was giving fairly small
hash values even though it was a 32-bit hashing function.
This appeared to be as the input to hash was small. As a
result some of the phrases were found to be very similar
even if they were in fact completely different. A new
hashing algorithm implementation was written to resolve
this. The hashing method is simple and gets the lowest 32
bits when the byte value of the two letters is multiplied by
a large prime number. The prime number used was
27644437 [14] and it gave good hash values. The
algorithm works much better with this new hashing
algorithm. Figure 12 shows this hashing algorithm.

Figure 12: calculating hash value

Keep a 32 value array to modify
For each of the hashed shingles described above, if a bit i
is set then add 1 to the value at position i in the array. If
bit i is not set in the hashed value, then subtract one from
the value at position i in the array. This was created fairly
quickly and there was little room for different
implementations.
Calculate 32-bit simhash value
Set bit i to 1 if the value at position i in the array above is
> 0. Set the value to 0 otherwise. Again there is little
room for variation.
Difference in bits.

8

Keywords Jason Dufner, Oak Hill Country Club, PGA Championship,
golf, Keegan Bradley, bogey,Atlanta, major, winning score

People Keegan Bradley, Jason Dufner
Locations Oak Hill Country Club, New York, Atlanta

At this point the simhash value has been calculated for
each of the phrases input to the algorithm. The next step
is to find the difference between each hashed phrase in
terms of bits. Each of the phrases is analysed and the
algorithm outputs the number of bits difference between
each one.

4.2 Output from initial algorithm
A first implementation of the algorithm had been created
and was tested on a few phrases. Each phrase represents a
chunk that would be extracted from a complete document.
Figure 13 shows the three input phrases from the example
documents and Figure 14 shows the bit difference of the
hashed values.

Figure 137: Three input phrases to demonstrate

similar text

Figure 84: bit difference in example for versions

From this example it appears that the number of bits
difference did show which of the phrases were the most
similar. The output did not show very well just how
different each of the phrases were. The difference
between phrase 3 and the other two is huge but it is
difficult to get a read on how different using just the value
output.
This implementation works fairly well and can identify
phrases that are similar in terms of words. This can be
used for finding documents that are versions of one
another. When one word in a phrase was changed, or
removed, the simhash implementation would still find the
phrases to be related.
The current implementation is not very good at finding
phrases that are related in terms of semantics but not
words. Figures 15 and 16 show an illustration of this.

Figure 15: Input phrases for semantic relation

Figure 16: Bits different in semantic example

The first two phrases should be shown as slightly related
but the output does not appear to show anything. The first
two are shown as similar, likely because of common
words such as score and 270 but the difference in the
other phrases is not much more. The simhash algorithm is

trying to find similarities in the phrases based on common
2 letter pairs in the phrases. It is incapable of recognising
related terms such as leading and winning in the first two
phrases. The method needs to be adjusted to find semantic
similarities and is where the Pingar API is useful.

5. Incorporating the Pingar API
The implementation described above is a good
introduction to simhash but alone it will not give a high
level of accuracy for the classification software. The
Pingar API can be incorporated to particularly help with
finding semantic relatedness but also related versions.
This section is broken into two parts, the first is looking at
combining simhash with the Pingar API to find versions
of a document, the second is looking at finding
semantically related documents.

5.1 Finding document versions
This is the part where simhash already performs well.
Simhash analyses each chunk or sentence in a document
and creates a hash value which can be compared against
every chunk in other documents. Each method is applied
to documents 1 and 2 to show their effectiveness.

5.1.1. Using simhash on original document
text

When looking for versions, it is possible that using
simhash on the original document text is the most
accurate way to find relationships. The document is
broken into chunks (likely sentences) and each chunk has
its simhash value calculated. Each document is
represented by a list of hash values which can then be
compared against every other document. If documents
share a number of chunks that are within a fixed number
of bits of each other then the documents are found to be
versions of each other. Documents 1 and 2 are shown to
be related as the sentences contain similar words and
structure in the first two paragraphs as in Figure 17.

Figure 17: Differences in documents 1 and 2

The first sentences are the same but with different word
ordering and slightly different words such as became in
document 1 and was done in document 2. The hash values
will be very similar as simhash looks at 2 letter pairs. The
hash values of the 2nd sentences will be very similar for
the same reasons. Document 2 has a 3rd sentence which

Phrases Number of bits different

1,2 3

1,3 10

2,3 10

Phrases Number of bits different
1,2 8
1,3 9
2,3 10

9

Keywords Jason Dufner, Oak Hill Country Club, PGA Championship,
golf, Keegan Bradley, bogey,Atlanta, major, winning score

People Keegan Bradley, Jason Dufner
Locations Oak Hill Country Club, New York, Atlanta

document 1 does not but this is fine as the first part of
each document is shown to be versions as 2/2 of the
sentences from document 1 appear in document 2.

5.1.2. Using simhash on text with synonyms

The previous approach can be modified to incorporate the
Pingar API. Figure 18 shows how the method will work
on the first sentence of documents 1 and 2. This approach
would find phrases to be versions if the author has
swapped the concept for a synonym. The example finds
official to be a concept and finds the synonyms to include
in the input to hash. This example shows why looking at
the concepts is unnecessary. Including the synonym has
added no further accuracy to the algorithm. In documents
1 and 2 there are no concepts that are in one document but
not the other. All the differences in the documents that
make them versions are in word ordering and
insertion/deletion of minor words such as it became rather
than was done. The sentences in Figure 18 differ in that
they have 2 different words and 1 word where it has a
different ending. Using synonyms has not helped to
improve this situation.

Figure 18: simhash on chunks with synonyms

5.1.3. Summary of document version
approaches

Using synonyms is not necessary for finding document
versions. When a person is writing a document, they are
just as likely to change the smaller words in a sentence as
the concept words. The example showed that using the
synonyms did not improve accuracy as in general the
synonyms will be a very small amount of the words that
differ in versions. Simhash will find sentences to be
versions if only 1 or 2 words differ so it is not necessary
to introduce the synonyms for finding document versions.

5.2 Finding semantic relationships
This is the part which requires a lot of assistance from the
Pingar API. Simhash alone is incapable of finding
semantically related documents as it does not consider
synonyms or misspelling. The concepts extracted by the
Pingar API can be used as an input to hash to generate
more accurate results. To find the effectiveness, each
method is shown on documents 3 and 4. Figures 19 and
20 show the entities extracted from documents 3 and 4.
These will be used to illustrate the upcoming approaches.

Figure19: Entities extracted from document 3

Figure 20: Entities extracted from document 4

5.2.1. Hashing concepts from an entire
document

The first approach to using the Pingar API is to extract all
the concepts from the document and generate a simhash
value for the concatenation of these concepts. Figure 21
demonstrates this process. Each document would be
represented by a single number representing the hash
value of each of the concepts combined. Comparisons
between documents are fast and easy with just a single
number being compared for each document. Documents
that share mainly the same concepts will have a similar
simhash value and be shown as semantically related.

Figure 21: hashing of extracted concepts

5.2.2. Hashing concepts from each paragraph

The next approach is similar to the previous except the
document is broken into sections. A document may
contain two fairly separate sections and this method
would identify this and still find related documents. If the
first half of document a is on an identical topic to
document b but then document a discusses a different
topic in the second half, the previous approach would not
find these documents related. The number of shared
concepts would not be high enough to produce similar
simhash values. Figure 22 shows an example of this from
documents 3 and 4. The majority of each document is on
the same topic however the last paragraph of document 3
is on the tournament 2 years ago whereas the last
paragraph in document 4 is on Tiger Woods. The
paragraph has a completely different simhash value which
can be discarded as the rest of the paragraphs are similar.

People Jason Dufner, Tiger Woods, Jim Furyk

Locations New York, Oak Hill, Torrey Pines

Keywords Jason Dufner, Jim Furyk, Tiger Woods, golf, Oak
Hill, American, major, PGA

10

Figure 22: Hashing concepts per paragraph

5.2.3. Include frequency of entities

This adjustment to the simhash method for semantics uses
the number of occurrences of each of the entities and can
be applied to either of the approaches above to improve
accuracy. If two documents are closely related in terms of
topic, not only will they use common words or concepts
throughout but they will use these key terms many times.
Figure 23 displays an example of two documents with the
entities extracted and their frequency. The first 3
documents are all adaptations of document 3 and the last
is document 5 to illustrate the introduction of entity
frequency. One approach would be to include the term
golf numerous times in the input to hash. i.e. for
document 3a it would be simhash(golf golf golf golf
Jason Dufner PGA championship). This is essentially a
variation on the tf-idf algorithm (Term Frequency-
Inverse Document Frequency) [15]. This algorithm
calculates the importance of each term in a document and
goes up when a term is included many times in a
document and goes down when the term is used many
times in the entire document corpus. The trouble with this
is the simhash implementation looks at 2 letter shingles
within the phrase and discards duplicates. So including
golf many times in the simhash has the same effect as
including it once.
It was then investigated what would happen if the
simhash algorithm was altered to include duplicates. The
result was an algorithm that places a very high weighting
on the entities that occur many times. Documents 3a and
3b were found to be no more similar than documents 3a
and 5 and 5 is completely different. The reason for this is
that golf has such a high weighting in the calculation of
simhash that the other terms are essentially ignored. To
reinforce this the similarity between documents 3a and 3c
was calculated and found to be really high. This shows
that the simhash value for document 3a is so highly
influenced by the entity golf that it is almost the same as
hashing only golf. This tf-idf algorithm can still be used
but it should be used carefully. An entities frequency is
important as two documents that both mention golf 20
times should be shown as related regardless of the content
of the rest of the documents which this algorithm would
show. The semantic similarity should be calculated twice,
once with the tf-idf included and once without.
Calculating the semantic similarity without including
entities many times will find documents 3a and 3b to be
semantically related which is also true. When these two
approaches are used carefully, documents can be more
accurately analysed that using either approach alone.

Figure 23: frequency of concepts in documents

5.2.4. Summary of semantic approaches

The second approach would find documents to be related
even if only a few of the paragraphs are related. This is
the desired output and hashing the concepts from the
entire document would not find these documents which
have only some related paragraphs. The example showed
a situation where new entities are introduced in a
paragraph of document 3 with different entities in the last
paragraph of document 4. The hash per paragraph
approach finds the simhash value for the first few
paragraphs to be identical with only the last paragraphs
being different which it then discards.
Care will have to be taken when using this method as the
paragraphs in the documents may not always line up so
well. One document may talk about topic a in the first
paragraph and topic b in the second and a second
document may do it vice versa. The comparisons between
documents will need to check each paragraph with every
paragraph in the other documents. The simhash values
will be quite different between two paragraphs if one has
an extra two entities with the rest of the paragraphs being
very similar. This can cause an issue and for this reason it
is probably only necessary to find one or two paragraphs
that have similar hash values between two documents as it
is fairly hard to achieve. Often the first paragraphs of
documents sum up the main topics and these will be
found to have similar hash values.
The frequency of entities will be considered by
calculating semantic relatedness in two different ways. It
was found that introducing an entity into the simhash
calculation many times if it occurred many times in the
document had a very large impact on the overall simhash
value calculated. The documents will be compared
semantically using both tf-idf and without.
A possible extension is to introduce broader/narrow
concepts as determined by the pingar API and taxonomy
generator. This would be similar to the frequency issue in
that the stronger relationships between concepts can be
used with greater weighting in the simhash value. This
will be considered as an extension to the project to
achieve greater accuracy.

6. Optimizing comparing simhash chunks
The simhash implementation involves comparing a
number of hash values between documents to find
numbers that differ by a small number of bits. This is a
process which uses a high level of computation and
should be designed to be as efficient as possible. Simhash
can be efficient in that the hash values can be ordered so
that the minimum number of comparisons are carried out
to find the related chunks. If every chunk is compared
against every other chunk then the algorithm runs in
O(n2). Documents 1 and 2 will need 6 comparisons to

11

determine relatedness as document 1 has 2 sentences and
document 2 has 3 sentences. This suggested optimization
will reduce this.

6.1 Method for optimization
This is based on the method described in matpalm [7] but
adjusted to fit this software. Each of the hashed chunks in
a document must be checked against every other chunk in
another document but the number of comparisons can be
reduced.
Remove chunks from document 2 that are very
different
First step is to count the number of bits set in the chunk
from the first document currently being compared, call
this x. Remove any chunks from the list of chunks from
the second document that have more than x+n or less than
x-n bits set with n being the threshold for number of bits
difference that is considered related. If for example a
hashed chunk in document 2 has 26 bits set and the chunk
from document 1 has 10 bits set then the number of bits
difference is always going to be at least 16.
Order the list of hashed chunks for the second
document
If the bits different between two hashed chunks are in the
lowest few bits then ordering the hash values will result in
the similar chunks appearing next to each other in the list.
Insert the hashed chunk from the first document into this
list and remember its position. Figure 24 shows an
ordered list of hash values and phrases (3,6) and (8,5)
have ended up close together and both have a small bit
difference.

Figure 24: ordered list of hash values [7]

Find chunks close to hashed chunk from the first
document
Navigate through the list of chunks to find those that are
within n bits difference from the hashed chunk from the
first document that has been inserted into the list. These
are chunks that are closely enough related to the first
chunk. Remove these chunks from the list of chunks from
the second document.
Rotate each chunk one bit to the left
So far the method has only found chunks that differ in the
lower bits of the hash value. By rotating all of the values
one bit to the left, the difference between each of the
values will still remain intact. Figure 25 shows the rotated
hash values with the bit difference the same as in the
previous figure.

Figure 25: Bit difference of rotated hash

values[3]

Repeat step of ordering and finding related chunks
Now repeat the steps of ordering the list of hashed chunks
from document 2 and then removing the ones within n
bits difference to the hashed chunk from document 1.
These chunks have a close enough relation to the hashed
chunk from the first document.
Repeat steps 4 and 5
Rotate the bits in every chunk in the list by another bit to
the left, sort the list and remove the closely related hash
values. Repeat these steps as many times as there are bits
in the hash values. i.e. rotate 32 times for 32 bit hash
values.
Repeat steps 1-6 for each chunk from document 1
Repeat the process for each of the hashed chunks from the
first document.
Repeat steps 1-7 for every other document in the
collection
Repeat the earlier steps for every other document in the
collection. So compare each chunk from document 1 with
chunks in documents 2 till m with m being the number of
documents in the collection. Then compare every chunks
in document 2 with chunks in documents three till m.
Continue until chunks in documents m-1 and m have been
compared.

7. Conclusion
Through its performance on a set of criteria, simhash was
found to be the best performing of the similarity
measurements. Word frequency and simhash were both
accurate in their classification however simhash was far
more efficient in time taken and disk space used. A
simple first version of simhash was introduced to discover
how it worked and where it broke down. Pingar had
provided an API and taxonomy generator which can be
combined with the simhash method to fix most of the
areas where the simhash algorithm struggled.
For document versions it was found that the best solution
was to calculate the simhash value for each sentence
within the original document and the document
summarised by a list of these hash values. A method
introducing synonyms into the document text was tested
and discovered to be of no great benefit to the algorithm
as the initial document text was satisfactory for finding
versions of a document.
When classifying documents related semantically it was
found that the best approach is to combine the extracted
entities and their synonyms into a single simhash value
for each paragraph within the document. Introducing
synonyms helps the algorithm to find related paragraphs
that use different terms for the same ideas. Analysing the

12

document by paragraph rather than as a whole meant a
section of a document on a completely different topic
would not stop the document being found to be related to
another if the majority of the documents were similar.
Documents will be analysed semantically twice, once
with tf-idf and once without to improve the accuracy by
including entity frequency. Broader/narrower
relationships were considered but are considered
extensions time permitting.
An efficient method for comparing chunks was then
introduced. This method was based on an algorithm
introduced in literature but modified to work with the
nature of this simhash application. This improvement in
efficiency helps make simhash a quick algorithm for
classifying related documents.

8. References
[1] Fowke, M. (2013). Text categorization and analysis
based on document history. Literaure Review. Waikato
University.
[2] (2010, August 23). Divorce of Tiger Woods and wife
finalized, Short News
[3] (2013, August 12). Golf: Jason Dufner claims first
major title, Short News
[4] (2013, August 7). Study: Walking, cycling to work
may lower diabetes risk, Short News
[5] Tjong Kim Sang, E. F., & De Meulder, F. (2003,
May). Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition.
InProceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4 (pp.
142-147). Association for Computational Linguistics.
[6] Charikar, M. S. (2002, May). Similarity estimation
techniques from rounding algorithms. In Proceedings of
the thiry-fourth annual ACM symposium on Theory of
computing (pp. 380-388). ACM.
[7]Matpalm. The simhash algorithm. Retrieved from
http://matpalm.com/resemblance/simhash
[8]Huang, A., Milne, D., Frank, E., & Witten, I. H. (2008,
December). Clustering documents with active learning
using Wikipedia. In Data Mining, 2008. ICDM'08. Eighth
IEEE International Conference on (pp. 839-844). IEEE.
[9] Huang, A., Milne, D., Frank, E., & Witten, I. H.
(2009). Clustering documents using a Wikipedia-
based concept representation. In Advances in Knowledge
Discovery and Data Mining (pp. 628-636). Springer
Berlin Heidelberg
 [10]Knopp, J., Frank, A., & Riezler, S.
(2010). Classification of named entities in a large
multilingual resource using the Wikipedia category
system (Master’s thesis, University of Heidelberg).
[11] García-Molina, H., Gravano, L., & Shivakumar, N.
(1996, December). dSCAM: Finding document
copies across multiple databases. In Parallel and
Distributed Information Systems, 1996.,Fourth
International Conference on (pp. 68-79). IEEE.
[12]Sood, S. (2011). Probabilistic Simhash
Matching (Doctoral dissertation, Texas A&M University).

[13]Java. (2013). What is Java. Retrieved from
www.java.com
[14] Wolfram Math World. (2013) Bell Number.
Retrieved from http://mathworld.wolfram.com
[15]Ramos, J. (2003, December). Using tf-idf to
determine word relevance in document queries.
In Proceedings of the First Instructional Conference on
Machine Learning.

9. Appendix: Example documents

Document 1
Tiger Woods and his wife, Elin Nordegren, are reportedly
divorced. According to their lawyers it became official in Bay
County Circuit Court on Monday.
Woods and Nordegren have already commented on their
divorce: "We are sad that our marriage is over and we wish each
other the very best for the future."
Document 2
Tiger Woods has reportedly divorced his wife Elin Nordegren.
According to their lawyers it was done officially on Monday in
Bay County Circuit Court.
Woods and Nordegren commented already on their unfortunate
divorce: "We are sad that our marriage is over and we wish each
other the very best for the future."
Tiger has since been linked to another Blonde woman in skier
Lindey Vonn. Vonn was spotted course side during the BMW
championships.
Document 3
Jason Dufner finished bogey-bogey on the two most difficult
holes on the Oak Hill Country Club course in New York to
claim his first major golf title at the PGA Championship on
Sunday.
The winning score was a 10-under 270, four shots better than
the lowest score in the five previous majors at Oak Hill.
Two years ago in Atlanta, the 36-year-old had blown a five-shot
lead and Keegan Bradley ended up winning the title.
Document 4
The PGA championship concluded in New York on Sunday
with Jason Dufner winning his first major golf trophy.
Dufner won the tournament by 2 strokes over American Jim
Furyk at the Oak Hill course with a leading score of 270 the best
in five years.
Tiger Woods finished well down the field which was frustrating
for the hot favourite going into the event. It is now 5 years since
Tiger won his last major title at the US open in Torrey Pines.
Document 5
People who walk to work are 40 percent less likely to develop
diabetes and 17 percent less likely to develop high blood
pressure than those who drive, a new study by UK researchers
suggests.
Of the adults who used private transport such as cars,
motorbikes and taxis to get to work, 19 per cent were obese,
compared to only 13 percent of those who cycled to work and
15 percent of those who walked.
"This study highlights that building physical activity into the
daily routine by walking, cycling or using public transport to get
to work is good for personal health," states study co-author
Anthony Laverty.

	1. Introduction
	2. Background
	Example documents
	2.2 Semantic technology
	2.3 Software structure
	2.4 Example of system

	3. Similarity Approaches
	Assessment criteria
	3.2 Sim Hash
	3.3 Clustering using Wikipedia guidance
	3.4 Word Frequency
	3.5 Summary of approaches

	4. Sim hash implementation
	Initial algorithm
	4.2 Output from initial algorithm

	5. Incorporating the Pingar API
	Finding document versions
	Using simhash on original document text
	Using simhash on text with synonyms
	5.1.3. Summary of document version approaches

	5.2 Finding semantic relationships
	Hashing concepts from an entire document
	5.2.2. Hashing concepts from each paragraph
	5.2.3. Include frequency of entities
	5.2.4. Summary of semantic approaches

	6. Optimizing comparing simhash chunks
	Method for optimization

	7. Conclusion
	8. References
	9. Appendix: Example documents

