

Working Paper Series
ISSN 1177-777X

Text Categorization and Similarity Analysis:
Similarity measure,
Literature review

Michael Fowke1, Annika Hinze1, Ralf Heese2

Working Paper: 11/2013
December 2013

© 2013 Michael Fowke, Annika Hinze, Ralf Heese
1Department of Computer Science

The University of Waikato
Private Bag 3105

Hamilton, New Zealand
2 Pingar International Ltd.

152 Quay St, Auckland, New Zealand

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202140?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Text Categorization and Similarity Analysis: Literature review

Michael Fowke1, Annika Hinze1, Ralf Heese2

1University of Waikato, Hamilton, New Zealand
2Pingar International Ltd, Auckland, New Zealand

1. Introduction

Figure 1 shows a situation that has become increasingly common. With document organisation like this

it is almost impossible to find the file that you want, and definitely not quickly.

Figure 1: Example of a very crowded desktop

Document classification and provenance has become an important area of computer science as the

amount of digital information is growing significantly. Organisations are storing documents on

computers rather than in paper form. Software is now required that will show the similarities between

documents (i.e. document classification) and to point out duplicates and possibly the history of each

document (i.e. provenance). Poor organisation is common and leads to situations like above. There

exists a number of software solutions in this area designed to make document organisation as simple as

possible. I'm doing my project with Pingar who are a company based in Auckland who aim to help

organise the growing amount of unstructured digital data. This reports analyses the existing literature in

this area with the aim to determine what already exists and how my project will be different from

existing solutions.

Most computer users end up with a number of copies of documents for a variety of reasons. Three main

reasons were identified by Karlson et al. [1]:

2

1. Content preservation: People tend to make copies to back up their work and save different versions

as checkpoints. They then rely on the date modified timestamps to find the current version.

2. Sharing across devices: People often end up with many copies when they are sharing documents

across devices such as laptop, desktop and tablet.

3. Sharing between people: When documents are shared between multiple users then numerous copies

are usually created to keep each contributors version of a document separate.

1.1. Focus of this project

The aim of the project is to implement a tool that will aid users in finding and organising documents.

Software like this is required due to the increasing congestion in file systems. I hope to create a system

that will make organisation clearer by showing which files are related and also which are versions of

another file. This information will make it easier for a user to discover and locate documents relevant to

the user's task.

1.2. Approach

I am provided with a document corpus from Pingar which I will test the software on. Pingar are also

providing me with two of their semantic technologies: Pingar API for extracting entities from a

document collection and a Taxonomy generator for finding relationships between the extracted entities.

I can use this information along with the original document text to determine inter-file relationships.

1.3. Structure of this document

This report reviews the existing literature and aims to show the differences between each of the

methods and then decide which approach is best for my implementation. I start off by breaking the

existing work into two sub groups and show the differences between each group. Each of the

approaches within these groups is discussed and applied to a real situation to assess its appropriateness.

The overall design of my project is then decided based on my findings from the related literature. The

Figure 2: Document sharing amongst workers (image adopted from www.javla.com)

3

next stage is to break the software design into smaller pieces and determine what similarity measure

will be used to assess document similarity. Finally a conclusion is given on the similarity measure and

at this point enough information is known to begin implementation of the software.

2. Background

2.1. Scenario

I will be using a running example throughout this literature review to show how each of the

implementations would classify a document. The example involves classifying documents into those

that are related to Sir Edmund Hillary and/or climbing. By describing how each solution tackles the

problem it should make it clear how they work and identify the parts that work well and those that do

not.

2.2. Semantic technology

Semantic technology plays a big part in the project and is the part assisted by Pingar. Semantic

technology includes named entity extraction and taxonomy creation. Pingar software will output a

named entity summary and taxonomy from the input documents. The taxonomy sorts the content into

subcategories and gives the relationship between entities in the document using a tree like structure.

Named entities are phrases that contain the names of persons, organizations and locations [2]. In our

example Edmund Hillary is an entity and he is a climber and a climber is an explorer which are also

both entities. The entities are the objects and the taxonomy gives the semantics or relationships

between them (Figure 3).

Figure 3: Visualisation of taxonomy example

3. Related work: Methodology

I reviewed the existing solutions and analysed them based on their input, output, approach and

measurement used. It became clear that the best way to sort the implementations into groups was to

separate on the input available for classification. At a certain point in time a documents history may or

may not be known. A file may be viewed for the first time in which case nothing is known about its

history (static input). Alternatively the complete history of a file may be known (monitors user

4

interaction). The classification of the document depends greatly on how much information is known

about the history of the document.

Figure 4: Summary of inputs to document classification

Figure 4 shows the properties of each of the two groups of implementations. Essentially one group is

watching the user as they produce and interact with a document. The other group is viewing a

document for the first time during classification.

4. Monitoring user interactions

Many of the solutions involve monitoring or watching the user as they create the documents. This

method can uncover a great deal of information about the history/similarity of documents if the

software can observe exactly how documents interact. Provenance is a key word in all the examples

that use this approach. Provenance is described as the process of tracing and recording the origins of

data and it's movement between databases [3]. The majority of solutions I looked at fall into this group.

2.3. Patent: Tracking document usage

An example of this is the patent by Johnson et al. [4]. This is an application that takes multiple

documents as input as well as a tracking module within each document. The application outputs a

history and usage of the document. The approach to identifying a documents history and interactions

with other documents is simple as the tracking module gives a detailed listing of anytime the document

is interacted with in any way. The accesses of a document can be varied and include copying, printing,

5

attaching the document to an email etc. A useful piece of information stored by the tracking module is

an id of each computer that accesses the file. The system can then compile the history of computers that

accessed the document and the actions they carried out on it.

This solution doesn't group files by topic as it's working on identifying interactions between files. For

our example on Edmund Hillary it will find a document to be related to one on Hillary only if it can

determine that it's derived from it.

2.4. Timewarp

A second example is the Timewarp Software [5]. This system is different in that the input is a

document with numerous versions created by different users. The output produced by this system is an

integrated output document built from the combined input documents. This system uses the approach

of storing the input documents as timelines rather than static documents. A timeline contains a lot more

information on the timestamps for each part of a document and will help document integration

considerably. Again this system relies on having more information in the input than just the static

documents. Timewarp generates the input by making the timeline explicit in the interface the user sees

when creating the document (see Figure 5). This approach means that the user has to change the way

they would work on a document from the regular approach. Rather than maintaining different versions

in a folder, Timewarp shows a graph of the different versions over time. It's still simple enough for the

user to use as they just need to work on the most recent version as shown by the last node in the

directed acyclic graph.

Similar to the tracking document usage patent, it's not looking to classify documents or join documents

on topic. In this example it will join pieces of documents on Edmund Hillary together based on the

timestamps for when they were modified.

6

Figure 5: User view when using timewarp, Edwards et al. [5]

2.5. H.P. Trust cloud

Another example of classification being done by observation is that used by HP in their trust cloud [6].

There are a number of issues currently regarding file security in cloud based storage systems and HP

have implemented a method to track all file accesses so that cloud users can be confident that their

content is only being viewed by themselves. The output of this software is a history of all file accesses.

Again the system monitors all file interactions and movements and in combination with a provenance

layer it reasons about the origin of resources.

For our example on Hillary, this solution doesn't know anything about the content of the documents.

The aim is to track the file accesses and movements and is aware of the locations of a document. It

would be able to tell that two documents on Hillary were related only if they were derived from each

other.

2.6. Digital thread

Digital thread is a system created by next page [7] for version control and document organisation. The

benefit of this system is that the user is free to store documents on their personal computers however

they choose and the Digital Thread will still be able to give a comprehensive view of where a document

has been and its history. Input documents can be in emails, hard drives, or almost any type of storage.

The system uses a digital thread to track a document so it can be easily followed despite name changes

and other modifications. It uses patented algorithms to analyse a documents DNA to determine how

documents are related.

Like many of the other examples already given, this system isn't concerned with what's within the

document. It doesn't even need to know anything about the document format. Digital thread is watching

7

the file being moved around/ renamed and interacted with from outside the file. It will find documents

on Hillary to be related if one is derived from another.

2.7. Copy aware computing Ecosystems

One paper introduces the idea of using metadata in the classification of documents. This includes

information on the date of creation, file size, content type, emails attached to etc. This is all information

that is associated with a document without actually knowing much about the content in the document.

Karlson et al. describe it as a non-keyword approach [1]. This system does observe user interactions as

well as use metadata but it would be possible to carry out document classification just based on the

metadata if it wasn't practical to observe the user as they interact with the document. The software

outputs a version set which is a set of digital items that users conceptualize as a single entity. It also

offers graphical representations of the different versions of a document. The software appears to mainly

use the metadata that was described above but it does also use information of the users activities in

respect to the documents. It aims to find interfile provenance relationships. Provenance involves the

ownership of data and the data's usage. Karson et al. state that recording when a person uses the

copy/paste command was useful in establishing related files but not useful in determining different

versions.

As stated above, this system classifies without knowing about the content of the documents. It works

by finding relationships between files using knowledge such as emails a document is attached to. It will

find documents on Hillary to be related if they were attached to the same email or share some other

forms of connection. It won't simply find two documents with similar topics to be related.

2.8. Tasktracer

Task tracer is a different kind of software to the others mentioned in this section. It involves observing

the resources a person is using and then each is assigned to a certain task that the user is working on,

Dragunov et al. [8]. This is different in that it isn't finding similarities between documents but it is still

watching the documents that a person is using and then assigning them to certain tasks using an

algorithm. The application monitors user interactions and outputs a set of tasks, each with a number of

associated interactions. This software uses machine learning methods to classify the documents into

tasks. Other literature also states that machine learning is the most common method. There is a later

report on the task tracer that further explains it's function [9]. This paper mentions that as well as

classifying resources to tasks, a task can be automated by making predictions on how a task will be

carried out. It again mentions using provenance data in the algorithms and finding most frequent paths

8

in a graph representing user's actions. The group from Oregon University who created the task tracer

bring up the point that it's necessary to find the balance between granularity of data collection and

necessary level of inference. This is an issue that would be present in all the methods that involve

observing the user as too much data collection would cause the software to run slowly. I have included

this software in the group that monitors user interactions as the system is aware of users actions as they

happen

This solution isn't looking to find similar documents but rather group resources together that are

required for a certain task. Two documents on Hillary would be grouped together if it observes that

both are used when a user is working on a single task.

2.9. Document DNA

The final example of a system that monitors user interactions is one by Michael Rinck who is a PHD

student at Waikato University. His software takes multiple documents as input with each having

attached DNA which accumulates as a person interacts with the document. The output of his software

is a summary of document connections and similarities [10]. The software observes a document being

created and the commands that are applied to it. Each document has a DNA similar to that of a living

organism and each command will add information to the DNA (Figure 6). Rinck uses a method to

determine how far apart two documents are based on the number of differences in their DNA. The

report states that the "what you see is what you get" approach to documents and printing was limiting

advancements and that generating additional information on a document is providing greater

opportunities for document tracking and understanding. Rinck states that a document is only monitored

in a few certain programs [11]. These include Microsoft word and a few other Microsoft programs as

these were the most common and also easiest to track user interactions.

Like the other methods in this group, this doesn't look specifically at the topic of a document but rather

interactions and in particular inter-document relationships. It will find two documents on Edmund

Hillary to be related if they have content that comes from the same source. Whereas some of the

methods would only find connections if one document is a copy of another, this will find connections if

one contains a segment copied from the other.

9

Figure 6: Attaching DNA to a document, Rinck [11]

2.10. Summary of methods that observe user interactions

The following table summarizes the input, output and method of existing implementations for this

group.

Approach Input Output Method

Tracking patent Set of documents each

with a tracking module

History + usage Analyse tracking

module and in particular

ID of computers that

have accessed

document.

Timewarp Set of documents done

by several people in

timeline form.

Single document

combined from input

documents.

Uses timelines to piece

together different

documents.

H.P. Trust cloud All documents stored in

the trust cloud and

interactions.

List of any accesses for

each document.

System monitors

interactions and reasons

about origins.

Digital Thread Input documents each

with a digital thread

attached.

History of a document

and connections

between documents.

Uses digital thread to

follow file renames etc.

Uses patented

algorithms to reason

10

about interactions.

Copy aware Ecosystem Document metadata as

well as interactions.

Version set containing

the different versions of

a document in one

object.

Analyses interfile

provenance relations

using metadata as well

as user interactions.

Tasktracer Resources used. Number of tasks each

with all the associated

resources.

Observes user

interactions to put

resource with user

specified tasks. Uses

provenance data to find

most frequent paths.

Document DNA Input documents and the

actions performed on

them.

Document connections

and similarities.

Analyses the DNA of a

document and uses

algorithms to determine

how far apart two

documents are.

Figure 7: Summary of approaches for observing user interactions

Figure 8 shows the major similarities and differences between the solutions in the monitoring user

interactions group and is a summary of what was in Figure 7.

Similarities Differences

All aware of document history Some focus on actions applied to a single

document.

Most output version history. Some focus on relationships from actions applied

between documents.

 Some focus on content changing within single

document.

Figure 8: Similarities and differences of methods

11

5. Working with static input documents

The second group of implementations involve content analysis on static documents. These

implementations have no information on the interactions a person made with the documents but only a

final set of documents that the user wishes to classify. Content classification is often used as this is

some of the only information known for the documents. This group of solutions can usually show the

similarities between documents but will find it difficult to show that one document is derived from

another unless further information is available.

2.11. Classification based on annotations.

One example of this is documented in a patent by Schilit et al. [12]. This patent describes a system

where the input is a collection of documents and the output is a number of groups to which the input

documents have been assigned. This input and output is common for this group of document

classifying software. This particular implementation uses annotations that users have made to the

documents to try and find similarities between documents and eventually put them in appropriate

groups. Annotations can be highlighting certain passages, a reaction to a certain part or a number of

other possibilities, see Figure 9. Annotations can also be comments made on existing annotations such

as writing "good idea" next to an existing annotation. The software extracts all of the annotations that a

person has made to each document and then looks to analyse these. The annotations are grouped based

on their proximity in time and space. The system also provides an organised list of the annotations

made to the documents with links to the text so the user can follow the annotations to their location in

the original documents. This system is reliant on there being a number of detailed annotations made

throughout all of the documents in the collection.

Back to our example on finding documents related to Edmund Hillary. This solution is looking within

the document but at annotations rather than the text itself. For two documents on Hillary to be grouped

they would have to be identical documents as this is only looking at the positioning of annotations. If

two documents are similar but not identical, the annotations will be in difference places.

12

Figure 9: Annotation based classification, Schilit et al [12]

2.12. Classifying on sensitivity attributes.

Another implementation is that described in the patent by Kasiraj et al. [13] . This system takes a

collection of documents as input each with a classification relationship attribute which contains

sensitivity values as well as a relationship between the documents. The output is a collection of

documents treated as a single entity with a single document classification value. The system can then

decide if a certain individual is allowed access to the collection based on their own credentials. A

documents classification relationship value contains a sensitivity value that shows the credentials a

person requires to gain access to the document. The relationship also has information that links the

document to a particular set. The software contains algorithms that calculate the pairings of documents

based on their sensitivity attributes and relationships to give a single classification. The software is not

so much concerned with outputting groups of similar documents but rather how a final collection of

documents relates in terms to sensitive information to determine its access rights.

This implementation isn't concerned with finding related documents but rather assigning a value for a

group of documents. It isn't so relevant for our example with Hillary. It is only relevant for this study as

it shows how they've worked with finding a relationship between documents in terms of static values.

For us to apply this to our project, each document would have to have a value for its relationship with

13

other documents and we might be able to use a similar method to assign a content relationship value for

the combination of two documents.

2.13. Classifying by chunking byte code of text

HP proposed another method of text categorization [14]. This method again looked at only classifying

the final documents rather than observe the user interactions. They have millions of technical

documents and they require a method to find related or duplicate documents when making revisions.

They state that they chose to look only at the content of the document rather than metadata associated

with the document as the metadata may be incomplete so content analysis was more reliable. The input

is millions of support documents and the output is a set of related documents. The approach they use is

to break the byte code stream from the documents into chunks using a content based chunking

algorithm, see Figure 10. They then compute a hash value for each of the chunks in all of the

documents and the hashing algorithm is made sufficiently complicated so that two different chunks will

not have the same hash value. Comparisons are made on the documents by finding all that share

common hash values which indicate common text. In this example they are looking for chunks that are

identical so the hashing algorithm is simpler and doesn't allow for any variation. This is an example of

a purely content based method of classifying a large set of documents. A graph is constructed to

determine which files are similar, see Figure 11. Each file is shown on a graph along with a node for

each hashed chunk from the database of files. A line is drawn if a file contains a certain chunk. In

Figure 11 each of the files has a duplicate in another directory so there are more connection lines than

necessary. Two files are considered related if the total number of shared chunks is over a certain

threshold percentage of the size of the files.

For our example on Hillary, if two documents share similar phrases on Hillary, these will have the

same hash value and thus will appear related. With hashing, the hash value will be different with even a

single different symbol however there are algorithms that allow for slight differences in the input to

hash. This solution will also be useful for finding documents that are derived from each other, if two

documents share identical sentences and phrases, it is likely one is a version of the other. This solution

can be used to find similarity as well as versions potentially.

14

ITSM is shipped with the Inventory Reconciliation Manager (IRM), which allows you to build

interfaces with the ITSM Configuration Manager Database (CMDB). The extractor, necessary to

extract data from DTA, can be built with the Extractor Developer Kit (EDK) also delivered with the

product. The IRM is delivered with an example extractor for DTA and for NNM, Asset Manager and

Microsoft SMS. Next to the IRM, ITSM delivers the Event Interface Developers Kit (EIDK), enabling

to build interfaces with the ITSM helpdesk for automatic upload and maintenance of service calls. The

EIDK is delivered with example interfaces for NNM, DTA, ManageX, Tivoli TEC and Remedy ARS.

Figure 10: Example of text broken into chunks, Kasiraj et al. [13]

Figure 11: Graph of shared chunks between files, Kasiraj et al. [13]

2.14. Classification using word frequencies

Stanford University reported on a system they have used to detect plagiarism [15]. They have a number

of large databases containing students work as well as reports submitted to journals. They needed a

way to efficiently check if a document had been plagiarised from any of the documents in the

databases. The input is the suspicious document and the large databases of reports. The output is a

decision on whether the document had been plagiarised. The approach they took was to compare word

frequencies of the suspicious document and any document in the databases. They initially looked at

counting common sentences but this computation took far too long. Using word frequency and some

15

fairly complex statistics they can get a good measure of the similarity of two documents. Again this

method only uses the static final documents and has no knowledge of how the documents were created.

They point out that two documents can have similar word frequencies and not be copied from one

another. Even using complex statistics it is still necessary for a human to check the suspected document

and the original against each other to make a judgement on whether the document was plagiarised.

Two documents on Edmund Hillary will be considered similar if they contain similar word counts of

key words such as Hillary, Everest, climber etc. So this method is definitely useful for finding

similarities in topic. Surprisingly this method is also able to identify versions. If you look at word

frequencies for all the words in the document and not just the main words it's possible to determine if

documents are likely to be copies. The method uses some fairly complex statistics for this. The time

taken is an important criteria of the methods and will be considered when choosing the most

appropriate.

2.15. Clustering documents using Wikipedia

Anna Huang recently completed her PHD at Waikato university working with Pingar. Huang wrote

about clustering documents using Wikipedia [16], [17]. The input is a set of documents and she aims to

cluster them into groups based on content. She uses Wikipedia as a tool to analyse the documents and

Wikipedia is becoming an increasingly useful resource for classifying documents as it is a huge, well

structured collection of information. She starts by creating a concept-based document representation by

mapping the terms and phrases within documents to their corresponding articles (or concepts) in

Wikipedia. Each of the key terms within the document is extracted and mapped to a page in Wikipedia.

She uses a similarity measurement that evaluates the semantic relatedness between concept sets for two

documents. Wikipedia has a set of related pages for each page and Huang uses these to establish

relationships between concepts in documents. Huang states that previous work considers the overlap of

concepts in two documents but not the relationship between concepts i.e. the semantics. She discards

some concepts to be left with only those related to the central theme of the document.

Back to our Hillary example. This method will identify the key concepts such as Hillary and climbing

and establish the connection between them. It will then compare documents to see how many concepts

overlap as well as the relationships between them. Two documents containing related information on

Hillary would show up as having many shared entities and also will show the relationship between

16

these entities. It will find the similarity of documents but may not be able to find versions of the same

document.

2.16. Static input summary

There are less existing implementations in this group than there are for the group that observes

interactions. One of the main features is that these solutions are less intrusive. They require no software

to be present on the user's computer watching them prepare documents as they are only getting the

documents when they are to be classified. Figure 12 summarizes each of the approaches.

Approach Input Output Method

Annotations Documents plus

annotations

Grouped documents

plus list of all

annotations and link to

the text

Analyses the

annotation in time and

space.

Sensitivity Attributes Documents with

Sensitivity attributes

Group of documents

with new sensitivity

attribute

Calculates based on

the sensitivity attribute

and relationship to

other groups of

documents

Hashed Chunks Documents List of near copies of

documents

Finds documents that

share a certain number

of hashed chunks

Word Frequencies Suspicious document

plus database of

documents

Whether document has

been copied off an

existing document

Analyses the word

frequencies of

suspicious document

compared to existing

documents

Clustering using

Wikipedia

Documents Related groups of

documents

Uses entity extraction

and links entities to

Wikipedia. Uses

Wikipedia related

pages to calculate

relationships.

Figure 12: Summary of methods that use static input documents

17

6. Overview of Design

Figure 13: Subgroups of document classification

After looking at the solutions currently available (groups shown in Figure 13) and communicating with

Pingar we came to the conclusion that we would use a system that uses only static input documents.

In collaboration with Pingar we finalised the specifications and structure of the project, see Figure 14.

We would be using content analysis to compare documents rather than observing document

interactions like a number of the other methods. The input of the program is an archive of static

documents that can be in a number of formats and we have no information on a documents history

other than its last modification and creation dates. Pingar software will initially be used to analyse the

documents. The Pingar software will extract named entities and also produce a taxonomy from the

documents. The taxonomy shows the relationships between the extracted entities (e.g. a hierachical

structure). The software also gives information on which documents an entity occurs in. Named entities

are phrases that contain the names of persons, organizations and locations [2]. So in our example

Edmund Hillary is an entity and he is a climber and a climber is an explorer which are also both

entities. The entities are the objects and the taxonomy gives the semantics or relationships between

them. The named entities and associated taxonomy will then be fed into the software that I will create

and the output of the system will the similarities between the input documents. I will consider the

original text as well as the summarised output from Pingar software. The blue rectangles are software

and include the Pingar software as well as the software I will create. The green ovals show the output

from the Pingar software. These outputs are both required to be useful and are then fed into my

software. The text without colour show the input and output of the entire system. The red rectangle is

the similarity measure which will be discussed shortly. As we don't have any modification information

18

on the input documents it is difficult to find relationships between the documents but this will be

attempted depending on time available.

Figure 14: Overview of the design with Pingar

7. Similarity Measure

The next stage of literature review involves analysing existing software to see what similarity measure

they use to decide how similar 2 documents are. Earlier I was looking at the static approaches to

compare them to the approaches that monitor user actions. Now I will be looking at the approaches

more carefully and in particular at the similarity measure they use. This similarity measure will be fed

into my document classification software to use in the comparisons to other documents. Sebastiani

states "The dominant approach to document classification is based on machine learning techniques and

classification is usually done automatically by the learner using one of the available machine learning

packages" [18]. I'll look at whether machine learning techniques are relevant as well as other methods.

Each of the approaches in the static input method has a similarity measure and in this section I'm

considering all of these and also introducing a new hashing technique. I aim to find which similarity

19

measure I should use. I also have to determine what criteria I use to decide whether documents are

related. Obviously documents should be grouped if they are all talking about Hillary, but are two

documents related if one is talking about Hillary and one about climbing in general.

To further illustrate how each comparison works I'm going to refer to 4 very brief sections of text

which I will treat as separate documents.

1. Edmund Hillary is a great and well respected New Zealander.

2. Edmund Hillary is a well respected New Zealander

3. New Zealander Edmund Hillary is well respected worldwide.

4. Everest is the world's tallest mountain and is part of the Himalayas.

8. Measurements

8.1. Shared Hash Chunks

The HP method of chunking the document text [14] uses one measure for determining similarity. HP

find the number of shared hashed chunks that two documents have, Figures 10 and 11. The documents

are considered similar if the number is higher that a certain threshold percent of the size of the

document. This will work if two documents have common phrases. An issue is that a hash value will be

different if even a single symbol changes so the phrases will have to be identical. Two documents could

be on very similar topics but with no shared phrases so they won't show any similarity. Using the 4

example texts, it's probable that none will be shown as related as none share common chunks thus they

will hash differently. Later on I'll introduce hash calculations that allow for a bit of variation. This

option won't work so well with the named entity input I'm getting from the Pingar software however I

can use this method on the original text as further evidence that documents are related. The hashing

method used is a minhash method using only a single hashing algorithm.

8.2. Word Frequencies

The method of text classification proposed by Stanford University introduces another similarity

measure [15]. Two documents are compared based on their word frequencies. Some complex statistics

are used to determine the chance that two documents are related based on how similar the word

frequencies are. A human is required to do a final check on the two documents as the system is known

to give false positives. This method will show that texts 1, 2 and 3 are related due to their similar word

frequencies for words like New Zealander, Edmund Hillary and well respected. This method could be

20

taken further to find document versions if word counts for some of the smaller words are considered.

Texts 1, 2 and 3 have similar word frequencies for smaller words such as "is" and "a" so it can be

shown that they are versions of each other as well as semantically similar. One issue with this method

is that it's not using all the information we have available. We are getting a taxonomy and named

entities as input so we have the semantics/relationships between entities. This word frequencies

example doesn't use the relationship between words.

8.3. Bag of Concepts

This method was developed by Anna Huang [16], [17]. It finds the key concepts in a document and

maps each one to a Wikipedia page. She can identify the relationships between concepts with the help

of Wikipedia which provides related pages. She then uses machine learning algorithms to cluster the

documents. With our example texts, the first 3 will be mapped to the wikipedia page for Edmund

Hillary and New Zealand. It will then be shown that the texts are related. This method can be smarter

than the previous two and determine that "Everest" is related to "Edmund Hillary". With this semantic

knowledge it can possibly determine that the 4th text is related to the first three as well.

8.4. SimHash

SimHash is a variant on the minhash similarity estimate. Given two sets, minhash [19] outputs a value

between 0 and 1 to show the similarity of the two sets, 0 for disjoint sets and 1 being identical sets. In

our project each set will be a chunk within a document. Simhash is introduced with the formula

Prh∈F[h(x) = h(y)] = sim(x, y) [20]. F is a family of hash functions and each is applied to each of the

sets (chunks within documents being compared). Each set will have a number of values from this, one

for each of the hashing functions. This output is represented by a vector and the vector for 2 sets is

compared for similarity. This should be more accurate than the minhash as it's using a number of

different hashing functions however it will be more computationally expensive. This method should be

able to handle slight variations in sentences and still find them to be related thus showing related

documents. This method will be better at determining document versions than the minhash method

used in the shared hash chunks. This method can likely show that the first 2 texts are versions of each

other as when they are put through a number of different hashing algorithms they will have some

shared hash values. Texts 1 and 2 are identical except text two has a words "great and" removed.

Simhash should be able to identify this and decide they are related where minhash probably wouldn't.

21

Similarity Measure Semantic relationship Document versions
Shared Hash Chunks Only if the texts are identical, not

so good at finding related

content.

Only if texts are identical. Will

show two texts are versions of

each other if they share exact

phrases

Word Frequencies Shows relations if similar word

frequencies. Doesn't consider

semantics so needs to be same

terms and not related terms.

Will show versions if smaller

words are considered as well as

main terms.

Bag of concepts Does well in this area. Will show

documents are related if contain

the same named entities or ones

that are semantically similar.

Not so good at finding versions.

Simhash Only if the documents are very

similar. Not so good at finding

related content.

Good at finding versions due to a

number of hashing functions

being used.

Figure 15: Summary of similarity measures

9. Conclusion

It is obvious from above that each of the methods that uses static document input has an associated

similarity measure. It is not as important for the implementations that observe the user interacting with

documents as they are aware of the actions and can easily decide on groupings. With consultation with

Pingar we have decided what we should aim for with the project. The first stage is to find documents

that are semantically similar. This means documents on similar topics. We will also attempt to find

documents that are related in terms of version. This last part will be difficult and we may run out of

time.

 Combining more than one of the similarity measures would be the best way to achieve both of these

goals. I plan on using a form of entity frequency method that uses the output from the Pingar software

to find related documents. I will follow this with a simhash algorithm on the original text to find

versions of the same document. The specifics for on the hashing algorithm will be covered in the future

research report.

22

10. References

[1] Karlson, A. K., Smith, G., & Lee, B. (2011, May). Which version is this?: improving the desktop experience

within a copy-aware computing ecosystem. In Proceedings of the 2011 annual conference on Human factors in

computing systems (pp. 2669-2678). ACM.

[2] Tjong Kim Sang, E. F., & De Meulder, F. (2003, May). Introduction to the CoNLL-2003 shared task:

Language-independent named entity recognition. InProceedings of the seventh conference on Natural language

learning at HLT-NAACL 2003-Volume 4 (pp. 142-147). Association for Computational Linguistics.

[3] Buneman, P., Khanna, S., & Tan, W. C. (2000). Data provenance: Some basic issues. In FST TCS 2000:

Foundations of Software Technology and Theoretical Computer Science (pp. 87-93). Springer Berlin

Heidelberg.

[4] Johnson, B. L., Schroath, L. T., Anderson, B. J., & Herrmann, W. I. (2002).U.S. Patent Application 10/236,441.

[5] Edwards, W. K., & Mynatt, E. D. (1997, March). Timewarp: techniques for autonomous collaboration. In Proceedings

of the ACM SIGCHI Conference on Human factors in computing systems (pp. 218-225). ACM.

 [6] Ko, R. K., Jagadpramana, P., Mowbray, M., Pearson, S., Kirchberg, M., Liang, Q., & Lee, B. S. (2011, July).

TrustCloud: A framework for accountability and trust in cloud computing. In Services (SERVICES), 2011 IEEE World

Congress on (pp. 584-588). IEEE.

[7] Next Page. (2011). NextPage Digital Thread. Retrieved from http://www.nextpage.com

 [8] Dragunov, A. N., Dietterich, T. G., Johnsrude, K., McLaughlin, M., Li, L., & Herlocker, J. L. (2005, January).

TaskTracer: a desktop environment to support multi-tasking knowledge workers. In Proceedings of the 10th international

conference on Intelligent user interfaces (pp. 75-82). ACM.

[9] Shen, J., Fitzhenry, E., & Dietterich, T. G. (2009, February). Discovering frequent work procedures from

resource connections. In Proceedings of the 14th international conference on Intelligent user interfaces (pp. 277-

286). ACM.

 [10] Rinck, M. (2012). Full Research Proposal Connecting Information: Detecting and tracing object

evolution. Manuscript Title. Waikato University.

 [11] Rinck, M. (2013). Document DNA: How to Track Re-used Content Across Documents.

Manuscript Title. Waikato University.

23

[12] Schilit, W. N., Price, M. N., Golovchinsky, G., & Wilcox, L. D. (2001). U.S. Patent No. 6,279,014.

Washington, DC: U.S. Patent and Trademark Office.

[13] Kasiraj, C., Taylor, J. L., & Wolf, T. J. (1993). U.S. Patent No. 5,204,812. Washington, DC: U.S. Patent

and Trademark Office.

[14] Forman, G., Eshghi, K., & Chiocchetti, S. (2005, August). Finding similar files in large document

repositories. In Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in

data mining (pp. 394-400). ACM.

[15] García-Molina, H., Gravano, L., & Shivakumar, N. (1996, December). dSCAM: Finding document copies

across multiple databases. In Parallel and Distributed Information Systems, 1996., Fourth International

Conference on (pp. 68-79). IEEE.

[16] Huang, A., Milne, D., Frank, E., & Witten, I. H. (2008, December). Clustering documents with active learning using

Wikipedia. In Data Mining, 2008. ICDM'08. Eighth IEEE International Conference on (pp. 839-844). IEEE.

[17] Huang, A., Milne, D., Frank, E., & Witten, I. H. (2009). Clustering documents using a Wikipedia-based concept

representation. In Advances in Knowledge Discovery and Data Mining (pp. 628-636). Springer Berlin Heidelberg

[18] Sebastiani, F. (2002). Machine learning in automated text categorization. ACM computing surveys

(CSUR), 34(1), 1-47.

[19] Broder, A. Z. (1997, June). On the resemblance and containment of documents. In Compression and

Complexity of Sequences 1997. Proceedings (pp. 21-29). IEEE.

[20] Charikar, M. S. (2002, May). Similarity estimation techniques from rounding algorithms. In Proceedings of the thiry-

fourth annual ACM symposium on Theory of computing (pp. 380-388). ACM.

	1. Introduction
	1.1. Focus of this project
	1.2. Approach
	1.3. Structure of this document

	2. Background
	Scenario
	2.2. Semantic technology

	3. Related work: Methodology
	4. Monitoring user interactions
	Patent: Tracking document usage
	2.4. Timewarp
	2.5. H.P. Trust cloud
	2.6. Digital thread
	2.7. Copy aware computing Ecosystems
	2.8. Tasktracer
	2.9. Document DNA
	2.10. Summary of methods that observe user interactions

	5. Working with static input documents
	Classification based on annotations.
	2.12. Classifying on sensitivity attributes.
	2.13. Classifying by chunking byte code of text
	2.14. Classification using word frequencies
	2.15. Clustering documents using Wikipedia
	2.16. Static input summary

	6. Overview of Design
	7. Similarity Measure
	Measurements
	Shared Hash Chunks
	8.2. Word Frequencies
	8.3. Bag of Concepts
	8.4. SimHash

	9. Conclusion
	10. References

