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1University of Waikato, Hamilton, New Zealand 
2Pingar International Ltd, Auckland, New Zealand 

1. Introduction 

Figure 1 shows a situation that has become increasingly common. With document organisation like this 

it is almost impossible to find the file that you want, and definitely not quickly. 

 

Figure 1: Example of a very crowded desktop  

Document classification and provenance has become an important area of computer science as the 

amount of digital information is growing significantly. Organisations are storing documents on 

computers rather than in paper form. Software is now required that will show the similarities between 

documents (i.e. document classification) and to point out duplicates and possibly the history of each 

document (i.e. provenance).  Poor organisation is common and leads to situations like above. There 

exists a number of software solutions in this area designed to make document organisation as simple as 

possible. I'm doing my project with Pingar who are a company based in Auckland who aim to help 

organise the growing amount of unstructured digital data. This reports analyses the existing literature in 

this area with the aim to determine what already exists and how my project will be different from 

existing solutions.  

Most computer users end up with a number of copies of documents for a variety of reasons. Three main 

reasons were identified by Karlson et al. [1]:  
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1. Content preservation: People tend to make copies to back up their work and save different versions 

as checkpoints. They then rely on the date modified timestamps to find the current version.  

2. Sharing across devices: People often end up with many copies when they are sharing documents 

across devices such as laptop, desktop and tablet. 

3. Sharing between people: When documents are shared between multiple users then numerous copies 

are usually created to keep each contributors version of a document separate.  

 

 

 

 

 

 

 

1.1.  Focus of this project 

The aim of the project is to implement a tool that will aid users in finding and organising documents. 

Software like this is required due to the increasing congestion in file systems. I hope to create a system 

that will make organisation clearer by showing which files are related and also which are versions of 

another file. This information will make it easier for a user to discover and locate documents relevant to 

the user's task. 

1.2.  Approach 

I am provided with a document corpus from Pingar which I will test the software on. Pingar are also 

providing me with two of their semantic technologies: Pingar API for extracting entities from a 

document collection and a Taxonomy generator for finding relationships between the extracted entities. 

I can use this information along with the original document text to determine inter-file relationships. 

1.3.  Structure of this document 

This report reviews the existing literature and aims to show the differences between each of the 

methods and then decide which approach is best for my implementation. I start off by breaking the 

existing work into two sub groups and show the differences between each group. Each of the 

approaches within these groups is discussed and applied to a real situation to assess its appropriateness. 

The overall design of my project is then decided based on my findings from the related literature. The 

Figure 2: Document sharing amongst workers (image adopted from www.javla.com) 
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next stage is to break the software design into smaller pieces and determine what similarity measure 

will be used to assess document similarity. Finally a conclusion is given on the similarity measure and 

at this point enough information is known to begin implementation of the software. 

2. Background 

2.1.  Scenario 

I will be using a running example throughout this literature review to show how each of the 

implementations would classify a document. The example involves classifying documents into those 

that are related to Sir Edmund Hillary and/or climbing. By describing how each solution tackles the 

problem it should make it clear how they work and identify the parts that work well and those that do 

not. 

2.2.  Semantic technology 

Semantic technology plays a big part in the project and is the part assisted by Pingar. Semantic 

technology includes named entity extraction and taxonomy creation. Pingar software will output a 

named entity summary and taxonomy from the input documents. The taxonomy sorts the content into 

subcategories and gives the relationship between entities in the document using a tree like structure. 

Named entities are phrases that contain the names of persons, organizations and locations [2]. In our 

example Edmund Hillary is an entity and he is a climber and a climber is an explorer which are also 

both entities. The entities are the objects and the taxonomy gives the semantics or relationships 

between them (Figure 3). 

 

Figure 3: Visualisation of taxonomy example 

3. Related work: Methodology 

I reviewed the existing solutions and analysed them based on their input, output, approach and 

measurement used. It became clear that the best way to sort the implementations into groups was to 

separate on the input available for classification. At a certain point in time a documents history may or 

may not be known. A file may be viewed for the first time in which case nothing is known about its 

history (static input). Alternatively the complete history of a file may be known (monitors user 
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interaction). The classification of the document depends greatly on how much information is known 

about the history of the document.  

 

 

 

 

 

 

 

 

 

 

Figure 4: Summary of inputs to document classification 

Figure 4 shows the properties of each of the two groups of implementations. Essentially one group is 

watching the user as they produce and interact with a document. The other group is viewing a 

document for the first time during classification. 

4. Monitoring user interactions 

Many of the solutions involve monitoring or watching the user as they create the documents. This 

method can uncover a great deal of information about the history/similarity of documents if the 

software can observe exactly how documents interact. Provenance is a key word in all the examples 

that use this approach. Provenance is described as the process of tracing and recording the origins of 

data and it's movement between databases [3]. The majority of solutions I looked at fall into this group. 

2.3.  Patent: Tracking document usage 

An example of this is the patent by Johnson et al. [4]. This is an application that takes multiple 

documents as input as well as a tracking module within each document. The application outputs a 

history and usage of the document. The approach to identifying a documents history and interactions 

with other documents is simple as the tracking module gives a detailed listing of anytime the document 

is interacted with in any way. The accesses of a document can be varied and include copying, printing, 
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attaching the document to an email etc. A useful piece of information stored by the tracking module is 

an id of each computer that accesses the file. The system can then compile the history of computers that 

accessed the document and the actions they carried out on it.  

This solution doesn't group files by topic as it's working on identifying interactions between files. For 

our example on Edmund Hillary it will find a document to be related to one on Hillary only if it can 

determine that it's derived from it. 

2.4.  Timewarp 

A second example is the Timewarp Software [5]. This system is different in that the input is a 

document with numerous versions created by different users.  The output produced by this system is an 

integrated output document built from the combined input documents. This system uses the approach 

of storing the input documents as timelines rather than static documents. A timeline contains a lot more 

information on the timestamps for each part of a document and will help document integration 

considerably. Again this system relies on having more information in the input than just the static 

documents. Timewarp generates the input by making the timeline explicit in the interface the user sees 

when creating the document (see Figure 5). This approach means that the user has to change the way 

they would work on a document from the regular approach. Rather than maintaining different versions 

in a folder, Timewarp shows a graph of the different versions over time. It's still simple enough for the 

user to use as they just need to work on the most recent version as shown by the last node in the 

directed acyclic graph. 

Similar to the tracking document usage patent, it's not looking to classify documents or join documents 

on topic. In this example it will join pieces of documents on Edmund Hillary together based on the 

timestamps for when they were modified. 
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Figure 5: User view when using timewarp, Edwards et al. [5] 

2.5.  H.P. Trust cloud 

Another example of classification being done by observation is that used by HP in their trust cloud [6]. 

There are a number of issues currently regarding file security in cloud based storage systems and HP 

have implemented a method to track all file accesses so that cloud users can be confident that their 

content is only being viewed by themselves. The output of this software is a history of all file accesses. 

Again the system monitors all file interactions and movements and in combination with a provenance 

layer it reasons about the origin of resources. 

For our example on Hillary, this solution doesn't know anything about the content of the documents. 

The aim is to track the file accesses and movements and is aware of the locations of a document. It 

would be able to tell that two documents on Hillary were related only if they were derived from each 

other. 

2.6.  Digital thread 

Digital thread is a system created by next page [7] for version control and document organisation. The 

benefit of this system is that the user is free to store documents on their personal computers however 

they choose and the Digital Thread will still be able to give a comprehensive view of where a document 

has been and its history. Input documents can be in emails, hard drives, or almost any type of storage. 

The system uses a digital thread to track a document so it can be easily followed despite name changes 

and other modifications. It uses patented algorithms to analyse a documents DNA to determine how 

documents are related. 

Like many of the other examples already given, this system isn't concerned with what's within the 

document. It doesn't even need to know anything about the document format. Digital thread is watching 
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the file being moved around/ renamed and interacted with from outside the file. It will find documents 

on Hillary to be related if one is derived from another. 

2.7.  Copy aware computing Ecosystems 

One paper introduces the idea of using metadata in the classification of documents. This includes 

information on the date of creation, file size, content type, emails attached to etc. This is all information 

that is associated with a document without actually knowing much about the content in the document. 

Karlson et al. describe it as a non-keyword approach [1]. This system does observe user interactions as 

well as use metadata but it would be possible to carry out document classification just based on the 

metadata if it wasn't practical to observe the user as they interact with the document. The software 

outputs a version set which  is a set of digital items that users conceptualize as a single entity. It also 

offers graphical representations of the different versions of a document. The software appears to mainly 

use the metadata that was described above but it does also use information of the users activities in 

respect to the documents. It aims to find interfile provenance relationships. Provenance involves the 

ownership of data and the data's usage. Karson et al. state that recording when a person uses the 

copy/paste command was useful in establishing related files but not useful in determining different 

versions. 

As stated above, this system classifies without knowing about the content of the documents. It works 

by finding relationships between files using knowledge such as emails a document is attached to. It will 

find documents on Hillary to be related if they were attached to the same email or share some other 

forms of connection. It won't simply find two documents with similar topics to be related. 

2.8.  Tasktracer 

Task tracer is a different kind of software to the others mentioned in this section. It involves observing 

the resources a person is using and then each is assigned to a certain task that the user is working on, 

Dragunov et al. [8]. This is different in that it isn't finding similarities between documents but it is still 

watching the documents that a person is using and then assigning them to certain tasks using an 

algorithm. The application monitors user interactions and outputs a set of tasks, each with a number of 

associated interactions. This software uses machine learning methods to classify the documents into 

tasks. Other literature also states that machine learning is the most common method. There is a later 

report on the task tracer that further explains it's function [9]. This paper mentions that as well as 

classifying resources to tasks, a task can be automated by making predictions on how a task will be 

carried out.  It again mentions using provenance data in the algorithms and finding most frequent paths 
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in a graph representing user's actions. The group from Oregon University who created the task tracer 

bring up the point that it's necessary to find the balance between granularity of data collection and 

necessary level of inference. This is an issue that would be present in all the methods that involve 

observing the user as too much data collection would cause the software to run slowly. I have included 

this software in the group that monitors user interactions as the system is aware of users actions as they 

happen 

This solution isn't looking to find similar documents but rather group resources together that are 

required for a certain task. Two documents on Hillary would be grouped together if it observes that 

both are used when a user is working on a single task. 

2.9.  Document DNA 

The final example of a system that monitors user interactions is one by Michael Rinck who is a PHD 

student at Waikato University. His software takes multiple documents as input with each having 

attached DNA which accumulates as a person interacts with the document. The output of his software 

is a summary of document connections and similarities [10]. The software observes a document being 

created and the commands that are applied to it. Each document has a DNA similar to that of a living 

organism and each command will add information to the DNA (Figure 6). Rinck uses a method to 

determine how far apart two documents are based on the number of differences in their DNA. The 

report states that the "what you see is what you get" approach to documents and printing was limiting 

advancements and that generating additional information on a document is providing greater 

opportunities for document tracking and understanding. Rinck states that a document is only monitored 

in a few certain programs [11]. These include Microsoft word  and a few other Microsoft programs as 

these were the most common and also easiest to track user interactions. 

Like the other methods in this group, this doesn't look specifically at the topic of a document but rather 

interactions and in particular inter-document relationships. It will find two documents on Edmund 

Hillary to be related if they have content that comes from the same source. Whereas some of the 

methods would only find connections if one document is a copy of another, this will find connections if 

one contains a segment copied from the other. 
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Figure 6: Attaching DNA to a document, Rinck [11] 

 

2.10.  Summary of methods that observe user interactions 

The following table summarizes the input, output and method of existing implementations for this 

group. 

Approach Input Output Method 

Tracking patent Set of documents each 

with a tracking module 

History + usage Analyse tracking 

module and in particular 

ID of computers that 

have accessed 

document. 

Timewarp Set of documents done 

by several people in 

timeline form. 

Single document 

combined from input 

documents. 

Uses timelines to piece 

together different 

documents. 

H.P. Trust cloud All documents stored in 

the trust cloud and 

interactions. 

List of any accesses for 

each document. 

System monitors 

interactions and reasons 

about origins. 

Digital Thread Input documents each 

with a digital thread 

attached. 

History of a document 

and connections 

between documents. 

Uses digital thread to 

follow file renames etc. 

Uses patented 

algorithms to reason 
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about interactions. 

Copy aware Ecosystem Document metadata as 

well as interactions. 

Version set containing 

the different versions of 

a document in one 

object. 

Analyses interfile 

provenance relations 

using metadata as well 

as user interactions. 

Tasktracer Resources used. Number of tasks each 

with all the associated 

resources. 

Observes user 

interactions to put 

resource with user 

specified tasks. Uses 

provenance data to find 

most frequent paths. 

Document DNA Input documents and the 

actions performed on 

them. 

Document connections 

and similarities. 

Analyses the DNA of a 

document and uses 

algorithms to determine 

how far apart two 

documents are. 

Figure 7: Summary of approaches for observing user interactions 

Figure 8 shows the major similarities and differences between the solutions in the monitoring user 

interactions group and is a summary of what was in Figure 7. 

Similarities Differences 

All aware of document history Some focus on actions applied to a single 

document.   

 

Most output version history. Some focus on relationships from actions applied 

between documents.  

 

 Some focus on content changing within single 

document.  

 

Figure 8: Similarities and differences of methods 
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5. Working with static input documents 

The second group of implementations involve content analysis on static documents. These 

implementations have no information on the interactions a person made with the documents but only a 

final set of documents that the user wishes to classify. Content classification is often used as this is 

some of the only information known for the documents. This group of solutions can usually show the 

similarities between documents but will find it difficult to show that one document is derived from 

another unless further information is available. 

2.11.  Classification based on annotations. 

One example of this is documented in a patent by Schilit et al. [12]. This patent describes a system 

where the input is a collection of documents and the output is a number of groups to which the input 

documents have been assigned. This input and output is common for this group of document 

classifying software. This particular implementation uses annotations that users have made to the 

documents to try and find similarities between documents and eventually put them in appropriate 

groups. Annotations can be highlighting certain passages, a reaction to a certain part or a number of 

other possibilities, see Figure 9. Annotations can also be comments made on existing annotations such 

as writing "good idea" next to an existing annotation. The software extracts all of the annotations that a 

person has made to each document and then looks to analyse these. The annotations are grouped based 

on their proximity in time and space. The system also provides an organised list of the annotations 

made to the documents with links to the text so the user can follow the annotations to their location in 

the original documents. This system is reliant on there being a number of detailed annotations made 

throughout all of the documents in the collection. 

Back to our example on finding documents related to Edmund Hillary. This solution is looking within 

the document but at annotations rather than the text itself. For two documents on Hillary to be grouped 

they would have to be identical documents as this is only looking at the positioning of annotations. If 

two documents are similar but not identical, the annotations will be in difference places. 
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Figure 9: Annotation based classification, Schilit et al [12] 

 

2.12.  Classifying on sensitivity attributes. 

Another implementation is that described in the patent by Kasiraj et al. [13] . This system takes a 

collection of documents as input each with a classification relationship attribute which contains 

sensitivity values as well as a relationship between the documents. The output is a collection of 

documents treated as a single entity with a single document classification value. The system can then 

decide if a certain individual is allowed access to the collection based on their own credentials. A 

documents classification relationship value contains a sensitivity value that shows the credentials a 

person requires to gain access to the document. The relationship also has information that links the 

document to a particular set. The software contains algorithms that calculate the pairings of documents 

based on their sensitivity attributes and relationships to give a single classification. The software is not 

so much concerned with outputting groups of similar documents but rather how a final collection of 

documents relates in terms to sensitive information to determine its access rights. 

This implementation isn't concerned with finding related documents but rather assigning a value for a 

group of documents. It isn't so relevant for our example with Hillary. It is only relevant for this study as 

it shows how they've worked with finding a relationship between documents in terms of static values. 

For us to apply this to our project, each document would have to have a value for its relationship with 
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other documents and we might be able to use a similar method to assign a content relationship value for 

the combination of two documents.  

2.13.  Classifying by chunking byte code of text 

HP proposed another method of text categorization [14]. This method again looked at only classifying 

the final documents rather than observe the user interactions. They have millions of technical 

documents and they require a method to find related or duplicate documents when making revisions. 

They state that they chose to look only at the content of the document rather than metadata associated 

with the document as the metadata may be incomplete so content analysis was more reliable. The input 

is millions of support documents and the output is a set of related documents. The approach they use is 

to break the byte code stream from the documents into chunks using a content based chunking 

algorithm, see Figure 10. They then compute a hash value for each of the chunks in all of the 

documents and the hashing algorithm is made sufficiently complicated so that two different chunks will 

not have the same hash value. Comparisons are made on the documents by finding all that share 

common hash values which indicate common text.  In this example they are looking for chunks that are 

identical so the hashing algorithm is simpler and doesn't allow for any variation. This is an example of 

a purely content based method of classifying a large set of documents. A graph is constructed to 

determine which files are similar, see Figure 11. Each file is shown on a graph along with a node for 

each hashed chunk from the database of files. A line is drawn if a file contains a certain chunk. In 

Figure 11 each of the files has a duplicate in another directory so there are more connection lines than 

necessary. Two files are considered related if the total number of shared chunks is over a certain 

threshold percentage of the size of the files. 

For our example on Hillary, if two documents share similar phrases on Hillary, these will have the 

same hash value and thus will appear related. With hashing, the hash value will be different with even a 

single different symbol however there are algorithms that allow for slight differences in the input to 

hash. This solution will also be useful for finding documents that are derived from each other, if two 

documents share identical sentences and phrases, it is likely one is a version of the other. This solution 

can be used to find similarity as well as versions potentially. 
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ITSM is shipped with the Inventory Reconciliation Manager (IRM), which allows you to build 

interfaces with the ITSM Configuration Manager Database (CMDB). The extractor, necessary to 

extract data from DTA, can be built with the Extractor Developer Kit (EDK) also delivered with the 

product. The IRM is delivered with an example extractor for DTA and for NNM, Asset Manager and 

Microsoft SMS. Next to the IRM, ITSM delivers the Event Interface Developers Kit (EIDK), enabling 

to build interfaces with the ITSM helpdesk for automatic upload and maintenance of service calls. The 

EIDK is delivered with example interfaces for NNM, DTA, ManageX, Tivoli TEC and Remedy ARS.  

Figure 10: Example of text broken into chunks, Kasiraj et al. [13] 

 

Figure 11: Graph of shared chunks between files, Kasiraj et al. [13] 

 

2.14.  Classification using word frequencies 

Stanford University reported on a system they have used to detect plagiarism [15]. They have a number 

of large databases containing students work as well as reports submitted to journals. They needed a 

way to efficiently check if a document had been plagiarised from any of the documents in the 

databases. The input is the suspicious document and the large databases of reports. The output is a 

decision on whether the document had been plagiarised. The approach they took was to compare word 

frequencies of the suspicious document and any document in the databases. They initially looked at 

counting common sentences but this computation took far too long. Using word frequency and some 
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fairly complex statistics they can get a good measure of the similarity of two documents. Again this 

method only uses the static final documents and has no knowledge of how the documents were created. 

They point out that two documents can have similar word frequencies and not be copied from one 

another. Even using complex statistics it is still necessary for a human to check the suspected document 

and the original against each other to make a judgement on whether the document was plagiarised. 

Two documents on Edmund Hillary will be considered similar if they contain similar word counts of 

key words such as Hillary, Everest, climber etc. So this method is definitely useful for finding 

similarities in topic. Surprisingly this method is also able to identify versions. If you look at word 

frequencies for all the words in the document and not just the main words it's possible to determine if 

documents are likely to be copies. The method uses some fairly complex statistics for this. The time 

taken is an important criteria of the methods and will be considered when choosing the most 

appropriate. 

2.15.  Clustering documents using Wikipedia 

Anna Huang recently completed her PHD at Waikato university working with Pingar. Huang wrote 

about clustering documents using Wikipedia [16], [17]. The input is a set of documents and she aims to 

cluster them into groups based on content. She uses Wikipedia as a tool to analyse the documents and 

Wikipedia is becoming an increasingly useful resource for classifying documents as it is a huge, well 

structured collection of information. She starts by creating a concept-based document representation by 

mapping the terms and phrases within documents to their corresponding articles (or concepts) in 

Wikipedia. Each of the key terms within the document is extracted and mapped to a page in Wikipedia. 

She uses a similarity measurement that evaluates the semantic relatedness between concept sets for two 

documents. Wikipedia has a set of related pages for each page and Huang uses these to establish 

relationships between concepts in documents. Huang states that previous work considers the overlap of 

concepts in two documents but not the relationship between concepts i.e. the semantics. She discards 

some concepts to be left with only those related to the central theme of the document. 

 

Back to our Hillary example. This method will identify the key concepts such as Hillary and climbing 

and establish the connection between them. It will then compare documents to see how many concepts 

overlap as well as the relationships between them. Two documents containing related information on 

Hillary would show up as having many shared entities and also will show the relationship between 
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these entities. It will find the similarity of documents but may not be able to find versions of the same 

document. 

2.16.  Static input summary 

There are less existing implementations in this group than there are for the group that observes 

interactions. One of the main features is that these solutions are less intrusive. They require no software 

to be present on the user's computer watching them prepare documents as they are only getting the 

documents when they are to be classified. Figure 12 summarizes each of the approaches. 

 

Approach Input Output Method 

Annotations Documents plus 

annotations 

Grouped documents 

plus list of all 

annotations and link to 

the text 

Analyses the 

annotation in time and 

space. 

Sensitivity Attributes Documents with 

Sensitivity attributes 

Group of documents 

with new sensitivity 

attribute 

Calculates based on 

the sensitivity attribute 

and relationship to 

other groups of 

documents 

Hashed Chunks Documents List of near copies of 

documents 

Finds documents that 

share a certain number 

of hashed chunks 

Word Frequencies Suspicious document 

plus database of 

documents 

Whether document has 

been copied off an 

existing document 

Analyses the word 

frequencies of 

suspicious document 

compared to existing 

documents 

Clustering using 

Wikipedia 

Documents Related groups of 

documents 

Uses entity extraction 

and links entities to 

Wikipedia. Uses 

Wikipedia related 

pages to calculate 

relationships. 

Figure 12: Summary of methods that use static input documents 
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6. Overview of Design   

 

Figure 13: Subgroups of document classification 

After looking at the solutions currently available (groups shown in Figure 13) and communicating with 

Pingar we came to the conclusion that we would use a system that uses only static input documents.  

In collaboration with Pingar we finalised the specifications and structure of the project, see Figure 14. 

We would be using content analysis to compare documents rather than observing document 

interactions like a number of the other methods. The input of the program is an archive of static 

documents that can be in a number of formats and we have no information on a documents history 

other than its last modification and creation dates. Pingar software will initially be used to analyse the 

documents. The Pingar software will extract named entities and also produce a taxonomy from the 

documents. The taxonomy shows the relationships between the extracted entities (e.g. a hierachical 

structure). The software also gives information on which documents an entity occurs in. Named entities 

are phrases that contain the names of persons, organizations and locations [2]. So in our example 

Edmund Hillary is an entity and he is a climber and a climber is an explorer which are also both 

entities. The entities are the objects and the taxonomy gives the semantics or relationships between 

them. The named entities and associated taxonomy will then be fed into the software that I will create 

and the output of the system will the similarities between the input documents. I will consider the 

original text as well as the summarised output from Pingar software. The blue rectangles are software 

and include the Pingar software as well as the software I will create. The green ovals show the output 

from the Pingar software. These outputs are both required to be useful and are then fed into my 

software. The text without colour show the input and output of the entire system. The red rectangle is 

the similarity measure which will be discussed shortly. As we don't have any modification information 
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on the input documents it is difficult to  find relationships between the documents but this will be 

attempted depending on time available. 

 

Figure 14: Overview of the design with Pingar 

7. Similarity Measure 

The next stage of literature review involves analysing existing software to see what similarity measure 

they use to decide how similar 2 documents are. Earlier I was looking at the static approaches to 

compare them to the approaches that monitor user actions. Now I will be looking at the approaches 

more carefully and in particular at the similarity measure they use. This similarity measure will be fed 

into my document classification software to use in the comparisons to other documents. Sebastiani 

states "The dominant approach to document classification is based on machine learning techniques and 

classification is usually done automatically by the learner using one of the available machine learning 

packages" [18]. I'll look at whether machine learning techniques are relevant as well as other methods. 

Each of the approaches in the static input method has a similarity measure and in this section I'm 

considering all of these and also introducing a new hashing technique. I aim to find which similarity 
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measure I should use. I also have to determine what criteria I use to decide whether documents are 

related. Obviously documents should be grouped if they are all talking about Hillary, but are two 

documents related if one is talking about Hillary and one about climbing in general. 

To further illustrate how each comparison works I'm going to refer to 4 very brief sections of text 

which I will treat as separate documents. 

1. Edmund Hillary is a great and well respected New Zealander. 

2. Edmund Hillary is a well respected New Zealander 

3. New Zealander Edmund Hillary is well respected worldwide. 

4. Everest is the world's tallest mountain and is part of the Himalayas.  

 

8. Measurements 

8.1.  Shared Hash Chunks 

The HP method of chunking the document text [14] uses one measure for determining similarity. HP 

find the number of shared hashed chunks that two documents have, Figures 10 and 11. The documents 

are considered similar if the number is higher that a certain threshold percent of the size of the 

document. This will work if two documents have common phrases. An issue is that a hash value will be 

different if even a single symbol changes so the phrases will have to be identical. Two documents could 

be on very similar topics but with no shared phrases so they won't show any similarity. Using the 4 

example texts, it's probable that none will be shown as related as none share common chunks thus they 

will hash differently. Later on I'll introduce hash calculations that allow for a bit of variation. This 

option won't work so well with the named entity input I'm getting from the Pingar software however I 

can use this method on the original text as further evidence that documents are related. The hashing 

method used is a minhash method using only a single hashing algorithm. 

8.2.  Word Frequencies 

The method of text classification proposed by Stanford University introduces another similarity 

measure [15]. Two documents are compared based on their word frequencies. Some complex statistics 

are used to determine the chance that two documents are related based on how similar the word 

frequencies are. A human is required to do a final check on the two documents as the system is known 

to give false positives. This method will show that texts 1, 2 and 3 are related due to their similar word 

frequencies for words like New Zealander, Edmund Hillary and well respected. This method could be 
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taken further to find document versions if word counts for some of the smaller words are considered. 

Texts 1, 2 and 3 have similar word frequencies for smaller words such as "is" and "a" so it can be 

shown that they are versions of each other as well as semantically similar. One issue with this method 

is that it's not using all the information we have available. We are getting a taxonomy and named 

entities as input so we have the semantics/relationships between entities. This word frequencies 

example doesn't use the relationship between words. 

8.3.  Bag of Concepts 

This method was developed by Anna Huang [16], [17]. It finds the key concepts in a document and 

maps each one to a Wikipedia page. She can identify the relationships between concepts with the help 

of Wikipedia which provides related pages. She then uses machine learning algorithms to cluster the 

documents. With our example texts, the first 3 will be mapped to the wikipedia page for Edmund 

Hillary and New Zealand. It will then be shown that the texts are related. This method can be smarter 

than the previous two and determine that "Everest" is related to "Edmund Hillary". With this semantic 

knowledge it can possibly determine that the 4th text is related to the first three as well. 

8.4.  SimHash 

SimHash is a variant on the minhash similarity estimate. Given two sets,  minhash [19] outputs a value 

between 0 and 1 to show the similarity of the two sets, 0 for disjoint sets and 1 being identical sets. In 

our project each set will be a chunk within a document. Simhash is introduced with the formula 

Prh∈F[h(x) = h(y)] = sim(x, y) [20]. F is a family of hash functions and each is applied to each of the 

sets (chunks within documents being compared). Each set will have a number of values from this, one 

for each of the hashing functions. This output is represented by a vector and the vector for 2 sets is 

compared for similarity. This should be more accurate than the minhash as it's using a number of 

different hashing functions however it will be more computationally expensive. This method should be 

able to handle slight variations in sentences and still find them to be related thus showing related 

documents. This method will be better at determining document versions than the minhash method 

used in the shared hash chunks. This method can likely show that the first 2 texts are versions of each 

other as when they are put through a number of different hashing algorithms they will have some 

shared hash values. Texts 1 and 2 are identical except text two has a words "great and" removed. 

Simhash should be able to identify this and decide they are related where minhash probably wouldn't. 
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Similarity Measure Semantic relationship Document versions 
Shared Hash Chunks Only if the texts are identical, not 

so good at finding related 

content. 

Only if texts are identical. Will 

show two texts are versions  of 

each other if they share exact 

phrases 

Word Frequencies Shows relations if similar word 

frequencies. Doesn't consider 

semantics so needs to be same 

terms and not related terms. 

Will show versions if smaller 

words are considered as well as 

main terms. 

Bag of concepts Does well in this area. Will show 

documents are related if contain 

the same named entities or ones 

that are semantically similar. 

Not so good at finding versions.  

Simhash Only if the documents are very 

similar. Not so good at finding 

related content.  

Good at finding versions due to a 

number of hashing functions 

being used.  

Figure 15: Summary of similarity measures 

9. Conclusion 

It is obvious from above that each of the methods that uses static document input has an associated 

similarity measure. It is not as important for the implementations that observe the user interacting with 

documents as they are aware of the actions and can easily decide on groupings.  With consultation with 

Pingar we have decided what we should aim for with the project. The first stage is to find documents 

that are semantically similar. This means documents on similar topics. We will also attempt to find 

documents that are related in terms of version. This last part will be difficult and we may run out of 

time. 

 Combining more than one of the similarity measures would be the best way to achieve both of these 

goals. I plan on using a form of entity frequency method that uses the output from the Pingar software 

to find related documents. I will follow this with a simhash algorithm on the original text to find 

versions of the same document. The specifics for on the hashing algorithm will be covered in the future 

research report.  
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