
A Tale of Two Studies

Judy Bowen1 Steve Reeves 2 Andrea Schweer 3

(1,2) Department of Computer Science
The University of Waikato,

Hamilton, New Zealand
Email: jbowen@cs.waikato.ac.nz, stever@cs.waikato.ac.nz

3 ITS Information Systems
The University of Waikato,

Hamilton, New Zealand
Email: schweer@waikato.ac.nz

Abstract

Running user evaluation studies is a useful way of get-
ting feedback on partially or fully implemented soft-
ware systems. Unlike hypothesis-based testing (where
specific design decisions can be tested or compar-
isons made between design choices) the aim is to find
as many problems (both usability and functional) as
possible prior to implementation or release. It is par-
ticularly useful in small-scale development projects
that may lack the resources and expertise for other
types of usability testing. Developing a user-study
that successfully and efficiently performs this task is
not always straightforward however. It may not be
obvious how to decide what the participants should
be asked to do in order to explore as many parts of
the system’s interface as possible. In addition, ad hoc
approaches to such study development may mean the
testing is not easily repeatable on subsequent imple-
mentations or updates, and also that particular areas
of the software may not be evaluated at all. In this
paper we describe two (very different) approaches to
designing an evaluation study for the same piece of
software and discuss both the approaches taken, the
differing results found and our comments on both of
these.

Keywords: Usability studies, evaluation, UI Design,
formal models

1 Introduction

There have been many investigations into the effec-
tiveness of different types of usability testing and eval-
uation techniques, see for example (Nielsen & Lan-
dauer 1993) and (Doubleday et al. 1997) as well as
research into the most effective ways of running the
various types of studies (numbers of participants, ex-
pertise of testers, time and cost considerations etc.)
(Nielsen 1994), (Lewis 2006). Our interest, however,
is in a particular type of usability study, that of user
evaluations. We are interested in how such studies are
developed, e.g. what is the basis for the activities per-
formed by the participants? In particular, given an
implementation (or partial implementation) to test,
is there a difference between the sort of study the de-
veloper of the system under test might produce and

Copyright c©2013, Australian Computer Society, Inc. This pa-
per appeared at the Fourteenth Australasian User Interface
Conference (AUIC 2013), Adelaide, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. , Ross T. Smith and Burkhard Wuensche, Ed. Reproduc-
tion for academic, not-for-profit purposes permitted provided
this text is included.

that of an impartial person, and if so do they produce
different results? It is well known by the software en-
gineering community that functional and behavioural
testing is best performed by someone other than the
software’s developer. Often this can be achieved be-
cause there is a structured mechanism in place for
devising tests, for example using model-based testing
(Utting & Legeard 2006) or by having initial speci-
fications that can be understood by experienced test
developers (Bowen & Hinchey 1995), or at least by
writing the tests before any code is written (as in
test-driven or test-first development (Beck 2003)).

For user evaluation of software, and in particular
the user interface of software, we do not have the sort
of structured mechanisms for developing evaluation
studies (or models upon which to base them) as we do
for functional testing. Developing such studies relies
on having a good enough knowledge of the software to
devise user tasks that will effectively test the software,
which for smaller scale development often means the
software’s developer. Given that we know it is not a
good idea for functional testing to be carried out by
the software’s developer we suggest it may also be true
that running, and more importantly, developing, user
evaluations should not be done by the developer for
the same reasons. This then presents the problem of
how someone other than the software’s developer can
plan such a study without the (necessary) knowledge
about the system they are testing.

In this paper we present an investigation into the
differences between two evaluation studies developed
using different approaches. The first was developed
in the ‘usual way’ (which we discuss and define fur-
ther in the body of the paper) by the developer of
the software-under-test. The second was developed
based on formal models of the software-under-test and
its user interface (UI) by an independent practitioner
with very little knowledge of the software-under-test
prior to the modelling stage. We discuss the different
outcomes of the two studies and share observations on
differences and similarities between the studies and
the results.

We begin by describing the software used as the
basis for both evaluation studies. We then describe
the process of deriving and running the first study
along with the results. This is followed by a descrip-
tion of the basis and process of deriving the second
study as well as the results of this. We then present a
comparison of the two studies and their results, and
finish with our conclusions.

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

81

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29202129?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Graph Version of the Digital Parrot

Figure 2: List Version of the Digital Parrot

2 The Digital Parrot Software

The Digital Parrot (Schweer & Hinze 2007), (Schweer
et al. 2009) is a software system intended to aug-
ment its user’s memory of events of their own life. It
has been developed as a research prototype to study

how people go about recalling memories from an aug-
mented memory system.

The Digital Parrot is a repository of memories.
Memories are encoded as subject–predicate–object
triples and are displayed in the system’s main view
in one of two ways: a graph view and a list view,

CRPIT Volume 139 - User Interfaces 2013

82

shown in Figures 1 and 2. Both views visualise the
triple structure of the underlying memory information
and let the user navigate along connections between
memory items. The type of main view is chosen on
program start-up and cannot be modified while the
program is running.

The user interface includes four different naviga-
tors that can influence the information shown in the
main view either by highlighting certain information
items or by hiding certain information items. These
navigators are the timeline navigator (for temporal
navigation; shown in Figure 4), the map navigator
(for navigation based on geospatial location), textual
search and the trail navigator (for navigation based
on information items’ types and connections; shown
in Figure 3).

Figure 3: Trail Navigator

3 The First Study

At the time of the first study, the first development
phase had ended and the Digital Parrot was feature-
complete. Before using the software in a long-term
user study (not described in this paper), we wanted
to conduct a user evaluation of the software. Insights
gained from the usability study would be used to form
recommendations for changing parts of the Digital
Parrot’s user interface in a second development phase.

3.1 Goals

The first study had two main goals. The first was to
detect any serious usability flaws in the Digital Par-
rot’s user interface before using it in a long-term user
study. We wanted to test how well the software could
be used by novice users given minimal instructions.
This mode of operation is not the typical mode for a
system such as the Digital Parrot but was chosen to
cut down on the time required by the participants as
it removed the need to include a training period.

The second goal was to find out whether the par-
ticipants would understand the visualisations and the
purpose of the four different navigators.

3.2 Planning the Study

The study was run as a between-groups design, with
half the participants assigned to each main view type
(graph vs list view). We designed the study as a task-
based study so that it would be easier to compare
findings between participants. We chose a set of four
tasks that we thought would cover all of the Digital
Parrot’s essential functionality. These tasks are as
follows:

1. To whom did [the researcher] talk about scuba
diving? Write their name(s) into the space be-
low.

2. Which conferences did [the researcher] attend in
Auckland? Write the conference name(s) into
the space below.

3. At which conference(s) did [the researcher] speak
to someone about Python during the poster ses-
sion? Write the conference name(s) into the
space below.

4. In which place was the NZ CHI conference in
2007? Write the place name into the space below.

The tasks were chosen in such a way that most
participants would not be able to guess an answer.
We chose tasks that were not too straightforward to
solve; we expected that a combination of at least two
of the Digital Parrot’s navigators would have to be
used for each task. Since the Digital Parrot is in-
tended to help users remember events of their own
lives, all tasks were phrased as questions about the
researcher’s experiences recorded in the system. The
questions mimic questions that one may plausibly find
oneself trying to answer about one’s own past.

To cut down on time required by the participants,
we split the participants into two groups of equal size.
Each group’s participants were exposed to only one
of the two main view types. Tasks were the same for
participants in both groups.

In addition to the tasks, the study included an
established usability metric, the Systems Usability
Scale (SUS) (Brooke 1996). We modified the ques-
tions according to the suggestions by Bangor et
al. (Bangor et al. 2009). We further changed the ques-
tions by replacing “the system” with “the Digital Par-
rot”. The intention behind including this metric was
to get an indication of the severity of any discovered
usability issues.

3.3 Participants and Procedure

The study had ten participants. All participants were
members of the Computer Science Department at the
University of Waikato; six were PhD students and
four were members of academic staff. Two partici-
pants were female, eight were male. The ages ranged
from 24 to 53 years (median 38, IQR 15 years). Par-
ticipants were recruited via e-mails sent to depart-
mental mailing lists and via personal contacts. Par-
ticipants were not paid or otherwise rewarded for tak-
ing part in the usability test.

In keeping with University regulations on perform-
ing studies with human participants, ethical consent
to run the study was applied for, and gained. Each
participant in the study would receive a copy of their
rights as a participant (including their right to with-
draw from the study) and sign a consent form.

After the researcher obtained the participant’s
consent, they were provided with a workbook. The
workbook gave a quick introduction to the purpose of
the usability test and a brief overview of the system’s
features. Once the participant had read the first page,
the researcher started the Digital Parrot and briefly
demonstrated the four navigators (see Section 2). The
participant was then asked to use the Digital Parrot
to perform the four tasks stated in the workbook.

Each participant was asked to think aloud while
using the system. The researcher took notes. After
the tasks were completed, the participant was asked
to fill in the SUS questionnaire about their experience
with the Digital Parrot and to answer some questions
about their background. The researcher would then
ask a few questions to follow up on observations made
while the participant was working on the tasks.

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

83

Figure 4: Timeline Navigator

3.4 Expectations

We did not have any particular expectations related
to the first goal of this study, that of detecting poten-
tial usability problems within the Digital Parrot.

We did, however, have some expectations related
to the second goal. The study was designed and con-
ducted by the main researcher of the Digital Par-
rot project, who is also the main software developer.
Thus, the study was designed and conducted by some-
one intimately familiar with the Digital Parrot’s user
interface, with all underlying concepts and also with
the test data. For each of the tasks, we were aware of
at least one way to solve the task with one or more
of the Digital Parrot’s navigators. We expected that
the participants in the study would discover at least
one of these ways and use it to complete the task
successfully.

3.5 Results

The median SUS score of the Digital Parrot as de-
termined in the usability test is 65 (min = 30, max
= 92.5, IQR = 35), below the cut-off point for an ac-
ceptable SUS score (which is 70). The overall score of
65 corresponds to a rating between “ok” and “good”
on Bangor et al.’s adjective scale (Bangor et al. 2009).
The median SUS score in the graph condition alone is
80 (min = 42.5, max = 92.5, IQR = 40), which indi-
cates an acceptable user experience and corresponds
to a rating between “good” and “excellent” on the
adjective scale. The median SUS score in the list con-
dition is 57.5 (min = 30, max = 77.5, IQR = 42.5).
The difference in SUS score is not statistically signif-
icant but does reflect our observations that the users
in the list condition found the system harder to use
than those in the graph condition.

Based on our observations of the participants
in this study, we identified nine major issues with
the Digital Parrot’s user interface as well as several
smaller problems. In terms of our goals for the study
we found that there were usability issues, some we
would consider major, which would need to be ad-
dressed before conducting a long-term user study. In
addition there were some issues with the use of navi-
gators. The details of our findings are as follows:

1. Graph: The initial view is too cluttered.
2. Graph: The nature of relationships is invisible.
3. List: The statement structure does not become

clear.
4. List: Text search does not appear to do anything.
5. Having navigators in separate windows is confus-

ing.
6. The map is not very useful.
7. Users miss a list of search results.
8. The search options could be improved.
9. The trail navigator is too hard to use.

Some of these issues had obvious solutions based on
our observations during the study and on partici-
pants’ comments. Other issues, however, were less
easily resolved.

We formulated seven recommendations to change
the Digital Parrot’s user interface:

1. Improve the trail navigator’s user interface.
2. Improve the map navigator and switch to a dif-

ferent map provider.
3. De-clutter the initial graph view.
4. Enable edge labels on demand.

CRPIT Volume 139 - User Interfaces 2013

84

5. Highlight statement structure more strongly in
list.

6. Change window options for navigators.
7. Improve the search navigator.

As can be seen, these recommendations vary greatly
in scope; some directly propose a solution while others
require further work to be done to find a solution.

4 The Second Study

4.1 Goals

The goals of our second study were to emulate the
intentions of the first, that is try to find any usability
or functional problems with the current version of the
Digital Parrot software. In addition, the intention
was to develop the study with no prior knowledge of
the software or of the first study (up to the point
where we could no longer proceed without some of
this information) by using abstract tests derived from
formal models of the software and its user interface
(UI) as the basis for planning the tasks of the study.
We were interested to discover if such abstract tests
could be used to derive an evaluation study in this
way, and if so how would the results differ from those
of the initial study (if at all).

4.2 Planning the Study

The first step was to obtain a copy of the Digital
Parrot software and reverse-engineer it into UI mod-
els and a system specification. In general, our as-
sumption is that such models are developed during
the design phase and prior to implementation rather
than by reverse-engineering existing systems. That
is, a user-centred design (UCD) approach is taken to
plan and develop the UI prior to implementation and
these are used as the basis for the models. For the
purposes of this work, however, the software had been
implemented already and as such a specification and
designs did not exist, hence the requirement to per-
form reverse-engineering. This was done manually,
although tools for reverse-engineering software in this
manner do exist (for example GUI Ripper[9]), but not
for the models we planned to use.

We spent several days interacting with the soft-
ware and examining screen shots in order to begin to
understand how it worked. We wanted to produce
as much of the model as possible before consulting
with the software designer to ‘fill in the gaps’ where
our understanding was incomplete. Of course, such
a detailed examination of the software was itself a
form of evaluation, as by interacting with the software
comprehensively enough to gain the understanding
required for modelling, we formed our own opinions
about how usable, or how complex, parts of the sys-
tem were. However, in general where models and tests
are derived prior to implementation this would not
be the case. The first study had already taken place
but the only information we required about this study
was the number and type of participants used (so that
we could use participants from the same demographic
group) and the fact that the study was conducted as
a between-groups study with both graph and list ver-
sions of the software being tested. We had no precon-
ceived ideas of how our study might be structured at
this point, the idea being that once the models were
completed and the abstract tests derived we would
try and find some structured way of using these to
guide the development of our study.

Figure 5: Find Dialogue

4.3 The Models

We began the modelling process by examining screen-
shots of the Digital Parrot. This enabled us to iden-
tify the widgets used in the various windows and dia-
logues of the system that provided the outline for the
first set of models. We used presentation models and
presentation interaction models (PIMs) from the work
described in (Bowen & Reeves 2008) as they provide a
way of formally describing UI designs and UIs with a
defined process for generating abstract tests from the
models (Bowen & Reeves 2009). Presentation models
describe each dialogue or window of a software system
in terms of its component widgets, and each widget
is described as a tuple consisting of a name, a widget
category and a set of the behaviours exhibited by that
widget. Behaviours are separated into S-behaviours,
which relate to system functionality (i.e. behaviours
that change the state of the underlying system) and
I-behaviours that relate to interface functionality (i.e.
behaviours relating to navigation or appearance of the
UI).

Once we had discovered the structure of the UI
and created the initial model we then spent time using
the software and discovering what each of the identi-
fied widgets did in order to identify the behaviours to
add to the model. For some parts of the system this
was relatively easy, but occasionally we were unable
to determine the behaviour by interaction alone. For
example, the screenshot in figure 5 shows the “Find”
dialogue from the Digital Parrot, from which we de-
veloped the following presentation model:

FindWindow is
(SStringEntry, Entry, ())
(HighlightButton, ActionControl,

(S_HighlightItem))
(FMinIcon, ActionControl, (I_FMinToggle))
(FMaxIcon, ActionControl, (I_FMaxToggle))
(FXIcon, ActionControl, (I_Main))
(HSCKey, ActionControl, (S_HighlightItem))
(TSCKey, ActionControl, (?))

We were unable to determine what the behaviour of
the shortcut key option Alt-T was and so marked
the model with a “?” as a placeholder. Once the
presentation models were complete we moved on to
the second set of models, the PIMs, which describe
the navigation of the interface. Each presentation
model is represented by a state in the PIM and tran-
sitions between states are labelled with I-behaviours
(the UI navigational behaviours) from those presen-
tation models. PIMs are described using the µCharts
language (Reeve 2005), which enables each part of
the system to be modelled within a single, sequential
µchart that can then be composed together or embed-
ded in states of other models to build the complete
model of the entire system. Figure 6 shows one of
the PIMs representing part of the navigation of the
“Find” dialogue and “Main” window.

In the simplest case, a system with five different
windows would be described by a PIM with five states
(each state representing the presentation model for
one of the windows). However, this assumes that each
of the windows is modal and does not interact with

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

85

MainFind

MainandFind

MainandMinFind
I_FMinToggle

I_MainMinToggle

I_MainMinToggle
I_FMinToggle

I_MainMaxToggle

MinMainandFind

I_FMaxToggle

I_FMaxToggle

I_MainMaxtToggle

MinMainandMinFind

Figure 6: PIM for Main and Find Navigation

any of the other windows. In the Digital Parrot sys-
tem none of the dialogues are modal, in addition each
of the windows can be minimised but continues to in-
teract with other parts of the system while in its min-
imised state. This led to a complex PIM consisting
of over 100 states. The complexity of the model and
of the modelling process (which at times proved both
challenging and confusing) gave us some indication
of how users of the system might be similarly con-
fused when interacting with the system in its many
various states. Even before we derived the abstract
tests, therefore, we began to consider areas of the sys-
tem we would wish to include in our evaluation study
(namely how the different windows interact).

The third stage of the modelling was to produce a
formal specification of the functionality of the Digital
Parrot. This was done using the Z specification
language (ISO 2002) and again we completed as
much of the specification as was possible but left
some areas incomplete where we were not confident
we completely understood all of the system’s be-
haviour. The Z specification consists of a description
of the state of the system (which describes the data
for the memory items stored in the system as sets
of observations on that data) and operations that
change that state. For example the “SelectItems”
operation is described in the specification as:

SelectItems
∆DPSystem
i? : Item
li? : Item

AllItems ′ = AllItems
SelectedItems ′ = SelectedItems ∪ {li?} ∪ {i?}
li?.itemName = (i?.itemLink)
VisibleItems ′ = VisibleItems
HiddenItems ′ = HiddenItems
TrailItems ′ = TrailItems

The meaning of this is that the operation consists of
observations on the DPSystem state before and after
the operation takes place (denoted by ∆DPSystem)
and there are two inputs to the operation li? and
i?, which are both of type Item. After the operation
has occurred some observations are unchanged. Ob-
servations marked with ′ indicate they are after the
operation, so, for example AllItems′ = AllItems in-
dicates this observation has not changed as a result
of the operation. The SelectedItems observation does
change however, and after the operation this set is
increased to include the inputs li? and i?, which rep-
resent the new items selected.

Once we had completed as much of the modelling

as was possible we met with the software’s developer
to firstly ensure that the behaviour we had described
was correct, and secondly to fill in the gaps in the ar-
eas where the models were incomplete. With a com-
plete set of models and a complete specification we
were then able to relate the UI behaviour to the spec-
ified functionality by creating a relation between the
S-behaviours of the presentation models (which relate
to functionality of the system) and the operations of
the specification. This gives a formal description of
the S-behaviours by showing which operations of the
specification they relate to, and the specification then
gives the meaning. Similarly, the meaning of the I-
behaviours is given by the PIM. The relation, which
we call the presentation model relation (PMR), we
derived is shown below:

S HighlightItems 7→ SelectItems
S PointerMode 7→ TogglePointerMode
S CurrentTrail 7→ SelectCurrentTrailItems
S SelectItemMenu 7→ MenuChoice
S ZoomInTL 7→ TimelineZoomInSubset
S ZoomOutTL 7→ TimelineZoomOutSuperset
S SelectItemsByTime 7→ SelectItemsByTime
S FitSelectionByTime 7→ FitItemsByTime
S HighlightItem 7→ SelectByName
S AddToTrail 7→ AddToTrail
S ZoomInMap 7→ RestrictByLocation
S ZoomOutMap 7→ RestrictByLocation
S Histogram 7→ UpdateHistogram

This completed the modelling stage and we were now
ready to move on to derivation of the abstract tests
that we describe next.

4.4 The Abstract Tests

Abstract tests are based on the conditions that are re-
quired to hold in order to bring about the behaviour
given in the models. The tool which we use for creat-
ing the presentation models and PIMs, called PIMed
(PIMed 2009) has the ability to automatically gener-
ate a set of abstract tests from the models, but for this
work we derived them manually using the process de-
scribed in (Bowen & Reeves 2009). Tests are given
in first-order logic. The informal, intended mean-
ing of the predicates can initially be deduced from
their names, and are subsequently formalised when
the tests are instantiated. For example, two of the
tests that were derived from the presentation model
and PIM of the “Find” dialogue and “MainandFind”
are:

State(MainFind) ⇒
Visible(FXIcon) ∧ Active(FXIcon) ∧
hasBehaviour(FXIcon, I Main)

State(MainFind) ⇒
Visible(HighlightButton) ∧
Active(HighlightButton) ∧
hasBehaviour(HighlightButton,S HighlightItem)

The first defines the condition that when the sys-
tem is in the MainFind state a widget called FXIcon
should be visible and available for interaction (ac-
tive) and when interacted with should generate the
interaction behaviour called I Main, whilst the sec-
ond requires that in the same state a widget called
HighlightButton is similarly visible and available
for interaction and generates the system behaviour
S HighlightItem. When we come to instantiate the

CRPIT Volume 139 - User Interfaces 2013

86

test we use the PIM to determine the meaning of the
I-behaviours and the Z specification (via the PMR)
to determine the meaning of the S-behaviours. The
set of tests also includes conditions describing what
it means for the UI to be in any named state so that
this can similarly be tested. The full details of this
are given in (Bowen & Reeves 2009) and are beyond
the scope of this paper. Similar tests are described
for each of the widgets of the models, i.e. for every
widget in the model there is at least one correspond-
ing test. The abstract tests consider both the required
functionality within the UI (S-behaviour tests) as well
as the navigational possibilities (I-behaviour tests).
As there are two different versions of the Digital Par-
rot software, one that has a graph view for the data
and the other a list view, there were two slightly dif-
ferent sets of models. However, there was very little
difference between the two models (as both versions
of the software have almost identical functionality);
there were in fact three behaviours found only in the
list version of the software (all of which relate to the
UI rather than underlying functionality) and one UI
behaviour found only in the graph version. This gave
rise to four abstract tests that were unique to the
respective versions.

4.5 Deriving The Study

With the modelling complete and a full set of abstract
tests, we now began to consider how we could use
these to derive an evaluation study. To structure the
study we first determined that all S-behaviours should
be tested by way of a specific task (to ensure that the
functional behaviour could be accessed successfully by
users). The relation we showed at the end of section
4.3 lists thirteen separate S-behaviours. For each of
these we created an outline of a user task, for example
from the test:

State(MainFind) ⇒
Visible(HighlightButton)
∧ Active(HighlightButton) ∧
hasBehaviour(HighlightButton,S HighlightItem)

we decided that there would be a user task in the
study that would require interaction with the “Find”
dialogue to utilise the S HighlightItem behaviour. To
determine what this behaviour is we refer to the re-
lation between specification and S-behaviours, so in
this case we are interested in the Z operation Select-
ByName. We generalised this to the task:

Use the “Find” dialogue to highlight a spec-
ified item.

Once we had defined all of our tasks we made these
more specific by specifying actual data items. In order
to try and replicate conditions of the first study we
used (where possible) the same examples. The “Find”
task, for example, became the following in our study:

Use the “Find” functionality to discover
which items are connected to the item called
“Scuba Diving”

In order to complete this task the user will interact
with the “Find” dialogue and use the S HighlightItem
behaviour that relates to the functionality in the sys-
tem, SelectByName, which subsequently highlights
the item given in the “Find” text field as well as all
items connected to it.

Once tasks had been defined for all of the
S-behaviours we turned our attention to the I-
behaviours. It would not be possible to check all nav-
igational possibilities due to the size of the state space

for the models of this system (and this may be true
for many systems under test) as this would make the
study too long. What we aimed to do instead was
maximize the coverage of the PIM by following as
many of the I-behaviour transitions as possible and
so we ordered the S-behaviour tasks in such a way
as to maximise this navigation. Having the PIM as
a visualisation and formalisation of the navigational
possibilities enables us to clearly identify exactly how
much we are testing. We also wanted to ensure that
the areas of concern we had identified as we built the
models were tested by the users. As such, we added
tasks that relied on the interaction of functions from
multiple windows. For example we had a task in our
study:

What are the items linked to the trail “NZ
CS Research Student Conferences” which
took place in the North Island of New
Zealand?

that required interaction with the Trail window and
the Map window at the same time.

Our final study consisted of eighteen tasks for the
graph version of the software and seventeen for the
list version (the additional task relating to one of the
functions specific to the graph version). After each
task we asked the user to rate the ease with with
they were able to complete the task and provided the
opportunity for them to give any comments they had
about the task if they wished. Finally we created a
post-task questionnaire for the participants that was
aimed at recording their subjective feelings about the
tasks, software and study.

4.6 Participants and Procedure

As with the first study, ethical consent to run the sec-
ond study was sought, and given. We recruited our
participants from the same target group, and in the
same way, as for the initial study with the added cri-
terion that no one who had participated in the initial
study would be eligible to participate in the second.

We used a “between groups” methodology with
the ten participants being randomly assigned either
the Graph view version of the software or the List
view. The study was run as an observational study
with notes being taken of how participants com-
pleted, or attempted to complete, each task. We also
recorded how easily we perceived they completed the
tasks and subsequently compared this with the par-
ticipants’ perceptions. Upon completion of the tasks
the participants were asked to complete the question-
naire and provide any other feedback they had re-
garding any aspect of the study. Each study took, on
average, an hour to complete.

4.7 Results

The second study found five functionality bugs and
twenty seven usability issues. The bugs found were:

1. Continued use of “Zoom in” on map beyond max-
imum ability causes a graphics error.

2. The shortcut keys ‘i’ and ‘o’ for “Zoom in” and
“Zoom out” on Map don’t work.

3. Timeline loses capability to display 2009 data
once it has been interacted with.

4. Data items visualised in timeline move around
between months.

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

87

5. Labels on the Map sometimes move around and
sit on top of each other during zoom and move
operations.

We had identified two of the functionality bugs dur-
ing the modelling stage (the loss of 2009 data and
the non-functional shortcut keys on the map) and in
a traditional development/testing scenario we would
expect that we would report (and fix) these prior to
the evaluation. The usability issues ranged from mi-
nor items to major issues. An example of a minor
issue was identifying that the widget used to toggle
the mouse mode in the graph view is very small and
in an unusual location (away from all other widgets)
and is easily overlooked. We consider this minor be-
cause once a user knows the widget is there it is no
longer a problem. An example of a major issue was
the lack of feedback from the “Find” function that
meant it was impossible to tell whether or not it had
returned any results in many cases.

We made 27 recommendations for changes to the
software. Some of these were specific changes that
could be made to directly fix usability issues found,
such as the recommendation:

“Inform users if “Find” returns no results.”

Whereas others were more general and would require
further consideration, for example the recommenda-
tion:

“Reconsider the use of separate dialogues for
features to reduce navigational and cognitive
workload.”

Other observations led us to comment on particular
areas of the software and interface without directly
making recommendations on how these might be ad-
dressed. For example, we observed that most partic-
ipants had difficulty understanding conceptually how
“Trails” worked and what their meaning was. This
led to difficulties with tasks involving “Trails” but
also meant that participants used “Trails” when not
required to do so as they found it had a particular
effect on the data that they did not fully understand,
but that enabled them to visualise information more
easily. This is related to the fact that the amount of
data and the way it is displayed and the use of high-
lighting were all problematic for some of the tasks.

We also determined from our comparison of the
measure of ease with which tasks were completed
against the participants’ perception that for many
participants even when they successfully completed
a task they were not confident that they had done
so. For example we would record that a participant
completed a task fairly easily as they took the min-
imum number of steps required and were successful,
but the participant would record that they completed
the task with difficulty. This was also evident from
the behaviour of participants as they would often dou-
ble check their result to be certain it was correct. This
is linked to the overall lack of feedback and lack of vis-
ibility that was reported as part of our findings.

From the results of the second study we were con-
fident that the study produced from the formal mod-
els was able to find both specific problems (such as
functionality bugs) and usability problems, as well as
identify general overall problems such as lack of user
confidence.

5 Comparing The Two Studies

There was an obvious difference in the tasks of the
two studies. In the first study users were given four

tasks requiring several steps and were able to try
and achieve this in any way they saw fit, whereas
in the second study they were given twenty seven
tasks which were defined very specifically. This meant
that the way in which participants interacted with the
software whilst carrying out these tasks was very dif-
ferent. In the first study users were encouraged to
interact with the software in the way that seemed
most natural to them in order to complete the tasks,
whereas in the second study they were given much
clearer constraints on how they should carry out a
particular task (for example: “Use the “Find” func-
tion to....”) to ensure they interacted with specific
parts of the system. While this meant that cover-
age of functionality and navigation was more tightly
controlled in the second study (which is beneficial in
ensuring as many problems and issues as possible are
found) it also meant that it did not provide a clear
picture of how users would actually interact with the
software outside of the study environment and as such
led to the reporting of problems that were in fact non-
issues (such as the difficulties users had in interpret-
ing the amount of data for a time period from the
histogram).

One of the problems with the tasks of the initial
study, however, was that by allowing users to interact
in any way they chose particular parts of the system
were hardly interacted with at all, which meant that
several issues relating to the “Timeline” that were
discovered during the second study were not evident
in the first study due to the lack of interaction with
this functionality.

The other effect of the way the tasks were struc-
tured was the subjective satisfaction measurements of
the participants. The participants of the first study
were more positive about their experience using the
software than those of the second study. We feel that
this is partly due their interactions and the fact that
the first group had a better understanding of the soft-
ware and how it might be used in a real setting than
the second group did. However, there is also the pos-
sibility that the participants of the first study mod-
erated their opinions because they knew that the re-
searcher conducting the study was also the developer
of the software (which is one of the concerns we were
hoping to address with our work).

6 Reflections on Process and Outcomes

One of the things we have achieved by this experi-
ment is an understanding of how formal models might
be used to develop a framework for developing user
evaluations. This work shows that a study produced
in such a way is as good (and in some cases better)
at discovering both usability and functional problems
with software. It is also clear, however, that the type
of study produced does not allow for analysis of util-
ity and learnability from the perspective of a user
encouraged to interact as they choose with software.

Some of the advantages of this approach are: the
ability to clearly identify the scope of the study
with respect to the navigational possibilities of the
software-under-test (via the PIM); a framework to
identify relevant user tasks (via the abstract tests);
a mechanism to support creation of oracles for in-
puts/outputs to tasks (via the specification). This
supports our initial goal of supporting development
of evaluation studies by someone other than the soft-
ware developer as it provides structured information
to support this. However, it also leads to an artificial
approach to interacting with the software and does
not take into account the ability of participants to

CRPIT Volume 139 - User Interfaces 2013

88

learn through exploration and as such may discover
usability issues which are unlikely to occur in a real-
world use of the software as well as decrease subjective
satisfaction of participants with the software.

7 Conclusion

It seems clear that there is no ‘one size fits all’ ap-
proach to developing evaluation studies, as the un-
derlying goals and intentions must play a part in how
the tasks are structured. However, it does appear
that the use of formal models in the ways shown here
can provide a structure for determining what those
tasks should be and suggests ways of organising them
to maximise interaction. Perhaps using both methods
(traditional and formally based) is the best way for-
ward. Certainly there are benefits to be found from
taking the formal approach, and for developers with
no expertise in developing evaluation studies this pro-
cess may prove supportive and help them by provid-
ing a framework to work within. Similarly for formal
practitioners who might otherwise consider usability
testing and evaluation as too informal to be useful the
formal structure might persuade them to reconsider
and include this important step within their work.
The benefits of a more traditional approach are the
ability to tailor the study for discovery as well as eval-
uation, something the formally devised study in its
current form was not good at at all. Blending the
two would be a valuable way forward so that we can
use the formal models as a framework to devise struc-
tured and repeatable evaluations, and then extend
or develop the study with a more human-centred ap-
proach that allows for the other benefits of evaluation
that would otherwise be lost.

8 Future Work

We would like to take the joint approach described
to develop a larger study. This would enable us to
see how effective combining the methods might be,
how well the approach scales up to larger software
systems and studies, and where the difficulties lie in
working in this manner. We have also been looking at
reverse-engineering techniques and tools which could
assist when working with existing or legacy systems
and this work is ongoing.

9 Acknowledgments

Thanks to all participants of both studies.

References

Bangor, A., Kortum, P. & Miller, J. (2009), ‘Deter-
mining what individual SUS scores mean: Adding
an adjective rating scale’, Journal of Usability Stud-
ies 4(3), 114–123.

Beck, K. (2003), Test-Driven Development: By
Example, The Addison-Wesley Signature Series,
Addison-Wesley.

Bowen, J. & Reeves, S. (2008), ‘Formal models for
user interface design artefacts’, Innovations in Sys-
tems and Software Engineering 4(2), 125–141.

Bowen, J. & Reeves, S. (2009), Ui-design driven
model-based testing, in ‘M. Harrison and M.
Massink (eds.) Proceedings of 3rd International

Workshop on Formal Methods for Interactive Sys-
tems (FMIS’09)’, Electronic Communications of
the EASST, 22.

Bowen, J. P. & Hinchey, M. G., eds (1995), Improving
Software Tests Using Z Specifications, Vol. 967 of
Lecture Notes in Computer Science, Springer.

Brooke, J. (1996), SUS: A “quick and dirty” usability
scale, in P. W. Jordan, B. Thomas, I. L. McClelland
& B. A. Weerdmeester, eds, ‘Usability evaluation in
industry’, CRC Press, chapter 21, pp. 189–194.

Doubleday, A., Ryan, M., Springett, M. & Sutcliffe,
A. (1997), A comparison of usability techniques for
evaluating design, in ‘DIS ’97: Proceedings of the
2nd conference on Designing interactive systems’,
ACM, New York, NY, USA, pp. 101–110.

ISO (2002), ISO/IEC 13568— Information
Technology—Z Formal Specification Notation—
Syntax, Type System and Semantics, Prentice-Hall
International series in computer science, first edn,
ISO/IEC.

Lewis, J. R. (2006), ‘Sample sizes for usability tests:
mostly math, not magic’, interactions 13(6), 29–33.

Nielsen, J. (1994), Usability Engineering, Morgan
Kaufmann Publishers, San Francisco, California.

Nielsen, J. & Landauer, T. K. (1993), A mathemat-
ical model of the finding of usability problems, in
‘CHI ’93: Proceedings of the INTERACT ’93 and
CHI ’93 conference on Human factors in computing
systems’, ACM, New York, NY, USA, pp. 206–213.

PIMed (2009). PIMed : An editor for presentation
models and presentation interaction models,
http://sourceforge.net/projects/pims1/
?source=directory.

Reeve, G. (2005), A Refinement Theory for µCharts,
PhD thesis, The University of Waikato.

Schweer, A. & Hinze, A. (2007), The Digital Par-
rot: Combining context-awareness and semantics
to augment memory, in ‘Proceedings of the Work-
shop on Supporting Human Memory with Interac-
tive Systems (MeMos 2007) at the 2007 British HCI
International Conference’.

Schweer, A., Hinze, A. & Jones, S. (2009), Trails
of experiences: Navigating personal memories, in
‘CHINZ ’09: Proceedings of the 10th International
Conference NZ Chapter of the ACM’s Special Inter-
est Group on Human-Computer Interaction’, ACM,
New York, NY, USA, pp. 105–106.

Utting, M. & Legeard, B. (2006), Practical Model-
Based Testing - A tools approach, Morgan and
Kaufmann.

Proceedings of the Fourteenth Australasian User Interface Conference (AUIC2013), Adelaide, Australia

89

CRPIT Volume 139 - User Interfaces 2013

90

