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Abstract—We have measured the energy cost of processing,
sleeping, non-volatile memory writes and ADC measurements
of six 8-bit microprocessors from three manufacturers. These
measurements compare the chips directly to one another and
reveal ideal operating points which can be used to reduce energy
consumption.

I. INTRODUCTION

Moving to a new family of microprocessor (MCU) can
be a daunting task for an electronic engineer. Making com-
parisons between families of processors is difficult because
of the differences in architecture and the types of available
data. Therefore most engineers tend to favour one family of
processor simply because it’s what they know or understand.
We aim to compare a small set of 8-bit microprocessors
based on energy consumption and computational efficiency.
The MCUs that will be investigated are shown in Table I.
This investigation has been carried out in order to estimate the

Microchip
PIC12F675
PIC16F688
PIC16F1827

Atmel ATtiny13V
ATtiny25V

Freescale MC9S08QG8

TABLE I
MANUFACTURERS AND MODELS OF COMPARED MCUS.

energy requirements of a low power digital water meter with
a wireless transmitter to determine the viability of harvesting
energy from a domestic water supply. The authors have
investigated operational aspects that are deemed relevant for
water consumption metering such as processing, analog-to-
digital converter (ADC) measurements, non-volatile memory
writes and sleeping. Access to an Agilent E5270B Precision
Measurement Mainframe provided current measurements with
a 1 fA resolution and the ability to sweep voltages while
providing accurate voltage output.

II. MEASUREMENTS

All measurements, except sleep current, were carried out
on bread-boards using dual in-line packaged MCUs. Sleep
currents were measured with chips placed in a chip carrier to
allow for easy washing and drying in isopropyl alcohol before

measurements were made. During measurements each MCUs
had its pins configured as digital outputs, outputting high, and
tied to Vdd via 10 kΩ external resistors. Microchips placed on
breadboards were decoupled with 47nF capacitors. Programs
where written in C and built using compilers supplied with
each of the development kits (Microchip’s MPLAB, Atmel’s
AVRStudio 4 and Freescale’s CodeWarrior).

A. Processing

Measuring or predicting the amount of energy required to
process information is complex. The operations each chip
carries out internally can be different from one another yet
produce the same result. The differences can be the result of
programming style, compiler optimisation [1], [2], memory
usage [3] and what instructions are supported by each MCU.
Per instruction energy consumption is also affected by other
factors such as the state of the processors internal circuitry [4],
the operands of a given function and neighbouring instructions
[5]. Source code optimisation such as loop unrolling and
appropriate selection of variable types can lower energy usage,
which may be applied by the programmer [6]. Test programs
used in this investigation have been kept as short as possible
with a minimum of code changes between MCUs to reduce
variation.

1) Processing performance: To assess how efficiently each
MCU executes code, each ran a benchmarking function for
which the total number of instruction cycles taken to complete
the benchmark was calculated. The use of MiBench, a set of
benchmarking routines targeted at embedded processors [7],
was investigated but most of the provided routines couldn’t be
executed due to resource constraints. Instead, the benchmark-
ing function used was a 16-bit pseudo-random number genera-
tor implemented using a 16-bit linear-feedback shift register as
found in [8]. The routine generates 16-bit numbers, 1 through
65536 (in a pseudo-random order), and ends once the initial
seed number is regenerated. The number of instruction cycles
each chip took was calculated using equation 1, where n is
the number of instruction cycles, T is the benchmark period
and fi is the instruction clock frequency.

n = T × fi (1)
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Fig. 1. Number of instruction cycles taken to complete a benchmarking
function.

The results of the benchmark routine are shown in Figure 1. As
shown, the Atmel MCUs complete the benchmarking function
using approximately one third of the number of instruction
cycles taken by the others. These results do not represent
absolute performance of the MCUs, only the efficiency in
terms of processing cycles needed to complete a set piece
of code. Note that since this comparison is made between the
number of instruction cycles the results are independent of
clock frequency.

2) Energy efficient processing: Energy efficient processing
in this context refers to the efficiency of completing instruction
cycles, as opposed to the power consumed whilst operating.
The energy consumed per instruction cycle is computed using
equation 2, where Ei is the energy consumed per instruction
cycle, I is the current consumption, Vdd is the input voltage
and fi is the instruction cycle frequency.

Ei =
I × Vdd

fi
(2)

By measuring the instructional efficiency of each MCU over
both frequency and voltage, points of maximum instruction
efficiency were found. Figure 2 compares each of the MCUs
while operating in what was found to be their most energy
efficient operating points. The energy consumption between
each MCU is so similar, and with so much overlap between
not only models but manufacturers, that one could conclude
that these results are representative more of the limitations of
microprocessor fabrication technology than processor design.

The general rule for finding the most efficient operating
point tended to be to clock at the fastest frequency that
allows the absolute minimum input voltage and then operate
at that minimum voltage. For example, Figure 3 shows the
safe operating areas of the Atmel ATtiny13 for frequencies
below 10 MHz. Operating the MCU at 4 MHz with a voltage
of 1.8V produces the most efficient instruction cycle execution.
To show how instructional frequency affects instructional effi-
ciency, Figure 4 has been included to show the relative costs in
joules per instruction cycle of running the Atmel ATtiny13V
at internally generated clock frequencies. The results seen here
where typical across most of the measured MCUs.
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Fig. 2. Energy consumption per instruction cycle of each tested MCU at
their optimum operation frequencies.
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Fig. 3. Safe operating area for the Atmel ATtiny13V as given shown in [9]

B. Sleeping

Each MCU supports a sleep or stop mode which allows
the clock to be disabled thereby halting any processing and
conserving energy. These states can be entered by issuing
a software command, placing the chip into a dormant but
memory retentive state. Waking the processor can be done with
either a low power timer or an external interrupt, each of which
consume additional energy and have been disabled for these
measurements. Keeping MCUs in sleep mode whenever pos-
sible can significantly reduce energy consumption and thereby
extend the life of battery or power harvesting microprocessor
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Fig. 4. Energy consumption per instruction cycle of of the ATtiny13V.
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based devices. While some processors support the operation of
certain peripherals in sleep mode, i.e. the Atmel and Freescale
chips support operating the ADC in full or partial sleep mode
respectively, these modes have not been used. Figure 5 shows
the rate of energy consumption for each MCU while in their
deepest sleep modes. The Microchip PIC12F675, part of Mi-
crochips lower-end family of MCU, required at least an order
of magnitude less power than the other tested microprocessors.
However, the Microchip PIC16F1827 featuring Microchip’s
eXtreme Low Power (XLP) technology was unable to achieve
the specified sleep current of 30nA as specified in [10]. Even
after trying five different PIC16F1827 chips, following the
manufacturers recommendations, rewriting code in assembler,
manually setting relevant initialisation registers and washing
the chips with isopropyl alcohol, similar results where ob-
tained.

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
Vdd (V)

10−10

10−9

10−8

10−7

10−6

10−5

Po
w

er
(W

)

PIC16F1827
PIC16F688

PIC12F675
ATtiny25V

ATtiny13V
M9S08QG8

Fig. 5. Power usage of each MCU whilst in their deepest sleep mode.

C. Non-volatile memory writes
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Fig. 6. Energy consumed by each MCU when writing one byte to non-volatile
memory.

EEPROM by design requires a relatively large amount of
power to erase and set bits. This is due to the need to create a
high voltage pulse onto a terminal of a floating gate transistor
(which represents a single bit) in order to deliver electrons

onto or remove electrons from that gate (setting it to a one or
a zero). The process of writing to EEPROM therefore requires
generating large voltages internally, done by the use of on-
chip charge pumps. This is also true of flash memory, which
is based upon EEPROM technology.

Figure 6 shows the energy consumed by each MCU per byte
written to non-volatile memory. In the case of the Freescale
MC9S08QG8, which has flash instead of EEPROM, there are
two traces shown. Since flash memory must be erased in
blocks (pages), the trace labelled ‘MC9S08QG8 E+W’ has
been calculated by taking the total energy cost of erasing a
page (512 bytes), dividing that by 512 and adding it to the
amount of energy required to write one byte. The trace labelled
’MC9S08QG8 W’ represents the amount of energy used to
write one byte assuming the destination byte has already been
erased, a requirement when writing to flash memory. All other
traces represent the energy cost of erasing and writing one
byte to EEPROM memory. The Microchip PIC12F675 showed
erratic behaviour while writing to EEPROM. It consistently
used less energy whilst performing writes (below a Vdd of
4.7 V) than the stand-by routine (incrementing a number).
The authors are of the opinion that something has been
overlooked, however since further investigation and repeating
the measurement produced the same result it has been included
and the cause remains undetermined.

D. Analog-to-digital conversion

ADCs are commonly used in sensing applications as they
allow a microprocessor to measure and record events or
parameters of the analogue world. In the case of smart water
metering, ADC measurements will most likely play a role in
determining water consumption and therefore may be used
extensively in this application.

The power consumption per ADC measurement was mea-
sured for each of the chips and is shown in Figure 7. These
measurements represent the total amount of energy to enable
the ADC, make a measurement and return the ADC peripheral
to its disabled state again. The results show that the two Atmel
chips used considerably less energy per measurement than the
other MCUs.

III. DISSCUSSION

The measured data shows large variations in the energy
consumption between chips while sleeping, performing ADC
measurements and non-volatile memory writes. Measurement
data indicates that the energy required to conduct an ADC
measurement and store it in non-volatile memory (to prevent
measurement data-loss) depends heavily on the cost of non-
volatile memory writes. Although the Atmel chips were the
most energy efficient when conducting ADC measurements,
their reduced efficiency when writing to non-volatile memory
would far outweigh any ADC gains in applications where it is
necessary to store those measurements in non-volatile memory
(such as a power harvesting smart meter).

In applications where measurement data needs to be wire-
lessly transmitted, storing data in non-volatile memory greatly
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Fig. 7. Energy consumption for a single ADC conversion for each MCU,
including enabling and disabling the ADC peripheral.

improves power efficiency. [11] has shown that logging data
as opposed to constantly transmitting it can reduce power
consumption from 45 mW to 5 mW (approximate), a reduction
of 89%.

IV. CONCLUSION

Relative to on-chip functions, writing to EEPROM is very
expensive in terms of energy consumption. The use of flash
memory in place of EEPROM in this investigation proved
efficient, although there are implementations of EEPROM
(such as on the PIC16F1827) that can match the energy
consumption of flash. There appears to be a general rule to
follow when finding the most efficient processing operating
point. Once that optimum operating point has been found there
is negligible difference, in terms of energy consumed per in-
struction cycle, between MCU families and models. Instruction
cycle speed does not wholly determine code execution speed
as was shown by the Atmel family of MCUs. The amount of
power consumed whilst sleeping varies significantly between
chips, which is especially important for low power sensing and
metering applications. The energy consumption of an ADC
measurement is negligible, even when considering enabling
and disabling the ADC module. It is likely that the processor
will consume more energy processing the result than it took
to make the measurement. For the energy cost of writing a
single byte to non-volatile memory write a typical MCU could
complete over one hundred thousand instruction cycles, sleep
for just under a minute or perform over five thousand ADC
measurements.
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