
Accepted version of:
Twidale, M.B. & Nichols, D.M. (2013) Agile methods for agile universities, in Besley,
T.A.C. and Peters, M.A. (eds.), Re-imagining the Creative University for the 21st
Century. Sense Publishers. 27-48.

MICHAEL B. TWIDALE AND DAVID M. NICHOLS

AGILE METHODS FOR AGILE UNIVERSITIES

Abstract: We explore a term, Agile, that is being used in various workplace

settings, including the management of universities. The term may have several

related but slightly different meanings. Agile is often used in the context of

facilitating more creative problem-solving and advocating for the adoption, design,

tailoring and continual updating of more innovative organizational processes. We

consider a particular set of meanings of the term from the world of software

development. Agile methods were created to address certain problems with the

software development process. Many of those problems have interesting analogues

in the context of universities, so a reflection on agile methods may be a useful

heuristic for generating ideas for enabling universities to be more creative.

INTRODUCTION

Universities are strange organizations. They are charged with multiple, perhaps

contradictory, and certainly mutually complexifying missions. These include

teaching, research, and service to local, national and international communities,

economic regeneration and urban revitalization. They are expected to be memory

institutions, preserving and passing on ancient truths, of telling people who we are

and where we came from. But at the same time, universities are expected to be

places of discovery, innovation and creativity. Scientific research is all about

discovering and doing new things, but so too are the social sciences, the arts and

the humanities. Innovation is disruptive and unsettling, challenging the old ways.

 Universities have progressed for many years dealing with the balancing act of

being both preservers of continuity and disruptive innovators. But every so often

we should think about how these issues affect, or should affect, our own processes.

A variety of current challenges relating to technological development, funding and

international competition create a threat to traditional practices in universities--and

a need to do things better, faster and cheaper.

 In this thought piece we want to explore a term, Agile, that is being used in a

number of workplace settings, including the management of universities. We

explore a particular set of meanings of the term agile from the world of software

development. Agile methods were created to address certain problems with the

software development process. Many of these problems have analogues in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29201972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

context of universities and so may serve as inspiration for the development of

analogous solutions. We do not have a magic bullet (Brooks, 1995) to offer as a

solution. But we do believe that a reflection on agile methods can be a powerful

heuristic for generating possible solutions. The guiding principle throughout this

essay is the perhaps troublesome idea that an innovative research university should

really be doing more research on itself to innovate new ways of operating.

A NEED FOR FASTER AND FLEXIBLE ORGANIZATIONAL PROCESSES

A number of books and articles have appeared recently noting the various

challenges that universities have to confront (e.g. Christensen & Eyring, 2011). For

many western universities this change includes greater global competition in

research, expectations of higher standards from governments, increased

comparative evaluation through both national and global university rankings,

changes in funding sources (typically declines in government funding), limits to

the possible growth of fees, and the potential of technological disruptions from

growth of computer hardware, software and networking. Current interest in

Massively Open Online Courses (MOOCs) is an example of such a possible

disruption; we return to MOOCs later in the paper, using them as a case study for a

more agile university.

 It is always tempting to claim that the period that we are living through is

special, and different from what is gone before. It can feel to those of us currently

working in universities that there are particular pressures that did not apply in the

past – ever greater expectations, more metrics, declining resources, greater

competition, less well-educated students, etc. Regardless of whether the current

moment is actually all that special, we would claim that there is a widespread

pressure for universities to be ever more innovative in exploring new solutions and

seizing opportunities. Unfortunately this innovation can at times feel to be impeded

by a rather bureaucratic set of processes. We need to be more innovative in not just

what universities do, but how they do it. Compared with small companies, and

especially high technology start-ups, a university can seem rather slow in its ability

to innovate. If start-ups are said to work on internet time then universities seem to

work on ivy time - whereby their own organizational structures seem to stretch and

warp how long things take to do.

 It is in this context that the word ‘agile’ is often used as a desirable attribute

(Elementa Leadership, 2012). It is more likely to be used as an aspiration rather

than a description of what currently happens. That is, people may note that it would

be very desirable if a university could be more agile in how it operates and reacts

to changes in the environment. The irony is clear - universities are demonstrably

successful in generating ideas and undertaking successful research to change the

way we see the world, and to change what we can produce. Why is it so hard for

universities to innovate their own processes?

3

Physician heal thyself: university research thyself

It would be desirable if a university could try things out really quickly. What if a

university could do little experiments to see if a new way of doing things was

better than the existing way? If only we had any skills in doing research. The irony

is glaring although pointed out less than it might. How is it that an organization

committed to world class research, which is held out as a beacon of innovation, can

be so reluctant to do research on itself and especially to experiment with its own

managerial practices? The idea might seem utopian, but the experience with

adaptable agile methods in corporate settings makes us suspect that it might be

possible in some form.

COLLOQUIAL AGILITY: FAST AND FLEXIBLE

Prior to a consideration of agile software development as a source of inspiration for

the agile university, it is important to note that sometimes ‘agile’ is used in a more

colloquial way. Agility as applied to a person carries connotations of flexibility and

speed, often with aspects of balance. An agile person is less likely to fall over and

can cope rapidly with both challenging and changing situations. When they do

(rarely) stumble, they are less likely to injure themselves. These are qualities that

we may well want to ascribe to organizations too. In this colloquial use of the term

agile, it is used to describe what an organization has managed to achieve (such as

seizing an opportunity, responding to a threat, quickly changing what it does or

changing its internal processes in the light of circumstances, etc.).

 The term agile may well be used negatively – to complain that our organization

has failed to or is incapable of responding in a fast and flexible manner. It seems

hard to object to this idea of agile – of course being fast and flexible is good

(though we will revisit that later). People and organizations can be called less agile,

but it is very rare to call a person or an organization “too agile”. In this colloquial

sense agile is an attribute. But little is said about what could or should be done in

order to become more agile. Agile describes the outcome, but rarely does it tell us

how we might get there. For people, it may involve various kinds of stretching

exercises, but what should an organization do in order to become more agile? An

email from university management saying “be more agile, right now!” is not

enough.

 One aspect of colloquial agility that does give a clue to one way to achieve

agility is around size and age. Small organizations and new organizations are often

able to be fast and flexible. Decisions can be made quickly because there are fewer

people you need to ask, to tell, to persuade or to lobby. New organizations are

typically small, and so gain this advantage solely by virtue of size. But new

organizations have an additional advantage with respect to speed and flexibility -

they lack precedent. In a new organization, the way you do things are new, and

change may be less disruptive. At its simplest, it is less likely that someone will be

able to say “but we’ve always done it that way”. A new organization competing in

a market may need to be deliberately different in order to stand out from more

established competitors, creating a bias towards novelty and experimentation. Do

these issues apply to organizations that happen to be universities? Are smaller

4

universities often faster and more flexible? What about newer universities? We are

not sure, but it would be interesting to investigate.

AGILE SOFTWARE DEVELOPMENT

Software development is a complex, fraught activity. Many things can go wrong,

leading to projects that are delivered late and over budget, fail to do what the

customers want or need, or fail to be delivered at all. The research area of software

engineering was developed to try and understand why this happened so often and

to develop approaches for mitigation. Within software development, a variety of

different practices were developed. One group (that included the methods of

Extreme Programming, Adaptive Software Development, Crystal, and Scrum) had

a certain set of characteristics that led to the development of a shared vision to

articulate what they had in common - and indeed how they were different from

other practices. The Agile Manifesto (Figure 1) was written in February 2001.

Figure 1. The Agile Manifesto (http://agilemanifesto.org/)

The manifesto can be seen as a set of philosophical values. It is clearly not a recipe

for exactly how one should do software development. But the various methods that

were determined as being agile had those characteristics in common, as did their

subsequent refinements. These methods are often contrasted with other methods

that emphasize the items on the right of the manifesto to a far greater extent. For

agile advocates, those elements may be carried to extremes resulting in overly

bureaucratic plan-driven (and non-agile) development.

 In addition to the manifesto, twelve principles underlying it were also articulated

(Figure 2).

Manifesto for Agile Software Development

We are uncovering better ways of developing software by doing it and

helping others do it.

Through this work we have come to value:

– Individuals and interactions over processes and tools

– Working software over comprehensive documentation

– Customer collaboration over contract negotiation

– Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on

the left more.

5

 Since 2001 agile methods have been adopted by many software development

teams around the world. There has been an accompanying research interest in

agile, trying to understand whether it works, if it is in fact more efficient than other

methods, and if so, why. It has inspired a substantial literature of books describing

detailed processes derived from it, case studies, how-to advice, empirical

evaluations, training materials, applications in other contexts, and reflections on

how to introduce the ideas into organizations that have pre-established processes

and may have individuals and whole groups who are very skeptical about the idea.

In a recent review of the literature, (Dingsøyr et al., 2012) found 1551 research

papers from 63 countries on agile software development in Web of Science

published between 2001 and 2010 (inclusive).

 Although not the dominant form of software development, agile methods are

now a well-established niche with strong empirical evidence of success. The

different methods can however seem somewhat cult-like to outsiders with partisan

claims around efficiency and effectiveness.

We follow these principles:
– Our highest priority is to satisfy the customer through early and

continuous delivery of valuable software.

– Welcome changing requirements, even late in development. Agile

processes harness change for the customer's competitive advantage.

– Deliver working software frequently, from a couple of weeks to a

couple of months, with a preference to the shorter timescale.

– Business people and developers must work together daily throughout

the project.

– Build projects around motivated individuals. Give them the

environment and support they need, and trust them to get the job done.

– The most efficient and effective method of conveying information to

and within a development team is face-to-face conversation.

– Working software is the primary measure of progress.

– Agile processes promote sustainable development. The sponsors,

developers, and users should be able to maintain a constant pace

indefinitely.

– Continuous attention to technical excellence and good design enhances

agility.

– Simplicity--the art of maximizing the amount of work not done--is

essential.

– The best architectures, requirements, and designs emerge from self-

organizing teams.

– At regular intervals, the team reflects on how to become more effective,

then tunes and adjusts its behavior accordingly.

Figure 2. Principles behind the Agile Manifesto

(http://agilemanifesto.org/principles.html)

6

THE NEED FOR AN AGILE APPROACH IN SOFTWARE DEVELOPMENT

Agile methods emerged as a reaction to sets of processes developed to try and

address the difficulties of software development by very careful precise

specification, planning and documentation of what to do in advance. Then the code

is written, tested and then deployed in the customer’s setting. This very logical,

rational process is sometimes called the Waterfall method (Royce, 1970). Such an

approach can seem eminently reasonable. It is in part inspired by processes that

have proved to be highly effective in mass production, and in construction. But the

development of something as logical as software seems to be strangely resistant to

excessively logical and rational methods that try to plan everything in advance and

then to systematically execute each element in a logical order. This might be

because our understanding of software development is underdeveloped. Or, as

agile advocates often claim, it could be that there is something fundamentally

different about software development.

 Many of the problems arise around the issue of requirements capture -

determining what it is exactly that the client wants: “Traditional approaches

assumed that if we just tried hard enough, we could anticipate the complete set of

requirements early and reduce cost by eliminating change” (Highsmith &

Cockburn, 2001). Various document-centric methods were developed in reaction to

unsuccessful software projects that resulted in dissatisfied clients, breakdowns in

trust and communication, and indeed lawsuits. If the developers can show that they

have delivered exactly what the clients asked for, by referring to a voluminous

requirements document, then surely the client has no reason to complain, or indeed

to sue. The problem is that the client may not know exactly what they want, or

what they want may change before the product is delivered. That is not because the

client is confused or naive, just that interactive software products are immensely

difficult to think about - even for skilled software developers.

 It should be noted that many software engineers regard the waterfall method as

something of a straw man. Different software development methods are often

explained and justified in contrast to this hypothetical waterfall method - including

methods that are not agile. However, in the literature on agile methods ‘waterfall’

is often used as a catch-all term for all non-agile methods that although not as

linear and rigid as pure waterfall, are far less flexible and adaptive than agile. We

will use the terms traditional software development and plan-driven development

to refer to these non-agile methods.

 Agile methods seem to work by acknowledging human fallibilities - the

difficulties that clients have in knowing what they want and articulating it, the

difficulties that developers have in completely understanding those wants and

needs, the errors that inevitably arise in software development, and our inability to

predict future needs. The manifesto proposes that the way to address to all these

problems is to focus on tight iteration loops and different kinds of rapid testing and

evaluation. Particular methods vary in exactly how they achieve this, but they all

focus on building and testing minimal versions of the desired product very quickly

and then progressively adding more features over time. This is a more organic kind

of growth process (like a tree that starts off as a seedling) than say a typical

construction project (where we do not begin with a tiny shed and grow it into a

7

mansion). The result is that at all stages the client has a product that at least does

something even if it does not do everything desired. Rather than trying to plan

everything correctly in advance, the methods allow for much more rapid

adjustment on the fly in the light of inevitable human error and externally changing

circumstances.

 Agile methods seem to be especially effective in novel design settings, where

developers and clients may not be exactly sure what the best software solution is,

or indeed what is really needed from the software in order to do the job. The focus

on early delivery of working software (versions that successfully execute just a few

of the features of the envisaged final product) allows for different kinds of testing

and revision of the requirements, allowing for fast and flexible response to a

rapidly changing world - or indeed participants’ rapidly changing understanding of

the world.

 Nevertheless, agile can seem a very alien way of working, and switching to

agile is not a trivial matter. It feels good to have a clearly worked out plan to

follow. It feels like good management to begin by working on such a detailed plan.

Agile is not about an anarchic free for all. But it emphasizes that plans will

inevitably have to change as circumstances dictate (Suchman, 1987), and so

detailed upfront planning may not be the most efficient way of working. Rather

what is needed are ways to dynamically re-plan, but in a systematic manner.

Planning is one of the most difficult concepts for engineers and managers to

re-examine. For those raised on the science of reductionism (reducing

everything to its component parts) and the near-religious belief that careful

planning followed by rigorous engineering execution produces the desired

results (we are in control), the idea that there is no way to “do it right the first

time” remains foreign. (Highsmith, 2002)

AGILE AS A METAMETHOD

The substantial literature on agile methods can be rather challenging to read. It can

seem slippery in what it actually advocates. This is in part because although it talks

a lot about methods, it is really much more focussed on how to design methods,

and indeed how to create a setting where methods themselves are continually being

redesigned and improved to meet the demand of local circumstances. Highsmith &

Cockburn (2001) describe agile as using generative rules: “a minimum set of things

you must do under all situations to generate appropriate practices for special

situations.”

 This abstraction is why we believe it can be applied to university settings. It

operates through a process of first articulating values that lead to principles and

thence to the development of particular practices (Beck, 2005, p. 15). Testing and

review does not just apply to the outputs (the software produced), but also to these

practices. These practices are systematically reviewed and refined as a team learns

more about what it does, and how it can change its practices in order to do things

better.

8

 As an illustration of values informing method design, consider the first value in

the manifesto:

– Individuals and interactions over processes and tools

 Cockburn and Highsmith (2001) note: “it’s not that organizations that employ

rigorous processes value people less that agile ones, it’s that they view people, and

how to improve their performance differently. Rigorous processes are designed to

standardize people to the organization, while agile processes are designed to

capitalize on each individual and each team’s unique strengths.” This value in

concert with the other three and the twelve principles leads to practices such as pair

programming (two developers sitting side by side at a computer working on a

single task) and an emphasis on informal communication and consensus-building;

but also techniques to ensure that conversations and meetings do not go on forever,

and decisions are made quickly. It also leads to approaches to how teams should be

managed: “However, “politics trump people.” Even good people can be kept from

accomplishing the job by inadequate support” (Cockburn & Highsmith, 2001). A

substantial part of an agile team-leader’s role is identifying and removing barriers

to a team being able to do its job.

 Although the agile approach criticizes an excessive focus on documentation, the

processes developed do allow teams to track their progress and indeed their rate of

progress (often termed ‘velocity’). Public displays, known as ‘information

radiators’, enable a team to see how they are progressing in producing working

software that accomplishes an increasing number of desired features. The aim is to

work towards a constant sustainable velocity as teams learn to more accurately

estimate the costs of developing each component of a project and can thereby

reliably deliver working products while also being able to dynamically adjust

requirements by re-prioritising the task list. This information on processes is

obtained as a by-product of actually doing the work, rather than additionally

documenting what is to be and what has been done. The process information

allows teams to periodically reflect on their processes and to revise them to further

increase productivity and minimize errors.

APPLYING AGILE SOFTWARE DEVELOPMENT APPROACHES
 TO PROCESSES IN A UNIVERSITY

Universities are not (centrally) about developing software, so it is unlikely that we

can just apply a set of methods from one setting into this wholly other setting.

However, universities do face analogous kinds of complex problems and so some

of the underlying philosophies may be useful as a means to develop analogous

processes. In particular, universities of course have to deal with a rapidly changing

world. For many western universities this change includes greater global

competition in research, expectations of higher standards from governments,

changes in funding sources (typically declines in central funding), limits to the

possible growth of fees, etc. (e.g. Christensen & Eyring, 2011).

9

 Coupled with these external challenges, many academics feel that their internal

administrative processes tend to hinder rather than to enhance progress.

Bureaucratization of processes typically looks much more like a waterfall method

than an agile method. New initiatives have to ripple down through many layers of

approval, and documentation can appear greater than that the real work that the

documentation is intended to support. Indeed it is easy to begin seeing the

documentation as the actual real work. Is it possible to make some of a university’s

processes agile? Is it desirable, and is it effective, assuming we can agree on what

counts as effective? Universities often address ideas in a very careful, analytic and

systematic way. That has many virtues. We do not want to waste money, and in

particular we want to be careful about creating a series of costly ongoing

commitments or precedents. However the deliberation process can also be

perceived to be extremely slow, perhaps unnecessarily so. We believe that it is

worth investigating if there are ways to develop alternative processes that are faster

and more flexible, and yet can still deliver useful results while avoiding waste.

 Nevertheless, all those university rules, processes, procedures, approval levels

etc. were created for a reason. They are there because of real concerns. The same

applies in software development. Agile is not anarchism, it does not claim that just

because these rules, documents, etc. can slow things down that we can and should

abolish them, and then everyone will be able to get their real jobs done much faster

and more flexibly. Rather it acknowledges the problems these structures were

developed to mitigate and proposes different ways to mitigate these same problems

that also allow greater speed and flexibility, acknowledging human fallibility

(Highsmith, 2002).

 We have noted that the reaction to the software development crisis was an

understandable inclination to try and systematize software development by greater

documentation and oversight. There are remarkably similar pressures in

universities for documented accountability, both internal and external. Some of

these are very difficult to ignore or to change - they may have the force of law or

contracts behind them. The agile manifesto does not reject clear plans, contracts,

documentation and processes (those items on the right of Figure 1). Rather it

claims the greater importance of other aspects (the items on the left). For example,

a military software development contract may have documentary requirements that

seem onerous and inefficient to an advocate of agile methods, but there may be no

opportunity to ignore or change them. The same applies with certain processes at a

university that may be mandated by laws or by a contract with a funding body.

Nevertheless, there may be some room for creative manoeuvre even with parts of

these, and certainly with those processes, rules and documentary requirements that

originate within the university itself.

 The radical, disruptive and innovative approach of agile is to question if those

rules are really strictly necessary, or indeed desirable, and to design and propose

alternative processes that can be tried - and tested - to see if they are actually better.

Some of the activities that universities do are large, complex and have difficult to

understand interrelationships. Existing structures have been developed to provide

checks for effectiveness and unintended consequences. We see many similarities

with large complex software development projects that may contain bugs and

unanticipated interactions that need to be addressed. Given that an agile approach

10

has been found to be an effective way of tackling software complexity, maybe an

analogously agile approach can be developed to tackle some of the problems that

universities face in their development of teaching, research, outreach and other

activities.

CONSIDERING RESEARCH

In many respects, at certain levels of analysis, the way that universities handle the

management of research is actually reasonably agile. Researchers are typically

empowered to try and pursue external and internal funding by writing grant

proposals. Universities provide centralized shared resources such as libraries,

central purchasing and account administration. Great efforts are taken to support

the acquisition of grants and to not hinder this process. Well-run universities treat

this active support of, and non-interference in, the research processes themselves as

a critical managerial function. Small, fast and flexible research teams are able to

seize opportunities of new discoveries by themselves or others as well as explore

funding opportunities. There is often strong encouragement and explicit support for

writing grant proposals and for the creation of spin-off companies based on the

findings of research.

However, this agility may not apply at all levels of analysis, and so there are

opportunities for improvement. No doubt grant holders and the managers of

laboratories can identify various examples of non-agility. There may even be

recurrent patterns in the ways that similar extant processes at many universities

slow down the research process by imposing requirements that researchers

perceive as distractions or burdensome hurdles. Seemingly petty rules about travel

reimbursement immediately spring to mind. The agile challenge is to try and

design processes that achieve the (perfectly legitimate) aims of the current rules,

but in a more efficient manner that is in better alignment with the core values. But

overall, we suspect that it is possible to find many exemplars of agility and process

innovation in the supporting of research. Having examples of agile process

innovation from within the same institution can be helpful in showing that these

kinds of innovation are possible in that particular institutional context.

We are uncovering better ways of developing students by doing it and

helping others do it.
Through this work we have come to value:
– Individuals and interactions over processes and tools

– Demonstrable student achievements over comprehensive documentation

– Dynamic learning discussions with students, (as well as parents,

government employers and other stakeholders) over documents,

metrics and policies
– Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on

the left more.

Figure 3. A first draft at an agile manifesto for a university’s teaching mission

11

CONSIDERING TEACHING: TOWARDS AN AGILE MANIFESTO

FOR A UNIVERSITY’S TEACHING MISSION

Revisiting the Agile manifesto of Figure 1, note that it is very short and written in

clear language. It describes a set of aspirations, perhaps an underlying philosophy.

How might this manifesto, written for the context of software development, be

rewritten for the context of a university? It is not a simple matter, because there is

no single clear agreed upon activity that a university does. We suggest one

example of applying agile here (Figure 3), focused just on the teaching mission of a

university - as a provocation. We hope that it might inspire the reader to come up

with a better example, maybe tailored to her university and within that institution,

to an area that could benefit from a more agile approach.

 This manifesto focuses on the teaching mission of the university. Even the act of

rewriting the manifesto can force a degree of reflection and raise interesting

questions about what it is we actually do, and what it is that we actually want to do

when we teach:

– What do we actually aim to produce as output?

– What would we want to measure, assuming that it is possible or feasible?

– Who are our “customers”? The students, or others who contribute to paying the

bills: parents and the government? What about employers? The local community

and its economy? Society? The country?

– Who should have an influence in what we teach?

– Who should have an influence in how we teach?

– Is something important lost when we even try to equate software development

with student development?

 “Developing students” is a deliberately provocative rewrite of “developing

software” in the original agile manifesto. An alternative, perhaps closer to the

nature of the software development task might be “developing learning

experiences”. Like software, these can be difficult to develop, the process can be

inefficient, as can the learning that they are intended to achieve, and they can

certainly be buggy or error prone in failing to achieve the desired outcomes.

 The thinking behind the agile manifesto reminds software developers that just

focusing on software that works, although very important, is insufficient. Yes

indeed, the software needs to work, but it also needs to do what the customer

actually needs. Approaches that address the challenges of software development

(processes, tools, documentation and plans) can be valuable, but carry the risk of

becoming the main focus of attention rather than producing working software that

does what the customer needs. These development foci can also distract developers

from the reality that the customer’s needs may be evolving. The agile approach

tries to help developers - and the practices that they create - to stay on track.

 Similarly, we don’t (or rather we should not be tempted to) just create courses,

syllabi, lectures, assignments, learning experiences etc. as ends in themselves.

What should matter as a central concern is the impact that they have on our

students as they engage with them. How much learning happens? Are we able to

handle evolving learning needs?

12

12 PRINCIPLES WALK INTO A UNIVERSITY...

Figure 2 shows the 12 Principles behind the Agile Manifesto. This is the next stage

elaboration of the agile approach. There is still little exact detail of what you might

do in an agile software development process, but there are indications of the kinds

of activities you might expect to see. The principles are also articulated to contrast

with some of the features, or consequences, of traditional software development

processes. For example, consider the second principle, to “Welcome changing

requirements, even late in development.” Changing requirements are traditionally

rarely welcomed. They are disruptive, can render prior work wasted, cause delays

and complexities and often lead to bad feelings between customers and developers

because of a lack of understanding of exactly what is being requested and how

difficult it is to provide.

 Just as with the manifesto, it can be an interesting exercise to try and translate

these principles to a university context. Immediately in principle 1 we revisit the

challenge of “who is our customer?” If we decide to focus on the student, then we

have a thought-provoking idea of satisfying them “through early and continuous

delivery of valuable learning experiences”. This may not be too controversial in the

abstract, although on reflection some of us may wonder if we have ever considered

course design from this perspective. There are some courses where students can

feel frustrated at all the rather tedious prerequisite knowledge and skills that they

have to master before they can get to the concepts that they care about. Similarly

certain courses may only come together and make sense right at the end. These

require trust on the part of the student that all the effort will be worthwhile. Where

possible it is certainly pedagogically desirable if the student feels that they are

making clearly observable progress and accumulating skills or insights that they

deem valuable as they go. So we might ask ourselves what, if anything, we should

do if our students do not regard the learning experiences that we deliver as

“valuable” but rather as arbitrary points that must be accumulated to gain the prize

of a certificate. It is certainly sobering to ponder this question.

 To take another example, consider principle two:

– Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

 This might be adapted to:

– Welcome changing learning needs, or (syllabi), even late in the semester.

Agile processes harness change for the student’s personal development.

 This principle could be a mixture of the obvious and the incendiary. It hardly

needs an article on the agile university to note that it can be a good idea for

university professors to introduce topical issues into their lectures in order to

illustrate the power and applicability of abstractions and theories to give analytic

purchase on contemporary problems. Good teachers have always seized teachable

moments. Great teachers may discover (to their surprise and disappointment) part

way through a semester that a substantial proportion of the class lack a certain set

13

of prerequisite knowledge or skills, or harbour a major misconception. That

changes the requirements of the learning and the teacher re-plans accordingly.

Again, such flexibility already occurs in many (but by no means all) classes. This

re-planning can look very problematic to a standards-based approach which

believes that good teaching only comes from careful lesson plans and sticking to

the syllabus. Changing the syllabus as you go seems foolhardy as well as

impossibly expensive in time and effort. Do we really want to welcome changing

the syllabus as you go?

 Again, we have to ask ourselves who our customer actually is. The example

above assumed it is (just) the student. But maybe the real customers are an

agglomeration of disagreeing stakeholders including students, the government,

society, parents, future employers, and accreditation bodies. If so, we may realize

that we have multiple kinds of customers all at once. Suddenly it becomes a little

clearer why universities have major problems with focus and prioritization, let

alone speed and flexibility.

 Taking the problem back to agile software development, developers may

successfully interact with a single customer representative and be able to welcome

changing requirements from her. However, if the team has to deal with an array of

customer stakeholders with very different views of what the software is for, then

there may be rather too many changing requirements to welcome.

 Agile values working software over comprehensive documentation; such as a

syllabus, lesson plans, learning outcomes, rubrics etc. As the manifesto states, this

documentation is not worthless; its value is recognized. It is just that something

else is valued more, namely working software - which all this documentation is

created to facilitate. Similar issues arise with documentation around teaching.

However, in addition to any disagreements about what exactly is being taught, we

also have the challenge of multiple stakeholders, including those who only or

mainly focus on the documentation, not the real ‘product’ - our ‘developed

students’. Imagine how a non-agile accreditation body would react to a professor

who said: “Yes I know it says I would teach that in the syllabus, but by being more

customer-centric with my students I decided very late in the semester to teach them

something else that they wanted and needed to learn more”.

 Finally, we wish to note the emphasis in the principles on sustainable

development. This is a reaction to software projects that hit deadlines and then

expect developers to work excessive overtime in order to meet the deadline. The

claim is that agile methods allow for a much more sustained and sustainable

process where people are less likely to be exhausted (and thereby make mistakes)

and also to be subject to burnout, quitting the job and thereby losing substantial

personal and organizational investments in skill development. Certain agile

methods include the bizarre notion of the 40 hour work week (Glass, 2001). This is

another dangerously radical and controversial health-promoting idea that we would

like to bring to the university.

14

COUNTEREXAMPLE: SPECIAL TOPICS SEMINARS

ARE ALREADY (SOMETIMES) AGILE

Although university processes may veer more to the “comprehensive

documentation” side of the agile description, there are counter examples and

precedents. We claim that an agile university is a radical notion, but innovative

universities always contain pockets of agility that can serve as precedent and

reinforce that the very idea is by no means alien. In the context of course design,

many universities have a special case for a faster and more flexible approach, one

that may more easily evolve as it progresses, often through necessity or the seizing

of opportunity – classic drivers of agility.

 One example is the “special topics” lecture course. This is a course that acts as a

placeholder for a variety of different courses. It is widespread at the graduate level,

but there may be undergraduate versions as well. They allow for one-off teaching

of a particular topic, typically an advanced one. This might be by a visiting

researcher, or by a faculty member trying out something new, or who perhaps is in

the process of writing a book and wanting to test it out chapter by chapter on a

student audience. Such a special topics course has many of the attributes of agility.

It may be next to impossible to fully specify in advance – because the requirements

are still in flux. However, these may be rather un-agile instructor-centric

requirements considered in terms of what the instructor wants to cover. The

experimental nature of the course is flagged by its official name. The instructor

may further note its experimental nature and solicit feedback to enable greater

interaction and responsiveness. Students will need to expect that things may well

go wrong pedagogically, but that is the price they pay for encountering something

exciting and novel. The course is usually optional, creating a greater acceptability

for the inevitable uncertainty of outcomes.

 After a series of (often rather informal and impressionistic) iterative testing of

the components over the semester, the course may be abandoned, turned into a

book, or revised into a more traditional, more fully documented course. As such it

has another component of agile software development that is sometimes missing in

university settings - a defined end point. This is significant because one of the

powers and problems with universities is the issue of continuity. A software project

is delivered and done. Yes it may be revised, but this is treated as a new project. By

contrast, traditional courses are taught many times over many years and other

aspects of universities like departments, libraries, research institutes and centers are

typically expected to persist for years, decades, even centuries. This very

persistence can be one reason why university structures have been set up to be

rather slow, un-agile and rather risk averse. Unlike software developers, they are

not mostly dealing with a set of complex one-off projects that must be delivered

before moving to the next one. Rather they have to deal with structures that are

assumed to persist for many years and that can well persist longer than is desired.

Creating something new can imply a continued commitment to maintaining it and

so creation is a matter to be treated with extreme caution.

 Even conventional courses have a small aspect of agile development in how

they operate. In traditional software development, the requirements are fixed in

advance, and the time and resources to complete the project are estimated.

15

Unfortunately these estimates are very frequently wrong and overwhelmingly are

under- rather than over-estimates. Of course it would be nice to fix everything in

advance, but we are fallible human beings. Agile recognizes that fallibility but

suggests fixing the time and resources available in advance, and estimating the

features that will be delivered. Then when, sadly, problems arise, a product will be

delivered, on time and on budget, but not necessarily doing everything the client

may want. The features it does successfully deliver have been the result of a

process of reprioritization negotiations to maximize the utility of what can be done

with fixed resources. This approach is called timeboxing (Highsmith, 2002). Note

that this is actually how we teach. Teaching is timeboxed at the level of the

semester and the lecture. Despite frequent problems of students lacking

prerequisite knowledge, struggling to understand what the instructor thought

obvious, ‘bugs’ in pedagogy etc., it is extremely rare for a course to overrun the

semester or to exceed its budget. Instead, time and budget are kept fixed and

instructors change what they planned to cover, in what depth and in what form.

Whether this is an optimal or negotiated reprioritization as occurs in agile methods

is quite another matter, but again we note that several agile elements can already be

found in universities.

THE PROBLEMS TO BE TACKLED: INERTIAL DAMPENERS OF INNOVATION

There can be a number of reasons, some very laudable, why a university may not

be very agile. We consider these to be the inertial dampeners of innovation.

Understanding what these might be is useful in appreciating what a more agile

approach will need to address, and indeed the likely opposition to agile adoption.

We list a few inertial dampeners here, but do not claim to have the complete set.

As a simple first example, a notable feature of agile groups is the use of fluid role

definitions (Beck, 2005). This is something that universities can be rather inflexible

about.

 A university is a memory institution that may consider itself as a preserver of

tradition. Large size and the age of an institution can have associated features that

can slow down innovation. Much of the activity is about managing flows rather

than products. Structures that are created may create commitments to continued

preservation and may be very difficult to close down, creating a disincentive to risk

creating new ones. Many universities have a consensus-based, collegial

management structure that means that a lot of people have to be consulted before a

decision can be made, slowing the process considerably. This inertial dampener is

especially odd in the context of agile, because at the micro level of the agile

software development team, consensus-based decision making is actually a core

component of agile and one that is contrasted with other more managerially top-

down development methods.

 There are also issues around risk management, and cultures of risk taking and

risk aversion. Universities may be culturally rather risk averse at the level of

management and institutional structures. Although exhorted to be more

entrepreneurial by many politicians and commentators, these same groups would

not doubt be equally condemnatory if the university gambled and lost a substantial

fraction of its assets in high risk venture capital deals. Entrepreneurial risk taking

16

sounds exciting, but it rather depends upon what the consequences are of failure.

Public universities may be required to provide greater access to information about

everything that they do, successful and unsuccessful, and this can interact with a

public feeling a sense of ownership of and interest in everything that occurs. This is

inevitable as universities try hard to make themselves seem relevant and part of a

larger community activity.

 The fear of being in the spotlight or becoming a political football may reinforce

risk aversion at the higher levels of a university. Scandals typically involve

something that was done and that the university failed to prevent. Unfortunately

there is less outrage about university structures that render an innovation infeasible

or make it too slow to be effective.

 This risk aversion, although both unfortunate and understandable is truly odd

because at a lower level of analysis universities are collectively renowned for being

hotbeds of controversial ideas. Professors (and often students) are constantly

challenging the status quo and saying things that annoy powerful interest groups.

On the whole, university managements are commendably aggressive at protecting

this freedom of inquiry and expression. The tenure system at US universities was

set up precisely to protect the undertaking of controversial scholarship (Amacher,

2004). So certain risks of controversy are embraced by universities even as others

are feared. This needs further examination to truly understand and to consider how

we might design structures to move along parts of the risk curve.

 Agile software development also deals with risk. A poorly designed project

delivered late and over budget seriously damages the reputation of the supplier.

Bugs can be not only annoying and frequently expensive in their consequences, but

in the case of safety critical systems positively dangerous. The agile approach deals

with this risk by many iterations and an almost obsessive focus on testing. For

example in some techniques, the automated test suite is built before the software it

is going to test, so it immediately initially fails. Agile methods aim to lower the

consequences of risks by failing fast in order to discover problems (bugs and

changed requirements) early. Clear methods to identify and recover from problems

as part of the design process replace all the heavy duty upfront checking and

validation processes of less agile methods. This does however create a barrier to

adoption - the need to convince all interested parties that you are replacing one

kind of oversight with a different kind, and the agile one is actually at least as

effective in identifying and fixing problems in order to minimize overall risk.

There is much talk in the literature of the challenges of making the case for agile,

and processes for incrementally introducing the techniques into an organization.

Agile advocates also note the costs and lost productivity of keeping traditional

checking methods alongside the new agile methods that should render them

obsolete.

TIME AND TEMPORAL SCALING

Universities operate on many different timescales all at once. Together, these may

not fit well with the iterative build cycles of software development, and so create

certain barriers to flexibility, speed and agility in the colloquial sense. This means

that we will need to think how to adapt agile software development insights to the

17

constraints imposed by timescales. Examples of cycles include: the 50 minute

lecture, the weekly teaching cycle, the semester or term, the academic year, and the

3-4 year undergraduate degree. Additionally universities have long term

perspectives of several years for a given course or degree option and many years

(decades, even centuries) for departments, schools, institutes, centres, etc. Finally,

like most organizations, universities have to handle external shocks and

opportunities such as changes in government policies affecting them, funding

opportunities, the economic cycle and changes in the economy’s demand for

certain kinds of skills, professions and accreditations.

 A company practising agile software development also operates on multiple

temporal scales. Indeed the very short (sometimes 1-2 weeks) build cycles or

scrums of certain methods are a distinctive feature of agile. But there is a sense of

working through sequences of projects, and within a project, pulling an item off the

backlog, working on it, delivering it and moving to the next item. This creates a

linear feel, whereas by contrast, much that a university does can look much more

cyclical than linear. This is in part just a matter of the level of analysis one chooses

- for an individual student we may (hope to) see a linear progression of increasing

knowledge, understanding, skills, personal development etc. Whereas for the

institution as a whole, each year a new set of 18 year olds arrive and we start all

over again. Dealing with the cyclical and linear aspects will be a challenge.

 This agile approach can seem rather short-termist to a memory institution such

as a university. University leaders have to worry about legacy and the financial

sustainability of activities - in particular whether they entail ongoing commitments.

Those very legitimate concerns lead to multiple levels of review and the creation of

checks and balances. As a result activities such as creating a new research center or

a new degree can understandably be rather slow. The challenge that agility raises is

to ask whether it has to be as slow as it currently is, and what is possible to change

to increase speed and flexibility without re-introducing major problems. One

possibility is to have something like a special fast-track (agile-track) for activities

with defined time-limits, unable to create ongoing commitments. These are more in

the linear than the cyclical category outlined above. Precedents already exist -

special topics courses and research projects are treated as one-offs. But we must

recognize the tension inherent in a university proclaiming its commitment both to

legacy and long-termism and also to innovation. The challenge seems to be about

making it easier to discard in order to grow elsewhere:

agile enterprises pursue a series of temporary competitive advantages—

capitalizing for a time on the strength of an idea, product, or service then

readily discarding it when no longer tenable (Stacey, 2006)

 One may hope that new activities will ensue, but they do not need the careful

review that creating say a new department or centre needs. That model might be

extended to create other kinds of time-limited (linear) activities.

 There is another temporal factor that may be problematic for agility. It could be

that the very attributes that the general public, students, alumni and other

stakeholders admire about a given university: traditions, heritage, buildings,

schools, departments, famous alumni etc. are at the same time inhibitors of certain

kinds of innovation. That pride creates interest in what the university does,

18

deliberately encouraged by development offices to increase donations, and political

support for spending public money. But that interest can mean greater visibility of

both successes and failures. If the perceived cost of failure is greater than the

perceived benefits of success, we end up with a risk-averse culture.

 An extreme version of agility (not one we espouse) would allow for no sense of

history, precedent, tradition or indeed security. One could imagine a university run

in a more corporate manner where subunits (departments, institutes, degrees, etc.)

are created rapidly because they can be disbanded equally rapidly when no longer

essential, or simply when the opportunity cost is too high. This would move the

university into a realm of Schumpeterian creative destruction. It may be very

reactive, but also rather stressful for employees who may fear losing their jobs.

Currently many faculty and university employees invest a lot of time, effort, care

and indeed emotion in their units, such that disassembly and reassembly can seem

traumatic in a way that would not apply in a factory or a software development

company where people were regularly reassigned. For many, this kind of extreme

agility is the apotheosis of the creeping corporatization of the university. As such it

is something to be critiqued (Gillies, 2011) or even actively opposed, chiefly

because it leads to the loss of many virtues seen in the traditional liberal university.

This raises a problem for us as advocates of some agility (but not this extreme

form). Our version of agility might be perceived as a Trojan horse for university

corporatization, and so something to be opposed in that light. These concerns need

to be understood and aired. We hope they are ill-founded, but they are certainly

understandable. We would note that the literature on agile software development

has substantial evidence of the way that effective agile teams are necessarily

groups of empowered professionals, and display high levels of job satisfaction and

a strong sense of autonomy. There is no guarantee that what works for software

developers would also work for university faculty, but in the ethos of agile, we

believe that it is well worth experimenting to find out.

MOOC DEVELOPMENT AS A CHALLENGE TO A UNIVERSITY’S AGILITY

Over the past year or so, a particular kind of teaching experiment has emerged that

has been hailed by many to have the potential to be a radical disruption to the

traditional operation and funding model of universities. MOOCs have generated

both publicity and criticism (Daniel, 2012), with some worried they may even

threaten the success of physical universities.

 Although there were earlier MOOCs, the Stanford artificial intelligence class

was particularly influential; a description of the interactions around this class

illustrates the tension between existing organisational structures and the new

challenges of the MOOC:

A few days later the class had 10,000. That’s when the Stanford

administration called. Thrun had neglected to tell them about his plan—he’d

had a hunch it might not go over well. The university’s chief complaint: You

cannot issue an official certificate of any kind. Over the next few weeks, 15

meetings were held on the matter. Thrun talked to the dean’s office, the

registrar, and the university’s legal department. Meanwhile, enrollment in

19

CS221 was ballooning: 14,000, 18,000, and—just two weeks later—58,000.

In all those meetings, not one person objected to Thrun’s offering his class

online for free. They admired his vision. The administration simply wanted

Thrun to drop the assignments and certificate. He refused. Those two

components, he argued, were responsible for driving the sign-ups. Someone

proposed removing Stanford’s name from the course website altogether.

(Leckart, 2012)

 The challenge to the organisation was how to react to a new form of course that

had not been through familiar procedures. Any kind of novel course design looks

very like the waterfall method. Typically a course is carefully planned in advance,

with substantial documentation. This course proposal then has to be reviewed by

various committees, as a way of achieving quality assurance and in order to check

for undesirable interactions with existing activities. Eventually the course makes its

way through the approval process and it can now be taught. There is typically far

less and much lighter ongoing monitoring of the course, although there may be

periodic reviews. If the course is especially innovative and consequently does not

fit the patterns of previous courses that have moved through the approval process,

the processes themselves may not be able to cope, creating the need for new sub-

processes, the creation of exceptions and fears about precedents. In this way a

perfectly understandable approval process can be a barrier to innovation.

 Redesigning course approval processes to make them more agile would involve

looking at the agile manifesto and 12 principles for inspiration. It would involve

considering whether the upfront work (the attempt to plan as much as possible in

advance) could be changed to a more iterative and responsive monitoring; checking

and testing. It will be challenging to design a process that is time-shifted in this

way, checks for the things that actually matter, and is at least no more

administratively burdensome than the current processes. In turn this means that the

design of new (agile) processes should be given the care and status that software

design is given. It should not be a matter of a Dean making something up on the

fly.

 It is interesting to observe that much of the MOOC activity is currently taking

place through start-ups (e.g. Coursera and Udacity) that take much of the

organisational burden away from Universities themselves. The rapid growth of

Coursera is characteristic of the Internet-time approach they have taken, with rapid

experimentation and at least one “failure” (Jaschik, 2013). It remains to be seen if

this can best be understood as a corporate outsourcing of agility, or as a creation of

a safe space for experimentation deliberately excluded from traditional

administrative structures.

PROCESSES OF AGILE INNOVATION AND ADOPTION
IN UNIVERSITY OPERATIONS

There is substantial evidence that agile methods improve efficiency in software

development. In this article we have made the case that there are some similarities

between the development of novel software and university activities. We have also

noted the existence of pockets of agility within universities to emphasize that the

20

ideas are not completely alien to this context. So it seems worth experimenting

with applying agile methods in a university. Unfortunately we can’t just copy the

agile techniques that have been developed because they are aimed at supporting

software development. So we will have to adapt techniques and combine them with

new ones that we create, inspired by the agile approach. We don’t have a set of

techniques ready-made and tested to offer the community. Rather we want to

encourage many people to design and test different approaches so that we can

discover what works best.

 The agile literature has much to offer as inspiration, including various processes,

how to manage agile projects, and how agile management is different.

Additionally, there are case studies on how software development companies have

tried to move agile methods from their software development activities to other

parts of their operation and on the challenges of introducing agile methods into an

organization and overcoming perfectly understandable skepticism.

 On the last point, the unsurprising consensus is to start with a pilot project, treat

it as an experiment and collect a lot of data to provide evidence for improvement

over time. It may require a number of projects before a team learns how to operate

in an agile manner, so early results many not be spectacular. A key point is to have

management support. An agile project will need permission to not use existing

organizational processes as it deploys its own processes instead. Using both

processes will most likely mean it is very difficult to show any improvement. This

‘permission to be different’ can be easiest to grant in a project far outside normal

operation or one that is clearly experimental. It will need some demarcation from

other normal operations, perhaps by analogy with corporate ‘skunkworks’ or the

special economic zones set up in communist China by Deng Xiaoping to explore

alternate more capitalist modes of production. We think the latter analogy is rather

apposite, but perhaps is not the most expedient one to use in making the case to

university administrators.

CONCLUSION

Our aim is to provoke reflection on how things are done in universities - mostly

because we happen to work in them. Similar challenges apply in many other kinds

of organization, both for-profit and non-profit. Software development is a very

particular kind of complex collaborative activity requiring peculiar combinations of

creativity, analytic rigour and deep understanding of both what people do and what

they say that they want to do. This very complexity is why we believe that the

methods developed around agile software development can serve as an inspiration

for the development of methods to address the many challenges of an innovative

research university. We believe that the first stage of this is for research

universities to more explicitly apply their considerable research skills to analyzing,

improving - and experimenting with - their own managerial practices.

 If we want our universities to be more innovative, responsive and adaptable - to

be more colloquially agile, then we need to examine the barriers to agility. It might

be nice to simply abolish these barriers, but the processes, documentation, etc. that

act as barriers were usually created to address real problems. Therefore we need to

design new processes that are more agile. This design activity itself will require

21

innovation and agility. It requires analysis of what is done now and why it is done,

and mixtures of creativity and engineering design pragmatics to develop new

processes. Those who extol the value of greater innovation rarely include the

importance of innovating and experimenting with our administrative and

managerial processes. That is precisely what we are advocating. Taking an agile

analytic lens allows for the questioning of what we do and why we do it. It

encourages us to ask how we could redesign any single process in several different

ways to make it more agile, and then how we might try out these ways, compare

them and learn from them

 In line with agile thinking, we also caution against hubris. This is not about one

big bout of careful analytic research followed by the development and deployment

of an ultimate University Administration Process Design Solution. Agile methods

are deliberately designed with human frailties in mind. We get things wrong. Our

best guesses are wrong, Even if we were right in our diagnosis of the problem, the

world changes and we should now be working on solving a different problem. The

art is not to get it right, but to fail fast, to be able to test innovations as early in the

design process as possible, and be able and willing to re-prioritize and replan as

more is learned. Consequently, redesigning processes to enable a university to

operate in a more agile manner needs to have these same aspects of seeking early

feedback, constantly iterating and developing ways of testing early and often.

 This is intrinsically a process of learning and discovery. We need structures to

support multiple experiments on the way that we do our work, so that we can

measure what works and what does not - and understand why. We also need a way

to tolerate failures in our administrative-engineering innovation experiments;

otherwise risk aversion will dampen support for the whole endeavour. These are all

issues that universities handle extremely well in their research, but less so in their

teaching and administration. We believe it is time that they start experimenting

there as well.

REFERENCES

Agile Manifesto, The (2001) http://agilemanifesto.org/

Amacher, R.C. (2004) Faulty Towers: Tenure and the Structure of Higher Education. Oakland:

Independent Institute.

Beck, K. (2005). Extreme Programming Explained: Embrace Change, (2nd ed). Addison-Wesley.

Brooks, F.P. Jr (1995) The mythical man month. Boston, Massachusetts: Addison-Wesley.

Cockburn, A., & Highsmith, J. (2001). Agile Software Development: The People Factor. Computer,

34(11), 131–133.

Christensen, C. M. & Eyring, H. J. (2011). The Innovative University: Changing the DNA of Higher

Education from the Inside Out. Jossey-Bass.

Daniel, J. (2012) Making Sense of MOOCs: Musings in a Maze of Myth, Paradox and Possibility.

Journal of Interactive Media in Education, http://jime.open.ac.uk/2012/18

Dingsøyr, T., Sridhar, S., Balijepally, V. & Moe, N. B. (2012). A Decade of Agile Methodologies:

Towards Explaining Agile Software Development. Journal of Systems and Software, 85(6), 1213-

1221.

Elementa Leadership (2012) The Agile University: higher education in a changing world,

http://www.elementaleadership.co.uk/media/1257/elementa_agile_university_brochure.pdf

Gillies, D. (2011) Agile bodies: a new imperative in neoliberal governance. Journal of Education

Policy, 26(2), 207-223

22

Glass, R. L. (2001). Agile versus traditional: Make love, not war! Cutter IT Journal, 14(12), 12-18.

Goldman, S.L., Nagel, R.N. & Preiss, K. (1995) Agile Competitors and Virtual Organizations. New

York: Van Nostrand Reinhold.

Highsmith, J. & Cockburn, A. (2001). Agile Software Development: The Business of Innovation.

Computer, 34(9), 120–122.

Highsmith, J. (2002) What is Agile software development? Crosstalk: the journal of defense software

engineering, 15(10), 4-9.

Highsmith, J. (2010) Agile project management : creating innovative products. Addison-Wesley.

Jaschik, S. (2013) MOOC Mess, Inside Higher Ed, February 4, 2013.

http://www.insidehighered.com/news/2013/02/04/coursera-forced-call-mooc-amid-complaints-

about-course

Leckart, S. (2012) The Stanford Education Experiment Could Change Higher Learning Forever. Wired,

http://www.wired.com/wiredscience/2012/03/ff_aiclass/

Stacey, R. (2006). The Science of Complexity: An Alternative Perspective for Strategic Change

Processes. In R. MacIntosh et al. (eds.). Complexity and Organization: Readings and Conversations.

London: Routledge. 74–100.

Suchman, L. (1987) Plans and Situated Actions: The Problem of Human-Machine Communication.

New York: Cambridge University Press.

Williams, L. (2003) The XP Programmer: The Few Minutes Programmer. IEEE Software, 20(3), 16-20.

Williams, L., Kessler, R.R., Cunningham, W. & Jeffries, R. (2000) Strengthening the Case for Pair

Programming. IEEE Software, 17(4), 19-25.

AFFILIATIONS

Michael B. Twidale

Graduate School of Library and Information Science

University of Illinois

USA

David M. Nichols

Department of Computer Science

University of Waikato

New Zealand

