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Abstract

This report proposes to improve compositional nonblocking verificaticuttr the use
of two special event types: always enabled and selfloop-only ev@atsipositional verifi-
cation involves abstraction to simplify parts of a system during verificationnidtly, this
abstraction is based on the set of events not used in the remainder ostamsyHere, it
is proposed to exploit more knowledge about the system and abstrauts @xen though
they are used in the remainder of the system. This can lead to more simplificatiowdba
previously possible. Abstraction rules from previous work are exignoleespect the new
special events and proofs show these rules still preserve nonblocKivegrules have been
implemented in Waters and experimental results demonstrate that these exiempldita-

tion rules help verify several industrial-scale discrete event system matéésachieving
better state-space reduction than before.
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1 Introduction

When working with safety-critical systems, it is importamkhow that they behave as expected.
Safety-critical systems include medical devices and faesavhere errors are expensive or even
deadly. These systems can also be large or complex, makliffyatilt to determine that they will
behave as expected in all situations and be safe for the. Udedel Checking is used to prove
that a system satisfies certain properties such as comifilfaand nonblocking. This lets us be
more confident that the system is safe. The system is modmdladset of finite state automata,
where each automaton is used to describe different parteeafytstem. Nonblocking can show
that something good will eventually happen. Depending om tiee system has been modelled,
this can show the system always being able to reach a safstatks or coming to completion.
That is, it shows the absence of livelocks or deadlocks irsyis¢éem that would prevent it from
reaching a desired state. [6, 21] These desired states akednduring modelling. This is an
important property to verify, however, as the models ar¢irggtiarger and more complex to
accurately match the real-world systems, the standardadstior checking nonblocking are not
sufficient.

The standard method to check whether a system is nonblookintyes the explicit compo-
sition of all the automata involved, and then performing ekib@cking search from all marked
states to ensure that every state can reach a marked stafertudately the standard method
is limited by thestate-space explosigoroblem. This is because composing together automata
increases the state-space exponentially, and quicklsleadunning out of memory. Different
methods have been created to help avoid this probymbolic model checkirtas been used
successfully to reduce the amount of memory required byessmting the state space symboli-
cally rather than enumerating it explicitly [2Lompositional verificatiofil 0, 16] is an effective
alternative that can be used independently of, or in contimmavith, symbolic methods. Com-
positional verification works by simplifying individual &amata before each composition, grad-
ually reducing the state space of the system and allowindhrtarger systems to be verified in
the end. Since the state-space increases exponentially eameposing, if even a small number
of states can be simplified at the start then this can leadde f@ductions in the number of states
in the final composition. However, when applied to the nookilog property, finding simplifi-
cation rules is difficult as it requires very specific absitactmethods. These abstractions must
preserveconflict equivalencgl7]. When simplifying the automata it is important to enstims
does not change the nonblocking property of the system.oMarabstraction rules preserving
conflict equivalence have been proposed and implemented 9102, 23]. These include rules
such as Observational Equivalence, Tau-Loop Removal an@i@e&tonflicts. However, these
abstraction rules do not take advantage of the whole systewill be shown that by creating
abstraction rules that use this extra information more Bfiogtion becomes possible. Normally,
the main way these rules simplify automata is to use spe@uaénts, that are only present on the
automaton being simplified. However, there are other ewsitkssimplification properties that
can be found by looking at the automata that are not beinglgietp

This report proposes simplification rules that take intaact that certain events are always
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enabled or are only selfloops in the automata not being #ieqhl and shows proofs that the
nonblocking property is preserved. These rules have also mplemented to show that this
additional information can achieve further state-spadecgon.

Part of this report will be published in FTSCS [20], which oduces the abstraction rules and
shows experimental results. In addition, this report atstuides examples, proofs, and describes
how the rules have been implemented.

In the following, section 2 introduces the background ofaeterministic automata, the non-
blocking property, conflict equivalence and compositioreification. Sect. 3 presents always
enabled, selfloop-only events and the simplification rtikes exploit such events, and section 4
shows how these events are found algorithmically. How thepkiication rules were imple-
mented is discussed in section 5. Afterwards, section éepteghe experimental results, and
section 7 adds concluding remarks. The appendix contagngrtbofs for each of the simplifica-
tion rules.



2 Preliminaries

There are a set of existing basic definitions that will be usetthis report. Many of the stan-
dard definitions are from [3, 7], while other definitions aakdn from various sources and are
mentioned individually. This section shall show all thestixig definitions used, and the new
definitions that have been created for this report are fonrsgction 3.

2.1 Events and Languages

Event sequences and languages are a simple means to démmilzesystem behaves [6, 21].
Their basic building blocks arevents which are taken from a finitalphabetA. In addition,
two special events are also used, silent eventr and thetermination eventv. These are never
included in an alphabeA unless mentioned explicitly using notation suchfas= AU {1},
Ap=AU{w}, andA; , =AU{T, w}.

The T event is used to define an event present on only a single atdomdt has many
properties that are useful for simplification rules. When mgwhrough an automaton these
events can be taken silently, without changing the stateypbther automata in the system.

A* denotes the set of all finitkacesof the formoy,05 - - - g, of events fromA, including the
empty traces. The concatenatiorof two tracess,t € A* is written asst. A subsetlL C A* is
called alanguage Thenatural projection P A} — A* is the operation that deletes all silem) (
events from traces.

2.2 Nondeterministic Automata

System behaviours are modelled using finite automata. &ifpicystem models are determin-
istic, but abstraction may result in nondeterminism.

Each automaton in the system consists of a finite set of stag®vents. A transition re-
lation is used to show the transitions between states. Tmntams the transition event and the
before and after states. Automata also have initial stashow where the system starts, since
these are nondeterministic, multiple initial states argspgme. We also model our automata with
marked states. These represent desired or safe statessgbteen. These are used for nonblock-
ing, where we check that they can always be reached.

Definition 1 A (nondeterministic¥inite automatoris a tupleG = (A, Q, —,Q°) whereA is a
finite set ofeventsQ is a finite set oftates — C Q x A, x Q is thestate transition relation
andQ° C Q is the set ofnitial states

The transition relation is written in infix notation> y, and is extended to traces Al in

the standard way. For state s&tsY C Q, the notationX > Y meanx > y for somex € X and
yeY, andX >y meansx< > y for somex € X. Also, X = for a state or state s¥t denotes the
existence of a statge Q such thatX > y.



The termination ever ¢ A denotes completion of a task and does not appear anywhere els
but to mark such completions. It is required that statesheédyw do not have any outgoing
transitions, i.e., ik 2 y then there does not existe A; (, such that 9, This ensures that the
termination event, if it occurs, is always the final eventf dace. The traditional set of marked
states iQ®¥ = {x € Q| x5} in this notation. The states i@® are the marked states and are
shown shaded in the figures of this report instead of explisitowing w-transitions.

To support silent events, another transition relatierC Q x A7, x Q is introduced, where
x = y denotes the existence of a trace A%, such thatP(t) = s andx LR y. Thatis,x >y

denotes a path witbxactlythe events irs, while x 2 y denotes a path with an arbitrary number
of T events shuffled with the events &fNotations such aX = Y, x =y, andx = are defined
analogously to—.

Hiding is the act of transforming an eveatinto a silentt event. This is a simple way of
abstraction that in general introduces nondeterminism.

Definition 2 LetG = (A,Q,—,Q°) andY C A. The result ohiding Y from G, written G\ Y,

is the automaton obtained fro@ by replacing each transition— y with v € Y by x =y, and
removing the events i from A.

2.3 The Nonblocking Property

The nonblockingproperty is an important property in model checking. An awdton is non-
blocking if, from every reachable state, a marked state earefiched; otherwise it ldocking

Definition 3 [17] An automatorG = (A,Q,—,Q°) is nonblockingf, for every statex € Q and

every traces € A* such thatQ° = x, there exists a tradec A* such thaix X Two automatas
andH arenonconflictingf G|| H is nonblocking.

Figure 1. Example of a blocking automaton.

Example 1 The automaton in figure 1 is an example of a blocking automakbe states of the
automaton are represented as circles in the figures of {astrelransitions are shown as arrows



between states, and are labelled with the event of the timmsiThe shaded circles are marked
states and the little arrow entering state 0 shows this igitial state.

Since there is no sequence of transitions that allows stater8ach a marked state, this
automaton is blocking.

Figure 2: Example of a nonblocking automaton.

Example 2 The automaton in figure 2 is an example of a nonblocking autmmaAlthough it
is possible for the system to cycle between states 0 and lt@lfirevery state in the system can
reach state 2, a marked state. This means the automatonaloking.

2.4 Synchronous Composition

Definition 4 Synchronous composition is used to compose multiple autotogether.
LetG = (Ag,Qg: —g,Qg) andH = (A, Q. —n,Qy) be two automata. Theynchronous
compositiorof G andH is

G|[H = (AgUAL,Qc x Qu,—,Qf x Q) , (1)
where
o (Xa,XH) = (Yo, YH) if 0 € (AcNAH) U{w}, X6 26 Yo, andXu ~>H Yh;
o (%6,XH) = (Yo, xn) if 0 € (Ag\An)U{1} andxs 26 Ye;

o (Xa,XH) = (Xa,YH) if 0 € (An\Ag)U{T} andxy > YH.

Automata are synchronised using lock-step synchronisdfié]. Shared events (includ-
ing w) must be executed by all automata synchronously, whileraghients (includingr) are
executed independently.

Example 3 Finding the synchronous composition of autom@tiaandG2 in figure 3. Start by
creating the initial stat€0,0) which is the initial states of bot®1 andG2. This state has the
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transitions which are enabled in both automata- Q is a transition in botiG1 andG2, so the
synchronous composition has a transit{or0) - (1,1). We then investigate the transitions that
are enabled in this state.% 2 is enabled irG1, howevera is disabled in state 1 @2, so it is

not in the synchronous composition. Evéhis enabled in both automata however, so transition

(1,1) LA (0,2) is created in the synchronous composition. This methodmees, for each new

state(x,y) that is created in the synchronous composition we createna@sitions for the events
that are enabled in both statesr G1 andy in G2.

Gl

0.2)

Figure 3: Synchronous Composition of Automata

To reason about conflicts in a compositional way, the notibonomflict equivalences de-
veloped in [17]. According to process-algebraic testirgptly, two automata are considered as
equivalent if they both respond in the same way to tests [8].cBnflict equivalencea testis
an arbitrary automaton, and thesponsas the observation whether the test composed with the
automaton in question is nonblocking or not.

Definition 5 [17] Two automatas andH areconflict equivalentwritten G ~¢ont H, if, for any
automatorT, G || T is nonblocking if and only iH || T is nonblocking.

9



Example 4 Figure 4 contains automa@andH which can be shown to be not conflict equiva-
lent using test automatdn Note that if states 1 and 2 (Bare merged together we get automaton
H, so this example shows that simplification of automata isasoeasy as simply merging to-
gether any two stated. is an example of an automaton such t@4fT andH || T do not have

the same nonblocking propert@ || T is blocking since it has no marked states, and every state
in H || T can reach the marked std® 3), so it is nonblocking. Because of th&~qnsH is not
true, G is not conflict equivalent téi.

G H T
n n
n a 3 1 a 2
2
G|IT H|T
(0,0)
n
1,1
n
2,2) 12 @ (23

Figure 4. Example of automa@andH that are not conflict equivalent

Example 5 Figure 5 contains automa@andH which are not conflict equivalent. This figure
shows the two outgoing transitions being merged into a single transition. Note thé 2 LA

is not possible irG, but Oa—B> is possible inH. This can be used to help find the test automaton
T. G|| T is blocking, since staté, 1) cannot reach a marked state, while| T is nonblocking,
since every state can reach a marked state. This means thatoGdonflict equivalent to H.

2.5 Compositional Verification

When verifying whether a composed system of automata
GGzl [1Gn, )
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G H T

0 a
a
a a
1
B y B
BY
3 4 2 3
2
G|IT H|T
(0,0)
(0,0) 2,1) g
(1,1)
8 (1,1) 8
(2,2)

(3.2)
Figure 5: Example of automa@andH that are not conflict equivalent

is nonblocking, compositional methods [10, 16, 23] avoiddmg the full synchronous com-
position immediately. Instead, individual autom&aare simplified and replaced by smaller
conflict equivalent automat&; ~cont Gi. If no simplification is possible, a subsystem of au-
tomata(G;j)jcy is selected and replaced by its synchronous compositioichwthen may be
simplified.

The soundness of this approach is justified by ¢bagruenceproperties [17] of conflict
equivalence. For example, @1 in (2) is replaced byG) ~conf G1, then by considering =
Gz -+ || Gn in definition 5, it follows that the abstracted syst&h|| T =G} || G, || --- || G, is
nonblocking if and only if the original system (2) is.

2.6 Automaton Abstraction

A common method to simplify an automaton is to constructjitetientmodulo an equivalence
relation. Certain states are identified as equivalent an@ederThe following definitions are
standard.

An equivalence relatiofis a binary relation that is reflexive, symmetric and tramsitGiven
an equivalence relation on a seQ, theequivalence classf x € Q with respect to-, denoted
], is defined agx] = {X € Q| X ~ x}. An equivalence relation on a $@tpartitionsQ into the
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setQ/~ ={[x | x€ Q} of its equivalence classes.

Definiton 6 Let G = (A,Q,—,Q°) be an automaton, and let C Q x Q be an equivalence
relation. Thequotient automaton G~ of G with respect to~ is G/~ = (A,Q/~,—/~,Q°),

whereQ® = {[x’] | x” € Q°} and—/~ = { (X, 0, [y]) | x> }.

The states of the quotient automaton are classes of equiigites of the original automaton.
A common equivalence relation to construct such a quotietdraaton isobservation equiva-
lenceor weak bisimulatior18].

Definition 7 [18] LetG = (A,Q,—,Q°) be an automaton. A relatica C Q x Q is anobserva-
tion equivalenceelation onG if, for all statesx;, x € Q such thak; ~ x; and all traces € A},
the following conditions hold:

1. ifxg =2 y1 for somey; € Q, then there existg, € Q such that; ~ y, andxy =2 Yo,
2. ifx =2 y» for somey, € Q, then there existg; € Q such that; ~ y, andx; =2 Yi.

Two states are observation equivalent if they have got Bxtt same sequences of enabled
events, leading to equivalent successor states. Obsemauivalence is a well-known equiva-
lence with efficient algorithms that preserves all tempéogic properties [5]. In particular, an
observation equivalent abstraction is conflict equivalerthe original automaton.

Proposition 1 [16] Let G be an automaton, and let be an observation equivalence relation
onG. ThenG ~¢oni G/ ~.

A special case of observation equivalence-based absinastr-loop removal If two states
are mutually connected by sequencesrdfansitions, it follows from definition 7 that these
states are observation equivalent, so by proposition 1 ¢heybe merged preserving conflict
equivalence. This simple abstraction results inlaop freeautomaton, i.e., an automaton that
does not contain any proper cyclesmfransitions.

Definition 8 Let G = (A,Q,—,Q°) be an automatorG is t-loop freg if for every pathx Lx
with t € {T}* it holds thatt = ¢.

While t-loop removal and observation equivalence are easy to ctanajoal produce good ab-
stractions, it is known that there are conflict equivalertbmata that are not observation equiv-
alent. Several other relations are considered for confljaivalence [10, 16].

To confirm that an automaton quotient modulo a given equivaeelation is conflict equiva-
lent to the original automaton, it is usually necessary tal@ish a relationship between the paths
in an automaton and its quotient [10]. Firstly, it followsrmadiately from definition 6 that every
path between in an automaton also links the correspondasges in its quotient automaton.
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Lemma?2 [10] LetG = (A,Q,—,Q°) be an automaton, and letC Q x Q be an equivalence
relation. Ifxg 3 xq 23 --- 2 x, is a path inG, then[xg] 2 [xa] = -+ & [x,] is a path inG/~.

Secondly, to establish that conflict equivalence is preskby an automaton quotient, it is
necessary to lift a path in the quotient back to a path in thgiral automaton. This is not
possible with every equivalence relation. It is possibléhvain observation equivalence relation,
and another possibility imcoming equivalencgl0].

Definition 9 [10] Let G = (A,Q,—,Q°) be an automaton. ThHacoming equivalenceelation
~inc C Q x Q is defined such that ~jnc Y if,

1. ° & xifand only if Q° £ Y,
2. for all statesv € Q and all eventw € A it holds thatw = x if and only ifw = y.

Two states are incoming equivalent if they have got the sam@ming transitions from the
exactly same source states. (This is different from rev@sservation equivalence, which accepts
equivalentrather than identical states.)

The additional requirement of incoming equivalence is gmoto establish a converse of
lemma 2 and makes it possible to lift paths in the quotienkbapaths in the original automaton.

Lemma 3 [10] LetG = (A,Q,—,Q°) be an automaton, and letC Q x Q be an equivalence
relation such thate C ~jpc.

1. If X % X1 % . .. 5% Xn with g; € A fori=0,...,nis a path inG/~, then there exist states

Xi eiifori:O,...,nsuchthalxog%xlg%-~~ggxnisapath inG.

2. If G/~ = KX for somes € A*, then there exists € X such thaG = x.

2.7 Introducing Special Events

Previous approaches for compositional nonblocking vextifor [10, 16, 23] make no assumption
about the remainder = G, || - - - || G, of the system apart from its event set. TypicaBy, has
somelocal events, i.e., events used only B¢. The local events are abstracted using hiding,
i.e., they are replaced by the silent event Conflict equivalence uses the silent everds a
placeholder for events not used elsewhere, and in thimge#ithe coarsest conflict-preserving
abstraction.

Yet, in practice, the remaind@r= G, || - - - || Gn is known. This report proposes ways to use
additional information aboufk to inform the simplification of5; and produce better abstractions.
In addition to using the events, it can be examined how the other events are usé&d biere
are two kinds of events that are easy to detaktays enable@vents andgelfloop-onlyevents.

In addition to the existing definitions, the following defions have been created falways
enabledevents andelfloop-onlyevents.
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Definition 10 LetG = (A,Q,—,Q°) be an automaton. An eveate A is always enabledh G,
if for every statex € Q it holds thatx =-.

An event is always enabled in an automaton if it can be exddubven every state—possibly
after some silent events. If during compositional verifmat an event is found to be always
enabled in every automaton except the one being simplifresl etvent has similar properties to
a silent event. Several abstraction methods that expleittsevents to simplify automata can be
generalised to exploit always enabled events also.

Definition 11 LetG = (A,Q,—,Q°) be an automaton. An eveate< A is selfloop-onlyin G, if
for every transitiorx g, y it holds thatx =y.

Selfloopsare transitions that have the same start and end states.eAnhisselfloop-only if it
only appears on selfloop transitions. As the presence fdéepk does not affect the nonblocking
property, the knowledge that an event is selfloop-only dem laelp to simplify the system beyond
pure conflict equivalence. In the following definition, caciflequivalence is generalised by
considering setE& and S of events that are always enabled or selfloop-only in thé agthe
system, i.e., in the tedt.

Definition 12 Let G andH be two automata, and |&andS be two sets of event$ andH are
conflict equivalenwith respect tde andS, written G ~¢ s H, if for every automatofT such that
E is a set of always enabled eventslirandS is a set of selfloop-only i, it holds thatG|| T is

nonblocking if and only iH || T is nonblocking.

This definition only considers testswhere events iic are always enabled and eventsSn
are selfloop-only. Itis clear that standard conflict egl@mae implies conflict equivalence with
respect tce andS, while the opposite is not always the case. The followingltas immediate
from the definition.

Proposition 4 Let G andH be two automata.
1. GontH ifand only if G ~pp H.
2. IFECE andSC S thenG ~¢ s H impliesG ~g/ g H.

As conflict equivalence with respect EbandS considers less tesis than standard conflict
equivalence, it is clear that it considers more automatajasa&ent. The modified equivalence
is coarser and has the potential to achieve better abstnacti

Example 6 AutomataG andH in figure 6 arenot conflict equivalent as demonstrated by the test
automatorT . This is becaus6& || T is blocking whileH || T is not. G || T is blocking because the
state(1,0) is reachable by from the initial statg0,0), and(1,0) is a blocking state, becau&e
disables eventr in state 1 and” disables eventg8 andn in state 0. On the other hanld,|| T is
nonblocking since both states can reach a marked state.

14



(1,2)

Figure 6: Two automat& andH such thats ~, g H but notG ~cont H.

Note thatn is not always enabled il since OQH does not hold. In composition with any
testT that hasy always enabled: will be able to continue from state 1 usimg andH will be
able to continue from state 01. It follows from propositiohédow thatG ~,, g H.

Example 7 G~ ¢ H is not true in Figure 4. This can be shown usihgbecause every state
in T had an outgoing) transition, making; an always enabled eventin

Based on example 6, if during compositional verificati@nn figure 6 is one of the automata
in the system (2), and it is known thatis an always enabled event in all automata ex¢&&pt
thenG can be replaced byl to simplify the verification task.

15



3 Simplification Rules

In this section | shall discuss the new and extended ruleésthe been created with the special
events | have found. Before any simplification rules are parén, we have already determined
which events are special. How this is done is discussed troset. Extending the simplification
rules lets them be applied in more places, which leads to wianplification of the automata.
Although many existing simplification rules were investagh only the following three were
found to be able to be extended with always enabled events.

3.1 Always Enabled Events
3.1.1 Silent Continuation

Silent Continuation [10] is a rule used to simplify long creiof T transitions into a single
transition. This is because the automaton can move silattlyg the chain without changing
the state of any other automata in the system. | found thatgthg the rule to include chains
that end with an always enabled event lets this rule simptire states, while still preserving
nonblocking.

Rule 1 (Silent Continuation Rule) In a t-loop free automaton, two incoming equivalent states
that both have an outgoinglways enabledr t-transition are conflict equivalent and can be
merged.

Figure 7: Silent Continuation Rule used to simplify automa®oto automaton H.

Example 8 Consider automato® in figure 7 withE = {n}. States 0 and 1 are both “initial”
since they both can be reached silently from the initiales@atThis is enough to satisfyj,c in
this case, since neither state is reachable by any eventtbtrer. Moreover,G has nor-loops,
state 0 has an outgoingtransition, and state 1 has an outgoing always enabled gvehhus,

by the Silent Continuation Rule, states 0 and Liare conflict equivalent and can be merged
into state 01 as shown .
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Algorithm 1 Silent Continuation Implementation
if |{T}UE|=0then

2:  stop

3: end if

4: for all State -do

5 if s5 ors-b then
6

7

8

9

CalculatelncomingEquivalen¢s
addsto IncomingEquivalenceHashMap
end if
. end for

10: Mergestates inncomingEquivalenceHashMaghich are incoming equivalent
11: RemoveU nreachableStates
IncomingE quivalenceHashMagpused to store states, and groups incoming equivalersdtat
gether.RemoveU nreachableStatesemoves the states in the automaton that cannot be reached
by any sequence of transitions.

Proposition 5 LetG= (A,Q,—g, Q°) be ar-loop free automaton, I& C A, and let~ CQ x Q
be an equivalence relation such thatC ~j,, and for allx,y € Q such thatx ~ y it holds
that eitherx =y or bothx andy have an outgoing)-transition for somea; € EU{r}. Then
G ~ED G/N.

The proof is found in Appendix A.

Prop. 5 confirms that the nonblocking property of the systepréserved under the gener-
alised silent continuation rule, provided titais a set of always enabled events for the remainder
of the system.

Algorithm 1 is an extension of the algorithm that alreadysexin Waters. When the simplifi-
cation rule is run, the automaton is known toop free and andE have already been found.
To simplify the automaton we must find which states that hawewdagoingr or always enabled
event are incoming equivalent. An existing algorithm carubed to find incoming equivalent
states. These states can now be merged because of the Sikimiu@ton rule, making the auto-
mata smaller. After simplification, there may be unreachabdtes that can be removed to save
memory.

3.1.2 Only Silent Incoming Rule

The Only Silent Incoming Rule [10] is a combination of obséin/aequivalence and the Silent
Continuation Rule. If a state has only incomingransitions we can split it into multiple states
using observational equivalence. If this state had an @uggo transition, then we can now
apply Silent Continuation. Since the Silent Continuation Rale been generalised to use always
enabled events, the Only Silent Incoming Rule can be as well.
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Figure 8: Example of application of the Only Silent IncomRgle.

Rule 2 (Only Silent Incoming Rule) If a t-loop free automaton has a stajewith only 1-
transitions entering it, and an always enabledrdransition outgoing from statq, then all
transitions outgoing from can can be copied to originate from the states withansitions taj.
Afterwards, ther-transitions tag can be removed.

Example 9

In figure 8 it holds thaG ~;,, o H. State 3 inG has onlyt-transitions incoming and the
always enabled evemt outgoing. This state can be removed in two steps. Firse Stad split
into two observation equivalent states &d 3 in G/, and afterwards the Silent Continuation
Rule is applied to merge these states into their incomingvatgnt predecessors, resultingHn

Proposition 6 Let G = (A,Q,—¢g,Q°) be at-loop free automaton, and I&C A. Letqe Q

such thay A, for somen € EU{t}, and for each transition-%¢ q it holds thato = 1. Further,
letH = (A,Q,—n,Q°) with

—n={(x0y) |xScyandy#q} U {(x0,¥) | x=cq->cY}. 3)
ThenG ~g g H.

It is shown in [10] that the Only Silent Incoming Rule can beregsed as a combination of
observation equivalence and the Silent Continuation Ruleggested in example 9. The same
argument can be used to prove proposition 6.

18



Algorithm 2 Only Silent Incoming Implementation
1: for all Statex do

2. if there does not exist— with o = {1} UE then
3 addx to keepSet
4:  endif
5. for all Transitionx - ywith o # 1do
6: addy to keepSet
7. end for
8: end for
9: if [keepSét= |Statesthen
10:  stop
11: else
12:  for all Statesourcedo
13: for all Transitionsource=y do
14: if y ¢ keepSethen
15: addy to targetSet
16: end if
17: end for
18: for all target € targetSetdo
19: for all Transitiontarget-> zdo
20: create Transitiosource z
21: end for
22: delete Transitiosource—" target
23: end for
24: end for
25:  RemoveUnreachableStates
26: end if

The Only Silent Incoming Rule removes states, however itnoitereases the number of
transitions. Yet, it usually improves the structure of théoaaton such that it allows other rules
to be applied.

Algorithm 2 is a simplified version of the implemented algiom, which also handles gen-
eralised nonblocking [15] and the Silent Incoming rule, evhiloes not require every incoming
transition to ber.

Although the Only Silent Incoming rule has been shown as fij@i@ation of Observational
Equivalence followed by Silent Continuation, this algamitlis a shortcut. We do not need to
split any states into two as shown in example 9, as that isrestypeand unnecessary.

This algorithm first finds the states that will be kept thesghe states that cannot be removed
using Only Silent Incoming. However, any states which atdoand to be kept are those which
satisfy the requirements of Only Silent Incoming and maydmaved. The source states where
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the outgoing transitions of the removed state will be copcedre then found. After moving
the outgoing transitions, the incomingtransition from the source state to the target state is
removed. When all the incomingtransitions are removed the state will become unreachable,
and it is removed in the final step.

Figure 9 shows algorithm 2 being applied. State 3 is founcktthb only state that is not kept.
We then loop over each of the states. We set state 1 to be theessiate, since it is the first state
with an outgoingr to state 3. IG2 we have copied each of the outgoing transitions from state 3
to state 1. The transition between them is also removed. We then choose Atatbe the next
source state. 163 the outgoing transitions are copied from state 3 to staa@@ther transition
removed. After looping through each of the states we can eowove unreachable states. Since
state 3 has no incoming transitions, it is unreachable, arméus be removed resulting 4.

Gl

Figure 9: Example of implementation of the Only Silent IneéoghRule.

3.1.3 Limited Certain Conflicts Rule

Some automata contain blocking states, i.e., states froerewit is not possible to reach any
state with anw-transition. If one automaton in a synchronous composiénters a blocking
state, then the composition is blocking. We can also lookatstates with transitions entering
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a blocking state. If we know these transitions are enablesh the state will be able to enter
the blocking state. If a state has an always enabled trangiia blocking state then it is also a
blocking state, as it is always possible for it to reach sestdtere it cannot reach any state with
anw-transition. We can use this to find more blocking states. Whielocking state is found, all
it's outgoing transitions are removed and it is merged ihtodther blocking states.

Every automaton is associated with a languageeofain conflictd13], which characterises
exactly the traces that cause blocking in every possibleegbnit is possible to calculate all states
of certain conflicts and construct an abstraction that cegall certain conflicts by a single state.
Unfortunately, the algorithm to do this is exponential i tumber of states of the automaton to
be simplified [14].

To reduce the complexity, the Limited Certain Conflicts Rule] [Afproximates the set of
certain conflicts. If a state hasratransition to a blocking state, then the source state also i
state of certain conflicts. This can be extended to includeysd enabled events, because if an
always enabled transition takes an automaton to a blockatg,shen nothing can disable this
transition and the system is necessarily blocking.

Rule 3 (Limited Certain Conflicts Rule) If an automaton contains an always enabled -or
transition to a blocking state, then the source state oftarsition is a state of certain conflicts,
and all its outgoing transitions can be deleted.

G H H’
B B
0 1 0 1 0
a a a a,p
2 3 2 (D! 1
Figure 10: Example of application of the Limited Certain CantéliRule.

Example 10 Consider automatof in figure 10 withE = {n}. State 2 is already blocking,
and states 1 has an always enabfetransition to the blocking state 2. All transitions from
this state are removed. This results in automadtonNow state 3 is unreachable and can be
removed, and states 1 and 2 can be merged using observatiivalegce to creatkl’. It holds
thatG =o.{n} H ~conf H'.

Proposition 7 Let G = (A,Q,—¢,Q°) be an automaton and C A, letq € Q be a blocking

state, and lep a, q for somen € EU{t}. Furthermore, leH = (A,Q, —n,Q°) where—y =
{(x,0,y) € = |x# p}. ThenG ~gp H.
The proof is found in Appendix B.
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Prop. 7 confirms that a state withtaor always enabled event transitions to some other
blocking state can also be made blocking, by deleting ai@ag transitions (including) from
it. The Limited Certain Conflicts Rule should be applied repdigi@s the deletion of transitions
may introduce new blocking states and thus new certain ctsfli

The original Limited Certain Conflicts Rule [10] also allows tieenoval of nondeterministic
transitions: if a transitiomp 4, g enters a blocking statgthen all otherr-transitions from state
can be removed. This aspect of the rule is not changed by alegbled events.

Example 11 Description of how Limited Certain Conflicts has been impletadnn Waters.

A major part of nonblocking verification is, once a system hasn found to be blocking,
giving a sequence of events that may be taken to reach a bpskate. This has not yet been
discussed in this report, as the only time it was encounteesdwhen implementing the Limited
Certain Conflict rule. Since this rule involves finding additb blocking states using and
nondeterministic transitions, it has been implementedh shat it is easier to find the original
blocking state. This is done by giving each state a deptheviahised on how far it is from the
original blocking state.

Algorithm 3 shows how the depth is calculated for each staenextended to include always
enabled events. This example shows how it has been appliggite 11.

Firstly, find all coreachable states. These are the staa¢sdim reach a marked state through
some sequence of transitions. St&{es the only state that cannot reach a marked state, so it is
given depth 0, while the rest are given depth -1. Current diegét to 1. There is an transition
from S to S, so statess is blocking and given depth 1. Current depth is set 825 S5, andSs
has just been found to be blocking. Sg)g S, is removed, and nows cannot reach the marked
state, so it becomes blocking with depth 2. Current depthtisosg. S a, S3 505, becomes
blocking with depth 3. Current depth is set to % 45,5092 S is removed. However,
sinceS is marked, it is still found to be coreachable so remains ptidel.

Finally, blocking states have transitions removed and amed into state. Unreachable
states are removed. This results in automatohe depths may be used later to shgywas a
blocking state the system could reach.

G 53 H
S

a

S: -1 S 1 S 0 +

Figure 11: Depths of automaton states after Limited Certamfii€ts is applied.
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Algorithm 3 Limited Certain Conflicts Implementation
1: newBlocking= false
2: FindCoreachableStatés
3: for all Statessdo
if Coreachablej) = truethen
depths) = -1
else
depths) =0
newBlocking= true
end if
10: end for
11: currentDepth=0
12: while newBlocking= truedo
13: newBlocking= false
14:  currentDepth+
15:  for all Transitionsx-> ywhereo € {T}UE do
16: if depth{x) = —1 anddepthy) > O then

© o N TR

17: blockingx)

18: depthx) = currentDepth
19: newBlocking= true

20: end if

21:  end for

22 currentDepth+
23:  forall Transitionsx > ydo
24: if depth(x) = —1 anddepthy) > 0 then

25: delete Transitiong >

26: add Transitiorx - y

27: FindCoreachableStatép

28: if Coreachableq) = falsethen
29: blockingx)

30: depthx) = currentDepth
31 newBlocking= true

32: end if

33: end if

34: endfor

35: end while

FindCoreachableStatés performs a backwards search from all marked states, andceds tos
find states which can reach a marked sthtecking's) is used on states that have been found to
be blocking. It removes all outgoing transitions and magkifrom state s.
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Algorithm 3 finds the blocking states of an automaton usingitad Certain Conflicts with
Always Enabled Events. Each of the blocking states is givele@h here, and when a state
is found to be blocking the outgoing transitions are remoaed it is merged intal to save
memory. Coreachable states are states that can reach a rstateethrough some sequence of
transitions. They have depth -1. The blocking states foarite first coreachability search have
depth 0. States with or always enabled events entering a blocking state are inlgpcand have
odd depth. If a state has multiple transitions of the samatematgoing to different states this
is nondeterministic. If a nondeterministic event tramsitenters a blocking state, then the other
transitions of this event on this state are removed. If thisses the state to become blocking
then it has even depth.
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3.2 Other Selfloop-Only events

Another special type of event are events that are selflodpio every automata except the one
being simplified. Selfloops with this event can be added oraeed freely to the automaton
being simplified. This can save memory by removing transgiand can be applied in many
places to let other rules be applied.

To verify nonblocking, we check if every state in the final sgronous composition of all
automata can reach a marked state. Selfloops in the finahsymaus composition have no effect
on the blocking nature of the system, since any path betweestates passes the same states if
all selfloops are removed from the path. So, the final synabume composition is nonblocking if
and only if it is nonblocking with all selfloops removed.

Rule 4 (Selfloop Removal Rule)lf an eventA is selfloop-only in all other automata, then self-
. A
loop transitiong] — g can be added to or removed from any state

If an event only appears on selfloops in all automata, thearitbe removed entirely. This is
because the event never changes the state of any autonthtn eannot affect nonblocking.

Figure 12: Example of the removal and addition of selfloops.

Example 12 Figure 12 shows a sequence of conflict-preserving chang®s &mtomaton con-
taining the selfloop-only evemt. First, theA-selfloop inG; is removed to creat&;. In Gy,
states 0 and 1 are close to observation equivalent, as ththyhbwe af-transition to state 2;
however 0 has a-transition to 1 and 1 does not. Yet, it is possible to addselfloop to state 1
and creaté>3. Now states 0 and 1 are observation equivalent and can bestheygreatds,.
Finally, theA -selfloop inG, is removed to creat€s.

Prop. 8 below confirms that the Selfloop Removal Rule preserwesict equivalence when
selfloop-only events are considered.
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Proposition 8 LetG = (A,Q, —¢,Q°) andH = (A,Q,—n,Q°) be automata with-y = —gU
{(a,A,0)} for someA € A. ThenG ~¢ ¢, H.
The proof is found in Appendix D.

Prop. 8 shows that the addition of a single selfloop preseceaflict equivalence. it can be
applied in reverse to remove selfloops, and it can be appdipeatedly to add or remove several
selfloops in an automaton or in the entire system.

Example 13 Figure 13 shows that selfloop-only event transitions canebeorved if they are
parallel to ar transition. AfterA has been added to state 1G#, it is easy to see thatd 1is

possible with or without the d. 1 transition. This means it is redundant, and can be removed
to get automatorGz. This automaton can be simplified further by removing eelfloop
transition, resulting ir,.

Gl GZ G3 G4
0 0 0 0
T,A T,A T T
1 1 1 1

Figure 13: Example of the removing redundant selfloop-oraggition.

The implementation in section 6 uses selfloop removal whemnapplicable to delete as many
selfloops as possible. When creating an automaton, selflaogitions are not created if the
event is recognised to be Other Selfloop-Only. In additidsseovation equivalence has been
modified to assume the presence of selfloops for all selflmdy events in all states, so as to
achieve the best possible state-space reduction.
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4  Finding Always Enabled and Selfloop-only Events

Before any of the extended rules can be used to simplify amzattm, we need to know which
events are always enabled and selfloop-only. This sectgsusses how these events may be
found.

Assume the system (2) encountered during compositiondiocagion is

Gy G| [IGn, (4)

and automatof®; is to be simplified.

An event must be always enabled or selfloop-only in all themata not being simplified,
T =G| - || Gn. For each component automatG such events are easy to detect based on
definition 10 and 11 in Section 2.7. An always enabled evertabled on every state in the
automaton, and a selfloop-only event is only present in thenaaton as selfloop transitions.
Using these definitions it can also be seen that these prepedrry over to the synchronous
product, which means we do not need to search for these piepar the synchronous product
if we already know they are satisfied in the individual auttana

4.1 Finding Additional Always Enabled Events

When searching for always enabled events, it is often pastldind additional events that satify
the definition if a more sophisticated method is used.

As we have seen in 3.1.3, many automata contain blockingsstahese states have no out
going transitions, and any event would be found to be notygveaabled in any automaton with
a blocking state if using the simple search above. Howegeadaing a selfloop to a blocking
state cannot change whether the system is nonblocking pweatan imagine a selfloop on the
blocking state of the event we are searching for. This makesssible to find always enabled
events in automata with blocking states.

We can also use transitions to find more always enabled events, as the defirstates that

in each state it holds that rather than'>. This means that we can do any number of sitent
transitions to reach a state that hpgnabled, rather than needing to hayenabled in every
state. In addition, this method can be made even more powerédundant tau transitions are
added to an automaton. This increases the number of tautivpassand so we can find many
more always enabled events.

Example 14 Consider automato® in figure 14. It can be seen that'd and 2-% but state 1
has no outgoing) transition. However, 1% 2% s014 Thereforen can be considered as an
always enabled event since=: is true in each state.

Example 15 Consider automato® in figure 15. It clearly holds that g, and 1502 and
thus 1. Although n is not enabled in state, this state is a blocking state and the set of
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Figure 14: Finding an always enabled event Wwikh

enabled events for blocking states is irrelevant—it is kng®4] thatG is conflict equivalent
to G'. Thereforen can be considered as an always enabled eve®t amd thus also ifG.

G G

n n
1 0 1
a T o T
1 1

Figure 15: Finding an always enabled event with dump states.

4.2 Conditionally Always Enabled Events

Conditionally always enabled events can be used for the Biogpion rules but because of how
they are defined many more of these events can be found. Matgsshay not have event
enabled, however if they are not possible in the currené stthe automaton being simplified
this does not matter. An event is conditionally always eedlifithe environment enables it in
all states where it is possible in the automa®®to be simplified.

Definition 13 LetG = (A,Qg, —,Qg) andT = (A, Qr,—1,QF) be automata. An evemt €
A is conditionally always enablefr Gin T, if for all s€ A* such thaQg 2 s and all statesr €
Qr such thaQs =7 xq, it holds thatxy =.

The following proposition 9 shows that the result of composal nonblocking verification
is also preserved with events that are only conditionailyagk enabled.

Proposition 9 Let G, H, andT be automata, and I& andS be event sets such thGt~g s H,
andE is a set of conditionally always enabled 8rin T and forH in T, andS s a set of self-
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loop-only forT. ThenG || T is nonblocking if and only iH || T is nonblocking.
The proof is found in Appendix E

There is an additional condition that must be satisfied fatralstion rules using conditionally
always enabled events. That is that the events must stilbbdittonally always enabled after
abstraction. If no new conditionally always enabled evdrage been added to the language
during abstraction this will always be true, but if for soreason this is done, the new events must
be verified to be conditionally always enabled in the autamatfter abstraction. This means
that in some cases the limited certain conflict rule cannafgy@ied backwards. Investigation
of figure 10 shows that automatéhcannot be 'simplified’ to automatad@ if n is conditionally
always enabled foH but not forG. However,G can still be abstracted td and the limited
certain conflicts rule can always be done in reversgig an always enabled event.

Example 16 Finding conditionally always enabled events &t in G2 in figure 16. In this
example we are trying to simplify automat@1 somehow, and are looking for any events that
are conditionally always enabled and may be used in someaahen rules here.

Firstly, observe thatr is enabled in states 0 and 1 @i. This event will be conditionally
always enabled &2 if we a is enabled in every state (B2 where the state dé1 is 0 or 1. To
find these states we can obse@e|| G2. SinceGl | G2 contains states (0,0), (1,1), (0,2) and
(1,0) we must check that is enabled in states 0, 1 and 2G2. However, sincer is not enabled

in 1, it cannot be conditionally always enabled &t in G2. That is,Qg; 22 is enabled, but
Q&2 2% is not.
Next, observe thgB is enabled in state 1 iB1. So, since the synchronous product contains

states (1,1) and (1,0) we must check tBais enabled in states 1 and 0 @2. But 3 is not

enabled in state 0 iG2 so it cannot be conditionally always enabled@&irin G2. Qg; P s

enabled, buQg, P4 is not.

Finally we checly. yis enabled in state 2 iB1. G1|| G2 contains state (2,1) ands enabled
in state 1 inG2. This meany is a conditionally always enabled event 8t in G2.

Example 17 Finding conditionally always enabled events 62 in G1 in figure 16. In this
example we are trying to simplify automatQ@2.

Firstly, observe thatr is enabled in states 0 and 2@2. The synchronous product contains
states (0,0), (1,0) and (0,2), so states 0 and@Glirare checked. Both states enablesoa is a
conditionally always enabled event fG2 in G1.

Next, observe thgB is enabled only in state 1 iG2. UsingGl|| G2, we see that we must
check thatB is enabled in states 1 and 2@1. However, sincg is not enabled in state 2, it

cannot be a conditionally always enabled evenGar Qg aBa:gB is enabled, buQg, alﬁgﬁ is
not.
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0.2)

Figure 16: Finding a conditionally always enabled eventih G

Finally, observe thay is enabled in states 1 and 2@G2. The synchronous product has states
(1,1), (2,1) and (0,2). Howevey; is not enabled in states 0 and 1®@1. So it cannot be a

conditionally always enabled event fG2. Qg, 2is enabled, buQg; s not.

Note that none of these events are always enabled in eithematon. However we have
found thaty is conditionally always enabled f@1 in G2 anda is conditionally always enabled
for G2 in G1. This is clearly a more powerful method for finding speciadrgs that can be used
in the extended simplification rules, leading to more pdesbmplification.

Conditionally always enabled events can be used like geakvalys enabled events, but they
are more difficult to find. To check the condition of definitid8, it is necessary to explore the
state space d@& || T, which has the same complexity as a nonblocking check. et ondition is
similar tocontrollability [6], which can often be verified quickly by amcremental controllability
checl{4]. The incremental algorithm gradually composes somaetiutomata of the system (4)
until it can be ascertained whether or not a given event iglicionally always enabled. It many
cases, it gives a positive or negative answer after comgasity a few automata.
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By running the incremental controllability check for a shtorte, some conditionally always
enabled events can be found, while for others the resultirenaconclusive. Fortunately, it is
not necessary to find all always enabled events. If the stdtas event is not known, it can
be assumed that this eventnst always enabled. The verification result will still be cotrec
although it may not use the best possible abstractions. elh@gigh to only consider events as
always enabled or selfloop-only, if this property can balkekshed easily.
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5 Implementation in Waters

This section discusses how the new simplification rules baes implemented and tested in the
Model Checking program Waters.

Waters,The Waikato Analysis Tool for Events in Reactive Systerasdeveloped by the For-
mal Methods Group at the University of Waikato, and later borad with Supremica, developed
by the Department of Signals and Systems at Chalmers Urtivefsiechnology in Gothenburg,
Sweden [1]. Itis a tool to model and analyse finite-state nmechodels. The compositional
nonblocking verification algorithm and many simplificatiates had already been implemented
here. These included the rules that | have now extended suSiiemt Continuation and Silent
Incoming [16]. | have also needed to add support for alwagblkea and selfloop-only events.

Before investigating the code, | spent some time creatingetsodf various systems and
looking at the examples included with the program. Thereharedreds of automata included,
which may be used as examples or for testing. By looking aethésund how compositional
modelling works, how the automata are composed and thediSedpand how difficult it is to
tell if a system will be blocking even after studying it clbsel he state-space explosion problem
also became clear, as the synchronous composition of mtis¢ @xample systems were far too
large to display graphically.

| then started work on the code, starting with the simplifaratules. Each of the simpli-
fication rules were in a separate class, so by cloning theetafr the rules | was extending
changes could be made without breaking other parts of thierays quickly found that the code
needed to be a lot more complex then the short rule it was jpeirig. Also, while each class
had a short explanation, the details were largely uncomedantking it difficult to see what was
happening. So | began by adding comments at each line to help the purpose of different
parts of the code. Since | was only extending the rule at thistpl did not want to change
the structure of the code significantly, instead only chaggvhat was necessary for the rule to
respect the new special events. At this point | had not addealyao find the special events, as
this was more complicated than changing existing code. lldcmst that the simplication rules
were working properly without this adding possible errors.

To test the new rules, | tested that they simplified automateectly. Many pairs of before
and after automata were created for this purpose. By creatiggecific automaton and the
automaton that would result after applying the rule | coeld i the rule was working as intended.
When modelling these test automata | could say which events aeays enabled or selfloop-
only, removing the need to search for them. | modelled theaig®mata to test certain complex
cases where the rule would be applied, for example when tloerata was nondeterministic or
could be simplified multiple times. There were also a largmber of existing test automata
that could be applied, this was important to ensure addiagstipport for special events hadn’t
broken any existing code.

After | was satisfied the extended rules would simplify auatenas expected | could move
deeper into the code. To add support for finding special eMamdeded to understand a lot more
of the structure of the program, particularly the composiil nonblocking algorithm. An im-
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portant part of this algorithm is the order automata are ehds be composed. This is important
as it can greatly change the size of the final synchronous ositiqn. There are many factors
to consider, including the number of states and transitiotise composition. It is also valuable
to have a large number afand always enabled events, as these are used when singplifygn
automata. Which automata are composed together are chosgastibally, using an existing
two-step approach [10]. In the first step, socamdidatesets of automata are formed, and in the
second a most promising candidate is selected. For each evienthe model, a candidate is
formed consisting of all automata with in their alphabet. This is used to increase the number
of T events in the composition. Among these candidates, theidaedwith the smallest esti-
mated number of states after abstraction is selected. Timeats is obtained by multiplying the
product of the state numbers of the automata forming theidatedwith the ratio of the numbers
of events in the synchronous composition of the candidaes ahd before removing any local
events. This strategy is callédustL/MinS [10, 16]. A new heuristic was written to try max-
imise the number of always enabled events, however this bagigmificant improvement over
the existing heuristic that was instead chosen.

After identification of a candidate, its automata are coreposnd then a sequence of ab-
straction rules is applied to simplify it. First;loops (definition 8) and observation equivalent
redundant transitions [9] are removed from the automatdns i followed by the Only Silent
Incoming Rule (proposition 6), the Only Silent Outgoing Rul@]| the Limited Certain Con-
flicts Rule (proposition 7), Observation Equivalence (psafon 1), the Nona Determinisation
Rule [16], the Active Events Rule [10], and the Silent ContitamraRule (proposition 5).

When finding special events, the main mistake | wanted to avaglincorrect identification,
as this would quickly lead to simplification that did not prase nonblocking. | also wanted to
ensure that | was finding as many special events as possiblelén to maximise the possible
simplification. Although my first attempts did not find manyesgal events, | could still change
the structure of the compositional verification algorithoruse them. | could then run tests and
see nothing had been broken and how much simplification wiag laelded.

The result of my improvements to the algorithm is that dusimgplification, all selfloops
with selfloop-only events are deleted, and observatiorivatence and the removal of obser-
vation equivalent redundant transitions exploit selflmmpy events for further simplification.
Furthermore, the Only Silent Incoming Rule, the Limited Ciar@onflicts Rule, and the Silent
Continuation Rule take always enabled events into account.

In addition to the small automata used to test single rulesteW¥ also contains a large test
suite. The test suite includes complex industrial modets@se studies from various applica-
tion areas such as manufacturing systems, communicatoqais, and automotive electronics.
Included are all models used in [16] with at leastlB’ reachable states that have been used for
experimental results.

| could use these to test the compositional nonblockindieation algorithm with the support
for special events added. The main properties to test wetethle nonblocking result was the
same as expected and that no errors had been introducedldlatsa run these tests with the
original rules still in place. This meant that when lookirtgree statistics of what simplification
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had occurred, | could see quickly the improvements my ruba$ ¢tcompared to the originals.
Unfortunately at first | found they only had a very small impement.

| also saw that the number of always enabled events was mualesrthan hoped, so |
reinvestigated how they were found. By this point | underdtomwre of the code, and was able
to move the search to a place where it was both faster and rffeotive. | also discovered and
implemented the improvements discussed in section 4. Mayd enabled events were found
in the small models that could be investigated carefullyydxer this is no guarantee that all
always enabled events are always found in larger systems. aditlition of the conditionally
always enabled events algorithm increased the amount @iification significantly, though at
the cost of speed.
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6 Experimental Results

Experimental results have been gathered from the impleaatientin Waters. This data is shown
in Table 6.

A number of strategies have been used to show the improvenoéihe extended always
enabled and selfloop-only events rules compared to thenatigimplification rules.

For the experiments, the detection of always enabled ewwmmdsselfloop-only events can
be turned on and off separately, producing four stratelji@se (no special eventsBL (self-
loop-only events)AE (always enabled events), a&d/AE (selfloop-only and always enabled
events).

The strategiedE andSL/AE consider events as always enabled if they are always enabled
in every automaton except the one being simplified. Two &rrtrategieSL/AE (200 and
SL/AE (1000 also search for events that are conditionally always edabiis is done using
an incremental controllability check [4] that tries to caomsp an increasing part of the model
until it is known whether or not an event is always enabledyrdil a state limit of 200 or 1000
states is exceeded; in the latter case, the check is abathdodehe event is assumed to be not
always enabled.

For each model, Table 6 shows the total number of reachadifessh the synchronous com-
position (Size) if known, and whether or not the model is Hooking (Res). Then it shows
for each strategy, the number of states in the largest atttongancountered during abstraction
(Peak States), the number of states in the synchronous sitiopeexplored after abstraction (Fi-
nal States), and the total verification time (Time). The bestlt in each category is highlighted
in bold.

In some cases, compositional nonblocking verification teates early, either because all
reachable states of all automata are known to be marked,caube some automaton has no
reachable marked states left. In these cases, the finalyats composition is not constructed
and the final states number is shown as 0.

All experiments are run on a standard desktop computer wsiiggle core 3.3 GHz CPU
and 8 GB of RAM. The experiments are controlled by state liniftduring abstraction the syn-
chronous composition of a candidate has more than 100,8@ssit is discarded and another
candidate is chosen instead. The state limit for the finatisganous composition after abstrac-
tion is 1 states. If this limit is exceeded, the run is aborted and timeesponding table entries
are left blank.

The results in Table 6 demonstrate that compositional eatitin can check the nonblocking
property of systems with up to i®states in a matter of seconds. The exploitation of always
enabled and selfloop-only events reduces the peak or fa@ sttimbers in many cases. This is
important as these numbers are the limiting factors in catipoal verification.

Unfortunately, the runtimes rarely improve as the smaliaresnumbers are outweighed by
the effort to find always enabled and selfloop-only eventise $earch has to be repeated after
each abstraction step, because each abstraction can proelu@lways enabled or selfloop-only
events, and the cost increases with the number of steps antkeonditionally always enabled
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events can produce better abstractions, but it takes a tohefto find them.

There are also cases where the state numbers increase wasagnabled and selfloop-
only events. A decrease in the final state number after diicgtion can come at the expense
of increase in the peak state number during simplificationth\Wore powerful simplification
algorithms, larger automata may fall under the state limidso, different abstractions may
trigger different candidate selections in following stephich are not always optimal. In some
cases, the merging of states may prevent observation éepoeafrom becoming applicable in
later steps.

A significant result of my work is that the large PROFIsafe eled12] can only be verified
compositionally with selfloop-only events. By adding alwaysbled and selfloop-only events
to the available tools, it becomes possible to solve problgrat are not solvable otherwise.
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Table 1: Experimental Results

LE

None SL AE SL/AE SL/AE (200 SL/AE (1000
Peak Final Time Peak Final Time Peak Final Time Peak Final Time Peak Final Time| Peak Final Time
Model Size |Res states states [s] states  states [s] states  states [s] states  states [s] states  states [s]| states  states [s]
aipOaip 1.02-10° yes| 1090 5 1.2| 1090 5 1.3 1090 5 1.3 1090 5 1.2 892 5 245 892 5 319
aipOalps 3.00-1C° | no 18 16 0.2 18 16 0.2 18 16 03 18 16 0.3 18 16 1.4 18 16 1.4
aipOtough 1.02-10'°| no |96049 19833682 8206049 17066874 47|DP6049 19829534 76|D6049 17063170 46.096049 17063170 46.7/96049 17063170 105.8
aiplefa(3) 6.88-1C% | yes|40290 187870812.5/40290 1878708 12/A0290 1878708 13/20290 1878708 13/82980 1726127 17/81960 1707905 40.8
aiplefa(16) |9.50-10%2| no |65520 1379962821.8(65520 13799628 22|®5520 13799628 22|$5520 13799628 22/B5520 13799628  28|%5520 13799628  48.0
aiplefa24) |1.83-10%| no | 6384 13846773 18[16384 1384677318.1| 6384 13846773 18/46384 13846773 18[25313 13846773 23/85292 13846773 42.3
fencaiwon09 |1.03-10° |yes|10421 105 2.3|10421 105 2.410421 105 2.410421 105 2.410421 105 3.510421 78 6.3
fencaiwon09b|8.93- 107 | no |10421 81 1.910421 81 1.9/10421 81 2.010421 81 1.910421 62 3.4/10421 62 5.7
ftechnik 1.21-10° | no| 172 0 03] 172 0 03 172 0 04 172 0 04 172 0 4.3 172 0 5.4
profisafe_i4 yes 74088 409 84.2 49152 9864 67.2/49152 9864 630.249152 9864 2873.7
profisafe.i5 yes 98304 57888 68.5 98304 12070 71.9/98304 120701181.698304 120702969.0
profisafe.i6 yes 55296 148284 51.2 52224 628131 84.952224 628131 1830.252224 628131 4179.5
tbed_ctct 3.94.10'3| no |43825 0 14.1/43825 0 14.243825 0 16.343825 0 16.543825 0 20.843825 0 436
tbed_hisc 5.99-10'2|yes| 1757 33 2.4 1757 33 2.4 1705 33 2.6| 1705 33 2.5/ 1705 33 23.6| 1705 138  90.1
tbed_valid 3.01-10'2| yes| 50105 3839 9.5/50105 3580 9.750105 2722 10.350105 2621 10.0{50105 2621 14.6/50105 2621 28.3
tip3 2.27-10" | yes| 6399 173 3.1| 6399 173 3.212303 153 4.512303 153 4.512303 153 6.012303 149 6.4
tip3_bad 5.25.109| no | 1176 14 0.9 1254 14 0.9 1176 0 1.1} 1231 0 1.1 1231 0 2.9 1231 0 3.7
verriegel3 9.68-10° |yes| 3303 2 1.6 3303 2 1.3| 3349 2 1.7 3349 2 1.4 2644 2 6.0 2644 2 9.7
verriegel3b  [1.32-10° | no | 1764 0 1.0/ 1764 0 1.1] 1795 0 1.1 1795 0 1.2 1795 0 5.8 1795 0 8.4
verriegel4 4.59-10% | yes| 2609 2 1.3| 2609 2 1.4 2644 2 1.3 2644 2 1.8 2644 2 8.6 2644 2 154
verriegeldb |6.26-10'°| no | 1764 0 1.1 1764 0 1.2 1795 0 1.2 1795 0 14 1795 0 8.2 1795 0 132
6linka 2.45.10"| no 64 0 04 64 0 04 o4 0 04 64 0 04 o4 0 22 64 0 2.7
6linki 2.75-10"| no 61 0 03 61 0 03 61 0 03 61 0 03 61 0 1.7 61 0 2.0
6linkp 4.43.10"| no 32 0 03 32 0 03 32 0 03 32 0 03 32 0 1.7 32 0 2.0
6linkre 6.21-10'%| no| 118 12 05| 118 12 0.5 106 0 05| 106 0 05| 106 0 23| 106 0 27




7 Conclusions

The goal of this project was to create better simplificatioles that could be used to simplify
systems further and therefore allow the verification oféargystems. This was done by taking
into account additional information about the context inickhan automaton to be simplified
is used. Specificallyalways enabledndselfloop-onlyevents are easy to discover and can be
used to simplify automata. These improved simplificatiolesthave been proven to preserve
nonblocking and have been implemented in Waters. Expetahsssults are gathered from test-
ing a set of models that include complex industrial modesfmultiple areas. The experiments
demonstrate that the improved algorithms can simplifyghmedels further and that a previously
unanalyzable model can be verified with the improved algorg.

7.1 Future Work

In future work, it is of interest whether the algorithms taet# and use always enabled and
selfloop-only events can be improved.

Conditionalt events are another type of special event that have also beestigated but
not yet implemented. These are events whichbaxth conditionally always enabled and condi-
tionally selfloop-only. These events are very interesting potentially powerful, as they can be
completely replaced in the automaton being simplified by

Finding Conditionally Always Enabled Transitions is anativay of using information from
automata other than the one being simplified. These transifare those which are not disabled
by any other automata in the system, similar to conditignallvays enabled events. For exam-
ple, in figure 16 there are four transitions@i. Transitions 0% 1 and 2% 0 are conditionally
always enabled fo61 in G2. These transitions should be able to be used similarly halieo
tionally always enabled events in the extended rules ofrégsrt, and could possibly be used to
build new abstraction rules.
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Appendix

A Silent Continuation Proof

Proof. LetT be an automaton such thats always enabled for.
First assume thas || T is nonblocking.

To see thatG/~) || T is nonblocking, le{G/~) || T = (& x7).

By lemma 3, there exists€ X such tha® = x.

ThereforeG || T = (x,x7).

SinceG || T is nonblocking, there existss A* such thatx, xr) £

By lemma 2, this implie$X,x7) = ([X],xT) ¥ ie.G || T is nonblocking.
Conversely assume th@®/~) || T is nonblocking.

LetG|| T = (x,x7). Then, by lemma 2 it holds th46/~) || T = ([x],xT).
Consider three cases.

1. [x] = {x}.
Since(G/~) || T is nonblocking, there existsc A* such that[x], xT) £
By lemma 3 and sinceis the only state irx, it follows that(x, xr) K3

2. x L y for somen € E andy € Q.

ThenG||T = (x,x7) L (y,yr) for some stategof G andyr of T, because < E is always
enabled inT.
By lemma 2, it follows thatG/~) || T = (Iy], ¥7)-

t

Since(G/~) || T is nonblocking, there exists= A* such that]y],yr) =.
By lemma 3, there existg € [y] such thaty,yr) @

Sincey ~inc y andx -5 vy, it follows thatx - y.

Therefore (X, xT) 4, Y,yr) K3

3. x5 yfor somey € Q.

SinceG is T-loop free and finite, there exists a stste Q such tha = y andy’ - does
not hold.
If [y'] ={y'} then the proof continues as in case 1.

Otherwise, sincg’ - does not hold, it follows by the properties sfthaty’ 7, for some
n € E, and the proof continues as in case 2.

In all three cases, it has been shown ttxaxr) 9.
ThereforeG || T is nonblocking.
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B Limited Certain Conflict Proof

Proof. LetT be an automaton such thats always enabled foF.

First assume thds || T is nonblocking.

To see thaH || T is nonblocking, leH || T = (x,x7).

Clearly —y C —g, SOG|| T = (X, x7).

SinceG || T is nonblocking, there existss A% such thatx, x7) “¥inG I|IT.
Then lett = 01 - - - 0 and write

0 .0\ O 1 .1\ O Oy w
(x.x1) = ) =gt (X xF) ST - =g X)) ST (5)

Let (xi xiT) ﬂG”T (X+1,x+1) be an arbitrary transition on the path (5).

If X —%5x*1 does not hold, themlr qu x'T+1 is a transition inT andx = xi 1,
It follows that (x,x) 2 (X&) = (L),
Otherwise, if\ —= he ¢ X*1, then assume for the sake of proof by contradiction, thatthnsition

does not eX|_st i, _

This means' = p, gi,1 = n, andx+1 =q.

Consider the two cases fgre EU{1}.

If n € E, thenx: A, yr for some statgr of T asE is always enabled iff, and thug(x', ;) =
(p.Xr) DT (A1)

If n =1, then(x,x;) = (p,x) Sy (0, Xr).

In both cases, it follows thax, xr) %GHT (X %) = (p.xr) Lt (a,y7) for some state
yr of T.

However,(q, yr) is a blocking state becauges a blocking state 6.

ThenG || T is blocking in contradiction to the assumption.

It follows that the transitiorxi gG X1 was not removed and is still presenttin
Again it holds tha(x', X ) —’HHT (X+1 ),

Thus, the path (5) exists i || T, i.e.,H || T is nonblocking.

Conversely, assume thidt|| T is nonblocking.

To see thaG || T is nonblocking, leG || T > (x, xr).

It is to be shown thagx, xr) 9
Lett = 01 - - - on and write

o 1 .1\ O o
0Cq) Seyr (5 xF) St - oy () = (X, xr) (6)

wherex? andx$ are initial states os andT, respectively.

It is shown by induction ok =0, ..., n that (,x¢) 2% .+ (x
This is trivial fork = 0.

).
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Now assuméx®,x@) 2%, o (XK, %K) for somek < n.

If X< 2L, - ¥k+1 does not hold, then clearkf = x<+1

and thus(x,x}) ggk—>H|\T (X4 ﬂ’HHT () = (L),

Otherwise, itk 2%, 5 x<+1, assume that the this transition does not exisi in

This means that = p, and thus by inductive assumpti,x@) =%, .+ (p, X&), wherepis

a deadlock state iH (with no outgoing transitions by construction, and tlhwsever possible).
ThenH || T is blocking in contradiction to the assumption.

It follows that the transitionxX &G X1 was not removed and is still presenttin

By inductive assumptior(x®,x3) 2%, | o (5 k) P (L kD

Since furthermor& andH have the same initial states, it follows from the inductioatt | T -
(X, XT).

SinceH || T is nonblocking, it follows thafx, xT) t—‘”>HHT for somet € A%.

Since—y C —g, this implies(x,xt) Sg|r.

It follows thatG || T is nonblocking. O
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C Selfloop Removal Lemma

The Selfloop-only addition proof uses this lemma to show sletftoop removal does not affect
the existence of paths.

Lemma 10 Let G= (A,Q,—¢g,Q°) andH = (A,Q,—H,Q°) be automata with-y = —g U
{(9,A,q)} for someA € A.

Furthermore, leT be an automaton such thats selfloop-only forT.

For all pathg(x,xt) —t (Y,yr) it also holds thatx,xr) —g| (¥, Y1)

Proof. Assume(x,x7) = (x2,x9) ﬂH”T (xt,xd) g2>HHT ﬂlHHT (XY = (y,y1)-
The claim is shown by induction am
Forn=0, this is clear ag$x,xt) = (y,yr). Now consider a path

(o) Oy (&
(xx1) = &) Sy - B () Sy (XX = (y,y7),
where(x’,x3) —gt (x",X}) by inductive assumption.

. . (& .
For the path’s final transitiox, x1) =1 (X**1,x¢"1), consider three cases.

(o] (o] . s .
If X" =Ly X1 does not hold, ther? %, X is a transition inT andx" = x™1.

By inductive assumptior(x,xr) = (x%,x¢) —g (X", x}) = (x"1, X3,

(o] . A .
If X" Ly x L is the selfloopq %4 g, thenx™?! = x" and X! = X2 becausesy; 1 = A is

selfloop-only forT.
By inductive assumption, it follows thax, xr) = (X%, x¢) —gr (X", x}) = (x"1,x31),

Otherwise, ifx" 7L, x"+1 is not the selfloop LN g, thenx" L5 x1 s a transition inG.
Again by inductive assumption, it follows that

Oy
(nyT) = (XO,X‘?') —>GHT (Xn’xfll) _nil_)GHT (Xn+1’X[I1_+1)_ -
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D Selfloop-Only Addition Proof

Proof. LetT be an automaton such thats selfloop-only forT.

First assume thds || T is nonblocking.

To see thaH || T is nonblocking, leH || T = (x,x7).

By lemma 10, it holds tha® || T — (X,xT).

SinceG || T is nonblocking, there exists A% such tha(x, xr) “Sg) .

Since—¢g C —, it follows that (X, xT) t—“?HHT, i.e.,H || T is nonblocking.
Conversely, assume thidt|| T is nonblocking.

To see thaG | T is nonblocking, 1eG || T = (x,x7).

Since—g C —, it holds thatH | T > (x, x7).

BecauséH || T is nonblocking, there existse A% such thatx, xT) LHHT (Y,y7) gHHT-
Using lemma 10, it follows thaix,xr) —gt (Y, Y1)

Furthermore, it follows frony 2, thaty 2 because\ # w and—g and—y only differ in a

A-transition.
Thus,(x,x1) —g|T (¥,¥1) —g|T, i-€.,G| T is nonblocking. =
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E Conditionally Always Enabled Events Proof

Proof. This proof shows how conditionally always enabled evemisoeaused similary to regular
always enabled events.

Consider the automatd@, H and T such thatG ~g s H andE is a set of events that are
conditionally always enabled f@ in T and forH in T andS s a set of events selfloop only in
T.

Construct the automatorf usingT.

For each event) € E, addn-selfloops to all states i wheren is not already enabled.

By construction, the events B are always enabled if.

So the conflict equivalence rule for always enabled evemts$eapplied using’.

G ~g s H, if for every automatorm’ such that is a set of events that are always enabled’in
andSis a set of selfloop-only i’, it holds that

G|| T is nonblocking<=- H || T' is nonblocking. (7)

However, then selfloops that were added Toto give T’ are removed when the synchronous
product is taken.

This is because thg selfloops were added to states that did not hawnabled inG or H, by
definition of conditionally always enabled events.

ThismeansthaB || T'=G||TandH ||T'=H||T.

Substitution into equation 7 above gives

G| T is nonblocking<=- H || T is nonblocking. (8)
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