
Working Paper Series
ISSN 1177-777X

COMPOSITIONAL NONBLOCKING VERIFICATION
WITH ALWAYS ENABLED

AND SELFLOOP-ONLY EVENTS

Colin Pilbrow

Working Paper: 07/2013
November 19, 2013

c©Colin Pilbrow

Department of Computer Science
The University of Waikato

Private Bag 3105
Hamilton, 3240
New Zealand

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Commons@Waikato

https://core.ac.uk/display/29201878?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

COMPOSITIONAL NONBLOCKING
VERIFICATION WITH ALWAYS ENABLED

AND SELFLOOP-ONLY EVENTS

Colin Pilbrow
Department of Computer Science

The University of Waikato
Hamilton, New Zealand

colinpilbrow@gmail.com

November 19, 2013

1

Abstract

This report proposes to improve compositional nonblocking verification through the use
of two special event types: always enabled and selfloop-only events.Compositional verifi-
cation involves abstraction to simplify parts of a system during verification. Normally, this
abstraction is based on the set of events not used in the remainder of the system. Here, it
is proposed to exploit more knowledge about the system and abstract events even though
they are used in the remainder of the system. This can lead to more simplification than was
previously possible. Abstraction rules from previous work are extended to respect the new
special events and proofs show these rules still preserve nonblocking. The rules have been
implemented in Waters and experimental results demonstrate that these extendedsimplifica-
tion rules help verify several industrial-scale discrete event system modelswhile achieving
better state-space reduction than before.

2

Contents

1 Introduction 4

2 Preliminaries 6
2.1 Events and Languages .. 6
2.2 Nondeterministic Automata 6
2.3 The Nonblocking Property 7
2.4 Synchronous Composition .. . 8
2.5 Compositional Verification 10
2.6 Automaton Abstraction 11
2.7 Introducing Special Events 13

3 Simplification Rules 16
3.1 Always Enabled Events .. . 16

3.1.1 Silent Continuation .16
3.1.2 Only Silent Incoming Rule .17
3.1.3 Limited Certain Conflicts Rule .20

3.2 Other Selfloop-Only events 25

4 Finding Always Enabled and Selfloop-only Events 27
4.1 Finding Additional Always Enabled Events 27
4.2 Conditionally Always Enabled Events 28

5 Implementation in Waters 32

6 Experimental Results 35

7 Conclusions 38
7.1 Future Work . 38

A Silent Continuation Proof 39

B Limited Certain Conflict Proof 40

C Selfloop Removal Lemma 42

D Selfloop-Only Addition Proof 43

E Conditionally Always Enabled Events Proof 44

3

1 Introduction

When working with safety-critical systems, it is important to know that they behave as expected.
Safety-critical systems include medical devices and factories where errors are expensive or even
deadly. These systems can also be large or complex, making itdifficult to determine that they will
behave as expected in all situations and be safe for the users. Model Checking is used to prove
that a system satisfies certain properties such as controllability and nonblocking. This lets us be
more confident that the system is safe. The system is modelledas a set of finite state automata,
where each automaton is used to describe different parts of the system. Nonblocking can show
that something good will eventually happen. Depending on how the system has been modelled,
this can show the system always being able to reach a safe idlestate, or coming to completion.
That is, it shows the absence of livelocks or deadlocks in thesystem that would prevent it from
reaching a desired state. [6, 21] These desired states are marked during modelling. This is an
important property to verify, however, as the models are getting larger and more complex to
accurately match the real-world systems, the standard methods for checking nonblocking are not
sufficient.

The standard method to check whether a system is nonblockinginvolves the explicit compo-
sition of all the automata involved, and then performing a backtracking search from all marked
states to ensure that every state can reach a marked state. Unfortunately the standard method
is limited by thestate-space explosionproblem. This is because composing together automata
increases the state-space exponentially, and quickly leads to running out of memory. Different
methods have been created to help avoid this problem.Symbolic model checkinghas been used
successfully to reduce the amount of memory required by representing the state space symboli-
cally rather than enumerating it explicitly [2].Compositional verification[10,16] is an effective
alternative that can be used independently of, or in combination with, symbolic methods. Com-
positional verification works by simplifying individual automata before each composition, grad-
ually reducing the state space of the system and allowing much larger systems to be verified in
the end. Since the state-space increases exponentially when composing, if even a small number
of states can be simplified at the start then this can lead to large reductions in the number of states
in the final composition. However, when applied to the nonblocking property, finding simplifi-
cation rules is difficult as it requires very specific abstraction methods. These abstractions must
preserveconflict equivalence[17]. When simplifying the automata it is important to ensurethis
does not change the nonblocking property of the system. Various abstraction rules preserving
conflict equivalence have been proposed and implemented [10, 19, 22, 23]. These include rules
such as Observational Equivalence, Tau-Loop Removal and Certain Conflicts. However, these
abstraction rules do not take advantage of the whole system.It will be shown that by creating
abstraction rules that use this extra information more simplification becomes possible. Normally,
the main way these rules simplify automata is to use specialτ events, that are only present on the
automaton being simplified. However, there are other eventswith simplification properties that
can be found by looking at the automata that are not being simplified.

This report proposes simplification rules that take into account that certain events are always

4

enabled or are only selfloops in the automata not being simplified, and shows proofs that the
nonblocking property is preserved. These rules have also been implemented to show that this
additional information can achieve further state-space reduction.

Part of this report will be published in FTSCS [20], which introduces the abstraction rules and
shows experimental results. In addition, this report also includes examples, proofs, and describes
how the rules have been implemented.

In the following, section 2 introduces the background of nondeterministic automata, the non-
blocking property, conflict equivalence and compositionalverification. Sect. 3 presents always
enabled, selfloop-only events and the simplification rulesthat exploit such events, and section 4
shows how these events are found algorithmically. How the simplification rules were imple-
mented is discussed in section 5. Afterwards, section 6 presents the experimental results, and
section 7 adds concluding remarks. The appendix contains the proofs for each of the simplifica-
tion rules.

5

2 Preliminaries

There are a set of existing basic definitions that will be usedin this report. Many of the stan-
dard definitions are from [3, 7], while other definitions are taken from various sources and are
mentioned individually. This section shall show all the existing definitions used, and the new
definitions that have been created for this report are found in section 3.

2.1 Events and Languages

Event sequences and languages are a simple means to describehow a system behaves [6, 21].
Their basic building blocks areevents, which are taken from a finitealphabetA. In addition,
two special events are also used, thesilent eventτ and thetermination eventω. These are never
included in an alphabetA unless mentioned explicitly using notation such asAτ = A ∪ {τ},
Aω = A∪{ω}, andAτ,ω = A∪{τ,ω}.

The τ event is used to define an event present on only a single automaton. It has many
properties that are useful for simplification rules. When moving through an automaton these
events can be taken silently, without changing the state of any other automata in the system.

A∗ denotes the set of all finitetracesof the formσ1σ2 · · ·σn of events fromA, including the
empty traceε. The concatenationof two tracess, t ∈ A∗ is written asst. A subsetL ⊆ A∗ is
called alanguage. Thenatural projection P: A∗

τ → A∗ is the operation that deletes all silent (τ)
events from traces.

2.2 Nondeterministic Automata

System behaviours are modelled using finite automata. Typically, system models are determin-
istic, but abstraction may result in nondeterminism.

Each automaton in the system consists of a finite set of statesand events. A transition re-
lation is used to show the transitions between states. This contains the transition event and the
before and after states. Automata also have initial states that show where the system starts, since
these are nondeterministic, multiple initial states are possible. We also model our automata with
marked states. These represent desired or safe states of thesystem. These are used for nonblock-
ing, where we check that they can always be reached.

Definition 1 A (nondeterministic)finite automatonis a tupleG = 〈A ,Q,→,Q◦〉 whereA is a
finite set ofevents, Q is a finite set ofstates, →⊆ Q×Aτ,ω ×Q is thestate transition relation,
andQ◦ ⊆ Q is the set ofinitial states.

The transition relation is written in infix notationx
σ
→ y, and is extended to tracess∈ A∗

τ,ω in

the standard way. For state setsX,Y ⊆ Q, the notationX
s
→Y meansx

s
→ y for somex∈ X and

y∈Y, andX
s
→ y meansx

s
→ y for somex∈ X. Also, X

s
→ for a state or state setX denotes the

existence of a statey∈ Q such thatX
s
→ y.

6

The termination eventω /∈A denotes completion of a task and does not appear anywhere else
but to mark such completions. It is required that states reached byω do not have any outgoing
transitions, i.e., ifx

ω
→ y then there does not existσ ∈ Aτ,ω such thaty

σ
→. This ensures that the

termination event, if it occurs, is always the final event of any trace. The traditional set of marked
states isQω = {x ∈ Q | x

ω
→} in this notation. The states inQω are the marked states and are

shown shaded in the figures of this report instead of explicitly showingω-transitions.
To support silent events, another transition relation⇒ ⊆ Q×A∗

ω ×Q is introduced, where

x
s
⇒ y denotes the existence of a tracet ∈ A∗

τ,ω such thatP(t) = s andx
t
→ y. That is,x

s
→ y

denotes a path withexactlythe events ins, while x
s
⇒ y denotes a path with an arbitrary number

of τ events shuffled with the events ofs. Notations such asX
s
⇒Y, x⇒ y, andx

s
⇒ are defined

analogously to→.
Hiding is the act of transforming an eventσ into a silentτ event. This is a simple way of

abstraction that in general introduces nondeterminism.

Definition 2 Let G = 〈A ,Q,→,Q◦〉 andϒ ⊆ A. The result ofhiding ϒ from G, written G\ϒ,
is the automaton obtained fromG by replacing each transitionx

υ
→ y with υ ∈ ϒ by x

τ
→ y, and

removing the events inϒ from A.

2.3 The Nonblocking Property

The nonblockingproperty is an important property in model checking. An automaton is non-
blocking if, from every reachable state, a marked state can be reached; otherwise it isblocking.

Definition 3 [17] An automatonG = 〈A ,Q,→,Q◦〉 is nonblockingif, for every statex∈ Q and

every traces∈ A∗ such thatQ◦ s
⇒ x, there exists a tracet ∈ A∗ such thatx

tω
⇒. Two automataG

andH arenonconflictingif G‖H is nonblocking.

G

0

1 2 3

α α

β β

Figure 1: Example of a blocking automaton.

Example 1 The automaton in figure 1 is an example of a blocking automaton. The states of the
automaton are represented as circles in the figures of this report. Transitions are shown as arrows

7

between states, and are labelled with the event of the transition. The shaded circles are marked
states and the little arrow entering state 0 shows this is theinitial state.

Since there is no sequence of transitions that allows state 3to reach a marked state, this
automaton is blocking.

G

0

1 2

α

α

β

Figure 2: Example of a nonblocking automaton.

Example 2 The automaton in figure 2 is an example of a nonblocking automaton. Although it
is possible for the system to cycle between states 0 and 1 infinitely, every state in the system can
reach state 2, a marked state. This means the automaton is nonblocking.

2.4 Synchronous Composition

Definition 4 Synchronous composition is used to compose multiple automata together.
Let G = 〈AG,QG,→G,Q◦

G〉 andH = 〈AH ,QH ,→H ,Q◦
H〉 be two automata. Thesynchronous

compositionof G andH is

G‖H = 〈AG∪AH ,QG×QH ,→,Q◦
H ×Q◦

H〉 , (1)

where

• (xG,xH)
σ
→ (yG,yH) if σ ∈ (AG∩AH)∪{ω}, xG

σ
→G yG, andxH

σ
→H yH ;

• (xG,xH)
σ
→ (yG,xH) if σ ∈ (AG\AH)∪{τ} andxG

σ
→G yG;

• (xG,xH)
σ
→ (xG,yH) if σ ∈ (AH \AG)∪{τ} andxH

σ
→H yH .

Automata are synchronised using lock-step synchronisation [11]. Shared events (includ-
ing ω) must be executed by all automata synchronously, while other events (includingτ) are
executed independently.

Example 3 Finding the synchronous composition of automataG1 andG2 in figure 3. Start by
creating the initial state(0,0) which is the initial states of bothG1 andG2. This state has the

8

transitions which are enabled in both automata. 0
α
→ 1 is a transition in bothG1 andG2, so the

synchronous composition has a transition(0,0)
α
→ (1,1). We then investigate the transitions that

are enabled in this state. 1
α
→ 2 is enabled inG1, howeverα is disabled in state 1 ofG2, so it is

not in the synchronous composition. Eventβ is enabled in both automata however, so transition

(1,1)
β
→ (0,2) is created in the synchronous composition. This method continues, for each new

state(x,y) that is created in the synchronous composition we create newtransitions for the events
that are enabled in both statesx in G1 andy in G2.

G1

0

1

2

α

α

β

γ

G2

0

1

2

α

α

β

γ

γ

G1‖G2

(0,0)

(1,1)

(0,2)

(1,0)

(2,1)

α

α

α

β

γ

Figure 3: Synchronous Composition of Automata

To reason about conflicts in a compositional way, the notion of conflict equivalenceis de-
veloped in [17]. According to process-algebraic testing theory, two automata are considered as
equivalent if they both respond in the same way to tests [8]. For conflict equivalence, a test is
an arbitrary automaton, and theresponseis the observation whether the test composed with the
automaton in question is nonblocking or not.

Definition 5 [17] Two automataG andH areconflict equivalent, writtenG≃conf H, if, for any
automatonT, G‖T is nonblocking if and only ifH ‖T is nonblocking.

9

Example 4 Figure 4 contains automataG andH which can be shown to be not conflict equiva-
lent using test automatonT. Note that if states 1 and 2 inG are merged together we get automaton
H, so this example shows that simplification of automata is notas easy as simply merging to-
gether any two states.T is an example of an automaton such thatG‖T andH ‖T do not have
the same nonblocking property.G‖T is blocking since it has no marked states, and every state
in H ‖T can reach the marked state(2,3), so it is nonblocking. Because of thisG≃conf H is not
true,G is not conflict equivalent toH.

G

0

1

2

3αη

η

H

0

1 2α

η

η

T

0

1

2 3α

ηη

η

η

G‖T

(0,0)

(1,1)

(2,2)

η

η

H ‖T

(0,0)

(1,1)

(1,2) (2,3)α

η

η

η

Figure 4: Example of automataG andH that are not conflict equivalent

Example 5 Figure 5 contains automataG andH which are not conflict equivalent. This figure

shows the two outgoingα transitions being merged into a single transition. Note that 0
α
→ 2

β
→

is not possible inG, but 0
αβ
→ is possible inH. This can be used to help find the test automaton

T. G‖T is blocking, since state(2,1) cannot reach a marked state, whileH ‖T is nonblocking,
since every state can reach a marked state. This means that G is not conflict equivalent to H.

2.5 Compositional Verification

When verifying whether a composed system of automata

G1‖G2‖ · · · ‖Gn , (2)

10

G

0

1 2

3 4

αα

β γ

H

0

1

2 3

α

β γ

T

0

1

2

α

β

γ

G‖T

(0,0)

(1,1)

(2,1)

(3,2)

α

α

β

H ‖T

(0,0)

(1,1)

(2,2)

α

β

Figure 5: Example of automataG andH that are not conflict equivalent

is nonblocking, compositional methods [10, 16, 23] avoid building the full synchronous com-
position immediately. Instead, individual automataGi are simplified and replaced by smaller
conflict equivalent automataG′

i ≃conf Gi. If no simplification is possible, a subsystem of au-
tomata(G j) j∈J is selected and replaced by its synchronous composition, which then may be
simplified.

The soundness of this approach is justified by thecongruenceproperties [17] of conflict
equivalence. For example, ifG1 in (2) is replaced byG′

1 ≃conf G1, then by consideringT =
G2 ‖ · · · ‖Gn in definition 5, it follows that the abstracted systemG′

1 ‖T = G′
1 ‖G2 ‖ · · · ‖Gn is

nonblocking if and only if the original system (2) is.

2.6 Automaton Abstraction

A common method to simplify an automaton is to construct itsquotientmodulo an equivalence
relation. Certain states are identified as equivalent and merged. The following definitions are
standard.

An equivalence relationis a binary relation that is reflexive, symmetric and transitive. Given
an equivalence relation∼ on a setQ, theequivalence classof x∈ Q with respect to∼, denoted
[x], is defined as[x] = {x′ ∈ Q | x′ ∼ x}. An equivalence relation on a setQ partitionsQ into the

11

setQ/∼ = { [x] | x∈ Q} of its equivalence classes.

Definition 6 Let G = 〈A ,Q,→,Q◦〉 be an automaton, and let∼ ⊆ Q×Q be an equivalence
relation. Thequotient automaton G/∼ of G with respect to∼ is G/∼ = 〈A,Q/∼ ,→/∼ ,Q̃◦〉,
whereQ̃◦ = { [x◦] | x◦ ∈ Q◦ } and→/∼ = {([x],σ , [y]) | x

σ
→ y}.

The states of the quotient automaton are classes of equivalent states of the original automaton.
A common equivalence relation to construct such a quotient automaton isobservation equiva-
lenceor weak bisimulation[18].

Definition 7 [18] Let G= 〈A ,Q,→,Q◦〉 be an automaton. A relation≈⊆Q×Q is anobserva-
tion equivalencerelation onG if, for all statesx1,x2 ∈ Q such thatx1 ≈ x2 and all tracess∈ A∗

ω
the following conditions hold:

1. if x1
s
⇒ y1 for somey1 ∈ Q, then there existsy2 ∈ Q such thaty1 ≈ y2 andx2

s
⇒ y2;

2. if x2
s
⇒ y2 for somey2 ∈ Q, then there existsy1 ∈ Q such thaty1 ≈ y2 andx1

s
⇒ y1.

Two states are observation equivalent if they have got exactly the same sequences of enabled
events, leading to equivalent successor states. Observation equivalence is a well-known equiva-
lence with efficient algorithms that preserves all temporallogic properties [5]. In particular, an
observation equivalent abstraction is conflict equivalentto the original automaton.

Proposition 1 [16] Let G be an automaton, and let≈ be an observation equivalence relation
onG. ThenG≃conf G/≈.

A special case of observation equivalence-based abstraction isτ-loop removal. If two states
are mutually connected by sequences ofτ-transitions, it follows from definition 7 that these
states are observation equivalent, so by proposition 1 theycan be merged preserving conflict
equivalence. This simple abstraction results in aτ-loop freeautomaton, i.e., an automaton that
does not contain any proper cycles ofτ-transitions.

Definition 8 Let G = 〈A ,Q,→,Q◦〉 be an automaton.G is τ-loop free, if for every pathx
t
→ x

with t ∈ {τ}∗ it holds thatt = ε.

While τ-loop removal and observation equivalence are easy to compute and produce good ab-
stractions, it is known that there are conflict equivalent automata that are not observation equiv-
alent. Several other relations are considered for conflict equivalence [10,16].

To confirm that an automaton quotient modulo a given equivalence relation is conflict equiva-
lent to the original automaton, it is usually necessary to establish a relationship between the paths
in an automaton and its quotient [10]. Firstly, it follows immediately from definition 6 that every
path between in an automaton also links the corresponding classes in its quotient automaton.

12

Lemma 2 [10] Let G = 〈A ,Q,→,Q◦〉 be an automaton, and let∼⊆ Q×Q be an equivalence

relation. Ifx0
σ1→ x1

σ2→ ·· ·
σn→ xn is a path inG, then[x0]

σ1→ [x1]
σ2→ ·· ·

σn→ [xn] is a path inG/∼.

Secondly, to establish that conflict equivalence is preserved by an automaton quotient, it is
necessary to lift a path in the quotient back to a path in the original automaton. This is not
possible with every equivalence relation. It is possible with an observation equivalence relation,
and another possibility isincoming equivalence[10].

Definition 9 [10] Let G = 〈A ,Q,→,Q◦〉 be an automaton. Theincoming equivalencerelation
∼inc ⊆ Q×Q is defined such thatx∼inc y if,

1. Q◦ ε
⇒ x if and only if Q◦ ε

⇒ y;

2. for all statesw∈ Q and all eventsσ ∈ A it holds thatw
σ
⇒ x if and only if w

σ
⇒ y.

Two states are incoming equivalent if they have got the same incoming transitions from the
exactly same source states. (This is different from reverseobservation equivalence, which accepts
equivalentrather than identical states.)

The additional requirement of incoming equivalence is enough to establish a converse of
lemma 2 and makes it possible to lift paths in the quotient back to paths in the original automaton.

Lemma 3 [10] Let G = 〈A ,Q,→,Q◦〉 be an automaton, and let∼⊆ Q×Q be an equivalence
relation such that∼⊆∼inc.

1. If x̃0
σ1→ x̃1

σ2→ ·· ·
σn→ x̃n with σi ∈ Aτ for i = 0, . . . ,n is a path inG/∼, then there exist states

xi ∈ x̃i for i = 0, . . . ,n such thatx0
σ1⇒ x1

σ2⇒ ·· ·
σn⇒ xn is a path inG.

2. If G/∼
s
⇒ x̃ for somes∈ A∗, then there existsx∈ x̃ such thatG

s
⇒ x.

2.7 Introducing Special Events

Previous approaches for compositional nonblocking verification [10,16,23] make no assumption
about the remainderT = G2 ‖ · · · ‖Gn of the system apart from its event set. Typically,G1 has
somelocal events, i.e., events used only byG1. The local events are abstracted using hiding,
i.e., they are replaced by the silent eventτ. Conflict equivalence uses the silent eventτ as a
placeholder for events not used elsewhere, and in this setting is the coarsest conflict-preserving
abstraction.

Yet, in practice, the remainderT = G2‖ · · · ‖Gn is known. This report proposes ways to use
additional information aboutT to inform the simplification ofG1 and produce better abstractions.
In addition to using theτ events, it can be examined how the other events are used byT. There
are two kinds of events that are easy to detect:always enabledevents andself loop-onlyevents.

In addition to the existing definitions, the following definitions have been created foralways
enabledevents andself loop-onlyevents.

13

Definition 10 Let G = 〈A ,Q,→,Q◦〉 be an automaton. An eventσ ∈ A is always enabledin G,
if for every statex∈ Q it holds thatx

σ
⇒.

An event is always enabled in an automaton if it can be executed from every state—possibly
after some silent events. If during compositional verification, an event is found to be always
enabled in every automaton except the one being simplified, this event has similar properties to
a silent event. Several abstraction methods that exploit silent events to simplify automata can be
generalised to exploit always enabled events also.

Definition 11 Let G = 〈A ,Q,→,Q◦〉 be an automaton. An eventσ ∈ A is selfloop-onlyin G, if
for every transitionx

σ
→ y it holds thatx = y.

Selfloopsare transitions that have the same start and end states. An event is selfloop-only if it
only appears on selfloop transitions. As the presence of selfloops does not affect the nonblocking
property, the knowledge that an event is selfloop-only can also help to simplify the system beyond
pure conflict equivalence. In the following definition, conflict equivalence is generalised by
considering setsE andS of events that are always enabled or selfloop-only in the rest of the
system, i.e., in the testT.

Definition 12 Let G andH be two automata, and letE andSbe two sets of events.G andH are
conflict equivalentwith respect toE andS, writtenG≃E,S H, if for every automatonT such that
E is a set of always enabled events inT andS is a set of selfloop-only inT, it holds thatG‖T is
nonblocking if and only ifH ‖T is nonblocking.

This definition only considers testsT where events inE are always enabled and events inS
are selfloop-only. It is clear that standard conflict equivalence implies conflict equivalence with
respect toE andS, while the opposite is not always the case. The following result is immediate
from the definition.

Proposition 4 Let G andH be two automata.

1. G≃conf H if and only if G≃ /0, /0 H.

2. If E ⊆ E′ andS⊆ S′ thenG≃E,S H impliesG≃E′,S′ H.

As conflict equivalence with respect toE andS considers less testsT than standard conflict
equivalence, it is clear that it considers more automata as equivalent. The modified equivalence
is coarser and has the potential to achieve better abstraction.

Example 6 AutomataG andH in figure 6 arenotconflict equivalent as demonstrated by the test
automatonT. This is becauseG‖T is blocking whileH ‖T is not.G‖T is blocking because the
state(1,0) is reachable byτ from the initial state(0,0), and(1,0) is a blocking state, becauseG
disables eventα in state 1 andT disables eventsβ andη in state 0. On the other hand,H ‖T is
nonblocking since both states can reach a marked state.

14

G 0 1

2 3

τ

α

α β

βη

H

2 3

01

α

α

β

β

η

T 0

1

α

β
η

G‖T (0,0)

(1,0)

(1,2)

τ

α

H ‖T (0,0)

(1,2)

α

Figure 6: Two automataG andH such thatG≃{η}, /0 H but notG≃conf H.

Note thatη is not always enabled inT since 0
η
⇒T does not hold. In composition with any

testT that hasη always enabled,G will be able to continue from state 1 usingη , andH will be
able to continue from state 01. It follows from proposition 5below thatG≃{η}, /0 H.

Example 7 G≃{η}, /0 H is not true in Figure 4. This can be shown usingT, because every state
in T had an outgoingη transition, makingη an always enabled event inT.

Based on example 6, if during compositional verification,G in figure 6 is one of the automata
in the system (2), and it is known thatη is an always enabled event in all automata exceptG,
thenG can be replaced byH to simplify the verification task.

15

3 Simplification Rules

In this section I shall discuss the new and extended rules that have been created with the special
events I have found. Before any simplification rules are performed, we have already determined
which events are special. How this is done is discussed in section 4. Extending the simplification
rules lets them be applied in more places, which leads to moresimplification of the automata.
Although many existing simplification rules were investigated, only the following three were
found to be able to be extended with always enabled events.

3.1 Always Enabled Events

3.1.1 Silent Continuation

Silent Continuation [10] is a rule used to simplify long chains of τ transitions into a singleτ
transition. This is because the automaton can move silentlyalong the chain without changing
the state of any other automata in the system. I found that changing the rule to includeτ chains
that end with an always enabled event lets this rule simplifymore states, while still preserving
nonblocking.

Rule 1 (Silent Continuation Rule) In a τ-loop free automaton, two incoming equivalent states
that both have an outgoingalways enabledor τ-transition are conflict equivalent and can be
merged.

G 0 1

2 3

τ

α

α β

βη

H

2 3

01

α

α

β

β

η

Figure 7: Silent Continuation Rule used to simplify automatonG to automaton H.

Example 8 Consider automatonG in figure 7 withE = {η}. States 0 and 1 are both “initial”
since they both can be reached silently from the initial state 0. This is enough to satisfy∼inc in
this case, since neither state is reachable by any event other thanτ. Moreover,G has noτ-loops,
state 0 has an outgoingτ-transition, and state 1 has an outgoing always enabled event η . Thus,
by the Silent Continuation Rule, states 0 and 1 inG are conflict equivalent and can be merged
into state 01 as shown inH.

16

Algorithm 1 Silent Continuation Implementation
1: if |{τ}∪E| = 0 then
2: stop
3: end if
4: for all State sdo
5: if s

τ
→ or s

η
→ then

6: CalculateIncomingEquivalence(s)
7: adds to IncomingEquivalenceHashMap
8: end if
9: end for

10: Mergestates inIncomingEquivalenceHashMapwhich are incoming equivalent
11: RemoveUnreachableStates()

IncomingEquivalenceHashMapis used to store states, and groups incoming equivalent states to-
gether.RemoveUnreachableStates() removes the states in the automaton that cannot be reached
by any sequence of transitions.

Proposition 5 Let G= 〈A,Q,→G,Q◦〉 be aτ-loop free automaton, letE⊆A, and let∼⊆Q×Q
be an equivalence relation such that∼ ⊆ ∼inc, and for all x,y ∈ Q such thatx ∼ y it holds
that eitherx = y or bothx andy have an outgoingη-transition for someη ∈ E∪ {τ}. Then
G≃E, /0 G/∼.
The proof is found in Appendix A.

Prop. 5 confirms that the nonblocking property of the system is preserved under the gener-
alised silent continuation rule, provided thatE is a set of always enabled events for the remainder
of the system.

Algorithm 1 is an extension of the algorithm that already exists in Waters. When the simplifi-
cation rule is run, the automaton is known to beτ-loop free andτ andE have already been found.
To simplify the automaton we must find which states that have an outgoingτ or always enabled
event are incoming equivalent. An existing algorithm can beused to find incoming equivalent
states. These states can now be merged because of the Silent Continuation rule, making the auto-
mata smaller. After simplification, there may be unreachable states that can be removed to save
memory.

3.1.2 Only Silent Incoming Rule

The Only Silent Incoming Rule [10] is a combination of observation equivalence and the Silent
Continuation Rule. If a state has only incomingτ transitions we can split it into multiple states
using observational equivalence. If this state had an outgoing τ transition, then we can now
apply Silent Continuation. Since the Silent Continuation Rulehas been generalised to use always
enabled events, the Only Silent Incoming Rule can be as well.

17

G 0 1

2 3τ

τα
α

β
β

η

G′
0 1

2 3a

3b

τ

τ

α
α

α

β
β

η

η

H
0 1

2

α
α

α

β
β

η
η

Figure 8: Example of application of the Only Silent IncomingRule.

Rule 2 (Only Silent Incoming Rule) If a τ-loop free automaton has a stateq with only τ-
transitions entering it, and an always enabled orτ-transition outgoing from stateq, then all
transitions outgoing fromq can can be copied to originate from the states withτ-transitions toq.
Afterwards, theτ-transitions toq can be removed.

Example 9
In figure 8 it holds thatG ≃{η}, /0 H. State 3 inG has onlyτ-transitions incoming and the

always enabled eventη outgoing. This state can be removed in two steps. First, state 3 is split
into two observation equivalent states 3a and 3b in G′, and afterwards the Silent Continuation
Rule is applied to merge these states into their incoming equivalent predecessors, resulting inH.

Proposition 6 Let G = 〈A,Q,→G,Q◦〉 be aτ-loop free automaton, and letE ⊆ A. Let q∈ Q

such thatq
η
→G for someη ∈E∪{τ}, and for each transitionx

σ
→G q it holds thatσ = τ. Further,

let H = 〈A,Q,→H ,Q◦〉 with

→H = {(x,σ ,y) | x
σ
→G y andy 6= q} ∪ {(x,σ ,y) | x

τ
→G q

σ
→G y} . (3)

ThenG≃E, /0 H.

It is shown in [10] that the Only Silent Incoming Rule can be expressed as a combination of
observation equivalence and the Silent Continuation Rule as suggested in example 9. The same
argument can be used to prove proposition 6.

18

Algorithm 2 Only Silent Incoming Implementation
1: for all Statex do
2: if there does not existx

σ
→ with σ = {τ}∪E then

3: addx to keepSet
4: end if
5: for all Transitionx

σ
→ y with σ 6= τ do

6: addy to keepSet
7: end for
8: end for
9: if |keepSet| = |States| then

10: stop
11: else
12: for all Statesourcedo
13: for all Transitionsource

τ
⇒ y do

14: if y /∈ keepSetthen
15: addy to targetSet
16: end if
17: end for
18: for all target∈ targetSetdo
19: for all Transitiontarget

σ
→ z do

20: create Transitionsource
σ
→ z

21: end for
22: delete Transitionsource

τ
→ target

23: end for
24: end for
25: RemoveUnreachableStates()
26: end if

The Only Silent Incoming Rule removes states, however it often increases the number of
transitions. Yet, it usually improves the structure of the automaton such that it allows other rules
to be applied.

Algorithm 2 is a simplified version of the implemented algorithm, which also handles gen-
eralised nonblocking [15] and the Silent Incoming rule, which does not require every incoming
transition to beτ.
Although the Only Silent Incoming rule has been shown as the application of Observational
Equivalence followed by Silent Continuation, this algorithm is a shortcut. We do not need to
split any states into two as shown in example 9, as that is expensive and unnecessary.

This algorithm first finds the states that will be kept these are the states that cannot be removed
using Only Silent Incoming. However, any states which are not found to be kept are those which
satisfy the requirements of Only Silent Incoming and may be removed. The source states where

19

the outgoing transitions of the removed state will be copiedto are then found. After moving
the outgoing transitions, the incomingτ transition from the source state to the target state is
removed. When all the incomingτ transitions are removed the state will become unreachable,
and it is removed in the final step.

Figure 9 shows algorithm 2 being applied. State 3 is found to be the only state that is not kept.
We then loop over each of the states. We set state 1 to be the source state, since it is the first state
with an outgoingτ to state 3. InG2 we have copied each of the outgoing transitions from state 3
to state 1. Theτ transition between them is also removed. We then choose state 2 to be the next
source state. InG3 the outgoing transitions are copied from state 3 to state 2,and theτ transition
removed. After looping through each of the states we can now remove unreachable states. Since
state 3 has no incoming transitions, it is unreachable, and so can be removed resulting inG4.

G1

0

1 2

3
4 5

τ τ

α

α

α β

β

β

η

G2

0

1 2

3
4 5

τ

α

α

α

α

β

β

β

β

η

η

G3

0

1 2

3
4 5

α

α
α

α

α

β

β
β

ββ

η

η

η
G4

0

1 2

4 5

α
α

αα

β

β

β

β

η η

Figure 9: Example of implementation of the Only Silent Incoming Rule.

3.1.3 Limited Certain Conflicts Rule

Some automata contain blocking states, i.e., states from where it is not possible to reach any
state with anω-transition. If one automaton in a synchronous compositionenters a blocking
state, then the composition is blocking. We can also look at the states with transitions entering

20

a blocking state. If we know these transitions are enabled, then the state will be able to enter
the blocking state. If a state has an always enabled transition to a blocking state then it is also a
blocking state, as it is always possible for it to reach a state where it cannot reach any state with
anω-transition. We can use this to find more blocking states. Whena blocking state is found, all
it’s outgoing transitions are removed and it is merged into the other blocking states.

Every automaton is associated with a language ofcertain conflicts[13], which characterises
exactly the traces that cause blocking in every possible context. It is possible to calculate all states
of certain conflicts and construct an abstraction that replaces all certain conflicts by a single state.
Unfortunately, the algorithm to do this is exponential in the number of states of the automaton to
be simplified [14].

To reduce the complexity, the Limited Certain Conflicts Rule [10] approximates the set of
certain conflicts. If a state has aτ-transition to a blocking state, then the source state also is a
state of certain conflicts. This can be extended to include always enabled events, because if an
always enabled transition takes an automaton to a blocking state, then nothing can disable this
transition and the system is necessarily blocking.

Rule 3 (Limited Certain Conflicts Rule) If an automaton contains an always enabled orτ-
transition to a blocking state, then the source state of thistransition is a state of certain conflicts,
and all its outgoing transitions can be deleted.

G

0 1

2 3

α α

β

η

H

0 1

2 3

α

β
H ′

0

⊥

α,β

Figure 10: Example of application of the Limited Certain Conflicts Rule.

Example 10 Consider automatonG in figure 10 withE = {η}. State 2 is already blocking,
and states 1 has an always enabledη-transition to the blocking state 2. All transitions from
this state are removed. This results in automatonH. Now state 3 is unreachable and can be
removed, and states 1 and 2 can be merged using observation equivalence to createH ′. It holds
thatG≃ /0,{η} H ≃conf H ′.

Proposition 7 Let G = 〈A,Q,→G,Q◦〉 be an automaton andE ⊆ A, let q ∈ Q be a blocking

state, and letp
η
→ q for someη ∈ E∪{τ}. Furthermore, letH = 〈A,Q,→H ,Q◦〉 where→H =

{(x,σ ,y) ∈→ | x 6= p}. ThenG≃E, /0 H.
The proof is found in Appendix B.

21

Prop. 7 confirms that a state with aτ or always enabled event transitions to some other
blocking state can also be made blocking, by deleting all outgoing transitions (includingω) from
it. The Limited Certain Conflicts Rule should be applied repeatedly, as the deletion of transitions
may introduce new blocking states and thus new certain conflicts.

The original Limited Certain Conflicts Rule [10] also allows theremoval of nondeterministic
transitions: if a transitionp

α
→ q enters a blocking stateq then all otherα-transitions from statep

can be removed. This aspect of the rule is not changed by always enabled events.

Example 11 Description of how Limited Certain Conflicts has been implemented in Waters.
A major part of nonblocking verification is, once a system hasbeen found to be blocking,

giving a sequence of events that may be taken to reach a blocking state. This has not yet been
discussed in this report, as the only time it was encounteredwas when implementing the Limited
Certain Conflict rule. Since this rule involves finding additional blocking states usingτ and
nondeterministic transitions, it has been implemented such that it is easier to find the original
blocking state. This is done by giving each state a depth value based on how far it is from the
original blocking state.

Algorithm 3 shows how the depth is calculated for each state when extended to include always
enabled events. This example shows how it has been applied tofigure 11.

Firstly, find all coreachable states. These are the states that can reach a marked state through
some sequence of transitions. StateS6 is the only state that cannot reach a marked state, so it is
given depth 0, while the rest are given depth -1. Current depthis set to 1. There is anη transition
from S5 to S6, so stateS5 is blocking and given depth 1. Current depth is set to 2.S3

α
→S5, andS5

has just been found to be blocking. SoS3
α
→ S4 is removed, and nowS3 cannot reach the marked

state, so it becomes blocking with depth 2. Current depth is set to 3. S1
η
→ S3 so S1 becomes

blocking with depth 3. Current depth is set to 4.S0
α
→ S1, soS0

α
→ S2 is removed. However,

sinceS0 is marked, it is still found to be coreachable so remains at depth -1.
Finally, blocking states have transitions removed and are merged into state⊥. Unreachable

states are removed. This results in automatonH. The depths may be used later to showS6 was a
blocking state the system could reach.

G

S0: -1

S1: 3

S2: -1

S3: 2

S4: -1

S5: 1 S6: 0

α α

αα

β β

η

η

H

S0

⊥

α

Figure 11: Depths of automaton states after Limited Certain Conflicts is applied.

22

Algorithm 3 Limited Certain Conflicts Implementation
1: newBlocking= false
2: FindCoreachableStates()
3: for all Statessdo
4: if Coreachable(s) = truethen
5: depth(s) = −1
6: else
7: depth(s) = 0
8: newBlocking= true
9: end if

10: end for
11: currentDepth= 0
12: while newBlocking= truedo
13: newBlocking= false
14: currentDepth++
15: for all Transitionsx

σ
→ y whereσ ∈ {τ}∪E do

16: if depth(x) = −1 anddepth(y) ≥ 0 then
17: blocking(x)
18: depth(x) = currentDepth
19: newBlocking= true
20: end if
21: end for
22: currentDepth++
23: for all Transitionsx

σ
→ y do

24: if depth(x) = −1 anddepth(y) ≥ 0 then
25: delete Transitionsx

σ
→

26: add Transitionx
σ
→ y

27: FindCoreachableStates()
28: if Coreachable(x) = falsethen
29: blocking(x)
30: depth(x) = currentDepth
31: newBlocking= true
32: end if
33: end if
34: end for
35: end while
FindCoreachableStates() performs a backwards search from all marked states, and is used to
find states which can reach a marked state.blocking(s) is used on states that have been found to
be blocking. It removes all outgoing transitions and markings from state s.

23

Algorithm 3 finds the blocking states of an automaton using Limited Certain Conflicts with
Always Enabled Events. Each of the blocking states is given adepth here, and when a state
is found to be blocking the outgoing transitions are removedand it is merged into⊥ to save
memory. Coreachable states are states that can reach a markedstate through some sequence of
transitions. They have depth -1. The blocking states found in the first coreachability search have
depth 0. States withτ or always enabled events entering a blocking state are blocking, and have
odd depth. If a state has multiple transitions of the same event outgoing to different states this
is nondeterministic. If a nondeterministic event transition enters a blocking state, then the other
transitions of this event on this state are removed. If this causes the state to become blocking
then it has even depth.

24

3.2 Other Selfloop-Only events

Another special type of event are events that are selfloop-only in every automata except the one
being simplified. Selfloops with this event can be added or removed freely to the automaton
being simplified. This can save memory by removing transitions and can be applied in many
places to let other rules be applied.

To verify nonblocking, we check if every state in the final synchronous composition of all
automata can reach a marked state. Selfloops in the final synchronous composition have no effect
on the blocking nature of the system, since any path between two states passes the same states if
all selfloops are removed from the path. So, the final synchronous composition is nonblocking if
and only if it is nonblocking with all selfloops removed.

Rule 4 (Selfloop Removal Rule)If an eventλ is selfloop-only in all other automata, then self-

loop transitionsq
λ
→ q can be added to or removed from any stateq.

If an event only appears on selfloops in all automata, then itcan be removed entirely. This is
because the event never changes the state of any automata, and so cannot affect nonblocking.

G1 0

12

β

β
λ

λ

G2 0

12 β

β λ

G3 0

12

β

β
λ

λ

G4
01

2

β

λ
G5 01

2

β

Figure 12: Example of the removal and addition of selfloops.

Example 12 Figure 12 shows a sequence of conflict-preserving changes toan automaton con-
taining the selfloop-only eventλ . First, theλ -selfloop inG1 is removed to createG2. In G2,
states 0 and 1 are close to observation equivalent, as they both have aβ -transition to state 2;
however 0 has aλ -transition to 1 and 1 does not. Yet, it is possible to add aλ -selfloop to state 1
and createG3. Now states 0 and 1 are observation equivalent and can be merged to createG4.
Finally, theλ -selfloop inG4 is removed to createG5.

Prop. 8 below confirms that the Selfloop Removal Rule preservesconflict equivalence when
selfloop-only events are considered.

25

Proposition 8 Let G= 〈A,Q,→G,Q◦〉 andH = 〈A,Q,→H ,Q◦〉 be automata with→H =→G∪
{(q,λ ,q)} for someλ ∈ A. ThenG≃ /0,{λ} H.
The proof is found in Appendix D.

Prop. 8 shows that the addition of a single selfloop preserves conflict equivalence. it can be
applied in reverse to remove selfloops, and it can be appliedrepeatedly to add or remove several
selfloops in an automaton or in the entire system.

Example 13 Figure 13 shows that selfloop-only event transitions can be removed if they are

parallel to aτ transition. Afterλ has been added to state 1 inG2, it is easy to see that 0
λ
⇒ 1 is

possible with or without the 0
λ
→ 1 transition. This means it is redundant, and can be removed

to get automatonG3. This automaton can be simplified further by removing theλ -selfloop
transition, resulting inG4.

G1

0

1

τ,λ

G2

0

1

τ,λ

λ

G3

0

1

τ

λ

G4

0

1

τ

Figure 13: Example of the removing redundant selfloop-only transition.

The implementation in section 6 uses selfloop removal whenever applicable to delete as many
selfloops as possible. When creating an automaton, selfloop transitions are not created if the
event is recognised to be Other Selfloop-Only. In addition, observation equivalence has been
modified to assume the presence of selfloops for all selfloop-only events in all states, so as to
achieve the best possible state-space reduction.

26

4 Finding Always Enabled and Selfloop-only Events

Before any of the extended rules can be used to simplify an automaton, we need to know which
events are always enabled and selfloop-only. This section discusses how these events may be
found.

Assume the system (2) encountered during compositional verification is

G1‖G2‖ · · · ‖Gn , (4)

and automatonG1 is to be simplified.
An event must be always enabled or selfloop-only in all the automata not being simplified,

T = G2 ‖ · · · ‖Gn. For each component automatonGi, such events are easy to detect based on
definition 10 and 11 in Section 2.7. An always enabled event isenabled on every state in the
automaton, and a selfloop-only event is only present in the automaton as selfloop transitions.
Using these definitions it can also be seen that these properties carry over to the synchronous
product, which means we do not need to search for these properties in the synchronous product
if we already know they are satisfied in the individual automata.

4.1 Finding Additional Always Enabled Events

When searching for always enabled events, it is often possible to find additional events that satify
the definition if a more sophisticated method is used.

As we have seen in 3.1.3, many automata contain blocking states. These states have no out-
going transitions, and any event would be found to be not always enabled in any automaton with
a blocking state if using the simple search above. However, as adding a selfloop to a blocking
state cannot change whether the system is nonblocking or not, we can imagine a selfloop on the
blocking state of the event we are searching for. This makes it possible to find always enabled
events in automata with blocking states.

We can also useτ transitions to find more always enabled events, as the definition states that

in each state it holds that
η
⇒ rather than

η
→. This means that we can do any number of silentτ

transitions to reach a state that hasη enabled, rather than needing to haveη enabled in every
state. In addition, this method can be made even more powerful if redundant tau transitions are
added to an automaton. This increases the number of tau transitions, and so we can find many
more always enabled events.

Example 14 Consider automatonG in figure 14. It can be seen that 0
η
→ and 2

η
→ but state 1

has no outgoingη transition. However, 1
τ
→ 2

η
→, so 1

η
⇒ Thereforeη can be considered as an

always enabled event inG since
η
⇒ is true in each state.

Example 15 Consider automatonG in figure 15. It clearly holds that 0
η
→, and 1

τ
→ 0

η
→ and

thus 1
η
⇒. Although η is not enabled in state⊥, this state is a blocking state and the set of

27

G

0

1 2τ

α
η

η

Figure 14: Finding an always enabled event with
η
⇒

enabled events for blocking states is irrelevant—it is known [14] thatG is conflict equivalent
to G′. Thereforeη can be considered as an always enabled event inG′ and thus also inG.

G

0 1

⊥

τα

η G′

0 1

⊥

τα

η

η

Figure 15: Finding an always enabled event with dump states.

4.2 Conditionally Always Enabled Events

Conditionally always enabled events can be used for the simplification rules but because of how
they are defined many more of these events can be found. Many states may not have eventη
enabled, however if they are not possible in the current state of the automaton being simplified
this does not matter. An event is conditionally always enabled if the environmentT enables it in
all states where it is possible in the automatonG to be simplified.

Definition 13 Let G = 〈A,QG,→G,Q◦
G〉 andT = 〈A,QT ,→T ,Q◦

T〉 be automata. An eventσ ∈

A is conditionally always enabledfor G in T, if for all s∈A∗ such thatQ◦
G

sσ
⇒G and all statesxT ∈

QT such thatQ◦
T

s
⇒T xT , it holds thatxT

σ
⇒T .

The following proposition 9 shows that the result of compositional nonblocking verification
is also preserved with events that are only conditionally always enabled.

Proposition 9 Let G, H, andT be automata, and letE andS be event sets such thatG≃E,S H,
andE is a set of conditionally always enabled forG in T and forH in T, andS is a set of self-

28

loop-only forT. ThenG‖T is nonblocking if and only ifH ‖T is nonblocking.
The proof is found in Appendix E

There is an additional condition that must be satisfied for abstraction rules using conditionally
always enabled events. That is that the events must still be conditionally always enabled after
abstraction. If no new conditionally always enabled eventshave been added to the language
during abstraction this will always be true, but if for some reason this is done, the new events must
be verified to be conditionally always enabled in the automaton after abstraction. This means
that in some cases the limited certain conflict rule cannot beapplied backwards. Investigation
of figure 10 shows that automatonH cannot be ’simplified’ to automatonG if η is conditionally
always enabled forH but not forG. However,G can still be abstracted toH and the limited
certain conflicts rule can always be done in reverse ifη is an always enabled event.

Example 16 Finding conditionally always enabled events forG1 in G2 in figure 16. In this
example we are trying to simplify automatonG1 somehow, and are looking for any events that
are conditionally always enabled and may be used in some abstraction rules here.

Firstly, observe thatα is enabled in states 0 and 1 inG1. This event will be conditionally
always enabled inG2 if we α is enabled in every state inG2 where the state ofG1 is 0 or 1. To
find these states we can observeG1‖G2. SinceG1‖G2 contains states (0,0), (1,1), (0,2) and
(1,0) we must check thatα is enabled in states 0, 1 and 2 inG2. However, sinceα is not enabled
in 1, it cannot be conditionally always enabled forG1 in G2. That is,Q◦

G1
α ,α
=⇒ is enabled, but

Q◦
G2

α ,α
=⇒ is not.

Next, observe thatβ is enabled in state 1 inG1. So, since the synchronous product contains
states (1,1) and (1,0) we must check thatβ is enabled in states 1 and 0 inG2. But β is not

enabled in state 0 inG2 so it cannot be conditionally always enabled forG1 in G2. Q◦
G1

αβαβ
=⇒ is

enabled, butQ◦
G2

αβαβ
=⇒ is not.

Finally we checkγ. γ is enabled in state 2 inG1. G1‖G2 contains state (2,1) andγ is enabled
in state 1 inG2. This meansγ is a conditionally always enabled event forG1 in G2.

Example 17 Finding conditionally always enabled events forG2 in G1 in figure 16. In this
example we are trying to simplify automatonG2.

Firstly, observe thatα is enabled in states 0 and 2 inG2. The synchronous product contains
states (0,0), (1,0) and (0,2), so states 0 and 1 inG1 are checked. Both states enableα, soα is a
conditionally always enabled event forG2 in G1.

Next, observe thatβ is enabled only in state 1 inG2. UsingG1‖G2, we see that we must
check thatβ is enabled in states 1 and 2 inG1. However, sinceβ is not enabled in state 2, it

cannot be a conditionally always enabled event forG2. Q◦
G2

αβααβ
=⇒ is enabled, butQ◦

G1
αβααβ
=⇒ is

not.

29

G1

0

1

2

α

α

β

γ

G2

0

1

2

α

α

β

γ

γ

G1‖G2

(0,0)

(1,1)

(0,2)

(1,0)

(2,1)

α

α

α

β

γ

Figure 16: Finding a conditionally always enabled event in G2

Finally, observe thatγ is enabled in states 1 and 2 inG2. The synchronous product has states
(1,1), (2,1) and (0,2). However,γ is not enabled in states 0 and 1 inG1. So it cannot be a

conditionally always enabled event forG2. Q◦
G2

αγ
⇒ is enabled, butQ◦

G1
αγ
⇒ is not.

Note that none of these events are always enabled in either automaton. However we have
found thatγ is conditionally always enabled forG1 in G2 andα is conditionally always enabled
for G2 in G1. This is clearly a more powerful method for finding special events that can be used
in the extended simplification rules, leading to more possible simplification.

Conditionally always enabled events can be used like generalalways enabled events, but they
are more difficult to find. To check the condition of definition13, it is necessary to explore the
state space ofG‖T, which has the same complexity as a nonblocking check. Yet, the condition is
similar tocontrollability [6], which can often be verified quickly by anincremental controllability
check[4]. The incremental algorithm gradually composes some of the automata of the system (4)
until it can be ascertained whether or not a given event is conditionally always enabled. It many
cases, it gives a positive or negative answer after composing only a few automata.

30

By running the incremental controllability check for a shorttime, some conditionally always
enabled events can be found, while for others the result remains inconclusive. Fortunately, it is
not necessary to find all always enabled events. If the statusof an event is not known, it can
be assumed that this event isnot always enabled. The verification result will still be correct,
although it may not use the best possible abstractions. It isenough to only consider events as
always enabled or selfloop-only, if this property can be established easily.

31

5 Implementation in Waters

This section discusses how the new simplification rules havebeen implemented and tested in the
Model Checking program Waters.

Waters,The Waikato Analysis Tool for Events in Reactive Systems, was developed by the For-
mal Methods Group at the University of Waikato, and later combined with Supremica, developed
by the Department of Signals and Systems at Chalmers University of Technology in Gothenburg,
Sweden [1]. It is a tool to model and analyse finite-state machine models. The compositional
nonblocking verification algorithm and many simplificationrules had already been implemented
here. These included the rules that I have now extended such as Silent Continuation and Silent
Incoming [16]. I have also needed to add support for always enabled and selfloop-only events.

Before investigating the code, I spent some time creating models of various systems and
looking at the examples included with the program. There arehundreds of automata included,
which may be used as examples or for testing. By looking at these I found how compositional
modelling works, how the automata are composed and then simplified, and how difficult it is to
tell if a system will be blocking even after studying it closely. The state-space explosion problem
also became clear, as the synchronous composition of most ofthe example systems were far too
large to display graphically.

I then started work on the code, starting with the simplification rules. Each of the simpli-
fication rules were in a separate class, so by cloning the classes for the rules I was extending
changes could be made without breaking other parts of the system. I quickly found that the code
needed to be a lot more complex then the short rule it was performing. Also, while each class
had a short explanation, the details were largely uncommented making it difficult to see what was
happening. So I began by adding comments at each line to help show the purpose of different
parts of the code. Since I was only extending the rule at this point, I did not want to change
the structure of the code significantly, instead only changing what was necessary for the rule to
respect the new special events. At this point I had not added away to find the special events, as
this was more complicated than changing existing code. I could test that the simplication rules
were working properly without this adding possible errors.

To test the new rules, I tested that they simplified automata correctly. Many pairs of before
and after automata were created for this purpose. By creatinga specific automaton and the
automaton that would result after applying the rule I could see if the rule was working as intended.
When modelling these test automata I could say which events were always enabled or selfloop-
only, removing the need to search for them. I modelled the test automata to test certain complex
cases where the rule would be applied, for example when the automata was nondeterministic or
could be simplified multiple times. There were also a large number of existing test automata
that could be applied, this was important to ensure adding the support for special events hadn’t
broken any existing code.

After I was satisfied the extended rules would simplify automata as expected I could move
deeper into the code. To add support for finding special events I needed to understand a lot more
of the structure of the program, particularly the compositional nonblocking algorithm. An im-

32

portant part of this algorithm is the order automata are chosen to be composed. This is important
as it can greatly change the size of the final synchronous composition. There are many factors
to consider, including the number of states and transitionsin the composition. It is also valuable
to have a large number ofτ and always enabled events, as these are used when simplifying the
automata. Which automata are composed together are chosen heuristically, using an existing
two-step approach [10]. In the first step, somecandidatesets of automata are formed, and in the
second a most promising candidate is selected. For each event σ in the model, a candidate is
formed consisting of all automata withσ in their alphabet. This is used to increase the number
of τ events in the composition. Among these candidates, the candidate with the smallest esti-
mated number of states after abstraction is selected. The estimate is obtained by multiplying the
product of the state numbers of the automata forming the candidate with the ratio of the numbers
of events in the synchronous composition of the candidate after and before removing any local
events. This strategy is calledMustL/MinS [10, 16]. A new heuristic was written to try max-
imise the number of always enabled events, however this had no significant improvement over
the existing heuristic that was instead chosen.

After identification of a candidate, its automata are composed, and then a sequence of ab-
straction rules is applied to simplify it. First,τ-loops (definition 8) and observation equivalent
redundant transitions [9] are removed from the automaton. This is followed by the Only Silent
Incoming Rule (proposition 6), the Only Silent Outgoing Rule [10], the Limited Certain Con-
flicts Rule (proposition 7), Observation Equivalence (proposition 1), the Non-α Determinisation
Rule [16], the Active Events Rule [10], and the Silent Continuation Rule (proposition 5).

When finding special events, the main mistake I wanted to avoidwas incorrect identification,
as this would quickly lead to simplification that did not preserve nonblocking. I also wanted to
ensure that I was finding as many special events as possible inorder to maximise the possible
simplification. Although my first attempts did not find many special events, I could still change
the structure of the compositional verification algorithm to use them. I could then run tests and
see nothing had been broken and how much simplification was being added.

The result of my improvements to the algorithm is that duringsimplification, all selfloops
with selfloop-only events are deleted, and observation equivalence and the removal of obser-
vation equivalent redundant transitions exploit selfloop-only events for further simplification.
Furthermore, the Only Silent Incoming Rule, the Limited Certain Conflicts Rule, and the Silent
Continuation Rule take always enabled events into account.

In addition to the small automata used to test single rules, Waters also contains a large test
suite. The test suite includes complex industrial models and case studies from various applica-
tion areas such as manufacturing systems, communication protocols, and automotive electronics.
Included are all models used in [16] with at least 5·107 reachable states that have been used for
experimental results.

I could use these to test the compositional nonblocking verification algorithm with the support
for special events added. The main properties to test were that the nonblocking result was the
same as expected and that no errors had been introduced. I could also run these tests with the
original rules still in place. This meant that when looking at the statistics of what simplification

33

had occurred, I could see quickly the improvements my rules had compared to the originals.
Unfortunately at first I found they only had a very small improvement.

I also saw that the number of always enabled events was much smaller than hoped, so I
reinvestigated how they were found. By this point I understood more of the code, and was able
to move the search to a place where it was both faster and more effective. I also discovered and
implemented the improvements discussed in section 4. All always enabled events were found
in the small models that could be investigated carefully, however this is no guarantee that all
always enabled events are always found in larger systems. The addition of the conditionally
always enabled events algorithm increased the amount of simplification significantly, though at
the cost of speed.

34

6 Experimental Results

Experimental results have been gathered from the implementation in Waters. This data is shown
in Table 6.

A number of strategies have been used to show the improvements of the extended always
enabled and selfloop-only events rules compared to the original simplification rules.

For the experiments, the detection of always enabled eventsand selfloop-only events can
be turned on and off separately, producing four strategiesNone (no special events),SL (self-
loop-only events),AE (always enabled events), andSL/AE (selfloop-only and always enabled
events).

The strategiesAE andSL/AE consider events as always enabled if they are always enabled
in every automaton except the one being simplified. Two further strategiesSL/AE 〈200〉 and
SL/AE 〈1000〉 also search for events that are conditionally always enabled. This is done using
an incremental controllability check [4] that tries to compose an increasing part of the model
until it is known whether or not an event is always enabled, oruntil a state limit of 200 or 1000
states is exceeded; in the latter case, the check is abandoned and the event is assumed to be not
always enabled.

For each model, Table 6 shows the total number of reachable states in the synchronous com-
position (Size) if known, and whether or not the model is nonblocking (Res). Then it shows
for each strategy, the number of states in the largest automaton encountered during abstraction
(Peak States), the number of states in the synchronous composition explored after abstraction (Fi-
nal States), and the total verification time (Time). The bestresult in each category is highlighted
in bold.

In some cases, compositional nonblocking verification terminates early, either because all
reachable states of all automata are known to be marked, or because some automaton has no
reachable marked states left. In these cases, the final synchronous composition is not constructed
and the final states number is shown as 0.

All experiments are run on a standard desktop computer usinga single core 3.3 GHz CPU
and 8 GB of RAM. The experiments are controlled by state limits. If during abstraction the syn-
chronous composition of a candidate has more than 100,000 states, it is discarded and another
candidate is chosen instead. The state limit for the final synchronous composition after abstrac-
tion is 108 states. If this limit is exceeded, the run is aborted and the corresponding table entries
are left blank.

The results in Table 6 demonstrate that compositional verification can check the nonblocking
property of systems with up to 1014 states in a matter of seconds. The exploitation of always
enabled and selfloop-only events reduces the peak or final state numbers in many cases. This is
important as these numbers are the limiting factors in compositional verification.

Unfortunately, the runtimes rarely improve as the smaller state numbers are outweighed by
the effort to find always enabled and selfloop-only events. The search has to be repeated after
each abstraction step, because each abstraction can produce new always enabled or selfloop-only
events, and the cost increases with the number of steps and events. Conditionally always enabled

35

events can produce better abstractions, but it takes a lot oftime to find them.
There are also cases where the state numbers increase with always enabled and selfloop-

only events. A decrease in the final state number after simplification can come at the expense
of increase in the peak state number during simplification. With more powerful simplification
algorithms, larger automata may fall under the state limits. Also, different abstractions may
trigger different candidate selections in following steps, which are not always optimal. In some
cases, the merging of states may prevent observation equivalence from becoming applicable in
later steps.

A significant result of my work is that the large PROFIsafe models [12] can only be verified
compositionally with selfloop-only events. By adding alwaysenabled and selfloop-only events
to the available tools, it becomes possible to solve problems that are not solvable otherwise.

36

Table 1: Experimental Results
None SL AE SL/AE SL/AE 〈200〉 SL/AE 〈1000〉

Peak Final Time Peak Final Time Peak Final Time Peak Final Time Peak Final Time Peak Final Time

Model Size Res states states [s] states states [s] states states [s] states states [s] states states [s] states states [s]

aip0aip 1.02·109 yes 1090 5 1.2 1090 5 1.3 1090 5 1.3 1090 5 1.2 892 5 24.5 892 5 31.9

aip0alps 3.00·108 no 18 16 0.2 18 16 0.2 18 16 0.3 18 16 0.3 18 16 1.4 18 16 1.4

aip0tough 1.02·1010 no 96049 19833682 82.696049 17066874 47.196049 19829534 76.296049 17063170 46.096049 17063170 46.7 96049 17063170 105.8

aip1efa〈3〉 6.88·108 yes 40290 1878708 12.5 40290 1878708 12.740290 1878708 13.240290 1878708 13.232980 1726127 17.231960 1707905 40.8

aip1efa〈16〉 9.50·1012 no 65520 1379962821.8 65520 13799628 22.065520 13799628 22.365520 13799628 22.265520 13799628 28.965520 13799628 48.0

aip1efa〈24〉 1.83·1013 no 6384 13846773 18.1 6384 13846773 18.1 6384 13846773 18.4 6384 13846773 18.2 5313 13846773 23.8 5292 13846773 42.3

fencaiwon09 1.03·108 yes 10421 105 2.3 10421 105 2.410421 105 2.410421 105 2.410421 105 3.510421 78 6.3

fencaiwon09b 8.93·107 no 10421 81 1.910421 81 1.9 10421 81 2.010421 81 1.910421 62 3.4 10421 62 5.7

ftechnik 1.21·108 no 172 0 0.3 172 0 0.3 172 0 0.4 172 0 0.4 172 0 4.3 172 0 5.4

profisafe i4 yes 74088 409 84.2 49152 9864 67.2 49152 9864 630.249152 9864 2873.7

profisafe i5 yes 98304 57888 68.5 98304 12070 71.9 98304 12070 1181.6 98304 12070 2969.0

profisafe i6 yes 55296 148284 51.2 52224 628131 84.952224 628131 1830.252224 628131 4179.5

tbed ctct 3.94·1013 no 43825 0 14.1 43825 0 14.243825 0 16.343825 0 16.543825 0 20.843825 0 43.6

tbed hisc 5.99·1012 yes 1757 33 2.4 1757 33 2.4 1705 33 2.6 1705 33 2.5 1705 33 23.6 1705 138 90.1

tbed valid 3.01·1012 yes 50105 3839 9.5 50105 3580 9.750105 2722 10.350105 2621 10.0 50105 2621 14.6 50105 2621 28.3

tip3 2.27·1011 yes 6399 173 3.1 6399 173 3.2 12303 153 4.512303 153 4.512303 153 6.012303 149 6.4

tip3 bad 5.25·1010 no 1176 14 0.9 1254 14 0.9 1176 0 1.1 1231 0 1.1 1231 0 2.9 1231 0 3.7

verriegel3 9.68·108 yes 3303 2 1.6 3303 2 1.3 3349 2 1.7 3349 2 1.4 2644 2 6.0 2644 2 9.7

verriegel3b 1.32·109 no 1764 0 1.0 1764 0 1.1 1795 0 1.1 1795 0 1.2 1795 0 5.8 1795 0 8.4

verriegel4 4.59·1010 yes 2609 2 1.3 2609 2 1.4 2644 2 1.3 2644 2 1.5 2644 2 8.6 2644 2 15.4

verriegel4b 6.26·1010 no 1764 0 1.1 1764 0 1.2 1795 0 1.2 1795 0 1.4 1795 0 8.2 1795 0 13.2

6linka 2.45·1014 no 64 0 0.4 64 0 0.4 64 0 0.4 64 0 0.4 64 0 2.2 64 0 2.7

6linki 2.75·1014 no 61 0 0.3 61 0 0.3 61 0 0.3 61 0 0.3 61 0 1.7 61 0 2.0

6linkp 4.43·1014 no 32 0 0.3 32 0 0.3 32 0 0.3 32 0 0.3 32 0 1.7 32 0 2.0

6linkre 6.21·1013 no 118 12 0.5 118 12 0.5 106 0 0.5 106 0 0.5 106 0 2.3 106 0 2.7

37

7 Conclusions

The goal of this project was to create better simplification rules that could be used to simplify
systems further and therefore allow the verification of larger systems. This was done by taking
into account additional information about the context in which an automaton to be simplified
is used. Specifically,always enabledandselfloop-onlyevents are easy to discover and can be
used to simplify automata. These improved simplification rules have been proven to preserve
nonblocking and have been implemented in Waters. Experimental results are gathered from test-
ing a set of models that include complex industrial models from multiple areas. The experiments
demonstrate that the improved algorithms can simplify these models further and that a previously
unanalyzable model can be verified with the improved algorithms.

7.1 Future Work

In future work, it is of interest whether the algorithms to detect and use always enabled and
selfloop-only events can be improved.

Conditionalτ events are another type of special event that have also been investigated but
not yet implemented. These are events which arebothconditionally always enabled and condi-
tionally selfloop-only. These events are very interesting and potentially powerful, as they can be
completely replaced in the automaton being simplified byτ.

Finding Conditionally Always Enabled Transitions is another way of using information from
automata other than the one being simplified. These transitions are those which are not disabled
by any other automata in the system, similar to conditionally always enabled events. For exam-

ple, in figure 16 there are four transitions inG1. Transitions 0
α
→ 1 and 2

γ
→ 0 are conditionally

always enabled forG1 in G2. These transitions should be able to be used similarly to condi-
tionally always enabled events in the extended rules of thisreport, and could possibly be used to
build new abstraction rules.

38

Appendix

A Silent Continuation Proof

Proof. Let T be an automaton such thatE is always enabled forT.
First assume thatG‖T is nonblocking.
To see that(G/∼)‖T is nonblocking, let(G/∼)‖T

s
⇒ (x̃,xT).

By lemma 3, there existsx∈ x̃ such thatQ◦ s
⇒ x.

Therefore,G‖T
s
⇒ (x,xT).

SinceG‖T is nonblocking, there existst ∈ A∗ such that(x,xT)
tω
⇒.

By lemma 2, this implies(x̃,xT) = ([x],xT)
tω
⇒, i.e.,G‖T is nonblocking.

Conversely assume that(G/∼)‖T is nonblocking.
Let G‖T

s
⇒ (x,xT). Then, by lemma 2 it holds that(G/∼)‖T

s
⇒ ([x],xT).

Consider three cases.

1. [x] = {x}.

Since(G/∼)‖T is nonblocking, there existst ∈ A∗ such that([x],xT)
tω
⇒.

By lemma 3 and sincex is the only state in[x], it follows that(x,xT)
tω
⇒.

2. x
η
→ y for someη ∈ E andy∈ Q.

ThenG‖T
s
⇒ (x,xT)

η
⇒ (y,yT) for some statesy of G andyT of T, becauseη ∈E is always

enabled inT.
By lemma 2, it follows that(G/∼)‖T

sη
⇒ ([y],yT).

Since(G/∼)‖T is nonblocking, there existst ∈ A∗ such that([y],yT)
tω
⇒.

By lemma 3, there existsy′ ∈ [y] such that(y′,yT)
tω
⇒.

Sincey′ ∼inc y andx
η
→ y, it follows thatx

η
→ y′.

Therefore,(x,xT)
η
→ (y′,yT)

tω
⇒.

3. x
τ
→ y for somey∈ Q.

SinceG is τ-loop free and finite, there exists a statey′ ∈ Q such thatx
ε
⇒ y′ andy′

τ
→ does

not hold.
If [y′] = {y′} then the proof continues as in case 1.

Otherwise, sincey′
τ
→ does not hold, it follows by the properties of∼ thaty′

η
→ for some

η ∈ E, and the proof continues as in case 2.

In all three cases, it has been shown that(x,xT)
tω
⇒.

ThereforeG‖T is nonblocking.
2

39

B Limited Certain Conflict Proof

Proof. Let T be an automaton such thatE is always enabled forT.
First assume thatG‖T is nonblocking.
To see thatH ‖T is nonblocking, letH ‖T

s
→ (x,xT).

Clearly→H ⊆→G, soG‖T
s
→ (x,xT).

SinceG‖T is nonblocking, there existst ∈ A∗
τ such that(x,xT)

tω
→ in G‖T.

Then lett = σ1 · · ·σn and write

(x,xT) = (x0,x0
T)

σ1→G‖T (x1,x1
T)

σ2→G‖T · · ·
σn→G‖T (xn,xn

T)
ω
→G‖T . (5)

Let (xi,xi
T)

σi+1
−−→G‖T (xi+1,xi+1

T) be an arbitrary transition on the path (5).

If xi σi+1
−−→G xi+1 does not hold, thenxi

T
σi+1
−−→T xi+1

T is a transition inT andxi = xi+1.

It follows that(xi ,xi
T)

σi+1
−−→H‖T (xi ,xi+1

T) = (xi+1,xi+1
T).

Otherwise, ifxi σi+1
−−→G xi+1, then assume for the sake of proof by contradiction, that this transition

does not exist inH.
This meansxi = p, σi+1 = η , andxi+1 = q.
Consider the two cases forη ∈ E∪{τ}.

If η ∈ E, thenxi
T

η
→T yT for some stateyT of T asE is always enabled inT, and thus(xi,xi

T) =

(p,xi
T)

η
→G‖T (q,yT).

If η = τ, then(xi ,xi
T) = (p,xi

T)
τ
→G‖T (q,xi

T).

In both cases, it follows that(x,xT)
σ1···σi−1
−−−−−→G‖T (xi,xi

T) = (p,xi
T)

η
→G‖T (q,yT) for some state

yT of T.
However,(q,yT) is a blocking state becauseq is a blocking state inG.
ThenG‖T is blocking in contradiction to the assumption.

It follows that the transitionxi σi→G xi+1 was not removed and is still present inH.

Again it holds that(xi,xi
T)

σi+1
−−→H‖T (xi+1,xi+1

T).
Thus, the path (5) exists inH ‖T, i.e.,H ‖T is nonblocking.
Conversely, assume thatH ‖T is nonblocking.
To see thatG‖T is nonblocking, letG‖T

s
→ (x,xT).

It is to be shown that(x,xT)
tω
→.

Let t = σ1 · · ·σn and write

(x0,x0
T)

σ1→G‖T (x1,x1
T)

σ2→G‖T · · ·
σn→G‖T (xn,xn

T) = (x,xT) (6)

wherex0 andx0
T are initial states ofG andT, respectively.

It is shown by induction onk = 0, . . . ,n that(x0,x0
T)

σ1···σk−−−−→H‖T (xk,xk
T).

This is trivial fork = 0.

40

Now assume(x0,x0
T)

σ1···σk−−−−→H‖T (xk,xk
T) for somek < n.

If xk σk+1
−−→G xk+1 does not hold, then clearlyxk = xk+1

and thus(x0,x0
T)

σ1···σk−−−−→H‖T (xk,xk
T)

σk+1
−−→H‖T (xk,xk+1

T) = (xk+1,xk+1
T).

Otherwise, ifxk σk+1
−−→G xk+1, assume that the this transition does not exist inH.

This means thatxk = p, and thus by inductive assumption(x0,x0
T)

σ1···σk−−−−→H‖T (p,xk
T), wherep is

a deadlock state inH (with no outgoing transitions by construction, and thusω never possible).
ThenH ‖T is blocking in contradiction to the assumption.

It follows that the transitionxk σk+1
−−→G xk+1 was not removed and is still present inH.

By inductive assumption,(x0,x0
T)

σ1···σk−−−−→H‖T (xk,xk
T)

σk+1
−−→H‖T (xk+1,xk+1

T).

Since furthermoreG andH have the same initial states, it follows from the induction thatH ‖T
s
→

(x,xT).

SinceH ‖T is nonblocking, it follows that(x,xT)
tω
→H‖T for somet ∈ A∗

τ .

Since→H ⊆→G, this implies(x,xT)
tω
→G‖T .

It follows thatG‖T is nonblocking. 2

41

C Selfloop Removal Lemma

The Selfloop-only addition proof uses this lemma to show thatselfloop removal does not affect
the existence of paths.

Lemma 10 Let G = 〈A,Q,→G,Q◦〉 andH = 〈A,Q,→H ,Q◦〉 be automata with→H = →G∪
{(q,λ ,q)} for someλ ∈ A.
Furthermore, letT be an automaton such thatλ is selfloop-only forT.
For all paths(x,xT) →H‖T (y,yT) it also holds that(x,xT) →G‖T (y,yT).

Proof. Assume(x,xT) = (x0,x0
T)

σ1→H‖T (x1,x1
T)

σ2→H‖T · · ·
σn→H‖T (xn,xn

T) = (y,yT).
The claim is shown by induction onn.
Forn = 0, this is clear as(x,xT) = (y,yT). Now consider a path

(x,xT) = (x0,x0
T)

σ1→H‖T · · ·
σn→H‖T (xn,xn

T)
σn+1
−−−→H‖T (xn,xn

T) = (y,yT),
where(x0,x0

T) →G‖T (xn,xn
T) by inductive assumption.

For the path’s final transition(xn,xn
T)

σn+1
−−−→H‖T (xn+1,xn+1

T), consider three cases.

If xn σn+1
−−−→H xn+1 does not hold, thenxn

T
σn+1
−−−→H xn+1

T is a transition inT andxn = xn+1.
By inductive assumption,(x,xT) = (x0,x0

T) →G‖T (xn,xn
T) = (xn+1,xn+1

T).

If xn σn+1
−−−→H xn+1 is the selfloopq

λ
→H q, thenxn+1 = xn andxn+1

T = xn
T becauseσn+1 = λ is

selfloop-only forT.
By inductive assumption, it follows that(x,xT) = (x0,x0

T) →G‖T (xn,xn
T) = (xn+1,xn+1

T).

Otherwise, ifxn σn+1
−−−→H xn+1 is not the selfloopq

λ
→H q, thenxn σn+1

−−−→G xn+1 is a transition inG.
Again by inductive assumption, it follows that

(x,xT) = (x0,x0
T) →G‖T (xn,xn

T)
σn+1
−−−→G‖T (xn+1,xn+1

T). 2

42

D Selfloop-Only Addition Proof

Proof. Let T be an automaton such thatλ is selfloop-only forT.
First assume thatG‖T is nonblocking.
To see thatH ‖T is nonblocking, letH ‖T

s
→ (x,xT).

By lemma 10, it holds thatG‖T → (x,xT).

SinceG‖T is nonblocking, there existst ∈ A∗
τ such that(x,xT)

tω
→G‖T .

Since→G ⊆→H , it follows that(x,xT)
tω
→H‖T , i.e.,H ‖T is nonblocking.

Conversely, assume thatH ‖T is nonblocking.
To see thatG‖T is nonblocking, letG‖T

s
→ (x,xT).

Since→G ⊆→H , it holds thatH ‖T
s
→ (x,xT).

BecauseH ‖T is nonblocking, there existst ∈ A∗
τ such that(x,xT)

t
→H‖T (y,yT)

ω
→H‖T .

Using lemma 10, it follows that(x,xT) →G‖T (y,yT).

Furthermore, it follows fromy
ω
→H thaty

ω
→G becauseλ 6= ω and→G and→H only differ in a

λ -transition.
Thus,(x,xT) →G‖T (y,yT)

ω
→G‖T , i.e.,G‖T is nonblocking. 2

43

E Conditionally Always Enabled Events Proof

Proof. This proof shows how conditionally always enabled events can be used similary to regular
always enabled events.

Consider the automataG, H and T such thatG ≃E,S H and E is a set of events that are
conditionally always enabled forG in T and forH in T andS is a set of events selfloop only in
T.
Construct the automatonT ′ usingT.
For each eventη ∈ E, addη-selfloops to all states inT whereη is not already enabled.
By construction, the events inE are always enabled inT ′.
So the conflict equivalence rule for always enabled events can be applied usingT ′.
G≃E,S H, if for every automatonT ′ such thatE is a set of events that are always enabled inT ′

andS is a set of selfloop-only inT ′, it holds that

G‖T ′ is nonblocking⇐⇒ H ‖T ′ is nonblocking. (7)

However, theη selfloops that were added toT to give T ′ are removed when the synchronous
product is taken.
This is because theη selfloops were added to states that did not haveη enabled inG or H, by
definition of conditionally always enabled events.
This means thatG‖T ′ = G‖T andH ‖T ′ = H ‖T.
Substitution into equation 7 above gives

G‖T is nonblocking⇐⇒ H ‖T is nonblocking. (8)

2

44

References

[1] Knut Åkesson, Martin Fabian, Hugo Flordal, and Robi Malik. Supremica—an integrated
environment for verification, synthesis and simulation of discrete event systems. InProc.
8th Int. Workshop on Discrete Event Systems, WODES ’06, pages 384–385, Ann Arbor, MI,
USA, July 2006.

[2] Christel Baier and Joost-Pieter Katoen.Principles of Model Checking. MIT Press, 2008.

[3] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph. Schnoebelen.
Systems and Software Verification. Springer, 2001.

[4] Bertil A. Brandin, Robi Malik, and Petra Malik. Incrementalverification and synthesis of
discrete-event systems guided by counter-examples.IEEE Trans. Control Syst. Technol.,
12(3):387–401, May 2004.

[5] Stephen D. Brookes and William C. Rounds. Behavioural equivalence relations induced
by programming logics. InProc. 16th Int. Colloquium on Automata, Languages, and Pro-
gramming, ICALP ’83, volume 154 ofLNCS, pages 97–108. Springer, 1983.

[6] C. G. Cassandras and S. Lafortune.Introduction to Discrete Event Systems. Kluwer,
September 1999.

[7] C. G. Cassandras and S. Lafortune.Introduction to Discrete Event Systems. Springer, 2
edition, 2008.

[8] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes.Theoretical
Comput. Sci., 34(1–2):83–133, November 1984.

[9] Jaana Eloranta. Minimizing the number of transitions with respect to observation equiva-
lence.BIT, 31(4):397–419, 1991.

[10] Hugo Flordal and Robi Malik. Compositional verification in supervisory control.SIAM J.
Control and Optimization, 48(3):1914–1938, 2009.

[11] C. A. R. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

[12] R. Malik and R. M̈uhlfeld. A case study in verification of UML statecharts: thePROFIsafe
protocol.J. Universal Computer Science, 9(2):138–151, February 2003.

[13] Robi Malik. On the set of certain conflicts of a given language. InProc. 7th Int. Workshop
on Discrete Event Systems, WODES ’04, pages 277–282, Reims, France, September 2004.

[14] Robi Malik. The language of certain conflicts of a nondeterministic process. Working Pa-
per 05/2010, Dept. of Computer Science, University of Waikato, Hamilton, New Zealand,
2010.

45

[15] Robi Malik and Ryan Leduc. Generalised nonblocking. InProc. 9th Int. Workshop on
Discrete Event Systems, WODES ’08, pages 340–345, G̈oteborg, Sweden, May 2008.

[16] Robi Malik and Ryan Leduc. Compositional nonblocking verification using generalised
nonblocking abstractions.IEEE Trans. Autom. Control, 58(8):1–13, August 2013.

[17] Robi Malik, David Streader, and Steve Reeves. Conflicts andfair testing. Int. J. Found.
Comput. Sci., 17(4):797–813, 2006.

[18] Robin Milner. Communication and concurrency. Series in Computer Science. Prentice-
Hall, 1989.

[19] P. N. Pena, J. E. R. Cury, and S. Lafortune. Verification of nonconflict of supervisors using
abstractions.IEEE Trans. Autom. Control, 54(12):2803–2815, 2009.

[20] Colin Pilbrow and Robi Malik. Compositional nonblocking verification with always en-
abled events and selfloop-only events. InProc. 2nd Int. Workshop on Formal Techniques for
Safety-Critical Systems, FTSCS 2013, pages 147–162, Queenstown, New Zealand, 2013.

[21] Peter J. G. Ramadge and W. Murray Wonham. The control of discrete event systems.Proc.
IEEE, 77(1):81–98, January 1989.

[22] Rong Su, Jan H. van Schuppen, Jacobus E. Rooda, and Albert T. Hofkamp. Nonconflict
check by using sequential automaton abstractions based on weak observation equivalence.
Automatica, 46(6):968–978, June 2010.

[23] Simon Ware and Robi Malik. Conflict-preserving abstraction of discrete event systems
using annotated automata.Discrete Event Dyn. Syst., 22(4):451–477, 2012.

46

