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The JStar Language Philosophy

Mark Uttinga,, Min-Hsien Wenga, John G. Clearya

aDepartment of Computer Science, FCMS, The University of Waikato, Hamilton, New
Zealand

Abstract

This paper introduces the JStar parallel programming language, which is a Java-
based declarative language aimed at discouraging sequential programming, en-
couraging massively parallel programming, and giving the compiler and runtime
maximum freedom to try alternative parallelisation strategies. We describe the
execution semantics and runtime support of the language, several optimisations
and parallelism strategies, with some benchmark results.

Keywords: Parallel programming models, architecture independence, JStar,
Java, Datalog, Linda-like languages.

1. The Goals of JStar

JStar is a new declarative programming language designed for implicit par-
allel programming [6]. The language semantics is Datalog with negation, plus
an explicit causality ordering that defines a local stratification ordering, which
both ensures that programs have a well-defined semantics and loosely constrains
the execution order [6].

Broadly, the main aim of JStar is to discourage sequential programming,
and instead encourage a programming style that has massive amounts of im-
plicit parallelism, so that by choosing appropriate options, a compiler can gener-
ate several different kinds of implementations, including sequential, multi-core,
GPU, etc. More precisely, we had four main design goals for JStar, which are
described in the following subsections.

1.1. Raise the Abstraction Level

The time taken to write a program is roughly proportional to the size of the
program in lines of code [10]. So to increase programmer productivity, we would
like to be able to express a given program in a more concise form. To our minds,
most current programming languages are already too verbose, requiring many
control flow and data representation issues to be over-specified. And making a
program parallel usually requires adding even more code. Our goal for JStar
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is that there should be no code overhead for making a program parallel, and if
possible, JStar programs should be more concise than say, an equivalent Java
program.

To achieve this, JStar uses the expressions of the Eclipse XText framework
(essentially Java expressions with type inference and lambda expressions), plus
a concise one-line notation for defining relational tables, and a simple foreach
notation for defining rules.

1.2. Avoid Mutable Data

Most of the problems in parallel programming arise from multiple theads up-
dating shared variables. In JStar we ban mutable variables,1 and take a more
declarative approach where each computation rule takes one or more tuples as
input and produces new tuples as output. This is somewhat similar to func-
tional programming, but avoids the ‘plumbing problems’ inherent in that style2

by using a single global database, like the assert database of Prolog. Compu-
tation rules can query this database and can add their output tuples to it, but
they cannot mutate or delete tuples. Of course, the language semantics allows
garbage collection of tuples that will never be used again.

1.3. Make Parallelism the Default

Modern computers offer an increasing number of cores, so all modern pro-
grams should offer scalable parallelism, to take advantage of the available hard-
ware. In JStar, we want parallel execution to be the default, so that a program-
mer has to take extra measures if they wish to constrain the execution to be
sequential. We aim to discourage sequential programming (no while loops or
sequential for loops), in order to encourage the programmer to think in terms
of parallel computation. JStar does allow for loops to be written within a rule,
but since there are no mutable variables, every iteration of the loop body is
independent, which allows greater parallelism.

To replace some common uses of sequential loops, JStar supports reduce and
scan operations with user-defined operators. Our goal is that JStar programs
specify the minimal constraints on the execution order that ensure that the cal-
culations are correct. Furthermore, part of this design goal is that all programs
should have deterministic parallel semantics [3], meaning that the output of the
program is independent of the parallelism strategy that is used.

1.4. Late commitment to data structures

In imperative parallel programs, the choice of data structures is often strongly
linked with the kind of parallelism that the program uses. This means that mak-
ing major changes to the parallelism structure of the program often requires
major changes to the data structures too, which makes it hard to experiment

1They may appear only in ’unsafe’ code blocks, which are used to implement system rules.
2That is, one frequently has to feed an input or output parameter down through many

levels of functions in order to get access to it at the point required.
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with many alternative parallelism approaches. To avoid this dependency, we
want programs to be written using neutral high-level data structures (relations),
which can be transformed into efficient implementation-oriented data structures
after the parallelism structure of the program has been designed, and after we
know how the program queries each relational table.

This relational approach gives the language much more implementation flex-
ibility than just abstract data types or interfaces, since we can perform static
analysis on the queries that are performed (part of the query term is typically
written using a boolean lambda expression) before deciding how to represent
the data, which fields should be indexed, what data structures to use for each
index, etc. Currently we just generate default indexes and data structures for
each relation, then allow the programmer to override those choices via runtime
flags.

1.5. Current Status

The current implementation of JStar (v2.0) is based on the Eclipse XText
domain-specific language environment.3 This makes it easy to create a modern
Eclipse-based IDE for editing the language, plus a compiler that generates Java
code. We have added compiler flags for generating either sequential code, or
parallel code using the Java Fork/Join framework [9]. JStar also supports:

• a simple graph visualizer for viewing aspects of the partial order over
tuples that controls the parallelism;

• a connection to several alternative Satisfiability Modulo Theories (SMT)
theorem provers4 for proving that rules are consistent with the causal-
ity orderings declared by the programmer, and that tuple invariants are
preserved;

• a logging system for recording usage statistics about each table during a
program run, and tools to visualise those logs as annotated dependency
graphs of the program execution. This is a useful basis for choosing par-
allelisation strategies.

This paper reports on our current work on automatic parallelisation of JStar
programs for multicore CPUs, but we have also explored implementations of a
few example Starlog programs on cluster computers [7], on GPUs [2], and have
achieved good performance and scalability.

2. Programmer Workflow

The left side of Figure 1 shows a simplified workflow for developing an im-
perative parallel program [16]. The source code of the program is conceptually

3See http://www.eclipse.org/Xtext.
4See http://www.smtlib.org for example SMT tools.
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Figure 1: Parallel program development workflow: traditional (left) versus JStar (right).

one large integrated piece of text (albeit spread over several files) that defines
the computation of the program, its flow of control (parallel and serial), its
data structures, locking strategies, etc. These aspects are all intertwined in the
source code, and the programmer must get them all correct before the program
can be executed.

In contrast, in the JStar workflow (right hand side of Figure 1) these concerns
of the programmer are separated out into four different stages:

1. Application Logic. At this stage the programmer defines just the schemas
for all the tuples that will be computed, and the rules for creating those
tuples. This defines the input-output functionality of the program, but
leaves parallelism, control flow, and data structures, largely unspecified.
The programmer’s main concern is the functionality and correctness of
the program. The program is executable, though not very efficient, so the
programmer can test the functionality of the program and check that it is
correct, before starting to work on the parallelism and efficiency aspects.
The main tools needed at this stage are an IDE with good support for
editing and refactoring the program, plus good support tools for unit
testing and system testing.

2. Possible Execution Orderings. At this stage the programmer thinks about
the dependencies between the rules and tuples, and defines the weakest
possible orderings between them, in order to allow for the largest range of
parallel execution strategies. These causality ordering declarations are
part of the program source code, since they are usually architecture-
independent. Static analysis and automated theorem proving are used
to check that the dependency orderings proposed by the programmer are
consistent with the computation rules in the program. Visualization tools
are also useful at this stage, to show the dependencies as directed graphs.

3. Parallelism Strategy. For each target architecture, the programmer now
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designs a set of instructions to the compiler saying which rules should be
run in parallel, whether each set of tuples should be partitioned, dupli-
cated or shared across the different cores or computers (for distributed
implementations), and how the communication should be implemented.
These instructions are separate from the program (with a different set of
instructions for each target architecture), and are used by the compiler
to transform the original declarative JStar program into an architecture-
specific parallel or distributed program. Since the set of output tuples
of a JStar program is independent of the choice of parallelism, this stage
can change the efficiency of the program but cannot change its correctness
(input-output behaviour is preserved, except that output tuples may be
produced in a different order). The main tools needed at this stage are
parallel profiling tools to report on the performance of tasks, statistics
about communication between tasks etc.

4. Data Structures. Once it is known how each task will access the tuples,
appropriate data structures, indexes and buffering strategies can be cho-
sen. These choices are also stored separately from the program source, and
are used as hints to the compiler to say what code should be generated
for each kind of tuple. The main tools needed are profiling and recording
tools to analyze the performance of each data structure plus metrics about
how it is used [5]. This stage is similar to performance tuning of relational
databases, except that it is tuning an in-memory database.

Because the architecture-dependent compiler hints are separate from the
program source code, it is easy to experiment with alternative implementa-
tions – one can simply design multiple sets of compiler-directive files, one for
an efficient sequential implementation, several different parallelization strategies
for a multi-core implementation, and then run the compiler with each of those
compiler-hint files and benchmark the resulting programs to see which approach
is more efficient on resources. This encourages an empirical approach to the par-
allelization of programs. It is even possible that different kinds of programmers
may perform different stages, such as an application domain expert performing
stage 1, while a parallel-performance expert performs stages 2-4.

3. The JStar Language

This section gives an informal overview of the JStar v2 language and its
execution semantics. The formal semantics, and a proof of the correctness of all
the possible parallel evaluation strategies, can be found elsewhere [6]. In brief,
it is equivalent to Datalog with negation, functors, and a local-stratification
ordering (which we derive from a programmer-supplied causality ordering over
tuples).

JStar uses a very different programming paradigm to most existing lan-
guages. It is a relational programming language. The key idea is that all data
manipulated by a program is stored in in-memory relations/tables, and rules
can add tuples to these tables but cannot update or delete existing tuples.
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Ship
frame x y dx dy

0 10 10 150 0
1 160 10 150 0
2 310 10 150 0
3 460 10 0 10
4 460 20 0 10
5 460 30 -150 0
6 310 30 -150 0
7 160 30 -150 0

Figure 2: Ship table, showing a ship moving right, then down, then left.

If we want to record data that changes over time, such as the position of a
ship in a Space Invaders game, then we must add timestamp information to each
tuple in the database. For example, Figure 2 shows a Ship table that records
the movements of a single ship over 8 frames It first goes across the screen to
the right in 150 pixel jumps, then descends slowly several times, then moves to
the left in 150 pixel jumps.

Each tuple in a table is typically implemented as an immutable Java object
with a fixed set of named fields, corresponding to the columns of the table. This
Ship table could be declared by the following command, which creates a Java
class called Ship, plus another class called ShipTable with various query and
lookup methods. The -> is a shorthand that indicates that the frame field is
a primary key, so the ShipTable class has an invariant that only one Ship can
exist within each frame value. The orderby list will be discussed in Section 4.

table Ship(int frame -> int x, int y, int dx, int dy) orderby (Int, seq frame)

When a tuple is queried or created, the field values can be specified by
position, or by name (using the [...] lambda expressions of Xbase). Here
are several equivalent expressions that create a tuple equal to the first tuple in
Figure 2. We also generate a builder class for each table, so that a copy method
can take an existing (immutable) tuple, update a few fields and create a new
tuple.

new Ship(0,10,10,150,0) // by position (in order)

new Ship() [frame=0; x=10; dx=150; y=10; dy=0] // by name

new Ship() [x=10; dx=150; y=10] // use default values for frame and dy.

In addition to these tables, the other main part of a JStar program is a
set of rules that add new tuples to the tables. Each rule inspects the existing
database, makes calculations and decisions, and can then add tuples to one or
more tables. Here is a simplistic rule that always moves the Ship to the right
by 150 pixels.

foreach (Ship s) { put new Ship(s.frame+1, s.x+150, s.y, s.dx, s.dy) }
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JStar uses an improved incremental version of the pseudo-naive execution
algorithm [12, 6], so when new tuples are added to the database, they are placed
into a temporary area called the Delta Set. Each execution step removes one or
more tuples from the Delta Set, adds them into the appropriate tables in the
main database (Gamma), and then executes all the rules that have those tuples
as inputs. This is a bottom-up [15] or forward-chaining execution mechanism,
similar to that used by some expert system and planning engines.

Event-driven programming with external input tuples fits elegantly into this
framework – the input tuples are added to the Delta Set, and can then trigger
various rules before being stored into a table (or discarded if they are no longer
needed). Similarly, some tuples generated by the program can be requests for
external actions, such as reading or updating files – such actions are performed
when those tuples are taken out of the Delta Set.

The above rule is triggered unconditionally by every Ship tuple, so it will be
executed for every Ship tuple that is added to the database, which effectively
creates an infinite loop that keeps moving the Ship infinitely far to the right!
This is perhaps not quite what we want, so let’s change the rule so that it moves
the ship to the right only when its x position is less than 400 pixels:

foreach (Ship s) {
if (s.x < 400) { put new Ship(s.frame+1, s.x+150, s.y, s.dx, s.dy) }

}

This bottom-up execution mechanism has the potential for lots of paral-
lelism. At first glance, it looks like every tuple in the Delta Set could be exe-
cuted in parallel. However, this is not always safe for rules that contain negative
or aggregate queries. The next section discusses constraints on the rules and
on the parallel execution algorithm to ensure that programs have sensible and
deterministic semantics.

4. The Law of Causality

In JStar, timestamps are used to record the passage of time, so we usually
include some explicit timestamp fields in each tuple – for the Ship table the
frame field is the timestamp. In some other tables, the timestamp may be
comprised of several fields. For example, if we want to print a 2D table of
numbers, we might define a timestamp based on the line number then the column
number so that the outputs are printed in the desired order.

Just like in the real universe, it is a fundamental law of JStar that rules can
affect the future, but they are not allowed to change the past! So the tuples that
are ‘put’ into the database by a rule must have later timestamps than all the
input tuples that are read by the rule. This is the law of causality. The example
rules we saw for moving a Ship to the right all satisfy the law of causality,
because the new Ship tuple is added to a later frame than the input Ship tuple.

The causality law is important because JStar allows negative and aggregate
queries of the database as well as positive queries. A negative query checks that
a given set of tuples are not in the database, while aggregate queries can count
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or sum or combine tuples in various ways. Without the causality restriction, the
execution of future rules could affect the results of such queries and invalidate
calculations that depend on the query results.

A more precise definition of the causality law is that a rule that puts a
tuple with timestamp T into the database can only perform positive queries
with timestamps ≤ T , and negative or aggregate queries with timestamps < T .
This is the same as the local stratification requirement for the sound execu-
tion of Datalog programs [11, 6]. We use SMT solvers (automatic theorem
provers similar to SAT solvers) to check that each rule is consistent with the
programmer-supplied causality ordering. For example, given a rule like:

foreach (Trigger trig) {
if (Cond) {

val tuple1 = new Tuple1(args1)

put tuple1

} else {
val q1 = get min Tuple1(queryArgs)

val tuple2 = new Tuple2(args2)

put tuple2

}
}

we send one causality proof obligation to the SMT solver for each put command
to ensure that the new tuple is being added into the future (or present) part of
the database (we use orderby(T ) to mean that the tuple T is unfolded into its
orderby list, so that only those named fields are used by the causality ordering):

1. inv(trig) and Cond and inv(tuple1)

=⇒ orderby(trig) ≤ orderby(tuple1)

2. inv(trig) and ¬Cond and inv(q1) and inv(tuple2)

=⇒ orderby(trig) ≤ orderby(tuple2)

and one to ensure that the query timestamp is strictly before the trigger tuple
(which means that the result of the query is now fixed):

3. inv(trig) and not(Cond)

=⇒ orderby(Tuple1(queryArgs)) < orderby(trig)

If the SMT solver cannot prove one of these theorems, the relevant statement is
marked with a warning message, and the programmer is strongly recommended
to change the program (eg. strengthen invariants, make queries more specific,
or change the orderby clauses) so that the solver can prove that the ordering
relationship is satisfied.

5. Parallelisation Strategies in the JStar Compiler

The JStar compiler translates each JStar program into standard Java source
code, which can then be compiled with a Java compiler and executed. The
compiler generates parallel Java code and data structures by default, or can
generate sequential code and data structures if the -sequential compiler flag
is supplied. This section briefly describes the parallelisation strategies that the
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Figure 3: The lifecycle of a typical JStar tuple.

compiler uses, some important optimisations that it supports, and how users
can override the default choice of data structure.

As mentioned above, the lifecycle of a typical tuple in a JStar program is as
follows (see Fig. 3):

1. A rule (or an initial put command) creates the tuple, which is then in-
serted into the Delta set to await its turn for processing.

2. The tuple is taken out of the Delta set (in an order that respects the
causality ordering of the program), is used to trigger any applicable rules,
and is put into the Gamma database that (conceptually) stores all tuples
generated by the program.

3. When other rules execute, they may query tables in the Gamma database,
and this tuple may be returned as the result of a query.

4. If program analysis makes it possible to determine that this tuple can never
participate in future queries, then it can be removed from the Gamma
database and garbage collected. Currently, this program analysis is not
automated, so we simply retain all tuples, or use manual lifetime hints
from the user to determine when tuples can be discarded.

Our current implementation uses a very simple parallelisation strategy built
on top of the Java 7 Fork/Join framework. It treats the Delta set as an event
queue, ordered by the causality ordering. At each execution step, it takes all
minimal tuples out of the Delta set, and executes all those tuples in parallel.
More precisely, the Delta set is organised as a single tree, containing tuples
from many tables, sorted lexicographically by the orderby lists of those tables.
That is, the ith level of the Delta tree is sorted according to the ith entries of
the orderby lists. If the ith entry of an orderby list is seq e then the subtrees
of the corresponding node of the Delta tree are sorted sequentially by the value
of field e; if it is par e then the subtrees are unordered so can be executed
in parallel; and if it is a capitalised literal name then it is sorted according to
a partial order specified by explicit order declarations in the JStar program
(eg. order Req < PvWatts < SumMonth in Fig. 4). The leaves of the Delta
tree contain sets of tuples–the tuples within one of those sets are all in the
same equivalence class with respect to the Delta ordering, so can be executed
in parallel.
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For example, if the Ship table were declared as:

table Ship(int frame, int x, int y, int dx, int dy) orderby (Int, seq frame);

then multiple Ships would be allowed within each frame, but all those Ships
would be equivalent within the causality ordering, since the orderby list only
uses the frame field and ignores the other fields. The root node of the Delta
tree (level 0) would have a named subtree called ’Int’, level 1 would be sorted
sequentially by the frame field, and each level 2 node would be a leaf node that
contains a set of all the Ship tuples within the given frame. If we had 11 Ship
tuples within frame 18, then when execution reaches that frame, 11 fork/join
tasks will be created, and each of those tasks will fire one or more rules, which
will in turn insert new tuples into the future area of the Delta tree.

This implementation uses the Delta tree as a multi-level priority queue, so
it is important to be able to quickly find the minimum node in the tree, and
to remove duplicate tuples that are inserted into the tree. The nodes of the
Delta tree that contain named branches are implemented as a linear array of
subtrees, indexed by a total ordering of the order relationship at that level.
The nodes of the Delta tree that contain sorted integer indexes typically use a
Java SortedMap to order the subtrees,5 with the default implementation being
a Java TreeMap<Integer,DeltaNode> when generating sequential code, or a
Java ConcurrentSkipListMap<Integer, DeltaNode> when generating parallel
code.

The Gamma database contains a separate data structure for each table,
and the default implementation of this uses some kind of NavigableSet, so
that queries of any ordered subset of the tuples can be performed reasonably
efficiently. When generating parallel code, ConcurrentSkipListSet is used,
and when generating sequential code, TreeSet is used.

5.1. Program Optimisations

Some tuples are never used as the triggers of rules - they are used only by
queries from within rules. In this case, it is not necessary to send the tuples
through the Delta tree - they can be put directly into the Gamma database.
Even when a tuple does trigger a rule, it can be executed immediately if that
rule does not query the database or contain ’unsafe’ code (which may have
external side effects). The compiler supports this optimisation via a -noDelta

T flag, which generates code to put each new T tuple directly into Gamma, and
immediately fire any rules that have it as a trigger. As we shall see in the next
section, this optimisation can dramatically speed up programs that generate a
lot of non-trigger tuples.

A complementary optimisation is -noGamma T, which omits the insertion of
tuples from table T into Gamma. This is useful when tuples are used only as
triggers, and are never queried. This optimisation typically has only a minor
effect on speed, but does help to reduce the active heap size.

5A priority-queue is not sufficient, because we also need to remove duplicate tuples as they
are inserted.
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5.2. Additional Parallelism

Note that this parallel implementation does not take advantage of all the
potential parallelism in a JStar program. Even if a tuple triggers more than
one rule, we create only one task for that tuple - we could create one task per
rule that is triggered. Also, within a rule, any loop that does not use a reducer
object is known to have independent loop bodies, so these could be executed
in parallel. Loops that do involve a reducer object could also be executed in
parallel, with a tree-based pass to combine the final reducer results. Finally,
the semantics of JStar allows for many different parallel execution orders when
extracting tuples out of the Delta set [6]. This paper does not investigate those
additional parallelisation opportunites - it just reports on the effectiveness of
the simple all-minimums parallelisation strategy.

6. Case Study Programs

To illustrate the style of JStar programs and to evaluate their performance
and parallel speedup, we use four case study programs”6

PvWatts: This is a map-reduce style of program that reads a 192Mb CSV file
generated from the PVWatts program,7 containing hourly output mea-
surements for solar cell installations, and calculates the average power
generated during each month. Figure 4 shows the main parts of the pro-
gram. The effect of the order declaration is to declare a causal depen-
dency from the PvWatts tuples to the SumMonth tuples. This ensures
that the last rule in Fig. 4 (triggered by SumMonth) does not run until
after all PvWatts tuples have been put into the main database – if this
order declaration was omitted then the SMT solvers would not be able
to prove that that rule was stratified, so a Stratification error would be
displayed.

MatrixMult: This is a naive matrix multiplication algorithm that multiplies
two N ×N matrices together (N = 1000 in this case study). The effective
parallelism is that each row of the output matrix is a separate task. Each
matrix multiplication is requested via a tuple, and that tuple generates
one row request tuple for each output row of the matrix. Each row request
tuple triggers a rule that loops over all the columns of that row, and uses a
nested loop with a summation reducer to calculate the dot product results.

ShortestPath: This generates a random connected graph with one million
vertices and two million edges, and then uses Dijkstra’s shortest-path al-
gorithm to find the shortest path from the starting vertex (0) to each

6The full source code of the JStar and Java versions of these programs is available from
the JStar project page, http://www.cs.waikato.ac.nz/research/jstar.

7See http://www.nrel.gov/rredc/pvwatts/about.html.
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package jstar.examples.pvwatts;

import ...

table PvWattsRequest(String filename) orderby (Req);

table PvWatts(int year, int month, int day, String hour, int power) orderby (PvWatts);

table SumMonth(int year, int month) orderby (SumMonth);

order Req < PvWatts < SumMonth;

put PvWattsRequest("large1000.csv");

foreach (PvWattsRequest req) {...code to read PvWatts tuples from *.csv... }

foreach (PvWatts pv) {put new SumMonth(pv.year, pv.month);}

foreach (SumMonth s) {
val stats = new Statistics();

for (record : get PvWatts(s.year, s.month)) {
stats += record.power;

}
println(s.year + "/" + s.month + ": " + stats.mean)

}

Figure 4: A JStar program to calculate the average solar power generated in each month.

vertex. Figure 5 shows the part of the program that implements Dijk-
stra’s shortest path algorithm. It is quite concise, because the Delta tree
acts as the priority queue (ordered by the distance to the vertex), which
is the main data structure used in this algorithm.

Median: This generates a relation that represents an array of 100 million ran-
dom doubles and then finds the median of those values. Unlike most JStar
programs, which are written in a style that is agnostic as to whether it
is sequential or parallel, this program uses a more explicitly parallel algo-
rithm. It chooses a global pivot value, divides the array into N consecutive
regions, partitions each of those regions using the pivot value (similar to a
Quicksort) and reports the size of those partitions back to a central con-
troller. The controller then repeats this process (each time focusing on
the partitions that must contain the median value) until only one value is
left in the partition, which is the median.

We shall now compare the sequential performance of these programs, and
then discuss the multicore speedup of each program in turn.

6.1. Sequential Performance of JStar versus Java

Figure 6 shows the absolute speed of the JStar case study programs when
compiled with the -sequential flag of the JStar compiler, versus some hand-
coded Java versions of the same applications. When compiling the JStar pro-
grams, we used the same JStar compiler optimisation options as will be used for
the parallel versions of these programs in the following sections, and we used the
same custom data structures for a few of the Gamma data structures as will be
used for the parallel programs. So the sequential JStar performance shown here

13



package jstar.examples.shortestpath;

import ...

table Vertex(int index, String name) orderby(Vertex);

table Edge(int from, int to, int value) orderby(Edge);

/** Estimated shortest distance to vertex. */

table Estimate(int vertex, int distance) orderby (Int, seq distance, Estimate);

put new Estimate(0, 0); //Set the origin.

/** Final shortest-path to each vertex. */

table Done(int vertex -> int distance) orderby (Int, seq distance, Done)

order Vertex < Edge < Int;

order Estimate < Done;

... code to generate a random graph ...

/**

* This implements Dijkstra’s shortest path algorithm.

* The Estimate tuples are ordered by increasing distance.

*/

foreach (Estimate dist) {
if (get uniq? Done(dist.vertex, [distance < dist.distance]) == null) {

println("shortest path to " + dist.vertex + " is " + dist.distance);

put new Done(dist.vertex, dist.distance);

// process all adjacent nodes not yet done

for (edge : get Edge(dist.vertex)) {
if (get uniq? Done(edge.to) == null) {

put new Estimate(edge.to, dist.distance + edge.value);

}
}
}

}
Figure 5: JStar version of Dijkstra’s Shortest Path Program.
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Figure 6: Absolute sequential speed of the JStar case study programs versus hand-coded Java
versions, on an Intel i7-2600 CPU.
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is close to the single-thread execution times of the parallel programs – the only
difference is the small overhead of some Java concurrent data structures com-
pared to their sequential equivalents (for example, ConcurrentHashMap versus
HashMap).

Two of the JStar-generated programs are faster than the Java equivalents,
and two are slower, so overall, this indicates that the JStar implementations
are reasonably efficient. But it is worth commenting on the reasons for the
differences in each case.

The JStar PvWatts program is slightly faster than the hand-coded Java
version, but this is because the Java program uses the typical input reading
style of BufferedReader.readline plus String.split to read the input CSV file,
whereas JStar uses its own more efficient CSV library that keeps lines as byte
arrays and avoids conversion to strings as much as possible.

The JStar MatrixMult program is significantly slower as generated (21.9
seconds to multiply two 1000x1000 matrices), because XText 2.3 sometimes
generates code that use boxed Integers rather than int, and it did this in the
inner loop. If we manually correct this to use primitive int, the time comes
down to 8.1 seconds, which is close to the 7.5 seconds for the naive Java matrix
multiplication program. If we make an obvious improvement to the hand-coded
Java version of transposing one of the matrices before multiplying them (so
that the inner loop is going sequentially through both matrices and is more
cache-friendly), then its time drops to 1.0 seconds - we could apply the same
optimisation to the JStar program, but this would require modifying the JStar
source code.

The JStar Dijkstra program is twice as slow as the Java version, because
it pushes several million Estimate tuples through the JStar Delta tree data
structures, and these are slightly less efficient than the PriorityQueue that the
Java program uses.

The JStar Median program is twice as fast as the Java version, because the
Java program uses Arrays.sort (a double-pivot quicksort) to find the median,
whereas the JStar program uses a median-specific variant of quicksort that par-
titions the whole array, but then recurses only into the half of the array that
contains the median.

6.2. PvWatts Speedup
A naive execution of the PvWatts program would be as follows:

1. The program starts with a request to read the input file, large1000.csv.
2. This tuple triggers the automatically generated read-loop rule, which uses

a CSV reader library class to read the file and put all the PvWatts tuples
into the Delta Set.

3. When these PvWatts tuples are moved from the Delta Set into the Gamma
database, they trigger the foreach(PvWatts) rule in Fig. 4, which puts
lots of SumMonth requests into the Delta Set. Note that JStar has a set-
oriented semantics, so duplicate SumMonth tuples are discarded, and we
end up with just one tuple in the Delta Set for each unique year/month
combination in the input file.
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4. As each of these SumMonth tuples moves from the Delta Set into the main
database, it triggers the last rule in Fig. 4, which queries the PvWatts
table in the main database for all tuples in that month, and uses one of
the standard JStar reduce operators (Statistics) to calculate and print8

the average power for that month.

The general purpose execution strategy outlined above is horribly inefficient
for this particular application, because it requires loading the whole input file
into the Delta Set and thence into the main database, before the PvWatts
tuples are analyzed by the Statistics reducer. This is wasteful on both time and
memory for this simple program, but if the program did more complex queries,
it would be necessary to store all the PvWatts tuples before the analysis phase.

When we apply the optimisations discussed in Section 5.1 (-noDelta=PvWatts),
and run the program on the large1000.csv input file (192Mb, 8,760,000 records),
the sequential execution time is 23.0 seconds without the optimisation and 8.44
seconds with the optimisation.9

However, the PvWatts program also allows a lot of parallelism. Reading
the CSV file and creating the PvWatts tuples is typically the bottleneck, but
the CSV reader library can run several readers in parallel, on different parts of
the input file. (Each reader continues reading a little way past the end of its
region, to ensure that all records have been read. This strategy is also employed
by some of the input file readers in Hadoop.10) All the SumMonth tuples can
be processed in parallel, so that we have a separate reducer task calculating
the statistics for each month. This means that we essentially get the data-flow
behaviour shown in Fig. 7, with the program executing in two phases. In the first
phase, N tasks read parts of the input CSV file in parallel, and put SumMonth
tuples into the Delta Set and PvWatts tuples into the main database, then in
the second phase we can have M tasks each processing one or more SumMonth
tuple to calculate and output the statistics for one month. N and M could both
default to the number of available cores, or could be chosen based on the size
of the input file and the number of months. So this solution should have good
scalability, though the shared data structures could become a bottleneck.

Regarding data structures, we could tell the compiler to index the year
and month fields of the PvWatts table (e.g. as one hashtable) so that the
query in the SumMonth rule can still be performed efficiently. The default data
structure for tables in the Gamma database is a Java TreeSet for sequential
code or a ConcurrentSkipListSet for parallel code, which both support ordered
traversals so that queries need only traverse a subset of the table. But since

8As println has side effects, it is not good style to use it in rules, but we allow it for
temporary debugging and tracing purposes. The kosher way of printing is to put Println
tuples into the Delta Set, so that the printing side effects take place when those tuples are
removed from the Delta Set, which follows the causality ordering. This also allows one to
define an output sorting order for the Println tuples, if that is desired.

9For this experiment we use an Intel i7-2600 CPU, JDK 1.7.0 07 64-bit server VM with a
large heap (8Gb), under Ubuntu 12-04.

10See http://hadoop.apache.org.
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Figure 7: Two phase execution of the solar power program. Blue rectangles are tuples, and
red circles are tasks executing rules – the bold arrows show the trigger tuple that starts the
rule executing.

Figure 8: Relative speedup of the PvWatts program with varying fork/join pool size on a dual-
CPU Intel Xeon W5590 (total of 8 cores), with alternative data structures for the PvWatts
Gamma table.

this PvWatts program always queries the PvWatts table with a known year and
month, we can use a HashSet or ConcurrentHashMap, which are considerably
more efficient. After some experimentation, we manually implemented a custom
data structure for the PvWatts Gamma database that has an array indexed by
month (1..12) at the top level, and either a HashSet or ConcurrentHashMap
within each entry of the array. We added this to the generated Java program by
using inheritance to override one factory method. (We plan to add a compiler
flag that automates the generation of these optimised ‘array-of-hashsets’ data
structures, in the future.)

Fig. 8 shows the effect of running this optimised PvWatts program on the
large1000.csv input file (192Mb, 8,760,000 records), varying the number of
threads in the JStar Fork/Join pool (eg. --threads=4). Each program was
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run at least 20 times, the first 6 measurements (while the Hotspot compiler
optimises the code) were ignored and then the average of the remaining times
was taken. The relative speedup11 is average, reaching nearly 4X speedup with
8 threads. The absolute speedup figures are about 35% lower, because the
sequential Java data structures (eg. TreeMap) are significantly faster than the
equivalent concurrent data structures (ConcurrentSkipListMap).

Given that this program inserts more than 8 million PvWatts tuples that
cannot be garbage collected into the Gamma database and that we have ob-
served up to 60% of the elapsed time being spent in the garbage collector, it is
clear that garbage collection is at least partially responsible.

A more aggressive optimization would be to unfold the SumMonth rule so
that its reduce loop is done incrementally as the PvWatts tuples are produced.
That is, when each SumMonth tuple is generated, it immediately creates an
instance of the Statistics reducer, and as the PvWatts tuples are generated they
are passed to each of those reducers before being discarded. In general, this
technique might require that some input tuples have to be processed by several
reducers, but in this particular program, the reducer could be associated with
each bucket in the PvWatts hashtable, so only a single reducer needs to be
considered for each input tuple. This optimization would be more complex to
apply than the other optimizations, but would eliminate the need to store the
PvWatts tuples, and thus allow the program to run in a constant amount of
memory, rather than proportional to the size of the input file. This optimiza-
tion would not always be applicable, since more complex programs may require
storing the input tuples in order to perform multiple passes over them.

6.3. PvWatts Disruptor Design

Using timing benchmarks of the various phases of the optimised PvWatts
program, running in parallel mode with just 1 thread, the relative times of the
various phases are:

• 16.9% reading and parsing the input file.

• 63.7% creating the PvWatts tuples and inserting them into their Gamma
table;

• 3.8% creating SumMonth tuples and inserting into the Delta tree;

• 15.6% processing the SumMonth tuples by running a Statistics reducer
over all the PvWatts tuples for each month.

This shows that the reader is not the main bottleneck, so we decided to inves-
tigate parallelising just the last three phases to see how much speedup can be
obtained. According to Amdahl’s law, the maximum speedup we could expect

11Relative speedup is the speedup relative to the parallel version running with one thread,
while absolute speedup is relative to the fastest sequential or single-threaded parallel version.
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Figure 9: Workflow of the Disruptor Version of the PvWatts program. Each consumer reads
just the PvWatts records for a specific month from the Producer’s ring buffer, then uses local
Delta and Gamma databases to process those tuples.

would be 4.2X (= 1/(0.169 + (1 − 0.169)/12)) with a single reader and 12 con-
sumer processes (one for each month). To efficiently send tuples from the reader
to the consumers, we use the Disruptor framework.

Disruptor12 is a Java library developed for high-speed real-time financial
exchange applications [14]. It uses a highly efficient ring-buffer to move data
between producer and consumer processes, and has higher throughput, lower
latency, less write contention, and a more friendly cache mechanism than other
data transfer mechanisms. It is also quite flexible, with alternative implemen-
tations for single or multiple producers, single or multiple consumers, several
alternative waiting strategies for consumers, and many parameters to tune the
performance of the ring-buffer. It typically uses atomic CAS (Compare and

12Disruptor is available from http://lmax-exchange.github.com/disruptor.
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Swap) instructions to manage access to the ring-buffer, rather than locking,
and its data structures are carefully designed to reduce cache line contention
and to recycle objects rather than garbage collecting them.

Our Disruptor version of PvWatts parallelizes the PvWatts program into a
two-phase workflow, as shown in Fig. 9. It uses a single producer and multiple
consumers to process all PvWatts tuples. The program initializes the Disruptor
instance by specifying the number of consumers, the number of producers and
the waiting strategy for the ringbuffer. The producer does all the CSV reading
loop tasks: reading and parsing the large input file, publishing the PvWatts
tuples into the ring buffer, and then sending out a sentinel tuple when the end
of the input file is reached. At the same time, each consumer starts to claim
PvWatts tuples from the ringbuffer. To reduce the workload of the reducer loop
and improve the parallelism, we assign a separate month to each consumer.
Thus, each consumer just needs to process the PvWatts tuples of one month
and puts these tuples into its own Gamma database. Besides, the consumer also
creates one corresponding SumMonth tuple for each PvWtts tuple and inserts
this tuple into the Delta tree. When a consumer receives the sentinel tuple,
it processes the SumMonth tuple from its own Delta tree, which triggers the
reducer loop to query the PvWatts tuples in the Gamma table, and output
their average monthly power generation.

This single-producer and multiple-consumer design removes the possibility
of contention, provides good data locality, and pipelines the reducer and the
consumers. If the months are evenly distributed throughout the input file, then
all consumers will be busy and will progress at roughly the same rate. If there
is a long sequence of records for the same month, then that consumer will have
more work to do and may become a bottleneck, depending upon the size of the
ring-buffer. Each consumer has its own local data storage, and puts the tuples
into its local Gamma database or Delta tree.

Table 1 shows the Disruptor settings and alternatives that we used while
tuning the Disruptor version of the PvWatts program. The best results with a
single producer and 12 consumers were with the BlockingWaitStrategy for the
consumers, a ring buffer of 1024 elements, and a producer batch size of 256.

Fig. 10 shows the execution times of the Disruptor version of PvWatts, with
two different input orderings:

• the default input (unsorted) is ordered by year and month, which means
that long sequences of records are processed by the same consumer. In
this case, the Disruptor version with 8 threads has a speedup of 3.31 over
the sequential PvWatts JStar code.

• the best case input (sorted) has better load balancing, because the input
file is sorted by day of the month and time of the day, so that input records
are processed by consumers in a round-robin fashion. This makes both
the sequential and parallel programs faster, so the Disruptor version with
8 threads has a speedup of 2.52.
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Category Parameter Value

RingBuffer Event PvWatts tuples

RingBuffer Size of Ring Buffer 1024.

RingBuffer Wait Strategy BlockingWaitStrategy

RingBuffer Claim Strategy SingleThreaded-ClaimStrategy

Producer Total number of Producer 1

Producer Publish Strategy Claim slots in a batch of 256.

Producer Task Read input file, create PvWatts
tuples and add to ring buffer.

Consumer Total number of Consumer 12

Consumer Task Process PvWatts tuples and add
to Gamma.

Table 1: Disruptor Options used for PvWatts.

Figure 10: Execution times for the Disruptor
version of PvWatts on an 8 core machine (i7-
2600 with 4 cores + hyperthreading), compared
to the sequential PvWatts JStar program.

Figure 11: Speedup of the naive Matrix Multi-
plication program with varying fork/join pool
size on a quad-CPU Intel Xeon E7-8837 (total
of 32 cores).
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6.4. Matrix Multiplication Speedup

Fig. 11 shows the speedup obtained by varying the thread pool size in the
naive matrix multiplication program. This program is embarrassingly parallel,
and has a high computation to communication ratio (after applying compiler
optimisations, only one tuple per row of the output matrix needs to go through
the delta set), so shows good speedup up to 20 cores. Note that to make
this program more similar to standard Java matrix multiplication programs, we
used a Java 2D array of integers for the gamma set of each matrix. This is
an example of a commonly-useful ‘native-arrays’ data structure optimisation:
tables that have integer keys and a single dependent value, such as:

table Matrix(int mat, int row, int col -> int value)

can be efficiently implemented using Java arrays if the keys have a limited range
and are dense.

6.5. Shortest Path Speedup

The Shortest Path program effectively has two stages: first create a random
graph (a tree with one million vertices, plus another one million edges between
random vertices) - each edge has a random length between 1 to 10. This graph
creation phase was originally done by a single rule, triggered by a command line
argument tuple. But it became apparent that due to the overhead of random
number generation, this phase was a bottleneck, taking more than 60% of the
total time. So we modified the JStar program to allow more parallelism, by
splitting the graph creation into 24 separate tasks (tuples).

Inspection of the program makes it obvious that the Estimate tuples (and the
CmdLineArg tuples - not shown in Fig. 5) are the only ones that trigger rules,
so we applied the -noDelta optimisation to the other tables, and the -noGamma

optimisation to the Estimate table. (Some of these obvious optimisations could
be applied automatically by the compiler in the future).

After these optimisations, we get the speedup results shown in Fig. 12. This
has mediocre speedup, with a maximum speedup of only 4.0 (8 cores). This
seems to be because the inner loop of the program puts several million Estimate

tuples through the Delta tree, which is still not sufficiently scalable to cope with
a large number of threads contending for the same branches of the tree.

6.6. Median-Finding Speedup

The main data structure in the Median-Finding program is the Data ta-
ble that represents the input array containing 100 million doubles (randomly
generated on each run).

/** The array that we are finding the median of. */

table Data(int iter, int index -> double value)

orderby (Int, seq iter, Data, seq index);
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Figure 12: Speedup of the Dijkstra Shortest
Path program with varying fork/join pool size
on a dual-CPU Intel Xeon W5590 (total of 8
cores).

Figure 13: Speedup of the Median-Finding
program with varying fork/join pool size on
a quad-CPU Intel Xeon E7-8837 (total of 32
cores).

The N tasks each work on a separate area of this array, and produce an up-
dated version of the array with each region partitioned. The iter field increases
as these new copies of (parts of) the array are created. However, the rules only
use iter and iter+1, so we only need two copies of the array. Furthermore, these
Data tuples are not used as triggers, so we can use the -noDelta optimisation.
For the Gamma implementation of the Data table, we wrote a custom subclass
that stored all the values in a 2D array: double[2][100000000], and used iter
modulo 2 as the index for the outer dimension. This is the combination of the
above ‘native-arrays’ optimisation, plus a gamma-database garbage collection
optimisation that keeps only the ’current’ and ’next’ copies of the iterations in
a table. After these optimisations, we get the speedup results shown in Fig. 13,
with good speedup 8.6X up to 12 cores, and then a more gradual speedup up
to a maximum of 14X with 32 cores.

7. Related Work

JStar is based on Datalog with negation, plus explicit time stamps. There
have recently been several other Datalog-based language proposals [8] aimed at
parallel and distributed computing. The closest to JStar is the Dedalus logic
and Bloom language from Berkeley [1]. These use the same Datalog+negation
semantic basis, but have a more restricted notion of timestamps than JStar,
and are focussed on distributed algorithms, whereas our focus is currently on
multi-core performance.

ParaSail [13] shares some design goals with JStar (eg. evaluation is parallel
by default, aliasing and mutable global variables are avoided, and static analysis
is used to avoid runtime errors) but it is still aimed at mutable variable pro-
gramming, whereas JStar is more declarative. Another difference is the JStar
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goal of separating parallelism and data structure decisions from the program
source – we can experiment with alternative strategies just by providing differ-
ent parameters to the compiler or to the generated Java program at runtime.
The Fresh Breeze project 13 also has some similar goals to JStar (determinate
behaviour of fork/join parallel programs with immutable objects), but is focused
on explicit parallelism, and hardware design of multiprocessor chips to support
their execution model.

The Delite research program [4] from Stanford University’s Pervasive Paral-
lelism Laboratory (PPL) has a similar aim to JStar (writing one program and
running it on many different parallel architectures), but is focussed on using do-
main specific languages (DSLs) to raise the abstraction level and capture parallel
execution patterns at a high level in order to allow maximum implementation
freedom. JStar is a general purpose language equivalent to Datalog+negation
with a bottom-up execution semantics, so is more expressive than the current
Delite DSLs. The Delite runtime can execute a task graph on parallel, hetero-
geneous hardware, but supports only a few parallel execution patterns such as
map, reduce, zipwith etc. In contrast, the JStar runtime executes a more gen-
eral directed acyclic graph of tuples, which should allow more runtime flexibility
in finding ad-hoc parallelism that does not fit predetermined patterns.

JStar can be viewed as a Linda-like language, where communication be-
tween processes (rules) is done via sending and receiving tuples from a cen-
tral database. However, JStar is much more declarative than a Linda system,
because in JStar, tuples cannot be deleted from the tuple database, and the
language is restricted to ensure that rules and programs are deterministic (ex-
cept that the order of output tuples need not be deterministic). One Linda-like
system that has very similar aims to JStar is the Intel Concurrent Collections
system for C++.14 Like JStar, it aims to abstract away from low-level com-
munication mechanisms and communicate via tuples (objects), to specify only
the semantic ordering constraints between operations rather than specifying the
parallelism directly, and to allow parallelism experts much more freedom to tune
the application after it is written.

8. Conclusions

We have given a brief overview of the JStar language, its compiler and its de-
fault parallelisation strategies. We have shown by example that JStar programs
can exhibit a large degree of parallelism, and that it is possible to apply sig-
nificant program transformations, parallelisation strategies and data structure
choices purely as compiler options, without changing the JStar source program.
On the benchmark programs we have investigated in this paper, the speedup
ranges from very good (eg. for Matrix multiplication and Median) to mediocre
(for Dijkstra’s shortest path). In some cases, profiling showed that one rule was

13See http://csg.csail.mit.edu/Users/dennis for an overview of the Fresh Breeze project.
14See http://software.intel.com/en-us/articles/intel-concurrent-collections-for-cc.
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a sequential bottleneck (eg. creating the random graph in the shortest path pro-
gram), so we rewrote that rule so that it could be triggered by multiple tuples,
to expose more parallelism. This would be less necessary if our implementation
exploited the embarrassingly parallel for loops within rules.15

We are still investigating why the speedup is not higher for the Dijkstra
shortest path program (it seems to be a problem with the scalability of our
Delta tree data structures). We are continuing to tune the JStar compiler and
runtime to get more speed and better scalability.

An important contribution of this work is that we have demonstrated that
by making the data dependencies of programs much more explicit, and by ex-
pressing the initial program using a flat relational view of the data rather than
prematurely choosing particular data structures, we can:

• allow compilers to make much more aggressive transformations of pro-
grams, to introduce significant amounts of implicit parallelism and to
change data structures to suit that parallelism. We do not mind whether
the choice of transformation is given by the user, chosen by heuristics, or
guided by performance feedback from previous executions (auto-tuning).

• allow users to visually see the possible parallelism structure in their pro-
grams, using views like those of Fig. 7.

Even more importantly, this style of programming makes it possible to try alter-
native parallelisation structures without changing the program’s input-output
behaviour, and in many cases, without changing the program source code. With
our current JStar implementation, we have to write some of the optimised data
structures manually, but we believe that in most cases this code could be gen-
erated automatically in the future. This separation of the application logic
from the parallelisation effort enables a lightweight experimental approach to
parallelisation, and could support the separation of roles between application
programmers (domain experts) and parallelisation engineers (performance ex-
perts).
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