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Abstract— This paper investigates under which conditions
transitions can be removed from an automaton while pre-
serving important synthesis properties. The work is part of
a framework for compositional synthesis of least restrictive
controllable and nonblocking supervisors for modular discrete
event systems. The method for transition removal complements
previous results, which are largely focused on state merging.
Issues concerning transition removal in synthesis are discussed,
and redirection maps are introduced to enable a supervisor to
process an event, even though the corresponding transition
is no longer present in the model. Based on the results,
different techniques are proposed to remove controllable and
uncontrollable transitions, and an example shows the potential
of the method for practical problems.

I. I NTRODUCTION

Supervisory control theory[1] provides a general frame-
work to compute least restrictive strategies to control a given
plant such that its behaviour satisfies a givenspecification.
Synthesis for systems with a large number of components
is impeded by an inherent complexity problem known as
state-space explosion. A lot of research has been devoted
to overcome the state-space explosion problem, and also
to find more comprehensible supervisors [1]–[3].Compo-
sitional methods seek to avoid large state spaces using
abstraction, and have been used in verification [4], [5] and
synthesis [3], [6], [7]. In a system with a large number
of components, it is often possible to simplify individual
components before composing them with the rest of the
system, achieving significant performance improvements.
Several ways to simplify components have been investigated
in recent years.

Natural projectionis a standard and effective way to com-
pute abstractions, although strong restrictions need to beim-
posed to ensure the preservation of synthesis results [8], [9].
Observation equivalence[10] and conflict equivalence[11]
are well-known abstraction methods for nonblocking verifi-
cation [5], but for synthesis these abstractions can only be
applied in combination with unobservable events [12], [13],
which limits their applicability.

Recently, frameworks for compositional synthesis based
on abstractions of nondeterministic automata have been
proposed [3], [6], [7], in some cases showing substantial
reduction of the number of states encountered during synthe-
sis. This paper seeks to enhance these methods by providing
means to removetransitions. This is important, because for
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large systems, the number of transitions may exceed the
number of states by several orders of magnitude.

Compositional verification often uses observation equiv-
alence for abstraction, which allows for transition removal
using the transitive reduction [14], but observation equiv-
alence does not necessarily preserve synthesis results [6].
Supervision equivalence[3] allows for transition removal,
but relies on additional state labels that make some desirable
abstractions impossible. The methods [6], [7] avoidevent
hiding that may cause problems in synthesis abstraction, but
these approaches make it difficult to remove transitions.

This paper proposes some concrete means to identify
transitions that are redundant for the purpose of synthesis.
These methods are based on observation equivalence [10],
but are more restrictive because of the need to preserve
synthesis results. It is also shown how to restore the removed
transitions to enable a synthesised supervisor to make control
decisions based on a model with removed transitions.

This paper is organised as follows. After the preliminaries
in Sect. II, a framework to support transition removal in
compositional synthesis is presented in Sect. III. In Sect.IV,
a sufficient condition for transition-removing abstraction is
described, and in Sect. V, concrete methods to remove
transitions are given. Finally, Sect. VI demonstrates transition
removal using a practical example, and Sect. VII adds some
concluding remarks. Formal correctness proofs are omitted
for lack of space in this paper and can be found in [15].

II. PRELIMINARIES

A. Events and Languages

The behaviour of discrete event systems is described using
events and languages.Eventsrepresent incidents that cause
transitions from one state to another and are taken from a
finite alphabetΣ. For the purpose of supervisory control, this
alphabet is partitioned into the setΣc of controllableevents
and the setΣu of uncontrollableevents. Controllable events
can be disabled by a supervisor, while uncontrollable events
occur spontaneously, and are prefixed by an exclamation
mark (!) in this paper. The specialtermination eventω ∈ Σc

denotes completion of a task, and does not appear anywhere
else but to mark such completions.

Σ∗ is the set of all finite traces of events fromΣ, including
the empty traceε. A subsetL ⊆ Σ∗ is called alanguage.
The concatenation of two tracess, t ∈ Σ∗ is written asst.
A trace s ∈ Σ∗ is a prefix of t ∈ Σ∗, written s ⊑ t, if
t = su for someu ∈ Σ∗. For Ω ⊆ Σ, the natural projection
PΩ : Σ∗ → Ω∗ is the operation that removes from traces
s ∈ Σ∗ all events not inΩ.
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B. Finite-State Automata

Discrete event systems are typically modelled as deter-
ministic automata, but nondeterministic automata may be
obtained as intermediate results from abstraction.

Definition 1: A (nondeterministic) finite-state automaton
is a tupleG = 〈Σ, Q,→, Q◦〉, whereΣ is a finite set of
events,Q is a finite set of states,→ ⊆ Q × Σ × Q is the
state transition relation, and Q◦ ∈ Q is the set ofinitial
states.

The transition relation is written in infix notationx
σ
→ y,

and is extended to traces inΣ∗ by letting x
ε
→ x for all

x ∈ Q, andx
sσ
→ z if x

s
→ y and y

σ
→ z for somey ∈ Q.

Furthermore,x
s
→ meansx

s
→ y for somey ∈ Q, andx → y

meansx
s
→ y for somes ∈ Σ∗. For an alphabetΩ ⊆ Σ,

the notationx
Ω
→ y meansx

σ
→ y for someσ ∈ Ω, and

G
s
→ x meansq◦

s
→ x for someq◦ ∈ Q◦. The languageof

automatonG is L(G) = { s ∈ Σ∗ | G
s
→}. Finally, G is

deterministic, if |Q◦| ≤ 1, andx
σ
→ y1 andx

σ
→ y2 always

implies y1 = y2.
A special requirement is that states reached by the termi-

nation eventω do not have any outgoing transitions, i.e., if
x

ω
→ y then there does not existσ ∈ Σ such thaty

σ
→. This

ensures that the termination event, if it occurs, is always the
final event of any trace. The traditional set of marked states
is Qω = {x ∈ Q | x

ω
→} in this notation. For graphical

simplicity, states inQω are shown shaded in the figures of
this paper instead of explicitly showingω-transitions.

When multiple automata are brought together to interact,
lock-step synchronisation in the style of [16] is used.

Definition 2: Let G1 = 〈Σ1, Q1,→1, Q
◦
1〉 andG2 = 〈Σ2,

Q2,→2, Q
◦
2〉 be two automata. Thesynchronous composition

of G1 andG2 is

G1 ‖ G2 = 〈Σ1 ∪ Σ2, Q1 × Q2,→, Q◦
1 × Q◦

2〉 (1)

where

(x, y)
σ
→ (x′, y′) if σ ∈ Σ1 ∩ Σ2, x

σ
→1 x′, y

σ
→2 y′ ;

(x, y)
σ
→ (x′, y) if σ ∈ Σ1 \ Σ2, x

σ
→1 x′ ;

(x, y)
σ
→ (x, y′) if σ ∈ Σ2 \ Σ1, y

σ
→2 y′ .

C. Supervisory Control Theory

Given plant and specificationautomata,supervisory con-
trol theory [1] provides a method tosynthesisea supervisor
that restricts the behaviour of the plant such that the spec-
ification is always fulfilled. Two common requirements for
this supervisor arecontrollability andnonblocking.

Definition 3: SpecificationK = 〈Σ, QK ,→K , Q◦
K〉 is

controllable with respect to plantG = 〈Σ, QG,→G, Q◦
G〉

if, for every traces ∈ Σ∗, every statex ∈ QK , and every
uncontrollable eventυ ∈ Σu such thatK

s
→ x andG

sυ
→, it

holds thatx
υ
→K .

Definition 4: An automatonG = 〈Σ, Q,→, Q◦〉 is non-
blocking if, for every statex ∈ Q and every traces ∈
(Σ \ {ω})∗ such thatQ◦ s

→ x, there exists a tracet ∈ Σ∗

such thatx
tω
→. Two automataG1 andG2 arenonconflicting

if G1 ‖ G2 is nonblocking.

For a plantG and specificationK, it is shown in [1] that
there exists aleast restrictivecontrollable sublanguage

supCG(L(K)) ⊆ L(K) (2)

such thatsupCG(L(K)) is controllable with respect toG
and nonblocking, and this language can be computed using a
fixpoint iteration. This result can be reformulated in automata
form, using an iteration on the state set. The synthesis result
for an automatonG is obtained by restrictingG to a maximal
set of controllable and nonblocking states.

Definition 5: The restriction of G = 〈Σ, Q,→, Q◦〉 to
X ⊆ Q is G|X = 〈Σ, Q,→|X , Q◦ ∩ X〉 where→|X =
{ (x, σ, y) ∈ → | x, y ∈ X }.

Definition 6: [17] Let G = 〈Σ, Q,→, Q◦〉 be an automa-
ton. The synthesis stepoperatorΘG : 2Q → 2Q for G is
defined byΘG(X) = Θcont

G (X) ∩ Θnonb
G (X), where

Θcont
G (X) = {x ∈ X | x

Σu→ y implies y ∈ X } ; (3)

Θnonb
G (X) = {x ∈ X | x

tω
→|X for somet ∈ Σ∗ } . (4)

Theorem 1: [17] Let G = 〈Σ, Q,→, Q◦〉. The synthesis
step operatorΘG has a greatest fixpointgfpΘG = Θ̂G ⊆
Q. If the state setQ is finite, then the sequenceX0 = Q,
Xi+1 = ΘG(Xi) reaches this fixpoint in a finite number of
steps, i.e.,̂ΘG = Xn for somen ≥ 0.

Definition 7: Thesynthesis resultfor G = 〈Σ, Q,→, Q◦〉
is supCN (G) = G|Θ̂G

.
Theorem 2:Let G = 〈Σ, Q,→, Q◦〉 be a deterministic

automaton.supCN (G) is the least restrictive subautomaton
of G that is controllable with respect toG and nonblocking.

The synthesis operatorsupCN performs synthesis for a
plant automatonG. A simple transformation [3] exists to
transform problems that also involve specifications into the
plant-only control problems considered in this paper.

The result of synthesis is an automatonsupCN (G) or
a languageL(supCN (G)), which describes the behaviour
of a controlled system. In practice this is implemented as
a supervisor that decides which controllable events are to
be enabled or disabled in a given state. In this paper, a
supervisor is a map

S : Σ∗ → {0, 1} . (5)

If S(sσ) = 0 for some s ∈ Σ∗ and σ ∈ Σc then the
supervisor disables the controllable eventσ after observing
traces, otherwise it enablesσ. This results in the following
closed-loop behaviourL(S/G) of the plant G under the
control of supervisorS:

L(S/G) = { s ∈ L(G) | S(s) = 1 } . (6)

A supervisor can be constructed naturally from a language
L ⊆ Σ∗, by lettingSL(s) = 1 if and only if s ∈ L. For such
a supervisor to be feasible,L must be controllable [1].
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Fig. 1. Example of transition removal.

III. C OMPOSITIONAL SYNTHESIS

Many supervisory control problems can be presented as
a set of interacting components. Then the synthesis prob-
lem consists of finding the least restrictive controllable and
nonblocking supervisor for a set of plants,

G = {G1, G2, . . . , Gn} . (7)

Compositional synthesisexploits the modularity of such sys-
tems and avoids building the complete synchronous product.
Individual componentsGi are simplified and replaced by
smaller abstractionsHi. Synchronous composition is com-
puted step by step, abstracting again the intermediate results.
Eventually the abstractions result in a single automatonH,
the abstract description of the system (7). Once found,H is
used instead of the original system to calculate a synthesis
result that leads to a solution for the original synthesis
problem (7).

Individual componentsGi typically contain events that do
not appear in any other componentGj with j 6= i. These
events are calledlocal events. In the following, the set of
local events is denoted byΥ, and Ω = Σ \ Υ denotes the
non-local orsharedevents. Local events are helpful to find
abstractions and are parenthesised in the figures.

This paper focuses on abstractions that remove transitions
from an automaton. This leads to a problem, because it is no
longer obvious how to construct a supervisor from such an
abstraction. After removal of transitions it is not clear how
a supervisor can enact control over the events labelling the
removed transitions.

Example 1:Consider automataG and T in Fig. 1 with
Σu = Υ = {!γ}. AutomatonH is obtained by removing
q0

α
→ q2. Although H is an appropriate abstraction ofG,

as explained below in Example 2, the supervisorSH =
supCN (H ‖ T ) disables eventα in the initial state, and
therefore is not a least restrictive supervisor forG ‖ T .

To solve this problem, the models (7) are augmented by
a redirection mapthat contains the information needed to
finally implement a supervisor.

Definition 8: A synthesis pairis a pair(G;D), where

• G = {G1, G2, . . . , Gn} is a set of uncontrolled plant
automata;

• D : Σ∗ → Σ∗ is a prefix-preservingredirection map,
i.e., a map such thats ⊑ t impliesD(s) ⊑ D(t).

The compositional synthesis algorithm manipulates syn-
thesis pairs. Each pair represents a partially solved synthesis
problem, consisting of the plant modelG to be controlled
and the redirection mapD, which maps each input traces
accepted by the original plant before all abstractions, to a
trace accepted by the current abstracted plantG. A solution
to the abstracted synthesis problemG can be interpreted as

a supervisor for the original plant by taking the redirection
map into account.

Definition 9: For every synthesis pair(G;D), define the
represented supervisor mapS(G;D) : Σ∗ → {0, 1} as follows:

S(G;D)(s) =

{

1, if D(s) ∈ L(supCN (G));

0, otherwise.
(8)

Compositional synthesis starts by converting a control
problem such as (7) into a synthesis pair(G0; id) where
G0 = {G1, G2, . . . , Gn} and id: Σ∗ → Σ∗ is the identity
map, i.e, id(s) = s for all s ∈ Σ∗. This initial synthesis pair
is repeatedly abstracted such that the supervisor obtained
from the abstraction remains a solution for the original
problem. To ensure this property, each new synthesis pair
needs to besynthesis equivalentto the previous pair.

Definition 10: Two synthesis pairs(G1;D1) and(G2;D2)
are called synthesis equivalentwith respect to plantG,
written (G2;D2) ≃synth,G (G1;D1), if L(S(G1;D1)/G) =
L(S(G2;D2)/G). Furthermore,(G1;D1) and (G2;D2) are
synthesis equivalent, written(G2;D2) ≃synth (G1;D1), if
(G2;D2) ≃synth,G (G1;D1) for every automatonG.

Compositional synthesis terminates onceG = {H} con-
sists of a single automaton representing the abstracted system
description. The following result, proved in [15], confirms
that the closed-loop behaviour obtained in the end is equal
to a solution for the original synthesis problem.

Proposition 3: Let G0 = {G1, . . . , Gn} be a set of
automata, and let(Gk;Dk) be a synthesis pair such that
(G0; id) ≃synth,G0

(Gk;Dk). Then

L(S(Gk;Dk)/G0) = L(supCN (G0)) . (9)

IV. T RANSITION-WISE SYNTHESIS EQUIVALENCE

Several methods are known to abstract synthesis pairs such
that the number of states is reduced [3], [6]. The abstractions
are performed by manipulating the states and transitions of
individual automata, such that synthesis equivalence is pre-
served. To allow for transition removal, state-wise synthesis
abstraction, which is a special case of a definition from [6],
is augmented by a transition-based concept in Def. 12.

Definition 11: Let G = 〈Σ, Q,→G, Q◦〉 and H = 〈Σ,
Q,→H , Q◦〉 be two automata.H is a state-wise synthesis
abstractionof G with respect toΥ ⊆ Σ, if it holds for all
automataT with ΣT ∩ Υ = ∅ that Θ̂G‖T ⊆ Θ̂H‖T .

Definition 12: Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,
→H , Q◦〉 be two automata.H is a transition-wise synthesis
abstractionof G with respect toΥ ⊆ Σ if for every transition
x

σ
→G y there existt, u ∈ Υ∗ such that:

(i) x
tPΩ(σ)u
−→H y;

(ii) for all automataT such thatΣT ∩ Υ = ∅ and all
transitions(x, xT )

σ
→|Θ̂G‖T

(y, yT ) of supCN (G ‖ T )

it holds that(x, xT )
tPΩ(σ)u
−→|Θ̂H‖T

(y, yT ).
Definition 13: Two automataG andH are state-wise (or

transition-wise)synthesis equivalentwith respect toΥ, if G
is a state-wise (or transition-wise) synthesis abstraction of H
with respect toΥ andH is a state-wise (or transition-wise)
synthesis abstraction ofG with respect toΥ.



To preserve transition-wise synthesis equivalence after
removal of a transition, Def. 12 requires the existence of a so-
calledredirection paththat links the source and target states
of the removed transition. A redirection path for transition

x
σ
→ y with respect toΥ is a pathx

tPΩ(σ)u
−→ y such thatt, u ∈

Υ∗. Using these paths, the redirection map is constructed to
replace the removed transitions by the matching redirection
paths. This enables the supervisor to make control decisions
about the removed transitions.

Example 2:Consider again the automata in Fig. 1. Tran-
sition q0

α
→ q2 can be removed fromG, producing the state-

wise and transition-wise synthesis equivalent automatonH.
From this abstraction, a redirection mapD : Σ∗ → Σ∗ is
constructed whereD(αs) = !γαs for all s ∈ Σ∗ and
D(s) = s for all s such thatα is not a prefix ofs.

If G in Fig. 1 is placed in a larger system, sayG =
{G,T}, then the synthesis pair(G; id) is synthesis equivalent
to (H;D) where H = {H,T}. Although the supervisor
SH = supCN (H ‖ T ) obtained forH cannot directly be
used to control the original plantG, this becomes possible in
combination with the redirection mapD. As D(α) = !γα ∈
L(supCN (H ‖T )), the supervisor computed for(H,D) will
enable the controllable eventα in the initial state, in the same
way as a supervisor computed for the original systemG.

The following result confirms that a redirection map as
shown in Example 2 can be constructed in all cases where
transition removal applied to a component results in a state-
wise and transition-wise synthesis equivalent abstraction.

Theorem 4: [15] Let G = {G1, . . . , Gn} andH = {H1,
G2, . . . , Gn} such thatG1 andH1 are state-wise and transi-
tion-wise synthesis equivalent with respect toΥ ⊆ Σ1 such
that Υ ∩ Σ2 = · · · = Υ ∩ Σn = ∅ and →H1

⊆ →G1
.

Then there exists a redirection mapD1 : Σ∗ → Σ∗ such that
(G;D) ≃synth (H;D1 ◦ D).

V. TRANSITION REMOVAL ABSTRACTION

According to Theorem 4, synthesis results are preserved
if transition removal in a component results in a state-wise
and transition-wise synthesis equivalent abstraction. This
section proposes some concrete methods to construct such
abstractions, based on the idea of observation equivalence.

A. Observation Equivalence

Observation equivalenceor weak bisimilarity is a well-
known general abstraction method for nondeterministic au-
tomata [10]. It can be implemented by simple algorithms, and
its application in compositional verification can substantially
reduce the state space [5]. Observation equivalence is tested
based on the transitive closure of the local event transi-
tions [18]. The number of transitions can be substantially
reduced by considering only the transitive reduction. More
precisely, a transitionx

σ
→ y is observation equivalence

redundantand can be removed [14] if the automaton contains
a matching redirection path.

Definition 14: Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,
→H , Q◦〉 be two automata withΣ = Ω ∪̇ Υ and →H ⊆
→G. AutomatonH is a result ofobservation equivalence

G q1

q3 !υ

!υ
(β)

H q1

q3 !υ
(β)

T
!υ

Fig. 2. H is observation equivalent toG, but not a synthesis abstraction.

redundant transition removalfrom G with respect toΥ, if
for all transitionsx

σ
→G y there existt, u ∈ Υ∗ such that

x
tPΩ(σ)u
−→H y.

Observation equivalence redundant transitions can be re-
moved while preserving observation equivalence, which in
turn ensures preservation of most temporal logic proper-
ties [10], [14]. Unfortunately, this does not include synthesis
equivalence [6].

Example 3:Consider automataG, H, and T in Fig. 2.
The uncontrollable transitionq1

!υ
→ q3 is observation equiv-

alence redundant with respect toΥ = {β}. Removing it
producesH. In G andH, the uncontrollable event!υ leads
to the blocking stateq3. With H, blocking can be prevented
by disablingβ, leaving only the initial state. But withG,
the uncontrollable transitionq1

!υ
→ q3 produces an empty

synthesis result. The testT demonstrates thatG andH are
not state-wise synthesis equivalent sinceG is not a state-wise
synthesis abstraction ofH.

This counterexample shows that in general synthesis
equivalence is not preserved by removing observation equiv-
alence redundant transitions, so extra restrictions need to be
imposed.

B. Uncontrollable Redundant Transitions

In Example 3, if the local eventβ was uncontrollable,
then the resultant abstractionH would be a transition-wise
synthesis abstraction ofG. This suggests to interpret an
uncontrollable transition as redundant if the local transitions
used in the redirection path are also uncontrollable.

Definition 15: Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,
→H , Q◦〉 be two automata withΣ = Ω ∪̇ Υ and →H ⊆
→G. AutomatonH is a result ofuncontrollable redundant
transition removalfrom G with respect toΥ, if the following
conditions hold for all transitionsx

σ
→G y.

(i) If σ ∈ Σc thenx
σ
→H y.

(ii) If σ ∈ Σu then there existt, u ∈ (Υ ∩ Σu)∗ such that

x
tPΩ(σ)u
−→H y.

The transitions present in→G but not in→H in Def. 15
are calleduncontrollable redundanttransitions. These transi-
tions can be removed while producing a synthesis equivalent
abstraction.

Theorem 5: [15] Let H = 〈Σ, Q,→H , Q◦〉 be a result
of uncontrollable redundant transition removal fromG =
〈Σ, Q,→G, Q◦〉 with respect toΥ ⊆ Σ. Then G and H
are state-wise and transition-wise synthesis equivalent with
respect toΥ.

C. Controllable Redundant Transitions

For uncontrollable events, an uncontrollable redirection
path guarantees transition-wise synthesis equivalence. For
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Fig. 3. Different redirection paths after the event of a removed transition.
The transitions to be removed are marked by double-line strike-through.

controllable events, all events on a redirection path except for
the event of the removed transition should be uncontrollable.
However, the following counterexample reveals that one
more condition is needed to guarantee a correct abstraction.

Example 4:Consider automatonG1 in Fig. 3 whereΣu =
Υ = {!µ, !υ}. Transitionq0

α
→ q3 is observation equivalence

redundant becauseq0
!µα!µ
−→ q3. Let H1 be the result of

removing the transitionq0
α
→ q3. In both G1 and H1, the

controllable transitionq1
α
→ q2 must be disabled to avert

blocking via the uncontrollable event!υ. Removing this
transition makesq3 unreachable insupCN (H1‖T ), but it re-
mains reachable insupCN (G1‖T ). The testT demonstrates
that G1 andH1 are not transition-wise synthesis equivalent
asG1 is not a transition-wise synthesis abstraction ofH1.

Example 4 shows that there is a problem with uncontrol-
lable local eventsafter the event of a removed transition on
a redirection path. The problem disappears if there are no
further events after the removed event, as in automatonG2 in
Fig. 3. This leads to the idea ofcontrollable prefix-redundant
transition removal, which can be shown to imply both state-
wise and transition-wise synthesis abstraction.

Definition 16: Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,
→H , Q◦〉 be two automata withΣ = Ω∪̇Υ and→H ⊆ →G.
Automaton H is a result ofcontrollable prefix-redundant
transition removalfrom G with respect toΥ, if the following
conditions hold for all transitionsx

σ
→G y.

(i) If σ ∈ Σu thenx
σ
→H y.

(ii) If σ ∈ Σc then there existst ∈ (Υ ∩ Σu)∗ such that

x
tPΩ(σ)
−→H y.

Controllable prefix-redundant transition removal only al-
lows for local eventsbeforethe event of a removed transition.
Local events after this event can also be considered by adding
additional requirements.

Example 5:As shown in Example 4, removal of the
transitionq0

α
→ q3 in G1 in Fig. 3 does not ensure synthesis

abstraction because of the uncontrollable!υ-transition in
stateq2. AutomatonG3 also has the observation equivalence
redundant transitionq0

α
→ q3 and an!υ-transition enabled

after α on the redirection pathq0
!µα!µ
−→ q3. Yet, in this case,

the !υ-transition does not lead to a blocking state, and the
removal ofq0

α
→ q3 results in a state-wise and transition-wise

synthesis equivalent automaton.
AutomataG1 and G3 in Fig. 3 differ in the target state

of q2
!υ
→. This suggests to allow uncontrollable events in the

second part of a redirection provided that they are local and
lead to a target state on the redirection path.

Definition 17: Let G = 〈Σ, Q,→, Q◦〉 be an automaton

andΥ ⊆ Σ. A path

x0
σ1→ x1

σ2→ · · ·
σk→ xk (10)

is a weakly controllableΥ-path if σ1, . . . , σk ∈ Υ and for
all uncontrollable transitionsxl

υ
→ y with 0 ≤ l < k and

υ ∈ Σu it holds thatυ ∈ Υ andy = xj for some0 ≤ j ≤ k.
A weakly controllable path consists of only local transi-

tions, and furthermore all uncontrollable transitions enabled
along this path must use local events and lead to states
along the path. Imposing this condition on the redirection
path gives the condition for acontrollable suffix-redundant
transition, which is sufficient for synthesis equivalence.

Definition 18: Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,
→H , Q◦〉 be two automata withΣ = Ω ∪̇ Υ and →H ⊆
→G. AutomatonH is a result ofcontrollable suffix-redun-
dant transition removalfrom G with respect toΥ, if the
following conditions hold for all transitionsx

σ
→G y.

(i) If σ ∈ Σu thenx
σ
→H y.

(ii) If σ ∈ Σc then there existsu ∈ Υ∗ such thatx
PΩ(σ)
−→ H

z
u
→H y, andz

u
→G y is a weakly controllableΥ-path.

Both controllable prefix-redundant and suffix-redundant
transition removal preserve synthesis equivalence. These
conditions can be combined to allow sequences of local
events beforeand after a removed transition.

Definition 19: Let G = 〈Σ, Q,→G, Q◦〉 andH = 〈Σ, Q,
→H , Q◦〉 be two automata withΣ = Ω∪̇Υ and→H ⊆ →G.
AutomatonH is a result ofcontrollable redundant transition
removalfrom G with respect toΥ, if the following conditions
hold for all transitionsx

σ
→G y.

(i) If σ ∈ Σu thenx
σ
→H y.

(ii) If σ ∈ Σc then there existt ∈ (Υ ∩ Σu)∗ andu ∈ Υ∗

such thatx
tPΩ(σ)
−→H z

u
→H y, andz

u
→G y is a weakly

controllableΥ-path.
Theorem 6: [15] Let H = 〈Σ, Q,→H , Q◦〉 be a result of

controllable redundant transition removal fromG = 〈Σ, Q,
→G, Q◦〉 with respect toΥ ⊆ Σ. ThenG andH are state-
wise and transition-wise synthesis equivalent with respect
to Υ.

VI. EXAMPLE

In this section, the proposed synthesis procedure is applied
to a manufacturing system. The model consists of four
machinesM1, M2, M3, andM4, linked by two buffersB1

andB2. Workpieces are first processed byM1 (s1) and then
placed intoB1 (!f1), then they go toM2 (s2) and are placed
into B2 (!f2). FromB2, the workpieces either go toM3 for
final processing (s3) or to M4 (s4) for additional processing.
However,M4 has a fault that occasionally sends a workpiece
back toB1 (!re). At any time,M1 andB1 can be reset by
the controllable eventrs. Fig. 4 shows the system layout and
the automata model. Events!f1, !f2, !f3, !f4 and !re are
uncontrollable, all other events are controllable.

Compositional synthesis starts with the pair(G0; id) where
G0 = {M1,M2,M3,M4, B1, B2}. The first step is to calcu-
late the compositionB1 ‖M1 shown in Fig. 5. Now!f1, rs,
and s1 are local events, which makesq0

rs
→ q0 and q2

rs
→



M1
M2 M3

M4

B1 B2

s1 f1

s4
f4

re

s2 f2 s3 f3

M1 B1 M2 B2 M3 M4

I1

W1

s1
!f1

rs

rs

⊥

E1

F1 !f1

!f1
s2!re
rs

rs I2

W2

s2 !f2

⊥

F2

E2

!f2

!f2

s3

s4

I3

W3

s3

!f3!f4

I4

W4

!f4s4 !re

Fig. 4. Manufacturing system example.

B1 ‖ M1

⊥

(rs)

(rs)

(rs) (rs)

(s1)

(s1)

(!f1)
(!f1)

s2

s2

!re

!re

q0

q1
q2

q3

B2 ‖ M3

⊥

!f2

!f2

!f2

!f2

(s3)

(!f3)

(!f3)

!f4

!f4

s4

s4

q0

q1

q2

q3

Fig. 5. Some subsystems of the manufacturing example. The transitions
to be removed are marked by double-line strike-through.

q0 controllable prefix-redundant transitions with redirection

pathsq0
ε
→ q0 and q2

!f1

→ q3
rs
→ q0 respectively. Removal

of these transitions results inH1. The modified synthesis
pair is (G1;D1) whereG1 = {H1,M2,M3,M4, B2} andD1

redirectsq2
rs
→ q0 and q0

rs
→ q0 via q2

!f1

→ q3
rs
→ q0 and

q0
ε
→ q0, respectively.
Next, B2 ‖ M3 is computed, shown in Fig. 5. This

makes !f3 and s3 local events, andq3
!f2

→ ⊥ becomes
an uncontrollable redundant transition with redirection path

q3
!f3

→ q1
!f2

→ ⊥. The new synthesis pair is(G2;D2 ◦ D1)

whereG2 = {H1,M2,M4,H2} and D2 redirectsq3
!f2

→ ⊥

via q3
!f3

→ q1
!f2

→ ⊥.
The final synthesis step to computesupCN (G2) explores

the state space ofG2 which has 100 states and 290 transitions.
This is in contrast to standard monolithic synthesis, which
explores the same state space using 340 transitions. Both the
final monolithic and compositional supervisor have 26 states.
However, the compositional supervisor has 63 transitions,
while the monolithic supervisor has 81 transitions.

These improvements have been achieved by removing just
three transitions from the model. More savings are likely
in larger contexts, particularly in combination with state-
removing abstraction rules.

VII. C ONCLUSIONS

It has been shown under which conditions transitions can
be removed from an automaton while preserving composi-
tional synthesis results. Different techniques to remove con-
trollable and uncontrollable transitions have been presented,
and a practical example has demonstrated how the number of
transitions is reduced. The methods proposed in this paper
are not intended to be used in isolation, but they will be

combined with other synthesis-preserving abstraction meth-
ods. In the future, the authors plan to develop a framework
for compositional synthesis that combines abstractions that
remove states [3], [6] and transitions, as well as renaming [7]
to remove nondeterminism.
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