
Variable Abstraction and Approximations in Supervisory Control Synthesis

Marcelo Teixeira1 Robi Malik2 Jośe E. R. Cury1 Max. H. de Queiroz1

Abstract— This paper proposes a method to simplify Ex-
tended Finite-state Automata (EFA) in such a way the least
restrictive controllable supervisor is preserved. The method is
based on variable abstraction, which involves the identification
and removal of irrelevant variables from a model. Variable
abstraction preserves controllability, and the paper shows how
approximations can be used to ascertain least restrictiveness of
the synthesis result. The approach has the modelling benefits
of Extended Finite-state Automata, leads to optimal control
solutions, and reduces the synthesis cost. An example of a
manufacturing system illustrates the contributions.

I. I NTRODUCTION

Supervisory Control Theory[1] formally describes the
synthesisof controllers for Discrete Event Systems, math-
ematically grounded on theFinite-state Automata (FA)for-
malism [2]. By nature, FA are limited in expressive power,
particularly when modelling systems withdata dependency.
Furthermore, processing large FA is computationally expen-
sive and leads tostate-space explosion.

While FA are a good graphical way to capture control
states, data dependency is more naturally modelled using
variables. Several formalisms combine automata with vari-
ables. Synchronous programming languages[3] describe
concurrent behaviours in textual form and translate them
to FA. Statecharts[4] and Abstract State Machines[5] are
formalisms of automata with variables, used for verification
and refinement. In the context of supervisory control theory,
Extended Finite-state Automata (EFA)are a simple formal-
ism of automata with variables, which can be used to define
and synthesise supervisors [6]–[8].

Variables greatly simplify modelling tasks and produce
more concise and more readable models, yet the state-
space explosion problem remains. When analysing a system,
all possible values of the variables need to be taken into
account, and this can give very large state spaces. This
problem can be mitigated bysymbolic representationsof
the state space [8]–[10], and byvariable abstractionto
simplify models by removing variables that are irrelevant
for particular properties [9].

This paper proposes a way to exploit variable abstrac-
tion in synthesis. This is more difficult in synthesis than
in verification, because a synthesised supervisor typically
is required to satisfy several properties at the same time.

This work was supported by the Brazilian National Council for Scientific
and Technological Development (CNPq).

1M. Teixeira, J. E, R. Cury, and M. H. de Queiroz are with the
Departamento de Automação e Sistemas, Universidade Federal de Santa
Catarina, Floriańopolis, Brazil ({mt,cury,max}@das.ufsc.br).

2R. Malik is with the Department of Computer Science, The University
of Waikato, Hamilton, New Zealand (robi@waikato.ac.nz).

Variable abstraction has been used for safety properties
in synthesis [11], but this method does not preserve least
restrictiveness of supervisors. The solution proposed in this
paper is inspired by the idea ofapproximations[12], [13],
which make it possible to determine that the supervisor
synthesised for an abstracted model is least restrictive.

This paper is structured as follows. Section II introduces
Extended Finite-state Automata in the context of supervi-
sory control theory. Section III presents variable abstraction
and approximations, and their use in supervisor synthesis.
The proposed method is applied to a small manufacturing
system to demonstrate its benefits. Finally, conclusions and
perspectives of future work are discussed in Section IV.

II. PRELIMINARIES

A. Events, Traces and Languages

Traces and languages are a simple means to describe
discrete system behaviours [2]. Their basic building blocks
areevents, which are taken from a finitealphabetΣ. ThenΣ∗

denotes the set of all finitetraces of the form σ1σ2 . . . σn

of events fromΣ, including theempty traceε. A subset
L ⊆ Σ∗ is called a language. The concatenationof two
tracess, t ∈ Σ∗ is written asst. Traces and languages can
also be concatenated, for example,sL = { st ∈ Σ∗ | t ∈ L }.
The prefix-closureof a languageL is L = { s ∈ Σ∗ | st ∈
L for somet ∈ Σ∗ }, andL is prefix-closedif L = L.

B. Extended Finite-State Automata

Extended Finite-State Automata (EFA)are structures of
states, similar to conventionalFinite-State Automata (FA),
but augmented withupdatesassociated to the transitions [6]–
[8]. Updates are formulas containing variables.

A variable v is an entity associated with a finite do-
main dom(v) and an initial valuev◦ ∈ dom(v). The
domain of a variable setV = {v0, . . . , vn} is dom(V) =
dom(v0) × · · · × dom(vn), and its elements are written as
v̄ = (v̄0, . . . , v̄n) ∈ dom(V) with v̄i ∈ dom(vi). A second
set of variables, callednext-state variablesand denoted by
V ′ = { v′ | v ∈ V } with dom(V ′) = dom(V), is used to
describe how variables are updated by transitions.

For example, letx be a variable with domaindom(x) =
{0, . . . , 5} and initial valuex◦ = 0. A transition with update
x′ = x + 1 changes the variablex by adding1 to its current
value, if it currently is less than5. Otherwise (ifx = 5) the
transition is disabled and no updates are performed. Another
possibility is to write the formulax′ = min(x + 1, 5), in
which case the transition remains enabled whenx = 5. The
updatex = 3 disables a transition unlessx = 3 in the
current state, and allows all possible next-state values ofx.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Commons@Waikato

https://core.ac.uk/display/29201781?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Differently, the updatex′ = 3 always enables its transition,
and the value ofx in the next state is forced to be3.

Formally, an EFA is described by a 6-tupleAV = 〈Σ, V,

Q,Q◦, Qω,→〉, where:

• Σ is the alphabet of events;
• V = {v1, . . . , vn} is the set of variables;
• Q is the finite set of states;
• Q◦ ⊆ Q is the set of initial states;
• Qω ⊆ Q is the set of marked states;
• → ⊆ Q × Σ × ΠV × Q is the state transition relation,

whereΠV is the set of Boolean formulas overV ∪ V ′.

The termx
σ:p
→ y denotes the presence of a transition inAV ,

from statex to statey with eventσ ∈ Σ and updatep ∈ ΠV .
An EFA AV can also be interpreted from another per-

spective (unfolded interpretation) as an ordinary FAA =
〈Σ, QA, Q◦

A, Qω
A,→〉 where:

• QA = Q × dom(V);
• Q◦

A = Q◦ × {(v◦
1 , . . . , v◦n)};

• Qω
A = Qω × dom(V);

• → is such that(x, v̄)
σ
→ (y, v̄′) for v̄, v̄′ ∈ dom(V), if

there existsx
σ:p
→ y such thatp(v̄, v̄′) = true.

The unfolded state setQA includes the values of the variables
as part of each state. The unfolded transition relation is
defined based on the transition relation ofAV , by taking
into account the conditions imposed by the updates on the
variable values. The unfolded transition relation is extended
to strings inΣ∗ by (x, v̄)

ε
→ (x, v̄) for all (x, v̄) ∈ QA and

(x, v̄)
sσ
→ (x′′, v̄′′) if (x, v̄)

s
→ (x′, v̄′)

σ
→ (x′′, v̄′′) for some

(x′, v̄′) ∈ QA.
Further,AV

s
→ (x, v̄) means that there exists(x◦, v̄◦) ∈

Q◦
A such that(x◦, v̄◦)

s
→ (x, v̄). The open-loop behaviour

and themarked behaviourof AV are the languages

L(AV) = { s ∈ Σ∗ | AV
s
→ (x, v̄) ∈ QA } ;

Lω(AV) = { s ∈ Σ∗ | AV
s
→ (x, v̄) ∈ Qω

A } .

C. EFA Properties and Operations

This section summarises how some common FA properties
and operations are defined for EFA. First, two kinds of
determinism are of interest for EFA.

Definition 1: An EFA AV = 〈Σ, V,Q,Q◦, Qω,→〉 is:

• state-deterministicif |Q◦| ≤ 1, and x
σ:p1

−−−→ y1 and
x

σ:p2

−−−→ y2 implies y1 = y2, for all x, y1, y2 ∈ Q,
σ ∈ Σ, andp1, p2 ∈ ΠV ;

• V-deterministicif (x, v̄)
σ
→ (y, w̄) and (x, v̄)

σ
→ (y, w̄′)

always impliesw̄ = w̄′.
Definition 2: An updatep ∈ ΠV is total if, for all v̄ ∈

dom(V), there existsv̄′ ∈ dom(V) such thatp(v̄, v̄′) =
true. An EFA is total if all its updates are total.

An EFA is total if none of its transitions is inhibited by an
update. Adding total updates to an FA introduces behaviour
like a distinguisher[12], [13], merely recording information
in variables without introducing synchronisation constraints.

Definition 3: Given two EFAA = 〈ΣA, VA, QA, Q◦
A, Qω

A ,

→A〉 andB = 〈ΣB , VB , QB , Q◦
B , Qω

B ,→B〉, the synchronous

compositionof A and B is A ‖ B = 〈ΣA ∪ ΣB , VA ∪ VB ,

QA × QB , Q◦
A × Q◦

B , Qω
A × Qω

B ,→〉, where:

• (xA, xB)
σ:pA∧pB
−−−−−→ (yA, yB) if:

σ ∈ ΣA ∩ ΣB , xA
σ:pA
−−−→A yA, andxB

σ:pB
−−−→B yB;

• (xA, xB)
σ:pA
−−−→ (yA, xB) if:

σ ∈ ΣA \ ΣB andxA
σ:pA
−−−→A yA;

• (xA, xB)
σ:pB
−−−→ (xA, yB) if:

σ ∈ ΣB \ ΣA andxB
σ:pB
−−−→B yB .

Shared events between two EFA are synchronised in lock-
step synchronisation [14], while other events are interleaved.
In addition, the updates are combined by conjunction.

Definition 4: EFA AV = 〈ΣA, VA, QA, Q◦
A, Qω

A ,→A〉 is a
subautomatonof EFA BV = 〈ΣB , VB , QB , Q◦

B , Qω
B ,→B〉,

written A ⊆ B, if
• ΣA = ΣB andVA = VB;
• QA ⊆ QB, Q◦

A ⊆ Q◦
B, andQω

A ⊆ Qω
B ;

• If x
σ:pA
−−−→A y, then there exists a transitionx

σ:pB
−−−→B y

such thatpA logically impliespB.
In words, a subautomatonA ⊆ B results from the

removal of some states or transitions, or from strengthening
of updates inB. Clearly, A ⊆ B implies L(A) ⊆ L(B)
and Lω(A) ⊆ Lω(B). A particular class of subautomata is
obtained by the operation of restriction.

Definition 5: Let AV = 〈Σ, V,Q,Q◦, Qω,→〉 be an
EFA, and letX ⊆ Q×dom(V). Therestrictionof AV to X

is the EFAAV |X = 〈Σ, V,Q|X , Q◦
|X , Qω

|X ,→|X〉, where

• Q|X = {x ∈ Q | (x, v̄) ∈ X for somev̄ ∈ dom(V) };
• Q◦

|X = { (x◦, v̄◦) | x◦ ∈ Q◦ };
• Qω

|X = Q|X ∩ Qω;

and x
σ:p∧qy
−−−−→|X y, if x

σ:p
→ y and qy is a formula overV ′

such thatqy(v̄′) = true if and only if (y, v̄′) ∈ X.
Lemma 1:Let AV = 〈Σ, V,Q,Q◦, Qω,→〉 be an EFA

andX ⊆ Q × dom(V). ThenAV |X ⊆ AV .

D. Supervisory Control with EFA

A key question in supervisory control theory is whether
a givenplant behaviour can be restricted through control in
such a way that a givenspecificationis satisfied [2]. For this
purpose, the event alphabetΣ is partitioned into the setΣc

of controllable events, whose occurrence can be inhibited
through control, and the setΣu of uncontrollableevents that
cannot be directly disabled.

More precisely, given a prefix-closed plant behaviourL ⊆
Σ∗ and a specification behaviourK ⊆ Σ∗, it is desired to
construct a so-calledsupervisorS, which restrictsL to K by
disabling only controllable events. A necessary and sufficient
condition for the existence ofS is controllability: a language
K ⊆ Σ∗ is controllable [2] with respect to (wrt) a prefix-
closed languageL ⊆ Σ∗ if KΣu∩L ⊆ K. If the specification
languageK is controllable, then a supervisor achieving this
behaviour can be implemented by an automaton represent-
ing K, which disables any controllable events not eligible
in K. If the specification isnot controllable, then it can be
reduced to thesupremal controllable sublanguage

supC(K,L) =
⋃

{K ′ ⊆ K | K ′ is controllable wrtL } .

supC(K,L) represents the largest sub-behaviour ofK that
can be achieved by controlling the plant behaviourL, and the
process of computing it is known assupervisor synthesis[2].

If the specification and plant are given as EFAEV

and GV , respectively, the controllability condition is ex-
tended as follows to consider the variables.

Definition 6: Let EV = 〈Σ, V,QE , Q◦
E , Qω

E ,→E〉 and
GV = 〈Σ, V,QG, Q◦

G, Qω
G,→G〉 be two EFA. EV is V-

controllable with respect toGV if the following holds for
all s ∈ Σ∗, all µ ∈ Σu, and all v̄, v̄′ ∈ dom(V): if
EV

s
→ (xE , v̄) and GV

s
→ (xG, v̄)

µ
→ (x′

G, v̄′) then there
existsx′

E ∈ QE such thatEV
s
→ (xE , v̄)

µ
→ (x′

E , v̄′).
V-controllability differs from standard controllability in

that the specification must not only be able to process all
uncontrollable events that are possible in the plant, on the
occurrence of an uncontrollable event it must also update
the variables in the same way as the plant. Differently, for
controllable events, the specification can disable some or all
of the associated variable updates.

Synthesis of EFA is defined using subautomata instead
of languages. For this purpose, the specificationEV is
composed with the plantGV , and synthesis is performed
over EV ‖ GV . Similarly to the classical case, the set

CV = {KV ⊆ EV ‖GV | KV is V-controllable wrtGV }

contains a supremal EFA, denotedsupCV (EV , GV), repre-
senting the most permissive behaviour that can be imple-
mented inGV while satisfying the specificationEV . Prop. 2
shows thatV-controllability is a generalisation of standard
controllability in the deterministic case.

Proposition 2: Let GV and EV be state-deterministic
EFA, such thatGV is alsoV-deterministic. Then

supC(L(EV ‖ GV), L(GV)) = L(supCV (EV , GV)) .

In addition to controllability, the controlled behaviour is
typically required to be nonblocking.

Definition 7: An EFA AV = 〈Σ, V,Q,Q◦, Qω,→〉 is
nonblocking if AV

s
→ (x, v̄) implies (x, v̄)

t
→ (y, w̄) for

some(y, w̄) ∈ Qω.
Given the above definitions, aSupervisory Control Prob-

lem (SCP)for EFA can be formulated as follows.
Problem 1 (SCP-V): Given state-deterministic EFAEV

and GV for the specification and plant, such thatGV is
total, find a nonblocking subautomatonKV ⊆ EV ‖GV that
is controllable with respect toGV .

EV and GV are assumed to be modelled by state-
deterministic EFA.GV is also assumed to be total, that
is, it records state changes in variables without imposing
constraints. If the EFAsupCV (EV , GV) is nonblocking, then
it is the supremal solution for the SCP-V, and can implement
a supervision system by disabling all controllable events
eligible in GV that are not eligible insupCV (EV , GV).

E. An Example of a Manufacturing System

This section demonstrates the use of EFA for modelling a
simple manufacturing system shown in Fig. 1. The system
consists of a robot (R) and two machines (M1 and M2)
linked by buffersB1 and B2 with capacities of10 and 5

R

B1 B2

M1 M2

sR

fR

s1 f1
s2 f2

10 5

Fig. 1. Manufacturing System with intermediate buffering.

R
sR

fR

b′
1

= b1

b′
2

= b2

b′
1

= min(b1 + 1, 10)

b′
2

= b2

s1

f1

M1

b′
1

= b1

b′
1

= max(b1 − 1, 0)

b′
2

= b2

b′
2

= min(b2 + 1, 5)

s2

f2
M2

b′
1

= b1

b′
2

= b2

b′
2

= max(b2 − 1, 0)

b′
1

= b1

Fig. 2. EFA model of plant.

workpieces, respectively. The robotR takes workpieces from
storage (eventsR) and stacks them on bufferB1 (eventfR).
MachineM1 removes workpieces fromB1 (events1), man-
ufactures and stacks them onB2 (eventf1), andM2 picks up
workpieces fromB2 (events2), manufactures and releases
them from the system (eventf2). Events f1 and f2 are
uncontrollable, the others are controllable.

The plant is modelled by the EFAR, M1, and M2

shown in Fig. 2. This model uses two variablesb1 and b2,
representing the number of workpieces in each buffer, with
domainsdom(b1) = {0, . . . , 10} anddom(b2) = {0, . . . , 5}
and initial valuesb◦1 = b◦2 = 0. In R, when a workpiece is
unloaded toB1 by eventfR, the numberb1 of workpieces
in B1 increases by1 (updateb′1 = min(b1+1, 10)). Likewise,
the occurrence of events1 in M1 decreasesb1 by 1, eventf1

increases the numberb2 of workpieces inB2 by 1, and
events2 decreasesb2 by 1.

The control objective is to avoid overflow and underflow
of the buffersB1 and B2, which is modelled by EFAO1,
U1, O2, andU2 in Fig. 3. In O1, for example, the formula
b1 < 10 prohibits the robot to stack a workpiece onB1 when
the buffer is full (10 workpieces). The composed plant EFA
GV = R‖M1 ‖M2 has 8 states, and the specificationEV =
O1 ‖U1 ‖O2 ‖U2 has just one state. Thanks to the variables,
the requirement to avoid overflow and underflow is expressed
concisely and independently of the buffer capacities.

The compositionEV ‖GV and synthesis resultsupCV (EV ,

GV) of these EFA unfold to528 and484 states, respectively,
which is the same as with a standard FA model. The use of
EFA does not reduce the state space, because the additional
states generated by the variables must be considered in
synthesis. It is shown in the remainder of this paper how
variable abstraction can be used to simplify an EFA model,
and reduce to effort to synthesise supervisors.

III. VARIABLE ABSTRACTION IN SYNTHESIS

This section shows how variable abstraction [9] can sim-
plify EFA and avoid unfolding of variables in synthesis. This
makes it possible to retain the modelling benefits of EFA,

fR O1

b1 < 10

s1
U1

b1 > 0

f1 O2

b2 < 5

s2
U2

b2 > 0

Fig. 3. EFA model for overflow and underflow avoidance specifications.

while at the same time making synthesis computationally
more efficient. Conditions for optimality are also provided.

A. Variable Abstraction

Variable abstraction is a standard means of automaton
simplification in model checking [9], which involves the
removal of variables from an EFA. This is done through
existential quantification.

Definition 8: Let AV be an EFA andW ⊆ V . The
existential abstractionof AV is the EFA∃WAV obtained
from AV by replacing each transitionx

σ:p
→ y in AV by

x
σ:∃W∃W ′p
−−−−−−−→ y in ∃WAV .
The existentially quantified formula∃W∃W ′p is defined

over variablesU = V \ W . It is true for ū, ū′ ∈ dom(U) if
there exist value combinations̄w, w̄′ ∈ dom(W) such that
p(ū, w̄, ū′w̄′) is true. For example, ifdom(x) = {0, . . . , 9}
and dom(y) = {0, 1}, then∃y∃y′(x′ = y) is equivalent to
x′ = 0 ∨ x′ = 1, and∃x∃y∃x′∃y′(x′ = y) is true.

By making W = V , one produces the coarsest abstrac-
tion ∃V AV of AV , which is equivalent to the FA obtained by
erasing all updates fromAV . Existential abstraction increases
the behaviour of an EFA by removing constraints, and it is
easy to show thatAV ⊆ ∃WAV . It is known that existential
abstraction preserves safety properties [9], but it does not
necessarily preserve nonblocking or synthesis results.

In order to use variable abstraction in synthesis, the
following alternative kind of controllability is defined.

Definition 9: Let EV and GV be two EFA. EV is ∃-
controllable with respect toGV if the following holds for
all s ∈ Σ∗, µ ∈ Σu and v̄ ∈ dom(V): if EV

s
→ (xE , v̄) and

GV
s
→ (xG, v̄)

µ
→ then EV

s
→ (xE , v̄)

µ
→, where(x, v̄)

µ
→

denotes the existence ofx′ andv̄′ such that(x, v̄)
µ
→ (x′, v̄′).

In words,EV is ∃-controllable with respect toGV if every
uncontrollable event eligible in the plantGV is also eligible
in the specificationEV . Yet, unlike with V-controllability,
the variables in the successor states of the specification may
be different from the plant. With∃-controllability, the spec-
ification has the power to choose the values of the variables
in the successor states on the occurrence of uncontrollable
events.∃-controllability extends to EFA theΣu-preserving
property [12], [13] that relates distinguished languages.

Similarly to V-controllability, the set

C∃ = {KV ⊆ EV ‖ GV | KV is ∃-controllable wrtGV }

contains a supremal EFA, denotedsupC∃(EV , GV). Due to
the unusual properties of∃-controllability, this is unlikely to
be a useful supervisor: it is only used to evaluate abstractions.

B. Synthesis of Control using Abstractions

The following results show that a solution to the
SCP-V can be synthesised using an abstraction∃WGV

of the plant GV . While still controllable, the synthesis
result supCV (EV ,∃WGV) may be more restrictive than
supCV (EV , GV). The following Theorem 3 provides a way
to measure how suboptimal such an abstracted synthesis
result is, by extending to EFA a result about the inclusion of
distinguished languages [12], [13].

Theorem 3:Let GV and EV be state-deterministic EFA,
such thatGV is total, and letW ⊆ V . Then

Lω(supCV (EV ,∃WGV) ‖ GV)

⊆ Lω(supCV (EV , GV))

⊆ Lω(supC∃(EV ,∃WGV) ‖ GV) .

By the first set inclusion in Theorem 3, a supervisor
synthesised for an abstraction∃WGV , when composed with
the original plantGV , forms a controllable supervisor for
this plant. If it also is nonblocking, then it solves the SCP-V.

Corollary 4: Let GV andEV be state-deterministic EFA,
such thatGV is total, and letW ⊆ V . If supCV (EV ,

∃WGV) ‖ GV is nonblocking, then it solves the SCP-V.
Moreover, Theorem 3 states upper and lower approxima-

tions for the optimal solution.supCV (EV ,∃WGV) gives
a supervisor that may be too restrictive, whilesupC∃(EV ,

∃WGV) gives an upper approximation. If these approxima-
tions are equal, then the resulting supervisor is optimal.

Corollary 5: Let GV andEV be state-deterministic EFA,
such thatGV is total, and letW ⊆ V . If

supCV (EV ,∃WGV) = supC∃(EV ,∃WGV) , (1)
then
Lω(supCV (EV ,∃WGV) ‖ GV) = Lω(supCV (EV , GV)) .

Based on these results, an optimal solution for the SCP-V
can be obtained using an abstraction, if this solution com-
posed with the plant is nonblocking and (1) is satisfied. The
nonblocking property can be checked without constructing
a full synchronous product using compositional verifica-
tion [15]. The following section shows how to compute the
approximations in (1) without unfolding all the variables.

C. Computing Abstract Supervisors

Checking condition (1) requires the computation of
abstract supervisorssupCV (EV ,∃WGV) and supC∃(EV ,

∃WGV). Although the variables inW have been removed
from the plantGV , they appear in the specificationEV , so
the EFAEV ‖∃WGV still uses all the variables. It is shown in
the following how the abstract supervisors can nevertheless
be computed without unfolding the variables inW .

When an EFA is obtained by abstraction, it may not be
necessary to unfold all its variables. This is formalised by
the concept of variable restriction.

Definition 10: The variable restrictionof EFA AV = 〈Σ,

V,Q,Q◦, Qω,→〉 to U ⊆ V is the EFAAV |U = 〈Σ, U,Q,

Q◦, Qω,→〉.
The variable restriction is only well-defined if all updates

of the EFA only contain variables in the reduced set. For
example, if V = U ∪̇ W , then (∃WAV)|U is an EFA
defined over variablesU , while ∃WAV is defined over all
the variables inV according to Def. 8.

The following algorithm computessupCV (EV ‖ ∃WGV)
without unfolding the abstracted variables inW . When an
uncontrollable event occurs in the abstracted plant∃WGV ,
the variables inW can assume all possible values. Therefore,
synthesis must remove the source states of any uncontrollable
transition, for which the specification fails to allow all next-
state values. These source states can be identified in advance.

This idea is captured by the concept ofstrongly control-
lable states. A state is strongly controllable, if the specifi-
cation allows all possible next-state values of the variables
in W for all uncontrollable events eligible in the plant. States
that are not strongly controllable are unsafe and must be
removed by synthesis. A statex may be strongly controllable
for some variable values̄w ∈ dom(W) but not for others.
If (x, w̄) is not strongly controllable, then all states with
uncontrollable transitions tox are also unsafe, because the
plant may take the system to(x, w̄) on an uncontrollable
event. However, controllable transitions tox may be possible
if the unsafe next-state values of the variables inW are
prevented by synthesis.

Algorithm to computesupCV (EV ‖ ∃WGV):

1. Let U = V \ W , and construct the unfolded EFA
(∃WEV ‖ ∃WGV)|U . Its states have the form(xE , xG,

ū) ∈ QE × QG × dom(U).
2. Find the sets ofstrongly controllable statesas follows:

SCSV = { (xE , xG, ū, w̄) ∈ QE × QG × dom(V) |
for all ū′ ∈ dom(U), w̄′ ∈ dom(W), and
µ ∈ Σu such that(xG, ū)

µ
→ (x′

G, ū′) in
(∃WGV)|U , there existsx′

E ∈ QE such that
(xE , ū, w̄)

µ
→ (x′

E , ū′, w̄′) in EV } ;

SCSU = { (xE , xG, ū) ∈ QE × QG × dom(U) |
for all w̄ ∈ dom(W), it holds that
(xE , xG, ū, w̄) ∈ SCSV } .

3. Find the supremal strongly controllable state set. A state
set X ⊆ QE × QG × dom(U) is strongly controllable
with respect to∃WGV if, for all (xE , xG, ū) ∈ X

and all uncontrollable transitions(xG, ū)
µ
→ (x′

G, ū′) in
(∃WGV)|U , there exists a transition(xE , ū)

µ
→ (x′

E , ū′)
in (∃WEV)|U such that(x′

E , x′
G, ū′) ∈ X ∩ SCSU . The

union of strongly controllable state sets is again strongly
controllable, so it is possible to compute

ŜCSU =
⋃

{X ⊆ QE×QG×dom(U) | X is strongly
controllable wrt∃WGV } .

4. Construct the restriction

K̂U = (∃WEV ‖ ∃WGV)
|U |ŜCSU

.

5. Construct the result EFA

K̂V = 〈Σ, V,QE × QG, Q◦, Qω
E × Qω

G,→〉 (2)

where

Q◦ = { (x◦
E , x◦

G) ∈ Q◦
E×Q◦

G | (x◦
E , x◦

G, ū◦) ∈ ŜCSU

and (x◦
E , x◦

G, ū◦, w̄◦) ∈ SCSV }

and

(xE , xG)
σ:p̂∧pE∧pSCS〈x

′

E ,x′

G〉
−−−−−−−−−−−−−−→ (x′

E , x′
G)

if (xE , xG)
σ:p̂
→ (x′

E , x′
G) in K̂U , and xE

σ:pE
−−−→ x′

E

in EV , andpSCS〈x
′
E , x′

G〉 is a formula overV ′ such that
pSCS〈x

′
E , x′

G〉(v̄
′) = true if (x′

E , x′
G, v̄′) ∈ SCSV .

The setŜCSU can be computed in step 3 on the state
space of(∃WEV ‖∃WGV)|U without unfolding the variables
in W . The states inSCSV and SCSU can be represented
symbolically and computed in advance, or membership
in these sets can be evaluated one transition at a time
when computingŜCSU . In this case, the potentially large
setSCSV is never actually computed.

Based on these observations, the updates in the specifica-
tion EV , which may contain variables inW , do not affect
the computation of̂SCSU in step 3. The updates fromEV

can simply be copied to the synthesis resultK̂V in step 5.
Theorem 6 confirms that this algorithm produces the desired
result supCV (EV ‖ ∃WGV).

Theorem 6:Let EV and GV be two state-deterministic
EFA, and letK̂V be the EFA (2) computed by the above
algorithm. It holds thatK̂V = supCV (EV ,∃WGV).

It is next shown how to computesupC∃(EV ‖ ∃WGV)
without unfolding the abstracted variables inW . With ∃-
controllability, the specification can choose the next-state
values of variables on the occurrence of uncontrollable
events, making it possible to enter states that are not strongly
controllable. Therefore, the following algorithm replaces
strongly controllable states byweakly controllable states.

A statex, and uncontrollable transitions leading to it, can
be retained in synthesis as long as it is weakly controllable
for some value combination̄w ∈ dom(W). For this approach
to be feasible without considering the updates of the specifi-
cationEV during synthesis, the specification cannot impose
constraints on the next-state values of the variables. This
additional requirement is not a strong one, as uncontrollable
specification transitions that attempt to constrain next-state
values are likely to be removed bysupCV anyway.

Algorithm to computesupC∃(EV ‖ ∃WGV):

1. Let U = V \ W , and construct the unfolded EFA
(∃WEV ‖ ∃WGV)|U .

2. Find the sets ofweakly controllable statesas follows:

WCSV = { (xE , xG, v̄) ∈ QE ×QG ×dom(V) | for all
µ ∈ Σu, if (xG, v̄)

µ
→ in ∃WGV then also

(xE , v̄)
µ
→ in EV } ;

WCSU = { (xE , xG, ū) ∈ QE × QG × dom(U) |
there exists w̄ ∈ dom(W) such that
(xE , xG, ū, w̄) ∈ WCSV } .

3. Synthesise the EFA

ĤU = supC∃((∃WEV ‖∃WGV)|U |WCSU
, (∃WGV)|U) .

4. Construct the result EFA

ĤV = 〈Σ, V,QE × QG, Q◦, Qω
E × Qω

G,→〉 (3)

where

Q◦ = { (x◦
E , x◦

G) ∈ Q◦
E × Q◦

G |
(x◦

E , x◦
G, ū◦, w̄◦) ∈ WCSV }

and

(xE , xG)
p̂∧pE∧pWCS〈x

′

E ,x′

G〉
−−−−−−−−−−−−−−→ (x′

E , x′
G)

0

1

2

3 4

5

6

7
sR

sR

sR

sR

fR fR

fR

fR

s1 s1

s1 s1

f1

f1

f1

f1

s2

s2

s2s2

f2

f2f2

f2

Fig. 4. The abstraction∃b1∃b2EV ‖ ∃b1∃b2GV .

if (xE , xG)
σ:p̂
→ (x′

E , x′
G) in ĤU , and xE

σ:pE
−−−→ x′

E

in EV , andpWCS〈x
′
E , x′

G〉 is a formula overV ′ such that
pWCS〈x

′
E , x′

G〉(v̄
′) = true if (x′

E , x′
G, v̄′) ∈ WCSV .

Theorem 7:Let EV and GV be two state-deterministic
EFA, such that all updates on uncontrollable transitions
in EV are defined over the variablesV (not using V ′).
Furthermore, letĤV be the EFA (3) computed by the above
algorithm. It holds thatĤV = supC∃(EV ,∃WGV).

The above algorithms can be used to compute the ap-
proximations in (1) and determine whether a supervisor
synthesised from an abstraction is least restrictive. One
question that remains is how to choose the setW of variables
for abstraction. It is computationally advantageous to choose
an abstraction that is as coarse as possible, starting withW =
V . Yet, this reduces the amount of information available to
synthesis, and may give a solution that is too restrictive or
no solution at all. The following example shows how the set
of variables can be refined in cases where (1) is not satisfied.

D. Manufacturing System Revisited

Consider again the manufacturing system introduced in
Section II-E. Given the plantGV in Fig. 2 and the specifi-
cationEV in Fig. 3, the first step is to consider the coarsest
abstraction obtained by erasing both variablesb1 andb2.

Fig. 4 shows the synchronous composition of the ab-
stractions∃b1∃b2EV ‖ ∃b1∃b2GV . State1 is not strongly
controllable, because the uncontrollablef1-transition has
the updateb2 < 5 in the specification, which is not
enabled whenb2 = 5. Then state3 is unsafe because
of the uncontrollable transition3

f2

→ 1, which may take
the abstracted plant∃b1∃b2GV to state 1 with b2 = 5.
Therefore, states3 and, for similar reasons,7 are removed
from S′

V = supCV (EV ,∃b1∃b2GV).
On the other hand, state1 is weakly controllable, because

event f1 is allowed by the specification whenb2 6= 5.
Then an∃-controllable supervisor can also allow state3, by

choosing a next-state valueb′2 6= 5 when executing3
f2

→ 1.
Thus S′

V 6= S′
∃ = supC∃(EV ,∃b1∃b2GV), so the condition

(1) is not satisfied, and it cannot be concluded thatS′
V ‖GV

is the optimal solution. In fact, a supervisor based on this
abstraction will never allow machineM1 to start.

A better result is obtained by improving the abstraction.
The fact that state1 fails to be strongly controllable because
of certain values ofb2 suggests to retain this variable in the
abstraction, so the next attempt considers∃b1EV ‖ ∃b1GV .
This EFA has the same structure as Fig. 4, but this time

the possible valuesb2 = 0, . . . , 5 are considered in each
state, and the EFA unfolds to 48 states. State(1, 5) is not
strongly controllable, but this time it is only reached by the

uncontrollable transition(3, 5)
f2

→ (1, 5). Only states(1, 5),
(3, 5), (5, 5), (7, 5) are found to be unsafe. Synthesis avoids
them by adding the conditionb2 < 5 to the s1-transitions,
resulting in a 44-state EFA forS′′

V = supCV (EV ,∃b1GV).
It turns out thatS′′

V = S′′
∃ , and these EFA are nonblocking

when composed with the plantGV . By Corollaries 4 and 5,
the optimal solution has been found. This is achieved by
exploring an state space of 48 states, while the standard
synthesis explores the unfolded state space of 528 states.

IV. CONCLUSIONS

A method for variable abstraction in the synthesis of super-
visors from Extended Finite-State Automata (EFA) models
has been presented. It has been shown that, under certain
circumstances, variables can be existentially quantified out
from an EFA without affecting the synthesis result. While
the proposed method produces least restrictive controllable
supervisors, the nonblocking property is only indirectly
supported through an additional check. Future research will
investigate methods for identifying abstractions automati-
cally, and the possibility of including nonblocking-preserving
abstractions in the same framework.

REFERENCES

[1] P. J. G. Ramadge and W. M. Wonham, “The control of discrete event
systems,”Proc. IEEE, vol. 77, no. 1, pp. 81–98, Jan. 1989.

[2] C. G. Cassandras and S. Lafortune,Introduction to Discrete Event
Systems, 2nd ed. Springer, 2008.

[3] N. Halbwachs, Synchronous Programming of Reactive Systems.
Kluwer, 1993.

[4] D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, 1987.

[5] E. Börger and R. Stärk, Abstract State Machines. Springer, 2003.
[6] Y. Chen and F. Lin, “Modeling of discrete event systems using finite

state machines with parameters,” inProc. 2010 IEEE Int. Conf. Control
Applications (CCA), Anchorage, AK, USA, 2000, pp. 941–946.

[7] M. Sköldstam, K. Åkesson, and M. Fabian, “Modeling of discrete
event systems using finite automata with variables,” inProc. 46th IEEE
Conf. Decision and Control, CDC ’07, Dec. 2007, pp. 3387–3392.

[8] L. Ouedraogo, R. Kumar, R. Malik, and K.̊Akesson, “Nonblocking
and safe control of discrete-event systems modeled as extended finite
automata,”IEEE Trans. Autom. Sci. Eng., vol. 8, no. 3, pp. 560–569,
July 2011.

[9] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
and P. Schnoebelen,Systems and Software Verification. Springer,
2001.

[10] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang,
“Symbolic model checking:1020 states and beyond,”Information and
Computation, vol. 98, no. 2, pp. 142–170, 1992.

[11] T. Le Gall, B. Jeannet, and H. Marchand, “Supervisory control of
infinite symbolic systems using abstract interpretation,” inProc. 46th
IEEE Conf. Decision and Control, CDC ’05, Dec. 2005, pp. 30–35.

[12] G. Bouzon, M. H. de Queiroz, and J. E. R. Cury, “Exploiting
distinguishing sensors in supervisory control of DES,” inProc. 7th Int.
Conf. Control and Automation, ICCA ’09, Christchurch, New Zealand,
Dec. 2009, pp. 442–447.

[13] J. E. R. Cury, M. H. de Queiroz, G. Bouzon, and M. Teixeira,
“Supervisory control of discrete event systems with distinguishers,”
submitted to journal, 2012.

[14] C. A. R. Hoare,Communicating Sequential Processes. Prentice-Hall,
1985.

[15] H. Flordal and R. Malik, “Compositional verification in supervisory
control,” SIAM J. Control and Optimization, vol. 48, no. 3, pp. 1914–
1938, 2009.

