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Abstract

In a traditional network stack, data from an application
is transmitted in the order that it is received. An algorithm
is proposed where information about the priority of packets
and expiry times is used by the transport layer to reorder
or discard packets at the time of transmission to optimise
the use of available bandwidth. This can be used for video
conferencing to prioritise important data. This scheme is
implemented and compared to unmodified Datagram Con-
gestion Control Protocol (DCCP). This algorithm is imple-
mented as an interface to DCCP and tested using traffic
modelled on video conferencing software. The results show
improvement can be made to video conferencing during pe-
riods of congestion - substantially more audio packets ar-
rive on time with the algorithm, which leads to higher qual-
ity video conferencing. In many cases video packet arrival
rate also increases and adopting the algorithm gives im-
provements to video conferencing that are better than using
unmodified queuing for DCCP. The algorithm proposed is
implemented on the server only, so benefits can be obtained
on the client without changes being required to the client.

1. Introduction

Typically an application will prepare data and transfer it
to the transport layer where it is segmented into packets. A
packet is queued and then sent when it reaches the head of
the queue, after all other data before it has been transmit-
ted. This however takes no account of time requirements on
the delivery of data, or the possibility of different priority
among different parts of the data.

This paper discusses a scheme where the transport layer,
in cooperation with the application, determines which pack-
ets should be sent and in what order they should be sent in.
The motivation for this is two-fold. It seems reasonable for
the transport layer to discard packets which will no longer
be useful for the receiver. It would also seem reasonable for
audio packets to be sent before video packets, as Sasse [27]

shows that audio is more important than video to a user’s
experience in a video conference situation. This is partic-
ularly applicable when the number of layers of data being
transmitted is being reduced, or is already at the lowest pos-
sible.

Our unique contribution is that we combine priority
queues with tracking of expiry times which take into ac-
count the Round Trip Time (RTT). This is tested and im-
plemented using the DCCP transport protocol [16] which is
congestion controlled but unreliable.

This paper begins with a survey of previous work in Sec-
tion 2. Section 3 introduces the Send Best Packet Next
(SBPN) algorithm and discusses why DCCP was used. In
Section 4 the methodology and the test environment are dis-
cussed. In Section 5 the findings from testing SBPN are dis-
cussed, and in the last section possibilities for further work
are outlined.

2. Previous work

In this section previous work aimed at improving the
transmission of video is examined. By nature video gener-
ates a considerable amount of network traffic that has strict
requirements of the network. As such it is often constrained
by the network conditions.

It is commonly proposed that video codecs should add
and remove video layers as network conditions permit
[26, 4]. While these codecs match the traffic generated to
the available capacity, they do not ensure that the most im-
portant data is transmitted first. In a study of multimedia
streaming [10] it was shown that the median time to change
to a lower bit-rate stream was around 4 seconds. This in-
dicates that there is scope to improve the user experience
during the transition time as it is presumed that a lower bit-
rate is being used because of loss. There are also cases
where the bit-rate cannot be lowered further and loss oc-
curs. Feng [5] builds upon changing which video layers are
used and proposes a priority queue for delivery of prere-
corded video streams where lower priority video layers are
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only sent after higher priority video layers have been sent.
Krasic [18] investigates storing streaming video in multiple
discrete layers which are tailored to the type of client that is
requesting the data. The streaming server, which they call
priority-progress, then decides the most appropriate layers
for the client and maps these to a priority order within each
time segment. At the end of each time segment, if the data
has not been transmitted, then the data is discarded by a
“progress regulator”.

In Tsaoussidis [28] Multimedia Transmission Protocol
(MTP) is introduced, which is based on TCP Reno but with-
out guaranteed reliability. Packet priority information is
sent as a 2 bit field which determines whether packets are
retransmitted or not. This enables MTP to not retransmit
data which is of lower priority, as compared to TCP which
retransmits all missing data. Time-lined TCP (TLTCP) [20]
introduces the concept of tracking expiry time for data.
TLTCP marks data with an expiry time as we also propose,
and discards data if the expiry time is reached before the
packet is sent. Unlike the approach in this paper, TLTCP
does not take the RTT into consideration but proposes that
it is worthwhile to do so. TLTCP is a partially reliable pro-
tocol - if the data has not expired and retransmission is re-
quested by the receiver then the data is retransmitted. If the
data has expired, a more recent packet is sent instead as the
expired packet no longer has value.

In Papadimitriou Scalable Streaming Video Protocol
(SSVP) [23] and Video Transport Protocol (VTP) [2] are
introduced. These are layered on top of UDP. SSVP adjusts
the send rate through altering the inter-packet gap, VTP
smoothes the transmit rate and sends at a fixed rate. Both
protocols adaptively alter the layers of video being trans-
mitted. Amer et al [1] introduce a partial order transport
service that allows reliable or unreliable partial order ser-
vice. This allows marking of importance and time values
by the application. This is used by the receiver to determine
whether lost data is ignored or requested to be retransmitted
depending on their temporal value.

Research by Lai and Kohler [17] investigated using late
binding ring buffers with DCCP for transmission that were
accessible by the application. The application could replace
a packet in the buffer with a more recent packet if it had not
been transmitted. The aim is for the most timely data to be
sent and old data to be discarded.

The previous work shows that there is scope to improve
the video transmission by considering which packets get
sent when, and whether packets get sent at all. Our re-
search draws together the range of different algorithms from
the previous work to improve video conferencing and is de-
scribed in the next section.

3. Send Best Packet Next

In this section a concept is introduced called Send Best
Packet Next (SBPN), different variants of SBPN are also
described, and the use of DCCP to implement SBPN is ex-
plained.

SBPN is a unique contribution of combining a priority
queue, with expiry times for packets that take RTT into ac-
count. Discarding expired packets allows newer packets to
be sent that are more likely to arrive on time. SBPN is com-
pletely sender based; it could be implemented on a server
without requiring changes to the receiver.

3.1. DCCP

Datagram Congestion Control Protocol (DCCP) is a
session-based unreliable transport protocol for datagrams.
DCCP is a Standards Track RFC. Further discussion on the
usage of DCCP is contained in the Problem Statement for
DCCP [6].

DCCP was used for SBPN as it is a recent protocol de-
signed to accommodate applications such as multimedia
streaming and VoIP [25] that do not need reliability. DCCP
is session based, tracks RTT and has congestion control in
the base protocol.

UDP was not used because it does not track the RTT and
does not have congestion control in the base protocol, and
it was not desired to implement this at the application level.
UDP also has difficulty traversing some firewalls due to its
lack of session control and often applications fall back to
TCP. It was also decided not to use TCP as it is a reliable
protocol and TCP often combines packets, even when the
Nagle algorithm [21] is turned off. With TCP being a reli-
able protocol if data is not received it is retransmitted when,
for many applications, it would be better to discard the data.

DCCP has pluggable Congestion Control Identifiers
(CCIDs) which allow different congestion control methods
to be used within the protocol. CCID3 [8] implements TCP-
Friendly Rate Control (TFRC) [11] for DCCP. This was
used because it has a smoother response to loss than CCID2
[7] and is thus considered to be more suitable for multime-
dia [25]. CCID2 is TCP-like in using a congestion window
and following many of the TCP semantics although it does
not have retransmission.

3.2. SBPN1

The SBPN1 algorithm sorts the transmit queue as a pri-
ority queue. All higher priority packets get sent prior to
any lower priority packets being sent. Audio packets are
marked as higher priority than video packets. The packets
in the queue are also marked with an expiry time. When a
packet is due to be sent the expiry time is checked against
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the current time added to half the RTT. If the expiry time is
less than this calculation the packet is discarded rather than
being sent.

3.3. SBPN2

One aspect of CCID3 is that it reduces the allowed
transmit rate after short idle periods. The formula for
allowed sending rates is X = max(min(X calc, 2 ∗
X recv), s/t mbi) where X calc is the TCP throughput
equation [22], X recv is the receive rate since the previous
feedback (at least once per RTT), s is the average packet
size and t mbi is 64.

This means that in practice the allowed transmit rate falls
very quickly when no packets are being transmitted and thus
not being received also. This has the impact of reducing the
quality of the video conference, particularly during quiet
periods. There is an Internet draft for TFRC faster restart
[15] that partially addresses this issue.

To address the issue of reduced transmit rate the SBPN1
algorithm was modified to send an expired packet if it is
the only packet in the queue to reduce the likelihood of the
transmit rate being reduced.

4. Test Methodology

4.1. Video conference model

Packet traces were captured from Ekiga which is an
open-source application which includes video transmission.
The traces were captured on a 100 Mbps link and consisted
of 10 seconds of talking / motion, followed by 5 seconds
of silence / still, followed by 5 seconds of talking / motion.
The traces were then analysed to see their protocol, tim-
ing, packet size, and whether each packet contained audio
or video.

UDP was used by Ekiga to transmit audio and video. A
minimal amount of TCP was used in the connection setup
and for control purposes due to a requirement for reliabil-
ity. The effects of TCP traffic were excluded from our ex-
periments as they constituted less than 0.1% of the traffic.
Ekiga had a fixed time period between audio packets of 20
milliseconds and employs silence suppression. All audio
packets were exactly 214 bytes.

Ekiga had a simple transmission scheme with variable
frame sizes that was dependent on the amount of motion in
the frame. For high motion the average is 4450 bytes per
video frame with a standard deviation of 1000 bytes, while
for low motion the average is 1075 bytes with a standard de-
viation of 475 bytes. Frames are sent at the rate of 10 frames
per second and are composed of packets with a maximum
size of 1026 bytes which are sent as a bunch.

A model of the traffic was then built. Fixed rate audio
was used with a payload size of 214 bytes every 20 millisec-
onds and silence suppression was not used. Video frames in
the model were created with an average and a standard devi-
ation for their type that matched the traffic Ekiga generated.
With this model audio equates to 86 Kbps and video equates
to 289 Kbps which gives a total of 374 Kbps. These rates
include all packet overheads, including the MAC headers.

4.2. Test setup

All of the packets in an audio frame or video frame were
queued immediately after each other by the application and
the time to send was determined by the DCCP CCID3 con-
gestion control. This differs from the applications which
used UDP and determined the send time themselves as UDP
does not have congestion control at the transport level. If
audio and video frames were both due to be transmitted at
the same time the application randomly chose which to send
first to avoid bias.

An application was written to then replay this stream be-
tween two PCs with a Linux PC in the middle using the
netem [12] software to add delay, and to rate limit the traf-
fic or create loss. There was a separate application written
to track the difference in time between the two PCs so that
arrival time could be tracked at the receiver relative to the
sender. The receiver recorded how long each packet took to
arrive and whether it arrived at all.

Tests were run with symmetric one way delays of 15,
40, 75 milliseconds producing minimum RTTs of 30, 80,
150 milliseconds. For the purpose of simplicity symmetric
links were used. It is recognised that not all links are sym-
metric [24] and the algorithm could easily be adapted if the
one way delay could be measured for a link. Two priorities
were used in the tests, one for audio and one for video. The
number of priorities could be extended for multiple video
layers.

Initial testing with the 20 second runs showed a high rate
of variability due to the initial connection setup and the ran-
dom nature of loss/congestion. The test was then done with
60 second runs with the data being repeated three times in
each run. The first 3 seconds of data was discarded and the
remaining data had significantly reduced variation due to
the connection speed stabilising over a longer run. In all of
the results in this paper data was generated from 30 runs and
an average calculated with 95% confidence intervals from a
T-test as recommended in Law [19].

The ITU recommend that delivery time for audio be less
than 150 milliseconds and anything between 150 millisec-
onds and 400 milliseconds has lower quality [14]. With
SBPN packets get marked with an expiry time which is 200
milliseconds from the time that the packets are created. The
expiry time includes both time in the queue and time in tran-
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sit. The choice of 200 milliseconds is arbitrary and it is en-
visaged that an application would allow the user to adjust
this setting to meet their quality requirements.

4.3. Linux kernel implementation

The implementation was done on Linux 2.6.20 with a
series of patches to ensure performance of CCID3 matched
the TFRC [11] throughput equation.

The sendmsg system call in Linux allows control data
to be sent as well as the data. The DCCP implementation
of sendmsg was modified to transmit expiry time, prior-
ity and method in a structure passed into the msg control
field in the msghdr structure. This data is received by the
dccp sendmsg function, which uses the priority information
to store the packet in the correct location in the transmit
queue. The transmit queue remained as one queue and was
changed to a queue sorted first by priority and secondly by
expiry time. This was implemented as one queue for rea-
sons of code simplicity, but for wider use it could be im-
plemented as a set of queues. The dccp write xmit func-
tion starts transmission from the beginning of this priority
queue. The function checks the expiry time just before a
packet is transmitted and decides whether to discard the
packet if the packet has expired.

The method field is used to select which algorithm will
be used in testing. The expiry field contains the time that
the data will be of no use to the receiver. In the tests this
was set to be 200 milliseconds from the creation of the data
by the application. These fields are used by all of the SBPN
algorithms with the exception of unmodified DCCP.

5. Results

The desired outcome is that the number of on time audio
packets increase and that the number of on time video pack-
ets decrease less than the audio increase. It should be noted
that with the unmodified transmission scheme more audio
packets arrived on time than video packets. The reason for
this is that all packets for a single video frame get queued
for transmission at the same time which means there is a
higher probability the buffer will be full and a video packet
discarded.

5.1. Testing with loss

SBPN1 was implemented and compared to unmodified
DCCP using netem to discard packets between two nodes.
A queue length of 5 packets was used which is similar to av-
erage UDP buffering. When run under these conditions the
SBPN1 algorithm performed worse than unmodified DCCP
as shown in Figure 1. Audio and video packet on time ar-
rivals both decreased.
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Figure 1. Testing with loss - 80 ms RTT, queue
length 5
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Figure 2. Testing with loss - SBPN1 vs SBPN2
- 80 ms RTT, queue length 5

Testing was carried out with the SBPN2 algorithm which
only discards expired packets if there are other packets in
the transmit queue. The results for the SBPN1 and SBPN2
algorithms with queue length of 5 packets can be seen in
Figure 2. This did improve results compared to the SBPN1
algorithm but did not achieve results that were better than
unmodified DCCP. This required some further investiga-
tion.

Figure 3 shows the difference between the data received
and the data received on time. In the graph SBPN1 has al-
most no difference between the packets received and the
packets received on time as it only transmits when the
packet will reach the other end without expiring. SBPN2
has slightly more packets received than packets received on
time as it sends data to keep the connection from going idle,
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Figure 3. Difference in on time arrival - 80 ms
RTT, queue length 5

and unmodified DCCP has even more packets received as it
always tries to send. This indicates the improvement is not
occurring because of running at a fixed rate of loss and if
less packets are being sent then a lesser number of relevant
packets will be received due to the smaller number of pack-
ets being transmitted. It is interesting to note on this graph
that all the packets used to keep alive the connection for the
SBPN2 algorithm are video packets - this shows that the
audio packets are being transmitted and being received on
time successfully. This can be seen from the graph as the
difference between received and on time packets are zero
(which is also the case for SBPN1).

This effect can also be seen in congestion control on mo-
bile networks where loss is an indication of packet corrup-
tion, not congestion. Congestion control algorithms such
as Vegas [3] and Veno [9] attempt to find the level of con-
gestion in a network, as well as responding to packet loss -
which is not always an indicator of loss. As such if these, or
similar, algorithms were implemented for DCCP the results
in this section may have been quite different. Implementing
these algorithms for DCCP is outside the scope of this paper
however.

5.2. Testing with congestion

As it was concluded that fixed loss does not give a real-
istic test tests were carried out with congestion. This was
done by running tests with two competing TCP Reno flows,
produced using iperf [13] that was modified to allow con-
tinuous running. Within the video conferencing flow there
are a range of larger packets for video and smaller packets
for audio resulting in an average packet size of 519 bytes. A
fixed packet size was used with iperf of this size as DCCP
effectively works on a rate of packets per second [29]. TCP
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RTT, queue length 5
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Figure 5. Unmodified DCCP vs SBPN2 - 80 ms
RTT, queue length 32

Reno was chosen as DCCP CCID3 uses the TCP throughput
equation [22] modelled on Reno.

When the tests were run with competing TCP flows
we obtained the results shown in Figure 4. This shows a
clear difference for audio between unmodified DCCP and
SBPN2. This result shows that more audio packets can be
transmitted when there is congestion than under unmodified
DCCP.

The algorithm was also run with a buffer size matching
TCP. Often media applications will use TCP due to UDP
having difficulties traversing NAT and firewall devices. Fig-
ure 5 shows the results from using a queue length of 32
which matches the default TCP buffer size of 16 Kbytes in
Linux 2.6.20. These results show a larger improvement in
audio and smaller reduction in the number of video packets
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Figure 6. Unmodified DCCP vs SBPN2 - 30 ms
RTT, queue length 5
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Figure 7. Unmodified DCCP vs SBPN2 - 150
ms RTT, queue length 5

dropped.

To test if the algorithm is RTT dependent, the tests were
also run with 30 millisecond and 150 millisecond RTT,
shown respectively in Figures 6 and 7. These represent
scenarios such as a relatively local network connection, or
across greater distances.

TFRC faster restart [15] was also implemented to deter-
mine if this would counteract the effect of reduced transmit
rates and ran a number of tests. A representative example
of the results for this are shown in Figure 8 and this shows
that TFRC does not produce significantly better results. (It
should be noted that TFRC faster restart was implemented
on Linux 2.6.23 so this graph cannot be compared directly
to the other graphs.)
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6. Conclusion and further work

This paper shows that it is possible to gain a real im-
provement to video conferencing applications when con-
gestion is experienced. A new class of algorithms have
been introduced that automatically bases packet delivery on
”send the best packet next” principle. This has resulted in
a clear improvement in terms of audio packets received on
time when tested with competing TCP flows which will give
a higher quality video conference experience. These results
have been shown across a range of RTTs and with differing
queue lengths. Using the best algorithm (SBPN2) shows
audio on time improves by over 10% across most of the
range while video on time does not decrease or decreases
by a much smaller amount.

There are many areas for potential further research. A
form of weighting could be considered for the queues which
calculates a score based on packet type, expiry time and any
other variables which would then be used to sort the trans-
mit queue. To counter the effects of reduced transmit rate
as shown in Section 5.1 it may be worthwhile to implement
a version that only discards packets if the buffer is full and
sends expired packets if there are not any unexpired packets.

As the algorithms proposed in this paper are made at the
sender only, servers can implement these algorithms and
give a significant benefit to clients without a change being
required to the clients. The algorithms presented could also
be used in a range of services such as real time IPTV.
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