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Abstract

Currently, the evaluation of network anomaly detection methods is often
not repeatable. It is difficult to ascertain if different implementations of the
same methods have the same performance or the relative performance of
different methods. This is in part due to a lack of open implementations,
the absence of recent datasets and a no common format to express results.

A common approach to evaluating a method is to use the Defense Ad-
vanced Research Projects Agency (DARPA) 1999 datasets, or a derivative
of them, in combination with a different dataset or network capture. The
DARPA datasets are relatively old and bear little resemblance to modern
day traffic and the other datasets are unlabelled and typically publicly un-
available making it difficult to ascertain the validity of the research evalu-
ated in such a way.

This thesis primarily contributes a new evaluation methodology that uses
a data fusion based approach that allows for reproducible evaluations with
modern datasets.

The new methodology incorporates three other contributions; A new way
to capture network traces that are fully anonymised yet retains more infor-
mation than any current network traces and a new trace annotation format
and a method for verifying the correctness of the annotations.

The DARPA 1999 dataset was used to demonstrate the validity of the ap-
proach and an evaluation was performed on a new dataset that has been
captured using the methods introduced. In the evaluation we find that
methodology is a viable approach forward, but that it comes with a differ-
ent set of drawbacks than the current state of the art.
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1
Introduction

Computer networks have become increasingly complex over the years since
they were invented, and with the commercial availability of the Internet,
this complexity has increased even faster. With the increased usage and
complexity of the networks, they have also come to the attention of mali-
cious users. To make networks less susceptible to both operator errors and
malicious users, network anomaly detection has become a widely studied
field. This thesis focuses on the evaluation aspect of network anomaly de-
tection. As a part of this, a brief discussion of what constitutes science is
needed.

The scientific method is a continuously evolving social construct. Aristo-
tle’s Organon was fundamental in forming an empirical framework for a
scientific approach. When Francis Bacon set out an empiric approach in
the New Organon, empirical observations was still at the core. Both Aristo-
tle and Bacon had elaborate systems of how to deduct or induct knowledge
from empirical experiments, but the empirical experiments are a core com-
ponent. As the scientific method has advanced, the empirical experimen-
tation has been a central part of it (Oldroyd, 1986). As such, the method is
based on systematic testing and rigorous observation of an experiment to
either prove or disprove a hypothesis.

To conduct research, (Popper, 1972, p. 36–37) argued that testability was
key for conducting science. He said

“ 4. A theory which is not refutable by any conceivable event is non-
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scientific. Irrefutability is not a virtue of a theory (as people often think)
but a vice.

5. Every genuine test of a theory is an attempt to falsify it, or to refute it.
Testability is falsifiability; but there are degrees of testability: some theories
are more testable, more exposed to refutation, than others; they take, as it
were, greater risks.”

The summary of Popper’s theory was:

“One can sum up all this by saying that the criterion of the scientific status of
a theory is its falsifiability, or refutability, or testability.”

Popper’s concept of falsifiabily, refutability has also become a central part
of the scientific method as it asserts that science must be testable. To be able
to refute a scientific theory it must be possible to replicate an experiment.

While taking Karl Popper’s requirements for refutability into account, sat-
isfying the peer-review process and be able to perform research that sat-
isfies a scientific method, we can establish the following minimum criteria
that the conducted research need to conform to:

1. Open datasets.

2. Open, well described, methods.

3. Well described, repeatable, experiments.

4. Clearly presented results.

In the field of network anomaly detection, there is a lack of modern open
datasets that are suitable, which inhibits the ability ro refute theories. The
last open dataset was made during the Defense Advanced Research Projects
Agency (DARPA) Intrusion Detection Challenge in the year 1998, 1999 and
2000. Since then, other datasets have been created but they are not as
widespread nor do they contain the truth data necessary to establish the
performance of new network anomaly detection methods. Unfortunately,
the DARPA datasets contains a number of flaws which McHugh (2000)
pointed out. Additionally, the dataset is a synthetic dataset and the traffic
patterns in the dataset are different from modern network traffic patterns.
This makes it difficult to fulfil criterion 1 that was established above.

Criterion 2 is fulfilled by the publications, but it is unfortunately uncom-
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mon that the actual implementations of the published work are made pub-
lic. As such, it can increase the difficulty with fulfilling criterion 3 depend-
ing on the datasets which the experiments used. If the datasets are not
public, or the methods are evaluated only against live network traffic, a
lack of open implementations will make it impossible to determine if the
actual implementations would produce the same results.

Even if the datasets used for the experiments are available, lack of open
implementation of the methods can make it difficult to verify if alternative
implementations are in fact the same as the original implementation if cri-
terion 4 is not fulfilled. Ideally, the results should be presented both as the
performance of the method and as the raw output of the method.

1.1 The Problem
Network anomaly detection methods have been studied for a number of
years now. However, the need to evaluate the methods has been obvious
since the field of network anomaly detection was established, and there
have been various attempts to establish different evaluation criteria and
methodologies. The DARPA intrusion detection challenges were the first
large scale evaluations, and were run as competitions.

These evaluations came to set the standard for how the evaluations of
the network anomaly detection methods were performed and while other
methodologies have been proposed since, the methodology established in
the DARPA evaluations has been the only commonly adopted method
(with some corrections based on criticism). Unfortunately, this methodol-
ogy relies heavily on synthetic datasets that were created for the intrusion
detection challenge, where the full truth is known.

The DARPA datasets used Receiver Operating Characteristics (ROC) (Wit-
ten et al., 2012) curves to establish the performance of the different meth-
ods, and ROC curves have become the de facto format that a method’s
performance is shown. There was however never a common format estab-
lished for the actual output of an anomaly detection technique. Without a
common format it is very difficult to repeat the experiments conducted by
a method’s authors.

As the DARPA datasets have aged, they have come to resemble actual net-
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work traffic less and less, causing researchers to start to use other datasets
that are not always commonly available and in most cases unlabelled.

As such, new datasets have been created, but they have lacked any proper
ground truth. In fact, most datasets created have not had any labelling
done at all, with one dataset having had expert labelling applied to it. In-
stead, the authors of a new method have labelled the output of the methods
evaluated. Examples of this are Lakhina et al. (2005) and Tartakovsky et al.
(2013).

Expert labelling has been shown to be problematic for other fields, and the
sheer quantity of data makes it unsuitable for the datasets in the field of
network anomaly detection. This is discussed in greater depth in Chapter 2

Therefore the only way to be able to supply full truth data when a dataset
is created is to make the dataset completely synthetic. Unfortunately, a
synthetic dataset is not going to have as high quality traffic as a dataset
containing real traffic, or might contain artefacts that make it unsuitable by
skewing the methods. On the other hand, a perfect dataset will be based
on a live network capture. This kind of dataset will not have complete truth
data associated with it because of the inherent difficulty of detecting all of
the anomalies in a network capture with complete certainty.

There are different compromises to creating dataset that fall between the
two extremes presented in the previous paragraph, but the fact remains
that it is a trade off between coverage of the truth data versus the quality
of the data in the dataset.

The problem is further exacerbated by a lack of open implementations of
the methods proposed in the field. While readily available open source
implementations would be ideal, a common output format is a more prag-
matic solution since it allows researchers to keep their implementations se-
cret while still making it possible for other researchers to verify the results
of their alternative implementations. This however also requires common,
readily available, datasets.

This thesis sets out to establish a new methodology that takes a different
approach to these problems than any of the existing methodologies.
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1.2 Thesis Structure and Contributions
The main contribution of this thesis is a new evaluation methodology
for network anomaly detection methods that uses a data fusion based
approach. The new methodology takes a different approach to network
anomaly detection evaluation than previous methods. This does not suffer
from the same set of problems as the existing methodologies and allows
for reproducible evaluations. The evaluation methodology is built on top
of two additional contributions.

Firstly, a new method is introduced that allows for the creation of anonymised
network traces that contain more information than previously as it is pre-
served throughout the anonymisation process.

Secondly, a new annotation format supporting multiple ways of expressing
annotations and a method to verify the correctness in the annotations is
presented.

1.2.1 Thesis Structure

This thesis is divided into seven chapters, with chapters three to six each
focusing on a specific contribution.

Chapter 2 contains the necessary background material for the thesis as
well as the related work. The chapter also explores the problem introduced
in this chapter in further depth.

Chapter 3 contributes an improved network capture process that preserves
more data than the current network capture processes.

Chapter 4 introduces a new network trace annotation format and the pro-
cess for verifying that the annotations are correct. Both the format and the
process are contributions to the field.

Chapter 5 contains a new methodology that incorporates the work pre-
sented in the previous two chapters.

Chapter 6 demonstrates how the new methodology can be applied, and
demonstrates the viability of the approach.

Chapter 7 contains the thesis conclusions and outlines the further work.
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1.3 Ethical Consent
All work covered in his thesis has been approved by the ethics committee
at the University of Waikato. Appendix C contains copies of the documents
outlining the consent given by the committee.



2
Thesis Motivation

The previous chapter briefly introduced the thesis and motivation for the
project. This chapter delves deeper into the problem, and introduces the
approaches that have already been taken to solve the problem.

First is a brief overview of approaches to network anomaly detection. This
shows that there are several different approaches, they do not always use
the same type of data, and that different approaches are able to detect
different types of anomalies, but that no method is able to detect all types
of anomalies.

Then the problem is described from a top-down perspective. The purpose
of this is to clearly define the problem this thesis is addressing. Possible
implications on the field are also explored briefly, but it is not to be consid-
ered the main purpose of the problem description.

The problems with acquiring truth data for network anomaly detection are
then briefly discussed. This section discusses the different ways that truth
data can be created, and explores the different quality that the truth data
can have. Quality in the context of truth data means the reliability of the
data. The reliability is mainly impacted by the correctness and coverage of
the truth data.

Finally, the last section of the chapter outlines the existing work that has
been done to address the problem, and demonstrate why this work is in-
sufficient in addressing all aspects of the problem.
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2.1 A Brief Overview of Network Anomaly Detec-

tion
An anomaly in a network can be several types of events. It can be malicious
traffic, a sudden traffic spike, a complete lack of traffic or more subtle errors
like a high latency. Section 2.1.2 defines these events in more details and
divides them into several categories.

There are many different methods that can be used to detect network
anomalies. All of these methods can however be divided into two fun-
damental approaches, active and passive methods.

2.1.1 Active and Passive Measurement and Anomaly

Detection Methods

An active measurement involves sending data through the network and
recording how the network reacts to the sent data. There are many different
types of data that can be used for active measurements. These are referred
to as probes. An example of data that is commonly collected using active
measurement is network Round Trip Time (RTT)s. This can be collected
by sending Internet Control Message Protocol (ICMP) echo requests and
measuring the time until an ICMP echo reply is received.

Passive network measurements are made at certain locations in the net-
work, known as capture points. At the capture points, all of the user net-
work traffic passing through that location is collected. The actual collection
can be made in several different ways, depending on the guarantees sought
that no data will be dropped.

The most common way to capture the traffic is to have a separate com-
puter that is connected to the network via a span port on the local network
equipment. A span port copies all of the data going through the network
equipment to that port. This data, or a portion thereof, is then serialised to
disk in one or several files. When the data is stored to several files, the data
needs to be spooled while new files are created or the data will be lost.

Active methods use active network measurement and passive methods use
passive measurement.
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2.1.2 Types of Events seen as Anomalies

An event on the network is defined something of interest happening on
the network. These events are divided into two main categories: network
faults and security events.

Network Faults

Network faults are considered to be non-malicious in their origin but can
still have an adverse effect on the network. We divide network faults into
two main categories: hardware failures and configuration errors.

Hardware faults cause an abrupt cessation of traffic over the affected area.
Examples are faulty network interfaces or a physical link being severed.

Configuration errors are more difficult to detect than hardware faults. They
are generally caused by the operator choosing an improper setting for some
or all of the networking equipment. This can cause symptoms such as
higher-than-normal latencies, over-saturated links, underused links and in-
efficient routing.

Security Events

Security anomalies are malicious in nature. No distinction is made be-
tween Internet background radiation (Pang et al., 2004) and specific attacks
or probes (Barford and Plonka, 2001). The reason for this is that many
network probes have become so prevalent that they are considered back-
ground traffic by network administrators.

Security events can be divided into two types: probes and attacks.

Probes are attempts to map the network or the services running on a
specific node in a network. A well known example of these are port scans.

Attacks attempt to disrupt one or more nodes on the network or attempt
to saturate the links in the network itself. Examples are worms (Singh et al.,
2004) and Denial of Service attacks (Kim and Reddy, 2008).

2.1.3 Approaches to Anomaly Detection

There are many different approaches to anomaly detection. This section
is not an exhaustive list but is rather an attempt to describe the broader
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approaches undertaken by the research community.

Time Series Analysis

Time series analysis and forecasting is used when the network data can
be aggregated into a time series. Examples of data that can be measured
might be the traffic volume or the level of entropy.

In the easiest approach the data is measured over a single link (Brutlag,
2000) or it might be measured concurrently over multiple links in the net-
work (Lakhina et al., 2004).

There are different ways to perform the actual anomaly detection. One
common approach is to perform a forecast of the time series data and reg-
ister an anomaly when the predicted value differs too much from the actual
value in the time series. A common value for the difference is greater than
2 ∗ σ, where σ is the standard deviation of the time series data, this has
been observed in (Brutlag, 2000; Logg et al., 2004; Cottrell et al., 2006).

A different approach to dealing with time series data is using principal
component analysis Lakhina et al. (2004). The data is divided into orthog-
onal principal components, and a decision is made as to which of these
principal components contain the anomalies in the original data.

Deep Packet Inspection

Deep packet inspection is the method that is most commonly applied in
industry to detect security anomalies. Snort (Roesch, 1999) and Suricata
(Suricata, n. d.) are examples of two open source deep packet inspection
systems.

Deep packet inspection works by intercepting the individual packets in
the network and inspecting both the packet headers and the payloads of
the packets. When the system inspects the packets it attempts to match
predefined signatures with the packet contents. The signatures need to be
defined for a system to successfully be able to detect an anomaly, otherwise
the system will not detect it. However, under the assumption that the
signature has been created carefully, their false positive rate will be low.
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Entropy Measurements

Entropy measurements measure the entropy of the packets in the network
link. Normally this is done over packet headers or selected fields in the
headers since a complete content inspection is costly. By establishing an
entropy measure over the link it is possible to detect changes in the entropy
levels that will occur during certain types of attacks on a network.

Flow Measurements

Flow measurement is not an actual anomaly detection approach but is
rather a pre-processing step to allow other approaches. By performing
a feature extraction on the different types of network flows it is possible to
data mine or perform machine learning on the extracted attributes.

Clustering

There are two different approaches to clustering that are primarily used in
network anomaly detection. Centroid based clustering and density based
clustering (Witten et al., 2012) attempts to cluster the different flows in the
network according to their behaviour while attempting to establish one or
more clusters as anomalous as the same time.

Density based clustering searches for outlying network flows with the ex-
pectation that outlier flows are anomalous.

Classification

There are two types of classification methods that can be applied to net-
work anomaly detection from the field of machine learning: multi class
classification and one-class classification. Both are described by Witten
et al. (2012).

Any type of classification has two stages, a learning stage and a prediction
stage. The learning stage requires pre-classified data that the classification
method can deduce classification rules based on the different labels. The
prediction stage applies the deduced rules to unlabelled (or test) data and
labels it.

Multi class classification requires the data to be split into two or more
classes in the learning stage, and rules are created for all of the classes.
Single class classification only requires one class to be pre-labelled and
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only extracts rules for that one class.

The difference between these two approaches is that the single class clas-
sifier is better able to cope with data that may not be anomolous or novel
whereas the multi class classifier requires examples of all classes before-
hand.

2.1.4 Comments

Not all of the approaches introduced here are specific to network anomaly
detection, but the presented approaches have been used to detect network
anomalies. Chandola et al. (2009) provide a good overview of anomaly
detection techniques that are not only restricted to network anomaly detec-
tion.

The section introduced several different techniques, and they all work on
different levels of data. A deep packet inspection method works on a per-
packet-basis whereas a machine learning based method relies on attributes
extracted from a network flow. Time series methods rely on yet another
level of aggregated data. Combined, these different approaches might be
able to capture all different aspects of the anomalies that can be present
in a dataset. On its own, it is unlikely that any particular approach will
be able to capture all types of anomalies. An example of this would be a
deep packet inspection system that is unable to detect a sudden spike in
malicious traffic without any malicious data in the packets. An example
of such an attack would be a carefully constructed Distributed Denial of
Service (DDoS) attack.

2.2 The problem
As described in the previous chapter, modern science is based on a sci-
entific method. In the previous chapter we described a set of minimum
criteria on our experiments that need to be followed in order to satisfy the
scientific method. These criteria were:

1. Open datasets.

2. Open, well described, methods.

3. Well described, repeatable, experiments.
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4. Clearly presented results.

The field of network anomaly detection currently suffer from a lack of mod-
ern open datasets, shared implementations of implemented anomaly detec-
tion techniques and the output from the anomaly detection techniques. The
lack or partial fulfilment of these criteria makes it extremely difficult to re-
peat the experiments conducted by the original researchers or to perform
independent evaluations of the published methods.

The experimental setup is often well defined when a method is introduced,
so it is not considered a part of the problem. The other aspects are dis-
cussed in more detail below.

2.2.1 Datasets

A dataset consists of two parts. A network trace and the truth data. The
DARPA datasets are the only available datasets that contain a full truth
data.The DARPA datasets are dated and are unrealistic compared to a
real network trace (Brown et al., 2009). Unfortunately, there are no other
datasets that have full truth data, which has the implication that these
datasets are still in use as a common reference point.

Because of the issues with the DARPA datasets the community has adopted
other datasets or live captures to use in addition to the DARPA datasets
when evaluating a method. The majority of these datasets are unlabelled,
with a minority having had an expert label them. Examples of this would
be the DARPA datasets (Lincoln Laboratory, n. d.) and the UMass dataset
(University of Massachusetts, n. d.) .

The ideal dataset should be established with full truth data and real live
network traces. Unfortunately a live network trace itself might contain
anomalies that make this unfeasible. Instead, creating a new dataset is a
trade off between quality of generated traffic and the full truth data. To
date, the community has relied on using the DARPA datasets with various
method authors deciding on the validity of the results against a different
dataset. Examples of this is given in Section 2.4.1.

This thesis suggests a different methodology for evaluating network anomaly
detection techniques that iteratively relies on the results from previous
evaluations and expert consensus on the reliability of these results.
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Chapter 3 contains an in depth exploration of longitudinal datasets for
network anomaly detection and the difficulties with them. The chapter
also establishes the criteria for creating new dataset.

2.2.2 Open Methods

Very few of the published methods have also had the original implemen-
tations or results made public. This leaves any researcher with the need to
request access to the original implementations, which may not be granted,
or to create alternative implementations. Without open datasets or the fine
grained output from the initial methods, it is very difficult to ascertain
whether the alternative implementations are correct.

2.2.3 Results

The level of results being shared at the moment is in fact the performance
of a specific method. The performance is often presented as either graphs,
tables or on occasion specific measures like the Area Under Curve (AUC).
While this gives enough data for the reader to evaluate the method, it does
not provide sufficient data for a different researcher to make an alternative
implementation.

The lack of raw results is most likely a direct result of the fact that the
space is limited in the publication venues and that it is more important to
report on the performance of a method than to provide the actual results of
a specific method against a dataset. Open implementations would negate
the need for a the raw results, but there is little evidence that the field is
moving in that direction. Instead, this thesis proposes a common output
format that can be associated, and distributed, with the specific datasets
that a method has been run against.

2.2.4 Recognition in the Field

Athanasiades et al. (2003) calls for a new methodology of evaluating in-
trusion detection systems. They survey the tools and methods that were
available at the time, and acknowledge that there are privacy issues sur-
rounding datasets. When they call for a new methodology, they mainly
focus on the datasets, which consists of captured, unprocessed, live data
and canned attacks that can be mixed with the network captures. How-
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ever, 9 years after the recommendation, there does not appear to be such a
a system in use. In fact, Camp et al. (2009) wrote a wish list calling for a
new data set.

Additionally, Athanasiades et al. did not take the Internet background
radiation (Pang et al., 2004; Wustrow et al., 2010) into account. Some of
the background radiation would be anomalous and thus be labelled by the
system under test and skewing the results.

Camp et al. (2009) published a wish list for the security research commu-
nity. As a part of the wish list, they requested a process for data sharing,
and labelled data sets. Explicitly, the process for data exchange calls for
“data that is customised to a particular experiment, since the data collected
in the absence of an experimental method is typically insufficient to con-
duct sound experiments” (Camp et al., 2009, p. 3). Additionally they call
for “Annotated network traffic traces, such as network traffic from infected
hosts”. and that the “Traffic traces should be clearly labelled with their re-
spective malicious or benign components, and they should include attacks
that current detecting systems have failed to detect” (Camp et al., 2009,
p. 4). The work presented in this thesis suggest a method for incrementally
creating this type of data for both existing and new datasets.

2.3 The Challenge of Truth Data
There are many different ways to evaluate anomaly detection methods.
They all have one elements in common; they want to establish how well
a method behaves given a specific metric. All of these methods are de-
pendant on having various datasets to evaluate them against, consisting of
network traces and truth data. If the truth data is missing, or difficult to
obtain, there are various approaches to attempt to remedy this. This section
outlines these approaches.

2.3.1 Expert Labelling

When the data a method is tested against lacks truth data, an expert can
label the data. Expert labelling is a good method for small datasets but
rapidly becomes unfeasible when the size of the dataset grows. Depending
on the nature of the data, it can sometimes be very difficult to distinguish
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an anomaly from normal data.

It does not appear that there have been any formal studies on expert per-
formance in the field of network anomaly detection, but the findings from
research performed on expert performance in other fields suggests that the
experts might not be infallible.

Camerer and Johnson (1997) summarised that “The depressing conclusion
from these studies is that expert performance in most clinical and medical do-
mains are no more accurate than those of lightly trained novices.’(We know of
no comparable reviews of other domains, but we suspect that experts are equally
unimpressive in most aesthetic, commercial, and physical judgements.) And ex-
pert judgement have been those of the simplest statistical models in virtually all
domains that have been studied. Experts are sometimes less overconfident than
novices, but not always.” (p. 349).

This summary shows the need for studies on experts performance in net-
work anomaly detection, or anomaly detection in general.

Machine learning is the closest related field that has studied the expert
performance when creating new datasets. A study by Snow et al. (2008)
who evaluated the usefulness of the Mechanical Turk, found that when
natural language clustered non-experts labels can compare to expert labels
when using inter expert agreement to asses the similarity in the non-expert
labels. The study used a very small data set, only a 100 instances, to create
the labels, and require each instance to be labelled by 4 non experts to
achieve the same performance as a single expert.

To label a network flow, the labeler needs to posses a certain level of domain
knowledge, making solutions like the Mechanical Turk unsuitable as few
labelers will posses that domain knowledge. There are however certain
higher level of anomalies, that affect the trace as a whole, that labelers not
possessing the domain knowledge could label. This is clearly not feasible
given the sizes of the datasets and the requirements on the labelers, instead
other means of creating labels are needed.

In network anomaly detection, a dataset will consist of millions of in-
stances, each instance being a single network flow. In the trace set Waikato
8 (see Chapter 3), 2011-06-02 contains 349,717,701 packets and 13,837,822
flows. The dataset introduced in Chapter 3 consists of 18 days, each with
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similar amounts of packets and flows.

In order to establish an exhaustive set of labels, each and every instance
would need to be reviewed by multiple labelers, ideally a combination of
expert and non-experts (possessing sufficient domain knowledge) would
be used to achieve a high level of agreement between the labelers. Without
a high level of agreement, the produced labels would not be reliable.

To summarise, expert, or non-expert, exhaustive labelling is impossible to
achieve for a modern network trace due to the volume of the data and the
number of labelers needed to establish reliable labels.

Clustering of Expert Classification

In an attempt to remedy the problems of scale when an expert labels a
dataset, it is possible to cluster on features extracted from the data. This is
demonstrated by Zhong et al. (2007). Unless all of the data is examined by
the expert, there will also be an uncertainty surrounding the exhaustiveness
of the expert’s classification. This is in turn increased by the need to choose
a feature set that unambiguously captures the nature of the anomalies and
the normal traffic in order to perform correct clustering.

2.3.2 Ground Truth

Establishing a complete set of ground truth for a data set can only be done
with a synthetic dataset. Since all of the traffic is introduced by the re-
searcher when creating a synthetic dataset, only the intended anomalies
will be present. Generating a synthetic dataset that is representative of
real world network is impractical because of the difficulties with generat-
ing background traffic that appears to be authentic and is guaranteed to
not contain any undetected anomalies. Apart from that, the synthetic data
needs to be merged with anomalies that are either synthetic or created on
a real network. To date, the DARPA datasets are the only datasets for net-
work anomaly detection that have had a complete ground truth established
as a part of the creation of the datasets.

In Chapter 5 we introduce a new methodology to create partial ground
truth, but there are also a number of closed source commercial systems
that may be possible to use. Examples of these are ArcSight ESM (NDM
Technologies, n. d.), Splunk (Splunk Inc, n. d.) and Autonomy(HP Auton-
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omy, n. d.). These systems are rule or heuristics driven and the commercial
aspect of them makes them less suitable as an open research platform in
an academic environment.

2.4 Existing Methodologies
Puketza et al. (1996) introduced a methodology for evaluating intrusion
detection systems. The methodology is primarily targeted towards host
network intrusion detection systems, but is also presented in the context
of network anomaly detection. The methodology introduces the need for
recording anomalies so the evaluations can be re-run, but does not extend
further than to record the anomalies. As such, it is an important paper
as it shows the awareness of the need for repeatability. Unfortunately the
approach falls short as it does not recognise the need to share the results
or make it possible for other researchers to repeat the tests in the same
conditions as the original tests.

Athanasiades et al. (2003) reviewed several of the then existing approaches
to evaluate network intrusion detection methods and found them lack-
ing. The authors recognises that the informal approach described in Sec-
tion 2.4.1 is prevalent but makes it near impossible to fairly compare meth-
ods. They call for a need of a new methodology that is both open and re-
peatable, using synthetic or semi-synthetic data to generate the data for the
evaluated method. To date, no methodologies have received widespread
adaptation in the field of network anomaly detection, instead the field ap-
pears to be in the same state that Athanasiades et al. (2003) describes.

Chen et al. (2009) introduces such a methodology for testing intrusion
detection systems that was described by Athanasiades et al. (2003). The
methodology relies on having the system under test placed inside a con-
trolled environment where the tester has control of all network traffic. The
network traffic is played back from previous captured traces and anomalies
are injected into the background traffic and the performance evaluated. The
proposed methodology does however not consider the fact that the network
traces used may already consider anomalies inside them, thus affecting the
results. Nor does it emphasise the sharing of experiment parameters or
results.
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Dumitras and Shou (2011) introduce WINE, the Worldwide Intelligence
Network Environment. WINE is focused on the collection of malware
samples and the reputation of binary files and Uniform Resource Loca-
tor (URL)s, antivirus signatures, email spam, and malware samples. They
do not address the issues surrounding network traces, but rather step away
from it and deal with anomaly detection on an application level. However,
Dumitras and Shou discuss the importance of reproducibility and explain
that WINE will save all experiment setup. It is however unclear how this
will allow for a comparison when the implementations can not always be
shared amongst researchers.

2.4.1 Informal Methods

While none of the methods proposed in the papers above seem to be in use
by the wider community, an informal approach inspired by the DARPA
intrusion detection evaluations (Lippmann et al., 2000b,a) has been adapted
by the community. This method consists of the following steps:

1. Create a new method.

2. Evaluate the method against the DARPA dataset.

3. Evaluate the method against a live traffic stream or other unlabelled
capture, relying on expert knowledge to validate the performance.

4. Present the results in ROC curves or by presenting the detected anoma-
lies in a different format.

Step 2 is sometimes omitted in favour of only relying on step 3. Examples
of papers relying on these approaches are Lu and Ghorbani (2009) ,Kang
et al. (2012), Mahoney and Chan (2003) and Paschalidis and Smaragdakis
(2009).

Step 3 is used to have additional validation in place since the DARPA
datasets are old and have well known flaws. These additional datasets
are not always recorded (Lu and Ghorbani, 2009) and not always shareable
(Seppälä et al., 2010) due to privacy reasons.



20 Chapter 2 Thesis Motivation

2.5 Discussion
All of the related work presented in this chapter fails to address the issues
surrounding trace datasets and common formats for network anomaly de-
tection. The work presented by Dumitras and Shou (2011) shows promise,
but it does not address any of the issues about labelling of actual network
data since the work focuses on more aggregated data than raw network
traces.

Instead, the work presented in this thesis, and in particular in Chapter 5
and the following two chapters, address these issues surrounding datasets
in a pragmatic manner. It is recognised that it is not an ideal solution, but
it is however an improvement over the current state of affairs in the field of
network anomaly detection.

2.6 Summary
This chapter has discussed the existing network anomaly detection evalua-
tion methodologies and their shortcomings. We have shown the awareness
in the field that the current approach has shortcomings, and we have iden-
tified the three major aspects that we focus on in this thesis. The need for a
methodology that encompasses the sharing of results as its core, the need
for a new dataset to use for network anomaly detection and a format to
share the results in.
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Collecting a New Dataset

In the previous chapter we established that there is a lack of proper method-
ologies and datasets that can be used to evaluate network anomaly detec-
tion techniques.

This chapter describes existing datasets and then contributes a new method
to capture datasets, and a new dataset. The new method allows for the cap-
ture of a dataset that retains more information than a current anonymised
dataset without violating the network users privacy without investing a
significant amount of resources.

The new method of capturing datasets plays an important role in the over-
all methodology contribution since it makes it easy to create new datasets
for network anomaly detection that will have more anomaly information
associated with them than the current datasets.

3.1 Existing Datasets
There exist a number of datasets for network anomaly detection already.
The ones we present here are in a considerable number of papers or other
publications.

The only datasets that come with full truth data are the DARPA (Lin-
coln Laboratory, n. d.) and KDD (Hettich and Bay, 1999) datasets. UMass
(University of Massachusetts, n. d.) has released one partially labelled
dataset. MAWI (MAWI, n. d.) has started an initiative to label two of
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their historical datasets and the new data that is continuously captured.
At the moment their labelling is also not exhaustive. Other datasets are
completely unlabelled and only consist of various types of network traces.

3.1.1 DARPA

The three following datasets were released as part of three intrusion detec-
tion evaluations. The evaluations were performed by Lincoln Laboratories
at the behest of DARPA in the USA. The evaluations were focusing on both
host and network intrusion, but we shall only consider the network aspect
of them for this thesis.

The first evaluation was released in 1998 and consisted of 9 weeks of net-
work captures as well as truth data for the captures. During the original
evaluation, the dataset was split up into a training and testing phase, with
only the training truth data released at the time. After the evaluation was
completed they released the truth data for the testing dataset as well.

McHugh McHugh (2000) wrote a critique that is mainly focused on the
DARPA 1998 evaluation over the 1999 evaluation. The critique focuses on
both issues with the dataset and how the evaluation itself was performed.
In his paper McHugh discusses both the flaws and how to address them. In
this chapter the focus is on the dataset aspects, but in Chapter 5 the other
parts of his criticism will be discussed.

In the 1998 evaluation, McHugh points out that the artificial background
data is devoid of any anomalies, the data rates are suspiciously low and
that there is only a small subset of the machines in the data that are the
target of any attacks. Another issue that McHugh highlighted is that there
are no intentionally anomalous background traffic in the data generated.

It is difficult to ascertain how much the traffic patterns have changed since
the studies due to the lack of any longitudinal studies in that timescale.
However, the general usage patterns of the Internet have changed advent of
services such as Youtube, bittorrent and other peer-to-peer protocols. The
thread model on the Internet has also changed with the arrival of worms
such as Slammer and Stuxnet, distributed Secure Shell (SSH) password
bruteforcing, and botnets. Since the DARPA datasets feature none of these
types of attacks or background data, it has become less relevant.
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It is also well known that the attacks on the target systems have a different
Time To Live (TTL) than the background traffic, making it easy to achieve
good results on that particular dataset.

In Chapter 4 we will also discuss some issues with the truth data of the
DARPA 1998 and DARPA 1999 datasets.

Year Citations per year
2007 65
2008 76
2009 65
2010 59
2011 49
2012 49

Table 3.1: Citations for the DARPA 1999 dataset in Google Scholar

There have not been any studies performed that show the usage of the
DARPA datasets. Table 3.1 show the number of citation of the DARPA1999
evaluation (Lippmann et al., 2000a). A small subset of these articles were
examined to see whether they discussed the dataset or whether the work
presented contains evaluations against the dataset, with the finding that
the majority of examined articles had been evaluated against the dataset.
These numbers are a strong indication that the DARPA 1999 dataset is still
widely used and discussed. Even though its usage has declined slightly in
the last two years, it can still be considered relevant.

DARPA 1998

The network aspect of the dataset consists of tcpdump captures that ran
for 8-12 hours each day during the evaluation, 5 days a week. The dataset
consists of a 7 week training period and a 2 week testing period.

The training period has few anomalies in it and slowly increases the num-
ber during the duration of the training phase. The testing phase has similar
characteristics as the final week of the training phase.

Initially only the truth data was released for the training phase, but once
the evaluation was completed the testing truth data was also released.
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DARPA 1999

The evaluation performed in 1998 was repeated in 1999 with changes to ad-
dress some of the criticism that had been raised. Most notably, the DARPA
1999 dataset introduces new attacks compared to the 1998 one and a dif-
ferent network setup. The network was partitioned into an internal and an
external network, and a capture point established on each network.

The dataset consists of two phases, the training and testing phase. The
training phase contains three weeks of data, with week 1 and 3 free of
anomalies. The testing data consists of two weeks of data, both containing
anomalies. The 1999 evaluation also introduced new attacks that were not
present in the 1998 evaluation.

The DARPA 1999 dataset is the most commonly used dataset, as seen in
Table 3.1.

DARPA 2000

The last of the DARPA dataset was created to address specific scenarios not
present in the previous two datasets. The main new features introduced
was the launch of a DDoS attack.

3.1.2 KDD 99

The KDD 99 dataset was released as the KDD CUP (Hettich and Bay, 1999)
dataset in 1999. The dataset is derived from the DARPA 1998 dataset and
a number of features has been extracted from the trace data.

Tavallaee et al. (2009) point out that the KDD 99 dataset suffers from two
major problems. The first is that there are a large number of redundant
records that will skew any evaluations relying on this dataset. The second
problem is that even very simple methods will achieve an 86% success rate.
In order to remedy this they have released a new version of the dataset,
NSL-KDD (Tavallaee et al., n. d.). The new dataset has had the distribution
of records adjusted to remove the redundancies and have had the ratio
of anomalies to non-anomalies modified. These two modifications yield
a more balanced dataset which allow researchers to perform less skewed
evaluations.
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3.1.3 DEFCON

The DEFCON conference is a conference that is held annually. The confer-
ence targets hackers of various backgrounds. During the conference there
are normally different sorts of activities for the participants. One of there
activities are the “capture the flag” contests. The capture the flags contests
have a number of vulnerable hosts on a network that the attackers try to
compromise. The network is only used for the contest, which means that
no background noise or normal traffic exist that can be encountered on a
real shared network.

There have been four datasets (Shmoo Group, n. d.) (DEFCON, n. d.) cap-
tured during the DEFCON capture the flag contests. The datasets contain
full payload, but no truth. In addition to this, all of the traffic can arguably
be considered malicious due to the nature of the contests.

3.1.4 Internet 2

Internet 2 is a backbone network that has been established primarily be-
tween universities. The network is mainly used for research purposes and
was established as an attempt to make a new, better, Internet. There are
flow records being collected from six core routers in the Cisco Systems (n.
d.) version 5 format. The number of routers have changed over the years
as the network has evolved.

The records contain metrics for every flow passing through the network
as well as up to a 1% sample of the packets. The sample contains full
payloads and have had the last octet in the IP addresses zeroed out as the
anonymisation.

The benefits of using the Internet 2 dataset is that the data comes from
many different links, which allows one to work with the behaviour of a
network instead of just the behaviour over a single link.

The drawback is that it only contains NetFlow records for the majority of
the data. This means that one can only use the flow attributes established
by the NetFlow version 5 format and it is impossible to extract any addi-
tional attributes from the data.

The Internet 2 dataset has been used in multi-variate time series types of
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anomaly detection, such as the principal component analysis performed by
Lakhina et al. (2004).

3.1.5 UMass

UMass has a network trace repository (University of Massachusetts, n. d.),
where the Gateway Link 3 Trace has been used for network anomaly de-
tection.

Gu et al. (2006, 2005) manually labelled parts of this trace for their studies
in anomaly detection using maximum entropy. Their work focused on de-
tecting SYN-floods and port scans, thus the labelling is only done for these
two types of attacks. It is also important to note that it is not an exhaustive
labelling, but rather that they chose from a subset of ports and hosts for
their studies and only labelled the events concerning those criteria.

3.1.6 MAWI

MAWI (MAWI, n. d.) is a trace repository that is a part of the WIDE project.
MAWILab (R.Fontugne et al., n. d.) is a repository where anomalies are
stored that they have discovered in the traces from the MAWI repository.
The anomaly detection methods used were run against two traces in the
MAWI repository. It is not an exhaustive collection of anomalies because
the anomalies are only collected after the capture. There has also not been
an exhaustive attempt to detect all of the anomalies, but rather only a small
subset of all possible anomalies.

The work by Fontugne et al. (2010) describes the data collected in the traces
and the anomalies detected.

3.1.7 LBNL/ICSI Enterprise Tracing Project

The LBNL dataset (Laboratory and ICSI, 2005) is a four month long trace.
The original trace has been split into two separate sets, one containing port-
scan traffic and one set that contains the remainder of the traffic. Both sets
have been anonymised with the tcpmkpub tool. The tcpmkpub tool and
details about the anonymisation are described by Pang et al. (2006).
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3.1.8 ITOC

The ITOC dataset (Sangster et al., 2009a) was created during a network
warfare exercise and contains full packet payloads, but no truth data.

The most important contribution of the ITOC dataset is that Sangster et al.
(2009b) introduces the concept of capturing additional information during
the collection of the network trace. Unfortunately the focus of the paper is
to only do this during a network warfare exercise and not when a generic
network trace is captured.

3.1.9 Network Traces

The final part of the commonly used datasets used are from trace archives.
There are numerous archives around the world, such as WITS (Waikato
Internet Traffic Storage, n. d.) and RIPE (RIPE, n. d.).

The traces have a few attributes in common; They were captured over a
single link, contains no or a heavily truncated payload and have had their
IP addresses anonymised. The ways to anonymise addresses is discussed
more in Section 3.6.9.

3.2 Problems With Existing Datasets

3.2.1 Privacy Issues

There are two different privacy related problems that cause difficulties.
The first problem is not being able to distribute the dataset at all because of
where it has been acquired. The second problem is that when the dataset
is being distributed, it must be anonymised. There are in turn two steps
of the anonymisation that have an impact on the dataset, Internet Protocol
(IP)-address anonymisation and packet payload truncation. The packet
truncation is the main problem because it makes it impossible to recreate
all of the network events after the anonymisation.

3.2.2 The Lack of Ground Truth

Establishing the complete ground truth for a dataset is very difficult, and
can only be done in a controlled environment mixing both synthetic and
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real network data. The synthetic data is used to increase the traffic vol-
ume and the real network data is generated by users inside the controlled
environment.

Because connecting the controlled environment to the rest of the Internet
will subject it to the Internet background radiation, and potentially mali-
cious traffic, it should be kept in complete isolation.

To establish the ground truth in this controlled environment, all back-
ground traffic and traffic generated by users must be completely benign.
The creators of the dataset can then introduce various forms of anomalies
in the network, while recording which anomalies were introduced, and the
time and location in the network.

Creating a dataset in this fashion is both costly and time consuming, and
it will be very difficult to establish an equal amount of anomalies as can be
found in ordinary Internet background radiation (Pang et al., 2004; Wus-
trow et al., 2010). While this approach was used for the DARPA intrusion
detection challenges, it has never been repeated since.

There are two different approaches to creating new datasets, but neither
approach can guarantee that all of the anomalies in the constructed dataset
will be correctly detected and labelled.

Both approaches use existing network infrastructure and rely on passive
monitoring of the network. As was discussed earlier, this will require the
data to be anonymised. The two approaches can be described as follows,
introducing anomalies into your own network or simply attempting to la-
bel all anomalies in the network. It is also possible to combine these two
approaches. However, none of these approaches can guarantee that all
anomalies will be labelled.

When introducing anomalies in a network already a part of the Internet, it
will also have anomalies induced from external sources, some of which are
difficult to detect (such as 0-day exploits).

3.2.3 Discussion

The difficulties and costs associated with a creating a new high quality
dataset for network anomaly detection has led to a lack of new datasets that
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have full truth data. There have been attempts by researchers to establish
new datasets, such as the UMass dataset, but they have not had as large
coverage of truth data, if any. Their strengths have rather been that they
are authentic network captures, but that comes at the cost of it being very
difficult to label.

Instead, the hybrid approach of using multiple datasets for evaluations
have been used.

The main drawback with all others of the previously described datasets
are that they do not have an exhaustive labelling and that any labelling has
been created after the data collection. As a result of that, it is much more
difficult to establish whether an anomaly detection method is yielding cor-
rect results.

3.3 Anonymity of Users in a Dataset
A dataset containing real world network traffic has the potential to invade
the privacy of the users of the network where the dataset was captured.
To counteract this, it is an established practise to anonymise the datasets
before they are released, and in many cases before they are examined by
the researchers.

There are several pieces of information that need to be anonymised in a
dataset, with the most obvious being the packet payloads. The other infor-
mation that need to be anonymised is addresses in the packets since it can
be used to identify specific computers.

Synthetic datasets do not need to be anonymised as they do not contain
any incidental data that can be considered sensitive. All of the data in the
dataset is a product of the researcher creating the dataset.

3.3.1 Anonymising Packet Payloads

Packet payloads can be anonymised by either truncating them or over-
writing them with irrelevant data. Truncating packets is by far the most
common method since it also decreases the size of the trace. Packets are
commonly truncated after a certain number of bytes. This approach is
likely to either leak payload data, or it is likely to truncate packet headers.
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The dataset presented in this chapter uses a different method. By analysing
the packets and headers, the capture system is able to determine what is
the packet payload and truncate the packets at a dynamic interval, thus
preserving the packet headers.

3.3.2 Anonymising Packet Addresses

Even if the payloads have been truncated, it is still possible to extract some
information of what a user has been doing since addresses can be tied
to specific network hosts. There are several ways that have been used to
anonymise the packet addresses.

Enumeration

All of the hosts in the trace are placed in the same network. Each address
that is encountered inside the trace is given a unique address inside that
network in the order that they are encountered. The drawback with this
method is that it does not preserve any network prefixes which leads to
further information loss.

Encrypting the Addresses

Various encryption methods have been used to encrypt the network ad-
dresses. The benefit of this approach is that it can be used to only encrypt
a part of the address, thus making the approach prefix preserving. The
drawback is that the method is reversible if the encryption key is discov-
ered or retained.

3.3.3 Implications

Information that is useful for network anomaly detection is removed when
a dataset is anonymised. By removing packet payloads, the dataset is ren-
dered unusable for Deep Packet Inspection (DPI) methods. Methods that
work in the address space suffer similarity from the anonymisation of the
packet addresses.

Both these drawbacks make the task of labelling a dataset after capture and
anonymisation significantly more difficult.
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3.4 Classifying Datasets
The following criteria are used in the classification of the datasets pre-
sented.

3.4.1 Access

Datasets access can be divided into two main categories: Public and Pri-
vate. A public dataset is accessible for download and use without any
restrictions. A private dataset is not accessible without prior consent and
an agreement of the terms that the private dataset may be used under.

3.4.2 Creation

There are three ways to create datasets: Synthetic, Semi-synthetic and real
network traffic. A synthetic dataset is created by using a network traf-
fic generator to create both anomalies and background traffic. A semi-
synthetic dataset mixes both real network traffic with synthetic network
traffic generated by a traffic generator. A dataset created from real network
traffic has had network data captured from one or more network links.

Each method suffers from different drawbacks. Synthetic traffic is depen-
dant on having an accurate and realistic traffic generator. If the generated
traffic is not realistic the dataset will provide bias or incorrect results net-
work anomaly detection.

Semi-synthetic traffic relies even more on the synthetic data being indistin-
guishable from the real network data that it is mixed with. If anomalies
are combined with generated data, it is also difficult to say whether the
anomalies would be present in a real scenario, and in which volumes. Fail-
ure to take proper care when presenting this kind of dataset would result
in very artificial datasets, from which results might translate poorly to a
real world scenario.

Real traffic datasets do not suffer from any artefacts from the capture pro-
cess, assuming that sufficient resources are available at the capture point
and the capture software is bug free. Instead, this kind of datasets suffer
from a lack of truth data, it is very difficult if not impossible to fully label
a real world dataset.
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3.4.3 Labelling

The labelling of a dataset can be done during the creation, or after the
creation of the dataset. The labelling of a dataset during the creation is
easiest on a synthetic or semi-synthetic dataset since the anomalies in the
dataset will be known (unless they are inadvertently introduced by the traf-
fic generator). No real world dataset exists that have been labelled during
capture.

Post creation labelling can done either by hand or by automated tools. Both
methods suffer from the same drawback, the reliability of the methodexpert
that assigns the labels. Additionally, experts find it difficult to cope with
big datasets whereas automated systems do not suffer the same scalability
issues.

3.4.4 Overview

Table 3.2 contains a classification of the different datasets discussed in this
chapter and a breakdown of how the dataset was created (type), how the
data is anonymised and the state of the truth data associated with the
dataset. Additionally, it also contains a note about how the data has been
created or derived.

Table 3.2 show that the only datasets that with full truth data that have
been created are the DARPA datasets. There are a multitude of potential
other datasets, but none have been widely adopted for network anomaly
detection.

3.4.5 Discussion

Synthetic and semi synthetic datasets can have full packet contents and
complete truth data, but suffer from not being representative of real net-
works. The effort and inherent costs involved with creating such datasets
means that they are not frequently updated.

Real traces are inherently realistic but they need to be heavily anonymised
to be shared. The fact that they are real network data makes it impossible
to have verified complete truth data.

The rest of this chapter presents the completion of a dataset through a new
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technique that allows retention of most of the packet data that is relevant
to anomalies. This technique is the based on annotating the trace as it is
captured.

Later chapters discusses techniques to further improve the annotations and
truth data associated with a trace.

3.5 Dataset Quality
Evaluating a dataset’s quality falls outside the scope of this thesis, but
the following aspects of dataset quality have been inferred from the work
conducted with dataset analysis, labelling and collection done in this thesis.

1. Completeness

2. Packet loss

3. Dataset duration

4. Timestamp precision

5. Accuracy of dataset labels

6. Quality of synthetic traffic

7. Coverage of truth data

8. Correctness of truth data

3.6 Collecting a New Dataset
To remedy the lack of a fresh dataset I decided to capture a new dataset.
Capturing a dataset has the benefit of being real world traffic as opposed
to creating a synthetic dataset. Unfortunately it will not have complete
truth data. This is because the data is captured over the University of
Waikato’s primary connection. Because this is on a production network
with real users there will be a large number of anomalies that are naturally
occurring. As a part of the data collection, attempts were made to label
as many of these anomalies as possible but it is impossible to verify how
many of the anomalies were correctly detected.

The systems used to label the collected data during the traffic capture were
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Snort Roesch (1999) and Bro(Paxson, 1998).

The following two sections explain the setup of the capture point and what
type of data that was collected.

3.6.1 Motivation

A new network trace itself would not be very useful for network anomaly
detection. There are already multiple institutions that collect network traces.
However, a majority of the collected traces are not made publicly available
or are too limited. The traces that are made publicly available are just
network traces, with no additional data.

By collecting more data than normal during the network capture, we are
able to alleviate the uncertainties present when attempts are made to es-
tablish the correctness of results from an anomaly detection method.When
the data is captured, a first step towards this is to use well known methods
that are considered reliable, such as deep packet inspection.

The aim of the work described in this chapter is to create a new dataset that
comes with additional metadata that is only available during the capture.
Although only two IDS systems ran at the capture point, it shows that it
is possible to make a new dataset that contains more information than just
a network trace consisting of packet headers. Since almost none of the
network traces released contain packet payloads it would be impossible to
recreate the results of an DPI system on the truncated packets.

Chapter 5 describes in detail how it is possible to extend on the results
attached to a specific network trace. It is still important to gather as much
information as possible during the actual capture of the network trace.

3.6.2 Methodology

The basic idea is simple: attach as many network probes as possible at the
capture point, and make sure they receive exactly the same data. In this
context, a network probe is something that inspects or measures the traffic
at the capture point. Ideally, the probes should only contribute data that
cannot be reconstructed after the capture. This means that IDS systems
that perform deep packet inspections are better candidates as probes than
something that measures bandwidth usage.
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The probes should be tuned so that they have an low false negative rate, es-
pecially if it is relatively easy to filter out false positives later by selectively
ignoring specific alerts. Using Snort as an example, we enabled many rules
that generates alerts, that might only be of interest in very specific cases.
The reasoning is that it is possible to filter the alerts out after the network
capture, but it might be impossible to recreate the conditions that led to the
alert.

All significant events that occur during the capture of the network traffic
should be saved in such a fashion that it is uniformly presented and in
correct temporal order. To do this, we created a binary file format and a
classification of different types of events. The file format and the classifi-
cation is described in Chapter 4 and appendix B. Chapter 4 also describes
how different annotation formats can be converted into this file format and
compared.

3.6.3 Capture Point Setup

Figure 3.1 shows the network setup at the Waikato University capture
point. The capture point resides outside the firewall and is connected to
the capture point via a span port on the gateway router. The capture point
itself is also connected to an additional private network over a different
interface over, which the traffic is transported to storage.

The capture point is a Inter Core 2 Duo E8200 with 8 GB of Random Access
Memory (RAM). For the data collection it has an Endace DAG card, version
4.3GE. The DAG card uses GPS as the clock input to ensure that there is
no clock skew or inaccuracies in the timestamps of the collected traffic. It
uses the libtrace (Alcock et al., 2012) version 3.0.12 and WDCap(WAND
Network Research Group, n. d.) version 3.1.12 for the data collection and

Internet
Gateway
Router

Firewall
Waikato
University

Capturepoint Storage

Figure 3.1: A network diagram showing the capture point setup at the University of
Waikato
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streaming of traffic for storage.

3.6.4 Data Collected

All data that is being transported over the link is collected. Section 3.6.9
details the steps taken to ensure the privacy of the users of the link.

The data collection has the approval of the University of Waikato’s ethics
committee. Appendix C contains a copy of the ethics agreement and the
conditions that the data collection has to operate under.

While full packets were sent to the two network intrusion detection sys-
tems, only the anonymised packet headers were stored.

In order to be able to only store the packet headers and 4 bytes of pay-
load, wdcap is protocol aware. This allows wdcap to dynamically alter the
snap length based on the different protocols present in the packet. Wdcap
dynamically changes the capture length to be the User Datagram Proto-
col (UDP) or Transmission Control Protocol (TCP) header, complete with
options, plus 4 bytes. Wdcap also supports ICMP and Internet Control
Message Protocol Version 6 (ICMPv6). If a protocol is unsupported it will
be treated as user payload and is truncated.

This dynamic snapping allows for the complete capture of link layer head-
ers, network headers and TCP, UDP and ICMP headers.

3.6.5 Labelling During Capture

In order to perform partial labelling of the traffic during the capture we ran
two different systems on the capture point during the data collection. These
systems were chosen because they are mainstream deep packet inspection
based network intrusion detection systems that see large scale deployment
in many different organisations.

Figure 3.2 shows the data paths during the capture from the network. The
data going into storage is completely anonymised and have the majority of
the payload stripped. The data paths to Snort and Bro are identical. The
packets in these data streams have their payload intact but have their IP
addresses anonymised.

Both systems received separate data streams of the anonymised traffic, but
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Internet DAG card

Anonymiser Storage

Bro Snort

Figure 3.2: The different data paths used during the network capture

with full packet payloads. The data streams were buffered during the time
that they had been opened until the systems had started processing packets
in order to minimise packet loss. If the systems were not connected to the
data streams no buffering was done due to the large amounts of data.

3.6.6 System Configuration

Both systems were monitored by watchdogs that restarted them when the
systems terminated prematurely. This proved to be necessary for both Bro
and Snort, but for different reasons. Snort was unable to restart gracefully
when the binary rules were updated, instead Snort attempted a restart and
then aborted. Bro suffered from stability issues during our research and
would sometimes segfault.

Unfortunately, this problem led to some of the captured data not being
analysed by the systems, but by using buffering of the data and the watch-
dogs we were able to mitigate this as much as possible. Tables 3.3 and 3.4
contain the upper bounds of unprocessed packets.

Snort

Snort is a network intrusion detection system that mainly relies on deep
packet inspection to for deciding whether to raise an alarm or not. It also
contains a number of pre-processors the most useful features being the
ability to do stream tracking, detect port scans and detect protocol viola-
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tions.

Snort was running both the Sourcefire VRT1 and the Emerging Threats2

open rule sets. A cron job ran at midnight each night to update the sig-
nature files to the latest versions and snort was restarted after the update.
The Snort version used during the data capture is 2.9.0.5 and the VRT rule
sets starting with the 2011-04-28 release and ending with the 2011-05-17
release. The EmergingThreats rules are updated on a daily basis and were
also updated on a daily basis at midnight.

The main drawback to using the open rule sets compared to the commercial
ones is that the open rule sets are lagging behind by 30 days compared to
the commercial ones. This means that attacks that were less than 30 days
old at the time of capture will not have been detected.

Bro

Bro is a network intrusion detection system that relies more on user con-
figuration in its Turing complete language than on signatures of specific
attacks. It can however use a subset of the snort signature description lan-
guage and can thus also load signatures that only relies on the subset of
the language.

The Bro installation was configured using the scripts that was distributed
with the Bro source. There were no attempts made to write custom detec-
tors for Bro, but rather to see what it could detect using the policies and
detectors distributed with the system.

Bounds on the Number of Unprocessed Packets

Table 3.3 and Table 3.4 shows an upper bound of the packets not processed
by the respective system when they were not running. The last and first
ts columns contain the timestamps in Coordinated Universal Time (UTC)
for the events reported by the system before they shut down and after
they were restarted. The two systems do not report the first and the last
packet captured, only the first and last event detected. By correlating the
first and last reported events with the packets that triggered the alerts we
can establish an upper bound on the number of packets that were not

1http://www.snort.org/vrt
2http://rules.emergingthreats.net/

http://www.snort.org/vrt
http://rules.emergingthreats.net/
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Last TS First TS Packets
1307059200.908943 1307059201.041437 6573
1307145600.912754 1307145601.095437 3953
1307232000.823158 1307232001.570763 4931
1307318400.914954 1307318401.100041 3839
1307404800.770291 1307404801.069437 7356
1307491200.998200 1307491201.010361 6776
1307577600.979166 1307577601.090223 9223
1307664000.842506 1307664001.097906 6532
1307750400.937954 1307750401.100407 3541
1307836800.991659 1307836801.826832 5109
1307923200.737272 1307923201.175639 5884
1308009600.621993 1308009601.164393 7436
1308096000.786078 1308096001.985541 12850
1308182400.997815 1308182401.040782 7654
1308268800.922332 1308268801.054057 7262
1308355200.782837 1308355201.039382 2633
1308441600.973966 1308441601.111439 2290
1308528000.979519 1308528001.044631 4883

Table 3.3: Packets between first and last event in Snort

Last TS First TS Packets
1307581477.438300 1307582214.325630 4753957

Table 3.4: Packets between first and last event in Bro

processed.

3.6.7 Volumes of Data Collected

The data collection ran from 2011-06-02 to 2011-06-20. This collection hap-
pened between semesters at the University of Waikato. The impact of this is
that the volumes of traffic is smaller than during a semester because fewer
students were at campus and using the university’s computer facilities. It
is also worth to note that the “World IPv6 Day” occurred on 2011-06-08,
which is a day where network operators where encouraged to enable IPv6.

The dataset averages 2.3 MB/s with a peak throughput of 31.7 MB/s. The
lack of students does not have a significant impact on the diurnal variations
compared to a time during the year when teaching is in progress at the
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Figure 3.3: Total Traffic During Capture

university. This can be seen in Figure 3.3. The large spike is caused by an
increased rate of outgoing traffic over the link.

There were no packets dropped during the collection of this network trace.

3.6.8 Privacy Concerns

As can be seen from the ethics agreement in Appendix C there are strict
conditions in place to ensure the privacy of the users of the network. This
section outlines the steps taken to ensure the privacy.

3.6.9 Identification of Individuals

The IP addresses of the individual packets can be used to pinpoint spe-
cific computers. When combined with the timestamps in the collected
traces it can be used to identify specific individuals. To make this im-
possible, the addresses present in all IP packet (both IPv4 and IPv6) have
been anonymised with Crypto-PAn3 which implements the techniques de-

3http://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/

http://www.cc.gatech.edu/computing/Telecomm/projects/cryptopan/
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scribed by Fan et al. (2004).

Crypto-PAn is based on the rijndael cipher. It is prefix preserving, which
means that the prefix relationships of the IP addresses are still usable after
the anonymisation. While Crypto-PAn is cipher based, and can be reversed
if the key is retained, no key is retained. A new key is randomly generated
when the network capture starts and is rotated every seven days. The key
rotation helps to ensure that it is impossible to identify specific hosts based
on long running traffic patterns.

3.6.10 Packet Payloads

Even if the addresses of an IP packet has been anonymised, the payload can
still contain sensitive information such as e-mail data or HTTP data. This is
information that obviously must be kept private. Thus, all payload except
for the first 4 bytes are stripped from the packets. While retaining any
payload at all might be contentious, 4 bytes was approved by the University
of Waikato’s ethics committee. 4 bytes of payload is sufficient to be able to
be able to do protocol identification and similar types of research without
posing a too big risk of network user privacy.

The technical details of the payload anonymisation can be seen in Sec-
tion 3.6.4.

3.7 Discussion
While the capture described in this chapter could have been longer, it
should be viewed as a proof of concept. It is possible to create a semi-
labelled dataset during capture without a significant overhead in time or
resources. Specifically, it allows us to combine deep packet inspection sys-
tems with post-capture behavioural methods without violating the privacy
of any users.

Unfortunately the lack of packet payloads mean that the dataset is not
useful for research into deep packet inspection systems, but the focus on
the research described in this thesis is on behavioural anomaly systems
and the two deep packet inspection systems used are mainly used for a
reference purpose.



3.8 Summary 43

While it can be argued that the accuracy of the annotations for the dataset
could be improved by launching attacks against the network inside the
capture point during the capture, this approach faces some drawbacks on
its own.

The legality of attacking a network you do not own is dubious, only a
few hosts inside the network could be attacked thus creating the same
predictability for some of the attacks as present in the DARPA datasets,
doing so would also increase the cost of the capture.

3.7.1 Weaknesses

The major weakness of the new dataset that was collected is that it is im-
possible to know about all of the attacks. There is most likely attacks in
the captured traffic that were not known during the time of capture by the
systems monitoring the network. It is possible that these attacks will be
noticed by other systems during future evaluations that use the dataset,
but it will be impossible to verify these attacks with complete confidence.

3.7.2 Achievements

We have created a new procedure for collecting network traces that yields
more information about the network trace than other methods. Combined
with the already robust data collection methods that is afforded by wd-
cap and libtrace, this allows us to collect datasets that are more useful for
network anomaly detection.

3.8 Summary
This chapter has introduced datasets that have been used to date for net-
work anomaly detection, and discussed the strengths and shortcomings of
these datasets. Additionally, the different techniques to create a dataset has
been and the strengths and weaknesses of the three approaches (synthetic,
semi synthetic and real network traces) where we draw the conclusion that
only real network traces are realistic, but suffer from the need to anonymise
them.

To alleviate the loss of data during the anonymisation the chapter intro-
duced a new network capture technique that attempts to collect relevant
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network anomaly annotation data during the capture so that the informa-
tion can be retained as a part of the dataset.



4
Annotation Formats

As described in Chapter 2, evaluating network anomaly detection methods
need to have a standardised way of sharing the results to be able to per-
form direct comparisons between methods. This chapter outlines a new,
extensible, network annotation format that can be used in conjunction with
network traces to share the results when sharing the implementations of
network anomaly detection methods is impractical.

However, just another data format would be insufficient to make evaluating
network anomaly detection methods easier, when we cannot ascertain the
correctness of the produced annotations. To remedy this, this chapter also
introduces a method to verify that the annotations produced are correct
and that the annotations can be correlated with the correct events in the
network trace. The chapter then brings the new annotation format and the
verification method together in an example scenario where the truth data
from the DARPA datasets are converted into the new format and verified
for correctness.

When the new annotation format and verification process is used in con-
junction with the network trace process described in the previous chapter
it is possible to collect anonymised real world datasets that have more in-
formation associated with them than previously.
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4.1 Motivation
There are many different ways to express annotations that are useful from
a network anomaly detection point of view. When anomaly annotations
from different sources and in different formats are brought together, it is
difficult to know if these annotations can be trusted.

To establish that the annotations are correct and can be trusted, a process
was created that match each specific set of anomalies to the network trace
that contains the traffic where the annotations originate from, and verify
that a packet or network flow can be associated with the annotation . By
matching anomalies, to the largest extent possible, to the network trace, it
is also possible to improve on the accuracy of the annotations.

In this chapter, accuracy is defined by how unambiguous an annotation
is. Events are the actual cause of the annotations. By verifying that the
trace contains the traffic that the annotations refer to, the events will also
be present in the trace unless the annotation is the cause of a false positive.

4.2 Why Network Annotations Matter
Annotation of a network trace allows network researchers to share infor-
mation about a network trace. Currently, due to a lack of suitable formats
to store annotations in, this is usually passed as notes that are loosely tied
to the network trace. A better method to share annotations would allow for
more efficient sharing of information as well as the ability to share results
from anomaly detection methods. There are currently two different for-
mats that are discussed in more detail in Section 4.4. These formats are not
flexible and extensible enough to allow an efficient sharing of information.

Section 4.5 describes the attempts to create a new annotation format that
is closely tied to the network traces without having to change any of the
existing trace format. This format has been designed with flexibility and
extensibility as two of the design goals and can easily accommodate dif-
ferent extensions as well as be extended into a complete trace format with
detailed annotations as a part of it.
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4.2.1 About Network Trace Formats

There are a wide number of different formats for network traces, and with
one exception they do not support inline annotations. The most prevalent
format is the PCAP (Tcpdump/Libpcap, 2000) format. Microsoft Network
Monitor(Microsoft, 2010) supports limited annotations in its native format,
but only in a limited scope and the format has not gained any wide use.
This is discussed more in Section 4.4.2.

Network trace formats can be generalised to the following; they contain
complete or parts of raw frames as captured over the link layer, and meta
data about these frames. What link layers are supported and what the meta
data contains depends on the format itself. The two formats that are used
in the research described in this thesis are PCAP and ERF (Endace, n. d.).

PCAP is the most common packet trace format and is supported by a wide
range of application and libraries. ERF is mainly used for network traces
captured by the Endace DAG cards.

4.2.2 Network Events

The events that we have an interest of are network faults and security
events. Network faults can be either configuration errors or hardware
faults. Security events are either network probes or network attacks.

A more comprehensive description of the network events is in Section 2.1.2.

Categories of Events

Events can be put into three different categories. Trace wide events, flow
specific events and packet specific events. These events need to be labelled
in such a way that they can be traced back to the originating event. An ex-
ample of this would be a Denial of Service (DoS), which we would classify
as a tracewide event with the attacker as the source and the victim as the
destination. In the event of a DDoS attack we would only use the victim as
the identifier.

Identifying Events

Each type are straightforward to identify. The trace wide annotations do
not require any further identification than the timestamp they happen since
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they encompass all of the trace. Packet level events can be annotated using
the information inside the packet or frame as well as the timestamp. A
network flow is best identified by using the information present in the first
packet or frame in the flow.

There is also a need to support for identifying events that affect specific
hosts or services. To identify an event associated with a specific host, the
timestamp and IP-address is used. To identify a server, the timestamp, IP
address, protocol, and port are used.

4.3 Requirements on Annotations
Annotations primary purpose is to facilitate communication and sharing
of information between both researchers and end users. To be able to ac-
commodate this, they need to be expressible and flexible. To be useful for
information sharing, the annotations need to provide both outstanding ac-
curacy for identifying specific events as well as allow for a wide range of
descriptions of what the annotation signifies.

To be useful to researchers, the annotations also need to be able to show
how much confidence the researchers have in a particular annotation. Ad-
ditionally, the annotation format should be extensible in such a way that
different versions of the format can co-exist without any difficulties.

These simple use cases can be used to derive the following requirements:

1. Support high granularity timestamps.

2. Support an unique identifier for each annotation.

3. Be closely correlated to the network trace.

4. Support annotating different scopes of events.

5. Allow for easy comparison between different sources of annotations.

6. Flexible description format.

7. Support mixing annotations from several sources.

8. Extensible while retaining backwards compatibility.
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4.3.1 Different Levels of Accuracy

There are two different aspect of accuracy, temporal and spatial. Temporal
accuracy is concerned with locating a specific event in time. Spatial accu-
racy refers to the ability to pinpoint a specific event based on the network
traffic in the trace. An example of a spatial coordinate within a network
trace is the 5-tuple that describes a flow, containing the source and des-
tination addresses and ports and the protocol. Both temporal and spatial
accuracy is important to be able to correctly identify a specific event in a
network trace. The source of the event can either be an anomaly detection
method or an expert evaluating the network trace, or external sources of
events such as syslog or SNMP traps.

4.4 Existing Annotation Formats
There are two existing annotation formats with the express purpose of
identifying events within a network trace.

4.4.1 ADMD

ADMD (Fukuda et al., 2008) has been developed with the purpose of shar-
ing scores for anomaly detection methods. It is an XML based format.
ADMD supports annotations of packets or of slices. Packets are identi-
fied by a hash of the packet. A slice, as used by ADMD, is a complete or
partial network flow between two hosts. The slice is identified by source
and destination IP addresses, protocol, source and destination ports, and a
duration.

Shortcomings

ADMD does not support annotations that are trace wide. Out of the three
categories of events defined in Section 4.2.2, only packet and flow are sup-
ported. This does not fulfil requirement 4.

One annotation file only supports annotations from one specific scope, thus
failing requirement 7. The format is not extensible due to it’s implementa-
tion, failing requirement 8.
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Strengths

ADMD allows researchers to add a description of the annotation file as well
as information about the algorithm that created the annotations, including
parameters. The annotation format outlined in this format does not sup-
port this additional meta data because this would decrease the extensibility
of the format.

4.4.2 Microsoft Network Monitor

Microsoft Network Monitor has support for annotations when it is using
its own custom annotation format. However, it is not possible to annotate
a captured trace without saving and reopening it beforehand.

Shortcomings

The format only supports annotating packets and it has to be a manual
procedure. This means that it is impossible to add annotations that are not
tied to a specific packet. This makes it unsuitable for network anomaly
detection since it is impossible to automatically label the trace, or read
back the labels, as well as annotate anomalies that are not tied to a specific
packet.

The format does fulfil requirements 4, 5, 7 and 8.

4.4.3 Network Logs

For the scope of this thesis, results from a network anomaly detection sys-
tem, for example snort, which produces logs are not considered to be an
annotation format as they are created with the express purpose of commu-
nicating the output of the method.

4.5 Creating the Waikato Annotation Format
To rectify the shortcomings in the two formats discussed in the previous
section, a new annotation format was created. The goal was to fulfil all of
the requirements in Section 4.3 and make it straightforward to extend the
format without invalidating any created annotations in the future.

The decision was made to make the format binary, with all data stored in
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network byte order. The primary reason for a binary format was speed and
uncompressed storage size. An implementation of the necessary functions
to read and write the data will be released as open source software together
with this thesis. This version submitted with this thesis is available at
http://hdl.handle.net/10289/8041 and future versions will be available from
http://research.wand.net.nz.

4.5.1 Annotation Format

Based on the requirements in Section 4.3 a new format was created. This
format supports a time resolution as fine as the trace format, the ability to
identify trace wide events, hosts, services, flows, and packets.

Extensibility

The current version of the format only supports annotations, but the de-
sign of the format is such that it is easy to extend it. Each different record
is identified by an Internet Assigned Numbers Authority (IANA) enter-
prise number. This number can be used to identify the implementation
of the format that created that specific record, which also means that the
records should conform to the format as defined by that organisation. This
would allow different institutions to add additional information in their
own implementations of the records without explicitly breaking any exist-
ing design.

4.5.2 Format Outline

Figure 4.1 shows an annotation as it will be stored in the file. Each actual
annotation is encapsulated in a container that identifies the content type,
the enterprise that created the annotation and the total length of the record.
An annotation, as encapsulated by the container, actually consists of three
parts; the annotation, the identifier and the description.

The annotation part defines what type of event signified, the timestamp, a
confidence number and a divisor. In addition to this, it also tells what type
of identification is used for the annotation. The confidence number defined
the belief held in the annotation’s accuracy and the divisor is used when
serialising annotations to disk in order to not lose precision.

The supported event types are: trace wide, flow, packet.

 http://hdl.handle.net/10289/8041
http://research.wand.net.nz
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Container

Annotation

Identification

Descriptor

Textual description or URL

Ethernet src
Ethernet dst
IP src
IP dst
protocol
src port
dst port

Annotation type
seconds
microseconds
accuracy
divisior
id type
descriptor length

content type
enterprise number
length

Figure 4.1: An Annotation record

Appendix B contains the C header files that the implementation relies
upon.

Identification Types

There are currently four supported identification types. The most descrip-
tive is Ethernet, the second most is Service, then there is Host and finally
None. Figure 4.2 shows how these identification types are related and what
each type contains.

The Ethernet type is used to identify packets and flows captured over an
Ethernet link. It is possible that an additional identification type for ATM
links, or not using the link layer addresses at all might be added in the
future.



4.5 Creating the Waikato Annotation Format 53

Ethernet Identification

Service Identification

Host Identification

None

src IP

src port
protocol

dst port
dst IP
src MAC
dst MAC

Figure 4.2: The relationship between annotation identification types

4.5.3 Descriptions

Normally, the descriptions for an annotation is made in the style of an
semantic URL. The URL should directing the user of the annotation format
to a web page with more information about the specific annotation. A
semantic URL is structured in such a way that information is conveyed
by the URL itself. The main benefit of having a semantic URL is that it
still conveys information about the annotation even though the resource it
points to might be missing.

An example of a semantic URL is as follows:

http://www.wand.net.nz/annotations/waikato8/snort/sid/128/revision/1

This URL consists of several parts. www.wand.net.nz tells us which organ-
isation created the annotations. The name of the dataset the annotation is
associated with is waikato8. The source of the annotation if snort and the
Snort rule with the sid 128 was triggered. The final part of the URL shows
us that revision 1 of the rule was used.
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4.6 Requirements on the Annotation Process
In order to verify that the annotations were closely coupled to the network
trace, we established the following requirements on the process:

1. Sufficient temporal resolution to match the network trace’s resolution.

2. Tag both packets and network flows in the traffic.

3. Allow for easy comparison between different sources of annotations.

In Section 2.1.2 the different types of events that can be detected in a net-
work trace was established. Not all of these will easily satisfy the last
requirement due to detection latency in the algorithms that produced the
original set of annotations.

An example of this is how Snort detect port scans. Snort uses a specific pre-
processor that investigates the traffic and looks for port-scan like patterns.
The pre-processor does not report the port scan with the timestamp of
the first flow, but rather when the ongoing port scan crosses a detection
threshold, thus creating suffering from reporting latency.

4.7 Implementation of the Matching Software
To verify the correctness of the annotations created from data sources, cus-
tom software was written. The main purpose of the software is to correlate
the annotations with the network traces, and report any lack of successful
matches between annotations and the network traces.

There are four different variants of the software available at the moment.
Each variant is capable to read a specific input format and match it against
the network trace.

The supported formats are: Snort’s unified2, Bro’s log format, DARPA 1998
truth format. The final variant also reads the DARPA 1998 format but does
fuzzier matching to allow for the sparser information present in the 1999
format.

All four variants are based on the same code base and uses the same data
flow. However, each version has been tweaked to handle different detection
delays present in Snort and Bro whereas the DARPA version corrects for
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the lack of temporal accuracy .

Figure 4.3 outlines the path that the data takes during the conversion of
input annotations to the Waikato annotation format. The first step is to read
the input from the specific format. The second step involves converting
the input into a common format that is similar across all variants of the
software. Finally the events are matched to specific packets or flows in the
trace. This is discussed in detail in Section 4.7.1. Once a successful match
has been made, an annotation is written with the correct details.

4.7.1 Matching

All variants use the same approach to matching the input to the trace files.
The various input sources do not provide the same level of accuracy, which
means that the matching mechanisms must compensate.

Snort provides the most complete input in the unified2 format. In this
format, for each event, a header providing data about the event and the
packet that caused the event to be logged is included.

From this it is possible to extract a 8-tuple that will be unique across the
entire network trace. The tuple consists of:

1. timestamp

Input

Events

Matcher

Annotations

Figure 4.3: The datapath during the conversion of input annotations to the Waikato
annotation format
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2. source Media Access Controller (MAC) address

3. destination MAC address

4. source IP address

5. destination IP address

6. transport level protocol

7. source port

8. destination port

In this tuple, the timestamp can suffer from clock skew between the capture
point and the computer running Snort, clock drift and detection delay. This
can be solved by running Snort in off-line mode and sending it the captured
traffic in real-time in the PCAP format. When Snort is working in offline-
mode, it uses the packet timestamps present in the network trace it reads.

Snort Variant

When matching the unified2 data to the network trace, each of the fields
described above were compared.

For efficiency reasons, the matcher starts by comparing timestamps. If the
timestamps have a discrepancy larger than one second, the packet is not
considered.

The following checks are then performed. If any of the checks fail, the
matching is aborted for that particular packet.

1. source and destination MAC addresses.

2. source and destination IP addresses.

3. transport level protocol type.

4. source and destination ports.

The final step, verifying the source and destination ports, are only done for
the transport level protocols that uses ports.

If a packet successfully matches all of the criteria in the input annotation,
there are two annotations written. The first is a packet level annotation for
the particular packet. The second is a flow level annotation, that is using
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the 8-tuple for the first packet present in the flow as its identifier.

By having both flow and packet annotations it is easy to model both packet
and flow characteristics without having to do multi-pass processing.

Bro variant

Unlike Snort, Bro has the detection delay added to the timestamps. Bro
also does not log the MAC addresses in its log formats. This makes it more
difficult to match the input to the network trace.

By tuning Bro, the detection delay was changed from the default 30 minutes
(for some types of events) to 5 minutes. While this is still a relatively large
time window to perform the matching on, it is such that it is unlikely that
we will encounter two flows with exactly the same parameters.

The actual matching process performed is almost identical to the one for
snort, with the exception that a larger temporal window is considered and
that no MAC addresses are compared.

Due to the lack of exact timing, the Bro variant only creates annotations for
flows, not flows and packets.

4.7.2 DARPA 1998 variant

The DARPA 1998 truth data has a granularity of 1 second for the times-
tamps. There are no MAC addresses present in the truth data.

The matcher used is based of the matcher for Snort, but with more flexibil-
ity for the temporal matching and no comparison of MAC addresses.

The lack of consistent labelling in the truth data between packets and be-
ginnings of flows makes it impossible to create correct annotations for the
packets in the trace. Instead, only annotations are created for the network
flows.

4.7.3 DARPA 1999 variant

The DARPA 1999 truth data uses a different format from the 1998 truth
data. The main difference is that the DARPA 1999 truth data lacks the
source port in many occasions. The differences will be explained in greater
detail in Section 4.8.1. The 1999 truth format was converted to the same
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format as the 1998 truth data using a simple Perl script.

The matching works exactly the same way for the 1998 data, except that if
the source port is missing, only one unique flow is matched to that event.

4.8 Investigation of the DARPA Dataset
This section outlines the different errors and their frequency as they were
discovered in the DARPA 1998 and DARPA 1999 datasets. There were
few errors found in the 1998 truth data, but we discovered that 14.42 %
of the instances in the 1999 dataset are incorrectly labelled. This number
includes three annotations in the truth data that will be discussed in depth
in Section 4.8.1.

4.8.1 Truth Formats

DARPA 1998

The 1998 training data come with the network data being annotated. The
annotations list each individual flow, regardless of it being an attack or not.
As a pre-processing step to matching the network data to the supplied at-
tack truth we filtered out all negative instances as well as the identification
number assigned to every flow.

Figure 4.4 show the original truth data and Figure 4.5 the filtered version.

DARPA 1999

The 1999 dataset differs slightly from the 1998 in the way that the network
was configured. Lincoln Laboratory created an internal and an external
network with a capture point in each network. The supplied truth data,
however, are not divided into an internal and an external network. To sim-
plify the matching of the network data we made the decision to merge the
two different network captures using tracemerge, which is a part of libtrace
(Alcock et al., 2012). Tracemerge allowed us to merge the two network cap-
tures without modifying the data stored in the original network traces. We
then used the merged traffic to match the truth data to the network data.

The truth data distributed with the 1999 dataset is in a different format
compared to the 1998 dataset. There are two different formats available,
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the one used for this work is the master identification.list. A manual com-
parison between the annotations present in that file and the detections lists
showed that the master identification list was more complete.

The three main differences between the data in the master identification
list and the DARPA 1998 truth data are:

• Attacks are listed, not instances.

• Source ports missing for almost all attacks.

• Different formatting.

An example of an attack record in the original truth data for the 1999
dataset is in Figure 4.6.

To cope with these differences we started out by converting the formatting
in the 1999 data set to the 1998 formatting. This was done by replicat-
ing the attack instance for each attacker / victim pair by the number of
times a specific port or jump packet was attacked. On the attack instances
where there was not a one-to-one or one-to-many mapping for attackers
and victims, we manually inspected the network traffic and created sepa-
rate one-to-many attack instances.

The attack in Figure 4.6 is converted into three instances, each with an
unknown source port. The source and destination addresses are the same
for each instance, but the destination port will either 20, 21 or 513 in each

ID: 41.135830
Date: 03/29/1999
Name: ftpwrite
Category: r2l
Start_Time: 13:58:16
Duration: 00:05:45
Attacker: 194.027.251.021
Victim: 172.016.112.050
Username: 513/tcp , anonymous
Ports:
At_Attacker:
At_Victim: 20-21{1}, 513{1}

Figure 4.6: Example of an DARPA 1999 attack record.
.
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instance. Timestamps and durations are retained from the original record.

Wild Cards in the Truth Data

The truth data for the 1999 dataset includes a number of wild cards. These
wild cards were interpreted in a inclusive fashion. As an example, an
address of 192.168.0.* would be interpreted as all valid addresses in that
subnet, which are 192.168.0.1 to 192.168.0.255. If there were only one actual
host present in the trace, it would count as one correct annotation and 253
incorrect annotations.

This approach was not taken for a smurf attack present in the last week
of the testing data. Rather, the correct number of flows was extracted and
they were all classified as mislabelled in the original truth data.

Classes of Errors

• Incorrect timestamps on attacks.

• Wrong datestamp on attacks.

• Erroneous source and destination ports.

• Erroneous source and destination addresses.

4.8.2 Frequency of Errors

This section lists the errors that we found in the truth data supplied with
each of the data sets we examined. We also classified the types of errors
based on our findings in the network captures.

1998 Dataset

Table 4.1 outlines the errors found in the 1998 training and testing data.
The week and day fields show which part in the dataset is affected by the
mislabelled truth data. The attack field indicates the name of the attack,
the number of instances in the total number of instances affected by the
errors. The final field, Error, contains a brief description of the error.

Table 4.2 shows the attacks with affected instances. The # Attacks column
shows the total amount of attacks for that day. The following column shows
how large a percentage of these attacks suffer from incorrect instances.

Table 4.3 shows the total number of instances for each day of the data
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Phase Week # Day # Attacks % of Attacks with errors
Training Week 4 Friday 8 12.50
Training Week 4 Monday 4 25.00
Training Week 6 Tuesday 5 20.00
Testing Week 2 Thursday 19 5.26
Testing Week 2 Friday 23 4.35

Table 4.2: Erroneous attacks in the DARPA 1998 data

Phase Week # Day # Instances % of Instances with errors
Training Week 4 Friday 600 0.50
Training Week 4 Monday 12085 0.10
Training Week 6 Tuesday 1850 26.54
Testing Week 2 Thursday 242602 '0.00
Testing Week 2 Friday 37392 0.03

Table 4.3: Erroneous instances in the DARPA 1998 data

containing errors as well as how large a percentage of these instances are
erroneous.

1999 Dataset

This section contains listings of the errors in the 1999 training and testing
data.

Table 4.6 shows the errors present in the truth data for the training data.
Week 2 was the only week with errors in the training phase of the evalua-
tion.

Table 4.7 shows the errors that were discovered in the two weeks of test
data for the 1999 data set.

Day # Attacks % of Attacks with Errors
Monday 7 28.57
Tuesday 10 40.00
Wednesday 5 60.00
Thursday 9 33.33
Friday 9 55.56

Table 4.4: Erroneous attacks in week 2 in the DARPA 1999 data

Table 4.4 show the total number of attacks and how large a percentage of
these attacks are affected in week 2 of the training data. Table 4.5 shows
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Day # Instances % of Instances with Errors
Monday 64 31.25
Tuesday 3314 0.15
Wednesday 12680 0.02
Thursday 24297 0.01
Friday 20248 0.02

Table 4.5: Erroneous instances in week 2 in the DARPA 1999 data

the total number of instances for each day and how large a percentage of
these instances contains errors.

Week Day Attack # Inst. Total #
Inst.

Error

Week 2 Monday pod 2 2 Wrong src address
Week 2 Monday ntinfoscan 18 18 Wrong timestamp
Week 2 Tuesday phf 1 1 Wrong timestamp
Week 2 Tuesday httptunnel 1 1 Wrong timestamp
Week 2 Tuesday eject 3 3 Not in network trace
Week 2 Wednesday perl 1 3 Wrong timestamp
Week 2 Wednesday crashiis2 1 1 Wrong timestamp
Week 2 Thursday secret 1 1 Wrong timestamp
Week 2 Thursday perl 1 1 Wrong timestamp
Week 2 Thursday land 1 1 Wrong timestamp
Week 2 Friday crashiis 1 1 Wrong timestamp
Week 2 Friday loadmodule 1 1 Wrong timestamp
Week 2 Friday perl 1 1 Wrong timestamp
Week 2 Friday eject 1 1 Wrong timestamp
Week 2 Friday phf 1 1 Wrong timestamp

Table 4.6: Errors in the DARPA 1999 training data

Table 4.8 and Table 4.9 shows the number of attacks for week 4 and week 5
of the testing data as well showing how big the percentage of these attacks
contain errors.

4.8.3 Correcting the Erroneous Truth Data

Using the methodology described earlier in this chapter, it was possible to
pinpoint exactly which of the annotations were incorrect. This allowed for
a careful manual investigation of the trace files to find the correct attributes.
Based on the successful examination of all of the errors, it was possible to
create a set of corrected annotations that are closely tied to the network
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Day # Attacks % of Attacks with Errors
Monday 13 23.08
Wednesday 16 12.50
Thursday 14 21.43
Friday 12 16.67

Table 4.8: Erroneous attacks in week 4 in the DARPA 1999 data

Day # Attacks % of Attacks with Errors
Monday 19 15.79
Tuesday 22 22.72
Wednesday 13 15.38
Thursday 17 11.76
Friday 22 18.18

Table 4.9: Erroneous attacks in week 5 in the DARPA 1999 data

trace. The corrected truth data will be made available as both plain text
files and in the Waikato Annotation Format at http://hdl.handle.net/10289/

8041when this thesis is handed in.

Examples of the corrections would be to correct the timestamps of the an-
notations, or to correct the source or destination addresses that had been
reported.

4.9 Discussion
The different levels that the annotations can be expressed upon, packet,
flow, tracewide, allow us to differentiate between different types of events
and how wide they affect a network. It is also possible to have different
granularity in the tuple describing the event, thus making it easy to de-
scribe what an event affects.

The major difficulty that this method creates is the different timestamps
that detection delays create, making it important to be aware of the detec-
tion delays associated with the origin of a set of annotations.

When combined with the dataset method from the previous chapter, we
now have the capability to capture a new dataset and retain all of the infor-
mation acquired in a application agnostic format. We also have the tools
and methods needed to verify that the created annotations are correct.

 http://hdl.handle.net/10289/8041
 http://hdl.handle.net/10289/8041
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The DARPA dataset show how difficult it is to create correct network an-
notations. Because of the difficulty there is a need to have a reliable and
precise way to record annotations that can be refined and improved over
time.

4.10 Summary
This chapter has explored the existing network annotation format and then
outlined a new format. The chapter outlines a new method for verifying
that the created annotations are correct, in the sense that there are no am-
biguities in how the relate to the network trace.

The chapter then uses the DARPA datasets and the truth data as a study
to prove the effectiveness of the new format, and shows that using a more
accurate format and the method to verify the correctness of annotations
decrease the likelihood of errors in the created annotations.

4.10.1 Contributions

In this chapter there are two contributions. The first is a common method
to verify and in some cases increase the precision of annotations for net-
work anomaly detection. The second contribution is an outline of the errors
found in the DARPA 1998 and DARPA 1999 truth data. The corrected an-
notations will be made available at WITS (Waikato Internet Traffic Storage,
n. d.) as a part of this thesis.



5
A New Data Fusion Based

Methodology

Chapter 2 established the fact that the currently used methodologies for
network anomaly detection allow for reproducibility, openness, and shar-
ing of results. This chapter brings together Chapters 3 and 4 and uses
the contributions from those two chapters to propose a new evaluation
methodology that uses a novel approach with regards to datasets and truth
data.

5.1 Motivation
The current evaluation methods, described in Chapter 2 for anomaly de-
tection methods suffer from several drawbacks, no matter the method. Dif-
ferent methods are outlined in section , but they all suffer from these flaws:

• Lack of openness.

• Lack or repeatability.

• Improper treatment of datasets.

The methodology proposed in this chapter remedies these shortcomings.
The following section describes existing evaluation methods that have been
put forward in publications. No trace of any widespread adaptation of any
these methodologies have been found, instead the most prevalent method-
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ology is the informal one.

All of the related work presented in Section 2.4 fail to address the issues
surrounding trace datasets and common formats for network anomaly de-
tection. The work presented by Dumitras and Shou (2011) shows promise,
but it does not address any of the issues about labelling of actual network
data since the work focuses on malware samples and aggregated network
information than raw network traces.

Instead, the work presented in this thesis, and in particular in this and the
next two chapters, address these issues surrounding datasets in a prag-
matic manner. It is recognised that it is not an ideal solution, but it is
however an improvement over the current state of affairs in the field of
network anomaly detection.

5.1.1 Expressing Results

The results achieved by a specific method are commonly only presented in
the paper where the method is presented, on specific datasets. By having a
common format, such as the one introduced in Chapter 4, it would express
the actual output of the method. The output can then easily be expressed
in the appropriate formats for the method and compared to other methods
than the ones in the original paper.

5.2 The Problem With Existing Methodologies
Chapter 2 describes the existing network anomaly detection evaluation
methods.

These existing methodologies only place an emphasis on the experiments
themselves, and the results of those experiments. There is no focus on
selecting or sharing the datasets, the openness of said datasets, the re-
peatability of the experiments and how to share the raw results instead of
a metric achieved by the method.

As such, it is possible to improve on the current state of evaluating net-
work anomaly detection methods by introducing a new methodology that
takes all of these factors into account. This is done by defining a method-
ology that takes a novel and pragmatic approach with relation to sharing
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datasets and the results, and incorporating previously shared results into
the evaluation.

5.3 The new Methodology

5.3.1 Approach

In an ideal world, there would be open implementations of all anomaly de-
tection methods. However, the reality is that few researchers are willing to
share the implementations freely and are thus withholding the implemen-
tations. By making the datasets and the results available it will be possible
to see whether alternative implementations have the same performance as
the original researcher’s implementations.

By assuming that datasets and results will be available, a new approach can
be created that does not rely on complete truth data. The format described
in Chapter 4 allows for the certainty surrounding each specific anomaly to
be established and it is also possible to establish an overall trust for the
anomaly detection method.

This allows for the use of a Data Fusion approach to establish the data
that a new method will be evaluated against. By carefully choosing differ-
ent approaches of anomaly detection methods, it is possible to establish a
broader spectrum of detected anomalies than any single method could.

Thus, by carefully selecting the methods and combining them using data
fusion it is possible to correctly identify a sizeable portion of the anomalies.
The performance is evaluated in Chapter 6. This consensus can then be
treated as the results that a new method is evaluated against. Each new
method that is used can then later be incorporated into the consensus,
incrementally improving the quality of the comparison data. While this
has the drawback that the comparison data changes over time, the updated
consensus can be used when comparing the original, unchanged, output in
the future.

However, at the time the evaluation is made, the most up-to-date informa-
tion is used, and this will be a significant advantage over the current state
of the art.
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5.3.2 Steps

By adding these things to the existing methodologies, the new steps are as
follows. Step 2 corresponds to evaluating the method or approach under
the existing methodologies.

1. Choose datasets for the evaluation.

2. Evaluate against datasets.

3. Verify results against the dataset.

4. Use fused previous results as truth data.

5. Establish new method’s performance.

Step 4 is explained in greater detail in Section 5.3.3. This is the most im-
portant part of the additions, since only by having a well established and
agreed upon set labelled anomalies is it possible to evaluate against exist-
ing methods.

Choosing Datasets

For evaluation purposes, a method should be evaluated against a known
dataset that is publicly available. As a part of the proposed methodology,
this would be a dataset that has existing partial data associated with it.

Evaluating Against Datasets

The informal methodology, described in Chapter 2, could be used for the
actual evaluation. However, as the truth is not completely known it is
possible that the performance of the method could be deemed different
in the future when the dataset has been more thoroughly mapped. This
would however only affect the false positive rate of the method.

Verification Against the Dataset

As a part of making the results more reliable, they should be verified to
ensure that they correspond to the network trace. This will ensure that
programming errors or human errors will not lead to any ambiguity in
the output of a method. As described in Chapter 4, the results should be
expressed in a common output format that in turn is closely connected to
the network trace.
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Chapter 4 establishes an annotation format for network formats that is both
extensible and generic. This format forms a cornerstone in the methodol-
ogy because it allow different anomaly detection methods to express their
output in the same format. This in turn allow for simple comparison of the
methods.

The format also introduced the concept of semantic URL’s as descriptors of
network events. This is very important to allow for automatic comparison
and data fusion of output results.

Use Fused Truth Data

By using fused truth data from algorithms that detect the same kind of
anomalies it is possible to use datasets that would not have any existing
truth data. The fused truth data is established by one of the methods de-
scribed in Section 5.3.3, and Chapter 6 explores the impact of the different
methods using the DARPA 1999 dataset.

Establish Performance

The performance of a method is established against the fuse base data from
other methods. The methods that are used for the fusion process should
be chosen carefully to provide as much coverage as possible. The methods
used in the fusion must be the same as the methods that any competing
methods are evaluated against.

5.3.3 Creating Fused Truth

Data fusion is a method of information processing that combines the re-
sults of several sensors to achieve a greater clarity of what the sensors are
observing. A simple analogy is how the human body can observe a bird
with its eyes while listening to the bird with its ears in an attempt to make
a more accurate assessment of what species of bird it is.

Data fusion can be applied to many different problems, and has shown to
increase the accuracy of anomaly detection methods (Ciza, 2009). The types
of methods outlined below have been established in previous publications
performing data fusion in network anomaly detection.

By fusing the results of several different anomaly detection to establish a
labelling of a data set that has a significantly higher certainty than any
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of the methods would achieve on their own. In the next chapter such an
approach is compared to the truth data established for the DARPA dataset.

Expressing Uncertainty

To be able to perform data fusion with the results from an anomaly detec-
tion method, the detector need to express its certainty in the output. There
are many different ways to express certainty, or uncertainty, with one of
the more common ones being probabilities. Halpern (2003) establish the
following measures:

• Probability measures

• Lower and upper probabilities

• Dempster-Shafer belief functions

• Possibility measures

• Ranking functions

• Relative likelihood

• Plausibility measures

Probability measures and Dempster-Shafer belief functions are the most
relevant ones for the purpose of this thesis and shall thus be elaborated on.
Informal definitions of these two are as follows:

A probability measure is the likelihood that something will happen. This
is the measure introduced in elementary statistics with the most common
example being which side will land up in a coin flip or what number will
face upwards in a dice roll.

A Dempster-Shafer belief function consists of two parts. The first part
is a numerical value expressing how likely an event is to occur, similar
to probabilities. The second part express how plausible the first part is
considered to be. This allows for the expression of both the likelihood and
the belief of how likely the likelihood is to be correct.

Formal definitions of these uncertainty measures can be found in Chapter
2 of Halpern (2003)’s book.
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Types of Data Fusion

(Hall and McMullen, 2004) published contains a thorough description of
different data fusion methods, and what they are best suited for. The book
describes the Joint Directors of Laboratories (JDL) data fusion model and
the different types of data fusion that can be used. The JDL model was
created for the Department of Defence (DoD) in the United States, and is
hence geared towards very specific types of situations.

Nakamura et al. (2007) published a survey paper, which in addition to
describing different fusion models, also describes alternative models for
data fusion.

The data fusion methods described below have been used in previous
works for network anomaly detection. All these methods fall into Level
1 (Identity Fusion) of the JDL model.

Averaging Barford et al. Barford et al. (2004) introduces the concept of
averaging of multiple Network Intrusion Detection System (NIDS)es as an
attempt to fuse the results together and increase their detection accuracy.
In the paper they describe a scheme where they average the input from
different anomaly detection sources.

By averaging the inputs, they are able to increase the detection accuracy
compared to what the detectors would achieve on their own.

Bayesian Data Fusion Bayesian data fusion Koks and Challa (2005) is based
on Bayes theorem. Thus, the process is based on a probability between 0
and 100% that an event is an anomaly. As discussed in section 5.3.3 there
are different ways of representing a belief in an event and the Bayesian
approach uses a probabilistic model.

Dempster-Shafer Fusion Dempster-Shafer fusion is similar to Bayesian fu-
sion, but in the fundamental approach it leaves room for uncertainty sur-
rounding an event. For a data fusion approach, this allows us to assign
a level of plausibility to our anomaly detectors, or expressing how much
faith we have in their decisions.

Unlike in the Bayesian fusion process, the Dempster-Shafer process also
allows for the belief assigned to an hypothesis to be non-exclusive. The
belief can then be fused together via a set of rules and intervals on the
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belief established. Since the Dempster-Shafer fusion allows for uncertainty
in the input data it is possible to take account for unknown sources in the
input.

Fusing for Partial Truth

By fusing the data from several sources it is possible to create partial truth
data. Chapter 6 contains an evaluation of the different techniques described
in this chapter where they are applied to both the DARPA 1999 and the
new Waikato 8 datasets. These methods are chosen because they have been
applied previously in literature with promising results for anomaly detec-
tion. The addendum described in this chapter is not aimed at detecting
anomalies, it rather adopts existing data fusion research to establish a par-
tial truth data for a dataset and the belief surrounding the accuracy of this
partial truth.

The main consideration to be creating a partial truth data by running multi-
ple anomaly detection methods against a dataset is the choice of the meth-
ods. The initial establishment of the partial truth should be done by a
variety of different methods that are from different approaches of anomaly
detection. There should also be an overlap in the coverage of the different
methods where possible to allow for the refinement of the truth data. Ex-
pert labelling should also be treated as a source, not as the truth. Chapter 6
show how this is done for the new Waikato 8 dataset.

Once an initial set of partial truth data has been established, any future
evaluations of a new anomaly detection methods against that dataset can
be improved in the corpora of results that are fused together.

5.4 Implementation
The methodology described in Section 5.3 requires a number of tools to
be feasible. This section initially outlines the criteria that were established
on the tools in order to increase the ease of adopting the new methodol-
ogy. It then describes the different tools that were created to support the
methodology.
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5.4.1 Criteria on the Implementation for the new Methodology

A new methodology that address the shortcomings of existing methodolo-
gies should fulfil the following criteria in addition to the shortcomings.

Simplicity

Simplicity will help with adaptation of the new methodology. If the method-
ology adds a significant amount of overhead to the researcher it is less
likely it will be used since can be considered to be too much additional
work.

Openness

All of the tools, formats, and datasets must be open, and publicly available.
This ensures that researchers can adopt the tools to their platforms and that
the tools can be extended and improved upon by all researchers.

Repeatability

Repeatability is achieved by being open about results and implementations,
but also by using datasets that are available, and will continue to be avail-
able in the future.

5.4.2 Tools

The different tools are made to support the different stages of the method-
ology where there are no sufficient tool support at the moment. The design
of the tools is such that they are as simple as possible in their approach,
only performing one specific step at a time where possible. The differ-
ent tools are then to be invoked from various shell scripts to chain them
together in such a way that the different steps in the methodology are per-
formed.

The tools are discussed below and are made available as open source soft-
ware and are licensed under the GNU General Public Licence, Version 3.

Data Flow

The tools are made for three different use cases:

1. When there is existing data in a different format that needs to be
converted.
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2. When multiple data sources need to be fused.

3. When a new method need to be evaluated.

Figure 5.1 demonstrates the data flow for use case 1. There exists existing
data that needs to be converted into the annotation format. A correspond-
ing matcher is either created or reused, which is creates annotations from
the truth data if it can locate the corresponding data in the network trace.

The data may then be merged with a different annotation file, and if it is,
it should be sorted using the annotationsorter.

Figure 5.2 shows the data flow for fusing several sets of annotations, cor-
responding to use case 2. The different annotations files are fed into the
fuser, which fuses the data and then creates an output file.

Figure 5.3 contains the data flow when a method is evaluated against truth
data. The method output and the fused truth are given to the comparer,

Existing Data

Matcher

(Merger)

(Sorter)

Done

Figure 5.1: The data flow for when existing data exists and need to be converted into
the annotation format using a corresponding matcher.
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Existing Annotations

Fuser

Done

Existing AnnotationsExisting Annotations Existing Annotations

Figure 5.2: The data flow for when several sets of annotations need to be fused to-
gether.

Method
Output

Comparer

Evaluation Results

Fused Truth

Figure 5.3: Data flow for performing an evaluation of existing annotations against truth
data
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which evaluates the method’s output against the fused truth. The evalua-
tion results are presented as a set of true positives and false positives.

Data Format

The data format is described in detail in Chapter 4. The goal of the data
format is to support different levels of annotations while being extensible
enough that it could encapsulate or add a network trace format.

To work with the data format, a number of additional tools were developed.

annotationprinter is a tool that converts the binary annotations into a terse
text based printout for human reading.

annotationsorter processes an annotation file and makes sure that all en-
tries are in chronological order.

annotationmerger merges several annotation files into one output file.

Matchers

A suite of of programs were created to match an entry in a different file for-
mat with the corresponding packet or flow and create a proper annotation
record. The workings of the matchers are described in detail in Chapter 4,
but they are presented with a brief description of their function.

bromatcher reads Bro’s notice.log and matches it with the corresponding
network trace. It creates entries at the lowest level possible, but often only
a host is identified or a tracewide event declared.

DARPA1998matcher Reads the truth data as shipped with the dataset and
converts it to the annotation format, improving the accuracy of the matches
in the process.

DARPA1999matcher works similarly to the DARPA1998matcher, but the
lack of details in some cases in the truth data supplied with the dataset
requires a slightly different approach in the matching logic.

Snortmatcher reads Snort’s alert.log (in the unified2 format) and converts
it to flow records in the annotation format.
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Comparator

The comparator is used to compare one annotation file with another. One
of the compared files is assumed to be truth data and it compares the
number of identical records in the two files. For flows and packets, this is
a straightforward comparison.

For higher levels of events than flows and packets, there is a need to take
detection delay into consideration as well. The detection delay is used as
the maximum absolute value the difference between the truth data and the
tested entry may be. In other words |ttruth − tother| ≤ delay.

The output of the comparator is given as a truth matrix containing the
number of true positives, false positives, true negatives and false negatives.

Fuser

The fuser is an utility that reads annotations from multiple files, clusters
them and then applies data fusion to the events inside the clusters.

The clustering is done on a tempo-spatial basis, only items with the same
spatial characteristics are placed in the same cluster. On the temporal side,
there is room for a detection delay. Figure 5.4 shows a number of possible
events that might be fitted in a cluster. Each node has the number of nodes
that would be inside the cluster if that specific node was the centre node
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Figure 5.4: An example of the clusters obtained by using the clustering algorithm.
Three clusters are created from the data shown in figure a, with each cluster
being the largest possible cluster given a fuzziness factor of 2
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of the cluster. A greedy approach is then used to maximise the sizes of
all clusters. From the possible events in Figure 5.4, the outcome would be
three clusters, centred on nodes b, d, g when the detection delay defined
above is set to a distance 2.

Finally, all nodes in the cluster are fused together into one output event.

5.5 Summary
This chapter motivated and introduced a new methodology for evaluat-
ing network anomaly detection methods. The methodology relies on data
fusion to create partial truth data for captured datasets, and used false
positives and false negatives as the primary metrics.

The tools necessary to use the methodology have been created as a part of
this thesis, and are described in this chapter. The tools are available from
http://hdl.handle.net/10289/8041.

5.5.1 Contributions

This chapter describes a new evaluation methodology that combines the
current informal method that is widely adopted in the field with an ap-
proach that increases openness and repeatability. The same approaches can
however be applied to any of the methodologies described in Section 2.4
and will bestow the same benefits on those methodologies.

5.5.2 Discussion

The methodology in this chapter does not rely on any specific dataset that
can become outdated. Instead, it relies on the fact that it is easy to cap-
ture datasets with the method described in Chapter 3 and the strengths in
data fusion to improve upon detection accuracy. Chapter 6 contains a case
study where the potential coverage of the truth data is established with a
minimum of methods.

Because the methodology also relies heavily on the partial truth data es-
tablished by existing trusted anomaly detection methods, it is impossible
to describe accurately how large a portion of the anomalies are accurately
described in the truth data, which may affect detection results.

 http://hdl.handle.net/10289/8041
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5.5.3 Difficulties

Methods suffering from different detection delays cause difficulties when
they report anomalies that are not tied to a specific packet or flow. The
differences in detection delays lead to the situation when the same anomaly
is reported at different times by different methods.

To remedy this, each method need to have a deterministic delay, and this
delay need to be taken into account when fusing against output from that
method.

5.5.4 Strengths and Weaknesses

The new methodology makes it easy for researchers to have an evolving
dataset and continuously improve upon it. The methodology incorporates
sharing of results as a cornerstone since the same results also make the
foundation of the truth data for a dataset. Unlike previous methodologies,
the tools will also be provided as a part of this thesis to facilitate adaptation
by other researchers, available at http://hdl.handle.net/10289/8041.

The new methodology amends all of the problems outlined in Section 5.1.
It cannot do so without making a trade since it is impossible to estimate
the amount of false negatives in the dataset without having access to the
ground truth.

 http://hdl.handle.net/10289/8041




6
A Case Study on The Partial Truth

Coverage

This chapter uses the DARPA 1999 dataset to examine the individual per-
formance of several network anomaly detection methods and the fused
output of all of these methods. The purpose of this chapter is to establish
the minimum coverage of partial truth data one can expect from a case
where there is a minimum of network anomaly detection methods used.
The chapter demonstrates that the fused performance is better than that of
any individual method and shows that Dempster-Shafer fusion is a viable
method to establish partial truth.

The chapter also performs an evaluation on the Waikato 8 dataset using the
time series based method described in this chapter with traffic volume and
T-Entropy as their inputs.

6.1 Description of Methods Used in This Chapter
The methods described in this section have been used for both datasets.
The methods have been chosen for simplicity over performance and are
representative for the different categories of anomaly detection.
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6.1.1 Time Series Based

By decomposing the network stream into time series data, both in packets
and throughput we can use forecasting methods to make predictions based
on the data. By comparing the forecast value with the actual value it is
possible to detect abrupt changes in the time series data. There is a fine
line that needs to be maintained in the fit between the forecasted values
and the actual data. If the fit of the forecast data is too good, no anomalies
will be detected since the forecasting method will react too quickly for the
anomalies to be detected.

Normally network traffic amounts and packet counts are described as time
series data.

6.1.2 Forecasting Methods

Adaptive Single Exponential Smoothing Exponential smoothing algorithms
are relatively simple methods that can be used to either smooth (i.e. elimi-
nate burstiness in data), or forecast data. This is demonstrated in Figure 6.1.
The figure shows the number of megabytes transmitted over the University
of Waikato’s ingress and egress points, aggregated over five minute inter-
vals. The dotted line shows the actual measured traffic and the dashed line
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Figure 6.1: An example of Adaptive Single Exponential Smoothing
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shows the smoothed traffic. It is important to note that the smoothed traffic
does not have the same extreme peaks and drops, but still follows the same
pattern.

The basic function for a single exponential smoothing function is

F(t) = αXt + (1− α)Ft−1 (6.1)

where α is the a weighting constant used to determine how much weight
the actual value (Xt) should be given.

The weighting can be automatically adjusted to make the method adaptive
, which allows the method to adjust for rapid changes in the data, giving a
better fit than what would otherwise be achieved.

Single exponential smoothing does not deal well with seasonal trends or
patterns diurnal variations, which is why the method has been made adap-
tive. This was added done by adding a second parameter, β that adjusts
the value of α.

αt+1 = |(Et/Mt)| (6.2)

where Et is defined as

Et = β ∗ et + (1− β)Et−1 (6.3)

and Mt is defined as

Mt = β ∗ |et|+ (1− beta)Mt−1 (6.4)

and finally et is defined as
et = Xt − Ft (6.5)

Combining Equations 6.1 and 6.5 result in an adaptive response rate single
exponential smoothing.

Holts-Winters is a triple exponential smoothing forecasting method. Brut-
lag (2000) introduced the method for network anomaly detection. The
method works similar to the single exponential smoothing method de-
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Figure 6.2: An example of Holts-Winters forecasting

scribed above, with the difference that it also takes seasonal variations into
effects and is able to cope with long term trends without being an adaptive
method. This makes the method better suited to detect repeated patterns
when they are first occurring, but later adapt to them. An absence of a
repeated pattern can also be detected since the forecast will contain the
repeated pattern inside its predictions.

Figure 6.2 demonstrates this on the bandwidth at Waikato University’s
ingress and egress points. The traffic has been aggregated over five minute
intervals. The dotted line shows the actual measured traffic and the dashed
line shows the smoothed traffic. It is important to note that the smoothed
traffic does not have the same extreme peaks and drops, but still follows
the same pattern.

6.1.3 Detectors

Both detectors described in this section are used with the three forecasting
techniques described in Section 6.1.2.

Standard Deviation A simplistic detector, introduced by Brutlag (2000) com-
pares the forecasted value with the actual value at time t. A sliding window
of the last n samples is used, where n corresponds to the number of sam-
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ples in the smallest seasonal variation observed in the measured data. In
network traffic this is typically a 24 hour period, since usage patterns vary
over the day.

An alert is raised if the forecasted value is not within 2 σ, computed from
the last n samples, of the actual value. This threshold is the same as pre-
sented by Brutlag (2000).

Modified Plateau Logg et al. (2004) created the modified plateau algorithm
as an anomaly detection technique for network traffic presented as time
series data. The method is based around a trigger buffer that is filled every
time the forecast differs from the standard deviation by a value of 2. An
alert is raised when the trigger buffer is full.

The approach of using a trigger buffer causes a detection delay that is
proportional to the sample interval × buffer size. By having the buffer,
no alerts are raised from spikes in the actual data, since they will not be
lasting long enough for the trigger buffer to fill.

6.1.4 Deep Packet Inspection

Deep packet inspection systems examine the full contents of a network
packet, both headers and payload.

Snort

(Roesch, 1999) is a deep packet inspection system which uses signatures to
perform various forms of regular expression matching on packet contents.
Snort also has various preprocessors that allows it to analyse certain proto-
cols such as Simple Mail Transfer Protocol (SMTP), and detect anomalies in
protocol behaviours as well as other preprocessors to detect some anoma-
lies that cannot be detected by signatures (such as port scans).

Bro

Bro (Paxson, 1998) is a different deep packet inspection system from Snort.
It comes with a Turing complete configuration language which can be used
to implement different anomaly detection methods. By default the system
comes with rules to detect stepping stone attacks and port scans. The
system can also load Snort rules, but this feature was never used in the
experiments since Snort was being used at the same time.
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By virtue of the configuration language, Bro is more flexible than snort, and
by default detects different types of events. Bro however have an as large
library of pre-defined signatures or detectors, hence the greater flexibility
is not taken advantage of.

6.1.5 T-Entropy

T-entropy (Eimann, 2008) is a method that uses the T-information measure
to calculate the amount of entropy in all packet headers over time. The
method is designed to be run over a full packet trace and produces a mea-
sure as an output. The output data can then be put through the time-series
methods to detect network anomalies.

6.1.6 Phad

Mahoney and Chan (2001) created the Packet Header Anomaly Detection
(PHAD) tool. Phad examines 33 fields in the packet header and assigns
a probability for each packet that it considers to be anomalous. Mahoney
trained the method against week3 of the DARPA 1999 dataset and used the
two weeks of testing data.

6.1.7 Alad

Mahoney and Chan (2002) presents an Intrusion Detection System (IDS)
that incorporates Phad and a new method called Alad. While Phad is
responsible for monitoring all packets in the link, Alad is a application
layer detector. Alad examines whole connection flows for anomalies, and
reports the flows it finds anomalous.

6.1.8 Comparison of Methods

This section described the different methods mentioned earlier, what types
of events they detect and what their inputs respective outputs are.

Table 6.1 clearly demonstrates that the different methods used capture dif-
ferent aspects of the potential anomalies that can develop in a network. The
methods have not been selected because the represent the state of the art,
rather they have been selected because they are relatively simple and have
laid the foundations for more advanced methods. Methods that require
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training have been disregarded in favour of on-line methods.

6.2 Evaluation Setup

6.2.1 Dataset

A part of the DARPA 1999 dataset has been used for this comparison.
The main reason for this is because we have truth data for the dataset,
and can establish the individual coverage of the different network anomaly
detection methods.

The part used is the test phase of the dataset, which consists of two weeks
of full payload packet captures. The dataset is discussed in more detail in
Chapter 3.

Total Flows Anomalous Flows Background Flows
2537762 91722 2446040

Table 6.2: Number of flows in the testing phase of DARPA 1999 before changing some
anomaly types to trace-wide

The truth data used is the corrected truth data derived from the verification
process described in Chapter 4.

Table 6.2 show the number of network flows present in the testing phase
of the DARPA 1999 dataset. These numbers were extracted from the net-
work traces and the modified truth data obtained from the process shown
in Chapter 4. These numbers have not been modified to allow for the
tracewide events described below as the network flows are still in the net-
work trace used in the evaluation.

The following anomalies in the DARPA 1999 datasets are considered to be
tracewide and only present once, instead of being reported once for every
flow taking parts in the anomalies. The reason the anomalies have been
changed from a per-flow basis to a tracewide event is because many of
the existing network anomaly detection methods are unable to report the
specific flows participating in an attack, but instead only reports that the
attack has occurred.

The following anomalies have been converted to tracewide events:

• ipsweep
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• nmap

• portsweep

• smurf

• mscan

• satan

• neptune

By converting attacks of these types into tracewide events these flows are
no longer tagged as anomalous. Table 6.3 show the number of the flows
and the distribution between anomalous and non-anomalous with these
events considered tracewide.

Total Flows Anomalous Flows Background Flows
2537762 1702 2536060

Table 6.3: Number of flows in the testing phase of DARPA 1999 after changing some
anomaly-types to trace-wide

Figure 6.3 shows the different steps that the data goes through. All steps
use the network trace data as their input. The time series based methods

Timeseries Data
(Bandwidth)

Time Series Detectors

Annotations

Darpa 1999 Test
Darpa 1999
Training week 3

Timeseries Data
(T-Entropy)

Bro Snort Alad Phad

Fuser

Evaluator

SnortmatcherBroMatcher *adMatcher

Figure 6.3: The different steps in performing the annotations. The parameters for each
method is showed in their respective section.



94 Chapter 6 A Case Study on The Partial Truth Coverage

have bandwidth and t-entropy data extracted from the trace data and the
time series data is used for input to these methods. All other methods
operate directly on the network trace data. Alad and Phad relies on week
3 of the training data before they are evaluated on the testing data.

The output of Alad, Bro, Phad, and Snort are run through the respective
matchers and converted into annotations. The annotations are then fused
using the methods described in this chapter and both the unfused and
fused annotations are compared against the modified truth data obtained
in Chapter 4.

6.2.2 Methods

Section 6.1 introduces the methods. The parameters that the methods have
been run with are described in the table below, with the exception for Snort
and Bro. Snort and Bro are described in their respective sections.

Alad

Alad requires the trace files to be processed into specific flow records before
they can be evaluated. For each run of Alad, all relevant network trace files
was processed with that tool.

Alad was run with the data from week 3 of the DARPA 1999 training period
as the training data. It was then given one day at a time from the testing
period to evaluate.

Bro

Bro version 1.5.1 has been used for this case study.

Bro has been configured to detect scans and sensitive access to machines.
This has been done by enabling the hot, scan, trw modules that are shipped
with Bro 1.5.1.

Phad

Phad was run in a exactly the same manner as Alad, with the main differ-
ence that Phad does not require an intermediate step.
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Snort

Snort version 2.9.0.4 has been used, with the open VRT ruleset published
on 2011-04-14.

Snort has been specifically tuned to the DARPA 1999 dataset. This is to
resemble the fact that any snort running on a production network will
have been tuned to the traffic that is seen on that network. The snort
performance tuning by Tjhai et al. (2008) has been used as a starting point
and has then been improved upon. The results for snort shows which
signature has triggered on every true positive and false positive.

T-Entropy

The T-entropy command pcap map was run with the parameters -t1000000
-F5000 -Te -m27 on each trace file in the dataset. The output was saved as a
time series data and used as input to the time series methods, which then
generated events.

Time Series

There are two sets of aggregated data that the time series methods have
been applied to; the traffic volume and the t-entropy measure.

The time series based methods have been fitted to the fitted to the network
data and the T-entropy output and the methods with the lowest mean av-
erage percentage error have been chosen. It is assumed that any other eval-
uators or network administrators would make an effort to likewise tune
their methods to the network.

The tuning was performed by exploring the parameter space for all possi-
ble permutations to find the best fitting set of parameters on the network
data.

6.2.3 Establishing Performance

The performance is established using the corrected ground truth data pre-
sented in Chapter 4. Performance metrics are the number of true positives,
false positives, and false negatives. True negatives are not considered to be
an important metric since there is no limitation on the amount of negative
data that could result in true negatives for some methods.
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True Positive

A True Positive (TP) is an accurate detection of an event in the network
trace. Depending on the level of event, as defined in Chapter 4, there are
different measures of similarity that are considered. For a flow or packet
level event, there has to be a full match of the complete 8-tuple used to
identify a trace on that level. For a tracewide event, the timestamps have
to match, compensating for detection delay in the method that detects the
event.

False Positive

A False Positive (FP) is caused by a method that raises an alert for an event
that is not considered to be of interest.

False Negative

A False Negative (FN) is caused by the method under evaluation failing to
detect an event which it should raise an alert for.

6.3 Creating Partial Truth Data
There are a number of common steps that is used to create partial truth
data, no matter which fusion method is used. These steps are outlined
here, with the implementation of each fusion method described in more
details in their respective section.

Each method reports a list of events. These events are then clustered
around a central event where the cluster will contain up to methodcount
events. methodcount is the number of methods used in the evaluation, in
this case 4. In the case where there are events missing from one method,
the event is assumed to have reported as a negative from that particular
method. The events are then fused with the fuse method used, and the
outcome is reported as an anomaly if the resulting score is higher than a
threshold.

The results presented in this section have been achieved with a value of 0.4
or higher in the score of the fusion process.
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6.3.1 Majority Voting

Majority voting is done by allowing each method one vote each whether
each detected anomaly is an anomaly or not. If a simple majority of the
methods decides that an input is an anomaly, that anomaly is flagged in
the output.

6.3.2 Dempster-Shafer Fusion

The Dempster-Shafer fusion relies on the pyds (Reineking, n. d.) library
and the fusion process uses a conjunct combination of all inputs. The re-
sulting fused data is then converted into a pignistic probability containing
the anomaly and the not anomaly probabilities. The anomaly probability
is assigned as the output score.

There are three different states used in the fusion process, { Anomaly,
NotAnomaly, Unknown }. If a method has triggered an anomaly, we assign
it’s score to the Anomaly state and 1− score to the NotAnomaly state. If
the method has not flagged an event, all mass is assigned to the Unknown
state since the method may not be able to detect the type of event.

6.3.3 Averaging

Each method is assigned a base score of 0, where 0 indicates a strong cer-
tainty that it is not an anomaly, and 1 that there is a strong belief that there
is an anomaly. If the method has assigned a score to the event being con-
sidered, that score is used. The average score is then calculated across all
methods for the specific flagged event, and the average is assigned to the
output.

6.4 Results
This section establishes the performance of the methods described above
when run against the dataset. The results presented in this chapter is an
aggregate of all days of the two weeks of testing data of the DARPA 1999
dataset. Appendix A contains a breakdown of the results per day for each
method.

Table 6.4 contains a summary of all methods used on the DARPA 1999
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Method TPs FPs FNs
fused voting 0 7731 90065
alad 113 1510 89984
bro 10 79 90046
fused average 94 7637 89971
snort 840 3736 89225
phad 167 2293 89928
fused ds 963 6768 89103

Table 6.4: Aggregated results for all methods on DARPA 1999 testing, showing the per-
formance of the methods. The performance is measured by the number of
true positives and false negatives

Method TPs FPs FNs
fused voting 0 7731 1654
alad 99 1524 1603
bro 24 65 1624
fused average 57 7674 1597
snort 793 3783 880
phad 66 2394 1621
fused ds 867 6864 788

Table 6.5: Aggregated results for all methods on DARPA 1999 testing, showing the per-
formance of the methods. The performance is measured by the number of
true positives and false negatives

dataset, as well as the fused output. Each method has the number of false
positives and false negatives presented. Table 6.5 show the results on the
same dataset but with the trace-wide events converted from flows annota-
tions to trace-wide annotations in the truth data.

Snort itself provides a strong baseline by discovering many of the anoma-
lies, as seen in Table 6.5.

The other methods does not detect nearly as many events, and there is
not a significant overlap in the methods that are detected. This clearly
demonstrates that the different approaches has different benefits and will
not all detect the same anomalies.

The Dempster-Shafer data fusion method is the best performing method,
which can be seen by comparing the data fusion methods in Table 6.5. The
performance difference between averaging and fusion is relatively small,
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but it can be noted that Dempster-Shafer based fusion has a somewhat
better performance.

The case study shows that it is viable to use existing network anomaly
detection methods but that there will always be a certain level of uncer-
tainty surrounding the number of false positives and false negatives. By
using data fusion we can achieve a greater coverage of the dataset than
any of the methods would have on their own, but until there is a sufficient
overlap in detected anomalies this uncertainty will be greater.

A sufficient overlap would ideally be when there are three or more methods
detecting the same anomaly.

6.4.1 Discussion

Majority voting is not a suitable method unless there is a significant overlap
in the types of methods used to detect the anomalies. It is best used to
resolve conflicts where there are methods that have almost the same output.

Averaging performs similarly to Dempster Shafer fusion for lower values
of belief. When a threshold is applied the number of positively identified
fused processes decrease drastically.

Dempster Shafer fusion performs the best of the three fusion methods used
in this chapter. The outcome of the fusion process is however highly de-
pendant on the initial mass values that are assigned to the belief that a
specific event is an anomaly.

6.5 Evaluation of the Case Study
Dempster-Shafer fusion provides the best results out of the fused data. It
is apparent that not all anomalies will be detected until there is a large set
of methods that have an overlap in the detected methods.

It is worth noting that Alad and Phad’s performance differs significantly
from the original papers. The cause of this discrepancy comes from the
different methodologies applied. Mahoney et al. counted an attack as
correctly detected if a packet or flow that made up the overall attack was
detected. In this evaluation, only the correctly detected flow is considered
correctly labelled.
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Strengths

Using Snort we can establish a baseline of the dataset except for a few spe-
cific attacks. The evaluation demonstrates that adding additional methods
increases the number of attacks correctly identified by the fused output.

Weaknesses

The number of methods used in this case study is what can be considered a
bare minimum to achieve a performance that is suitable for creating partial
truth data.

6.5.1 Uncertainty Surrounding Confidence

In a dataset collected from a real network, such as Waikato 8, it would be
very difficult to ascertain whether all attacks have been detected or not.
There is also the possibility of a bias when events are incorrectly flagged as
a false positive by several methods.

6.5.2 Suitability of Data Fusion Approach

The data fusion approach appear to be a viable method to achieve partially
fused data. The fused output has a combined better ratio of true positives
than the stand alone methods, as can be seen from Table 6.5. Unfortunately,
the false positive ratio is also increasing.

There are however are three main issues affecting the study in this chapter.

Firstly, the data fusion methods are more simplistic than they should be,
since the purpose of this case study is to show the coverage that could
be expected. Using a more sophisticated method is likely to yield better
results, but studying the suitability of the different approaches is outside
the scope of this thesis.

Secondly, the DARPA 1999 truth data marks multiple flows that are a part
of the same attack. An example of this would be the ssh or netbus attacks,
where snort would only mark the one flow containing the binary being
downloaded to the attacked system, but the truth data marks multiple
flows. The truth data would mark one flow for the initiating remote session
that installs the backdoor, one for the download of the binary and one for
the connection being initiated to the backdoor. In the example of Snort,
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only one of these three flows would be flagged and the other two classified
as false negatives.

Finally, the synthetic background data is causing more modern IDSs to
suffer from false positives due to the unrealistic nature of the synthetic
data.

6.6 Applying Time series and T-Entropy on Waikato 8
This section demonstrates the performance of the time series based meth-
ods on Waikato 8 using the T-entropy and traffic volume as the input data.

Timeseries Data
(Bandwidth)

Time Series Detectors

Annotations

Timeseries Data
(T-Entropy)

Fuser

Evaluator

Waikat 8 Traces

Figure 6.4: The data transformation steps for Waikato 8
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6.6.1 Evaluation Setup

Figure 6.4 show how the data have been treated. The original network
captures were used as input to the two aggregators, the T-entropy computer
and traffic volume calculator. The output of these two aggregators were
then used as input to the time series based methods. The forecasts with
the best Mean Average Percentage Error (MAPE) was used as the basis for
creating the truth data. The traffic volume and T-Entropy data is extracted
into time series data with one minute between each data point.

Figure 6.5 show the traffic volume over the network trace. The graph con-
tains at least one significant peak that may be considered a bandwidth
anomaly.

Respectively, Figure 6.6 show the t-entropy measure for the dataset.

Choosing Methods for the Partial Truth Data

For both sets of input data, holtswinters with the modified plateau detector
is evaluated. The other five variants are used to produce the partial truth

Figure 6.5: Waikato 8 traffic volume
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Figure 6.6: Waikato 8 T-Entropy measure

data.

This creates a scenario where a range of methods have already been used
to establish partial truth data and another method is introduced to be eval-
uated against fused output from the previously acquired fusion output.

Choosing Thresholds

One of the more critical aspects is the choosing of the thresholds used
for the belief in an annotation. Both the partial truth data and the events
generated by a method have a belief associated with them. By choosing a
low value there will be many fused or weak events that will be incorporated
in the evaluation of the method and might affect the FP rate.

These thresholds will vary between different datasets, and it is assumed
that the creators of an particular method are responsible for tuning the
method to the dataset used. Suggesting the appropriate approach to tune
method’s thresholds is beyond the scope of this thesis.
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6.6.2 Results

Table 6.6 shows all the anomalies evaluated against all of the fused data
from all input methods. The thresholds were set to 0 for both the truth and
the methods during the evaluation.

Table 6.7 shows the results where the method evaluating against a fused
truth had the belief threshold of 0.6 and the truth threshold was 0.7.

The importance of fair and accurate thresholds is one of the weaknesses
of this approach as it clearly affects the results, and should be studied
further. However, by carefully choosing an appropriate threshold based
on the beliefs expressed by the fused data, many weakly labelled instances
will disappear from the evaluation. Table 6.6 shows that only two of the
time series methods using T-Entropy as an input contributed any events.

6.7 Summary
This chapter demonstrates that using data fusion to create a fused truth
data is a viable alternative to the current state of the art when it comes to
evaluating network anomaly detection methods. It is demonstrated that
simple data fusion approaches can create better performance than simply
combining the results of the different methods.

Method TPs FPs FNs
t-entropy-adaptive-plateu 0 0 2940
t-entropy-adaptive-stdev 0 0 2940
t-entropy-holtswinters-plateu 0 0 2940
t-entropy-holtswinters-stdev 2940 3800 0
t-entropy-singleexp-plateu 0 0 2940
t-entropy-singleexp-stdev 0 1 2940
timeseries-adaptive-plateu 0 0 552
timeseries-adaptive-stdev 0 0 552
timeseries-holtswinters-plateu 422 365 130
timeseries-holtswinters-stdev 61 10 491
timeseries-singleexp-plateu 105 59 447
timeseries-singleexp-stdev 0 0 552

Table 6.6: The results for traffic volume forecasting and T-entropy on Waikato 8 with no
thresholds applied
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Method TPs FPs FNs
t-entropy-adaptive-plateu 0 0 0
t-entropy-adaptive-stdev 0 0 0
t-entropy-holtswinters-plateu 0 0 0
t-entropy-holtswinters-stdev 0 0 0
t-entropy-singleexp-plateu 0 0 0
t-entropy-singleexp-stdev 0 0 0
timeseries-adaptive-plateu 0 0 10
timeseries-adaptive-stdev 0 0 10
timeseries-holtswinters-plateu 1 13 9
timeseries-holtswinters-stdev 8 7 2
timeseries-singleexp-plateu 2 0 8
timeseries-singleexp-stdev 0 0 10

Table 6.7: The results for traffic volume forecasting and T-entropy on Waikato 8

6.7.1 Discussion

The relatively few methods in the study makes it difficult to draw any clear
conclusions from the results. A large portion of the anomalies are detected,
but there are also a number of anomalies that are not correctly detected,
even accounting for issues with the truth data. When adding more methods
the results are likely to improve.





7
Conclusions

This thesis has introduced a novel network anomaly detection methodol-
ogy that creates partial truth data from existing anomaly detection tech-
niques by using data fusion. More importantly, by following the method-
ology, the experiments that a researcher does will be testable, which fulfills
Popper’s criterion of refutability that was introduced in Chapter 1. The re-
sults will be open, datasets readily available and methods and parameters
well described.

7.1 Thesis Summary
Creating datasets for network anomaly detection is a difficult problem be-
cause of the conflicting requirements of completeness and privacy. This
has created a situation where the most commonly used datasets are either
unrealistic and outdated or lacking truth data and can be difficult to share.

This situation is compounded because open implementations of proposed
anomaly detection techniques are rare and further there has been no way
to accurately compare the outputs of such techniques.

This thesis addresses these problems individually and combines the solu-
tions to create an overall methodology.

First we have introduced an improved new way to capture live network
traces. This synchronously performs network anomaly detection on the
captured datastream and creates network annotations containing the re-
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sults. The resulting datasets are still anonymised and publicly sharable.
This technique has been demonstrated with a new dataset.

To be able to create these annotations, a new network trace annotation
format was introduced. The trace format is extensible that currently is
solely targeted towards annotating network traces, at either at a high level
or at specific packets or flows within a trace. The new annotation format
increases the accuracy of existing annotations. The advantages of this have
been demonstrated by converting the Defense Advanced Research Projects
Agency (DARPA) truth data and uncovering and correcting errors.

The new dataset collection technique and the new annotation format are
then combined with a new data fusion based evaluation methodology to
create an overall solution to the problem of evaluation network anomaly
detection techniques. The viability of the new solution is demonstrated
by assembling a small corpora of network anomaly detection methods and
fuses the results together. Two datasets are used to demonstrate the overall
solution and the validity of it.

7.2 Key Contributions
The work presented in this thesis shows a new approach to evaluating
network anomaly detection techniques, where data fusion is utilised to
create data that new methods can be evaluated against.

7.2.1 A Novel Evaluation Methodology Using a Data-Fusion

to Create Partial Truth Data

Chapter 5 contributes a new methodology that is based around creating
partial truth data for collected datasets and a common annotation format.
The methodology incorporates datasets derived from actual network data,
common formats for all output and the ability to share the results without
having to share the implementation of the anomaly detection methods.
This is the primary contribution of the thesis and is built upon the other
contributions.
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7.2.2 An Improved Network Capture Process

Chapter 3 introduced how to capture a suitable dataset to use with the
methodology, where as much information as possible is preserved through-
out the capture process while still protecting the network users privacy. By
capturing the additional information before it is erased by the anonymi-
sation process we can create datasets that are more useful for anomaly
detection research than the existing datasets. The approach is easy to set
up, and cheap, making the creation of new datasets easier than before.

7.2.3 A Flexible Network Annotation Format

The network annotation format described in Chapter 4 relies on the same
information as the network trace it annotates. This includes timestamps,
addresses, ports, protocols and all other information that can be associated
with a packet header. By utilising this information we have created a net-
work annotation format that provides a higher degree of accuracy than any
existing formats. By carefully designing the implementation of the format
we have made it extensible so that the format can be used to include more
information than just the network annotations while still being backwards
compatible.

7.2.4 A Method to Verify Network Trace Annotations

Chapter 4 introduced a method to verify the correctness of the annotations
created for a network trace. By using this method on the DARPA datasets
we were able to demonstrate that there are fallacies in the distributed truth
data and correct these fallacies.

7.2.5 Open Implementations of Network Anomaly Detection

Methods and Evaluation Tools

All network anomaly detection methods and supporting software used in
this thesis are already open implementations or will have implementations
made available as a compendium to the thesis. This software is available at
http://hdl.handle.net/10289/8041. Updated versions of all bundled software
and data may be released at http://research.wand.net.nz.

 http://hdl.handle.net/10289/8041
http://research.wand.net.nz
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7.3 Conclusions
Our methodology, introduced in Section 5.3(p. 71), was demonstrated in
Chapter 6. In the chapter the methodology was studied on the DARPA
1999 dataset with four methods, each taking a different approach to how
the anomalies were detected.

By combining the output of the four methods, the performance and cer-
tainty surrounding the fused partial truth was improved upon, but it also
highlights the importance of having a large corpus of initial methods that
have a large overlap in the detected anomalies.

Looking at the performance of this case study, approximately 47% of the
anomalies from the truth data was detected. Unfortunately, out of the 793
True Positive (TP)s there were 3783 False Positive (FP)s. Many of these are
an artefact of the dataset, and the way that the DARPA 1999 evaluation
was set up with regards to datasets and labels. For Snort (Roesch, 1999)
and Bro (Paxson, 1998), the results are expected to have fewer FPs in a real
network capture where there is no synthetic background data that will give
false positives.

When applying the methodology to the Waikato 8 dataset, it performed as
expected. The data fusion process combined the belief of the methods that
were used as input and when a threshold was applied to the fused output,
only the events with the strongest overall belief remained.

However, the main difficulty and weakness with the proposed methodol-
ogy is the reliance of every instance having belief associated with it. Choos-
ing a correct belief is difficult and greatly affects the outcome of both the
data fusion process and the evaluation.

7.4 Discussion
There appear to be a general shift towards better quality datasets and eval-
uations in the field of network anomaly detection at the moment. The
work of Fontugne with MawiLAB (Fontugne et al., 2010) is highly related
and shows that there is awareness of the problem discussed in this thesis.
Unlike MawiLAB, which is simply aimed at labelling traces post-capture,
the work in this thesis encompass a more wide-fetching approach. In addi-
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tion to perform post-capture labelling we also put forward a new method
to collect new datasets, a new annotation format better suited to this form
of data capture and an evaluation methodology that uses the labelled data
to iteratively explore a collected dataset.

The main obstacles for widespread adaptation of the work proposed in this
thesis is the lack of an open corpus of network anomaly detection methods
or the lack of multiple results for one dataset. If this was available, the
methodology and tools made available in relation to this thesis could easily
be adopted by other researchers.

The Waikato 8 dataset used in this thesis has a relatively low throughput,
especially compared to core networks. However, there is no technical rea-
sons as to why the methods described in this thesis will not scale well.
The slowest component of the current implementation is the clustering of
events for the data fusion process, which can be improved upon by using
a more efficient clustering algorithm. All other components should scale
linearly with the number of events present in the dataset.

7.4.1 Future Work

This thesis lays the foundation for a pragmatic approach to evaluating
network anomaly detection methods. There is however future work that
would extend on the usefulness of the work outlined in this thesis and
make it more relevant to the anomaly detection community.

One of the main limitations of the approach is the sensitivity to the thresh-
olds and how to assign the correct belief in an event. Further study is
needed to be able to improve upon the reliability.

Adding more anomaly detection methods and evaluating them would be a
significant contribution to the field. At the moment there is little common
ground for establishing the performance of an anomaly detection method.
While this thesis lays the ground for future work in this area, it is beyond
the scope to extend on this work.

Extending the annotation format to be both a network trace format and a
network annotation format would enable researchers to embed a core set
of annotations with a dataset. By doing this it would be easier to distribute
specific versions of a dataset and facilitate better evaluations.
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Adding support for the annotation format to exising anomaly detection
systems, such as Bro and Snort would allow for easier adaptation of the
work outlined in this thesis.
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A
Additional Results From the Case

Study

This appendix contains a more detailed breakdown of the results achieved
in Chapter 6. The results in that chapter are presented as an aggregate of
both weeks of testing data. In this appendix those results are broken down
into each day of the week.

A.1 DARPA 1999 Week 1

A.1.1 Alad

Day Attack name TPs FPs False Negative (FN)s

Monday ftpwrite 3 0 1
Monday sendmail 2 0 0
Monday yaga 1 0 1
Monday sshtrojanInstall 1 0 1
Monday ps 0 0 1
Monday snmpget 0 0 167
Monday secret 0 0 2
Monday guesstelnet 0 0 1
Monday smurf 0 0 1
Monday xsnoop 0 0 1
Monday portsweep 0 0 21
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Day Attack name TPs FPs False Negative (FN)s

Monday guessftp 0 0 4
Monday 0 40 0
Tuesday ps 2 0 1
Tuesday phf 1 0 0
Tuesday secret 2 0 1
Tuesday sechole 2 0 1
Tuesday mailbomb 1 0 27
Tuesday crashiis 1 0 0
Tuesday processtable 0 0 88
Tuesday land 0 0 1
Tuesday httptunnel 0 0 1
Tuesday sqlattack 0 0 1
Tuesday loadmodule 0 0 1
Tuesday 0 63 0
Wednesday satan 7 0 1
Wednesday netcat 4 0 1
Wednesday warezmaster 3 0 0
Wednesday ncftp 1 0 1
Wednesday mailbomb 1 0 15
Wednesday guessftp 1 0 13
Wednesday processtable 0 0 126
Wednesday named 0 0 1
Wednesday guest 0 0 1
Wednesday secret 0 0 1
Wednesday guesstelnet 0 0 1
Wednesday ppmarcro 0 0 4
Wednesday smurf 0 0 1
Wednesday snmpget 0 0 201
Wednesday imap 0 0 1
Wednesday portsweep 0 0 1
Wednesday 0 85 0
Thursday guesspop 2 0 7
Thursday phf 1 0 0
Thursday sshtrojan 2 0 0
Thursday mailbomb 1 0 64



A.1 DARPA 1999 Week 1 125

Day Attack name TPs FPs False Negative (FN)s

Thursday ntinfoscan 1 0 0
Thursday sqlattack 0 0 1
Thursday guest 0 0 2
Thursday xlock 0 0 1
Thursday teardrop 0 0 1
Thursday sshprocesstable 0 0 123
Thursday ppmarcro 0 0 3
Thursday ncftp 0 0 1
Thursday dosnuke 0 0 1
Thursday netbus 0 0 4
Thursday 0 117 0
Friday sshtrojan 2 0 0
Friday mailbomb 1 0 47
Friday sechole 3 0 1
Friday netbus 2 0 3
Friday named 0 0 2
Friday ipsweep unlikely 0 0 5
Friday xlock 0 0 1
Friday ipsweep 0 0 262
Friday portsweep 0 0 11
Friday loadmodule 0 0 1
Friday smurf 0 0 1
Friday ncftp 0 0 1
Friday 0 76 0

Table A.1: Alad on week 1 of the DARPA 1999 testing dataset

A.1.2 Bro

Day Attack name TPs FPs FNs

Monday ftpwrite 1 0 2
Monday ps 0 0 1
Monday snmpget 0 0 167
Monday sendmail 0 0 1
Monday yaga 0 0 2
Monday secret 0 0 2
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Day Attack name TPs FPs FNs

Monday guesstelnet 0 0 1
Monday smurf 0 0 1
Monday sshtrojanInstall 0 0 2
Monday xsnoop 0 0 1
Monday portsweep 0 0 20
Monday guessftp 0 0 4
Monday 0 3 0
Tuesday 0 3 0
Wednesday 0 3 0
Friday loadmodule 1 0 0
Friday named 0 0 2
Friday sshtrojan 0 0 1
Friday ipsweep unlikely 0 0 5
Friday xlock 0 0 1
Friday ipsweep 0 0 262
Friday portsweep 0 0 9
Friday smurf 0 0 1
Friday ncftp 0 0 1
Friday mailbomb 0 0 48
Friday sechole 0 0 3
Friday netbus 0 0 3
Friday 0 4 0

Table A.2: Bro on week 1 of the DARPA 1999 testing dataset

A.1.3 Phad

Day Attack name TPs FPs FNs

Monday sendmail 2 0 0
Monday yaga 2 0 0
Monday ftpwrite 2 0 2
Monday smurf 2 0 0
Monday portsweep 30 0 1
Monday sshtrojanInstall 1 0 1
Monday ps 0 0 1
Monday snmpget 0 0 167
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Day Attack name TPs FPs FNs

Monday secret 0 0 2
Monday guesstelnet 0 0 1
Monday xsnoop 0 0 1
Monday guessftp 0 0 4
Monday 0 68 0
Tuesday 0 36 0
Wednesday warezmaster 2 0 1
Wednesday snmpget 1 0 200
Wednesday imap 2 0 0
Wednesday portsweep 1 0 0
Wednesday processtable 0 0 126
Wednesday named 0 0 1
Wednesday guest 0 0 1
Wednesday secret 0 0 1
Wednesday satan 0 0 5
Wednesday guesstelnet 0 0 1
Wednesday ppmarcro 0 0 4
Wednesday smurf 0 0 1
Wednesday netcat 0 0 3
Wednesday ncftp 0 0 2
Wednesday mailbomb 0 0 16
Wednesday guessftp 0 0 14
Wednesday 0 40 0
Thursday teardrop 1 0 0
Thursday ncftp 1 0 0
Thursday guest 1 0 1
Thursday dosnuke 1 0 0
Thursday phf 1 0 0
Thursday sqlattack 0 0 1
Thursday ntinfoscan 0 0 1
Thursday sshtrojan 0 0 1
Thursday xlock 0 0 1
Thursday sshprocesstable 0 0 123
Thursday ppmarcro 0 0 3
Thursday guesspop 0 0 8
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Day Attack name TPs FPs FNs

Thursday mailbomb 0 0 65
Thursday netbus 0 0 4
Thursday 0 130 0
Friday smurf 1 0 0
Friday mailbomb 1 0 47
Friday portsweep 5 0 6
Friday named 0 0 2
Friday sshtrojan 0 0 1
Friday ipsweep unlikely 0 0 5
Friday xlock 0 0 1
Friday ipsweep 0 0 262
Friday loadmodule 0 0 1
Friday ncftp 0 0 1
Friday sechole 0 0 3
Friday netbus 0 0 4
Friday 0 28 0

Table A.3: PHAD on week 1 of the DARPA 1999 testing dataset

A.1.4 Snort

Day Attack Name GID SID TPs FPs FNs

Monday sendmail 1 648 1 0 0
Monday secret 1 1882 1 0 0
Monday snmpget 1 1417 167 0 0
Monday xsnoop 1 1226 1 0 0
Monday portsweep 1 621 10 0 0
Monday guessftp 1 13360 2 0 0
Monday ps 0 0 1
Monday yaga 0 0 2
Monday secret 0 0 1
Monday ftpwrite 0 0 3
Monday guesstelnet 0 0 1
Monday smurf 0 0 1
Monday sshtrojanInstall 0 0 2
Monday portsweep 0 0 11
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Day Attack Name GID SID TPs FPs FNs

Monday guessftp 0 0 2
Tuesday phf 1 1147 1 0 0
Tuesday sechole 1 1292 1 0 0
Tuesday sechole 1 16363 1 0 0
Tuesday sechole 1 648 1 0 0
Tuesday processtable 0 0 88
Tuesday land 0 0 1
Tuesday httptunnel 0 0 1
Tuesday ps 0 0 3
Tuesday sqlattack 0 0 1
Tuesday secret 0 0 3
Tuesday loadmodule 0 0 1
Tuesday mailbomb 0 0 28
Tuesday crashiis 0 0 1
Wednesday named 1 648 1 0 0
Wednesday ppmarcro 1 1394 1 0 0
Wednesday netcat 1 1292 1 0 0
Wednesday netcat 1 1394 1 0 0
Wednesday snmpget 1 1411 201 0 0
Wednesday imap 1 648 1 0 0
Wednesday guessftp 1 13360 14 0 0
Wednesday processtable 0 0 126
Wednesday guest 0 0 1
Wednesday secret 0 0 1
Wednesday guesstelnet 0 0 1
Wednesday ppmarcro 0 0 3
Wednesday smurf 0 0 1
Wednesday netcat 0 0 1
Wednesday warezmaster 0 0 2
Wednesday ncftp 0 0 2
Wednesday mailbomb 0 0 16
Wednesday portsweep 0 0 1
Wednesday satan 0 0 5
Thursday sshtrojan 128 4 1 0 0
Thursday phf 1 1147 1 0 0
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Day Attack Name GID SID TPs FPs FNs

Thursday xlock 1 1226 1 0 0
Thursday teardrop 123 3 1 0 0
Thursday ppmarcro 1 1394 1 0 0
Thursday dosnuke 1 1257 1 0 0
Thursday netbus 1 1394 1 0 0
Thursday netbus 1 110 1 0 0
Thursday sqlattack 0 0 1
Thursday guest 0 0 2
Thursday ntinfoscan 0 0 1
Thursday sshprocesstable 0 0 123
Thursday ppmarcro 0 0 2
Thursday guesspop 0 0 8
Thursday ncftp 0 0 1
Thursday mailbomb 0 0 65
Thursday netbus 0 0 2
Friday named 1 648 2 0 0
Friday sshtrojan 128 4 1 0 0
Friday xlock 1 1226 1 0 0
Friday ipsweep unlikely 1 368 5 0 0
Friday sechole 1 1292 1 0 0
Friday sechole 1 16363 1 0 0
Friday sechole 1 648 1 0 0
Friday netbus 1 1394 1 0 0
Friday netbus 1 110 1 0 0
Friday ipsweep 0 0 262
Friday loadmodule 0 0 1
Friday smurf 0 0 1
Friday ncftp 0 0 1
Friday mailbomb 0 0 48
Friday portsweep 0 0 11
Friday netbus 0 0 2

Table A.4: Snort on week 1 of the DARPA 1999 testing dataset
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A.1.5 T-Entropy

A.2 DARPA 1999 Week 2

A.2.1 Alad

Day Attack name TPs FPs FNs

Monday warezclient 2 0 1
Monday ncftp 1 0 1
Monday crashiis 2 0 0
Monday selfping 0 0 1
Monday portsweep 0 0 12
Monday udpstorm 0 0 1
Monday syslogd 0 0 1
Monday portsweep unlikely 0 0 2
Monday neptune 0 0 20480
Monday apache2 0 0 172
Monday ipsweep unlikely 0 0 5
Monday dict 0 0 8
Monday ffbconfig 0 0 1
Monday loadmodule 0 0 1
Monday smurf 0 0 1532
Monday guesstelnet 0 0 1
Monday pod 0 0 3
Monday imap 0 0 1
Monday dosnuke 0 0 2
Monday ls 0 0 1
Monday 0 121 0
Tuesday casesen 2 0 1
Tuesday ftpwrite 3 0 0
Tuesday fdformat 3 0 0
Tuesday xterm1 3 0 1
Tuesday ppmarcro 1 0 13
Tuesday httptunnel 0 0 2
Tuesday syslogd 0 0 1
Tuesday eject 0 0 1
Tuesday ps 0 0 1
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Day Attack name TPs FPs FNs

Tuesday queso 0 0 5
Tuesday neptune 0 0 51200
Tuesday back 0 0 1
Tuesday yaga 0 0 2
Tuesday perl 0 0 1
Tuesday ipsweep 0 0 37
Tuesday teardrop 0 0 1
Tuesday udpstorm 0 0 1
Tuesday selfping 0 0 1
Tuesday ncftp 0 0 1
Tuesday xsnoop 0 0 1
Tuesday dosnuke 0 0 1
Tuesday 0 147 0
Wednesday phf 1 0 0
Wednesday netbus 2 0 2
Wednesday selfping 0 0 1
Wednesday processtable 0 0 129
Wednesday snmpget 0 0 20
Wednesday queso 0 0 11
Wednesday back 0 0 15
Wednesday perl 0 0 1
Wednesday xlock 0 0 1
Wednesday ffbconfig 0 0 2
Wednesday netcat 0 0 1
Wednesday apache2 0 0 89
Wednesday portsweep 0 0 109
Wednesday 0 162 0
Thursday casesen 2 0 2
Thursday fdformat 3 0 1
Thursday ntinfoscan 9 0 9
Thursday phf 2 0 0
Thursday warezclient 2 0 1
Thursday satan 5 0 11279
Thursday sechole 3 0 1
Thursday mscan 2 0 3058
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Day Attack name TPs FPs FNs

Thursday httptunnel 0 0 2
Thursday yaga 0 0 2
Thursday ipsweep 0 0 9
Thursday teardrop 0 0 1
Thursday ls 0 0 1
Thursday portsweep unlikely 0 0 3
Thursday snmpget 0 0 61
Thursday resetscan 0 0 1
Thursday 0 603 0
Friday warezclient 2 0 1
Friday xterm 3 0 2
Friday eject 3 0 1
Friday sendmail 2 0 0
Friday framespoofer 2 0 0
Friday yaga 2 0 1
Friday crashiis 3 0 0
Friday land 0 0 1
Friday guest 0 0 2
Friday sqlattack 0 0 1
Friday queso 0 0 5
Friday syslogd 0 0 2
Friday neptune 0 0 400
Friday back 0 0 6
Friday perl 0 0 1
Friday guesstelnet 0 0 3
Friday netcat 0 0 1
Friday xsnoop 0 0 1
Friday portsweep 0 0 11
Friday 0 96 0

Table A.5: Alad on week 2 of the DARPA 1999 testing dataset

A.2.2 Bro

Day Attack name TPs FPs FNs

Monday ffbconfig 1 0 0
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Day Attack name TPs FPs FNs

Monday selfping 0 0 1
Monday warezclient 0 0 2
Monday portsweep 0 0 12
Monday udpstorm 0 0 1
Monday syslogd 0 0 1
Monday portsweep unlikely 0 0 2
Monday neptune 0 0 20480
Monday apache2 0 0 172
Monday ipsweep unlikely 0 0 5
Monday dict 0 0 8
Monday ls 0 0 1
Monday loadmodule 0 0 1
Monday dosnuke 0 0 2
Monday smurf 0 0 1532
Monday guesstelnet 0 0 1
Monday pod 0 0 3
Monday ncftp 0 0 2
Monday imap 0 0 1
Monday crashiis 0 0 1
Monday 0 10 0
Tuesday ftpwrite 1 0 2
Tuesday teardrop 0 0 1
Tuesday casesen 0 0 3
Tuesday fdformat 0 0 2
Tuesday httptunnel 0 0 2
Tuesday syslogd 0 0 1
Tuesday eject 0 0 1
Tuesday ps 0 0 1
Tuesday queso 0 0 5
Tuesday xterm1 0 0 3
Tuesday neptune 0 0 51200
Tuesday back 0 0 1
Tuesday yaga 0 0 2
Tuesday perl 0 0 1
Tuesday ipsweep 0 0 37
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Day Attack name TPs FPs FNs

Tuesday udpstorm 0 0 1
Tuesday selfping 0 0 1
Tuesday ppmarcro 0 0 13
Tuesday ncftp 0 0 1
Tuesday xsnoop 0 0 1
Tuesday dosnuke 0 0 1
Tuesday 0 15 0
Wednesday 0 5 0
Thursday ntinfoscan 2 0 13
Thursday fdformat 1 0 2
Thursday mscan 2 0 3058
Thursday casesen 0 0 4
Thursday httptunnel 0 0 2
Thursday warezclient 0 0 2
Thursday phf 0 0 1
Thursday yaga 0 0 2
Thursday ipsweep 0 0 9
Thursday teardrop 0 0 1
Thursday satan 0 0 11284
Thursday ls 0 0 1
Thursday portsweep unlikely 0 0 3
Thursday snmpget 0 0 61
Thursday resetscan 0 0 1
Thursday sechole 0 0 3
Thursday 0 25 0
Friday eject 1 0 2
Friday warezclient 0 0 2
Friday xterm 0 0 4
Friday land 0 0 1
Friday guest 0 0 2
Friday framespoofer 0 0 1
Friday queso 0 0 5
Friday syslogd 0 0 2
Friday sendmail 0 0 1
Friday neptune 0 0 400
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Day Attack name TPs FPs FNs

Friday back 0 0 6
Friday yaga 0 0 2
Friday perl 0 0 1
Friday xsnoop 0 0 1
Friday guesstelnet 0 0 3
Friday portsweep 0 0 11
Friday netcat 0 0 1
Friday sqlattack 0 0 1
Friday crashiis 0 0 2
Friday 0 11 0

Table A.6: Bro on week 2 of the DARPA 1999 testing dataset

A.2.3 Phad

Day Attack name TPs FPs FNs

Monday portsweep 14 0 0
Monday syslogd 1 0 0
Monday neptune 2 0 20478
Monday apache2 3 0 169
Monday guesstelnet 2 0 0
Monday dosnuke 1 0 1
Monday smurf 2 0 1530
Monday udpstorm 1 0 0
Monday pod 5 0 0
Monday portsweep unlikely 1 0 1
Monday crashiis 1 0 0
Monday selfping 0 0 1
Monday warezclient 0 0 2
Monday ipsweep unlikely 0 0 5
Monday dict 0 0 8
Monday ffbconfig 0 0 1
Monday loadmodule 0 0 1
Monday ncftp 0 0 2
Monday imap 0 0 1
Monday ls 0 0 1
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Day Attack name TPs FPs FNs

Monday 0 380 0
Tuesday fdformat 2 0 1
Tuesday syslogd 1 0 0
Tuesday queso 3 0 3
Tuesday neptune 6 0 51194
Tuesday ipsweep 5 0 32
Tuesday ftpwrite 1 0 2
Tuesday udpstorm 2 0 0
Tuesday teardrop 2 0 0
Tuesday ncftp 1 0 0
Tuesday dosnuke 1 0 0
Tuesday casesen 0 0 3
Tuesday httptunnel 0 0 2
Tuesday eject 0 0 1
Tuesday ps 0 0 1
Tuesday xterm1 0 0 3
Tuesday back 0 0 1
Tuesday yaga 0 0 2
Tuesday perl 0 0 1
Tuesday ppmarcro 0 0 14
Tuesday xsnoop 0 0 1
Tuesday selfping 0 0 1
Tuesday 0 444 0
Wednesday queso 6 0 6
Wednesday xlock 2 0 0
Wednesday portsweep 13 0 98
Wednesday apache2 2 0 87
Wednesday selfping 0 0 1
Wednesday processtable 0 0 129
Wednesday snmpget 0 0 20
Wednesday back 0 0 15
Wednesday perl 0 0 1
Wednesday ffbconfig 0 0 2
Wednesday netcat 0 0 1
Wednesday phf 0 0 1
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Day Attack name TPs FPs FNs

Wednesday netbus 0 0 3
Wednesday 0 93 0
Thursday portsweep unlikely 2 0 1
Thursday snmpget 1 0 60
Thursday satan 1 0 11283
Thursday teardrop 2 0 0
Thursday mscan 4 0 3056
Thursday casesen 0 0 4
Thursday fdformat 0 0 3
Thursday httptunnel 0 0 2
Thursday warezclient 0 0 2
Thursday ntinfoscan 0 0 15
Thursday phf 0 0 1
Thursday yaga 0 0 2
Thursday ipsweep 0 0 9
Thursday ls 0 0 1
Thursday resetscan 0 0 1
Thursday sechole 0 0 3
Thursday 0 727 0
Friday syslogd 2 0 0
Friday sendmail 1 0 0
Friday queso 3 0 2
Friday xterm 2 0 2
Friday neptune 1 0 399
Friday portsweep 11 0 1
Friday warezclient 0 0 2
Friday land 0 0 1
Friday guest 0 0 2
Friday eject 0 0 3
Friday framespoofer 0 0 1
Friday back 0 0 6
Friday yaga 0 0 2
Friday perl 0 0 1
Friday xsnoop 0 0 1
Friday guesstelnet 0 0 3
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Day Attack name TPs FPs FNs

Friday netcat 0 0 1
Friday sqlattack 0 0 1
Friday crashiis 0 0 2
Friday 0 347 0

Table A.7: PHAD on week 2 of the DARPA 1999 testing dataset

A.2.4 Snort

Day Attack Name GID SID TPs FPs FNs

Monday apache2 119 20 172 0 0
Monday ipsweep unlikely 1 368 5 0 0
Monday ffbconfig 1 1882 1 0 0
Monday dosnuke 1 1257 2 0 0
Monday imap 1 648 1 0 0
Monday portsweep 1 621 12 0 0
Monday selfping 0 0 1
Monday warezclient 0 0 2
Monday udpstorm 0 0 1
Monday syslogd 0 0 1
Monday neptune 0 0 20480
Monday guesstelnet 0 0 1
Monday ls 0 0 1
Monday loadmodule 0 0 1
Monday smurf 0 0 1532
Monday dict 0 0 8
Monday pod 0 0 3
Monday ncftp 0 0 2
Monday portsweep unlikely 0 0 2
Monday crashiis 0 0 1
Tuesday casesen 1 16363 1 0 0
Tuesday queso 1 621 1 0 0
Tuesday queso 1 624 1 0 0
Tuesday perl 1 1882 1 0 0
Tuesday teardrop 123 3 1 0 0
Tuesday xsnoop 1 1226 1 0 0
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Day Attack Name GID SID TPs FPs FNs

Tuesday dosnuke 1 1257 1 0 0
Tuesday casesen 0 0 2
Tuesday fdformat 0 0 2
Tuesday httptunnel 0 0 2
Tuesday syslogd 0 0 1
Tuesday eject 0 0 1
Tuesday ps 0 0 1
Tuesday queso 0 0 3
Tuesday neptune 0 0 51200
Tuesday back 0 0 1
Tuesday yaga 0 0 2
Tuesday ipsweep 0 0 37
Tuesday ftpwrite 0 0 3
Tuesday udpstorm 0 0 1
Tuesday ppmarcro 0 0 14
Tuesday ncftp 0 0 1
Tuesday xterm1 0 0 3
Tuesday selfping 0 0 1
Wednesday queso 1 621 2 0 0
Wednesday queso 1 624 1 0 0
Wednesday phf 1 1147 1 0 0
Wednesday apache2 119 20 89 0 0
Wednesday xlock 1 1226 1 0 0
Wednesday snmpget 1 1411 20 0 0
Wednesday portsweep 1 621 10 0 0
Wednesday netbus 1 1394 1 0 0
Wednesday netbus 1 110 1 0 0
Wednesday selfping 0 0 1
Wednesday processtable 0 0 129
Wednesday queso 0 0 8
Wednesday back 0 0 15
Wednesday perl 0 0 1
Wednesday ffbconfig 0 0 2
Wednesday netcat 0 0 1
Wednesday portsweep 0 0 99
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Day Attack Name GID SID TPs FPs FNs

Wednesday netbus 0 0 1
Thursday casesen 1 1292 1 0 0
Thursday casesen 1 16363 1 0 0
Thursday ntinfoscan 1 973 3 0 0
Thursday ntinfoscan 125 8 2 0 0
Thursday phf 1 1147 1 0 0
Thursday yaga 1 1292 1 0 0
Thursday teardrop 123 3 1 0 0
Thursday snmpget 1 1411 61 0 0
Thursday sechole 1 1292 1 0 0
Thursday sechole 1 16363 1 0 0
Thursday sechole 1 648 1 0 0
Thursday casesen 0 0 2
Thursday fdformat 0 0 3
Thursday httptunnel 0 0 2
Thursday warezclient 0 0 2
Thursday ntinfoscan 0 0 10
Thursday yaga 0 0 1
Thursday ipsweep 0 0 9
Thursday satan 0 0 11284
Thursday ls 0 0 1
Thursday portsweep unlikely 0 0 3
Thursday resetscan 0 0 1
Thursday mscan 0 0 3060
Friday eject 125 2 1 0 0
Friday sendmail 1 648 1 0 0
Friday queso 1 621 1 0 0
Friday queso 1 624 1 0 0
Friday yaga 1 1292 1 0 0
Friday netcat 1 1394 1 0 0
Friday xsnoop 1 1226 1 0 0
Friday portsweep 1 621 5 0 0
Friday warezclient 0 0 2
Friday land 0 0 1
Friday guest 0 0 2
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Day Attack Name GID SID TPs FPs FNs

Friday eject 0 0 2
Friday framespoofer 0 0 1
Friday queso 0 0 3
Friday syslogd 0 0 2
Friday xterm 0 0 4
Friday neptune 0 0 400
Friday back 0 0 6
Friday yaga 0 0 1
Friday perl 0 0 1
Friday guesstelnet 0 0 3
Friday portsweep 0 0 6
Friday sqlattack 0 0 1
Friday crashiis 0 0 2

Table A.8: Snort on week 2 of the DARPA 1999 testing dataset
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Annotation File Format

This appendix contains the actual C header files describing the annotation
file format. The library together with supporting examples can be accessed
from http://www.wand.net.nz/∼andreasl.

Listing B.1: The Annotation Header

/∗
C o p y r i g h t (C) 2012 Andreas Lö f <a n d r e a s .

l o f @ c s . w a i k a t o . ac . nz>

Thi s program i s f r e e s o f t w a r e : you can
r e d i s t r i b u t e i t and / o r modi fy

i t under t h e t e rms o f t h e GNU G e n e r a l P u b l i c
L i c e n s e as p u b l i s h e d by

t h e F r e e S o f t w a r e Foundat ion , e i t h e r v e r s i o n
3 o f t h e L i c e n s e , o r

( a t your o p t i o n ) any l a t e r v e r s i o n .

Th i s program i s d i s t r i b u t e d in t h e hope t h a t
i t w i l l be u s e f u l ,

but WITHOUT ANY WARRANTY; w i t h o u t even t h e
i m p l i e d warranty o f

http://www.wand.net.nz/~andreasl
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MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See t h e

GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .

You s h o u l d have r e c e i v e d a copy o f t h e GNU
G e n e r a l P u b l i c L i c e n s e

a l o n g with t h i s program . I f not , s e e <h t t p
: / / www. gnu . org / l i c e n s e s / > .

∗ /
/∗
∗ a n n o t a t i o n . h
∗
∗
∗ /

# ifndef a n n o t a t i o n h
# define a n n o t a t i o n h

# include <s t d i o . h>
# include <i n t t y p e s . h>
# include <n e t i n e t /in . h>

enum c o n t a i n e r t y p e {
CONTAINER ANNOTATION = 0
} ;

/∗
∗ The d i f f e r e n t t y p e s o f a n n o t a t i o n s we s u p p o r t .
∗ G e n e r i c e v e n t s t h a t c o v e r t h e e n t i r e t r a c e ,

l i k e l i n k f a u l t s and ddos , p o r t s c a n s .
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∗ Flow s p e c i f i c e v e n t s , f o r marking f l o w s as
anomalous .

∗ P a c k e t s p e c i f i c , f o r marking p a c k e t s a s
anomalous .

∗ /
enum annotat ion type {

ANNOTATION TYPE EVENT = 0 ,
ANNOTATION TYPE FLOW = 1 ,
ANNOTATION TYPE PACKET = 2 ,
ANNOTATION TYPE EVENT START = 3 ,
ANNOTATION TYPE EVENT END = 4
} ;

enum i d e n t i f i c a t i o n t y p e {
ANNOTATION IDENTIFICATION ETHERNET = 0 ,
ANNOTATION IDENTIFICATION HOST = 1 ,
ANNOTATION IDENTIFICATION SERVICE = 2 ,
ANNOTATION IDENTIFICATION NONE = 3

} ;

typedef s t r u c t a n n o t a t i o n t {
annotat ion type type ;

/∗ t imes tamp ∗ /
u i n t 3 2 t seconds ;
u i n t 3 2 t microseconds ;

f l o a t accuracy ; /∗ in p e r c e n t a t a g e s , we aim f o r
a 5 d i g i t a c c u r a c y ∗ /

i d e n t i f i c a t i o n t y p e id type ;
void ∗ i d e n t i f i c a t i o n ;
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char∗ u r l ; /∗ h i e r a r c h i c a l u r l ∗ /
} Annotation ;

s t r u c t a n n o t a t i o n i d e n t i f i c a t i o n e t h e r n e t t {
u i n t 8 t mac src [ 6 ] ; /∗ network b y t e o r d e r ∗ /
u i n t 8 t mac dst [ 6 ] ; /∗ network b y t e o r d e r ∗ /
/∗ t o s u p p o r t b o t h ipv6 and ipv4 ∗ /
s t r u c t sockaddr storage i p s r c ;
s t r u c t sockaddr storage i p d s t ;
u i n t 8 t protoco l ;
u i n t 1 6 t p o r t s r c ; /∗ h o s t b y t e o r d e r ∗ /
u i n t 1 6 t p o r t d s t ; /∗ h o s t b y t e o r d e r ∗ /

} a t t r i b u t e ( ( packed ) ) ;

typedef s t r u c t
a n n o t a t i o n i d e n t i f i c a t i o n e t h e r n e t t
E t h e r n e t I d e n t i f i c a t i o n ;

s t r u c t a n n o t a t i o n i d e n t i f i c a t i o n i p s e r v i c e t {
/∗ t o s u p p o r t b o t h ipv6 and ipv4 ∗ /
s t r u c t sockaddr storage ip ;
u i n t 8 t protoco l ;
u i n t 1 6 t port ; /∗ h o s t b y t e o r d e r ∗ /

} a t t r i b u t e ( ( packed ) ) ;

typedef s t r u c t
a n n o t a t i o n i d e n t i f i c a t i o n i p s e r v i c e t
I p S e r v i c e I d e n t i f i c a t i o n ;

s t r u c t a n n o t a t i o n i d e n t i f i c a t i o n i p h o s t t {
/∗ t o s u p p o r t b o t h ipv6 and ipv4 ∗ /
s t r u c t sockaddr storage ip ;
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} a t t r i b u t e ( ( packed ) ) ;

typedef s t r u c t
a n n o t a t i o n i d e n t i f i c a t i o n i p h o s t t
I p H o s t I d e n t i f i c a t i o n ;

typedef s t r u c t a n n o t a t i o n f i l e t {
char∗ path ;
FILE∗ handle ;

} Annotat ionFi le ;

/∗ r e t u r n s t r u e i f s u c c e s s f u l l , o t h e r w i s e f a l s e
∗ /

bool wr i t e a nn ot a t io n ( Annotat ionFi le ∗af ,
Annotation∗ a , u i n t 3 2 t en ) ;

/∗ r e t u r n s NULL on f a i l u r e , a lways r e t u r n a
s t a t i c b u f f e r ∗ /

Annotation ∗ read annotat ion ( Annotat ionFi le ∗ af ) ;

Annotat ionFi le ∗ o p e n a n n o t a t i o n f i l e i n ( char ∗
path ) ;

Annotat ionFi le ∗ o p e n a n n o t a t i o n f i l e o u t ( char ∗
path ) ;

void c l o s e a n n o t a t i o n f i l e ( Annotat ionFi le ∗ af ) ;

# endif
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Listing B.2: The Annotation File Format Header

/∗
C o p y r i g h t (C) 2012 Andreas Lö f <a n d r e a s .

l o f @ c s . w a i k a t o . ac . nz>

Thi s program i s f r e e s o f t w a r e : you can
r e d i s t r i b u t e i t and / o r modi fy

i t under t h e t e rms o f t h e GNU G e n e r a l P u b l i c
L i c e n s e as p u b l i s h e d by

t h e F r e e S o f t w a r e Foundat ion , e i t h e r v e r s i o n
3 o f t h e L i c e n s e , o r

( a t your o p t i o n ) any l a t e r v e r s i o n .

Th i s program i s d i s t r i b u t e d in t h e hope t h a t
i t w i l l be u s e f u l ,

but WITHOUT ANY WARRANTY; w i t h o u t even t h e
i m p l i e d warranty o f

MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See t h e

GNU G e n e r a l P u b l i c L i c e n s e f o r more d e t a i l s .

You s h o u l d have r e c e i v e d a copy o f t h e GNU
G e n e r a l P u b l i c L i c e n s e

a l o n g with t h i s program . I f not , s e e <h t t p
: / / www. gnu . org / l i c e n s e s / > .

∗ /

# include ” annotat ion . h”

# ifndef a n n o t a t i o n f i l e f o r m a t h
# define a n n o t a t i o n f i l e f o r m a t h
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/∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
|−−−−−−−−−−−−−−−−−−−|
| c o n t a i n e r |
|−−−−−−−−−−−−−−−−−−−|
| a n n o t a t i o n |
|−−−−−−−−−−−−−−−−−−−|
| i d e n t i f i c a t i o n |
|−−−−−−−−−−−−−−−−−−−|
| u r l |
|−−−−−−−−−−−−−−−−−−−|
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗ /

/∗
∗ C o n t a i n s e v e r y t h i n g e l s e . At t h e moment we

on ly do a n n o t a t i o n s though .
∗
∗ /

s t r u c t c o n t a i n e r t {
u i n t 3 2 t content type ;
u i n t 3 2 t en ; / / e n t e r p r i s e number as d e f i n e by

IANA
u i n t 3 2 t length ; / / a n n o t a i o n + i d e n t i f i c a t i o n

+ ( u r l + \0)
} a t t r i b u t e ( ( packed ) ) ;

typedef s t r u c t c o n t a i n e r t F i l e C o n t a i n e r ;

/∗ a lways s a v e d in network b y t e o r d e r ∗ /
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s t r u c t t r a c e a n n o t a t i o n t {
u i n t 3 2 t type ;

/∗ t imes tamp ∗ /
u i n t 3 2 t seconds ;
u i n t 3 2 t microseconds ;

u i n t 3 2 t accuracy ;
u i n t 3 2 t d i v i s o r ;

u i n t 3 2 t id type ;

u i n t 3 2 t u r l l e n g t h ; / / one n u l l t e r m i n a t e d u r l
t h a t s h o u l d be h i e r a r c h i c a l

} a t t r i b u t e ( ( packed ) ) ;

typedef s t r u c t t r a c e a n n o t a t i o n t Fi leAnnotat ion ;

# endif
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