
 
 
 

http://researchcommons.waikato.ac.nz/ 
 
 

Research Commons at the University of Waikato 
 
Copyright Statement: 

The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). 

The thesis may be consulted by you, provided you comply with the provisions of the 

Act and the following conditions of use:  

 Any use you make of these documents or images must be for research or private 

study purposes only, and you may not make them available to any other person.  

 Authors control the copyright of their thesis. You will recognise the author’s right 

to be identified as the author of the thesis, and due acknowledgement will be 

made to the author where appropriate.  

 You will obtain the author’s permission before publishing any material from the 
thesis.  

 

http://researchcommons.waikato.ac.nz/


 
DEVELOPMENTAL GENE EXPRESSION PROFILE OF 

VMO1 IN THE MOUSE AUDITORY SYSTEM 

 
 

A thesis submitted in partial fulfilment 

of the requirements for the degree 

of 

Masters of Science 

in Biological Sciences 

at 

The University of Waikato 

by 

Blaise Kelly Erin Forrester-Gauntlett 

_________ 

 
The University of Waikato 

2013 

 

 



 

ii 

   

 

ABSTRACT 

Hearing loss (HL) is a sensory disorder that affects an estimated 250 million 

people worldwide and can greatly affect quality of life. In New Zealand, more 

than 10% of the population is affected by HL with the Māori population being 

overrepresented among all age groups. Therefore, understanding the mechanism 

of HL is extremely important for the development of new pharmaceuticals for the 

prevention or treatment of HL disorders.  

 

The main aim of the research undertaken in this thesis was to characterise the 

function of the Mus musculus (mouse) vitelline membrane outer layer one (Vmo1) 

gene. This gene is considered an excellent candidate for being involved in human 

HL and/or balance disorders. Our hypothesis is based on its restricted gene 

localisation within the mouse inner ear and the postulated function of Reissner’s 

membrane.  

 

Two methods were used to address this aim. Firstly, comparative genomics was 

used to determine the level of nucleotide and amino acid conservation of VMO1 

across mammalian species, and to search for DNA motifs that may imply a 

biological function. Secondly, molecular biology and histochemical techniques 

were used to DNA sequence the Vmo1 gene, detect the expression of 22 kDa 

VMO1 protein within mouse tissues, and to localise the expression of VMO1 

protein within the mouse inner ear.  

 

Comparative genomics results showed VMO1 to be highly conserved across 36 

species. An in-depth analysis of the differences and similiarites between the 

mouse, human and chicken indicated a high level of gene conservation with an 

even greater degree of identity and similarity seen at a proteomic level. In addition, 

a high level of conservation across amino acids involved in the formation and 

stabilisation of the three dimensional structure. Thus, results suggest an important 

function for the VMO1 protein.  

 

Two commerical VMO1 antibodies were purchased to determine the localisation 

of the mouse VMO1 protein. They were validated for specificity using western 
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blot analysis of protein lysates dissected from postnatal day 28 mice (P28). 

VMO1 was identified within the inner ear protein lysate and tear gland protein 

lysate of an expected molecular weight size of 20-37kDa with additional binding 

observed in the ear sample at 250kDa.  

 

Immunohistochemistry detected high concentrations of VMO1 protein within the 

tectorial membrane (TM) and inner pillar cells (IPC) in inner ear sections from the 

mouse at P5. In agreement with the comparative genomics analysis, VMO1 is a 

secreted protein.  

 

The movement of the hair cells (HC) relative to the TM is is essential for the 

transduction of sound into electrical signals. The IPC act as supporting cells for 

the hair cells, and help to couple movement of the basilar membrane to the HC. In 

conclusion, the importance of the TM and IPC in hearing function, and the 

localisation of the VMO1 protein within these structures implies an important role 

for VMO1 in hearing function. We recommend further studies to examine the 

specificity of the VMO1 antibody, and the development of a Vmo1 knockout 

mouse to support the functional analysis of Vmo1 in the auditory system.  
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1 CHAPTER ONE 

LITERATURE REVIEW AND INTRODUCTION 

1.1 Hearing Loss 

Hearing loss (HL) is said to be the most common sensory disability in the world 

and is defined as the partial or complete loss of the ability to perceive sound in 

one or both ears. Over 250 million people worldwide suffer from HL which can 

greatly affect quality of life and has social, psychological, cognitive, financial and 

health effects on sufferers both directly and indirectly. HL itself, when acquired 

pre-lingually, can have severe affects on language acquisition, learning and 

literacy. Every year, one in every 500 children are born with a significant hearing 

impairment. By the age of five years, this number rises to 5.4 and by adolescence 

to seven (Hilgert et al., 2009). 

In the New Zealand population, the prevalence of people experiencing HL ranges 

from 10.3% (~400,000), for people reporting HL to 0.05% (~2,100), for people 

who can’t hear one person talking to them. This data resulted from surveys 

compiled by Greville, 2005 from the New Zealand census data for 1991/92, 

1996/97 and 2001/02. However, it excludes individuals with “corrected” HL such 

as those who use hearing aids. Interestingly, this data is 2% higher than the results 

from a census in the United States (US) asking similar questions. 

 

HL can be caused many different factors.  

Figure 1 shows the causes of HL in the hearing impaired (HI) New Zealand 

population; 43% is at birth (congenital) or caused by age, illness or disease, 25% 

is caused by accident or injury and 32% of cases have an unknown cause (Greville, 

2005).  
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Figure 1: Cause of hearing loss in the hearing impaired population of New Zealand (Greville, 

2005) 

HL rates are shown to be ever-increase with age, due to age related hearing loss, 

accident/injury and disease/illness. The prevalence of HL in people over 65 is 

three times higher than that of people aged 15-64 years with 2.2% occurring in 

children under the age of 14. The study also showed a marked increase in HL in 

men than in women at all ages (Figure 2). In the age group 0-24 years, this can be 

attributed to genetics and in the 25+ age group, to noise exposure.  

 

Figure 2: Percentage of the total hearing impaired population grouped by age and gender 

(Greville, 2005) 

Figure 3 shows the prevalence of HL in the population compared to the non-

Māori population grouped by age. A total of 12.1% of the Māori population 

experienced HL compared to 9.6% for non-Māori when the low life expectancy of 

Māori was taken into account (Greville, 2005). 
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Figure 3: Prevalence of hearing loss in New Zealand households grouped by ethnicity and 

age (Greville, 2005) 

The onset of HL can be defined in two ways; prelingual or postlingual. Prelingual 

HL occurs before the development of normal speech whereas, postlingual HL 

occurs after normal speech has been acquired (Smith et al., 2012; Hilgert et al., 

2009). Review of the New Zealand Deafness Detection Database in 2005 showed 

that 43% of the HL reported for children with pre-lingual HL was accounted for 

by Māori, who make up only 23% of the New Zealand population (Figure 4). Of 

this, 43% had a family history of pre-lingual HL compared to just 25% for non-

Māori children (Greville, 2007; Digby, 2012). 

 

Figure 4: Racial percentage distribution of reported hearing loss in children under 19 in 

2005 (Greville, 2007; Digby 2012). The legend also shows the percentage makeup of the total 

New Zealand population. 
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1.1.1 Classification of Hearing Loss  

Sound is measured in two ways; (1) loudness or intensity which is measured in 

decibels (dB), and (2) frequency or pitch which is measured in Hertz (Hz). HL can 

range from mild impairment, where the degree of HL ranges between 26-40dB, to 

profound deafness where HL is greater than 90dB (Hilgert et al., 2009). It can also 

be frequency based where the affected person is limited to a range of frequencies 

at which they can hear (low <500Hz, middle 500-2000Hz or high >2000Hz). 

Humans, on average can hear best at 1000-3000 Hz and within the range of 20-

20,000 Hz. Normal conversations are held at around 60 dB and a rock concert at 

around 120dB. Hearing damage can be caused at 80 dB or more (Silverthorn, 

2004). 

 

The type of HL an individual has can be classified according to the abnormalities 

in the mammalian ear anatomy. For example, conductive HL is where there are 

malformations or abnormalities in the outer ear and/or the ossicles in the middle 

ear. Sensorineural HL is where there is a problem with the inner ear or 

vestibulocochlear nerve. Central auditory dysfunction is when the part of the brain 

that translates what the ear delivers does not function properly i.e., in the eighth 

cranial nerve, cerebral cortex or auditory brain stem. Mixed HL is where you have 

a combination of one or more of these factors. The HL could also be in both ears 

(bilateral) or in a single ear (unilateral). The most common type of permanent HL 

is sensorineural which can occur bilaterally or unilaterally. 

 

HL can be classified as genetic (GHL) or acquired (AHL). GHL is hereditary and 

is responsible for 50-60% of HL. In comparison, AHL appears after birth and is 

responsible for 40-50% of HL cases. However, studies have shown that the 

increasing prevalence of HL with age in the general population is indicative of the 

impacts of genetics and the environment, and the effect of the environment on an 

individual’s genetic predisposition (Stegman and Carey, 2002). AHL is where 

hearing loss has been induced by an external or environmental factor. For 

example, AHL can occur prenatally due to maternal infections in the form of the 

Herpes virus, Syphilis bacteria, or Taxoplasmosis gondii parasite; postnatally 

from noise exposure or cranial or acoustic trauma; ototoxic drugs such as the 

antibiotic Gentomicin; infections such as bacterial meningitis caused by 
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Neisseria meningitides, Haemophilus influenza or Streptococcus pneumoniae or 

otitis media that results in the inflammation of the inner ear (Petit et al., 2001). 

 

GHL results from the inheritance of a germline mutation in the nuclear or 

mitochondrial DNA, and is much more variable and complex than AHL.  

GHL can classified by whether it is syndromic or non syndromic. Syndromic HL 

is where there are a range of symptoms or defects including HL such as 

individuals with Maternally inherited diabetes and deafness (MIDD), Trisomy 21 

(e.g. developmental delay, a flattened face and nose, HL) and Usher’s syndrome 

(e.g. HL and visual impairment) (Karkos et al., 2005, Keats, 2002).  

Syndromic HL accounts for 30% of prelingual HL. To date, there are over 400 

genetic syndromes that include HL (Burton et al., 2006). Non-syndromic HL is 

where there are no other medical characteristics and no abnormalities of the 

external ear or other organs and accounts for 60-70% of prelingual HL. Currently, 

there are 105 known and 52 unknown genes implicated with hereditary non-

syndromic HL and 154 different loci identified (Van Camp and Smith, 2013). The 

gene loci are named DFN, for DeaFNess, followed by the mode of inheritance and 

then a number representing the order of gene mapping or discovery. GHL can be 

inherited as a Mendelian trait; autosomal dominant (DFNA), autosomal recessive 

(DFNB), X-chromosome linked (DFNX), Y-chromosome linked (DFNY) and 

through mitochondrial mutations (MTT). 

 

Figure 5 shows a graphical representation of the types of non-syndromic HL 

occurring prelingually worldwide. DFNB represents the highest proportion of non 

syndromic HL cases with 75-80%. Consanguineous marriages in countries such as 

India and the Middle East are responsible for contributing to a higher incidence of 

DFNB (Zakzouk, 2006; Meyer, 2007). For example, in large families, an 

unaffected cousin who is a carrier of one copy of the abnormal gene marries their 

cousin who is also a carrier. Therefore, the resulting offspring born with two 

copies of the abnormal gene have a deaf phenotype. Half of this (26%) is DFNB1 

which is caused by a mutation in the Gap Junction Beta-2 protein (GJB2) and/or 

the GJB6 gene (Smith and Hildebrand, 2008). In the US, United Kingdom, France, 

Australia and New Zealand approximately one in 33 people carry the mutation for 

DFNB1, and 14 in 100,000 people have HL caused by it (Smith and Hildebrand, 

2008). 
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The amount of HL inherited through MMT is more varied, ranging from 0 to 20% 

due to differences in maternal inheritance and heteroplasmy (Burton et al., 2006). 

 

Figure 5: Mode of inheritance for deafness loci for non-syndromic hearing loss worldwide 

such as autosomal recessive (DFNB), autosomal dominant (DFNA), X-chromosome linked 

(DFNX), Y-chromosome linked (DFNY), auditory neuropathy (AUNA) and modifier gene 

linked(Data sourced from Burton et al., 2006 and Van Camp and Smith 2013) 

1.2 Biology of the Mammalian Ear 

The mammalian ear acts as the organ for hearing and balance in both mice and 

humans. It is composed of three compartments; the outer, middle and inner ear 

(Figure 6) which are highly conserved in the mouse and human. 

 

Figure 6: Gross anatomy of the mammalian ear. This diagram shows the three basic 

compartments for the ear; the outer, middle and inner ear (adapted from 

http://www.webmd.com/cold-and-flu/ear-infection/middle-ear). 

http://www.webmd.com/cold-and-flu/ear-infection/middle-ear
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1.2.1 Use of the Mouse as an Animal Model for Human Hearing 

Loss 

Studying the development and mechanism of HL in humans is difficult and is 

usually only possible post-mortem usually within a narrow time interval of 2-4 

hours after death to obtain good specimens (Kanonier et al., 1996). For example, 

the mammalian ear is located within the temporal bone of the skull and therefore, 

access is restricted to surgery (Figure 6). There are also limitations on the 

availability of well preserved human ear tissues of different ages and 

developmental time points (Nadol, 1996). In addition, the ear is relatively small in 

size, being only 5mm from base to apex and 9mm across at the base (Greys 

anatomy) in humans and the size of a match head in mice (Personal 

communication from Linda Peters). Also there is a limited number of messenger 

RNA (mRNA) transcripts which make up less than 5% of total RNA (Loddish et 

al., 2000). These mRNA transcripts also have relatively short lifespans ranging 

from minutes to days) when compared to DNA (Kraeva et al., 2007).  

The study of hereditary HL in humans is also made difficult because of the 

frequency at which HI people, and the children of HI people intermarry. This 

results in families carrying more than one mutation that can be linked to deafness 

(Friedman et al., 2007; Zakzouk, 2006). 

 

Most of these limitations can be overcome by using mouse models. The inner ear 

of mice and humans are very similar; structurally, functionally and at the genetic 

and proteomic level (Petit, 2001; Dror, 2009). In addition, mice are available at 

any stage of development (embryonic and postnatal) and can be processed quickly 

in a clean environment to prevent mRNA transcripts and proteins from degrading 

and to preserve tissue integrity. The finely dissected ear tissues can also be pooled 

to increase the chances of finding rare mRNA transcripts and proteins. Also, mice 

can be manipulated genetically using gene-targeted mutagenesis to produce 

mutants with HL. The resulting inner ear defects can then be used to study the 

pathology of HL (Dror, 2009). Currently, there are several mouse mutants 

available that have isolated inner ear and/or vestibular defects. One of these, the 

GJB2-R75W transgenic mouse, is deaf and has the same mutation in the GJB2 

gene that causes congenital, bilateral, non-syndromic, sensorineural HL in humans 

(Minekawa et al., 2009).  
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The study of vestibular dysfunction in mice is also made easier as mice are 

completely dependent on the sensory information from the inner ear. Dysfunction 

of the system will cause affected mice to display characteristic behaviours such as 

the inability to swim, head tossing and circling. Equilibrium and balance in 

humans is not as dependant on the inner ears sensory information as there is a 

strong sense of body position from proprioceptors and visual information (Petit, 

2001). However, despite this difference in response to vestibular dysfunction the 

mouse is a good model for balance disorders as the results of a dysfunction are 

easily identified. 

1.2.2 Outer and Middle Ear  

The outer and middle ear act together to transmit sound waves from the external 

environment to the inner ear. The pinna of the outer ear directs sound waves into 

the auditory canal and towards the middle ear and the tympanic membrane (ear 

drum) where the sound waves are converted to vibrations. Figure 7 depicts the 

movement of sound from the auditory canal through the middle ear to the cochlea. 

The middle ear consists of an air-filled cavity connected to the nasopharynx 

through the eustachian tube and contains three bones or ossicles; the malleus, 

incus and stapes.  

 

Figure 7: Movement of sound through the mammalian ear. The red arrows depict the 

movement of sound through the auditory canal to the tympanic membrane which converts 

sound waves to vibrations which are further transmitted by the malleus, incus and stapes to 

the oval window. From the oval window, sound waves are carried through the perilymph 

filled vestibular duct, across the Reissner’s membrane (RM) to the cochlear duct filled with 

endolymph. The sound waves are then detected by sensory hair cells on the Organ of Corti 

(OoC) residing on the basilar membrane (BM) (adapted from Drake et al., 2009) 



 

 1-9 

1.2.3 Inner Ear  

The inner ear is responsible for two major senses; hearing and balance. Figure 8 

shows the inner ear composed of a bony labyrinth that surrounds a fluid filled 

membranous labyrinth. The membranous labyrinth consists of the snail shaped 

cochlea for hearing and the vestibular apparatus for balance.  

For hearing function, our brains interpret energy in the form of sound waves from 

the external environment. As seen in Figure 7, sound waves are captured by the 

pinna and travel down the auditory canal towards the ear drum. The ossicles 

within the middle ear carry the vibrations from the tympanic membrane to the 

oval window membrane. The vibrations are converted to pressure waves and 

travel through fluid in the vestibular duct across the Reissner’s membrane (RM) to 

the cochlear duct and from there to the basilar membrane (BM) where they are 

detected by hair cells and converted to electrochemical signals that are transmitted 

to the brain via the auditory nerve. The remaining pressure waves then move into 

the tympanic duct and out of the round window to be dissipated in the middle ear. 

 

Figure 8: Structure of the inner ear showing the vestibular apparatus and cochlea. (A) 

Structure of the bony (orange) and membranous (blue) labyrinths of the inner ear (adapted 

from Wikipedia http://en.wikipedia.org/wiki/Inner_ear). (B) Cross section of the cochlea 

with Haematoxylin and Eosin (H&E) stain and showing three compartments; scala vestibuli, 

scala media and scala tympani. The membranous labyrinth (orange) contains endolymph 

which is high in potassium (K
+
) and low in sodium (Na

+
) whereas the bony labyrinth (blue) 

contains perilymph which is high in Na
+
 and low in K

+
. 

Balance and equilibrium is determined by hair cells that line the vestibular 

apparatus (Figure 8). The hair cells respond to gravity and acceleration in the 

http://en.wikipedia.org/wiki/Inner_ear
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same way hair cells in the cochlea respond to sound waves travelling through the 

endolymph. The vestibular apparatus consists of the saccule, utricle, membranous 

ampullae, semicircular ducts and the semicircular canals. As can be seen in Figure 

8 the interior of the vestibular apparatus is continuous with the cochlear duct. 

1.2.3.1 Cochlea 

Specialised sensory epithelium in the cochlea detect and transmit sound waves to 

the brain via the auditory nerve. The cochlea is a snail shaped organ that when 

unwound from its coiled shape, consists of three parallel fluid filled chambers 

separated by two thin membranes; Reissner’s membrane (RM) and the basilar 

membrane (BM) (Figure 9). These two membranes surround the cochlear duct 

with the RM between the vestibular duct and the BM between the tympanic duct 

(Silverthorn, 2004) and are thought to control the movement of fluids and 

electrolytes between the perilymph and endolymph. The vestibular and tympanic 

ducts contain a fluid called perilymph (Figure 8) that is similar in chemical and 

ionic composition to that seen in blood plasma with a high concentration (140mM) 

of sodium (Na
+
) and a low concentration (4mM) of potassium (K

+
) (Ferrary and 

Sterkers, 1998). 

These two ducts are continuous, with the tympanic duct starting at the round 

window and connecting to the vestibular duct at the tip of the cochlea at a small 

opening called the helicotrema. The vestibular duct then leads to the oval window.  

The cochlear duct differs from the vestibular duct in that it contains endolymph, 

has a small opening at the beginning to the vestibular apparatus and is closed at 

the apex of the cochlea. In addition, the fluid is not compressible and sound waves 

travel straight across the cochlear duct to the basilar membrane.  

 

Endolymph is more similar in ionic and chemical composition to intracellular 

fluid and has high concentrations of K
+ 

(150mM) and low concentrations of Na
+
 

(1mM) (Ferrary and Sterkers, 1998). The composition of the endolymph and 

perilymph is essential for hearing function and is maintained by epithelial cells 

within the inner ear and allows for the generation of a resting electrochemical 

potential of +80 to +100 mV relative to the interior of the hair cells in the cochlear 

duct (Békésy, 1952). The shape of the cochlea allows us to detect changes in pitch 

and frequency as the different wavelengths are detected at different points along 

the duct as seen in Figure 7. As the BM extends from the round window towards 

the helicotrema, it changes in rigidity, width and mass, becoming less stiff and 

http://waikato.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Sterkers%2C+O%22
http://waikato.summon.serialssolutions.com/search?s.dym=false&s.q=Author%3A%22Sterkers%2C+O%22
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more flexible. These changes allow for differentiation of frequency with high 

frequencies resonating at the more rigid end and low frequencies at the more 

flexible end. 

 

Figure 9: Haematoxylin and Eosin (H&E) staining of a cross sections from the P5 mouse 

cochlea. (A) shows a cross section of the whole cochlea within the temporal bone depicted in 

this are the vestibular duct (scala vestibuli) leading from the oval window and the tympanic 

duct (scala tympani) leading to the round window. The cochlea spirals around the modiolus. 

(B) shows a close up cross section of a single turn of the cochlea showing the cochlear duct 

(scala media) bordered by the Reissner’s membrane, stria vascularis and the organ of Corti. 

Also shown is the cochlear nerve originating at the organ of Corti. 

1.2.3.2 Organ of Corti 

The specialised sensory epithelium responsible for hearing resides in the organ of 

Corti (OoC) of the cochlea (Figure 10). The OoC is located on the BM and is 

covered by the tectorial membrane (TM). Both membranes move in response to 

sound waves moving through the vestibular duct. The OoC is made up of two 

types of auditory hair cells; three rows of very sensitive outer hair cells (OHC) 

that are directly connected to the TM, and a single row of less sensitive and less 

vulnerable inner hair cells (inner HC) which are indirectly connected to the TM 

via sub-tectorial fluid (Zimatore et al., 2011). Both types of hair cells have 

bundles of stiff slender protuberances (cilia) called “stereocilia” on their apical 

surface that project towards the TM. The stereocilia are arranged together in rows 

of decreasing height with the rows connected by protein bridges that act as springs 

to open and close ion channels in the cilia’s membrane. Movement of the TM and 

BM causes flexing of the cilia and a corresponding opening or closing of ion 

channels. Hair cells have a resting potential between -45mV and -70mV compared 
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to the +80-100mV potential in the cochlear duct (Békésy, 1952, Merchant and 

Nadol, 2010). The stiffness of the hair bundles decreases from the base towards 

the apex along with the number of stereocilia in each hair bundle. Inversely, the 

length of hair bundles increases. The shorter stiffer more numerous hair bundles 

are more sensitive and have greater angular rotation than the longer ones at the 

apex. This process of converting mechanical wavelengths to electrical signals is 

known as mechanoelectrical transduction. The hair cells of the inner ear are the 

final destination of mechanical sound waves that are captured by the outer ear.  

 

In the mouse, the cochlear structures are present at birth and are said to be fully 

matured by postnatal day 10 (P10) when hearing function is said to begin 

(Mikaelian and Ruben, 1965). The adult cochlear length is reached at P7 with hair 

cell numbers matching those of an adult at P3. The mechanoelectrical transduction 

can be detected as early as P1 (Peters et al., 2007). Another paper defines the 

cochlear organs and TM as fully mature after P14 (Rueda et al., 1996). 
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Figure 10: Anatomy of the OoC. (A) shows a P5 mouse inner ear stained with H&E. Refer to 

section 3.10.4.1 for a description of the methods. Depicted are the fine structures of the OoC 

and spiral structures (spiral ligament (S.ligament), spiral prominence, spiral lamina, spiral 

limbus, internal spiral sulcus, external spiral sulcus, basement membrane (BM), cochlear 

nerve (CN), inner pillar cells (IPC), outer pillar cells (OPC), outer hair cells (OHC), inner 

hair cells (IHC), tectorial membrane (TM), interdental cells (IC), Reissner’s membrane (RM) 

and stria vascularis. (B) Shows a Schematic diagram depicting the position of the TM 

relative to the hair cells. OHC are directly connected to the TM via stereocilia. IHC are 

indirectly connected to the TM via the sub-tectorial fluid (adapted from DeWitt 2005). (C) 

depicts an electron microscopy image of the apical surface of the organ of Corti showing the 

position of outer hair cells and inner hair cells (adapted from Quint and Steel) 
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1.2.3.3 Tectorial Membrane 

The TM is a collagen-rich extracellular matrix that lies over the OoC running 

parallel to the BM and is directly connected to the stereocilia of outer hair cells 

and indirectly connected to the stereocilia of inner hair cells via subtectorial fluid. 

The TM is composed of 97% water with a protein weight consisting of 50% 

collagen fibres, 25% proteoglycans and 25% non-collagenous glycoproteins 

(Gueta et al., 2011). It is a polyelectrolyte gel with a structure similar to 

connective tissue and is the most complex, structurally, of all the acellular gels 

found in the inner ear. The collagen fibres are what provides the stiffness, 

integrity and structure to the TM (Gueta et al., 2011).  

 

Glycoproteins (GP) are proteins that contain oligosaccharide chains (glycans) 

covalently attached to polypeptide side-chains and they are expressed exclusively 

in the inner ear. This feature makes the TM unique to other mammalian 

polyelectrolyte gels (Gueta et al., 2011). Genes encoding for GP found in the TM, 

alpha(α)-tectorin and beta(β)-tectorin, were identified as being responsible for 

sensorineural hearing loss, DFNA8 and DFNB21 (Verhoeven et al., 1998). In 

2010 Xia et al., at the Baylor college of Medicine, made a Tecta
C1509G

 knock-in 

mouse with a point mutation (cysteine to guanine) in the TECTA gene, which 

corresponds to the mutation found in the same gene responsible for DFNA8. 

Interestingly, the resulting mice displayed near identical pathology as observed in 

human DFNA8. In a study by Kammerer et al., 2012, a secreted GP, CEACAM16, 

was localised exclusively in the inner ear and deposited in the TM between P12-

P15. Inactivation of this GP produced HL in young mice that progressed with age. 

This finding correlates with the human DFNA4 phenotype and genetics. For 

example, a missense mutation was identified in the CEACAM16 gene (Van Camp 

G, Smith RJH. Hereditary Hearing Loss Homepage) 

 

The connection of the TM to the stereocilia of the OHC indicates the TM plays a 

strong role in hair cell stimulation. Movement of the BM and subsequent 

movement of the hair cells relative to the TM causes the deflection of the 

stereocilia bundles and fluctuations in membrane potentials for the transduction of 

sound to electrochemical signals making the TM essential for hearing function 

(Verhoeven et al., 1998, Xia et al., 2010). The exact composition of the TM and 

how it functions remain unclear (Ghaffari et al., 2007). 



 

 1-15 

1.2.3.4 Reissner’s Membrane 

The RM is a double-layered membrane within the inner ear that separates the 

perilymph in the vestibular duct from the endolymph in the cochlear duct (Valk et 

al., 2006). The primary function of this membrane is to act as a diffusion barrier 

and to mediate the composition of these two fluids by facilitating the movement 

of fluids and electrolytes from one fluid to the other.  

In the next section, I will introduce the gene of interest for this MSc thesis, 

vitelline membrane outer layer 1 (Vmo1) and discuss the discovery of this protein 

in the vitelline membrane of the chicken egg and the mRNA in RM of the mouse 

inner ear. 

1.3 Vitelline Membrane Outer Layer 1 Protein 

The vitelline membrane outer layer one protein homolog (chicken) (VMO1) was 

named for its homology with a protein found in the outer layer of the vitelline 

membrane (VM) of the chicken egg. It is important to note that the standard 

nomenclature (HUGO) for abbreviating a gene name is to use italics and sentence 

case for the mouse gene (e.g. Vmo1), and upper case letters for the human and 

chicken gene (e.g. VMO1) and the use of all uppercase for the protein (e.g. 

VMO1). For the purposes of this thesis where more than one species gene is 

referred to uppercase italics will be used (e.g. VMO1). 

1.3.1 VMO1 in the Vitelline Membrane of the Chicken Egg 

VMO1 was found to be expressed exclusively in a restricted area in the hen’s 

oviducts where the infundibulum, a funnel-shaped cavity (the place of fertilisation) 

joins the magnum (place of egg-white protein production) (Kido et al., 1995). The 

VM in the chicken egg is a three-layered proteinaceous extracellular matrix that 

acts as a barrier between the egg yolk and the egg white (albumen) (Kido and Doi, 

1988). Figure 11 shows the layout of the three layers in the VM with the thin 

continuous layer lying between the inner (lamina perivitellina) and outer (lamina 

extravitellina) fibrous layers. The inner layer is equivalent to the zona pellucida 

(ZP) in the mammalian oocyte and is formed in the ovary before ovulation. It is 

made up of a three dimensional network of thick fibres of several kinds of GP (for 

example GPI, GPII, GPIII and GPIV) and ZP proteins (such as ZPC/ZX3, ZPI and 

ZPD) (Kido et al., 1995). The outer layer of the VM is a network of fine fibrils 

that are formed after ovulation in the upper oviduct. This network consists mainly 
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of the macromolecule ovomucin (43%) (Mann, 2008), which has soluble proteins 

such as 32% lysozyme (an antimicrobial enzyme) and VMO proteins I (20%) and 

II (5%) tightly bound to it. The VMO proteins were among the most abundant in 

the VM next to ovomucin and lysozyme C.  

 

Figure 11: Structure of the chicken egg. This figure shows the structure of the chicken egg 

and the vitelline membrane with its three layers; the outer vitelline layer, thin continuous 

layer and perivitelline layer abutting the egg yolk (adapted from 

http://www.enchantedlearning.com/egifs/eggcrosssection.GIF) 

1.3.2 Vmo1 in Reissner’s Membrane of the Mouse Inner Ear 

The Vmo1 gene was discovered to be localised in the Reissner’s membrane of the 

mouse inner ear by using in situ hybridisation (Peters et al., 2007). Real-time PCR 

experiments confirmed expression of Vmo1 transcripts in the inner ear but 

absence from adult mouse liver, kidney, pancreas, retina, brain, testes (Peters et al., 

2007) using massively parallel signature sequencing (MPSS) libraries. Vmo1 was 

not detected within 87 other mouse tissues (MRT project). In addition, the Vmo1 

signature was highly abundant in the inner ear. The authors concluded that they 

had found the first example of a transcript expressed exclusively in Reissner’s 

membrane. MPSS is method used to identify as well as quantify mRNA 

transcripts within a sample by tagging PCR products produced from 

complementary DNA (cDNA) and amplifying them. These tagged sequences are 

attached to microbeads using ligation and then sequenced and quantified on a flow 

cell. The sequence signatures are then analysed for gene identification (Peters et 

al., 2007). 

 

Due to its unique and restricted location, Vmo1 is of interest as a candidate for 

being involved in human hearing loss and balance disorders such as Ménière’s 
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disease. This disease is thought to be a build up of excess fluid in the inner ear and 

is associated with the distension or disruption of the RM and can cause disabling 

attacks of vertigo, progressive hearing loss and tinnitus, a ringing or soaring sound 

in the ear (Valk et al., 2006).  

 

Figure 12 shows the expression of Vmo1 in the mouse auditory system using in 

situ hybridisation. However, this result is unable to resolve which layer(s) Vmo1 

mRNA is expressed in. Using a non-radioactive probe, Digoxigenin labelled 

antisense Vmo1 hybridised to the inner layer of RM (Peters, personal 

communication, 2013). To date, the localisation of VMO1 protein in the auditory 

system has not yet been determined or published. The presence of Vmo1 mRNA n 

the RM indicates that the protein could remain exclusively in the RM or be 

secreted and transported to cells within the mouse ear.  

 

Figure 12: 
35

S In situ hybridisation of Vmo1 in cross sections of a P5 mouse cochlea. (A) 

Vmo1 antisense probe labelled radioactive (silver grains) binds to Vmo1 mRNA in RM. (B) 

Negative control - Vmo1 sense labelled radioactive probe (Peters et al., 2007)  

1.4 Hypothesis, Aims and Objectives 

1.4.1 Hypothesis 

Movement of fluid and electrolytes is controlled by proteins in the RM and 

changes to these proteins could influence hearing and/or balance. Our hypothesis 

is that the VMO1 protein is expressed in RM and plays an important role in the 

mechanism and/or maintenance of hearing and/or balance. 
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1.4.2 Aim 

The main aims of the research undertaken in this thesis was to 1) characterise the 

possible function of Vmo1 gene using comparative genomics and 2) investigate 

the protein expression of VMO1 at different developmental time points in the 

mouse auditory system using immunohistochemistry (IHC).  

1.4.3 Objectives 

To determine the possible function of VMO1 protein, a bioinformatics approach 

was used and will be discussed in depth in Chapter 2. Briefly, bioinformatics was 

carried out to achieve 

a) Nucleotide sequence comparison of VMO1 in 17 species; 

b) Nucleotide sequence comparison of VMO1 in the mouse, human and 

chicken; 

c) Characterisation of the chicken VMO1 protein; 

d) Protein sequence comparison of VMO1 in 36 species; 

e) Protein sequence comparison of VMO1 in the mouse, human and chicken; 

To determine the protein localisation of VMO1 in the mouse ear, molecular 

methods were used to  

a) amplify and sequence Vmo1 mRNA;  

b) clone and express recombinant VMO1 protein;  

c) validate VMO1 antibodies using whole protein tissue lysates and 

recombinant protein via western blotting;  

d) test the VMO1 antibody on OCT sections of the mouse inner ear using 

IHC; 

e) analyse VMO1 binding using a fluorescent microscope. 

 

This data will address the question of whether VMO1 mRNA transcript and the 

predicted protein is conserved among birds and mammals, and if the translated 

VMO1 protein remains within RM or is secreted and transported to cells within 

the mouse mammalian ear. 
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2 CHAPTER TWO 

COMPARATIVE GENOMICS 

Comparative genomics is the study of genome sequence data across different 

species to identify regions of difference and similarity. The information from 

these comparisons leads to a better understanding of the function and structure of 

genes and is an especially important tool for the study of human disease.  

 

VMO1 nucleic acid and protein sequences were sourced from the National Center 

for Biotechnology Information (NCBI). The sequences were downloaded and then 

analysed using a variety of molecular websites (see Appendix 8).  

mRNA sequences were generated from transcript and genomic sequence data such 

as complementary DNA (cDNA) and expressed sequence tags (ESTs) from 

several sources such as GenBank, RefSeq and third party annotation (TPA). 

Predicted sequences were generated by automated computational analysis using 

the Gnomon (NCBI) gene prediction method and derived from genomic 

sequences and ESTs. 

2.1 Nucleotide Comparison of VMO1 in Different Species 

VMO1 nucleotide sequences were compared for all the species currently annotated 

on NCBI as of June 2013 to give a general indication of the gene sequence using a 

wide range of species such as birds and mammals. This included 17 annotated 

gene sequences and 72 mRNA sequences. The annotated mRNA sequences were 

limited to Reference Sequences (RefSeq). RefSeq were chosen as they are well 

supported and represent the more prevalent allele where variations have been 

found and included 52 sequences for 34 different species. High homology 

between nucleotide and protein sequence would be indicative of an important 

function for the VMO1 gene. 

 

The VMO1 gene structure and genome location varies greatly between the 17 

ortholog species compared (Table 1). For example, the nucleotide length of 

VMO1 ranges from 1004 to 3991 base pairs (bp) in length. The genes can be 

loosely grouped based on taxonomy (avian and mammalian) and then by the DNA 

strand either sense (5’ to 3’ coding strand) or the antisense (3’ to 5’ 
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complementary strand) on which they are found. 

Table 1: Gene data for VMO1 for all 17 species available on NCBI. In alphabetical order, the 

organism species are listed for which VMO1 gene data was available with the gene ID 

number, orientation, chromosome location and size of the mRNA transcript (bp).  

Species Name Accession 

number 

5’ to 3’ 

Direction 
Chromosome Location 

Size 

(bp) Common  Scientific  

Baboon (olive) Papio anubis 101020527 Antisense 16:4475345-4476403 1059 

Cat Felis catus 101092652 Sense E1:1761741-1762744 1004 

Cattle Bos taurus 526730 Sense 19:27208472-27209491 1020 

Chicken Gallus gallus 418974 Sense 1:179979236-179983226 3991 

Chimpanzee Pan troglodytes 748359 Antisense 17:4802630-4803881 1252 

Dog Canis lupus familiaris 489457 Sense 5:31786057-31787068 1012 

Gibbon Nomascus leucogenys 100603388 Sense 19:76931339-76932591 1253 

Gorilla Gorilla gorilla gorilla 101134564 Antisense 17:4889625-4890877 1253 

Human Homo sapiens 284013 Antisense 17:4688580-4689729 1150 

Mouse Mus musculus 327956 Antisense 11:70513516-70514616 1101 

Orangutan Pongo abelii 100456789 Antisense 17:4709430-4710681 1252 

Pig Sus scrofa 100512921 Sense 12:54329836-54330890 1055 

Rat Rattus norvegicus 360553 Antisense 10:56878079-56879164 1086 

Rhesus monkey Macaca mulatta 709950 Antisense 16:4575276-4576341 1066 

Sheep Ovis aries 101116070 Sense 11:26193505-26194621 1117 

Turkey Meleagris gallopavo 100541696 Sense 1:188369141-188371020 1880 

Zebra finch Taeniopygia guttata 100220541 Sense 1:75113231-75114940 1710 

 

Figure 13 shows a multiple alignment of the antisense VMO1 gene for 8 

mammalian species. All species have mRNA consisting of three coding exons 

with the exception of the human and western lowland gorilla which both have 

four variants due to alternative splicing, one of which is lacking exon two.  
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Figure 13: Gene alignment of VMO1 for 8 mammalian species. The top identity line 

represents genomic DNA sequence numbered from nucleotide position 1 to 1335. This line 

indicated the level of identity shared between eight species with bright green indicating 

100% nucleotide identity, dark green representing a change in at least one of the sequences 

and red which indicates more than one possible nucleotide variation. Depicted below are the 

VMO1 mRNA sequences from 8 mammalian species (Table 1) in alphabetical order. The 

black and white bars represent the consensus genomic DNA sequence of VMO1 with black 

showing 100% nucleotide identity. The red arrows show the three coding exons of VMO1 

mRNA in the antisense direction. Exon two is absent from the one each of the human and 

chimpanzee variants due to alternative transcripts (Geneious® R6). 

 Figure 14 shows a multiple alignment of the mammalian species for which the 

VMO1 gene is found on the sense strand. All species have mRNA consisting of 

three coding exons with the exception of the gibbon which has four variants, one 

of which is lacking exon two.  
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Figure 14: Gene alignment of VMO1 for six mammalian species with the gene found on the 

sense strand. The top identity line represents genomic DNA sequence numbered from 

nucleotide position 1 to 1421. This line indicated the level of identity shared between six 

species with bright green indicating 100% nucleotide identity, dark green representing a 

change in at least one of the sequences and red which indicates more than one possible 

nucleotide variation. Depicted below are the VMO1 mRNA sequences from six mammalian 

species (Table 1) in alphabetical order. The black and white bars represent the consensus 

genomic DNA sequence of VMO1 with black showing 100% nucleotide identity. The red 

arrows show the three coding exons of VMO1 mRNA in the antisense direction. Exon two is 

absent from northern white cheeked gibbon due to alternative transcripts (Geneious® R6). 

Figure 15 shows a multiple alignment of avian species for which the VMO1 gene 

is found on the sense strand. All species have mRNA consisting of three coding 

exons.  

 

Figure 15: Gene alignment for avian species with VMO1 gene found on forward/sense strand. 

The top shows a graph of the identity shared between species with bright green indicating 

100% identity, dark green representing a change in at least one of the sequences and red 

which indicates more than one possible nucleotide variation. The black and white bars 

represent the consensus genomic DNA sequence of VMO1 with black showing 100% 

nucleotide identity. Depicted below are the VMO1 mRNA sequences from three avian species 

(Table 1) in alphabetical order. The red arrows show the three coding exons of VMO1 

mRNA in the sense direction. Nucleotide 2000-4055 of the chicken is completely unique to 

the chicken and does not share any homology with the turkey or zebra finch (Geneious® R6). 

The VMO1 mRNA sequences were compared for 34 different species (Table 2) 

including predicted sequences from 28 species which are indicated in the table by 

an asterix (*) to give a better indication of homology within the coding regions of 

the gene.  
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The mRNA of all species except the chicken, nine-banded armadillo, cattle, 

bottlenose dolphin, ferret, small madagascar hedgehog, southern white rhino and 

pacific walrus had very similar lengths between 552-906 nucleotides. 
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Table 2: mRNA for all species available on NCBI including predicted sequences (*). Listed 

are common and scientific names, accession numbers for their sequences and the bp lengths. 

Species Accession 

number 

Size 

(bp) Common name Scientific name 

Chicken Gallus gallus NM_001167761 2626 

Human  

 

Homo sapiens NM_182566 785 

Homo sapiens NM_001144939 821 

Homo sapiens NM_001144940 765 

Homo sapiens NM_001144941 669 

Mouse Mus musculus NM_001013607 672 

Pig Sus scrofa NM_001244728 729 

Rat (Norway) Rattus norvegicus NM_001191823 662 

Rhesus monkey Macaca mulatta NM_001194053 692 

*Armadillo  

(nine banded) 

Dasypus novemcinctus XM_004447256 1532 

Dasypus novemcinctus XM_004447257 1457 

Dasypus novemcinctus XM_004447258 607 

*Baboon (olive) Papio anubis XM_003912150 689 

*Cat Felis catus XM_003996152 606 

*Cattle Bos taurus XM_002695774 667 

*Cattle (truncated) Bos taurus XM_605104 465 

*Chimpanzee (pygmy) Pan paniscus XM_003810200 870 

*Chimpanzee  

 

Pan troglodytes XM_001161578 870 

Pan troglodytes XM_003315319 850 

Pan troglodytes XM_003315320 906 

Pan troglodytes XM_003315321 652 

*Degu Octodon degus XM_004638351 591 

*Dog Canis lupus familiaris XM_546575 606 

*Dolphin  

 

Tursiops truncatus XM_004330265 300 

Tursiops truncatus XM_004330264 686 

*Ferret Mustela putorius furo XM_004804243 1421 

*Galago (small-eared) Otolemur garnettii XM_003791201 600 

*Gibbon  

(northern white-cheeked) 

Nomascus leucogenys XM_003277870 870 

Nomascus leucogenys XM_003277871 850 

Nomascus leucogenys XM_003277872 906 

Nomascus leucogenys XM_003277873 652 

*Gorilla  

(western lowland) 

 

Gorilla gorilla gorilla XM_004058334 870 

Gorilla gorilla gorilla XM_004058335 850 

Gorilla gorilla gorilla XM_004058336 906 

Gorilla gorilla gorilla XM_004058337 652 

*Hedgehog  

(small madagascar) 

Echinops telfairi XM_004716125 609 

Echinops telfairi XM_004716126 213 

*Jerboa (lesser egyptian) Jaculus jaculus XM_004666874 600 

*Manatee (florida) Trichechus manatus latirostris XM_004376078 606 

*Mole (star-nosed) Condylura cristata XM_004685108 597 

*Mole-rat (naked) Heterocephalus glaber XM_004857279 677 

*Orangutan (sumatran) Pongo abelii XM_002826874 870 

*Orca Orcinus orca XM_004266988 686 

*Pika (american) Ochotona princeps XM_004594844 612 

*Rhino (southern white) Ceratotherium simum simum XM_004433193 600 

Ceratotherium simum simum XM_004433194 300 

*Sheep Ovis aries XM_004013281 690 

*Shrew (european) Sorex araneus XM_004604921 603 

*Squirrel monkey (bolivian) Saimiri boliviensis boliviensis XM_003931388 874 

*Tasmanian devil Sarcophilus harrisii XM_003770628 636 

*Walrus (pacific) Odobenus rosmarus divergens XM_004398570 300 

*Zebra finch Taeniopygia guttata XM_002197848 552 
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2.1.1 Prediction of Open Reading Frames 

The open reading frame (ORF) within a mRNA sequence can be read in six 

possible reading frames; three in the forward direction (e.g. +2) and three in the 

reverse direction (e.g. -2) and begins with a start codon (nucleotides AUG) and 

ends with one of three stop codons (nucleotides UAA, UAG or UGA) with no 

stop codons in between, and can potentially be translated into a polypeptide. 

ORFs were predicted using ORFinder function on the bioinformatics software 

programme Geneious® R6. This programme identified ORFs by searching for 

sections of DNA which begin with a start codon, end with a stop codon and 

contain no stop codons in between. The choice of ORF was verified individually 

by analysing the resulting peptide produced and comparing it to the protein (or 

predicted protein) found on NCBI. Sequences were considered full length if they 

contained the three-fold symmetry observed in the chicken VMO1 protein and the 

highly conserved amino acid (aa) sequence consisting of an aspartic acid (Asp), 

threonine (Thr), and asparagine (Asn) with three variable amino acids (X) in the 

order Asp, X, Thr, X, X, Asn repeated three times.  

 

The ORF of all species excluding the chicken and olive baboon are of similar 

length of around 600bp. Figure 16 shows a multiple alignment of the ORF for all 

species found on NCBI and highlights how conserved the VMO1 gene is. 



 

 

 

 

 

 

 

 

Figure 16: ORF prediction for all species showing phylogenetic relationship based on 

sequence homology. The top shows a graph of the identity shared between species with 

bright green indicating 100% identity and dark green representing a change in at least one 

of the sequences and red indicating a change to more than one possible nucleotide change. 

The coloured bar is coloured for each individual amino acid with the gaps representing areas 

of low identity between species. To the left of the species names is a phylogenetic tree 

showing the taxonomic relationship between species based on nucleotide sequence similarity 

(Geneious® R6).



 

 2-27 

2.1.2 Nucleotide Sequence Comparison of the Mouse, Human and 

Chicken VMO1 

An in-depth analysis of the VMO1 sequences for the Mus musculus (mouse), 

Homo sapiens (human) and Gallus gallus (chicken) species was carried out to 

provide a greater understanding of the suitability of the mouse and chicken as 

animal models for VMO1. 

2.1.2.1 Genomic Structure of Mouse Vmo1  

The mouse Vmo1 is 1101bp long and located on chromosome 11 at position 

70,513,516 to 70,514,616 on the antisense strand (Figure 17). Vmo1 was formally 

known under the alias of GM741 or RP23-122P1.11. The Vmo1 mRNA transcript 

(Accession number: NM_001013607) is 672 bp long and consists of three exons; 

206, 116 and 350bp long, respectively. The open reading frame is 606 bps in 

length with a +3 frame shift.  

 
Figure 17: Nucleotide position of Vmo1 coding exons on mouse chromosome 11. The 

schematic diagram shows a black line that represents genomic DNA on chromosome 11 from 

nucleotide position 1 to 1,010. The four non-synonymous variants are indicated by black 

bars on this line. Depicted below is the alignment of Vmo1 mRNA (red) showing three exons 

in the antisense direction. Exon 1 is 206 bp (nucleotides 1,101 to 896), exon 2 is 116bp (nt 781 

to 666) and exon 3 is 350bp (nt 350 to 1). The white arrow represents the ORF of Vmo1 

which is 606 bp (Geneious® 6.1.6). 

The mouse Vmo1 has four non-synonymous single nucleotide variants (SNV) 

within its protein-coding region (Table 3). An SNV is a change to a single 

nucleotide in a sequence that has not been well characterised or is only seen in 

one individual as opposed to a single nucleotide polymorphism (SNP) that occurs 

in a well characterised allele at a higher frequency. These non-synonymous SNV 

do not change the amino acid sequence of the protein. For example, rs251432110 

is a SNV on chromosome 11 at nucleotide position 70513712, where there is a 

nucleotide change of an adenine (A) to a guanine (G). The amino acid encoded by 

the codon remains a proline (Pro) at position 154 of the VMO1 protein. 
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Table 3: Non-synonymous SNVs in the mouse Vmo1 coding region showing the base pair 

change that occurs 

(http://www.ensembl.org/Mus_musculus/Gene/Variation_Gene/Table?g=ENSMUSG0000002

0830;r=11:70513516-70514616;t=ENSMUST00000021179)  

Ensembl ID 
Genome 

Position 
Alleles AA 

AA 

co-ordinates 

rs251432110 11:70513712 A/G P 154 

rs246511382 11:70514186 G/A S 101 

rs217069436 11:70514240 T/C L 83 

rs238425283 11:70514501 G/A I 34 

2.1.2.2 Genomic Structure of Human VMO1 

VMO1 is the approved gene symbol for vitelline outer layer membrane 1 by the 

Human Gene Nomenclature Committee. Previously, it was known as ERGA6350 

or PRO21055. This gene is located on the antisense strand of chromosome 

17p13.2 from nucleotide position 4688580 to 4689728. It is 1149 bps long and 

contains numerous mutations (Figure 18); three of which result in three additional 

splice variants. The human VMO1 transcript is represented by 37 ESTs from 22 

cDNA libraries that correspond to four different isoforms.  

 

Figure 18: Alternative transcripts of Human VMO1 gene. The schematic diagram shows a 

black line at the top which represents genomic DNA on chromosome 17p13.2:4688580-

4689728 from 1-1150. Along this line are 3 black lines that represent the three nucleotide 

variations that result in the splice variants. The alignment of the four VMO1 mRNA variants 

(red) is shown below in the antisense direction. Depicted below are the ORF for the four 

transcripts as indicated by white arrows (Geneious® 6.1.6).  

VMO1 transcript variant 1 (NM_182566.2) is 785bp long, composed of three 

exons and predicted to translate to a 202aa VMO1 protein (NP_872372) of 

molecular weight 22kDa. VMO1 transcript variant 2 (NM_001144939.1) is 821bp 

long, composed of three exons and is the result of a SNP in a splice region 

(dbSNP ref no: rs13847834) at chromosome position 17:4688962 and results in a 

truncated protein 114aa long (NP_001138411). VMO1 transcript variant 3 

(NM_001144940.1) is 765bp long, composed of three exons and is the result of 

two SNPs, one in the splice region (dbSNP ref no: rs13847834) at chromosome 

position 17:4688962 and the other (dbSNP ref no: rs149577678), which results in 

a stop codon, at position 17:4689448 which results in a truncated protein 103aa 

long (NP_001138412.1). In contrast, the VMO1 transcript variant 4 

(NM_001144941) is 669bp long, composed of two exons and is the result of a 

http://www.ensembl.org/Mus_musculus/Gene/Variation_Gene/Table?g=ENSMUSG00000020830;r=11:70513516-70514616;t=ENSMUST00000021179
http://www.ensembl.org/Mus_musculus/Gene/Variation_Gene/Table?g=ENSMUSG00000020830;r=11:70513516-70514616;t=ENSMUST00000021179
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somatic substitution (COSMIC ref no: COSM1141184) at chromosome position 

17:4689448 and results in a truncated protein 70aa long (NP_001138413). Figure 

19 shows a multiple alignment of the four human VMO1 proteins. 

 

Figure 19: Translated protein for mRNA splice variants for human VMO1. The green graph 

shows the similarity between the four mRNA transcripts with bright green representing 

100% identity. Olive green indicates a difference in one of the mRNA variants. The black 

lines represent the mRNA variants and are interrupted by grey to show where identity is not 

conserved between the variants (Geneious® 6.1.6) 

Numerous variants were identified within the human VMO1 gene using Ensembl. 

Ensembl is a publicly accessible database of sequence data that has a compilation 

of variations, including SNPs, somatic mutations and insert/deletions (indels) 

from databases such as the National Heart, Lung and Blood Institute (NHLBI) 

exome sequencing project, the short genetic variations database (dbSNP), and the 

catalogue of somatic mutations in cancer (COSMIC). 
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Table 3: Human VMO1 variant table showing the variants resulting in splice variants and 

non-synonymous variants occurring in the translated regions (COSMIC project, dbSNP 

database NCBI, NHLBI Exome Sequencing 

Project).

 
 

Table 4 shows the human VMO1 EST data showing VMO1 mRNA was found to 

be expressed in 28 different human tissues ranging over 71 developmental time 

points using two different methods; RNA sequencing and microarrays (Ensembl). 

RNA sequencing uses MPSS to quantify the presence of a particular RNA 

sequence in a tissue at any given moment in time using next-generation 

sequencing. 
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Microarrays measure the expression levels of genes simultaneously by using short 

sections of nucleotides to hybridise cDNA to a biochip followed by DNA 

sequencing. 

 Table 4: EST data available for human VMO1. The table outlines the tissue in which the 

VMO1 transcript has been found and the method used to identify it 

(http://www.ensembl.org/Homo_sapiens/Gene/Expression?g=ENSG00000182853;r=17:46885

80-4689728). 

Methodology Tissues 

Microarray 

Adipose, blood, breast, bronchus, colon, 

conjunctiva, frontal lobe, fertilised oocyte, 

liver, lung, myometrium, nasopharynx, 

nose, pituitary, prostate, putamen, vagina, 

trachea, temporal lobe, spleen, skin, 

skeletal muscle, sinus, retina 

RNA Sequencing 
Cerebellum, frontal lobe, heart, kidney, 

liver, testis 

 

2.1.2.3 Genomic Structure of Chicken VMO1            

The Gallus gallus (chicken) VMO1 gene (Gene ID no: 418974) is 3991 bps long 

and found on the sense strand of chromosome 1:179979236-179983226 (Figure 

20). The mRNA (NM_001167761.1) is 2626 base pairs long and composed of 

three exons, 189, 95 and 2342bp long, respectively with a single synonymous 

SNP (guanine to adenine) at chromosome position 1:179981137 (Table 5). 

The VMO1 gene is a protein-coding gene with an ORF 552 bps long, with a frame 

shift of +1 (Figure 20), which produces a single protein of 183aa in size.  

 

Figure 20: Nucleotide structure of the Chicken VMO1 gene. This schematic shows the 

chicken VMO1 gene found on chromosome 1 position 179979236 to 179983226 represented 

from 1-3991 along the top in black with the position of the synonymous SNP represented by 

a black arrow. Below this is the 2626bp mRNA travelling in the sense direction and showing 

the position of the three exons 189, 95 and 2342bp depicted in red arrows. Below this is the 

position of the 552bp ORF with a +1 frame shift in white arrows (Geneious® R6).  

Table 5: Chicken variant table showing one synonymous SNP 

Ensembl ID Chromosome 

position 

Base change Type AA coordinate 

ss538136531 
1:179979236-

179983226 
G/A 

Synonymous 

SNP 
Asp173 

 

2.1.3 Summary of VMO1 Genomic Structure  

The chicken VMO1 gene sequence was very different from the mouse and human 

gene due to the length of the introns and the amount of non-coding sequence. It is 

http://www.ensembl.org/Homo_sapiens/Gene/Expression?g=ENSG00000182853;r=17:4688580-4689728
http://www.ensembl.org/Homo_sapiens/Gene/Expression?g=ENSG00000182853;r=17:4688580-4689728
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nearly four times larger than the human or mouse gene and is found on the sense 

DNA strand as opposed to the antisense strand. The mouse and human VMO1 

genes could be aligned to 64% nucleotide identity. Although all three species had 

mRNA composed of three coding exons, there was still a great difference between 

the length of the mRNA transcript due to the third exon of chicken VMO1 being 

approximately seven times longer than that of the mouse and humans. However, 

the chicken VMO1 transcript was identified by RNA sequencing to be expressed 

in the brain, breast, cerebellum, fibroblasts, embryo, heart, kidney, liver, 

macrophages, somites and testes. These match the tissues in which VMO1 was 

found in humans using RNA sequencing, indicating a good level of conservation. 

 

Figure 21 shows a pairwise alignment of the mouse and human mRNA transcript 

showing a high level of nucleotide conservation with 72% shared identity. The 

chicken mRNA transcript could not be accurately aligned with the mouse and 

human transcript due to its relatively large intron length and the difference in exon 

sizes. 

 

Figure 22 shows a multiple alignment of the ORF for the mouse, human and 

chicken VMO1 showing a very high level of homology despite widely varying 

gene and mRNA sequences. The predicted ORF of chicken VMO1 has 54.6% 

identity with human VMO1 and 54.3% identity with mouse Vmo1 gene. The 

mouse and human gene share 75% identity. 

Following analysis of the nucleotide structure, the next section will focus on the 

VMO1 protein and take an in depth look at the amino acid sequences in the mouse, 

human and chicken. Conservation of the VMO1 protein is especially important for 

defining protein function. 

. 
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Figure 21: Pairwise alignment of the mouse and human mRNA showing shared identity in a green graph above the sequences (Geneious® R6). 

 

 

 

 

 

Figure 22: ORF alignment for the mouse, human and chicken showing the identity shared in green graph above the sequences (Geneious® R6).
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2.2 Characterisation of the Chicken VMO1 Protein 

VMO1 protein was first identified in the outer layer of the VM in the chicken egg 

(Back et al., 1982). In this section, I will review the literature to determine the 

three dimensional (3D) or quaternary structure of the chicken VMO1 protein and 

the importance of the secondary structures, such as -sheets and -helices, and 

tertiary structures, such as the Greek key motif, found within it. The 3D structures 

of proteins are important for their biological function and are determined by non-

covalent interactions that form the secondary and tertiary structures such as van 

der Waals forces, ionic interactions, hydrogen bonding and hydrophobic packing.  

The 3D structure of chicken VMO1, isolated from the outer layer of the VM of 

hen's eggs, was published in 1994 by Dr Morikawa’s laboratory at the Protein 

Engineering Research Institute, Japan.  

2.2.1 Chemical Characteristics and Amino Acid Sequence  

The chicken VMO1 protein (NP_001161233.1) was isolated from the VM outer 

layer of the hen’s egg and crystals grown using the hanging drop, vapor diffusion 

method and then analysed using iso-electrophoresis. The resulting protein was 

identified as a basic, extracellular enzyme with an isoelectric point of 10 (Kido et 

al., 1995). This is slightly lower than egg albumen lysozyme (Mann, 2008). The 

VMO1 amino acid sequence was determined by analysis on a pulsed-liquid-phase 

sequenator (Model 477A, Applied Biosystems) and amino terminal sequence 

analysis by Edman degradation and carboxypeptidase Y treatment (Kido et al., 

1995). It is 183aa long and rich in glycine (Gly), serine (Ser) and basic amino 

acids such as arginine (Arg), lysine (Lys) and histidine (His) (NCBI) and has a 

calculated molecular mass of 18kDa and an estimated mass of 18kDa (Kido et al., 

1995). Figure 23 shows the linear layout of the amino acid sequence and the 

positions of the structures and motifs within it. The protein consists of a 20aa 

signal peptide and a 163aa mature protein. The signal peptide is usually found on 

secreted proteins and suggests that VMO1 is secreted. Analysis by Back et al., 

1982 showed chicken VMO1 did not contain methionine (Met) suggesting it is a 

secreted protein with post translational modifications to the N-terminal end of the 

polypeptide chain.
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Figure 23: Amino acid sequence of the chicken VMO1 protein. The numbering of amino acids is shown at the top of the diagram from position 1 to 183 

and underneath, the actual amino acid sequence of VMO1. This schematic shows the various structures identified in the 3D structure of the chicken 

VMO1 protein (Shimizu et al., 1994); in yellow are the four disulfide bonds between cysteine (Cys) residues at position Cys 26 and 57, Cys 79 and 110, 

Cys133 and Cys161, and Cys136 and Cys162. Below the amino acid sequence are the annotated protein motifs, the signal peptide (pink arrow) the 

three Greek key motifs (yellow arrows) and the mature peptide in green. Below this is the VMO1 domain (grey) within the mature peptide. Depicted 

below by blue/green arrows are the 12 beta sheets and the three loop regions (red arrow). Depicted by the connected orange arrows is the proposed 

carbohydrate binding sites found in the active site cleft at the top of the 3D protein structure. At the top and bottom of this 3D structure is the bottom 

hydrogen bonding network (light blue) and top hydrogen binding network (dark blue) that stabilise the structure (Geneious® R6).
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2.2.2 Greek Key Motif 

The crystal structure of chicken VMO1 protein has the formation of three Greek 

key motifs, named after the ornamental Greek fret or key design found in 

decorative elements such as jewellery and pottery (Figure 24a, Wikipedia). This 

motif is a simple structure involving three antiparallel β-sheets connected by short 

loops of two to five amino acid (usually containing Gly or Pro) to make -hairpins 

(Figure 24b) with a fourth -sheet looping back to lie antiparallel to the first sheet 

(Figure 24c). 

 

Figure 24: The Greek key Motif. (A) The ornamental Greek key design which the motif was 

named after (adapted from wikipedia.org). (B) the Beta hairpin; the basic unit of the Greek 

key motif (Daidone, 2011) (C) Basic Greek key structure of the chicken VMO1 protein 

showing the protein structure of the Greek key motif showing the beta sheets (arrows) lying 

parallel to each other and connected together by amino acid loops and the internal three-fold 

symmetry with a single Greek key motif outlined in grey. 

2.2.3 3D Crystal Structure of VMO1  

The 3D structure of chicken VMO1 isolated from the VM outer layer of hen's 

eggs was published in 1994 by Dr Morikawa’s laboratory at the Protein 

Engineering Research Institute, Japan (Shimuzu et al., 1994).  
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The 3D structure of the chicken VMO1 was determined by multiple isomorphous 

replacement (MIR) that is a variation of X-ray crystallography that involves the 

comparison of normal crystals with crystals that have been co-crystalised with 

heavy atoms. This gave a resolution of 3.0 angstroms (Å), which was then refined 

to 2.2Å and an R-factor of 18.8% by Shimizu et al., 1994. The crystal model 

consisted of a two-chain monomer with 144 water molecules. The crystal 

structure was determined to be a collection of three β-sheets arranged into a prism 

shape (termed the “β-prism”) with internal pseudo three-fold symmetry (Figure 

25c) and therefore classified as an all β-protein (Kido et al., 1995; Shimuzu et al., 

1994). All -proteins are a class of proteins in which the secondary structure is 

almost completely made of -sheets and includes the -barrel found in the human 

retinol binding protein, the -propeller protein found in the viral envelope of the 

influenza virus and the immunoglobulin fold, which also has Greek key topology, 

found in antibodies (Murzin et al., 1995; Gromiha, 2004). 

2.2.3.1 Internal Three-Fold Symmetry of VMO1 

The crystal structure of chicken VMO1 protein has the formation of three Greek 

key motifs (Figure 24a, Wikipedia). This motif is a simple structure involving 

three antiparallel β-sheets connected by short loops of two to five amino acids 

(usually containing Gly or Pro) to make β-hairpins (Figure 24b, Daidone, 2011) 

with a fourth β-sheet looping back to lie antiparallel to the first sheet (Figure 24c). 

 

The VMO1 protein displays an internal three-fold symmetry that is important for 

the formation of the 3D vase-like structure. The three internal repeats make up the 

three sides of the overall triangular prism shape and allow for the positioning of 

the loop regions thought to be important for VMO1 function at the top of the 

structure. Each repeat is a standalone Greek key motif and were aligned using an 

amino acid multiple alignment to show how highly conserved the sequences are 

between the repeats. 

Figure 25 shows the VMO1 amino acid sequence structure aligned to show the 

internal symmetry of a repeated unit of approximately 53aa. The alignment shows 

that this repeat shows a very high degree of similarity and identity especially in 

the sequence highlighted by a green arrow (Asp, X, Thr, X, X, Asn), which is 

found at the C-terminus end of the three loop regions. Greek key motif 1 is made 

of three short and two long -strands lying antiparallel to each other. The second 

http://scop.mrc-lmb.cam.ac.uk/scop/data/scop.b.c.html)%20(Gromiha
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Greek key motif has almost the same structure only lacking one short β-strand that 

is replaced by hydrogen bonding between Ser side residues (Ser86, Ser88 and 

Ser130) interacting with main chain atoms. The formations of these three Greek 

key motifs form the sides of the vase-like shape of the 3D structure. 

 

Figure 25: Alignment of Greek key motifs in the chicken VMO1 protein. The graph at the 

top shows the identity shared between the amino acid sequence with bright green being 

identical across all three motifs and dark green identical across two of the motifs. The 

numbers represent the number of amino acids. Below this graph is the amino acid sequence 

which is shaded to show hydrophobicity; hydrophobic (red), hydrophilic (blue). In addition, 

this highlights the similarity between the side chains groups of the amino acids. Beneath the 

amino acid sequence are the Greek key motifs (yellow arrows) in the order they appear 

within the sequence. The schematic shows 100% identity in the carbohydrate binding sites 

(connected orange arrows) and a high level of similarity in the loop regions (red arrow) and 

the beta sheets (blue/green arrow). The beta strands are indicated by dark green arrows with 

the missing third beta strand in motif 2 being replaced by 3 H bonds between serine residues 

and main chain atoms indicated by black lined yellow squares (Geneious® R6). 
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2.2.3.2 Triangular Prism Structure 

The three Greek key motifs of the VMO1 protein are arranged together to form a 

vase-like triangular prism structure (30x30x45Å) held together by stabilising 

interactions (Figure 26). The 3D arrangement forms an active site cleft at the top 

of the structure where carbohydrate binding is thought to occur. This 

carbohydrate-binding site is a chemical binding site thought to play a role in sugar 

hydrolysis or recognition and contains two Asp residues frequently involved in 

hydrogen binding between proteins and sugar (Kido et al., 1994). 

 

Figure 26: Vase-like structure of the VMO1 protein as described by Shimuzu et al., (adapted 

from Shimuzu et al., 1995). (A) Shows the 3D vase like structure formed by the three Greek 

key motifs with the long variable loops projecting out from the top edges of the vase. (B) 

Shows a simplified 3D structure with the dimensions of the protein in angstroms (Å) 

Figure 27 shows a two dimensional (2D) representation of the 3D structure of the 

VMO1 protein highlighting the threefold symmetry of the Greek key motifs and 

the position of the flexible loops found at the top of the protein structure which 
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form the active site cleft. Carbohydrate binding is specifically thought to occur at 

the amino acid highlighted in orange.  

The formation of these sites and the Greek key motifs is dependent on stabilising 

forces between amino acids that hold the structure together. 

 

Figure 27: 2D representation of the 3D structure of chicken VMO1 protein. Depicted is a 

representation of the layout of the three Greek key motifs found in the chicken VMO1 

protein adapted from Shimizu et al., 1995. The top of the schematic diagram shows the long 

loop regions that form the surrounding of the active site cleft in the 3D model. The amino 

acid highlighted in orange show where carbohydrate binding is thought to occur. The amino 

acid highlighted in green and connected by grey lines show the top hydrogen-bonding 

network and the bottom hydrogen-bonding network is outline in black and connected by 

grey lines. The yellow lines are the disulfide bonds between Cys residues. In pink lines are 

the hydrogen bonds between Ser residues and main chain atoms in place of a beta sheet. 

Individual amino acids are colour coded to show hydrophobicity: red hydrophobic, blue 

hydrophilic. 

2.2.3.3 Structure Stabilisation 

Structure stabilisation is achieved by weak non-covalent interactions between side 

chains of amino acids that add together to give a stable 3D structure. These 

interactions include hydrogen bonding, disulfide bonds and non-polar 

hydrophobic interactions.  

Two hydrogen-bonding networks occur; one at the top of the protein structure 

between the amino acids alanine (Ala) 31, leucine (Leu) 84 and isoleucine (Ile) 

135, and one at the bottom that connects Leu50, Ala103 and Leu174. The 

disulfide bonds occur between all of the Cys residues in the amino acid sequence; 

Cys26 and Cys57, Cys79 and Cys110, Cys133 and Cys161, and Cys136 and 
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Cys162. The first three disulfide bonds are especially important as they tie the β-

sheets to each other. The internal region of the protein is filled with side chains of 

hydrophobic amino acid residues such as phenylalanine (Phe), Ile, Leu and valine 

(Val) that act together to stabilise the protein in hydrophilic conditions by 

mutually repelling water and attracting one another. The hydrophobicity of the 

individual amino acids is especially important for the overall stability of the 3D 

structure. The side and bottom regions are covered with positive charges. These 

positively charged regions and basic residues are where binding to ovomucin is 

thought to occur. The top region of the protein is clustered with negative charges 

and forms the base of the active site cleft. This active site is where the enzymatic 

action of VMO1 is thought to occur. 

2.2.3.4 Active Site Cleft 

The cleft or cavity at the top of the structure is the location of the active site of the 

VMO1 protein and is similar in size (25x10x5Å) and shape to the one found in the 

lysozyme where polysaccharide hydrolysis occurs. Conservation of the shape and 

size of this site would be indicative of similar function between species. It 

contains 9 amino acid (six Asp residues, two glutamic acid (Glu) residues and one 

Leu residue) thought to play a role in carbohydrate binding. Surrounding the 

cavity are the three long flexible loops each attached to a single β-sheet. Unlike 

the side and bottom regions of the structure, which are covered in positive charges, 

the active site cleft has a cluster of negative charges generated by amino acid 

residues at the base of the three loops (Asp46, Asp47, Asp99, Asp100, Asp150 

and Asp151, and Glu39, Glu92 and Glu143), which are highly conserved in the 

three Greek key motifs (Figure 25). The size of the cavity and its negative charge 

makes it suitable for binding ligands such as oligosaccharides. The actual function 

of the VMO1 protein could possibly be attributed to the flexible loops, which are 

known to contribute to functional variability in other proteins with Greek key 

structure.  

 

Kido et al., 1995, was the first to report enzymatic properties for VMO1, similar 

to the transferase activity of lysozyme. They showed, using bacterial cells, that 

VMO1 was unable to lyse bacterial cell walls unlike lysozyme but could carry out 

the transferase activity and synthesise N-acetylchitooligosaccharides from a 

monosaccharide derivative of glucose (N-acetylglucosamine) four times faster. 

They also showed it to have an inhibitory affect on hemagglutination (the 
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clumping of red blood cells) and possibly have carbohydrate binding activity due 

to a putative carbohydrate-binding site within the active cleft. In addition,  

Shimizu et al., 1995 have demonstrated that preparations of VM extracts are 

capable of several enzymatic activities including the transfer of phosphate groups 

from one molecule to another such as pyruvate kinase, and nucleotidase. To date, 

the enzyme activity of VMO1 has not been validated and published in a peer-

reviewed journal.  

 

Following the review of the chicken VMO1 protein, the next section will focus on 

comparing VMO1 protein sequences between species, in particular between the 

mouse, human and chicken species, to give an indication of the homology shared 

between them as an indication of functional and structural homology. 
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2.3 Analysis of VMO1 Protein Homology across 36 Species 

Table 6 shows a total of 57 protein sequences from 39 species available for the 

comparative genomics analysis. Four of the species; human, chimpanzee, northern 

white cheeked gibbon and the gorilla, have four alternative mRNA transcripts 

resulting from similar variants in the nucleotide sequence. The chimpanzee, 

gibbon and gorilla sequences are predicted based on EST data and share the 

greatest homology with human VMO1 protein. The cattle, bottlenose dolphin, 

small madagascar hedgehog and the southern white rhino have two transcript 

variants, a full length VMO1 protein of between 199-202aa long and a truncated 

protein between 70-154aa long. The nine banded armadillo has three variants; a 

truncated 154aa protein, a full length 200aa protein and an extended 225aa protein. 
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Table 6: All protein data available on NCBI including variants and predicted proteins (*). 

Listed are the species with their common and scientific names, and their respective accession 

numbers and the amino acid size.  

Species Name Protein 

Accession 

number 

Length 

(aa) Common Scientific 

Bullfrog Rana catesbeiana ACO51858 188 

Catfish (blue) Ictalurus furcatus ADO28351 205 

Catfish (channel) Ictalurus punctatus ADO28775 210 

Chicken Gallus gallus NP_001161233 183 

Ferret Mustela putorius furo AES09520 196 

Human  

 

 

 

Homo sapiens 

 
 

 

NP_872372 202 

NP_001138411 114 

NP_001138412 102 

NP_001138413 70 

Mouse Mus musculus NP_001013625 201 

Pig Sus scrofa NP_001231657 200 

Rainbow smelt Osmerus mordax ACO10125 213 

Rat (norway) Rattus norvegicus NP_001178752 201 

Rhesus money Macaca mulatta NP_001180982 202 

Salmon (atlantic) Salmo salar NP_001134967 216 

*Armadillo (nine banded) Dasypus novemcinctus XP_004447313 225 

XP_004447314 200 

XP_004447315 154 

*Baboon (olive) Papio anubis XP_003912199 202 

*Cat Felis catus XP_003996201 201 

*Cattle 

 

Bos taurus 
 

XP_002695820 199 

XP_605104 154 

*Chimpanzee  

 

 

 

Pan troglodytes 

 

 
 

XP_001161578 202 

XP_003315367 102 

XP_003315368 114 

XP_003315369 70 

*Chimpanzee (pygmy) Pan paniscus XP_003810248 202 

*Degu Octodon degus XP_004638408 196 

*Dog Canis lupus familiaris XP_546575 201 

*Dolphin (bottlenose) 

 

Tursiops truncates 
 

XP_004330312 199 

XP_004330313 99 

*Galago (small eared) Otolemur garnettii XP_003791249 199 

*Gibbon (northern white 

cheeked) 

 

 

Nomascus leucogenys 

 
 

 

XP_003277918 202 

XP_003277919 102 

XP_003277920 114 

XP_003277921 70 

*Gorilla (western lowland) 

 

 

 

Gorilla gorilla gorilla 

 

 
 

XP_004058382 202 

XP_004058383 102 

XP_004058384 114 

XP_004058385 70 

*Hedgehog (small 

madagascar) 

Echinops telfairi 

 

XP_004716182 202 

XP_004716183 70 

*Jerboa (lesser egyptian) Jaculus jaculus XP_004666931 199 

*Manatee (florida) Trichechus manatus latirostris XP_004376135 201 

*Mole (star nosed) Condylura cristata XP_004685165 198 

*Mole-rat (naked) Heterocephalus glaber XP_004857336 196 

*Orangutan (sumatran) Pongo abelii XP_002826920 202 

*Orca Orcinus orca XP_004267036 199 

*Pika (american) Ochotona princeps XP_004594901 203 

*Rhino (southern white) 

 

Ceratotherium simum simum XP_004433250 199 

XP_004433251 99 

*Sheep Ovis aries XP_004013330 229 
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*Shrew (european) Sorex araneus XP_004604978 200 

*Squirrel monkey (bolivian) Saimiri boliviensis boliviensis XP_003931437 202 

*Tasmanian devil Sarcophilus harrisii XP_003770676 211 

*Walrus (pacific) Odobenus rosmarus divergens XP_004398627 99 

*Zebra finch Taeniopygia guttata XP_002197884 183 

 

A multiple alignment of the protein available for all species shows a very high 

level of conservation of both identity and similarity of amino acids despite very 

distant taxonomic relationships. This indicates that VMO1 serves an essential role 

within these species and could have wider applications than originally thought. 

 

The next step was to align the amino acid sequence of the VMO1 protein from the 

39 species listed in Table 6. Figure 28 shows a multiple alignment of VMO1 

proteins from different species (not including truncated variants) and their 

phylogenetic relationship based on amino acid sequence variations. The individual 

amino acids are colour coded to show amino acid hydrophobicity. This is 

important for the formation of the tertiary structure of VMO1 (hydrophobic red, 

hydrophilic blue). Within the protein there is a high level conservation of both 

amino acid similarity and identity especially across the 3D structural features 

found in the chicken. There is also a very high level of conservation in the loop 

region where the six amino acid repeat Asp, X, Thr, X, X, Asn is found. This 

highly conserved sequence is found in triplicate in all but one species (walrus). In 

addition, all Cys amino acids responsible for the formation of the four disulphide 

bonding sites are identical in all but one species (chimpanzee 1). The six amino 

acid repeat is also found in the antibiotic biosynthesis monooxygenase found in 

Runella slithyformis strain 19549 (YP_004659013), the ABC transporter ATP-

binding protein in Arcanobacterium haemoltyticum (YP_003697806.1) and 

deoxycytidine triphosphate deaminase in Clostridium thermocellum 

(YP_005688722.1). 
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Figure 28: Protein alignment of all VMO1 from 36 species. To the left of the species names is a phylogenetic tree showing the relationship of species based on VMO1 amino 

acid sequences. Each amino acid for each species sequence is colour coded to show hydrophobicity: hydrophobic red, hydrophilic blue. This also gives an indication of 

amino acid side chain similarity. Along the top is a scale showing the number of amino acids. Below this shows a graph of the identity shared between species with bright 

green indicating 100% amino acid identity, dark green representing amino acid similarity and red representing changes to dissimilar amino acids. The phylogenetic tree 

on the left shows the taxonomic relationship between species based on amino acid sequence similarity which is the same as that shown in Figure 16 except for the addition 

of some species.
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2.3.1 Analysis of Homology between the Mouse, Human and 

Chicken VMO1 Protein 

The mouse VMO1 protein (Figure 29) is predicted to be a secreted protein 201aa 

long consisting of a 20aa signal peptide and a 180aa mature peptide. Within this 

peptide are four disulfide bonds, an overall three-fold symmetry, the highly 

conserved sequence of six amino acid (Asp, X, Thr, X, X, Asn) and a putative 

carbohydrate binding site. The protein has a predicted molecular weight of 

21,956.73g/mol (22kDa), with a charge of -4.0 and an isoelectric point of 4.9644 

(NCBI).  

 

There are four human VMO1 mRNA transcripts described in the database (Table 3) 

and can be translated into VMO1 protein. Transcript 1 results in a full-length 

202aa polypeptide. Transcript variant 2 is the result of a SNP in a splice region 

(dbSNP ref no: rs13847834) at chromosome position 17:4688962 and results in a 

truncated protein 114aa long (NP_001138411). Transcript variant 3 is the result of 

two SNPs, one in the splice region (dbSNP ref no: rs13847834) at chromosome 

position 17:4688962 and the other (dbSNP ref no: rs149577678), which results in 

a stop amino acid, at position 17:4689448 which results in a truncated protein 

103aa long (NP_001138412.1). Transcript variant 4 is the result of a somatic 

substitution (COSMIC ref no: COSM1141184) at chromosome position 

17:4689448 and results in a truncated protein 70aa long (NP_001138413).  

 

For the purposes of this thesis, variant 1 (NM_182566.2) will be discussed in 

further detail. The human VMO1 variant 1 codes for a VMO1 protein (Figure 30) 

consisting of a 24aa signal peptide and 178aa mature peptide and containing the 

characteristic four disulfide bonds, three repeat units and the putative 

carbohydrate binding site. It has a predicted charge of -5.5, an isoelectric point of 

4.6752 and a calculated molecular weight of 21534.09g/mol (21.5kDa). Within 

this protein there is one stop signal variant, three synonymous variants and 26 

missense variants. 

 

Figure 31 shows a multiple alignment of the VMO1 proteins within the mouse, 

human and chicken. The mouse and human share 71.8% identity and 80.2% 

amino acid similarity. Similarity is where the amino acid side residues share the 
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same chemical properties such as, hydrophobicity, acidity, and polarity and 

whether they are aliphatic, carry a charge or are aromatic. A comparison of the 

mouse and chicken VMO1 protein showed a 47.1% identity and a 60.3% 

similarity. The structural motifs identified in the crystal protein structure (the 

super-secondary structure) have been annotated in this diagram (Shimuzu et al., 

1994). The conservation of amino acid sequences in the areas where structural 

motifs are found is much greater than in those without a structural or catalytic role.  

2.3.2 Summary of VMO1 Protein Structure  

Conservation of the VMO1 protein is especially important for defining protein 

function. Comparative genomics analysis showed the VMO1 protein to be highly 

conserved in both identity and similarity across all species despite distant 

taxonomic relationships. Comparison of the mouse, human and chicken VMO1 

proteins show a 80.2% similarity between the mouse and human and 60.3% 

similarity between the mouse and chicken. Most of the conservation was seen in 

amino acids shown to have a structural or catalytic role such as the hydrophobic 

core, the Cys residue disulfide bonds and the β sheets that fold into the Greek key 

motif.
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Figure 29: Annotation of the translated mouse VMO1 protein. Figure shows a VMO1 protein sequence along the top in multi colours from 1 to 201 with the 20aa signal 

peptide (pink arrow) and 180aa mature peptide (green arrow) depicted below it. Below this is the VMO1 domain in grey and the positions of the Asp, X, Thr, X, X, Asn 

repeat in blue/grey arrows. Four disulfide bonds are shown with connected yellow lines and the putative carbohydrate-binding site by orange connected arrows. Also 

shown are the synonymous variants (black lines) (Geneious® R6).  

 

 

Figure 30: Annotation of the translated human VMO1 protein. The top scale bar shows the amino acid position from 1 to 202 and the amino acid sequence of VMO1. The 

24aa signal peptide is highlighted with a pink arrow with the 178aa mature peptide (green arrow) depicted beside it. Below this is the VMO1 domain in grey and the 

positions of the Asp, X, Thr, X, X, Asn repeat in blue/grey arrows. Four disulfide bonds are shown with connected yellow lines and the putative carbohydrate-binding site 

by orange connected arrows. Also shown is one stop signal variant (red line) and 26 missense variants (purple lines) (Geneious® R6). 



 

 

2
-

5
0
 

 

 

Figure 31: Multiple alignment of chicken, mouse and human VMO1 protein. Depicted at the top of the diagram is the identity scale bar. This represents the VMO1 amino 

acid homology from position 1 to 202; bright green indicates 100% amino acid identity and dark green representing a change in at least one of the amino acid sequences. 

Absence of a bar indicates differences between all three species. This alignment shows the individual amino acids coloured to show hydrophobicity and general similarity 

in residue side chain properties; hydrophobic red, hydrophilic blue. Below the identity scale is the chicken VMO1 protein sequence with annotations highlighting the 

various structures found in the 3D crystal structure (Shimizu et al., 1994); disulfide bonds between Cys26 and Cys57, Cys79 and Cys110, Cys133 and Cys161, and Cys136 

and Cys62 (yellow), signal peptide (pink arrow), three Greek key motifs (grey/yellow colours, 12 β sheets (green arrows), the three loop regions (red arrow), carbohydrate-

binding sites (orange arrows ), bottom H-bonding network (light blue connected lines) and the top H-bonding network (dark blue connected lines) (Geneious® R6).
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3 CHAPTER THREE 

METHODS AND MATERIALS 

All processes were carried out in the C.2.03 Molecular Genetics Lab at the 

University of Waikato unless otherwise stated. Autoclaved 15-18 megohm-cm 

double distilled deionised water (mQH2O) was used to prepare all solutions 

(Barnstead double distilled/deionisation system). However, for RNA work, 

mQH2O was further treated with 0.1% Diethylpyrocarbonate (DEPC). Unless 

otherwise stated, all chemicals and solvents (salts, buffers, organic solvents,) were 

obtained from Sigma-Aldrich and all molecular biology reagents (enzymes and 

buffers) were obtained from Invitrogen. All glassware was washed in the 

dishwasher and then autoclaved before use and all experiments were carried out 

using aseptic techniques on a bench cleaned with 70% ethanol. All solution and 

buffer recipes can be found in Appendix 1. All Centrifugation was carried out in 

an Eppendorf Benchtop Centrifuge at room temperature (RT) between 18-24°C, 

unless otherwise stated. 

3.1 Agarose Gel Electrophoresis 

An Owl gel electrophoresis system dedicated to use with RedSafe™ stain was 

used to visualise and analyse RNA and DNA for reasons of purification, 

quantification and identification. Agarose gel electrophoresis was carried out in a 

dedicated gel room at RT, using 1X TAE buffer stained with RedSafe™ dye 

(Intron Biotechnology). The weight per volume concentration (w/v) of agarose 

used was determined by the products being electrophoresed and downstream 

applications they would be used in. Agarose solution was made up by weighing 

out dry agarose powder (Table 7) and adding to 100mL of 1X TAE buffer in a 

flask and heating in a microwave with intermittent stirring until no crystals could 

be seen. The liquid gel was allowed to cool to less than 50C before 5μl of 

RedSafe stain was added and then poured into the levelled gel caster. Two combs 

were inserted into the liquid gel which was then left to cool and set completely 

before use. The set gel was placed in an electrophoresis tank and covered with 1X 

TAE buffer. Into the first and/or last well of the gel, 5μl of ladder (500 ng, 

Genscript) was loaded to serve as a measuring scale for quantity and estimated 

size of the nucleotide products. Five to twenty microlitres of nucleotide product 
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was mixed with 2μl of 6X loading dye before being loaded into individual wells. 

The gel was electrophoresed with a set 90V for 30 minutes (min) and then 

visualised on a Safe Imager (Invitrogen) and photographed using a COHU High 

Performance CCD camera and Scion Image software (Release Beta 4.0.2). 

Table 7: Type and weight of agarose used for a 100mL gel and the application for which it 

was used as well as the ladder used. 

Application Percentage 

(w/v) gel 

Agarose Ladder used 

100bp (Solis Biodyne) 

or 1000bp (Gibco) 

Gel purification  4% 0.4g SeaKem® 100 and 1000bp 

cDNA and PCR analysis  2% 0.2g SeaKem® 100bp 

Vector analysis 1% 0.1g SeaKem® 1000bp 

RE digestions 0.8% 0.08g LMP 100bp 

3.2 Purification and Isolation of Nucleotide Products 

Three methods were used for nucleotide isolation and clean-up depending on the 

size of the nucleotide product and the downstream applications applied to it. 

These were the PEG precipitation method, phenol/chloroform method, rAPid 

Alkaline Phosphatase method and gel purification method.  

3.2.1 PEG Precipitation 

Polyethelene Glycol (PEG) precipitation was used to purify nucleotide products 

for use in cloning, ligation, PCR and RE digestion. 

An equal volume of PEG was added to liquid to precipitate DNA and vortexed to 

mix then left to stand at RT for 10min. The sample was then centrifuged with a 

balance at 1600 relative centrifugal force (rcf) for 10min to pellet. The supernatant 

was removed and the pellet washed in 100% ethanol, pelleted and washed again in 

70% ethanol. The ethanol was removed and the pellet allowed to dry at RT before 

being resuspended in 10μl of TE buffer. 

3.2.2 Phenol/Chloroform Method 

This method was used to isolate plasmid DNA from bacterial Escherichia coli (E. 

coli) cells. A transformed culture was incubated at 37°C and allowed to grow 

overnight before a 1.5mL sample was removed for plasmid isolation. 1.5mL was 

pelleted by centrifuging for 10min at 16100rcf. The supernatant was removed and 

the pellet was resuspended in 50μl TE buffer followed by the addition of 300μl 

TENS to chelate positively charged ions and disrupt the cell membrane under 

alkaline conditions. This was mixed well by inverting the tube six times before 
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150μl of 3M sodium acetate (NaOAc) was added to neutralise the charge on the 

sugar-phosphate backbone of DNA to facilitate DNA recovery. The tube was 

mixed well by inversion and then spun for 2min at 16100rcf to pellet cellular 

debris. The pellet was removed using a sterile toothpick and 300μl of 

phenol/chloroform was added to the supernatant to denature proteins and left at 

RT on a rotator for 10min. The tube was centrifuged for 5min at 16100rcf to 

separate the aqueous layer from the organic layer. This top aqueous layer was 

collected with care taken to avoid the protein interface and mixed with an equal 

volume of isopropanol to precipitate the plasmid DNA. The tube was centrifuged 

for 10min at 16100rcf to pellet the precipitated DNA. The isopropanol was 

removed and the pellet washed in 70% ethanol to remove residual salts. Ethanol 

was removed and the pellet allowed to air dry before being resuspended in 40μl 

TE buffer and left at RT for 30min. 

3.2.3 rAPid Alkaline Phosphatase Method 

rAPid Alkaline Phosphatase (Roche) method was used to purify PCR products to 

be sequenced where only a single amplicon was produced. Briefly, 10μl of PCR 

product was run on a 1% agarose gel to check for expected band size and to 

estimate quantity. To the remaining 10μl of PCR sample, 0.5μl of Exonuclease I 

(10U) and 0.5μl of Alkaline Phosphatase (1U) was added and heated at 37°C for 

30min. Exonuclease degrades excess single-stranded primer oligonucleotides and 

any extraneous single-stranded DNA produced in the PCR. Alkaline Phosphatase 

degrades unincorporated dNTPs. The reaction was then deactivated by heating at 

85°C for 15min before being checked for quantity and quality on a NanoDrop™ 

8000 Spectrophotometer (Nanodrop). 

3.2.4 Gel Purification 

Gel punching was used to remove specific bands resolved in an agarose gel when 

restriction enzyme (RE) digestion was carried out or when more than one PCR 

product was observed on the gel. A 600μl tube was prepared by punching a hole 

in the base with a flamed 18 gauge needle (Becton Dickinson) and the addition of 

a 3mm sterile glass bead (Ajax Chemicals). This tube was then placed into a 

1.7mL tube and set aside ready for use. The entire nucleotide sample was loaded 

into a single well in a 2% 1X TAE agarose gel and electrophoresed at 91V for 

30min. The gel was visualised on a blue safe imager and the bands extracted using 
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the hub of a pipette tip. The punched gel band was placed in the prepared 

centrifugation tube and frozen at -80°C for 30min then centrifuged at 16100rcf for 

15min. The 600μl tube was discarded and the centrifuged solution in the 1.7mL 

tube retained.  

3.3 Nucleotide Product Quantification and Quality Assessment 

DNA was quantified and assessed for quality using two methods; 2% agarose gel 

electrophoresis with a 100 base pair (bp) ladder (Solis Biodyne) and Nanodrop 

reading. Vector quality and quantity was assessed using a 1% agarose gel with a 

1kb ladder (Gibco). RE digests of PCR products and vectors were assessed 

together on 2% agarose gel with both a 1kb ladder and a 100bp ladder. 

3.3.1 Agarose Gel Electrophoresis 

This method relied on the comparison of the brightness of the bands in the ladders 

with known DNA concentrations and the brightness of the unknown products 

band. The comparison would give an approximate estimation of DNA 

concentration in the unknowns. This method also gave information on the banding 

patterns produced for RE digestion and specificity of the primers. Products that 

underwent RE digestion or that contained more than one band were extracted 

from the gel and gel purified before being quantified and assessed for quality on 

the Nanodrop. 

3.3.2 Nanodrop Reading 

Nucleotide concentration and purity was measured using a Nanodrop. This 

method relied on a spectrophotometer reading comparison between a “blank” and 

a purified product resuspended in a known solution. Nucleic acid concentration 

was determined by the absorbance reading at 260nm and sample purity 

determined by the 260/280nm ratio. One microlitre of sample was measured 

against either mQH2O or TE buffer depending on what it was resuspend in during 

the final purification step. Samples with 260/280nm ratios less than 1.80 greater 

than 2.0 or an excessive peak at 230nM were deemed as low quality and 

underwent another purification step in order to improve purity. 
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3.4 PCR Reactions 

Polymerase chain reaction (PCR) was carried out using cDNA extracted from the 

mouse inner ear (protocol 3.7.1) to amplify the Vmo1 mRNA to determine its 

gene sequence and for the preparation of a recombinant protein expression 

construct. PCR reactions were carried out in a BIORAD T100 Thermal Cycler in 

single 200μl PCR tubes (Axygen). Solutions were defrosted on ice while in use. 

Master mixes were prepared and aliquoted into individual PCR tubes in a PCR 

dedicated UV hood. The primers and template were added to the individual tubes 

on a dedicated PCR bench, which was kept free of contaminants and wiped before 

use with 70% ethanol solution. Sterile DNase and RNase free filtered pipette tips 

and dedicated PCR pipettes were also used. 

PCR reactions were performed with final concentrations of 1X HOT FIREPol® 

10X Buffer B2 PCR buffer (Solis Biodyne), 0.2mM dNTPs (Solis Biodyne), 

2.5mM magnesium chloride (MgCl2), 1U HOT FIREPol® DNA polymerase 

(Solis Biodyne), and 0.25mM of each forward and reverse primer (Table 10). In 

addition, all PCR reactions were carried out with controls to provide proof of 

possible contamination and to verify that mouse Vmo1 is present and amplifiable. 

The positive PCR control used primer set BFG1/2 with 1μl template and had an 

expected band size of 495bp. The negative PCR control contained primer set 

BFG1/2 and no template DNA. 

All PCR reactions were carried out with the following settings unless otherwise 

stated. 

Table 8: PCR machine settings showing the temperatures and times for each step 

Step Temperature Time 

Taq activation  95C 15min 

Cycling Steps (X35) Denaturation 95C 30secs 

Annealing See Table 10 30secs 

 Extension 72C 1min 

Final Extension  72C 5min 

3.4.1 Nested PCR 

Nested PCR involved the amplification of a mouse inner ear cDNA sample 

followed by a second amplification of Vmo1 PCR products produced in the 

primary reaction. This technique was used to yield optimal concentrations of 

Vmo1 amplicon for the purposes of cloning and sequencing. PCR parameters were 

the same as outlined in protocol 3.4 using 1μl of PCR product as a template.  
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3.4.2 Colony PCR 

Colony PCR was used to screen for the orientation of inserts ligated into a vector 

and transformed into DH5 E. coli. The primers M13puc reverse and BFG28R 

(Table 10) were used to selectively amplify the Vmo1 insert produced from primer 

set BFG27/28 and oriented in the 5’-3’ direction to produce an amplicon 893bp 

long. For the template a single colony was picked with a clean sterile toothpick 

and briefly dipped into PCR mix before being streaked onto an LB
+
 agar plate or 

used to inoculate LB
+
 broth. Alternatively a sterile toothpick was dipped into LB

+
 

broth containing the transformed E. coli and then briefly dipped into the PCR mix. 

PCR parameters were the same as outlined in protocol 3.4. 

3.5 SDS-PAGE 

Denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) was used to separate whole tissue protein lysates between 10-150kDa in 

size for the purposes of western blotting and visualisation of proteins in the mouse 

tissues. Two types of gels were used, the 10% Mini-PROTEAN® TGX Stain-

Free™ Gel (BIORAD) and 12% hand-cast gels. SDS-PAGE consisted of gel 

preparation, sample preparation and electrophoresis. 37:1 Acrylamide:N.N’-

methylenebisacrylamide (BIS) solution was weighed out while wearing a face 

mask, gloves and lab coat and liquid mixed with powders in the fume hood. 

 

Hand-cast gels were made according to the method described below and the 

protocol described by Towbin et al., 1979, with a 5% stacking gel to focus the 

protein band and 12% separating gel to separate the proteins out by molecular 

weight. To cast gels, a Hoefer mighty small SE250/SE260 gel rig was used and 

the glass plates, spacers (0.75mm) and combs were cleaned with detergent, rinsed 

with dH2O and dried with paper towels. They were then cleaned again with 70% 

ethanol and assembled. The corresponding volumes (Table 9) of mQH2O, SDS, 

Tris buffer and Acrylamide:BIS were added to a flask and mixed together. To 

prevent polymerisation occurring rapidly, the ammonium persulphate (APS) and 

tetramethylethylenediamine (TEMED) were added just before gels were cast, 

mixed quickly and then taken up in a 1mL transfer pipette (Raylab) and poured 

between the assembled glass plates. To prevent drying, a layer of 2-butanol was 

added to the top of the gel and left to set. Once set, the butanol was carefully 
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removed from the top of the gel using filter paper and the stacking gel prepared 

and added. A gel comb (10 tooth) was carefully inserted into the stacking gel, 

which was then left to polymerise with a damp paper towel covering the top to 

prevent drying. If not being used the gel was wrapped in a damp paper towel and 

plastic gladwrap and stored at 4°C for no more than one week. To use, the comb 

was removed from the stacking gel and the wells rinsed with dH2O to remove any 

unpolymerised acrylamide and debris. 

Table 9: Composition of the separating and stacking SDS-PAGE gels showing the 

solutions/reagents and the volume used  

Reagent Volumes (sufficient for 2 gels) 

Stacking gel Resolving gel 

10% SDS 125.0ul 150ul 

1M Tris 1.6mL - 

3M Tris pH8.8 - 2.0mL 

37:1 Acrylamide:BIS 1.6mL 8.2mL 

dH2O 9.0mL 4.5mL 

10% APS 65.0ul 150.0ul 

TEMED 12.5ul 15.0ul 

3.5.1 Protein Sample Preparation 

Protein samples and a bovine serum albumin (BSA) control sample (10mg/mL) 

were defrosted on ice and then mixed in a 50:50 ratio with 2X SDS loading dye 

followed by heating at 99°C for 3min to denature and linearise the proteins. 

Samples were briefly centrifuged before being loaded into wells in the stacking 

gel. 

3.5.2 Gel Electrophoresis 

SDS-PAGE of the pre-cast gels was carried out in a Mini-PROTEAN® Tetra Cell 

(BIORAD) and hand-cast gels were electrophoresed in a Hoefer ‘Mighty Small II’ 

gel electrophoresis unit. The set gel and plates were put into the electrophoresis 

tank and SDS running buffer added. The protein products and BSA control were 

mixed with SDS loading dye and denatured for 3min at 99°C. Twenty microlitres 

was then taken up in a pipette and loaded into individual wells of the gel along 

with a molecular weight ladder. The protein products and were run into the 

stacking gel at 15mA for 15min. The current was then increased to 30mA and left 

to run until the dye front reached 1cm above the bottom of the gel. The gel was 

then used for either western blotting (protocol 3.9.2) or visualised for analysis of 

protein quality and concentration (protocol 3.5.3). 

http://www.bio-rad.com/en-nz/product/mini-format-1-d-electrophoresis-systems/mini-protean-tetra-cell
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3.5.3 Visualisation of SDS PAGE Gel  

Pre-cast SDS-PAGE gels were visualised on a Gel Doc™ EZ System (BIORAD) 

on a stain free plate (BIORAD). The gel was carefully removed from between the 

plastic plates and placed on the stain free plate and then placed into the Gel Doc™ 

and imaged using Image Lab software (BIORAD). Hand-cast SDS-PAGE gels 

were visualised by staining with Coomassie Blue R-250. Briefly, the SDS-PAGE 

gel was carefully removed from between the glass plates and placed in a glass 

container with 100mL of Coomassie blue stain. This was then microwaved at 

800W on high until just boiling then allowed to cool to RT while shaking. The 

Coomassie stain was discarded and the gel rinsed with distilled water (dH2O), and 

then destained overnight shaking at RT in dH2O. The gel was transferred onto 

Whatmans no.1 paper and analysed.  

3.6 Cloning and Expression of Vmo1 

Five vectors were used in this research to clone the mouse Vmo1 into an 

expression vector for the expression of recombinant VMO1 protein (Appendix 9); 

pCR™4-TOPO® TA Vector (Invitrogen, TOPO® TA cloning Kit), pBluescript II 

SK(+) (Molecular Genetics Laboratory, UoW) and the expression vectors pPro 

EX HTb (Life Technologies USA), pET41a(+) (Linda Peters, UoW) and 

pET42a(+) (Microbiology Laboratory, UoW). Briefly, mouse cDNA was 

amplified using PCR and primer set BFG27/28. A double RE digestion was 

carried out on both the PCR amplicon and plasmid vector to enable ligation of the 

PCR amplicon into the vector. This ligated vector was transformed into 

electrocompetent bacterial cells, grown overnight at 37°C and screened for 

correctly oriented inserts using colony PCR.  

3.6.1 Preparation of Electrocompetent Cells 

E. coli strain DH5α (Hanahan, 1985) were sourced from glycerol stock stored at -

20C (Molecular Genetics Laboratory, UoW), streaked onto a Luria Base (LB) 

agar plate and incubated upside down in a 37C oven overnight. A single colony 

from this plate was used to inoculate 10mL of LB broth (Invitrogen) and grown 

overnight at 37C, shaking at 200rpm. A 5mL aliquot of this culture was then 

used to inoculate 1L of LB broth which was grown to Log Phase of growth with 

an OD600nm of 0.69 (BIORAD SmartSpec™ 3000). The 2L flask was chilled on 
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ice for 30min before being pelleted in a centrifuge (Heraeus Multifuge 1 S-R 

Centrifuge) at 4000rcf for 15min at 4C.  

The cells were then pelleted and resuspended through sterile ice-cold glycerol at 

the following volumes:  

1L fresh 10% glycerol; 

500mL fresh 10% glycerol; 

20mL fresh 10% glycerol; 

This final pellet was resuspended in 3mL fresh 10% glycerol, aliquoted into 50μl 

volumes into sterile 1.7mL tubes, and stored at -80C. 

3.6.2 Transformation of Vector into DH5α E. coli 

Transformation of DH5α was carried out in the University of Waikato 

Transitional/Containment Facility (Appendix 7) using a BIORAD Gene Pulser
TM

 

and a BIORAD pulse controller set to 25 μFD capacitance with 200ohms 

resistance and 2.5V for 3sec. Prior to the transformation, 50μl aliquots of 

electrocompetent bacterial cells (protocol 3.6.1) were defrosted on ice, LB
+
 agar 

plates containing 100μg/mL ampicillan were spread with 40μl 5-bromo-4-chloro-

3-indolyl-β-D-galactopyranoside (Xgal 20mg/mL) and 4μl Isopropyl β-D-1-

thiogalactopyranoside (IPTG 200mg/mL) and LB broth was prewarmed to 37C. 

Ampicillan was used to select for transformed E. coli which contained the plasmid 

and Xgal and IPTG were used to screen colonies containing an insert with blue 

and white colony selection. 

A 2μl sample of ligation reaction or undigested vector was added to the 

electrocompetent bacterial cells and mixed together on ice before being 

transferred to a chilled 0.2cm cuvette (Gene Pulser® Cuvette BIORAD). The 

exterior of the cuvette was dried using a power towel, placed into the 

electroporator and an electrical pulse applied. Immediately after electroporation, 

1mL of prewarmed LB broth was added to the cuvette and the contents of cuvette 

transferred to a 1.7mL tube. These tubes were then incubated shaking at 37C for 

1 hour (hr) to induce expression of antibiotic resistant gene. This culture was then 

spread using a glass rod very gently onto three LB
+
/Xgal/IPTG agar plates in 

600ul, 300μl and 100μl volumes to make a serial dilution of E. coli. The agar 

plates were then incubated upside down at 37C overnight. The following day, the 

agar plates were inspected for blue and white colonies and stored at 4°C. White 

colonies were selected for colony PCR or inoculation into LB broth. 
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3.6.3 Cloning Vmo1 into TA TOPO Cloning Vector 

Vmo1 PCR products were directly ligated into the TOPO® TA cloning vector 

(Invitrogen) for sequencing. Following the protocol recommended by the supplier 

1μl of PCR mix containing amplicons produced by primer set BFG27/28 was 

added to 1μl of vector and incubated at RT for 5min. The transformation was then 

carried out as outlined in protocol 3.6.2. 

3.6.4 Ligation of the Vmo1 Transcript into the pProEX HTb 

Vector 

Vmo1 PCR product produced by primer set BFG27/28 (protocol 3.4) was ligated 

into the expression vector pProEX HTb for the purposes of expression of the 

VMO1 recombinant protein. Briefly, the vector was amplified by transformation 

into E. coli DH5 electrocompetent cells, isolated and purified. Both the PCR 

amplicon and vector were RE digested, electrophoresed and then gel purified. The 

purified products were then ligated together to make a circular recombinant vector 

containing the PCR amplicon oriented in either the 5prime (5’) to 3prime (3’) or 

3’-5’ direction. This ligated product was then transformed into DH5 and grown 

overnight and screened for insertion of the PCR amplicon in the 5’-3’ direction. 

3.6.4.1 Preparation of pProEX HTb Vector and Vmo1 PCR Amplicon 

The vector was transformed into E. coli DH5 electrocompetent cells described in 

section 3.6.2 and a single white colony was selected to inoculate a 10mL LB
+
 

broth with a final concentration of 10ug/mL ampicillan antibiotic. The plasmid 

was isolated by using the phenol/chloroform method (protocol 3.2.2) and the size 

and concentration confirmed by visualisation on a 1% agarose gel (protocol 3.1). 

RE digestion was carried out using the HindIII enzyme as described below on the 

remaining plasmid and the linearised product run on a 2% agarose gel containing 

gel safe stain. Resulting bands were visualised on a SafeImager and gel 

purification carried out as per protocol 3.2.4. 

 

Vmo1 PCR product was produced using the protocol outlined in 3.4 with primer 

set BFG27/28 and then digested with RE HindIII (NEB).  
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3.6.4.2 Restriction Enzyme Digestion 

RE digestion was carried out on the PCR product and vector to make compatible 

sticky ends for the insertion of a correctly oriented digested PCR product into the 

vector. HindIII (NEB) was used to linearise the pPro Ex HTb vector and to digest 

the PCR product at the 5’ and 3’ ends. The insert PCR RE digest was carried out 

with 20μl of Vmo1 PCR product produced by protocol outlined in 3.4, 2U HindIII, 

2.5μl 10X NEB2 buffer (NEB) made up to a final volume of 27μl with mQH2O. 

The vector RE digest was carried out in a 20μl volume containing 1μl vector 

(5.5ug/mL), 1U HindIII, 2.5μl 10X NEB2 buffer and 15.5μl mQH2O. Digestion 

was carried out at 37C overnight, and stopped by heating at 65C for 20min. 

Products were then electrophoresed as outlined in 3.1 using both a 1kb ladder and 

a 100bp ladder to estimate band sizes. Bands of expected sizes were excised from 

gels and underwent gel purification for future ligation reactions.  

3.6.4.3 T-Tailing Reaction 

Phenol/chloroform purified linear plasmid was repelleted following protocol 3.2.2 

and resuspended in 50μl mQH2O. T-tailing reaction mix was made with 1X HOT 

FIREPol® 10X Buffer B1 (Solis Biodyne), 2.5mM MgCl2, 200μM dTTP 

(Invitrogen) and 1U HOT FIREPol® DNA polymerase (Solis Biodyne) and made 

up to a volume of 100μl with mQH2O. This was heated at 95°C for 3min to 

activate the Taq DNA polymerase. Fifty microlitres of the purified plasmid was 

added to the T-tailing reaction mix and incubated at 72°C for 2hr to add a thymine 

nucleotide to the 5’ ends of the linearised plasmid. 

3.6.4.4 Ligation 

Ligation reaction was carried out with a Vector:Insert ratio of 1:3 to produce 

circular recombinant molecules. Each ligation mix contained mQH2O, 5X T4 

DNA Ligase Buffer (Invitrogen), 1U T4 DNA Ligase (Invitrogen), purified 

digested vector (5.3μg/μl) and purified digested PCR product (1.5μg/μl) made up 

to a final volume of 10μl. The ligation reaction was mixed, briefly centrifuged to 

bring contents to bottom of tube, and then incubated at 37°C for 10min then 

overnight at RT. In addition controls were carried out simultaneously to test the 

efficiency of the T4 DNA ligase, the efficiency of the RE digestion of both the 

vector and insert and the efficiency of the transformation of the plasmid into E. 

coli. 



  

 3-62 

3.6.5 Screening and Sub-cloning of Transformed Colonies using 

Colony PCR 

Single white colonies produced from protocol 3.6.4 were picked using a sterile 

pipette tip and dipped briefly in a PCR master mix (3.4) containing forward 

primer (M13puc) and reverse primer (BFG2R) (Table 10) to check for the correct 

orientation of the insert. The pipette tip was then used to streak an LB
+
 plate 

which was incubated overnight at 37°C (Precision). The following day single 

colonies were used to inoculate 1mL of L B
+
 broth and incubated for 1hr shaking 

at 37C. One hundred microlitres of this culture was then used to inoculate 10mL 

fresh LB
+
 broth, and streaked onto an LB

+
 plate for storage. The rest was 

processed to extract the vector DNA and then used for RE digests, sequencing and 

PCR.  

3.7 Preparation of RNA and Protein from Mouse Tissues  

Wild type C57/B16/129SV Mus musculus (house mouse) were sourced from 

AgResearch, euthanised using University of Waikato Animal Ethics Committee 

SOP9, and tissue dissected in the animal house (BL1.G.02, UoW). Tissues were 

covered with RNA extraction buffer or protein lysis buffer to prevent degradation 

of the RNA and protein in the samples and stored at -80°C for future use. 

3.7.1 Extraction of mRNA for cDNA Production 

Six temporal bones from three P28+ female mice were pooled before being 

processed for RNA extraction. Animals were dissected as quickly as possible to 

avoid RNase activity and contamination. To avoid exogenous DNA, RNA and 

nuclease contamination, all RNA work was carried out on a bench dedicated to 

RNA work. This workspace was regularly cleaned with RNase AWAY™ (Life 

Technologies) and all RNA work was carried out using sterile DNase and RNase 

free disposable tubes (Axygen), filtered pipette tips (Sorenson BioScience) and 

containers. Glassware was washed in the dishwasher then autoclaved and baked in 

a 250C oven for 2hr (Thermophile Research Laboratory, UoW). All equipment 

used was wiped with RNase AWAY™ and only used for RNA work. Dissection 

tools were washed, autoclaved and baked at 80°C and in between uses were wiped 

with RNase AWAY™ and heated briefly in a Germinator 500 Glass Bead 

Steriliser. The Heidolph DIAX 600 homogeniser was disassembled and the 
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individual pieces washed with detergent, rinsed with mQH2O, 70% ethanol and 

then wiped with RNase AWAY™ before reassembly and use. 

3.7.1.1 Preparation of Ear Tissue  

Single mice were dissected one at a time to reduce the amount of time ears were 

stored on ice. The temporal bones were removed using a sterile number 21 scalpel 

blade and sterile dissection scissors and rinsed in ice cold sterile 1X PBS which 

was changed twice during dissection to minimise cross-contamination. They were 

then placed in ice-cold RNA extraction buffer (Quiagen, USA) for storage. In 

instances where protein from additional tissues was extracted from the same 

mouse the ears were done first and stored on ice to prevent contamination from 

other tissues. Ears were stored on ice for no longer than 20min then frozen at -

80°C until further processed.  

3.7.1.2 RNA Extraction from Mouse Ears 

RNA was extracted and purified using RNeasy Fibrous Tissue Mini Kit (Quiagen, 

USA) according to the manufacturer’s protocol. Briefly, six temporal bones were 

removed from the -80°C freezer and allowed to defrost to -20°C overnight then to 

4°C the following day. Ears were then pooled into a 15mL falcon tube 

(CELLSTAR®) and covered with RLT buffer (Quiagen, USA). Bones were 

homogenised with a Heidolph DIAX 600 homogeniser for 15sec intervals in 

between which they were stored on ice for 1min to cool and prevent overheating 

of sample. Homogenisation was repeated 10 times until most of the bone 

fragments had been liquefied and then stored on ice for 5min. The sample was 

transferred to three 1.7mL tubes to which 590μl of RNase-free water and 10μl 

Proteinase K (Quiagen, USA) was added and incubated in a Thermomixer 

(Eppendorf) at 55C for 10min to digest proteins. Samples were centrifuged at 

10,000rcf for 3min to pellet bone fragments and the supernatant transferred to 

new 1.7mL tubes. A 0.5 volume of 100% ethanol was added to each sample to 

precipitate DNA and RNA, before being transferred to RNeasy column in a 2mL 

tube. The samples were centrifuged for 15secs at 8000rcf and the flow-through 

discarded. The column was washed again with 350μl RW1 buffer, centrifuged and 

then the flow-through discarded. Ten microlitres of DNase stock solution with 

70μl RDD buffer was added to column and incubated at 22C for 15min to 

remove DNA. Column was washed with 350μl RW1 buffer with flow-through 

discarded and then again with RPE buffer. A final wash included the addition of 
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500μl RPE buffer, and centrifugation at 8,000rcf for 2min. Thirty microlitres of 

RNase free water was added to the column, incubated at 22C for 2min before 

being centrifuged at 8,000rcf for 1min into a clean collection tube. Elution was 

repeated with eluent and then stored at -80C.  

The quality and quantity of isolated RNA was examined in two ways; 

spectrophotometry using the Nanodrop and PCR of the cDNA produced by 

reverse transcription.  

3.7.2 Protein Sampling for Western Blot and Bradford Assay 

3.7.2.1 Protein Extraction from Soft Tissues 

Non-bony tissues from six mice, male and female P28+, was dissected out and 

transferred to a 2mL tube (Axygen) containing sterile glass beads (BioSpec 

Products) and protein lysis buffer. The tissue was disrupted by bead beating in a 

FastPrep® FP120 at a speed of 6 for 25sec intervals in between which they were 

chilled on ice for 1min. The tubes were centrifuged to the pellet glass beads, 

nuclei and cell debris at 300rcf for 5min at 4°C. The supernatant was removed to 

new tubes in 100μl aliquots and stored at -20°C.  

3.7.2.2 Protein Extraction from Temporal Bone 

Seven temporal bones from four P28+ mice (3 female, 4 male) were removed 

from the -80°C freezer and allowed to defrost to -20°C overnight then to 4°C the 

following day. They were then pooled into a 15mL falcon tube and 600μl lysis 

buffer added. Bones were homogenised with a Heidolph DIAX 600 homogeniser 

for 30sec intervals and in between, they were stored on ice for 1min to cool and 

prevent overheating of the sample. Homogenisation was repeated three times until 

most of the bone fragments had been liquefied. The sample was left to cool for 

5min and the supernatant decanted into a new 1.7mL tube (Ear sample 1). The 

homogeniser was partially disassembled and bone fragments removed from the 

teeth of the homogenising wand then rinsed with no more than 300μl of fresh 

protein lysis buffer which was collected in the 15mL falcon tube. The sample was 

homogenised again as described above and the supernatant was decanted into a 

new 1.7mL tube (Ear sample 2). The homogeniser was again disassembled and 

bone fragments removed from the teeth of the wand and scraped then rinsed with 

100μl of fresh protein lysis buffer which was collected in the 15mL falcon tube. A 

final homogenisation step was carried out 10 times to liquefy all of the remaining 
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bone fragments and the entire sample transferred to a new 1.7mL tube (Ear 

sample 3). The three samples were centrifuged for 10secs to pellet any large 

fragments of bone then aliquoted into 100μl samples and stored at -20°C. 

3.8 Determination of the Mus musculus Vmo1 Gene Sequence 

In this section, the design of PCR primers, the reverse transcription of total RNA 

isolated from the inner ear of P28+ mice, amplification of cDNA using Vmo1 

specific primers, and DNA sequencing methodology will be described. 

3.8.1 Oligonucleotide Primer Design for PCR  

Unless otherwise stated forward and reverse primers were designed using Primer-

BLAST software (http://www.ncbi.nlm.nih.gov/tools/primer-blast/) and were 

synthesised by Integrated DNA Technologies Ltd (IDT) (Table 10). Primers were 

resuspended in TE buffer (pH 8) to a final concentration of 200pmol/μl. Working 

stock of primer solutions were diluted to a final concentration of 20pmol/μl. 

Primers were analysed using IDT OligoAnalyzer 3.1 and stored at -20°C. Mouse 

specific Vmo1 primers were designed using the reference sequence 

NM_001013607.1. 

3.8.1.1 Oligo-dT Primers 

Oligo-dT primers (Life Technologies) were used to synthesise cDNAs from the 

total RNA sample. Oligo-dT primers bind specifically to the poly-adenine tail 

junction of the mRNA template and are specific to eukaryotic mRNA. 

3.8.1.2 BFG1F and BFG2R 

This primer pair was generated using primers published by Peters et al., 2007 and 

serves as a positive control. These primers are specific to the mouse Vmo1 gene 

and binds to the 3’ end of the transcript to produce an amplicon 495bp long at an 

optimal annealing temperature of 55°C.  

3.8.1.3 BFG7F and BFG8R  

This primer pair was designed to be specific to Vmo1 cDNA produced from the 

mRNA transcript only. BFG7F was designed to cover the first exon-exon 

boundary for the Vmo1 cDNA and BFG8R was designed to cover the second 

exon-exon boundary. A single amplicon of 193bp in length was produced at an 

optimal annealing temperature of 50°C. 
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3.8.1.4 BFG27F and BFG28R  

This primer pair was designed to encompass the entire Vmo1 ORF for ligation 

into a cloning or expression vector. Incorporated into both the forward and reverse 

primer was the HindIII restriction sites so the whole sequence could be easily 

removed or inserted into cloning and expression vectors. The restriction site in the 

forward primer was placed specifically to produce a digested amplicon that was in 

frame with the expression vector pPRO Ex HTB to produce a recombinant protein 

identical to the VMO1 protein reference sequence on NCBI (NP_001013625.1). A 

single amplicon of 671bp length was produced at an optimal annealing 

temperature of 50°C. 

3.8.1.5 Mus GAPDH Primers 

This primer pair was sourced from the molecular genetics lab primer stocks (Greg 

Jacobson, UoW) and are specific to mouse Glyceraldehyde-3- phosphate 

dehydrogenase (GAPDH) gene. This gene is a housekeeping gene and is required 

for the maintenance of basic cellular function, and is expressed in all cells of an 

organism under normal and patho-physiological conditions (NCBI; Barber et al., 

2005). Primers were used as a positive control for the initial PCR reaction carried 

out on mouse cDNA to confirm the presence of mouse cDNA and absence of 

mouse genomic DNA and that the PCR were successful. An amplicon estimated 

at 150bp long was produced at an optimal annealing temperature of 60°C. 

3.8.1.6 M13 Puc Reverse and BFG28R 

This primer pair was used to confirm the presence of Vmo1 in the expression 

vector in the correct orientation to produce the VMO1 recombinant protein. An 

amplicon of 843bp in length was produced at an optimal annealing temperature of 

50°C.
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Figure 32: DNA Sequence of the Mouse Vmo1 gene from nucleotide position 1 to 892. This diagram shows the position and direction of the PCR primer binding sites 

(green) and HindIII restriction enzyme sites (yellow). 
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Table 10: Forward and reverse primer sequences used throughout this thesis. Primers were named according to BFG (Blaise Forrester Gauntlett) the order in which they 

were ordered and the strand on which they bind either reverse complement or forward (R or F). Underlined nucleotide bases illustrate the position of the restriction 

enzyme site.  

Primer name Sequence 
Species and gene 

target 

Primer 

sequence 

source 

IDT melting 

temperature 

Thesis 

recommended 

annealing 

temperature 

Product 

length 

BFG1F GGCCTGAGATGTGTCCTGAT Mouse Vmo1 gene 

(NM_001013607.1) 

Peters et al., 

2007 

 

56.7 55 495bp 

BFG2R GGTAAAAGACAGTACTGGCAGAGC 57.5 

BFG7F GGCCTGAGATGTGTCCTGAT Mouse Vmo1 

cDNA 

(NM_001013607.1) 

Primer-

BLAST 

56.7 50 193bp 

BFG8R CACAGAGGCTCACTCCATGA 56.5 

BFG9F TGTCAAGGTGGAGCCCCCTCA Mouse Vmo1 

cDNA 

(NM_001013607.1) 

Primer-

BLAST 

63.0 55 128 

BFG10R CCCAGCTTCCGGACTGGGACT 63.6 

BFG27F CCCAAGCTTGGGAGGTCATGCAGGATGGAGTT Mouse Vmo1 gene 

(NM_001013607.1) 

Primer-

BLAST 

 

62.8 50 671 

BFG28R CCAAGGCCAAGAAGCTTTAAT 53.5 

M13puc rev CACACAGGAAACAGACCATGTC pPRO EX HTb  56   

musGAPDH 

primers 

Unknown  Mouse GAPDH 

gene 

(NM_001013607.1) 

  60 ~150 
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3.8.2 Preparation of Total cDNA  

RNA extracted from temporal bones as described in 3.7.1.2 was used to produce 

cDNA. The reverse transcriptase reaction was carried out in 20μl volumes in PCR 

tubes. An initial reaction mix containing 5μl RNA sample, 4μl of DEPC treated 

mQH2O and 2μl of Oligo-dT primers was incubated at 70C for 5min to anneal 

primers to the polyadenylated tail found on the 3’ end of mammalian mRNA 

transcripts, then stored on ice for 2min. To this, 10μl of Reverse transcriptase 

solution mix (Invitrogen USA) was added which contained SuperscriptIII reverse 

transcriptase (1U), 0.1M dTT and 1X first strand buffer, this final reaction mix 

was incubated at 50C for 60min to carry out reverse transcription and then 85C 

for 5min to deactivate the enzyme. cDNA was then stored at -80C. Two types of 

negative controls were carried out simultaneously and expected to produce no 

cDNA; a negative, no template control to test for exogenous contamination of the 

reverse transcriptase reaction, and a negative no reverse transcriptase control to 

test for genomic contamination of the total RNA samples.  

3.8.3 Amplification of cDNA using PCR 

To obtain full length Vmo-1 specific cDNA (696bp NM_001013607.1), total 

cDNA was amplified using primer set BFG27/28 (Table 10), at an annealing 

temperature of 50°C (protocol 3.4) to yield an amplicon 671bp long.  

PCR reactions were carried out in 20μl volumes using 1μl cDNA obtained as 

outlined in 3.8.3, 1X HOT FIREPol® DNA Polymerase (Solis Biodyne), 1X HOT 

FIREPol® 10X Buffer B2 (Solis Biodyne), 2.5mM MgCl2 (Invitrogen), 200μM 

dNTPs (Invitrogen), 0.25mM each of primers BFG27F and BFG28R and mQH2O.  

 

After the reaction was completed the PCR products were electrophoresed on a 2% 

agarose gel with a 100bp ladder (Solis Biodyne) as per protocol outlined in 3.1. 

Using primer set BFG1/2 (Table 9) at an annealing temperature of 55°C a 

negative, no template control and a positive Vmo1 control were used to test for 

exogenous contamination and verify successful PCR. 

For PCR products to be sequenced, they were then purified using the rAPid 

Alkaline Phosphatase method as outlined in 3.2.3 and sent for DNA sequencing to 
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determine if the correct sequence had been amplified and ensure complete 

coverage of the gene for the purposes of cloning and protein expression.  

3.8.4 DNA Sequencing  

DNA sequence data was obtained from the University of Waikato DNA 

Sequencing Facility (Hamilton, New Zealand) using an Applied Biosystems 

3130xl Genetic Sequence Analyzer. Forward and reverse reactions were carried 

out using BFG27F and BFG28R primers (Table 9) and the sequences analysed by 

Applied Biosystems Software, BLAST online tools and Geneious software 

(Appendix 8).  

 

3.9 VMO1 Protein Expression in Mouse Tissue 

The expression of the VMO1 protein in mice was assessed in two ways; 

immunohistochemistry (IHC) of the mouse inner ear, and immunoblotting of 

various tissues and organs from the mouse on a western blot. For immunoblotting, 

protein was extracted and the concentration measured using Bradford assay. 

Further assessment was made using SDS-PAGE gel electrophoresis for both 

concentration and quality. 

3.9.1 Protein Concentration Estimation using Bradford Assay 

The Bradford assay was used to estimate protein concentrations from dissected 

mouse tissues. BSA standards were prepared in a serial dilution and 1μl of each 

placed into individual wells in a 96 well microtitre plate (CELLSTAR®). One 

microlitre of each undiluted samples was placed in individual wells. One hundred 

microlitres of diluted dye reagent (BIORAD) was added to each well using a 

multipipette and mixed thoroughly by pipetting up and down. Reactions were 

incubated and left at RT for 5min before protein concentrations were estimated on 

a fluorescent plate reader (BMG Labtech FLUOstar Optima). Estimated protein 

concentrations were used as a guide for diluting protein samples for use on SDS-

Page gel for the estimation of protein quality. 
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3.9.2 Western Blot Analysis 

Western blotting was used to detect the presence of VMO1 in a range of mouse 

tissue protein lysates that were separated by size on an SDS-PAGE gel and to 

validate the specificity of the VMO1 antibody used for IHC. The membrane and 

Whatmans paper (No.1) was cut slightly larger than the SDS-PAGE gel to ensure 

complete coverage and effective transfer of proteins then prepared as outlined in 

protocol 3.9.2.1 and shown in Figure 33. A Precision Plus Protein™ Dual Color 

Standards ladder (Biorad) was used as a positive control for protein transfer and to 

estimate protein molecular weight size. 

 

Immunoblotting was used to detect, analyse and identify the VMO1 protein within 

crude preparations of homogenised mouse tissue proteins. Analysis was carried 

out using the proteins extracted from the mouse and BSA (NEB) at a 

concentration of 10mg/mL as a negative protein control. Proteins were labelled by 

incubating with a primary antibody which was then incubated with a secondary 

antibody conjugated to Horseradish Peroxidase (HRP). Binding of the secondary 

antibody to the primary antibody was detected using Thermo Scientific™ 

SuperSignal™ West Femto Chemiluminescent Substrate (ECL) and then imaged 

in a FujiFilm Intelligent DarkBox II (AlphaTech) and analysed using FujiFilm 

LAS 1000 lite V1.5 software. Following imaging of the membrane it was stripped 

of antibodies and reprobed using mouse Beta actin (-actin) as the primary 

antibody for a positive antibody control to show successful blotting and the 

presence of proteins at detectable concentrations. 

3.9.2.1 Membrane Preparation 

Polyvinylidene fluoride (PVDF) membrane (Amersham Life Science) was 

handled minimally with clean tweezers to prevent contamination with exogenous 

proteins. The membrane was prepared by cutting to appropriate size with a notch 

placed in the upper right corner and marked lightly with pencil to orient protein 

samples. The membrane was covered with methanol for 10secs which was rinsed 

away and replaced with mQH2O for 5min followed by incubation in transfer 

buffer for 1min.  

http://en.wikipedia.org/wiki/Polyvinylidene_fluoride
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3.9.2.2 Antibody Binding to Protein Target in Tissue Lysates 

The membrane was rinsed for 1min in dH2O to wash and then placed in a plastic 

container protein side up and the antibody binding carried out following the 

procedure outlined in Table 11. 

Blocking was carried out using 10% w/v low-fat milk (Anchor) to prevent non-

specific binding of the primary and secondary antibodies. Antibody incubation 

was carried out in a humidity chamber to prevent drying of the membrane and 

evaporation of the antibody solution using 1.5mL of primary antibody diluted to 

1:1000. The membrane was rinsed vigorously in TBS to remove the antibody 

solution and then washed in TBS and TBS-T to remove non-specifically bound 

antibodies to increase sensitivity and reduce background noise. HRP-Goat Anti-

rabbit secondary antibody (GeneTex) binding was carried out in a 2mL volume 

with a dilution factor of 1:5000.  

Table 11: Procedure for immunoblotting outlining the order and times for incubation in 

various solutions. 

Step Solution Duration 

Block (shaking) 10% w/v low-fat milk in 

1X TBS-T buffer 

Overnight at 4°C 

Primary antibody Diluted rabbit anti goat 

antibody in Blocking 

solution 

Overnight at 4°C in a 

humidity chamber 

Rinse 1X TBS-T buffer x3 

Wash (shaking) 1X TBS-T buffer 15min x3 

Secondary antibody Diluted rabbit anti goat 

antibody in Blocking 

solution 

1hr at RT in a humidity 

chamber 

Rinse 1X TBS-T buffer x3 

Wash (shaking) 1X TBS-T buffer 15min x1 

5min x2 

1X TBS buffer 5min 

3.9.2.3 Immunodetection 

Binding of the secondary antibody (GeneTex) was detected using ECL 

development according to the manufacturer’s recommendations (Thermo 

Scientific). A 600μl aliquot of each developing solution were mixed together and 

poured over the membrane to completely cover it then left to develop for 2min at 

RT in a light proof drawer. Care was taken to expose developing solution to as 
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little light as possible to prevent photo-bleaching of the developing reagents. The 

membrane was drained of the excess solution and placed in a developing film and 

exposed for an appropriate amount of time in a FUJIFILM Intelligent Dark Box II 

LAS-1000. 

ECL development caused a chemical reaction resulting in the oxidation of luminol 

by the HRP to emit light for the detection of the protein of interest at a level of 1-

10pg. 

3.9.2.4 Removal of Antibody from the Membrane 

Following imaging, the membrane was stripped of antibodies using a protocol 

adapted from Abcam® and reprobed as outlined in 3.9.2.2 using -actin antibody 

at a concentration of 1:1000. Following immunodetection, the membrane was 

rinsed twice for 5min each in 1X TBS. Stripping buffer was heated in a water bath 

to 50°C and then poured over the membrane and incubated at RT for 5min 

shaking. The stripping buffer was replaced with fresh buffer and then left shaking 

at RT for a further 10min. Stripping buffer was discarded and the membrane 

washed twice in 1X PBS shaking at RT for 10min followed by two washes in 1X 

TBS-T for 5min.  

3.9.2.5 Ponceau Staining 

Following immunodetection, the membrane was placed in Ponceau stain to act as 

a positive control to check for the presence of proteins at detectable levels. The 

membrane was placed in a glass dish and covered with Ponceau stain and left 

rocking at RT for 5min. Ponceau stain was discarded and the membrane rinsed in 

tap water to remove excess stain. 

3.9.2.6 Protein Transfer 

Proteins were transferred from an SDS-PAGE gel (protocol 3.5) onto a PVDF 

membrane using an SE300 miniVE Integrated Vertical Electrophoresis and 

Blotting Unit (Hoefer) with the membrane and gel laid as illustrated in Figure 33  
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Figure 33: Layout of SDS-PAGE gel on membrane ready for protein transfer. The position 

of the molecular weight ladder (BIORAD) and pencil marking in lane position are shown. 

The membrane and gel were assembled with Whatmans paper and sponges in the 

blotting case as outlined in Figure 34 and then covered with transfer buffer so the 

membrane and Whatmans paper were fully submerged. 

 

Figure 34: Arrangement of western blotting components for protein transfer 

The assembled blotting case was then placed into the blotting unit filled with 

chilled water and electrophoresed for 2hr at 25-50 volts. 
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3.10 VMO1 Protein Expression in the Inner Ear of the Mouse 

To maintain cell morphology and integrity of the tissue sample, 4% 

paraformaldehyde (PFA) was used to fix the sample. This prevents protein 

degradation and preserves the antigenicity of the target proteins by protein cross 

linking and antimicrobial action of PFA. Optimal cutting temperature (OCT) 

freezing medium was used to embed the specimens which were then sectioned 

(10μm) on a Leica CM1850 UV cryostat (Leica Biosystems) and collected onto 

75x25mm gelatin coated single frosted pre-cleaned Corning microscope slides 

(Corning Inc). The slides were then processed for either IHC or H&E staining. 

Stained slides were visualised on a Leica fluorescent microscope. 

3.10.1 Fixation, Embedding and Sectioning of Mouse Ears 

Six P5 mice (wild type C57/B16/129SV) were euthanised with CO2 according to 

SOP9 (UoW) and then decapitated. The skin of the head was removed then 

hemidissected and the brain removed. Tissue was dipped in 1X PBS and then 

placed in 50mL Falcon tube and covered in 4% PFA to fix overnight rocking 

gently at 4°C. The following day, the PFA was replaced with fresh 4% PFA and 

again left overnight rocking gently at 4°C. The following day, the specimens were 

removed from PFA and rinsed with 1X PBS, washed three times for 10min each 

in fresh 1X PBS and finally rinsed with 30% sucrose for cryopreservation. 

Sucrose wash was repeated twice for 10min each and a final wash of 30% sucrose 

was left overnight, rocking gently at 4°C to dehydrate tissue. The following day, 

half of the sucrose was removed and replaced with OCT embedding media 

(Tissue-Tek 4583, 118mL VWR, Sakura) and left at 4°C rocking gently for 1hr. 

 

A cryomold was filled with OCT and a single specimen was removed from the 

OCT/sucrose solution with sterile tweezers and allowed to drip drain before being 

placed carefully (avoid air bubbles) in the cryomold. Using a dissection 

microscope, the tissue was oriented with the head towards the top of the mould 

with the back facing left and sitting as flat as possible to maintain even sectioning.  
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Figure 35: Position of hemidissected mouse head in the cryomold. The plane of sectioning is 

also shown. 

Once oriented correctly the cryomold was placed in the dry ice/methylbutane 

slurry to set OCT rapidly. Moulds were individually wrapped in tin foil, labelled 

and stored at -80°C. 

3.10.2 Slide Preparation 

Corning frosted slides were coated in gelatin in preparation for sectioning and to 

ensure sections remained on the slides during IHC and staining procedures. Fifty 

slides were placed in four glass racks and soaked in hot tap water with Virkon® 

detergent for 1hr and then rinsed under hot running tap water for 1hr followed by 

rinsing in dH2O three times. They were then air dried in a 37°C oven for 1 hour. 

To gelatin coat the slides, 1L of RNase free DEPC treated mQH2O was brought to 

boil in a 2L beaker and then slowly allowed to cool while being stirred using a 

magnetic flea. At 60°C, 2g of Gelatin Type A (300 Bloom, Sigma category 

number G-2500) was added. At 50°C, 0.1g of Potassium Chrome III Sulfate 

(KCr(III)SO4) was added and the solution allowed to cool to 35°C. Each rack was 

dipped in the solution for 1min and allowed to dry on its side with the frosted 

portion down for 5min. Dipping was repeated once and the slides allowed to dry 

overnight at 35°C. Slides were stored in the original boxes at RT prior to use. 

3.10.3 Sectioning 

The cryostat temperature was set to -25°C, 30min prior to sectioning. OCT 

embedded mouse heads were transported on ice from the -80°C freezer to the 

cryostat as quickly as possible to prevent defrosting of the OCT, and immediately 



  

 

 

3-77 

placed into the sectioning chamber along with the round metallic stage, razor 

blades and brushes. The cryostat was left for 30min to allow the machine to reach 

the set operating temperature. The embedded tissue was then removed from the 

cryomold in preparation for mounting onto the stage. Enough OCT was placed 

onto the stage to support the tissue sample and the tissue placed on the stage as 

shown in Figure 35 and the base covered in OCT and frozen in place using 

cryospray. Once completely set, the stage was clamped into place in the stage 

clamp and retracted as far from the blade holder as possible ready for sectioning. 

The blade was inserted into the blade holder, and the angle adjusted to 10° and 

secured in place. The stage was moved to just in front of the blade and the 

thickness of the sections set to 50μm. The roll bar was lifted away from the blade 

and sections made to expose the embedded tissue. The thickness of the sections 

was adjusted to 20μm and sectioned until the eye was visible. The thickness was 

again adjusted to 10μm and the roll bar lowered over the blade. Sections were 

taken by rotating the handle in a smooth steady motion and the tissue trimmed 

using a razor blade to ensure flat even sectioning. Every fifth section was 

collected on a slide at RT and checked for inner ear anatomy on a dissection 

microscope. Once the inner ear was reached, sections were collected in series of 

four or five slides with 9 sections per slide by lifting the roll bar to expose the 

section and the slide gently placed on top of it to collect it. The slides were 

allowed to dry at RT for 1hr and then stored in glass slide racks wrapped in foil at 

-20°C.  



  

 

 

3-78 

 

Figure 36: Layout of mouse sections on a microscope slide showing the positions of the 

coverslip and where mounting media was placed. 

3.10.4 Section Staining 

Three types of staining methods were used on serial sections collected from the 

OCT embedded mouse specimens. They were used to visualise the anatomy of 

sectioned tissue to check for tissue integrity, to identify individual cells and 

structures within the inner ear, and to localise the VMO1 and/or β-actin protein. 

3.10.4.1 Haemotoxylin and Eosin Anatomy Stain 

Haemotoxylin and Eosin stain (H&E) is a histological stain used to determine the 

integrity of tissue after sectioning and to visualise cells in a tissue section. It 

consists of two dyes haemotoxylin and eosin. Haemotoxylin stains the DNA in the 

nuclei, RNA in the ribosomes and rough endoplasmic reticulum as well as 

keratohyalin granules and calcified material and carbohydrates in the cartilage a 

purple blue colour. Following haemotoxylin staining, eosin is used to stain the 

cytoplasm of cells, cytoplasmic filaments in muscle cells, intracellular membranes, 

and extracellular fibres shades of red, pink and orange (Anderson, 2011). 

 

To prepare for H&E staining, slides were brought to RT by leaving on the bench 

covered in tinfoil for 3hr and rinsed in 1X PBS for 5min. Slides were removed 

from the liquid and the excess wiped away from the underside of the slide and 

around the tissue using a paper towel but was not allowed to dry out. Using a 

pipette tip, 1mL of haemotoxylin solution was slowly dropped onto slide and 

http://en.wikipedia.org/wiki/Keratohyalin
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tilted to cover the tissues then left at RT for 5min. The reverse of the slide was 

then placed under gently running tap water to rinse then placed in 1X PBS for 

5min. Slides were removed from the PBS and the excess liquid wiped away from 

the underside of the slide. One millilitre of eosin was carefully dropped onto the 

tissue and left for 5min then rinsed in running tap water. The slide was then 

mounted directly under a 22x60mm coverslip (MenzelGlaser) in Fluoroshield™ 

with DAPI (Sigma-Aldrich). Fluoroshield™ was used to preserve the 

fluorescence of the antibodies and Dapi to visualise cell nuclei. 

3.10.4.2 IHC Staining 

IHC was carried out using the indirect method in which an unlabeled primary 

antibody was incubated on tissue sections followed by a second reaction in which 

secondary antibody conjugated to the fluorophore Fluorescein was reacted with 

the primary antibody to localise the VMO1 protein within the inner ear with the 

VMO1 antibody (GeneTex). Slides were incubated in the solutions listed in Table 

12 for the appropriate times. The detergent Triton X-100 was used to reduce 

surface tension of the tissue to give better coverage of the tissue sections. 

Hydrogen peroxide (H2O2) was used to eliminate endogenous peroxidase activity 

which results in high levels of non-specific background noise. Blocking and 

antibody incubation was carried out in a humidity chamber with a light proof lid. 

Tissue was blocked in 5% goat serum (Sigma) at 4°C overnight to reduce non-

specific hydrophobic binding of the primary and secondary antibodies. Primary 

antibody was pipetted directly onto the tissue to preserve volume and diluted in 

10% blocking solution at a dilution of either 1:100 or 1:1000. Secondary antibody 

was diluted in 10% blocking solution at a dilution of 1:5000 and pipetted over the 

slides to cover the tissue. A negative antibody control was carried out to ascertain 

the amount of background noise by substituting primary antibody for 1X PBS. A 

positive control using the β-actin antibody, which is known to be ubiquitous in 

mouse tissue and present in the mouse inner ear, was used as a primary antibody 

to validate the IHC protocol.  
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Table 12: Protocol for IHC using a primary and secondary antibody showing the 

solutions/reagents used the incubation times and the amount of times each procedure was 

repeated 

Solution Incubation time 

1X PBS 5min x2 

0.5% TRITON X-100 (in 1X PBS) 30min 

1X PBS 5min x2 

0.9% H2O2 (in 1X PBS) 30min 

1X PBS 5min x3 

100μl 5% goat serum Overnight at 4°C 

100μl Primary antibody in 10% blocking solution (1:100 or 1:1000) Overnight at 4°C 

1X PBS 10min x3 shaking 

1X PBS Overnight at 4°C 

500μl Rabbit IgG H+L antibody FITC in 10% blocking solution 

(1:5000) 

1hr  

1X PBS 10min x3 shaking 

Mount   

3.10.4.3 Nuclei staining and slide mounting 

Hoescht (Sigma) and 4,6-diamidino-2-phenylindole (DAPI) stains were used 

alternately as blue fluorescent dyes to stain DNA in cell nuclei. Both are excited 

by UV light (350nm) and emit blue fluorescent light around 460nm and are 

commonly used in fluorescence microscopy and IHC.  

 

The Fluoroshield™ with DAPI mounting media was used to mount all of the IHC 

slides except where otherwise stated. Alternatively, after IHC was carried out the 

slide was stained with 200μl of Hoescht solution (0.5μg/mL) for 30min then 

mounted in glycerol mounting fluid. To mount, two drops of mounting media 

were placed in the centre of the slides as shown in Figure 36 and a clean dry 

coverslip was gently placed on top of the slide with care taken to avoid air 

bubbles. The slides were left to dry in a light proof slide container overnight at RT. 

3.10.5 Microscopy 

IHC and H&E stained slides were visualised on a Leica DMR Microscope with a 

Nikon Digital Camera attached. FITC secondary antibody was conjugated to the 

VMO1 and β-actin primary antibodies and was visualised with UV light and a 

460-490nm cube filter. Hoescht and DAPI staining were visualised using UV light 

with a 352-402nm filter block. H&E stain was visualised using light microscopy 

with no filter. 
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4 CHAPTER FOUR 

RESULTS  

This section outlines the results from the molecular methodologies used to 

amplify and sequence Vmo1 mRNA, clone and express recombinant VMO1 

protein, validate antibodies using whole protein tissue lysates and recombinant 

protein via western blotting, and finally, determine the protein localisation of 

VMO1 in the mouse inner ear via IHC. 

4.1 Isolation of Total RNA from Mouse Inner Ears 

Thirty microlitres of total RNA was extracted and isolated from six inner ears 

dissected from three adult P28+ female mouse specimens which were pooled 

together to optimise RNA yield using the method outlined in protocol 3.8.2 which 

was adapted from the supplier recommended procedure. Three aliquots were 

collected from the homogenised tissue sample: aliquot 1, 2 and 3, respectively. 

 

Extracted RNA samples (Aliquot 1, 2 and 3) were quantified using the Nanodrop. 

Table 13 shows the Nanodrop results for the three aliquots of total RNA collected 

using protocol 3.8.2. As expected, the ratio of absorbance at 260 nm and 280 nm, 

which measures the purity of the samples, were within acceptable limits (1.8 – 2.0) 

with DNA expected at 1.8 and RNA at 2.0. The chromatogram produced was also 

analysed for contamination by reagents used in the isolation of the total RNA such 

as Trizol, phenol and guanidinium thiocyanate, which produce large peaks around 

the 230nm range. 

Therefore, the results suggest the RNA can be used as a template for cDNA 

synthesis. 

Table 13: RNA sample Nanodrop results showing the concentration, purity and 

contamination with extraction and purification reagents such as Trizol, guanidinium 

thiocyanate (GITC) and phenol.  

Sample 260/280 

ratio 

Contamination with extraction reagents 

(Trizol, GITC, Phenol) 

Concentration 

(ng/μl) 

Aliquot 1 2.03 Negligible 2461.5 

Aliquot 2 2.07 Negligible 1209.7 

Aliquot 3 2.05 Negligible 3633.3 
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4.2 cDNA Synthesis Using Inner Ear Mouse RNA as a Template 

RNA extracted from the inner ear of the mouse was used to produce double 

stranded cDNA for the purposes of amplification by PCR for cloning and 

sequencing. 

Figure 37 shows three aliquots of cDNA: RNA1, 2 and 3 respectively, 

electrophoresed on a 2% TAE agarose gel stained with RedSafe™. A 5μl sample 

of each of the three aliquots were electrophoresed to check for purity and 

concentration and show a characteristic smear of cDNA between 100-700bp long. 

 

Figure 37: cDNA synthesised by reverse transcription of three RNA samples extracted from 

P28 mouse inner ears using the oligo-dT primers. 5μl of each sample were electrophoresed 

on a 2% TAE agarose gel stained with RedSafe™ to check for purity and concentration and 

show a characteristic smear of cDNA between 100-700bp long compared against a 100bp 

ladder (Solis Biodyne). 

In addition to cDNA synthesis negative controls were prepared in order to assess 

genomic DNA contamination (cDNA-). This control included no reverse 

transcriptase enzyme. With PCR amplification the negative cDNA control should 

not produce any amplicons and therefore no visible bands. Figure 38 shows 

amplification of two cDNA templates using GAPDH mouse specific primers 

(GAPDH1/2) and Taq DNA Polymerase. The negative control (-ve) has no cDNA 

template and therefore, measures PCR contamination. The cDNA- negative 

controls were produced during cDNA reverse transcription reaction and contain 

no reverse transcription enzyme to test for the presence of genomic DNA in the 

RNA template.  

PCR produced single bands of expected size (150bp). Band intensity is indicative 

of PCR product concentration with cDNA1 containing greater concentrations. 
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This fits with the Nanodrop results that show the concentration of RNA in sample 

1 is twice that of sample 2. Contamination of cDNA1- (black arrow) is the result 

of genomic DNA contamination and indicates that the high Nanodrop 

concentration of aliquot 1 is partly due to genomic DNA contamination. 

 

Figure 38: cDNA controls using mouse specific primers (GAPDH1/2) electrophoresed at 91V 

for 30min on a 2% TAE agarose gel stained with RedSafe™ dye with bands of expected size 

(150bp). Possible genomic DNA contamination indicated with black arrow. Electrophoresed 

for 30min at 90V on a 1% 1X TAE, agarose gel stained with RedSafe™ and compared to the 

100 bp molecular weight ladder (Solis Biodyne). Bands lower than 100 bp are primer dimers. 

This electrophoresis result and the Nanodrop readings indicate high purity and 

high concentration of the RNA2 template. The RNA1 sample contains genomic 

DNA contamination but is otherwise pure of contaminants. The next step is to use 

the cDNA2+ as a template for PCR amplification. 

4.3 Optimisation of Vmo1 Amplification from cDNA 

PCR was carried out with cDNA2 samples to check for amplifiable Vmo1 cDNA. 

Optimal results from PCR were achieved using protocol 3.4 with the annealing 

temperatures listed in Table 9.  

PCR reactions were carried out using different concentrations of PCR reagents 

and annealing temperatures to maximise amplification of template cDNA for 

DNA cloning and DNA sequencing. Optimal results, where there were bright, 
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sharp, single bands of expected sizes were achieved using higher MgCl2 

concentrations (2.5mM) and HOT FIREPol® 10X Buffer B2 (Solis Biodyne) 

which contains Tris-HCl, (NH4)2SO4 and detergent. The best results for primer set 

BFG1/2 (495bp) were achieved with an annealing temperature of 55°C and primer 

set BFG27/28 (671bp) with an annealing temperature of 50°C. 

4.3.1 HOT FIREPol® Buffer Optimisation 

Figure 39 shows the amplification of cDNA2 and cDNA2- at 60°C using mouse 

specific primers and HOT FIREPol® DNA polymerase and the HOT FIREPol® 

B1 buffer. --ve is a negative genomic DNA control using cDNA2- and BFG1/2 

primer set, -ve is a negative PCR control with no template cDNA. Lanes 1, 2 and 

4 show no amplification of the Vmo1 cDNA for primer sets BFG27/28, BFG7/8 

and BFG9/10. Lane 3 shows amplification of the Vmo1 cDNA using primer set 

BFG1/2. Subsequent PCR reactions were adjusted to include the HOT FIREPol® 

10X Buffer B2. 

 

Figure 39: Amplification of cDNA2 and cDNA2- at 60°C using mouse specific primers and 

HOT FIREPol® Taq DNA polymerase with a MgCl2 concentration of 1.5mM and HOT 

FIREPol® B2 buffer and then electrophoresed at 90V for 30min on a 1% TAE agarose gel. 

Lane 1:unsuccessful PCR using primers BFG27/28, lane 2: unsuccessful PCR using primers 

BFG7/8, lane 3: successful PCR using primer set BFG1/2 of an expected 493bp, lane 4: 

unsuccessful PCR using primers BFG9/10, --ve is a negative genomic DNA control using 

cDNA2- and BFG1/2 primer set, -ve is a negative PCR control with no template cDNA. 

Electrophoresed for 30min at 90V on a 1% 1X TAE, agarose gel stained with RedSafe™ and 

compared to the 100 bp molecular weight ladder (Solis Biodyne). Bands lower than 100 bp 

are primer dimers. 

4.3.2 Magnesium Concentration Optimisation 

Figure 40 shows a gel electrophoresis of PCR products produced at 60°C by 

cDNA2 and cDNA2- samples using mouse specific primers, HOT FIREPol® 

DNA polymerase and HOT FIREPol® 10X Buffer B2. Lane one is a negative 
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control for the PCR reaction and contains no cDNA template. Lane 2 is a positive 

control using cDNA2 and GAPDH primer set. Lane 3 contains cDNA2- amplified 

with GAPDH primer set to test for genomic DNA contamination. Lane 4 shows an 

amplicon produced by the primer set BFG27/28 with 1.5mM MgCl2. Lane 5 

shows an amplicon produced by the primer set BFG27/28 with 2.5mM MgCl2. 

Subsequent PCR reactions were adjusted to include 2.5mM MgCl2. 

 

Figure 40: 1% TAE agarose gel of PCR products using cDNA2 and two different MgCl2 

concentrations on the primer set BFG27/28 at 60°C. -ve is a negative control using no cDNA, 

+ve is a positive control using GAPDH primers, --ve is a negative genomic DNA control using 

GAPDH specific primers, lane 1 is MgCl2 at 1.5mM, lane 5 shows greater intensity band with 

MgCl2 at a concentration of 2.5mM. Electrophoresed for 30min at 90V on a 1% 1X TAE, 

agarose gel stained with RedSafe™ and compared to the 100 bp molecular weight ladder 

(Solis Biodyne). Bands lower than 100 bp are primer dimers. 

4.3.3 Temperature Optimisation 

Figure 41 shows a gel electrophoresis of PCR products produced at 55°C by 

cDNA2 and cDNA2- samples using Vmo1 specific primers, 2.5mM MgCl2 HOT 

FIREPol® DNA polymerase and HOT FIREPol® 10X Buffer B2. Lane one is a 

negative control for the PCR reaction and contains no cDNA template. Lane 2 

contains cDNA2- amplified with primer set BFG1/2 to test for genomic DNA 

contamination. Lane 3 is a positive control using cDNA2 and primer set BFG1/2 

(495bp) to show the amplification of Vmo1 cDNA. Lane 4 shows an amplicon 

produced by the primer set BFG27/28 which is a full length Vmo1 mRNA and 

includes two RE sites for HindIII to produce a digested amplicon containing the 

full ORF for translation of the VMO1 protein for use in cloning and sequencing 
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reactions. Lane 5 is a second positive control for Vmo1 cDNA and is specific to 

Vmo1 cDNA only by including the two exon junctions found in the mRNA 

(193bp). The optimal annealing temperature for the primer set BFG1/2 and 

BFG7/8 was determined to be 55°C and used for these primer sets in subsequent 

PCR reactions. 

 

 

Figure 41: Amplification of cDNA2 and cDNA2- at 55°C using mouse specific primers and 

HOT FIREPol® Taq DNA polymerase with a MgCl2 concentration of 2.5mM and then 

electrophoresed at 90V for 30min on a 1% TAE agarose gel. -ve is a negative PCR control 

with no template cDNA, --ve is a negative genomic DNA control using cDNA2- and 

BFG1/BFG2 primer set, +ve is a positive control using primer set BFG1/2, lane 1 uses primer 

set BFG27/28, lane 2 uses primer set BFG7/8. Electrophoresed for 30min at 90V on a 1% 1X 

TAE, agarose gel stained with RedSafe™ and compared to the 100 bp molecular weight 

ladder (Solis Biodyne). Bands lower than 100 bp are primer dimers. 

Figure 42 shows a gel electrophoresis of PCR products produced at two different 

annealing temperatures used with primer set BFG27/28 and 2.5mM MgCl2, HOT 

FIREPol® DNA polymerase and HOT FIREPol® 10X Buffer B2. Lane one is a 

negative control for the PCR reaction and contains no cDNA template. Lane 2 

contains cDNA2- amplified with primer set BFG1/2 to test for genomic DNA 

contamination. Lane 50°C shows results for PCR carried out at 50°C and is much 

more intense than those shown in lane 55°C where the PCR was carried out at 

55°C. Lane +ve and –ve are positive and negative PCR controls respectively and 

were carried out using primer set BFG1/2 at an annealing temperature of 55°C. 

Along the bottom of the gel at less than 100bp are primer dimers for all of the 



  

 

 

4-87 

reactions. The optimal annealing temperature for the primer set BFG27/28 was 

determined to be 50°C and used for these primer sets in subsequent PCR reactions. 

 

 

Figure 42: Effect of annealing temperature on band intensity for primer set BFG27/28 

Amplification of mouse inner ear cDNA using Vmo1 specific primers (BFG27/28) and HOT 

FIREPol(R) Taq DNA polymerase at different annealing temperatures (55°C and 50°C). The 

PCR products are electrophoresed for 30min at 90V on a 1% 1X TAE, agarose gel stained 

with RedSafe™ and compared to the 100 bp molecular weight ladder (Solis Biodyne). Bands 

lower than 100 bp are primer dimers. –ve is a negative PCR control and +ve is a positive 

Vmo1 control using primer set BFG1/2 at 55°C.  

Table 9 shows the recommended annealing temperatures (5°C below lowest Tm in 

primer pair) for Vmo1 primers based on melting temperatures (Tm) recommended 

by oligonucleotide supplier (IDT) and the recommended annealing temperatures 

found through experimentation. 

Table 14: Recommended annealing temperatures for primer sets used in standard PCR with 

2.5mM MgCl2, HOT FIREPol® DNA polymerase and HOT FIREPol® 10X Buffer B2.  

Primer set 

Calculated IDT 

recommended annealing 

temperature 

Thesis 

recommended annealing 

temperature 

BFG1/2 51.7°C 55°C 

BFG7/8 51.5°C 55°C 

BFG27/28 58.5°C 50°C 

musGAPDH - 60°C 
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4.4 DNA Sequencing Results 

Applied Biosystems Software, BLAST online tools and Geneious software were 

used to analyse DNA sequencing results (Appendix 8) obtained from the UoW 

DNA sequencing facility to determine if the correct sequence had been amplified 

and ensure complete coverage of the gene for the purposes of protein expression 

in an expression vector. The forward and reverse complement sequences (Figure 

43) were compared to each other and checked against the mouse mRNA reference 

sequence (NM_001013607.1). 
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Figure 43: Multiple alignment of the mouse Vmo1 mRNA reference sequence (NM_001013607.1) with the forward sequence and reverse compliment of the reverse 

sequence obtained from the UoW DNA sequencing facility.  
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4.5 Cloning and Expression of the Mouse Vmo1 Amplicon 

Vmo1 was successfully PCR amplified using primer set BFG27/28 following 

protocol 3.4 with an annealing temperature of 50ºC.  

Electrocompetent E. coli DH5α cells were shown to be competent and allowed the 

incorporation of the frozen stocks of the pProEX HTb and pBluescript vector into 

E. coli cells with a high efficiency with over 50 colonies seen on plates containing 

100μl of transformed culture. Single colonies of transformed DH5α were 

successfully isolated and grown overnight for amplification of the plasmid which 

was then isolated using the phenol/chloroform methods and quantified on a 1% 

agarose gel and on the Nanodrop. Ligation of the Vmo1 transcript into the isolated 

vectors was unsuccessful and is discussed in 5.4.1. Figure 44 shows the presence 

of the pProEX HTb vector at high concentrations throughout the digestion and T-

tailing procedure. Also shown are the PCR amplicons produced by primer set 

BFG27/28 at two different temperatures 50°C and 55°C. A positive Vmo1 control 

using primer set BFG1/2 and a negative control with no template cDNA. 

 

Figure 44: Agarose gel electrophoresis of products processed for ligation into vectors which 

included digestion with the EcoRV RE, T-tailing, HindIII RE digestion and the uncut 

plasmid at an estimated 4000-5000bp size. Also shown are PCR amplicons produced by 

primer set BFG27/28 at 50 and 55°Cand a positive and negative control produced using 

primer set BFG1/2. 
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Table 15: Nanodrop readings for isolated vectors showing the type of vector, the bp length of 

the plasmid and the concentration in ng/μ 

DNA Sample Classification Size 

(bp) 

Concentration 

(ng/μl) 

pET41a(+) Circular Plasmid 5933 - 

pET42a(+) Circular plasmid 5930 11659 

pBluescript II SK (+) Circular Plasmid 3000 970 and 1158 

pProEX HTb Circular plasmid 4779 5457, 4562, 5339 and 

6615 

pCR®4-TOPO  Linear Plasmid 3956 Not stated by supplier 

4.6 Protein Extraction from Whole Cell Lysates of Mouse 

Tissues 

Protein was extracted from 20 different tissues (Table 16) dissected from P28+ 

mice for the purposes of validating the VMO1 antibody. 

Inner ears were extracted from four P28+ mouse specimens and pooled together 

for extraction to optimise protein yield using the method outlined in protocol 

3.7.2.2 and then aliquoted into 100μl samples. Other organ and tissue samples 

were dissected from six mice and the protein extracted following protocol 3.7.2.1. 

In all protein experiments purified BSA of a known concentration (10mg/mL) was 

used as a control to compare unknown protein concentrations and sizes. In all 

antibody experiments -actin antibody (GeneTex) was used to validate the 

immunodetection protocol and validate protein presence at detectable 

concentration. Protein quality and concentration was measured in two ways, 

Bradford assay which was analysed visually and with a fluorescence plate reader, 

and by SDS-PAGE. 

4.6.1 Bradford Assay  

Bradford assay was used to estimate the concentration of tissue lysate proteins 

extracted from the mouse following protocol 3.7. 

Table 16 shows the estimated protein concentrations of some of the proteins 

extracted from the mouse using the Bradford assay using a quick visual display. 

For a more accurate determination, a fluorescence plate reader (BMG LABTECH 

FLUOstar OPTIMA) was used (Table 16). The standards did not produce reliable 

readings on the fluorescent plate reader nor did they agree with the duplicate 

standards carried out. A visual reading of the fluorescent plate (not shown) was 
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used to roughly group proteins into high, medium and low concentrations and 

nothing where no visible colour change was seen.  

 

Figure 45: Bradford assay showing relative concentrations of proteins. Row A (1-10) shows 

BSA standards of concentrations 0, 0, 0.1, 0.25, 0.5, 1, 2, 4, 6 and 10mg/mL respectively. Row 

B shows four samples adrenal gland, gall bladder, liver and kidney respectively. 
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Table 16: Bradford assay results. Table shows the results for three Bradford assays carried 

out on tissue lysates from P28+ female mouse. all three assays were assessed visually. Assay 3 

was also analysed on a fluorescent plate reader (BMG LABTECH FLUOstar OPTIMA). 

Table shows relative concentrations of proteins from each sample compared to the BSA 

controls. 

 

 Sample 

Bradford 
Assay 1 

Bradford 
Assay 2 

Bradford Assay 3 

Visual 

display 

Visual 

display 

Fluorescent plate 

reader 

Visual 

display 

B
S

A
 s

ta
n

d
a

rd
s 

(m
g
/m

l)
 

0.00 Nothing Nothing	 0.000	 0.000	 Nothing 

0.10 Nothing Nothing 0.045 -0.001 Nothing 

0.25 Low Low -0.003 0.058 Low 

0.50 Low Low -0.020 0.000 Low 

1.00 Medium Medium 0.001 0.003 Medium 

2.00 Medium Medium 0.008 0.027 Medium 

4.00 High High 0.044 0.067 High 

6.00 High High 0.077 0.168 High 

10.00 High High - - - 

M
o

u
se

 t
is

su
e
 l

y
sa

te
s 

Adrenal gland Low Medium 0.017 Low 

Bladder  High    

Brain High High  - - 

Ear 1 Medium   0.016 Medium  

Ear 2 Medium   0.025 Medium  

Ear 3 Medium   0.004 Medium  

Eye High  0.185 High 

Gall bladder Low Low 0.000 Nothing 

Heart High High  0.128 High 

Kidney High High  - - 

Liver High  0.192 High 

Lung High High  0.044 High 

Lymph node Low   0.010 Low  

Ovaries  High    

Pancreas Medium  0.256 Medium 

Reproductive system 

(female) 
High  0.051 High 

Spleen High  0.088 High 

Stomach   High    

Tear Medium   0.044 Medium  

Thymus Low   0.085 Low  

Tongue Low Medium 0.090 Nothing 

Uterus   Medium    
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4.6.2 SDS-PAGE 

SDS-PAGE was used to visually assess the concentration and quality of protein 

samples for subsequent western blotting procedures.  

All SDS-PAGE gels were carried out with 5μl of Precision plus Protein™ Dual 

Color Standards (BIORAD) to estimate the size of the proteins and a 10mg/mL 

BSA standard mixed with SDS loading dye at a ratio of 1:10. Electrophoresis was 

initially carried out at 10mA for 15min then followed by 30mA until the dye front 

reached 1cm above the bottom of the gel as per protocol 3.5. 

Due to the highly variable results shown with the Bradford assay the proteins 

were left undiluted prior to being mixed with loading dye and analysed on an 

SDS-PAGE gel (Figure 46). The results from this gel and the rough groups 

allocated by the visual Bradford assay were used to dilute the proteins for the 

subsequent SDS-PAGE gels. 

 

Figure 46: 12% 0.75mm thick hand-cast SDS-PAGE gel with a 5% stacking gel showing 

electrophoresis of 8 undiluted protein lysates. Gel was electrophoresed in 1X SDS running 

buffer for 15min at 10mA stacking and at 30mA resolving until dye front was 1cm from the 

bottom of the gel. All samples were loaded with equal volumes of SDS loading dye excluding 

Tongue and Gall bladder which were loaded at a 4:1 ratio.  

Proteins assessed as being high in concentration were diluted in equal volumes of 

protein lysis buffer before being mixed with loading buffer. Medium and low 
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concentration proteins were left undiluted. Protein lysates and SDS loading dye 

were mixed together according to the ratios outlined in Figure 47 and Figure 48 

(loading dye:protein lysate) and 20μl loaded onto two 10% Mini-PROTEAN
®
 

TGX™ Precast gels (BIORAD). Gels were electrophoresed together in a Mini-

PROTEAN
®
 Tetra Vertical Electrophoresis Cell (BIORAD) and then visualised in 

the Gel Doc™ EZ System on a stain free sample tray using Image Lab™ Software 

(BIORAD).  

Figure 47 shows protein lysates from the pancreas, heart, eye, liver, thymus, 

tongue and spleen with good separation of proteins between 15-25kDa. All tissues 

except the liver are of approximately equal concentrations and of good quality 

with visible bands of varying sizes. BSA standards show very low levels of 

contamination around 150kDa and below 15kDa in size. The most intense band in 

the BSA lane occurs between 75-50kDa, which fits with the expected band size of 

66kDa for the BSA protein.  

 

Figure 47: 10% 1mm thick precast SDS-PAGE gel (BIORAD) showing electrophoresis of 

mouse protein lysate sample and the ratios at which they were loaded with SDS loading dye. 

Proteins were denatured at 99°C for 3min prior to loading. Red labelled BSA loaded at a 

concentration of 10mg/mL produce a band of expected size (66kDa). 
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The SDS-PAGE gel in Figure 48 contained the three aliquots of ear proteins 

extracted from 8 ear samples from four mice that were pooled together. The first 

collected aliquot (ear1) was collected by homogenising all of the bony inner ears 

collected in less than 3mL of protein lysis buffer. The supernatant and fine bone 

fragments from this were collected and set aside on ice. The second aliquot (ear2) 

was collected by removing bone fragments from the teeth of the homogenising 

wand and rinsing with 1mL of protein lysis buffer before repeating 

homogenisation of the larger bony fragments left from the first sample. The 

supernatant and fine bone fragments were again collected and set aside on ice. 

The third sample (ear3) was a 700μl final rinse of the wand. Bone fragments were 

removed from teeth of the wand and homogenised a final time before the wand 

was disassembled and all bone fragments and supernatant scraped carefully 

together and collected. The three samples were centrifuged for 10sec at maximum 

speed to pellet the larger fragments before being aliquoted in 100μl samples. The 

SDS-PAGE results reflect the relative concentrations of these three aliquots with 

the first (ear1) being the most concentrated and the second and third samples less 

concentrated. The other lanes contain tissue lysate from the lymph node and gall 

bladder mixed together, the adrenal gland, lung, tear gland, and the reproductive 

system of female mouse. The BSA standard again shows very low levels of 

contamination around 150kDa and below 15kDa in size. The most intense band in 

the BSA lane occurs between 75 and 50kDa, which fits with the expected band 

size of 66kDa for the BSA protein. The tear sample shows contamination from the 

reproductive tissue sample and the gall bladder and lymph node mix sample. 

Aside from this, samples show roughly even loading samples of good quality 

proteins ranging in size from 15-250kDa. 
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Figure 48: 10% 1mm thick precast SDS-PAGE gel (BIORAD) showing electrophoresis of 

mouse protein lysate sample and the ratios at which they were loaded with SDS loading dye. 

Proteins were denatured at 99°C for 3min prior to loading. Red labelled BSA loaded at a 

concentration of 10mg/mL produce a band of expected size (66kDa). 

4.7 Western Blotting 

Western blotting was used to detect the VMO1 protein within tissue lysates and to 

validate the two VMO1 antibodies sourced from GeneTex and ProteinTech.  

Denatured tissue protein lysates were separated by SDS-PAGE and then 

transferred to a PVDF membrane which was then probed using the VMO1 

antibody. Following immunodetection the membrane was stripped of primary and 

secondary antibodies and reprobed with the -actin antibody as a control for 

protein loading and transfer.  

4.7.1 Protein Transfer 

Protein transfer from the SDS-PAGE gel to the PVDF membrane was assessed in 

four ways: (1) by using a prestained molecular weight ladder, (2) Ponceau 

staining of the PVDF membrane; (3) Coomassie blue staining of the SDS-PAGE 

gel after transfer; (4) -actin immunodetection following immunodetection and 

stripping of the VMO1 antibody. 
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4.7.1.1 Prestained Ladder Transfer 

The prestained molecular weight ladder (Precision Plus Protein™ Dual Color 

Standards) was used to estimate molecular weight of proteins and as a primary 

indicator of successful transfer of the proteins to the PVDF membrane. Transfer 

of the ladder onto the membrane and away from the SDS-PAGE gel indicated 

successful movement of at least some of the proteins. In some cases the ladder 

was also shown in the Whatmans paper used in the blotting reaction indicating 

excessive transfer possibly past the PVDF membrane. 

4.7.1.2 Coomassie Blue Staining of Transferred SDS-PAGE 

After horizontal electrophoresis of the SDS-PAGE to transfer the proteins to the 

PVDF membrane the SDS-PAGE gel was stained with Coomassie blue stain 

following protocol 3.5.3. Figure 49 shows the Coomassie blue staining of a SDS-

PAGE gel after the proteins have been successfully transferred away from the gel. 

Blue banding shows the presence of large molecular weight proteins that were not 

transferred from the gel but good transfer of proteins in the resolving portion of 

the gel. The ladder has been completely transferred and is not present in the gel. 

 

Figure 49: Coomassie blue stained SDS-PAGE gel after blotting to PVDF membrane 

showing good transfer of the smaller molecular weight proteins between 10-150kDa in size 

and traces of large molecular weight proteins still remaining in the gel. 
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4.7.1.3 Ponceau Staining 

Ponceau stain was used to assess the transfer of proteins from the SDS-PAGE gel 

to the PVDF membrane. Figure 50 shows a PVDF membrane stained with 

Ponceau stain with clear banding patterns indicating the successful transfers of 

proteins onto the PVDF membrane. 

 

Figure 50: PVDF membrane western blot stained with Ponceau stain showing good transfer 

of proteins from within the resolving gel. Stain was carried out after immunodetection and 

washing in TBS-T buffer which caused fading of the molecular weight ladder (labelled) 

which is only slightly visible in the Ponceau stain. Staining also shows possible exogenous 

contamination with proteins indicated with white arrows. 

4.7.1.4 -actin Antibody Binding 

-actin was used as a positive control for the western blotting method to 

determine if protein transfer to the PVDF membrane was successful and if 

proteins were present in high enough concentrations to be detected using antibody 

probing and chemiluminescence. Figure 51 shows the successful western blotting 

using protocol 3.9.2 of 8 mouse tissues, BSA and molecular weight ladder using 

two different antibodies (GeneTex), the -actin antibody of expected size 42kDa 

and the surfactant protein A (SPA) antibody of expected 30-60kDa in size. This 

blot also showed the successful stripping of the β- actin antibody to reprobe with 

the SPA antibody. 
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Figure 51: Western blot using the -actin antibody and SPA antibody on 8 mouse tissues and 

BSA negative control at a concentration of 10mg/mL. (A) Shows the immunodetection of the 

control bands seen in all tissues at concentrations representative of the -actin antibody 

showing expression in all tissues as expected with no binding occurring in the BSA control 

lane. The black arrow indicates a bubble in the gel which interfered with the running of the 

gel. (B) shows the same membrane which had been stripped using protocol 3.9.2.4 of -actin 

antibody and reprobed with SPA antibody again showing expression in all tissues and no 

expression in BSA control of a slightly larger molecular weight.  

4.7.2 Expression of the VMO1 Protein in Mouse Tissue Lysates 

Antibody probing was carried out using two VMO1 antibodies, sourced from 

GeneTex and ProteinTech, to test for the presence of the VMO1 protein and with 

a -actin antibody (GeneTex) as a positive control. 

VMO1 antibody binding was carried out on western blot containing the three ear 

tissue samples and tear gland sample as well as the BSA control to show 

expression of the VMO1 protein and to validate the VMO1 antibody. 

4.7.2.1 ProteinTech Antibody  

Figure 52 shows two 10% SDS-PAGE gel carried out simultaneously using 8 

mouse tissue samples and successfully transferred to PVDF membranes. The 

membranes were then blocked and incubated with 1:1000 VMO1 antibody or 

1:5000 of -actin antibody. Figure 52a shows that the VMO1 antibody recognised 

a protein in the brain lysate between 25-37kDa with no binding to the negative 

control. Figure 52b shows recognition of the -actin protein by the -actin 

antibody at high concentrations in the uterus, thymus, lung and brain with low 

concentrations in the heart and ovaries and no binding occurring in the spleen or 

BSA control and demonstrates that protein transfer was successful and of 

detectable concentrations. The ear samples were not analysed due to the limited 

sample volumen and to test other tissues for VMO1 protein. 
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Figure 52: Two western blots carried out simultaneously using protein from eight tissues 

from a P28+ mouse tissues, BSA control, and two different antibodies. Proteins were loaded 

onto a 10% hand-cast SDS-PAGE gel, transferred for 2 hours at 25V to a PVDF membrane 

in transfer buffer. Membranes were developed for 2min using ECL developing solution 

(Thermo Scientific). (A) VMO1 antibody binding in the brain tissue with no binding 

occurring for any other tissues or the BSA control. (B) positive control using the -actin 

antibody with binding occurring at high concentrations in the uterus, thymus, lung and 

brain and at low concentrations in the heart liver and ovary with no binding occurring with 

the spleen and BSA control. 

Attempts were made to duplicate the results seen in Figure 53 with very little 

success. Figure 53 shows the presence of two bands between 20 and 50kDa in the 

brain and non-specific binding of the antibody to the molecular weight ladder. 

With no binding observed in the BSA control, chicken egg shell, mouse lung, 

spleen, pancreas, reproductive system or heart. The chicken egg shell was added 

as a negative control with no binding of the VMO1 antibody expected. A 12% 

SDS-PAGE gel and PVDF membrane were used and western blotting carried out 

as per protocol 3.9.2.  
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Figure 53: Western blot carried out to duplicate results from Figure 53 using protein from 

eight tissues from a P28+ mouse and a BSA control. Protein samples were loaded onto a 10% 

hand-cast SDS-PAGE gel electrophoresed, at 15mA for 10 min followed by 30mA to separate 

and transferred for 2 hours at 25V to a PVDF membrane in transfer buffer. Membranes 

were developed for 2min using ECL developing solution (Thermo Scientific) showing VMO1 

expression in brain tissue lysate indicated by bands of two different sizes 

Following these results, a fresh mouse was dissected and a western blot carried 

out using chicken egg vitelline membrane, mouse brain, kidney and lung tissue as 

well as a BSA control. Figure 54 shows the results of this blot with non-specific 

binding seen in the molecular weight ladder and VMO1 antibody binding to the 

chicken vitelline membrane as expected between 15-50kD A very faint signal in 

the brain was detected between 15-250kDa and 15-50kDa. The lung also shows 

binding at two different molecular weight sizes between 50-150kDa and 150-

25kDa. This gel was stripped and reprobed with -actin to yield good results (not 

shown) indicating even loading and transfer of proteins to the PVDF membrane 

with no binding occurring to the BSA control. 
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Figure 54: Western blot using protein from three P28+ mouse tissues, BSA control and 

chicken vitelline membrane. Protein samples were loaded onto a 10% hand-cast SDS-PAGE 

gel, electrophoresed at 15mA for 10 min followed by 30mA to separate and transferred for 2 

hours at 25V to a PVDF membrane in transfer buffer. The blot was incubated with VMO1. 

Membranes were developed for 2min using ECL developing solution (Thermo Scientific). 

The figure shows VMO1 antibody binding in the brain tissue at around 50kDa and the lung 

at 2 different sizes 50-150kDa and 150-250kDa. Vmo1 binding is also shown in the vitelline 

membrane of the chicken at two sizes between 10-50kDa with no binding occurring in the 

BSA control.  

The next experiment was designed to immunodetect VMO1 protein under the 

same western blot conditions as Figure 54 except using the female reproductive 

system, spleen, lung, tears, eyes and three ear samples with BSA as a control. 

Figure 55 shows this western blot with binding of the VMO1 antibody occurring 

on all of the tissue samples at multiple sizes and to the molecular weight ladder 

between 50-100kDa and at 15kDa. Most of the binding occurred between 50-

250kDa with some binding occurring in the spleen and lung between 10-25kDa. 
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Figure 55: Western Blot showing non-specific binding of VMO1 antibody to proteins from 

the mouse. Protein from six P28+ mouse tissues, BSA control including three inner ear 

samples of different concentrations were loaded onto 10% hand-cast SDS-PAGE gel, 

electrophoresed at 15mA for 10 min followed by 30mA to separate and transferred for 2 

hours at 25V to a PVDF membrane in transfer buffer and probed with VMO1 antibody. 

Membranes were developed for 2min using ECL developing solution (Thermo Scientific). 

The figure shows VMO1 antibody binding in all tissues multiple times between 50-250kDa 

and binding to the spleen and lung between 10-25kDa no VMO1 binding is shown in the BSA 

control.  

4.7.2.2 GeneTex antibody 

Figure 56 shows a western blot carried out with three ear tissue samples at two 

different concentrations showing bands of the expected 20-37kDa size. Intensity 

of bands suggests ear sample 1 is of higher concentration than ear sample 2 and 3. 

The band intensity also suggests the VMO1 protein is found in higher 

concentrations in the inner ear than in the tear glands. The duplicates of the ear 

samples and tear gland samples were diluted by half and have a corresponding 

decrease in band intensity indicating that the VMO1 antibody is binding 

specifically to the VMO1 protein and can be roughly quantified to show loading 

concentration. No binding of the VMO1 protein has occurred with the BSA 

standard or to the recombinant protein ladder. -actin antibody control was not 

performed on this blot as it was damaged while washing and not retrievable. 
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Figure 56: VMO1 antibody western blot using ear and tear mouse proteins. Lanes 1 shows 

prestained precision plus ladder (BIORAD). Lane 3-5 contains 8μl of proteins loaded with 

2μl of loading dye. Lanes 6-9 contain 4μl of protein with 5μl of loading dye. Relative intensity 

of chemiluminescence indicates that the signal is a real one. Ear samples 1-3 are each 

subsequently more dilute due to the way the homogenised protein was collected. 

Western blotting was carried out to duplicate results seen in Figure 56. Figure 57 

shows a western blot carried out using protocol 3.9.2 and showing antibody 

binding to the inner ear samples at greater than150kDa and single bands shown in 

the eye, tear gland and ear tissue samples around 37kDa 50-250kDa and no 

VMO1 binding is shown in the BSA control, adrenal gland or thymus. 

 

Figure 57: Western blot carried out using protein from 4 P28+ mouse tissues BSA control 

including two inner ear samples of different concentrations indicated by the VMO1 antibody 

using a 10% hand-cast SDS-PAGE gel transferred for 2hr at 25V to a PVDF membrane in 

transfer buffer. Membranes were developed for 2min using ECL developing solution 

(Thermo Scientific). The figure shows VMO1 antibody binding in the inner ear samples at 

greater than150kDa and a single band shown in the eye, tear gland and ear tissue samples 

between 37-50kDa and no VMO1 binding is shown in the BSA control adrenal gland or 

thymus. 
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4.8 Immunohistochemistry  

IHC is a process by which the principle of antibody to antigen binding is used to 

detect specific antigens (proteins) in a biological tissue sample. The secondary 

antibody in this thesis was conjugated with a fluorophore called Fluorescein 

which will emit a green light under wavelength of 490nm. IHC was carried out on 

P5 mouse heads embedded in OCT and sectioned on a cryostat (Leica) to localise 

the VMO1 protein within the inner ear with the VMO1 antibody supplied by 

GeneTex. 

4.8.1 Mouse Section Integrity 

P5 mice heads were dissected out and cryoembedded in preparation for sectioning 

on a cryostat as outlined in protocol 3.10.1. Sections were collected from the inner 

ear at a width of 10μm on slides coated in gelatin as outlined in 3.10.2. Slides 

were kept at -20°C prior to IHC staining to preserve the mouse tissue. H&E 

staining was carried out to determine the integrity of the sectioning and as a 

histological control to compare the structural anatomy of the mouse inner ear 

between sections with different IHC stains. Figure 58 shows a cochlea section 

from P5 mouse stained with H&E and shows good histology and preservation of 

the structural integrity of the cochlea and the membranes within it. 

 

Figure 58: H&E staining of the inner ear of P5 mice showing good structural integrity of the 

temporal bone, Reissner’s membrane and tectorial membrane and an intact organ of Corti. 

(A) Shows the whole cochlea of the mouse with intact membranes and no shearing of bony 

tissue. (B) Shows a close up view of the cochlear duct showing an intact organ of Corti with 

easily definable cells and structures. 
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4.8.2 Antibody Binding  

Immunohistochemistry (IHC) was carried out to determine the protein localisation 

of VMO1 in the cochlea of P5 mice.  

Figure 59 shows a comparison between triplicate IHC carried out on sections of 

the cochlea. For all IHC carried out a negative control was included to be able to 

quantify background noise and eliminate the possibility of reading false positives. 

To do this the primary antibody was substituted with 1000μl of 1X PBS and IHC 

carried out as per protocol 3.10.4.2. Any fluorescence detected in a negative 

control can be attributed to non-specific binding of the primary and/or secondary 

antibody. For each subsequent run of IHC an extra washing step was added and 

blocking and washing times were increased. The effect of extra washing and 

blocking can be seen with the decrease in background noise and auto fluorescence 

for each subsequent run (Figure 59a, c and f). All three runs were also carried out 

using VMO1 primary antibody (AB) at a concentration of 1:1000μl (Figure 59a, d 

and g). The 1:1000μl antibody dilutions (Figure 59b, d and g) show very slight 

differences in fluorescence in the tectorial membrane when compared to the 

negative controls but do not give a conclusive result.  

The second run of IHC was expanded to include a 1:100μl dilution (Figure 59e 

and h) of the VMO1 primary antibody. Both 1:100μl AB dilutions clearly show 

very brightly fluorescing tectorial membranes.  

The third IHC run was expanded again to include a β-actin primary antibody at a 

concentration of 1:100μl to act as a positive control (Figure 59i) and shows 

ubiquitous expression of the -actin protein within the inner ear with a very slight 

increase in fluorescence in the stria vascularis. 
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Figure 59: Results from three duplicated IHC reactions carried out on sections of P5 mouse 

inner ears. Each subsequent run was performed with additional washing steps and increased 

washing times. Blocking time was increased to reduce non-specific binding. White arrows 

show the position of the tectorial membrane (TM). (A,C,F) show negative controls with no 

primary antibody and show a decrease in background noise due to the extra washing steps 

introduced with each subsequent run. (B, D, G) show results from incubation in VMO1 

primary antibody showing very slight fluorescence in the TM. (E,H) shows the addition of a 

1:100 concentration of the VMO1 antibody and shows a corresponding increase in observed 

fluorescence in the TM indicating the VMO1 is located at high concentration in the TM. (I) 

shows the addition of the -actin primary antibody control  
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Figure 60A shows a superimposed image of the excitation of the DAPI nuclei 

stain at 358nm and the VMO1 antibody at 490nm. This indicates the VMO1 

protein is a secreted protein found in high concentrations in the TM. Figure 60B is 

a negative control with no VMO1 primary antibody and indicates the fluorescence 

seen in the TM is real. 

 

Figure 60: comparison between 1:100μl antibody and no antibody. (A) depicts DAPI 

fluorescence overlaying the VMO1 antibody at 1:100μl dilution. DAPI fluorescence was used 

to show the position of individual cell nuclei. Depicted are the inner hair cells (IHC) the 

pillar cells (PC) outer hair cells (OHC) basilar membrane (BM) spiral lamina (SL) reticular 

lamina (RL) tectorial membrane (TM) interdental cells (IDC) stria vascularis (SV) 

Reissner’s membrane (RM) spiral limbus (L). In green is the excitation of the VMO1 

antibody at 490nm showing high concentration in the TM. (B) depicts negative control with 

no primary antibody. 

Figure 61 shows the whole cochlea viewed under three different wavelengths of 

light to show background (647nm), the excitation of the VMO1 antibody (490nm) 

and the excitation of the DAPI stain (358nm). Depicted below this is a 

superimposed image of the three different views showing high levels of excitation 

in the TM indicated by the white arrows. 



  

 4-110 

 

Figure 61: the whole cochlea viewed under different wavelengths of light and then 

superimposed upon each other to show expression of the VMO1 antibody at high 

concentrations in the TM as indicated by white arrows. 
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Figure 62 shows the organ of Corti with a 1:100 VMO1 primary antibody 

concentration. Figure 62a shows where the tectorial membrane is anchored in the 

vestibular lip of the spiral limbus below the RM where it is made by the 

interdental cells. Figure 62b shows the tectorial membrane stretching over the 

organ of Corti indicated by a white arrow. The yellow arrow shows fluorescence 

which is either specific to the reticular lamina or an artefact caused by tectorial 

membrane shearing during sectioning. Figure 62c shows fluorescence of the inner 

pillar cells, which lie between the outer hair cells and the inner hair cells indicated 

by the white arrow. 

 

Figure 62: 20X zoom of the organ of Corti showing scale bar of 100μm. White arrows show 

fluorescence detected where binding of the VMO1 antibody has occurred (A) shows the 

anchoring of the TM between the interdental cells and the Reissner’s membrane. (B) Shows 

the high concentration of VMO1 present in the TM with possible VMO1 expression seen on 

the reticular lamina indicated by yellow arrow. (C) shows fluorescence of the inner pillar cell.

  

Figure 63 shows the negative superimposition of the negative control (no antibody) 

over the 1:100μl VMO1 antibody to show the expression of the VMO1 antibody 

exclusively in the TM and the pillar cells of the organ of Corti. 
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Figure 63: 1:100 VMO1 antibody with 0:1000 antibody control fluorescence removed (within 

grey box) with Pixelmator™ programme. This figure shows the localisation of the VMO1 

protein throughout the entire tectorial membrane and in the pillar cells of the organ of Corti. 

Fluorescence is also seen in the apical surface of the outer hair cells which could be real or 

due to the embedding of the outer hair cells in the tectorial membrane. 
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5 CHAPTER FIVE 

DISCUSSION 

The aim of this project was to characterise the possible function of the Vmo1 gene 

and investigate the protein expression of VMO1 at different developmental time 

points in the mouse auditory system. To investigate possible functions of Vmo1, 

comparative genomics analysis was conducted. To determine protein expression 

IHC was used. 

5.1 Comparative Genomics and a Suitable Animal Model for 

Studying VMO1 

RefSeq sequences were downloaded from NCBI and used for comparative 

genomics analysis. Results showed that VMO1 gene has three exons that are 

conserved across the 17 species analysed. The mouse (Mus musculus) was shown 

to have one 672bp transcript that translated to a protein 201aa long with a 

predicted molecular weight of 22kDa. The human (Homo sapiens) was shown to 

have four transcript variants produced by alternative splicing. Variant one 

produced a characteristic 202aa VMO1 protein, which also had a predicted 

molecular weight of 22kDa. 

 

The general structure of the inner ear in all vertebrates is comparable with slight 

variations seen between avian and mammalian species (Magariños et al., 2012). 

The chicken inner ear has been shown to have a straight cochlear and to be 

capable of regeneration of hair cells in the ear, unlike the mouse and human which 

have a coiled spiral shaped cochlea and are unable to regenerate hair cells once  

they are damaged or lost (Bissonnette and Fekete, 1996).  

 

Comparative genomics analysis demonstrated a distant taxonomic relationship 

between the chicken and mammalian species. The mouse and human VMO1 genes 

showed a high level of nucleotide sequence identity with increased homology 

seen in the protein sequences with 71.8% identity and 80.2% amino acid 

similarity. In comparison, the mouse and chicken VMO1 protein showed 47.1% 

identity and 60.3% similarity. However, analysis of the VMO1 protein for the 

mouse, human and chicken showed a high level of identity shared in the amino 
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acids responsible for the formation and stabilisation of the chicken VMO1 3D 

structure. All eight Cys residues that form the disulfide bonds found in the 

chicken were found in identical positions in the mouse and human (Figure 31). In 

addition the overall threefold symmetry was preserved with a high level of 

similarity, if not identity, observed across the amino acids deemed to be involved 

in structure stabilisation or enzymatic function in the chicken protein such as the 

β-sheets forming the Greek key motif and the putative carbohydrate-binding sites 

(Figure 24). 

 

Comparisons showed a high level of homology between the human, chimpanzee 

(Pan troglodytes) and western lowland gorilla (Gorilla gorilla gorilla). Both the 

gorilla and chimpanzee were predicted to produce the same four splice variants as 

seen in the human, with the chimpanzee and gorilla sharing 96.6% and 95.6% 

protein identity respectively. The presence of the four alternate splice variants 

indicates a very high level of homology and therefore a conservation of function 

and structure making either of these species the most suitable animal models to 

study the role of human VMO1 in the auditory system. However, the ethics, cost 

and availability of using these animals in New Zealand makes the use of them as 

models inhibitive. 

 

The homology seen in the VMO1 amino acid sequence and the H&E staining of 

the mouse ear demonstrated high similarity with the human ear indicating the 

mouse is an appropriate model for the role of human VMO1 in the auditory 

system. Another option would be the rat (Rattus norvegicus) which shares nearly 

complete gene identity and structural anatomy with the mouse. Furthermore, the 

size of the ear is larger for easier manipulation. This would also yield higher 

concentrations of proteins and mRNA transcripts.  

5.2 Amplification and Sequencing of the Vmo1 Gene 

In order to characterise the mouse Vmo1 gene and validate the VMO1 antibody, 

the Vmo1 mRNA transcript was isolated, amplified, DNA sequenced and cloned 

to produce recombinant protein. To achieve this, a variety of molecular biology 

techniques were used and the results will be discussed in this chapter. Firstly, 

RNA was extracted from mouse inner ears. 
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5.2.1 RNA Isolation 

Efficient isolation of high yield and intact RNA from mammalian tissue is 

essential for full-length, high-quality cDNA synthesis. However, total RNA 

extraction from the inner ear of the mouse is recognised as problematic due to the 

short half-life of RNA transcripts (minutes to days), the small size of the inner ear 

and the scarcity of the targeted mRNA transcripts (Invitrogen). Ribonuclease 

(RNase) is a nuclease enzyme that acts to degrade RNA into smaller fragments 

and is found in large quantities in all organisms and is responsible for the 

relatively short half-life of RNA (Campbell and Reece, 2005) 

 

To address these three issues, six inner ear samples from three P28+ mice were 

pooled together to increase the likelihood of target mRNA being present and to 

increase the RNA concentration. In general, mRNA only makes up 1-2% of total 

RNA (Campbell and Reece, 2005). P28+ mice were chosen because development 

of the inner ear is complete, the availability of mice of this age and the ease of 

dissection due to its size. Studies have shown that the structure of the ear is 

constant from P3 throughout adulthood (Zine and Romand, 1996).  

 

When working with RNA it is important to maintain an RNase-free environment 

to prevent contamination of the RNA samples with exogenous RNase enzyme. 

Firstly, this was attained by wearing gloves and a laboratory coat, and working in 

dedicated RNA workspace in the Laboratory of Molecular Genetics. Secondly, 

workspaces and equipment were cleaned and wiped using RNase Away™. Also, 

glassware was cleaned and sterilised by soaking in detergent and baked at 200°C 

before use. Solutions were made with sterile DEPC mQH2O and autoclaved at 

121°C for 20min before use. Disposable sterile RNase-free tubes, pipette tips and 

containers were used where possible. Finally, mice were euthanised and the ears 

removed quickly by dissection and stored in RNase-free extraction buffer at -80°C 

until homogenisation.  

 

Homogenisation was used to disrupt the bony ear tissue and releases the cell’s 

RNA from its intracellular compartment. A minimal amount of RNase extraction 

buffer was used in order to increase the RNA concentration. To reduce damage 

caused by heating, the sample was homogenised for 10 second intervals in 

between which it was stored on ice. While the sample was cooling, bony 
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fragments were removed from the teeth of the wand and added to the sample. The 

sample was homogenised until all bones had been broken up to a thin slurry. This 

sample was aliquoted into three samples and RNA isolation carried out according 

to protocol 3.7.1.2. The three RNA samples were analysed on a Nanodrop and the 

A260/280 reading suggested they were free of chemical contaminants such as GITC, 

phenol and Trizol, and were of high nucleic acid concentration and purity. A total 

of 21,912μg of total RNA was isolated from six inner ears dissected from three 

mouse specimens. 

 

To preserve the volume of the total RNA required for cDNA synthesis, samples 

were not analysed on an agarose gel. If they were analysed on a denaturing 

agarose gel, we could conclude that the RNA was intact if two ribosomal bands 

(28S and 18S) were observed with no evidence of a smear.  

 

5.2.2 cDNA Synthesis 

To synthesis cDNA, inner ear total RNA from pooled mice was reverse 

transcribed using the enzyme reverse transcriptase Oligo-dT primers which 

annealed to 3’ poly-A tail of mRNA transcripts. Oligo-dT primer was chosen over 

random hexamer primers to increase the percentage of Vmo1 mRNA within the 

cDNA. The random hexamer primers would have bound to all RNA samples to 

produce cDNA for all RNA of which only 1-2% would be mRNA with Vmo1 only 

a small fraction of this (Invitrogen). 

 

The integrity of the cDNA synthesised was examined by running a small aliquot 

onto an agarose gel, and as a PCR template for amplification using primers that 

were designed to target and anneal to Vmo1. The first-strand cDNA synthesis was 

analysed on a 2% agarose gel and showed a high concentration of cDNA 

indicated by a bright characteristic smear between 100-700bp in length. The 

manufacturer states that RNA targets ranging from 100 bp to greater than 12 kb 

can be detected using this enzyme (Invitrogen).  

 

Two samples of cDNA (cDNA1 and cDNA2, respectively) were amplified by 

PCR using mouse specific GAPDH primers to confirm the synthesis of cDNA. As 

expected, a transcript of 150bp in size was amplified. However, amplification of 
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the negative control that contained no reverse transcriptase amplified a product 

(150bp) as a result of cDNA synthesis from using RNA aliquot 1 as a template. 

This band is a result of amplification from genomic DNA and indicated 

contamination of RNA aliquot 1 with genomic DNA. cDNA2 produced from 

RNA aliquot 2 was shown to be free of genomic contamination due to the 

observation of a single band at the expected size with no band seen in the negative 

control (Figure 39).  

 

To overcome genomic DNA contamination, the RNA aliquot 1 sample could have 

been incubated with DNase to degrade DNA or alternatively, PCR primers could 

have been designed to anneal to the exon-exon boundary of the gene of interest. 

For the purposes of this thesis a full length Vmo1 transcript amplicon was needed 

for cloning and expression so RNA aliquot 1 was stored at -80°C and RNA 

aliquot 2 was used instead. 

 

5.2.3 Optimisation of Vmo1 DNA Amplification from cDNA 

Template 

Since only a few copies of DNA are required for amplification, all PCR reactions 

were setup in a dedicated PCR workspace with a UV light, to degrade potentially 

contaminating DNA, and that had equipment available such as PCR-dedicated 

pipettors and sterile pipette tips. Wearing gloves and using sterile consumables 

prevented contamination with genomic DNA and enzymes. 

 

The PCR conditions were based on the recommendations by the manufacturer of 

the Taq DNA Polymerase (Solis Biodyne) and the melting temperatures 

recommended by the oligonucleotide supplier IDT. Optimisation of PCR using 

Vmo1 primers and mouse ear cDNA involves a number of parameter such as 

primer design, constituents of the PCR buffer, magnesium concentration and 

annealing temperature of primers. In the next section, these will be discussed in 

more detail.  

5.2.3.1 Primer Design 

Two primers sets were designed for the purposes of this thesis. Primer set 

BFG27/28 was designed to cover the entire 606bp of the ORF of the Vmo1 mouse 

transcript and to incorporate the HindIII restriction enzyme sites outside of the 
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ORF for the purposes of insertion into a vector for the purposes of cloning and 

expression. Because this primer set was not specific to cDNA and would amplify 

genomic DNA, primer set BFG7/8 was designed to be specific to Vmo1 cDNA 

only and spanned the two exon junctions to produce an amplicon 193bp in length 

(Figure 41). 

5.2.3.2 Buffer 

PCR buffer was used at a final concentration of 1X and acts to mediate the 

reaction by keeping pH within optimal ranges for Taq DNA Polymerase. Initial 

PCR used a magnesium free and detergent free buffer (HOT FIREPol® 10x 

Buffer B1). For subsequent reactions, the B1 buffer was replaced with 1X HOT 

FIREPol® 10X Buffer B2 which was free of magnesium but contained Tris-HCl, 

ammonium sulphate and detergent. This reaction produced a clear single band of 

expected size (495bp) for Vmo1 using primer set BFG1/2 (Figure 41). 

5.2.3.3 Magnesium Concentration 

Magnesium (Mg
2+

) is required for PCR due to the Mg
2+

 dependent nature of Taq 

DNA polymerase. The amount of free Mg
2+

 available in the reaction can be 

affected by template concentration, dNTPs, proteins and chelating agents such as 

EDTA. Low Mg
2+

 concentrations will affect the enzymatic activity of the Taq 

DNA polymerase and reduce amplicon yield. Excessive Mg
2+

 can result in non 

specific binding of primers and inhibit denaturation of the double stranded DNA 

and therefore reduce amplicon yield (Peterson, 1988). With PCR reactions carried 

out using B2 buffer and primer sets BFG1/2 and BFG27/28, Mg
2+ 

concentrations 

were increased from 1.5mM to 2.5mM. This resulted in the observation of 

increased band intensity for the amplicons produced on the agarose gel (Figure 

40). 

5.2.3.4 Annealing Temperature 

The annealing temperature required for optimal amplification depends on the 

length and composition of the primers used. In general, the annealing temperature 

is 5°C below the lowest melting temperature of the primer set (table 13). With 

decreased annealing temperatures, the primer specificity is decreased which 

increases the chances of non-specific amplification but potentially increasing the 

yield of targeted amplicon. PCR was carried out with increasingly lower 
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annealing temperatures in an attempt to increase the yield of Vmo1 amplicon 

using the primer set BFG27/28.  

 

In conclusion, PCR reactions were carried out with 2.5mM MgCl2 and 1X B2 

buffer. Optimal annealing temperatures were obtained for primer sets BFG27/28 

(50°C) and BFG1/2 (55°C). cDNA was amplified with primer set BFG27/28 to 

produce a 671bp Vmo1 transcript that spanned the ORF of the VMO1 protein 

using nested PCR. Agarose gel electrophoresis showed a single sharp band which 

resembled the expected size. The remaining PCR sample was cleaned up using 

rAPid method as outlined in 3.2.3 and sent to the Waikato DNA Sequencing 

Facility at the University of Waikato.  

 

5.2.4 DNA Sequencing of Vmo1 PCR Product 

Two DNA Sequencing reactions were carried out in both the forward and reverse 

direction to ensure complete coverage of both ends of the Vmo1 amplicon. The 

forward and reverse sequencing chromatograms were manually checked for mis-

call and noise, and a pairwise alignment was carried out between each sequence 

and the NCBI reference mouse Vmo1 mRNA (NM_001013607.1) (Figure 43) 

 

The forward sequence was 648bp long and covered the reference sequence from 

nucleotide 25 to 672 with 100% identity from base pair 45 to 672. The 

chromatogram showed good quality sequencing from 125 to 519 with very little 

baseline noise and evenly spaced peaks of single colours (Appendix 3, Figure 69). 

Nucleotides 45 to 125 were discarded as being of too poor quality with high levels 

of baseline noise and poor resolution. Nucleotides 25 to 45 contained 7 miscalls 

due to high baseline noise, heterozygous peaks and poor resolution. After 

nucleotide 519, the sample quality gradually became poorer due to increasing 

baseline noise and decreasing resolution. Therefore, sequencing data past 

nucleotide position 634 was discarded. 

 

The reverse compliment of the reverse sequence was aligned with the reference 

sequence to check for sequence similarity and the chromatogram checked for 

quality. The chromatogram immediately showed low quality sequencing with 

uneven peak widths and sizes throughout the sequence and variable levels of 
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baseline noise (Appendix 3, Figure 70). Thirteen miscalls were detected by 

sequencing analysis software three of which were able to be manually recalled. 

The reverse sequence was 476bp long and covered the reference sequence from 

nucleotide 39 to 516 which made it inappropriate for use in resolving the 5’ end of 

the forward sequence. 

 

For the purposes of this thesis, the sequencing data was used to confirm the 

identity of the amplicon produced with primer set BFG27/28 and confirm 

complete coverage of the Vmo1 ORF. In conclusion, the sequencing results show 

that the sequence of Vmo1 was amplified and 100% identical to the reference 

sequence. 

 

The next step was then to digest this amplicon using HindIII RE and clone into a 

vector for the induction of protein. The resulting expressed protein would be 

purified to be used as a sample to validate the VMO1 antibody. 

 

5.3 Validation of the VMO1 Antibody for IHC 

Immunohistochemistry (IHC) was performed to localise VMO1 protein 

expression in the mouse inner ear. Firstly, the VMO1 antibody was validated to 

ensure specific binding of the antibody to the VMO1 protein. This would give us 

confidence that the IHC results were real and not due to nonspecific binding of the 

antibody. To test the specificity of VMO1 antibody, protein lysates from a range 

of mouse tissues were used for western blot analysis. Western blotting involves 

the transfer of proteins that have been separated by gel electrophoresis onto a 

membrane, followed by immunological detection with the VMO1 specific 

primary antibodies and a secondary antibody, and finally, membrane development 

and imaging. Following visualisation of antibody binding, the membrane was 

stripped of antibody using the protocol outlined in 3.9.2.4 and reprobed with a  

β-actin antibody. The theoretical protein molecular weight size for VMO1 based 

on amino acid sequence data is approximately 22kDA.  

5.3.1 Preservation of Tissue Lysate Proteins 

Tissues were dissected from the mouse using clean, sterile equipment to prevent 

contamination with exogenous proteases. Following dissection, the tissue was 

quickly transferred to a tube containing ice-cold lysis buffer. The lysis buffer 
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contained phosphatase and protease inhibitors to prevent proteolytic digestion of 

the protein in the tissue. To further prevent proteolysis, samples were stored on 

ice after homogenisation and stored at -80C until required for SDS-PAGE. Prior 

to SDS-PAGE the samples were defrosted on ice before being denatured by heat 

and loaded onto the SDS-PAGE. 

5.3.2 Confirmation of Protein Transfer from SDS-PAGE to 

PVDF Membrane  

For western blot analysis it is important that all the separated proteins from the 

SDS-PAGE gel have been completely transferred (blotted) onto the 

Polyvinylidene fluoride (PVDF) membrane. Four methods were used to confirm 

the complete transfer of proteins from the SDS-PAGE gel and onto the PVDF 

membrane. The first method involved using the Precision plus protein™ dual 

color standard available from BIORAD. This standard is a prestained ladder used 

to estimate protein sizes ranging from 10–250kDa. The ladder was transferred 

along with the proteins to the PVDF membrane and due to the colours 

incorporated into the standards was easily visible during electrophoresis without 

additional stains being required. This ladder was also used as a marker to orient 

the position of the bands seen with immunodetection. However, the use of TBS-T 

buffer in the antibody probing protocol caused the colour staining of the ladder to 

diminish so the volume of ladder used was increased from 5ul to 7ul and the 

membrane marked with pencil or notched when first removed from blotting 

apparatus to orient the position of the samples loaded.  

 

The second method involved Coomassie blue staining of the SDS-PAGE gel after 

western blotting with successful transfers resulting in clear gels with no visible 

bands in the resolving part of the gel. Staining of the gel was carried out as the 

membrane was washed in preparation for antibody probing and results dictated 

whether antibody incubation was carried out. 

 

The third method involved using -actin antibody as a positive loading control to 

show successful transfer of the all mouse proteins from the SDS-PAGE gel to the 

PVDF membrane and to serve as an internal positive control to verify that all of 

the reagents were functioning as they should. Mouse -actin protein has been 

confirmed to be present in most mouse tissue types (BioGPS) and was therefore, 
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an appropriate control for assessing transfer of proteins to the PVDF membrane 

with successful transfer resulting in clear sharp bands of the expected 42kDa size 

being visible with immunodetection.  

 

Finally, the fourth method involved the Ponceau stain. Ponceau staining was 

carried out after immunodetection of antibodies was complete, or before if the 

Coomassie stain indicated no transfer, to check for protein transfer and 

concentration. Ponceau stain binds to all proteins and also showed any possible 

exogenous contamination of the membrane that could have occurred during or 

after the blotting protocol. 

 

In conclusion, western blot results indicate the transfer of proteins from the 12% 

hand-cast 0.75mm thick SDS-PAGE gels to the PVDF membranes was complete 

with the ladder only visible on the membrane and no ladder present on the gel. 

Very little banding was seen on the Coomassie stained gel and where visible the 

bands were of very large molecular weight (>150kDa). Bright, sharp bands were 

detected for the -actin antibody and clear, sharp banding patterns seen on the 

Ponceau stained membrane. A 12% hand-cast gel of 1.0mm thickness underwent 

western blotting but no immunodetection was carried out as the ladder was visible 

on both the gel and membrane and the Coomassie and Ponceau controls showed 

incomplete transfer of proteins from the gel to the PVDF membrane. 

 

A second type of SDS-PAGE gel 10% Mini-PROTEAN® TGX Stain-Free™ Gel 

(BIORAD) was trialled for western blotting. Using this gel resulted in an even 

straight separation of tissue lysates that could be visualised on the Gel Doc™ EZ 

System on a stain free sample tray using Image Lab™ Software (BIORAD). The 

advantage of using this system is that you do not require for additional staining 

such as Coomassie blue or preparing of SDS-PAGE gels. Therefore, it saves time. 

 

Results for the transfer of proteins from the 10% pre-cast 1.0mm thick SDS-

PAGE gels to the PVDF membrane were not very successful. The ladder was only 

slightly visible on the membrane and imaging of the gel showed incomplete 

transfer of proteins with visible banding patterns clearly seen. Probing with the -

actin antibody of the PVDF membrane confirmed the transfer of some of the 

proteins but the bands were very faint. Ponceau staining of the PVDF membrane 
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confirmed the poor transfer of proteins with very faint banding patterns visible 

despite prolonged incubation in Ponceau stain. Probing of the membrane with the 

VMO1 antibody was unsuccessful. This could be due to the thickness of the 

precast gel or to the tri-halo compounds incorporated into it that react with the 

tryptophan amino acid residues to produce chemiluminescence. However, the 

poor results obtained with the pre-cast gels meant western blotting was only 

carried out using hand cast gels of 0.75mm thickness. 

5.3.3 Analysis of ProteinTech VMO1 Antibody  

The first antibody for VMO1 was sourced from Proteintech due to availability, 

cost and evidence of validation by the company as well as the ability to recognise 

both human and mouse VMO1. The VMO1 ProteinTech antibody was validated 

by western blotting of protein lysates from human cervical cancer cell line (Hela), 

and Human Embryonic Kidney 293 cell line (HEK-293) and confirmed to be 

compatible with ELISA and western blotting analysis. It was also stated to be 

specific to the human, mouse and rat although how they determined this was not 

stated nor was the site of recognition defined. In addition the supplier did not 

allow access to the peptide use to induce VMO1 antibody production in the rabbit. 

This along with a peptide fragment known not to have the VMO1 antibody 

epitope could have been run alongside other tissues in the gel to act as a positive 

and negative control for antibody binding could have been used. Therefore a 

future recommendation would be to source an antibody with a known binding 

epitope or that comes with its own positive and negative controls. 

 

Western blotting using the VMO1 antibody sourced from ProteinTech shows 

immunodetection of VMO1 protein at various sizes in 7 of the 13 tissues extracted 

from the mouse, and the VM extracted from the chicken egg (Figure 52-56); 

ranging between 10-150kDa. The expected band size of 22kDa (15-37kDa) for 

VMO1 was observed in the mouse brain (Figure 52, 54 and55), and spleen 

(Figure 55), as well as the chicken VM (Figure 54). However, this was not 

reproducible in duplicate western blots. Non-specific binding to the Precision plus 

Protein™ Dual Color Standards was also observed at 10, 15 and 75kDa. This was 

reproduced multiple times with no binding occurred to the BSA standard. Binding 

of the antibody to the ladder protein standards could be due to the nature of the 
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recombinant protein sequences used. Conversely, the -actin antibody 

consistently reproduced results with no binding occurring with the BSA control. 

 

The variations in protein size detected in the western blots with this antibody 

could be due to a number of different reasons. For example, protein dimerization, 

binding of the VMO1 protein to other proteins to form a protein complex, 

unidentified splice variants or coding exons in the mouse Vmo1, or post-

translational modification of VMO1 protein such as phosphorylation to increase 

the protein size.  

 

The western blot results could also be a result of non-specific binding of the 

VMO1 antibody. This antibody was purchased from a commercial company that 

had validated the antibody using human cell lines (Hela and HEK-293) although it 

was not stated how these cells were transfected or the specific sequence used to do 

so. Also, the antibody was delayed at customs for six weeks under unknown 

conditions. This may have affected the specificity and performance of the 

antibody.  

 

Denaturation by heating at 99°C for 3min in a loading dye containing beta-

mercaptoethanol prior to loading the PAGE gel is thought to remove dimers. 

However, there are examples of proteins that are resistant to heat and chemical 

denaturation such as the Proline Rich Homeodomain proteins PRH/Hhex (Shukla, 

2012). Western blotting was carried out nine times in order to reproduce results 

with no success. Initially, western blotting was carried out using protocol 3.9.2 

with additional washing and blocking steps added with each subsequent run. In an 

attempt to reduce the non-specific binding, the wash step was eventually increased 

to three 1-hour washes in TBS-T at RT followed by an overnight wash at 4°C in 

1X PBS  

 

The blocking buffer used for western blot analysis was supermarket grade milk 

powder but may not be ideal for the VMO1 antibody, since each antibody-antigen 

pair has unique binding characteristics. Therefore, a future recommendation 

would be to optimise the blocking solution and test a variety of commercial 

blocking solution available on the market such as the Thermo Scientific 
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SuperBlock Blocking Buffers. However, for the purpose and time constraints of 

this study, we decided to purpose and validate a second antibody for IHC. 

 

5.3.4 Analysis of GeneTex VMO1 Antibody  

A second VMO1 antibody was sourced after reviewing the research by Shamsi et 

al., 2011. The authors used an anti human VMO1 antibody sourced from GeneTex 

and their western blots showed binding of the VMO1 protein at approximately 

20kDa in camel and sheep tears. Following review of this study, we purchased the 

VMO1 antibody from GeneTex. However, it was noted that the authors failed to 

disclose if they used a peptide or recombinant protein to validate the antibody.  

 

Western blotting using the VMO1 antibody sourced from GeneTex was carried 

out twice. The first western blot contained three ear tissue samples at two different 

concentrations and a positive result was achieved. Results showed the molecular 

weight of VMO1 protein in the inner ear to be between 25-37kDA with a second 

band of smaller size being detected between 20-25kDa (Figure 56). Band intensity 

also suggests the VMO1 antibody can be used in a roughly quantitative manner to 

detect different amounts of VMO1 protein. A tear gland sample was also analysed 

at two different concentrations with a single band between 25-37kDa of lower 

intensity than seen in the ear samples indicating a lower concentration of VMO1 

present. However, -actin antibody control was not performed on this blot as it 

was damaged while washing and not retrievable. This control would have given 

an indication of the concentrations of tear and ear protein loaded. No binding of 

the VMO1 protein was observed with the BSA standard or to the recombinant 

protein ladder. 

 

The second blot was carried out on two separate gels with 16 different tissue 

samples and the BSA control. Analysis of the transfer of the ladder from the gel to 

the membrane showed transfer of the ladder through the membrane and blotting 

paper and into the second gel. Immunodetection of this blot using the VMO1 

antibody showed the proteins from the first blot to be present in the second blot 

and rendered the second blot useless for analysis. The presence of VMO1 was 

faintly visible in the first blot between 25-37kDa in size and also at more than 

150kDa for the inner ear. Antibody binding also occurred in the tear gland 
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between 25-37kDa only. As discussed previously, this could be due to 

dimerization, or binding of the VMO1 protein to other proteins, splice variants, 

post-translational modification or non-specific binding.  

 

VMO1 antibody binding was not detected in five of the 8 tissues sampled with 

duplicate results seen for the ear and tear glands (Figure 56 and 58), and a single 

result for the eye (Figure 57). Studies by Shamsi, 2011 and Chen, 2011 have 

identified a VMO1 homolog in the tears of camels and humans but not in the tears 

of mice. This could indicate VMO1 is found in the tear gland tissue rather than the 

tear fluid. However, results presented here show that the VMO1 antibody binds 

specifically to VMO1 protein in the inner ear tissue lysates. Thus, the VMO1 

antibody is suitable for IHC of the mouse inner ear. However, to support this 

claim, we decided to further validate the antibody by preparing a recombinant 

VMO1 protein that expresses the antibody epitope. 

5.4 Cloning and Expression of the VMO1 Recombinant Protein 

To develop VMO1 recombinant protein, a PCR insert containing the amplified 

Vmo1 gene using primer set BFG27/28 needed to be ligated into a protein 

expression vector. The induced and purified protein would serve as a positive 

control on the western blot for further validation of the VMO1 antibodies.  

5.4.1 Ligation of the Vmo1 Transcript into a Vector 

Three digested cloning vectors (pProEx HTb, pET42a, and pBluescript) were 

ligated with purified RE digested Vmo1 amplicon and transformed into 

electrocompetent E. coli DH5 cells. The steps of restriction enzyme digestion 

and ligation are discussed in more detail below.  

5.4.1.1 Restriction Enzyme Digestion 

The amplified Vmo1 DNA and cloning vector was digested to make compatible 

sticky ends for the ligations and insertion of a correctly oriented digested PCR 

product into the vector. Two different RE combinations were use for ligation into 

the pProEX HTb vector. Firstly, HindIII was used to linearise the vector and 

create sticky ends on the BFG27/28 PCR amplicon for unoriented insertion of the 

Vmo1 amplicon into the vector. Thus, creating a recombinant circular vector.  
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The second combination used HindIII digestion of a BFG27/2 PCR amplicon to 

produce a sticky HindIII 5’end and a sticky adenine 3’ end. The cloning vector 

pProEX HTb was digested with EcoRV to create a linear vector. This vector was 

then T-tailed and digested with HindIII RE to create a linear pProEX HTb vector 

with a sticky thymine 5’ end and a sticky HindIII 3’ end.  

5.4.1.2 Ligation 

Following purification of the digested PCR insert and linearised cloning vector, 

ligation reactions were set up to create a circular vector. DNA ligation was 

confirmed to be unsuccessful by the use of a control testing the efficiency of the 

transformation reaction. This involved using uncut vector to transform 

electrocompetent cells. Transformed cells were screened for the presence of the 

vector by growth on LB
+
 plates containing ampicillan and further validated by RE 

digestion of the isolated plasmid to confirm size.  

 

To optimise DNA ligation, the following methods were implemented using two 

different stocks of T4 DNA ligase from commercial suppliers to determine if the 

DNA ligase was working efficiently.  

 

The first control was a positive transformation control that included an uncut 

vector to check for the viability of competent bacterial cells and uptake of uptake 

of the DNA and to verify the action of antibiotic resistance found in the vector for 

positive selection. The results of this control showed the electrocompetent DH5 

cells to be viable and antibiotic resistance of the plasmid verified by growth of at 

least 50 colonies on LB
+
 ampicillan plates. 

 

The second DNA ligase control involved re-ligating a 1kb ladder to test the action 

of the two T4 DNA ligases. A 1ul sample of unstained 1kb ladder of 12 bands 

(Solis Biodyne) was ligated successfully using 1ul T4 DNA ligase. 

Electrophoresis of the un-ligated ladder alongside the ligated ladders from the two 

samples of T4 DNA ligase showed the production of a new banding pattern with 

additional bands and a reduction in intensity of 9 of the 12 original bands 

indicating ligation of the ladder and therefore confirmation of the activity of both 

ligases. 
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The third control involved determination of the effect of the different reagents in 

the ligation reaction on the viability of the competent cells and consisted of three 

reactions: undigested vector with insert, undigested vector with T4 DNA ligase 

and undigested vector with insert and T4 DNA ligase. Results shown were similar 

to those seen with the positive transformation control with more than 50 colonies 

seen and indicating that the viability of electrocompetent cells was not being 

affected by the T4DNA ligase or insert. 

 

The fourth controls were negative controls to determine the amount of 

background noise seen due to ampicillan resistance in the competent cells, the 

efficiency of the RE digestion and to test for recircularisation of the plasmid and 

involved three reactions: no vector; digested vector with no DNA ligase and 

digested vector with DNA ligase. All of the negative controls showed very little 

background with less than 3 colonies seen on each plate indicating the RE digest 

was successfully producing a linear vector which was not recircularising and that 

the competent cells did not contain ampicillan resistance on its own. 

 

The vector and insert samples were analysed on a Nanodrop to determine the 

DNA concentrations for determination of the insert:vector ratios to used. Molar 

ratio for ligation is important for efficiency of the ligation reaction. A high vector 

to insert ratio is will result in excess empty plasmids. If too low, excess linear 

plasmids or circular homo/heteropolymer plasmids will result. This included a 

rough 1:3, 3:1, 2:1 and 1:2 ratios based on concentrations and a calculated 1:3 and 

1:2 ratio based on concentrations and worked out using Equation 1.  

 

Equation 1: Equation used to work out insert:vector ratio of reagents based on Nanodrop 

concentrations (Cursons, 2013) 

5.4.2 Screening and Sub-cloning of Transformed Colonies 

Blue and white screening was used to verify the presence of an insert within the 

vector. Transformed cells were grown in the presence of ampicillan antibiotic, 

Xgal and IPTG. The ampicillan was used to select for colonies containing the 

vector insert and IPTG was used to induce expression of the β-galactosidase 

protein to allow the use of Xgal as a substrate and therefore resulting in blue 

http://en.wikipedia.org/wiki/Beta-galactosidase
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colonies. Ligation of an insert into the vector resulted in interruption of the LacZ 

gene used to make the β-galactosidase resulting in white colonies.  

 

Single white colonies produced from protocol 3.6.4 were picked using a sterile 

pipette tip and dipped briefly in a PCR master mix (protocol 3.4) containing 

forward primer (M13puc) and reverse primer (BFG28R) to check for the insertion 

of Vmo1 in the correct orientation. Screening of the colonies via PCR failed to 

show the Vmo1 insert within the vectors in the 5’ to 3’ direction indicating Vmo1 

was favourably inserted in the 3’ to 5’ direction. RE digestion of isolated plasmid 

was also used to confirm the size of insert to no effect. It was later discovered that 

the incorrect primer (BFG28R) was being used to check for the correct orientation. 

This was due to the excision of the primer binding site with the HindIII enzyme 

during RE digestion prior to the ligation step.  

5.5 Localisation of the VMO1 Protein within the Inner Ear using 

VMO1 Antibody (GeneTex) 

IHC and section staining was used to localise the VMO1 protein within the inner 

ear of P5 mice. This age was also chosen due to the ease of processing as the 

temporal bone in mice is not fully calcified until after P12 and therefore does not 

require a decalcification step to prevent the artefacts commonly seen when 

sectioning fully calcified tissue such as shearing of the bone or tearing of soft 

tissues (Cunningham, 2001). 

5.5.1 Integrity of the Mouse Cochlea 

During the IHC process it is important to maintain the integrity of the mouse 

auditory system. This structure is rather delicate and during the embedding and 

IHC process, the tissue is exposed to harsh chemicals, pH and temperatures. With 

respect to using paraffin sections, OCT embedding and cryostat sections of the 

mouse inner ear was considered to be easier and more robust for analysis of the 

mouse cochlea.  

 

In P12 mice and humans, the temporal bone is an extremely hard calcified bone 

which acts as a shield for the delicate sensory organ, and an acoustic chamber to 

increase hearing sensitivity and enable detection of low intensity sounds. The 

calcification of this bone makes it difficult to section and requires decalcification 

http://en.wikipedia.org/wiki/Beta-galactosidase
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before embedding and sectioning (Cunningham, 2001). To overcome the 

sectioning artefacts that result from using P12+ mice, P5 mice were used for IHC 

analysis. P5 mice do not have fully calcified temporal bones and does not need an 

additional decalcification step after dissection. In addition, fixation and 

embedding of mouse tissue was carried out immediately after dissection to reduce 

the chances of false positive results and prevent breakdown and putrification of 

tissue samples. 

5.5.1.1 Paraffin Embedding and Microtome Sectioning 

Seven mouse ears dissected from four P28+ mice were fixed in 4% PFA, 

decalcified in EDTA and embedded in paraffin wax. Two of the specimens were 

sectioned on a microtome and processed for IHC and H&E staining. While 

sectioning, it was noted that there was shearing and breaking of the temporal bone. 

After inspection of paraffin sections, between 10-20% were discarded as 

considered too damaged or too difficult to collect due to rolling of the section. 

Also noted were inconsistencies in the thickness of the paraffin block, with a dip 

observed in the middle of the paraffin block. This was thought to be caused by the 

shrinking of paraffin as it cooled and set. The thickness of the sections was also 

adjusted from 5-10-15-20um to improve the quality and decrease the amount of 

shearing and breakage. However, no noticeable changes were detected. The 

collection of individual sections and placement onto slides was also difficult due 

to the small size of the inner ears and the awkwardness of removing them from 

the collection plate to the slides, and floating them on 30% ethanol without 

disturbing the sections already floating. Serial slides were collected and analysed 

under a light microscope to check orientation and anatomy before staining or IHC 

was carried out.  

 

H&E staining showed poor general anatomy across all of the sections with 

shearing of the RM, BM and no discernible TM as well as shearing and breakage 

of the temporal bone. IHC carried out on paraffin sections required an antigen 

revival step in which the slides were microwaved in a citrate antigen revival 

buffer until just boiling twice. This step resulted in more than one section per slide 

being lost and caused the sections to move around on the slide leading to folded 

tissue sections and more shearing of the temporal bone and membranes of the 

inner ear.  
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The mouse heart and liver tissue were also embedded in paraffin and sectioned on 

a microtome to act as a sectioning control and for future IHC antibody validation. 

Both sections were stained with H&E to help visualise anatomy with mixed 

results. The liver sections were flaky and crumbly during sectioning and did not 

hold together very well during rehydration and staining. The heart sections were 

much more robust and were easily sectioned, rehydrated and stained with little 

loss of morphology or sections. The results are most likely a reflection of the 

types of tissue used with the liver being a soft glandular tissue and the heart a 

solid muscular organ. Neither are very good controls for sectioning of the inner 

ear as they do not contain any calcified bony tissue nor do they contain 

membranous fluid filled ducts. Following the unsuccessful IHC carried out on the 

paraffin sections, the embedded inner ears were store in a labelled box and we 

switched to the cryosectioning method instead.  

5.5.1.2 OCT Embedding and Cryostat Sectioning 

For the cryosectioning method P5 mice were used due to the ease of dissection of 

whole heads and the fact that the temporal bones were not yet fully calcified. 

Sections obtained using this method were more consistent and easier to collect. In 

addition, they did not require a deparafinisation or antigen revival step.  

5.5.2 Haemotoxylin Staining 

To confirm the intergrity and anatomy of the OCT mouse sections, H&E staining 

was performed. H&E staining showed good preservation of inner ear anatomy 

with an easily identifiable TM and intact RM, BM and temporal bone with only 

minimal shearing seen. These results are shown in the literature review (Figure 8, 

9 and 10). However one limitation of H&E staining is its incompatibility with 

immunofluorescence because of the fluorescence of eosin (Fischer, 2008). 

5.5.3 Immunohistochemistry 

The Vmo1 mRNA has been demonstrated to be expressed exclusively in RM of 

the mouse ear but was not shown to be the location of the VMO1 protein. IHC 

results suggest the VMO1 protein to be a secreted protein as levels of green 

fluorescent signal were identified at high levels within the TM of the inner ear. 
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The IHC protocol was optimised by changing the incubation times, antibody 

concentration and washing steps. The first IHC experiment was carried out using 

a 1:1000 dilution of the VMO1 antibody, and showed very faint fluorescence of 

the TM. This result was deemed inconclusive due to the amount of background 

noise (Figure 59b). The following IHC was optimised to include an extra antibody 

dilution of 1:100 (Figure 59e) and increasing the incubation time in blocking 

solution from 1 hour at RT to overnight at 4°C. One additional washing step was 

also included after incubation with the primary and secondary antibody. The 

fluorescence of the TM was shown to be much greater with the 1:100 antibody 

dilutions as would be expected if the signal was real and background noise was 

reduced. Following this, IHC was repeated with the addition of a -actin antibody 

control to validate the IHC protocol. For the β-actin control fluorescence would be 

expected to be ubiquitous throughout the mouse tissue. The washing times after 

antibody incubation were increased from 5 to 10min and following washing after 

primary antibody incubation, slides were left overnight at 4°C in PBS buffer. 

Changes to the methodology resulted in the VMO1 antibody binding to the TM 

and the pillar cells at high concentrations. The reduction in background noise was 

very slight. Therefore, these changes made no difference to the IHC protocol. 

 

The -actin control was deemed to be unsuitable due to its ubiquitous expression 

within mouse tissue. Results for this IHC showed a slight increase in fluorescence 

in the stria vascularis and the apical surface of the hair cells as expected but 

results were not easily distinguishable from the background noise of the sections. 

In addition the non-specific binding of -actin antibodies to other isoforms of 

actin such as F-actin and gamma-actin have been documented. (Dittmer and 

Dittmer, 2006)  

 

To understand the function of the VMO1 protein, the structure and composition of 

the TM and VM will be examined. 

 

5.6 Comparison of the Tectorial Membrane vs. the Vitelline 

Membrane  

IHC carried out on the mouse inner ear during the course of the thesis identified 

the VMO1 protein at high concentrations within the TM. Structurally and 
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chemically the TM is more similar to the VM of the chicken egg than it is to the 

RM of the mouse in which the Vmo1 mRNA was found to be exclusively 

expressed (Peters et al., 2007).  

 

The RM is a double layered membrane composed of two layers of flattened 

epithelial cells separated by a basal lamina and acting primarily as a diffusion 

barrier between the scala vestibuli and the scala media (Valk et al., 2006). 

 

In contrast both the TM and VM are acellular proteinaceous matrixes composed 

primarily of water.  

 

The VM is composed of two layers the outer and inner VM layers separated by a 

thin continuous fibrous layer. The VMO1 protein was localised within the outer 

VM layer which is a proteinaceous extracellular matrix composed of a network of 

fine fibrils formed after ovulation and consisting mainly of the macromolecule 

ovomucin. This protein was shown to be tighly bound to the VMO1 protein along 

with other proteins such as lysozyme and VMOII (Mann, 2008). The structural 

integrity of the outer VM is thought to be attributed to the disulfide bonds in 

ovomucin (Kido and Doi, 1988).  

 

The TM is a collagen-rich extracellular matrix that lies over the organ of Corti 

running parallel to the BM and is directly connected to the stereocilia of outer hair 

cells, and indirectly connected to the stereocilia of inner hair cells via subtectorial 

fluid. Structurally, the TM is similar to connective tissue with the collagen fibres 

providing stiffness, integrity and structure to the TM (Gueta et al., 2011).  

 

The TM is unique to other membranes in the inner ear due to the glycoproteins 

found to be expressed exclusively in the inner ear such as, α-tectorin and β-

tectorin, which have also been identified as being responsible for sensorineural 

hearing loss, DFNA8 and DFNB21 (Verhoeven et al., 1998). Thus, highlighting 

the importance of the TM for hearing function. The exact composition of the TM 

and how it functions remain unclear but studies have shown it is essential for 

hearing function (Ghaffari et al., 2007).  
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6 CHAPTER SIX 

CONCLUSION 

The original aim was to characterise the possible function of the Vmo1 gene and 

investigate protein expression within the mouse inner ear at different 

developmental time points with the hypothesis that it would be found in the RM 

and therefore play an important role in the mechanism and/or maintenance of 

hearing or balance. 

 

In conclusion the data presented within this thesis addressed the question of 

whether VMO1 mRNA transcript and the predicted protein is conserved among 

birds and mammals, and if the translated VMO1 protein remains within RM or is 

secreted and transported to cells within the mouse mammalian ear. 

 

Based on the comparative genomics analysis and anatomy, the mouse is most 

suitable for studying the role of human VMO1 in the auditory system with results 

indicating that the Vmo1 gene is highly conserved across mammalian species. 

IHC performed on P5 mice suggests the VMO1 protein is translated and secreted 

within the mouse inner ear with high concentrations seen in the TM and inner 

pillar cells. A review of literature identified the TM as being essential for hearing 

function with the pillar cells also playing an important role in coupling movement 

of the BM, upon stimulus by sound waves, to the movement of hair cells. The 

importance of these two tissues and the localisation of the VMO1 protein within 

them therefoe indicates an important role for VMO1 in hearing function.  

 

The next section will address future recommendations for the characterisation and 

localisation of the VMO1 protein in the inner ear. 
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7 CHAPTER SEVEN 

FUTURE RECOMMENDATIONS 

7.1 Comparative Genomics 

Comparative genomics analysis of VMO1 protein demonstrates that this protein is 

conserved across different species and therefore, indicates an importance in role 

or function.  

 

To provide an absolute indicator of protein conservation the amino acid sequence 

could be determined using Mass spectrometry. Furthermore, the 3D structure of 

the VMO1 protein from the mouse and human could also be resolved using X-ray 

crystallography. Comparing the 3D structure of the mouse and human VMO1 

would give an indication of how conserved the VMO1 protein are between these 

two species, and how good the mouse is as a model for studying human VMO1. 

Mass Spectrometry instrumentation could give an indication of any post-

translational modifications occurring in the VMO1 protein and identify any 

differences between the VMO1 proteins found in the inner ear and the tear glands. 

In addition to Mass Spectrometry, optical imaging and fluorescent probes could 

be used to investigate gene expression, active transport and metabolism of VMO1 

in living cells (Xie et al., 2006). 

 

In addition, a knockout mouse should be generated. As yet there are none 

available but a vector construct is available for purchase from International 

Knockout Mouse Consortium. The Vmo1 gene in this construct has been mutated 

using a combination of gene trapping and gene targeting in C57BL/6 mouse 

embryonic stem cells.  

Generation of a knockout mouse would involve the preparation of a genetically 

engineered mouse in which the Vmo1 gene has been inactivated and would give a 

direct indication of gene function and would serve as a negative control for IHC 

studies. It would be interesting to observe if these mice have a hearing loss and/or 

balance phenotype.  
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7.2 Complete DNA Sequencing of Vmo1 Gene 

To sequence the complete coding region of Vmo1 requires the extraction of RNA, 

reverse transcription, DNA amplification of cDNA, clean-up and DNA 

sequencing methodologies. The following recommendations could be 

implemented in the future to confirm the complete sequence of the Vmo1 gene in 

order to prepare a protein expression construct containing the Vmo1 ORF.  

 

Recommendation 1: Remove Genomic DNA from RNA Sample 

The primers designed to amplify the Vmo1 transcript were not specific to the 

mRNA. Therefore, genomic DNA had to be eliminated from the RNA template to 

ensure only cDNA was amplified and not genomic DNA. This was accomplished 

using DNase but results show that genomic DNA was present. To eliminate 

genomic DNA contamination, a second DNase treatment could be added to the 

RNA isolation protocol or carried out after RNA is isolated. Alternatively, gene 

specific primers for exon-intron boundaries could be designed for amplifying 

overlapping contigs across the three coding exons.  

 

Recommendation 2: Rapid Amplification of cDNA Ends 

In addition to the removal of genomic DNA from the RNA sample rapid 

amplification of cDNA ends (RACE) should be used. This involves the direct 

sequencing of the Vmo1 mRNA template where the RNA is reverse transcribed to 

cDNA followed by PCR amplification using specific primers (Schaefer, 1995).  

 

Recommendation 3: Validate Quantity and Quality of RNA 

To validate the RNA yield, integrity, and purity, a number of methods could be 

employed based on access to equipment and funding. For example, the automated 

Agilent 2100 Bioanalyzer machine (Agilent Technologies) or performing an RNA 

Qubit™ Assay (Life Technologies). The Qubit RNA assay involves using two 

rRNA standards and a fluorometre and is highly selective for RNA. The 

Bioanalyzer uses electrophoresis separation of RNA samples and laser induced 

fluorescence detection coupled with a computer algorithm to interpret sample 

concentration, integrity and to generate ribosomal ratios. 
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Recommendation 4: Clone Vmo1 

The quality of the sequencing results for the 671bp Vmo1 amplicon varied 

between the forward and reverse sequencing reaction. The forward sequence had 

96% coverage and 99% identity to the reference sequence with miscalls only seen 

in the first 20 nucleotides of the 5’ end which is due to primer binding. The 

reverse sequence had 70% coverage for the reverse sequence with 98% identity 

and miscalls found throughout the length of the sequence. With optimal quality 

DNA the Waikato DNA sequencing facility should produce a 600 nucleotide read, 

the size and quality of the forward sequence indicates a problem with the reverse 

sequence only and a repeat of the reverse reaction is recommended.  

 

The low quality of DNA sequencing results could be an indication of poor primer 

design and non-specific binding. This could be improved by designing primers or 

by running a touchdown PCR protocol to ascertain the optimal annealing 

temperature for all primer combinations (Don et al., 1991). 

 

To ensure high copy numbers and complete coverage, the amplified Vmo1 DNA 

could be cloned into a cloning vector and then directly sequenced using vector 

specific primers. In addition, this would allow easier manipulation of the Vmo1 

transcript for insertion into an expression vector (assuming compatible restriction 

enzyme sites and in frame ORF). 

 

Alternative methodologies to confirm the complete Vmo1 sequence could include 

RNA-seq. For example, you could use Vmo1 targeted RNA sequencing with a 

customised Ion AmpliSeq™ gene panel (Life Technologies and Toedling, 2012). 

This would result in the quantitative gene expression of Vmo1. 

 

7.3 Validation of the VMO1 Antibody 

To conclusively determine the localisation of VMO1 protein in the mouse inner 

ear, a recombinant VMO1 protein construct needs to be developed or purchased. 

Electrophoresis of the resulting expressed purified recombinant protein and 

western blot analysis would ultimately demonstrate the specificity of the VMO1 

antibody for recognising the VMO1 epitope. 
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It should be noted that the ProteinTech VMO1 antibody was validated using Hela 

and HEK-293 cells and the GeneTex VMO1 antibody using a recombinant VMO1 

protein. Hela and HEK-293 cells are immortal cell lines derived from human 

tissue that are easily transfected with the gene of interest to produce expressed 

protein (Ahlin et al., 2009). Therefore, a future recommendation would include 

the protein lysate from cultured Hela cells on a western blot as well as a 

recombinant VMO1 protein. 

 

The next section discusses the methodology and future recommendations for the 

preparation of a recombinant VMO1 protein. 

 

Recommendation 1: Preparation of Cloning Vector  

RE digestion of the vectors for linearisation and creation of sticky ends for the 

ligation of a Vmo1 insert was shown to be incomplete with undigested plasmid 

remaining in the sample. Therefore, this resulted in a decreased concentration of 

ligated plasmid and lead to inefficient transformation of recombined circular 

plasmid into the electrocompetent E. coli cells. To increase the efficiency of the 

RE digestion, an additional purification step could be performed after the isolation 

of the plasmid DNA from transformed E. coli cells, and the units of RE increased. 

In addition, the digested plasmid could be separated on a lower percentage 

agarose gel to improve the separation of the digested and undigested plasmid 

bands. The digested band could then be easily identified and if required, could be 

gel purified in order to increase the concentration of digested vector in the ligation 

reaction.  

 

Rather than using a plasmid with sticky ends for cloning purposes, you can digest 

a vector with a blunt RE, T-tail and ligate a PCR product with 3’-A overhangs. 

The T-tailing reaction is the addition of a thymine amino acid to the 3’ ends of a 

linearised blunt vector and results in a 2bp increase in the size of the vector which 

is undetectable on a 1% agarose gel. To confirm the T-tailing reaction, T4 DNA 

ligase could be used. This would involve using T4 DNA ligase to recircularise the 

un-T-tailed, digested vector and comparing the amount of colonies produced 

following transformation with a colonies produced following transformation of a 

digested vector with no T-tailing carried out. Theoretically, when compared to the 

positive control, successful T-tailing would result in a lower colony count due to 
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the thymine nucleotides preventing recircularisation of the vector. This would also 

act as an additional control to test the activity of the T4 DNA ligase. Extra effort 

must also be made to avoid nuclease contamination, which would remove the A or 

T overhang on the insert and vector respectively and to use a SafeImager to 

visualise PCR products and avoid UV light which would cause degradation of the 

DNA (Promega).  

 

Recommendation 2: Ligation and Transformation of the Circular 

Recombinant Vector 

Following the preparation of digested vector and PCR insert, the ligation reaction 

was carried out multiple times to generate a circularised vector. Optimisation of 

the ligation reaction included using a different stock of T4 DNA ligase, changing 

the amount of T4 DNA ligase and adjusting the ratio of insert:vector. Ligation and 

Transformation controls were also carried out to test the viability, transformation 

efficiency, and antibiotic resistance of electrocompetent cells as well as the action 

and efficiency of the T4 DNA ligase enzyme. Blue and white colonies resulted 

following transformation but the wrong colony PCR screening method was 

employed to detect positive inserts.  

It was noted that during the writing of the thesis that the incorrect primer was used 

to check orientation of the inserts.  

In future, colonies should be screened using Vmo1 specific primers that only 

amplify cDNA produced from Vmo1 mRNA such as BFG7F or BFG8R combined 

with a vector specific primer such as M13 Puc Reverse to identify the orientation 

of the inserts.  

In addition, the colony should be cultured to produce high copy numbers for DNA 

extraction for sequencing and RE digestion. RE digestion would be used to 

confirm the size and orientation of the insert. Sequencing of the plasmid would 

give the full length sequence of the insert and allow for the confirmation of the 

ORF and confirm the size and the orientation of the insert.  

 

 



  

 7-140 

Protein Expression  

In the future, upon the identification of a positive clone and a correct ORF, the 

following steps are recommended for the expression of a VMO1 recombinant 

protein. 

 

Briefly, you should inoculate a flask filled with 10mL of LB
+
 broth with 

transformed DH5 containing the Vmo1 insert in the 5’ to 3’ direction. Allow, the 

culture to grow at 37°C to an OD600nm of 0.698 (logarythmic phase) and induce by 

adding 1mM IPTG. You should also include a control – no induced. Following 

three hours of growth, remove a 4mL culture for protein extraction. Leave the 

remaining culture shaking overnight for protein extraction. 

 

To extract protein, pellet the cultures by centrifuging at 16100rcf for 2min. 

Remove the supernatant and resuspend the cells in 100μl of binding buffer and 

freeze at -80°C for 30min. Heat the samples at 75°C for 30min followed by 

centrifugation to pellet cell debris and insoluble proteins. The supernatant will 

contain soluble expressed proteins and should be removed to a new tube. Aliquots 

of the pellet and supernatant from all of the samples can be analysed on an SDS-

PAGE to determine if the recombinant protein had been induced, which induction 

time produced the highest concentrations of recombinant protein, whether the 

protein was soluble or insoluble, and finally, whether it is of roughly the expected 

size for the mouse VMO1 protein (22kDa). The protein can then be purified on a 

Nickel resin column using the histidine (His) tag expressed on the recombinant 

protein. 

 

Following the purification of the recombinant protein, the amino acid sequence of 

the protein can be confirmed using Trypsin digestion and western blotting. 

Trypsin digestion is a method that uses the Trypsin enzyme to proteolytically 

cleave polypeptides at the C-terminal end of Lys and Arg. This would result in 

cleavage of the VMO1 protein to produce 13 fragments (ExPASy, 2013) as shown 

in Table 17.  

The digested recombinant protein could then be analysed on a 2D SDS-PAGE gel 

or using mass spectrometry. 2D western blotting of the digested protein using 

VMO1 antibody would theoretically show binding to a fragment 1.8kDa in size.  
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Table 17: Expected protein fragments resulting from Trypsin digestion of the purified mouse 

VMO1 recombinant protein 

Mass 

(kDa) 
Position Peptide sequence 

3.7 31-64 YASIVDVTNGGTWGDWAWPEMCPDGYFASGFSVK 

3.7 93-125 NTHVVESQSGSWGSWSEPLWCPGTSFLVAFCLR 

2.8 145-170 CSDGVELEGPGLNWGDYGEWSNSCPK 

2.5 9-30 LLLLLGVMCYGHAQIQVHVEPR 

1.9 126-142 VEPFTFPGDNTGVNNVR 

1.8 65-82 VEPPQGIPGDDTALNGIR 

1.0 187-195 DDTALNDIR 

0.9 1-8 MELQAGAR 

0.8 171-178 GVCGLQTK 

0.6 196-201 IFCCAS 

0.6 179-183 IQKPR 

0.6 83-87 LHCTR 

0.5 88-92 GNSQK 

 

Western blotting would then be used to validate the specificity of the VMO1 

antibody with binding expected to occur and produce a band around 22kDa in size. 

7.3.1 Optimisation of the Western Blotting Method 

The immunodetection of the VMO1 protein in tissue lysates blotted onto a PVDF 

membrane was carried out with varying degrees of success. While the VMO1 

antibody was shown to bind to a protein of expected size (20-37kDa) in the inner 

ear and tear gland it also showed binding to a high molecular weight (>250kDa) 

protein in the inner ear. This could be due to the VMO1 protein complexing with 

a high molecular weight protein such as collagen. To determine if the VMO1 

protein is bound to collagen, an antibody or stain such as Fuschin or Safranin, 

which bind to collagen, could be used. In addition Co-immunoprecipitation (Co-

IP) could be used to identify protein-protein interactions and verify binding of 

VMO1 to a high molecular weight protein such as collagen. Co-IP uses binding of 

the VMO1 protein to an antibody to form an immune complex that is then 

precipitated or bound to a beaded support. At the same time VMO1 is precipitated 

the proteins complexed with it are as well which can then be analysed them to 

gain a new insight into the function of VMO1 (Sambrook et al., 2005). 

Alternatively the two-hybrid screen method could be used. This involves using 

yeast to incorporate two foreign plasmids containing the genes of interest. Once 

transcribed the genes of interest produce proteins that are fused to a second 

protein. If the two proteins of interest interact the attached proteins attached to 
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protein fragments. If the genes of interest interact the attached proteins induce the 

expression of a reporter gene that changes the phenotype of the cell (Feilotter, 

1994).  

 

The percentage of SDS-PAGE gel used (12%) for the western blot analysis gave 

good separation of proteins in the 20-100kDa range but did not allow for the 

resolution of high molecular weight proteins or low molecular weight proteins. To 

address this issue, a lower percentage gel (7%) could be used to resolve the high 

molecular weight proteins and to improve the size recording of the larger protein 

VMO1 antibody is binding to. To improve the detection of the low molecular 

weight protein size the VMO1 antibody is binding to, an SDS-PAGE gel of higher 

percentage (15%) could be used. In addition, inner mouse ear proteins could be 

analysed on a 2D western blot which could then be probed with both the VMO1 

antibody and a collagen antibody.  

 

Denaturation of the mouse tissue protein lysates was carried out in a SDS loading 

buffer containing -mercaptoethanol and heated for 3min at 99C. A more robust 

method could be used to denature the proteins to investigate the removal of the 

high molecular weight proteins. To achieve this, the SDS loading buffer could be 

prepared with fresh -mercaptoethanol and/or the sample heated for an additional 

5min (abcam.com/technical - Harlow and Lane, 1999). Alternative reducing 

agents such as Dithiothreitol (DTT) or Tributylphosphine (TBP) (BIORAD) could 

also be tried. In addition, the western blot could be carried out using native protein 

lysates to see if this eliminated the band observed between 20-37kDa. 

7.4 Histology  

IHC was performed and showed the VMO1 was localised in the mouse inner ear. 

However, only a single developmental time point was analysed during the course 

of this thesis. To obtain a better understanding of the expression profile of VMO1, 

and the development of the TM, IHC should be investigated using mouse ear 

sections from gestational day 18, when the major TM is first observed to P14, 

when the cochlea is fully developed morphologically (Rueda et al., 1996). Mouse 

hearing is said to be fully developed by P10 but mechanoelectrical transduction 

can be detected as early as P1 (Peters et al., 2007). However, cochlear structures 

http://en.wikipedia.org/wiki/Dithiothreitol
http://www.bio-rad.com/en-us/sku/163-2101-tributylphosphine-tbp
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are present at birth and adult cochlear length is reached at P7 with hair cell 

numbers matching those of an adult at P3 (Mikaelian and Ruben, 1965).  

 

1.4.1 Embedding and Sectioning of the Mouse Inner Ear 

In the future, if you decided to return to using paraffin embedded sections, the 

following recommendations should be considered to prevent shearing of the TM, 

BM, temporal bone, and loss of the sections during the antigen revival step. 

Firstly, decalcification of the temporal bone in EDTA in the microwave as 

described by Cunningham et al., 2001. Secondly, using mice younger than P12 

since the temporal bone is said to be fully calcified (Cunningham et al., 2001). 

Thirdly, heating the citrate antigen revival buffer prior to slide incubation instead 

of boiling the slides in the buffer using a microwave. Finally, embedding whole 

hemidissected mouse heads instead of inner ears to help with orientation of the 

inner ear. 

 

For OCT embedding, use of deeper cryomolds would ensure even and complete 

coverage of the specimen with OCT, and the collection of thinner sections 

(<10μm) to be able to resolve individual cells more clearly. 

 

H&E and Counter Staining of the Mouse Sections 

H&E staining was carried out to aid in visualisation of cell nuclei and section 

morphology with good results observed. However, due to the fluorescent nature of 

eosin it was not compatible with fluorescent IHC and did not stain the TM due to 

is acellular nature and 97% water composition. Also, although the H&E stain was 

able to show the general morphology of the tissue, improvements could be made 

to enhance the resolution of the individual cells within the inner ear. Briefly H&E 

staining was carried out by first washing in 1X PBS for 1min followed by 5min in 

haemotoxylin stain, a brief rinse of the reverse side of the slide in cold running tap 

water, 30sec in Eosin followed by another rinse in tap water and 5min washing in 

1X PBS. 

To improve H&E staining, Rüegg & Meine, 2012, recommend washing slides in 

warm tap water for 1 minute to remove PFA as opposed to 1min in 1X PBS, 5min 

haemotoxylin staining and blueing of the haemotoxylin stain. The addition of 

blueing involves washing the slides under warm running tap water for 10min to 

aid in neutralising the acidic haemotoxylin and freeing the OH group that results 
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in a bluer stain. In addition, 10min, instead of 30sec, eosin staining was 

recommended followed by three 1min washes in dQH2O. 

 

Alternatively, you could use a different stain that is visible under light microscopy 

such as Fuchsin or Safranin, which will both stain collagen; Alcian Blue stain 

which will stain cartilage (Pirvola et al., 2004); or to use a fluorescent stain such 

Phalloidin which will bind to filamentous actin but not globular actin conjugated 

to a different fluorophore than the FITC used with the VMO1 antibody (Thermo-

Scientific, 2013). 

 

Immunohistochemistry 

IHC results could be improved in multiple ways to increase specificity of antibody 

binding, and to quantify background noise and autofluorescence of the tissue 

sections. 

The noise observed on the sections could be due to non-specific binding of the 

primary or secondary antibody, autofluorescence of the tissue itself or from 

contamination of the polyclonal antibody. 

 

Goat serum was used to block tissue and prevent non specific binding. To increase 

blocking of non-specific sites, incubation times could be increased or an 

additional incubation with fresh serum added to the protocol. Another alternative 

would be to optimise the embedding and fixation protocol to reduce background 

noise and autofluorescence by trialling other OCT mediums and protocols. 

 

Autofluorescence was not tested for in this thesis and should be tested by viewing 

a section of tissue under a fluorescent microscope with different wavelength 

filters. 

The endogenous peroxide activity which leads to autofluorescence of sections is 

prevented by incubation in H2O2. Peroxidase activity was prevented by incubating 

section slides in 0.9% H2O2 for 30min. To reduce the level of autofluorescence, 

the concentration and/or incubation time in H2O2 could be increased, using fresh 

solutions of H2O2 or preparing in diluted methanol rather than water to accelerate 

the destruction of heme groups. 
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To address possible contamination of the polyclonal antibody, a monoclonal 

antibody, (not yet available) could be used to decrease chances of contamination 

from other antibodies.  

 

To address antibody specificity and binding efficiency, additional IHC controls 

should be included. These include the use of a mammalian cell line or tissue 

known to not express the protein of interest such as a knock-out mutant or the 

mouse thymus which has consistently shown no antibody binding in western 

blots; transfection of non-expressing cells with the protein of interest as a positive 

control; and the use of cell lines biologically proven to not express the protein of 

interest (Bordeaux et al., 2010). 

 

7.5 Conclusion  

There are a variety of methodologies available to determine the gene function of 

Vmo1. Firstly, the 3D structure of the mouse and human VMO1 protein need to be 

resolved using X-ray crystallography and a Vmo1 knock-out mouse created to 

determine phenotype(s). Secondly, with Human Ethics approval, recruit human 

subjects suffering from HL and/or balance disorders to sequence their VMO1 gene 

and search for mutations, such as SNPs, and compared against a cohort of normal 

hearing individuals. To date there have been no human or mouse deafness loci 

mapped to the VMO1 chromosomal region 17p13.2:4688580- 4689728 (Van 

Camp G, Smith RJH. Hereditary Hearing Loss Homepage). Thirdly, analyse 

mouse mutants with a known hearing or vestibular phenotype to determine if 

changes to the morphology of the inner ear or the proteins expressed in the inner 

ear has any affect on the localisation and expression of the VMO1 protein. The 

Tecta
C1509G

 knock-in mouse has been shown to have altered development of the 

TM leading to shortening of the TM in adult mice that is not observed in wild-

type mice (Gueta et al., 2011). This would provide a good comparison for the 

localisation of VMO1 within the TM and inner pillar cell. Finally, VMO1 protein 

expression was only analysed at two developmental time points (P5 and P28+) for 

this thesis. Changes in VMO1 protein expression between gestational day 18 and 

P14 would give an indication of the function and importance of VMO1 and in 

addition, show how expression in the TM changes throughout development.  
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9 APPENDIX ONE 

BUFFERS AND SOLUTIONS 

1X PBS – phosphate buffered saline pH 7-7.4 

8g   NaCl   

0.25g   KCl   

0.2g   KH2PO4 

1.15g   Na2HPO4   

Make up to 1L with mQH2O.  

 

1X PBS-T – phosphate buffered saline + Tween-20 pH 7-7.4 

1L   PBS  

0.5mL   Tween-20.  

Autoclave  

 

50X TAE - Tris-acetate EDTA buffer   

242g   Tris base dissolved in 800 mL mQH2O  

57.1mL Glacial acetic acid   

100mL  0.5M EDTA (pH 8.0) 

  Make up to 1L with mQH2O 

 

1X TAE running buffer   

20mL   50X TAE  

980mL  mQH2O 

 

0.1% DEPC treated water - diethyl pyrocarbonate 

2mL   DEPC 

Make up with 2L mQH2O, mix overnight using a magnetic stirrer, then 

autoclave. 

 

Eosin (1% solution) 

10g   Eosin Y 

2.0mL   Acetic acid (5% aqueous)  

0.1g  Phloxine B 

Make up with 1L mQH2O 

 

Haematoxylin 

4.0g   Haematoxylin 

0.4g   Sodium iodate 

35.2g   Aluminium sulphate  

250mL  Ethylene glycol  

40mL   Glacial acetic acid 

Make up to 1L with mQH2O 

 

Ponceau S stain 

0.1g   Ponceau S 

0.1g   Acetic acid 

Make up to 1L with mQH2O 
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1X TBS - Tris buffered saline 

50mL   1M Tris 

30mL   5M Sodium chloride  

Make up to 1L with mQH2O and autoclave 

 

1X TBS-T - Tris buffered saline + Tween-20 

999mL  TBS 

1mL   Tween-20 

 

6X agarose gel loading buffer 

3mL   Glycerol 

25mg   Bromophenol Blue  

20μl   Xylene Cyanole 

 Make up to 10mL with sterile mQH2O 

 

10X PhosSTOP Phosphatase Inhibitor Cocktail 

 1mL  1X PBS 

1 PhosSTOP Phosphatase Inhibitor Cocktail Tablet (Roche) 

 

10X cOmplete Protease Inhibitor Cocktail  

 1mL  1X PBS 

 1  cOmplete Protease Inhibitor Cocktail Tablet (Roche) 

Protein lysis buffer 

2.5mL  1M Tris 

1.9mL  4M NaCl 

200μl  0.5M EDTA 

250μl  Triton-X 100 

0.5mL  1X PhosSTOP Phosphatase Inhibitor Cocktail 

0.5mL  1X cOmplete Protease Inhibitor Cocktail 

Make up to 50mL with sterile mQH2O 

 

2X Protein loading buffer 

2mL  0.5M Tris-HCl pH6.8 

4mL  10% SDS solution 

2mL  Glycerol 

1mL  2-mercarptoethanol 

1mL  Bromophenol Blue 

 

SDS Running Buffer    

3.0g  Tris    

14.4g  Glycine    

1g  SDS (or 100mL of 10% SDS solution) 

Make up to 1L with dH2O    

     

37:1 acrylamide:BIS (22%)     

22.2g   Acrylamide    

0.6g  Bisactylamide   

Make up to 100mL dH2O    

     

10% APS     

0.1g  Ammonium persulfate (oxidiser)  

1mL  H2O    
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2X Freezing medium 

6.30g  K2HPO4   

0.45g  Sodium citrate 

0.09g  MgSO4.7H2O 

1.80g  (NH4)2SO4  

44.00mL Glycerol   

Make up to 500mL with mQH2O and autoclave  

     

1M Tris HCL pH 8.0 

500mL  H2O  

60.5g  Tris  

Autoclave 

 

0.5M EDTA pH 8.0 

93.05g  EDTA 

Make up to 500mL with mQH2O and autoclave 

 

4% PFA - paraformaldehyde 

4.0g  PFA 

10.0μl  10M NaOH 

Make up to 50mL with mQH2O and heat in 65°C water bath to dissolve 

10mL   10X PBS 

Make up to 100mL with sterile mQH2O 

       

Mounting fluid    

0.036g  NaHCO3    

0.008g  Na2CO3     

5mL   H20     

45mL  Glycerol  

 

2M MgCl2 

31.8g  MgCl2 

Make up to 200mL with mQH2O 

 

TE buffer – Tris EDTA pH 8.0 

10mL  1X Tris-HCl 

2mL  0.5M EDTA 

 

0.9% H2O2 

16.7mL  H2O2 

Make up to 500mL with 1X PBS 

 

Blocking solution 

5g   Low fat milk powder 

50mL  1X TBS-T 

 

Transfer buffer 

3g  25mM Tris 

14.4g  Glycine 

200mL  Methanol 

Make up to 1L using SDS running buffer 
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0.5% Triton-X 100 

250μl  Triton-X 100 

Make up to 50mL with 1X PBS 

 

Antigen revival buffer – sodium citrate buffer 

1.47g  Tri-sodium citrate (dehydrate) 

Make up to 500mL with mQH2O and autoclave 

250μl  Tween 20 

 

Stripping buffer 

0.75g  Glycine 

0.05g   SDS 

10mL   Tween20 

Make up to 50mL with mQH2O 

 

LB broth – Luria Base broth pH 7.0 

10g  Bactotryptone 

5g  Bacto yeast extract 

10g  NaCl 

Make up to 1L with mQH2O and autoclave 

 

LB plates – Luria base agar plates 

1L  LB broth 

15g  Bactoagar 

Autoclave and pour plates at <60°C add antibiotics at 50°C 

 

Coomassie blue stain 

0.25g   Coomassie blue brilliant stain R-250 

90mL  Methanol 

10mL  Glacial acetic acid 

Make up to 200mL with dH2O 

 

IPTG – isopropylthiogalactoside 

200mg  IPTG 

1mL  dH2O 

 

Xgal - 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 

20mg  Xgal 

1mL  Dimethyl formamide 

 

PEG – polyethyleneglycol potassium hydroxide pH 13.3-13.5 

27mL  PEG 200 

465μl  2M KOH 

Make up to 50mL with mQH2O 
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10 APPENDIX TWO 

VECTOR MAPS 

10.1 pET41-a(+) 

A cloning and expression vector containing a kanamycin antibiotic resistance 

gene, an  N-Terminal GST-Tag for enhanced production and solubility, and a C-

Terminal His Tag for purification of recombinant protein. This was the original 

vector chosen for VMO1 recombinant protein expression due to the presence of 

the Terminal GST Tag and  C-Terminal His Tag. The vector was not retrievable 

from storage on Whatmans paper using DNA elution and transformation. 

 

Figure 64: pET-42a(+) vector map showing position of multiple cloning site and Restriction 

enzyme cut sites (AddGene) 
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10.2 pET-41a(+) vector 

A cloning and expression vector with kanamycin resistance, an N-Terminal GST-

Tag for enhanced production and solubility, a   C-Terminal His-Tag for 

purification of recombinant protein. This vector was selected because of 

availability and compatibility with original Vmo1 primers to produce a 

recombinant VMO1 protein using BamHI and EcoRI RE and was as alternative 

when pET41a(+) vector was not retrievable from storage on filter paper. 

 

 

Figure 65: pET-42a(+) vector map showing position of multiple cloning site and Restriction 

enzyme cut sites (AddGene) 
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10.3 pProEX HTb vector 

pProEX HTb is an E. coli strain BL21 bacterial protein expression vector used for 

the expression of recombinant proteins under the trc promoter. In addition, 

contains an N-terminal His-Tag for purification of recombinant protein, a multiple 

cloning site and ampicillan resistant. This vector was selected because of 

availability and primers redesigned for compatibility with Vmo1 ORF using 

HindIII RE to produce a VMO1 recombinant protein. 

 

Figure 66: pProEX HTb (Invitrogen) vector map showing position of multiple cloning site 

and Restriction enzyme cut sites (AddGene) 
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10.4 pBluescript II SK(+) 

This cloning vector has blue/white colony screening on Xgal/IPTG plates and 

ampicillan resistance. This vector was selected because of the lack of success 

shown with ligation of PCR product directly into expression vectors, its 

availability and the robust method outlined in the BIOL362 Laboratory Manual, 

UoW. Excess amounts of EcoRI results in EcoRI prime activity and cleavage at a 

non-EcoRI site at the 3’ end of the f1 intergenic region (Instruction Manual – 

Agilent Technologies). 

 

 

Figure 67: pBluescript II SK(+) vector map showing position of multiple cloning site and 

Restriction enzyme cut sites (AddGene) 
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10.5 pCR™4-TOPO® TA vector 

This cloning vector has ampicillan and kanamycin antibody resistance with 

blue/white colony screening on Xgal/IPTG plates (Adapted from Invitrogen User 

guide 2012). This vector was selected for ability to directly ligate PCR products 

into the vector with no additional need for T-tailing, or RE digestion. This vector 

has an alternative to the pBluescript II SK(+) vector. 

 

Figure 68: pCR®4-TOPO® cloning vector 3956bp long showing information from the 

supplier Invitrogen. 
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11 APPENDIX THREE 

DNA SEQUENCING RESULTS 

 

Figure 69: Chromatogram of Forward PCR sequence result obtained from the UoW DNA 

Sequencing Facility (Hamilton, New Zealand) using an Applied Biosystems 3130xl Genetic 

Sequence Analyzer. The sequence was analysed using Applied Biosystems Software. The 

PCR product was produced from cDNA synthesized from mouse inner ear RNA using 

primer set BFG27/28, and purified using the rAPid Alkaline Phosphatase and sequenced 

using primer BFG27F. Figure shows the nucleotide peaks for each individual basecall from 

nucleotide 1-648 showing little background noise within the 90-510 base regions. Quality is 

indicated by the shading of each nucleotide; light blue represents good quality and dark blue, 

poor quality. Results indicate good quality of DNA sequencing with poor coverage of the 5’ 

end. 
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Figure 70: Chromatogram of Reverse PCR sequence result obtained from the UoW DNA 

Sequencing Facility (Hamilton, New Zealand) using an Applied Biosystems 3130xl Genetic 

Sequence Analyzer. The sequence was analysed using Applied Biosystems Software. The 

PCR product was produced from cDNA synthesized from mouse inner ear RNA using 

primer set BFG27/28, and purified using the rAPid Alkaline Phosphatase and sequenced 

using primer BFG28R. Figure shows the nucleotide peaks for each individual basecall from 

nucleotide 1-475 showing high levels of background noise throughout the sequence. Quality 

is indicated by the shading of each nucleotide; light blue represents good quality and dark 

blue, poor quality. Results indicate poor quality of DNA sequencing with only a small 

amount of the PCR amplicon covered. 
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12 APPENDIX FOUR 

ANIMAL ETHICS APPROVAL 
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13 APPENDIX FIVE 

SPECIMEN AND TISSUES TYPE 

Table 18: Specimen and tissue type of mice used during the course of this research. Mice 

were euthanised using SOP#9 in the animal house at the UoW. Table shows the date of 

dissection, the age of the mice, what applications they were used for, whether animal ethics 

approval was needed and the approval number and the type of tissues extracted. Two ears 

were extracted from each adult (P28+) mouse unless otherwise stated. Where ethics approval 

was not required, mice were acquired from another study, in which the ears were donated 

from a deceased mouse and thus, did not require ethics approval 

Date Age Application 

Ethics 

approval 

needed 

Tissue used 

7/12/11 P28+ Paraffin IHC No One ear, heart, spleen, 

liver, lung 

7/12/11 P28+ Paraffin IHC  No Ears 

7/12/11 P28+ Paraffin IHC and 

protein extraction 

No Ears and full protein 

dissection 

28/12/11 P28+ Protein extraction No Full protein dissection 

28/12/11 P28+ Protein extraction No Ears, eyes, tear gland 

28/12/11 P28+ Protein extraction No Ears, eyes, tear gland 

28/12/11 P28+ Protein extraction No Ears, eyes, tear gland 

12/01/12 P28+ Protein extraction No Full protein dissection 

27/03/12 P28+ Protein extraction No Full protein dissection 

30/03/12 P28+ Protein extraction No Full protein dissection 

7/05/12 P28+ Protein extraction No Full protein dissection 

7/06/12 P28+ RNA extraction Protocol 

853 

Ears 

7/06/12 P28+ RNA extraction Protocol 

853 

Ears 

7/06/12 P5 OCT IHC Protocol 

853 

Head 

7/06/12 P5 OCT IHC Protocol 

853 

Head 

7/06/12 P5 OCT IHC Protocol 

853 

Head 

7/06/12 P5 OCT IHC Protocol 

853 

Head 

8/06/12 P28+ RNA and protein 

extraction 

Protocol 

853 

Ears and full protein 

dissection 

 

Tissues dissected for full dissection included: adrenal gland, appendix, bladder, 

diaphragm, duodenum, gall bladder, heart, hypothalamus, kidney, liver, lumbar 

lymph node, lung, nose, ovaries, pancreas, small intestine, spleen, stomach, 

thymus, tongue and uterus. 
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14 APPENDIX SIX 

STANDARD OPERATING PROCEDURE NINE 
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15 APPENDIX SEVEN 

GENETICALLY MODIFIED ORGANISMS 

C2 Laboratories, Biological Sciences Department, UoW 

Containment Manual, Version 6.5 issued on 17-02-12 

 

Form for Lab records of New Organisms Register of GMOs 

Developed in Facility Number 759 

HSNO ACT APPROVAL No. APP201152 UOW Appl. No: GMD101146  

PROJECT: Developmental gene expression profile of Vmo1 in the mouse 

auditory system 

P.C.LEVEL: 1 Additional Controls:       

Researcher: Blaise Forrester-Gauntlett 

*Project Leader/Supervisor:  Dr. Linda Peters 

Host Species and Strain: E. coli strain DH5 

Vector: pBluescript/pProExHtb/pET42a Insert DNA: Mouse Vmo1 

Species of donor of nucleic acids: Mus musculus 

 

Note: all records must be dated and initialled. Continue on a new page if necessary. 

DATE NAME OF 

GMO 
Assign a code and 

number 

STORAGE 

DETAILS 
Specify fridge or freezer 

TRANSFER 

DETAILS 
Reg. No. of 

sending/receiving 

facility 

DISPOSAL 

DETAILS 
Specify method 

used 

07-08-12 BFG001  NA Autoclave 

15-08-12 BFG002  NA Autoclave 

20-09-12 BFG003  NA Autoclave 

03-10-12 BFG004  NA Autoclave 

24-10-12 BFG005  NA Autoclave 

15-11-12 BFG006 – 

pProEX Htb in E. coli  
4C fridge plates 

-20C glycerol stock 

NA  

15-11-12 BFG007– 

pET42a in E. coli  
4C fridge plates 

-20C glycerol stock 

NA  

20-11-12 BFG008–

pBluescript in E. coli  
4C fridge plates 

-20C glycerol stock 

NA  

Info transferred to electronic record (date) 26-11-12 by (name) Judith Burrows. 
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16 APPENDIX EIGHT 

COMPARATIVE GENOMICS ANALYSIS 

Unless otherwise stated comparative genomic analysis was carried out using 

Geneious® R6 created by Biomatters. Available online from 

http://www.geneious.com/.  

 

 

Sequence Alignments  

Multiple and Pairwise alignments were carried out using ClustalW (Kyoto 

University Bioinformatics Center) and Geneious software 

http://www.genome.jp/tools/clustalw/ 

 

BLAST and Database searching 

The following databases were used to investigate the genomics of Vmo1 and 

collect information on HL: 

A BioGPS - http://biogps.org/#goto=welcome  

 
 

B Chicken Genome –  

 http://www.ncbi.nlm.nih.gov/projects/genome/guide/chicken/  

 http://genome.ucsc.edu/cgi-
bin/hgGateway?clade=vertebrate&org=Chicken&db=0&hgsid=67521880  

 
 

C COSMIC - Catalogue of Somatic Mutations in Cancer 

http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/ 

 
 

D dbSNP - Single nucleotide polymorphism database 

 http://www.ncbi.nlm.nih.gov/projects/SNP/ 

 
 

E Ensembl - joint project between EMBL - EBI and the Welcome Trust Sanger 

Institute 

 http://www.ensembl.org/index.html  

 
 

F EMBL - European Molecular Biology Laboratory  

 http://www.ebi.ac.uk/embl/  

 
 

G GenBank – National institute of health genetic sequence database 

 http://www.ncbi.nlm.nih.gov/  

 
 

H Hereditary hearing loss homepage 

 http://hereditaryhearingloss.org/main.aspx?c=.HHH&n=86162  

http://www.geneious.com/
http://www.bic.kyoto-u.ac.jp/
http://www.bic.kyoto-u.ac.jp/
http://www.genome.jp/tools/clustalw/
http://biogps.org/#goto=welcome
http://www.ncbi.nlm.nih.gov/projects/genome/guide/chicken/
http://genome.ucsc.edu/cgi-bin/hgGateway?clade=vertebrate&org=Chicken&db=0&hgsid=67521880
http://genome.ucsc.edu/cgi-bin/hgGateway?clade=vertebrate&org=Chicken&db=0&hgsid=67521880
http://www.ensembl.org/index.html
http://www.ebi.ac.uk/embl/
http://www.ncbi.nlm.nih.gov/
http://hereditaryhearingloss.org/main.aspx?c=.HHH&n=86162
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I Human Genome 

 http://www.ncbi.nlm.nih.gov/genome/guide/human/  

 http://genome.ucsc.edu/cgi-
bin/hgGateway?hgsid=346698985&clade=mammal&org=Human&db=0  

 
 

J IKMC - International Knockout Mouse Consortium -

http://www.knockoutmouse.org 

 
 

K Mouse Genome –  

 http://www.ncbi.nlm.nih.gov/projects/genome/guide/mouse/  

 http://genome.ucsc.edu/cgi-
bin/hgGateway?clade=vertebrate&org=Mouse&db=0&hgsid=67521880  

 
 

L NCBI - National centre for biotechnology information 

 http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome  

 
 

M NEB - New England biolabs 

 https://www.neb.com 

 
 

N NHLBI - National Heart, Lung, and Blood Institute 

 http://www.nhlbi.nih.gov 

 
 

O RefSeq - Reference sequence database 

 http://www.ncbi.nlm.nih.gov/RefSeq/ 

 
 

P SCOP - Structural classification of proteins  

 http://scop.mrc-lmb.cam.ac.uk/scop/  

 
 

Q Signal peptide 

 http://www.cbs.dtu.dk/services/SignalP/  

 
 

R TPA - Third party annotation database 

 http://www.ncbi.nlm.nih.gov/genbank/tpa/  

 

Molecular weight prediction 

The theoretical molecular weight of proteins was predicted using the Swiss 

Institute of Bioinformatics Resource Portal (ExPASy) “Compute pI/Mw” tool. 

http://web.expasy.org/compute_pi/ 

 

mRNA translation 

mRNA transcript translation was carried out using ExPASy and Geneious 

software  

http://www.expasy.org/tools/dna.html 

 

http://www.ncbi.nlm.nih.gov/genome/guide/human/
http://genome.ucsc.edu/cgi-bin/hgGateway?hgsid=346698985&clade=mammal&org=Human&db=0
http://genome.ucsc.edu/cgi-bin/hgGateway?hgsid=346698985&clade=mammal&org=Human&db=0
http://www.ncbi.nlm.nih.gov/projects/genome/guide/mouse/
http://genome.ucsc.edu/cgi-bin/hgGateway?clade=vertebrate&org=Mouse&db=0&hgsid=67521880
http://genome.ucsc.edu/cgi-bin/hgGateway?clade=vertebrate&org=Mouse&db=0&hgsid=67521880
http://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHome
http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.cbs.dtu.dk/services/SignalP/
http://www.ncbi.nlm.nih.gov/genbank/tpa/
http://web.expasy.org/compute_pi/
http://www.expasy.org/tools/dna.html
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Primer analysis 

PCR primer analysis was carried out using IDT OligoAnalyzer 3.1 and Oligo-Calc 

http://www.idtdna.com/analyzer/applications/oligoanalyzer/ 

http://www.basic.northwestern.edu/biotools/oligocalc.html 

 

Primer design 

PCR primers were designed using Primer-BLAST on the NCBI website 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/) 

 

Trypsin Digestion Prediction 

The theoretical digestion of proteins using Trypsin was calculated using the 

ExPASy “PeptideMass” tool. 

http://web.expasy.org/peptide_mass/ 

 

 

 

http://www.idtdna.com/analyzer/applications/oligoanalyzer/
http://www.basic.northwestern.edu/biotools/oligocalc.html
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://web.expasy.org/peptide_mass/

