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Abstract. The von Kármán–Howarth (vKH) hierarchy of equations relate the second-order correlations of the turbulent
fluctuations to the third-order ones, the third-order to the fourth-order, and so on. We recently demonstrated [1] that for
MHD, self-similar solutions to the vKH equations seem to require at least two independent similarity lengthscales (one for
each Elsässer energy), so that compared to hydrodynamics a richer set of behaviors seems likely to ensue. Moreover, despite
the well-known anisotropy of MHD turbulence with a mean magnetic field (B0), the equation for the second-order correlation
does not contain explicit dependence on B0. We show that there is, however, implicit dependence on B0 via the third-order
correlations, which themselves have both explicit B0-dependence and also their own implicit dependence through fourth-order
correlations. Some subtleties and consequences of this implicit-explicit balance are summarized here.

In addition, we present an analysis of simulation results showing that the evolution of turbulence can depend strongly on
the initial fourth-order correlations of the system. This leads to considerable variation in the energy dissipation rates. Some
associated consequences for MHD turbulence are discussed.

1. BACKGROUND

Multiple lines of evidence suggest that MHD turbulence
is an important aspect of solar wind fluctuations. In many
cases, available solar wind observations show a direct
correspondence with features seen in turbulence simula-
tions. For example, the probability density function (pdf)
for the v–b alignment angle [2], the kurtosis and the
scale-dependent kurtosis of the magnetic fluctuations [3],
the statistics of magnetic discontinuities [4–7], and prop-
erties of magnetic reconnection [8–10] all show such cor-
respondences. Here, v and b are the fluctuation velocity
and magnetic fields.

A common feature of these, and other, examples is the
nongaussian nature of the associated statistics. As is well
known, a gaussian distribution is completely determined
by its second-order moment (the variance σ2), with all
higher-order moments being simple functions of σ . In
contrast, for nongaussian distributions the higher order
moments are, in general, independent quantities; that is,
they are not fully known once the variance is known.

For Navier–Stokes (NS) and MHD turbulence, non-
gaussian pdfs are inherent. Indeed, although some quan-
tities may have pdfs which are approximately gaussian,
there can be no truly gaussian turbulence since all odd
moments for gaussian fluctuations are necessarily zero.
However, the celebrated Kolmogorov third-order law
[11–14] requires that (certain) third-order moments are
nonzero if a turbulent cascade is active, since they are
proportional to the nonzero energy flux, ε . For example,

in the case of isotropic NS turbulence the law takes the
form

〈(δu‖)3〉 = −4

5
εr, (1)

where δu‖(r) = r · [v(x+r)−v(x)]/r is the longitudinal
component of the velocity increment at scale r = |r|.

One can then ask, how do higher-order correlations
influence the development of MHD turbulence? Here
we investigate this issue using two approaches: the von
Kármán–Howarth (vKH) equations and numerical sim-
ulations with initial conditions chosen to have different
values of some fourth-order correlations.

2. MHD VON KÁRMÁN–HOWARTH
EQUATIONS

This well-known hierarchy of equations relates the evo-
lution of the second-order correlations to third-order
ones, the evolution of third-order correlations to fourth-
order ones, and so on out to infinite order [1, 14–16]. We
begin by sketching their derivation and then comment on
a few important aspects of them.

We employ Elsässer variables, z±(x, t) = v± b, in
Alfvén speed units, to write the incompressible 3DMHD
equations—with a DC magnetic field B0, as

∂t z±i = −(
z∓k ∓B0k

)
∂kz±i −∂iP+ν∂k∂kz±i . (2)

Here P is the total pressure and ν is the kinematic vis-
cosity, assumed equal to the resistivity. Using this equa-
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tion, and its partner evaluated at the displaced position
x′ = x+ r, it is straightforward to construct the equation
for the evolution of the two-point single-time correlation
functions,

R±(r, t) = 〈z±(x, t) · z±(x+ r, t)〉 = 〈z± · z±′〉, (3)

where the prime symbol indicates evaluation at x′, the
angle brackets denote averaging over the position vector
x, and spatial homogeneity is assumed. One obtains [e.g.
1, 13, 14]

∂tR± = − ∂
∂ rk

[
Q̂±
k (r)− Q̂±

k (−r)]+2ν
∂ 2R±

∂ rk∂ rk
, (4)

where Q̂±
k (r) = 〈z∓′

k z
± · z±′〉 is a (two-point) third-order

correlation. Equation (4) is often called the MHD von
Kármán–Howarth equation.1 Its Fourier transform with
respect to r yields the equation for the evolution of the
Elsässer energy spectra, E±(k, t).

Several points are noteworthy. First, clearly the equa-
tion is not closed, since third-order correlations appear
in it. It is again straightforward to derive evolution equa-
tions for these correlations, and they in turn are not
closed because of their dependence upon fourth-order
correlations. The process leads to an infinite hierarchy
of vKH equations.

Second, the DC field—present in the MHD equa-
tions (2)—is not present in the vKH equation (4). On the
face of it, this is perplexing given the known anisotropy
of R±(r), and E±(k), with respect to the direction of
B0. The anisotropy is seen in experiments and simula-
tions, and supported by theory [e.g., 17–24]. So the ques-
tion is, how can the equation which determines the en-
ergy spectrum be independent of B0 when the spectrum
shows well-established dependence on B0? The resolu-
tion is that the dependence is implicit, via the third-order
correlations. This becomes evident once the vKH equa-
tions for the latter are obtained [e.g., 1]. For example, one
finds,

∂t〈z−′
k z

+ · z+′〉 = −2B0k〈z+ · z+′ ∂ ′z−′
k 〉 (5)

+
∂

∂ rm
〈z−mz−

′
k z

+ · z+′ 〉
+ 8 other 3rd/4th order corrns,

which is explicitly dependent upon B0. It is also im-
plicitly dependent, since the fourth-order correlations are
functions of B0 in similar fashion. The development of
anisotropy thus arises in a somewhat subtle way, with

1 Since there are an infinite number of vKH equations, it is more
accurately called the second-order vKH equation for the traced Elsässer
correlation functions.

the implicit dependence “cascading” in from the infinite-
order correlations but the explicit dependence entering at
third (and higher) order.

Both these aspects—the closure problem and the ab-
sence of B0 in the equation for the energy spectrum—
fold in to the development of phenomenological models
for the energy spectrum. One can view such models as
closure approximations to the steady-state version of (the
Fourier transform of) Eq. (4). For example, in developing
their phenomenological models of the energy spectrum,
Iroshnikov [25] and Kraichnan [26] (IK) both recognised
that the timescale associated with (some) triple correla-
tions would be B0-dependent [see Eq. (5)], and that this
timescale would influence the energy spectrum [27, 28].2

3. FOURTH-ORDER CORRELATIONS

We now provide some numerical examples of how the
evolution of incompressible MHD turbulence can be af-
fected by the initial values of fourth-order correlations.
Of particular interest are the following three (normal-
ized) quantities:

Σvω =
〈(v ·ω)2〉
〈v2〉〈ω2〉 , Σ jb =

〈(j ·b)2〉
〈j2〉〈b2〉 , Σvb =

〈(v ·b)2〉
〈v2〉〈b2〉 ,

(6)
where ω = ∇×v and j= ∇×b. There are other such cor-
relations, but these three have the benefit of correspond-
ing to local alignment properties of the three nonlinear
terms in the “primitive” form of the MHD equations:
∂tv∼ v×ω + j×b, and ∂tb∼ ∇× (v×b) [30, 31].

We choose four different initial conditions (ICs).
Three of these are based on the Taylor–Green vortex
(characterized by a single large-scale wavevector) for v
and relatives of it for b; they are identical to those em-
ployed in Lee et al. [32], where they are referred to as the
“insulating”, “conducting”, and “alternative” runs. They
each have an initial energy of E = 0.25, equally split be-
tween the kinetic and magnetic components, and the ini-
tial cross helicity and magnetic helicity are zero.

Germaine to our interest here, is that the fourth-order
correlation Σvb differs between these ICs, whereas Σvω
and Σ jb are initially zero in each case. Thus, these Lee
et al. runs each have a distinct b and Σvb, but most other
familiar parameters are identical or very similar.

The final run we consider starts with broadband
Fourier fluctuations, with 3≤ k≤ 6 and gaussian random
phases. It can be considered as a more typical turbulent

2 Although the IK phenomenologies address the change to the energy
spectrum associated with the strength of B0, they do not take proper
account of the anisotropy associated with the direction of B0. See, e.g.,
[20, 28, 29] for discussion on this point.
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FIGURE 1. (color online) Time histories for energies, etc for four runs with distinct initial conditions (see main text). Each
column corresponds to a different run. The third row is the kurtosis of the x components of the electric current and vorticity.

initial state than the Lee et al. ICs.
The equations are solved using a Fourier pseudospec-

tral code with RK2 timestepping. The runs are unforced
and have no DC field. The resolution reported here is
5123, with ν = 1.1×10−3 (equal to the resistivity). This
value of ν ensures that all the runs are well-resolved,
i.e., that the cutoff wavenumber (kwall = N/2 = 256)
is at least triple the maximum Kolmogorov dissipation
wavenumber, which is important for obtaining accurate
higher-order statistics like the kurtosis of j: 〈|j|4〉/〈|j|2〉2
[e.g., 33, 34].

Figure 1 displays time histories for the energies and
some second and fourth order quantities for each run.
Focusing first on the top three rows of the figure, we see
that the ‘conducting’ run is a little anomalous compared
to the others. These others are all qualitatively similar,
with the magnetic energy predominant, and the enstro-
phy 〈ω2〉/2, mean-square current 〈j2〉/2, and kurtoses
having a single peak, with the magnetic quantities being
larger. Although the energy decays are qualitatively quite

similar, there are significant quantitative differences (see
also the spectra plots in [32]). In particular the decay
rates and the ratio of kinetic to magnetic energies vary
markedly across the runs. Another evident feature is the
strong nongaussianity of the kurtosis of each component
of j (only that for jx is shown), with their maxima being
well above the gaussian kurtosis value of 3.

Considering now the evolution of the Σs defined in
Eq. (6) (Fig. 1, bottom row), there are both similari-
ties and differences between the runs. General statements
concerning the evolution are perhaps hard to make; how-
ever, there is a tendency for each Σ to grow, although of-
ten not monotonically. The timing of the local extrema in
the kurtosis of jx is correlated with changes in Σ jb (e.g.,
extrema, change in growth rate). Teasing out the details
of how higher-order correlations like the Σs impact the
flow dynamics may prove to be rather difficult. Nonethe-
less, these examples suggest that along with well-known
parameters like the energy, Alfvén ratio, cross helicity,
and magnetic helicity, fourth-order correlations like the
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Σs defined by Eq. (6) may also need to be taken into ac-
count when trying to ascertain the dynamics and/or long-
time states (see [1] for discussion regarding the conse-
quences for universality of MHD turbulence).

For the future, we intend to examine the anomalous
nature of the ‘conducting’ run in more detail. In a freely
decaying run it is unusual to see the kinetic energy being
dominant. Moreover, in this particular case it is close
to constant. What is responsible for this behavior? The
relationship between it and the likewise unusual double-
peak behavior of 〈j2〉 and the kurtosis of jx is also of
interest.

4. CONCLUSIONS

We have highlighted how the absence of the DC mag-
netic field from the second-order vKH equation is re-
ally only an apparent absence since the unclosed nature
of the equation supports an implicit dependence on B0,
through the third-order correlations. The B0-dependence
of the energy spectrum has been used in physical phe-
nomenologies of the spectrum for many decades, start-
ing with the Iroshnikov and Kraichnan models [25, 26].
However, the formal mathematical arguments justifying
it do not appear to be well known. These arise from con-
sideration of the vKH hierarchy and its unclosed nature.

We have also presented several numerical examples
revealing the correspondence between different (kinetic
and magnetic) energy decay rates and several fourth-
order correlations. Much remains to be worked out re-
garding cause and effect in this regard.
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