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ABSTRACT 

Nucleotides have been routinely supplemented to infant formulas due to 

the important roles they play in metabolism and to replicate the higher 

concentrations typically found in human milk.  A method utilising anion 

exchange solid-phase extraction clean-up and liquid chromatography was 

developed for the rapid, routine determination of supplemented cytidine 

5′-monophosphate, uridine 5′-monophosphate, inosine 5′-monophosphate, 

guanosine 5′-monophosphate, and adenosine 5′-monophosphate in bovine 

milk-based infant formula.  Chromatographic analyses were performed 

using a C18 stationary phase with gradient elution, UV detection, and 

quantitation by an internal standard technique.  A single-laboratory 

validation was performed, with recoveries of 92–101% and repeatability of 

1.0–2.3%.  An extension study demonstrated the expansion in scope to a 

wider range of different infant formula products including milk protein and 

hydrolysate-based products, low and high fat products, soy protein-based 

and elemental products, adult nutritional and infant formulations, in both 

ready-to-feed and powder forms. 

The development of a method to measure the total potentially available 

nucleosides (TPAN) in human milk has made an important contribution to 

further understanding the distribution of nucleosides and nucleotides.  This 

method was applied in a lactation study of bovine milk with colostrum and 

milk samples collected from two herds over the course of the first month 

post-partum, pooled within each herd by stage of lactation and the TPAN 

concentrations were determined.  Sample analysis consisted of parallel 

enzymatic treatments, phenylboronate affinity gel extraction, and liquid 

chromatography to quantify contributions of nucleosides, monomeric 

nucleotides, nucleotide adducts, and polymeric nucleotides to the 

nutritionally available nucleoside pool.  Bovine colostrum contained high 

levels of nucleosides and monomeric nucleotides, which rapidly decreased 

as lactation progressed into transitional milk.  Mature milk was relatively 
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consistent in nucleoside and monomeric nucleotide concentrations from 

approximately the tenth day post-partum.  Differences in concentrations 

between summer-milk and winter-milk herds were largely attributable to 

variability in uridine and monomeric nucleotide concentrations. 

The TPAN method was subsequently applied to the analysis of mature 

bovine, caprine, and ovine milk.  The contributions to TPAN from 

polymeric nucleotides, monomeric nucleotides, and nucleotide adducts 

were then calculated.  Ovine milk contained the highest concentration of 

TPAN (374.1 µmol dL-1), with lower concentrations in caprine milk 

(97.4 µmol dL-1) and bovine milk (7.9 µmol dL-1).  Ovine milk contained the 

highest concentrations of each of the different nucleoside and nucleotide 

forms, and bovine milk contained the lowest. 

A method for the simultaneous analysis of nucleosides and nucleotides in 

infant formula using reversed-phase liquid chromatography-tandem mass 

spectrometry was developed.  Following sample dissolution, protein was 

removed by centrifugal ultrafiltration.  Chromatographic analyses were 

performed using a C18 stationary phase and gradient elution, with mass 

spectrometric detection, and quantitation by stable isotope labelled 

internal standard technique.  A single laboratory validation study was 

performed with recoveries of 80.1–112.9% and repeatability relative 

standard deviations of 1.9–7.2%.  The method was validated for the 

analysis of bovine milk-based, soy-based, caprine milk-based and 

hydrolysate-based infant formula. 
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INTRODUCTION 1 
NUCLEOTIDE BIOCHEMISTRY 

1. INTRODUCTION 

In recent years, there has been considerable activity in the analysis of 

bovine milk for bioactive factors that may confer significant improvements 

to human health.  Found in a wide concentration range, from parts per 

billion to parts per million, these bioactive components influence the 

physiological development of the neonate. 

Nucleosides and nucleotides are a group of structurally related bioactive 

components present that exhibit a diverse range of nutritional benefits to 

infants.  The presence of nucleotides in human and bovine milk as DNA 

and RNA was established, with the concentration of RNA more than 20 

times higher than DNA (Sanguansermsri et al., 1974).  The nucleotide 

content in milk and the health benefits these impart have been fertile 

topics of research in recent years.  The focus of this study is restricted to 

ribonucleoside and ribonucleotides only, and excludes deoxyribose forms. 

Due to the role nucleotides play in metabolism, and in order to resemble 

more closely the nucleotide profile of human milk, infant formula (unless 

otherwise specified, infant formula refers to bovine milk-based or whey-

based formulas) has been routinely supplemented with nucleotides.  

However, nucleotide supplementation is still somewhat controversial, 

particularly when fortified to levels equivalent to the total potentially 

available nucleoside (TPAN) levels of human milk. 

When manufacturing products for infant consumption, analytical methods 

used to confirm product composition are held to a high standard.  The 

merit of an analytical method is demonstrated through a single laboratory 

validation (SLV) study whereby a method is shown to be accurate, precise, 

robust, and fit-for-purpose.  Coupled with the commercial requirements for 

rapid, high capacity sample throughput, there is a distinct need for an 

accurate and precise rapid, analytical method for the routine product 
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compliance analysis of nucleotides in a wide range of infant formula.  A 

robust method for the routine analysis of nucleotides was developed and 

validated as part of this study.  A description of this method and results 

obtained from this research were summarised and presented at the 123rd 

annual AOAC International conference in 2009 and subsequently 

published in the Journal of AOAC International (Gill et al., 2010) (see 

Appendix I, Appendix II). 

The development of an analytical method to measure TPAN has been an 

important contribution to further understanding the distribution of 

nucleosides and nucleotides, which has important implications for infant 

nutrition.  With the increasing trend towards nucleotide supplementation of 

infant formulas, it is surprising that an analysis of TPAN in bovine milk has 

not previously been reported.  Therefore, an analysis of TPAN in bovine 

colostrum and milk as well as mature bovine, caprine, and ovine milk 

forms a part of this study.  A description of this method and results 

obtained from this research were summarised and presented at the 124th 

annual AOAC International conference in 2010 and subsequently 

published in the International Dairy Journal (Gill et al., 2011; Gill et al., 

2012b) (see Appendix I, Appendix II). 

In recent years, a number of separation modes have been coupled, either 

online or off-line, to various mass spectrometric techniques in the analysis 

of nucleosides and nucleotides in biological tissues and fluids.  Currently, 

few of these techniques have been applied to the analysis of milk and 

infant formula.  A part of this study includes the development, optimisation, 

and validation of a liquid chromatography-mass spectrometry (LC-MS) 

method for the simultaneous quantitation of nucleosides and nucleotides. 

A description of this method and results obtained from this research were 

summarised and subsequently published in Analytical Bioanalytical 

Chemistry (Gill et al., 2013) (see Appendix I, Appendix II). 
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2. LITERATURE REVIEW 

2.1. Nucleotide Biochemistry 

Nucleotides are compounds of critical importance to cellular function.  

They operate as precursors to nucleic acids, as mediators of chemical 

energy transfer and cell signalling, and as integral components of 

coenzymes in the metabolism of carbohydrates, lipids, and protein (Carver 

and Walker, 1995; Cosgrove, 1998; Yu, 1998). 

2.1.1. STRUCTURE OF NUCLEOTIDES 

Nucleobases are low molecular weight heterocyclic aromatic compounds 

based on either a purine or pyrimidine structure; Figure 1a.  These include 

cytosine, thymine, uracil (pyrimidines) and adenine, guanine, 

hypoxanthine, xanthine (purines).  Nucleosides consist of a purine or 

pyrimidine base attached via an N-glycosidic linkage to -D-ribofuranose; 

Figure 1b.  Nucleotides are o-phosphoric acid esters of nucleosides 

containing one to three phosphate groups on the ribose 2–, 3– or most 

commonly 5–carbon.  Cyclic nucleotides contain a phosphate group that is 

bonded to two of the ribose hydroxyl groups forming a ring structure; 

Figure 2. 

 

Figure 1. Structure and numbering of purine, pyrimidine and ribose 
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The chemical behaviour of the polyvalent phosphate group, dominated by 

its negative charge at physiological pH (5–7) and its chemical stability, 

confers properties that make nucleotides suitable as building blocks within 

genetic material (Westheimer, 1987).  The presence of high-energy 

phosphate bonds in adenosine triphosphate (ATP) provides a mechanism 

whereby chemical energy can be stored and then liberated when needed 

(Gropper et al., 2009). 

2.1.2. PHYSICAL PROPERTIES OF NUCLEOTIDES 

The acid-base behaviour of a nucleobase is the critical factor that 

determines its charge, its tautomeric structure and the donation or 

acceptance of protons.  Cytosine and adenine are strongly basic and are 

protonated at moderately acidic conditions.  The dissociation constant for 

this process is defined as in Equation 1.  Uracil is weakly acidic and is 

deprotonated in weakly alkaline conditions.  The dissociation constant for 

this process is defined as in Equation 2.  Guanine and hypoxanthine are 

intermediate compounds, and are protonated in strongly acidic conditions, 

and are deprotonated in weakly alkaline conditions. 

pKa  =  -log Ka  =  -log 
[H+][B]

[HB+]
 (Equation 1) 

 

pKa  =  -log Ka  =  -log 
[H+][B-]

[HB]
 

 

(Equation 2) 

 

Those nucleobases with amine groups, adenine, guanine and cytosine, 

are protonated on the ring nitrogens rather than the free amine group.  

The positions of (de)protonation and pKa values of nucleobases are given 

in Figure 3.  All of the nucleobases are uncharged from pH = 5–7, that is, 

at physiological pH. 
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Nucleobases are capable of undergoing tautomeric isomerisation as either 

keto-enol or amine-imine equilibria.  Spectroscopic analysis has shown 

that the major nucleobases exist primarily (> 99.99%) in their keto or 

amine forms (Blackburn et al., 2006). 

The presence of the phosphate group in nucleotides has the effect of 

making the ring nitrogen atoms more basic as illustrated by a higher pKa 

value of the nucleotide compared to the corresponding nucleoside; 

Table 1.  The phosphate group of nucleotides possess two ionisable 

protons.  The pKa values of these are only slightly dependant on the 

 

Figure 3. Site and pKa values for (de)protonation of nucleotides (adapted 
from Bloomfield et al., 2000; Dawson et al., 1986) 
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nucleobases and position of the phosphate on the ribose sugar.  The pKa 

for the loss of the first and second proton from the phosphate group are ~1 

and ~6–7 respectively, and hence, the phosphate group carries a negative 

charge at physiological pH.  It is only at pH > 12 that a proton is removed 

from the 2′, 3′-diol of the ribose (Blackburn et al., 2006; Dawson et al., 

1986). 

Table 1. Nucleoside and nucleotide pKa values 

Base pKa 

[site of (de)protonation] Nucleoside Nucleotide 

adenine [N-1] 3.5 3.8 

cytosine [N-3] 4.2 4.4 

  guanine [N-1, N-7] 1.6, 9.2 2.4, 9.4 

uracil [N-3] 9.2 9.4 

hypoxanthine [N-1, N-7] 1.2, 8.9 1.5, 8.9 

2.1.3. NUCLEOTIDE METABOLISM 

In tissues such as the gut and in the immune system in which cells are 

rapidly turned over, there is a continuous requirement for production of 

nucleic acids and their constituent nucleotides.  To meet cellular demand, 

nucleotides are supplied via de novo synthesis, the salvage pathway, and 

dietary absorption (Boza and Martínez-Augustin, 2002). 

2.1.3.1 Dietary Nucleotides 

Nucleotides in the diet are ingested in the form of nucleoproteins, 

polymeric nucleotides (nucleic acids), nucleotide derivatives, and 

monomeric nucleotides.  These are digested in the gastrointestinal tract by 

proteases, nucleases, phosphatases and nucleotidases and are available 

for absorption predominantly as nucleosides; Figure 4 (Gil et al., 2007; 
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Quan et al., 1990; Sonoda and Tatibana, 1978; Thorell et al., 1996; Uauy 

et al., 1994).  

 

Only a small proportion of dietary nucleotides are incorporated directly into 

nucleotide tissue pools, with the rest converted to uric acid and other 

metabolites (Quan, 1992). 

2.1.3.2 Purine Nucleotide Biosynthesis 

The purine nucleotides are all derived from inosine 5′-monophosphate 

(IMP) (Blackburn et al., 2006; Garrett and Grisham, 1999; McMurry and 

Begley, 2005; NC-IUBMB, 2010).  The initial step in de novo IMP 

 

Figure 4. Enzymatic digestion of nucleotides to nucleosides in the gut 
(from Quan et al., 1990) 
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synthesis is the formation of 5-phosphoribosyl -diphosphate (PRPP) from 

-D-ribose 5-phosphate and ATP followed by multi-step formation of the 

purine base; Figure 5  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Biosynthesis of IMP from ribose 5′–phosphate (from McMurray 
and Begley, 2005; Garrett and Grisham, 1999) 
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The transfer of a diphosphate group from ATP to ribose-5-phosphate 

forms the -ribosyl pyrophosphate stereoisomer of PRPP.  Glutamine 

PRPP amidotransferase catalyses the subsequent transfer of an amine 

group via condensation of glutamine, followed by removal of glutamate 

from the product and involves an inversion of the configuration of the 

substituent on the C-1 of the sugar, thereby establishing the 

 configuration of the forthcoming nucleotide. 

Glycinamide ribonucleotide (GAR) is formed by the nucleophilic acyl 

substitution of glycine with phosphoribosylamine in a reaction catalysed by 

GAR synthetase.  Formylation of the amino group occurs via nucleophilic 

acyl substitution reaction catalysed by GAR transformylase whereby a 

formyl group is transferred from 10-formyltetrahydrofolate (10-formyl THF) 

to form formylglycinamide ribonucleotide (FGAR). 

The formation of the amidine formylglycinamidine ribonucleotide (FGAM) 

by reaction of FGAR with ATP and ammonia (from glutamine) is catalysed 

by FGAM synthetase.  The formation of the imidazole ring to form 

aminoimidazole ribonucleotide (AIR) is catalysed by AIR synthetase.  In 

vertebrates a single enzyme, AIR carboxylase, catalyses the addition of 

CO2 at the C-4 position of the imidazole ring giving 

carboxyaminoimidazole ribonucleotide (CAIR). 

The nucleophilic acyl substitution reaction of aspartate with CAIR to form 

N-succinylo-5-aminoimidazole-4-carboxamide ribonucleotide (SAICAR) is 

catalysed by SAICAR synthetase.  Adenylosuccinate lyase catalyses the 

elimination of fumarate from SAICAR to 5-aminoimidazole-4-carboxamide 

ribonucleotide (AICAR).  The AICAR transformylase catalysed addition of 

a formyl group from 10-formyl THF to AICAR produces 

N-formamidoimidazole-4-carboxamide ribonucleotide (FAICAR).   

The final step in the synthesis of IMP is the cyclisation of FAICAR 

catalysed by IMP cyclohydrolase.  The de novo synthesis of IMP from 

ribose 5-phosphate requires 7 moles of ATP equivalents, 2 moles of 
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glutamine, 2 moles of formate (from 10-formyl THF), and 1 mole each of 

glycine, aspartate, and CO2 (Blackburn et al., 2006; Garrett and Grisham, 

1999; McMurry and Begley, 2005; NC-IUBMB, 2010). 

From the synthesis of IMP, there is a divergence of pathways converting 

IMP to either adenosine 5′-monophosphate (AMP) or guanosine 

5′-monophosphate (GMP); Figure 6. 

 

 

 

 

 

 

 

Figure 6. Biosynthesis of GMP and AMP from IMP (from McMurray and 
Begley, 2005; Garrett and Grisham, 1999) 
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2.1.3.3 Regulation of Purine Nucleotide Synthesis 

The first committed step in the de novo purine biosynthetic pathway is the 

replacement of pyrophosphate at C-1 by an amine group from glutamine 

catalysed by PRPP aminotransferase; Figure 7.  

 

 

 

 

 

 

 

 

 

 

Figure 7. Feed back inhibition in purine synthesis (adapted from Garrett 
and Grisham, 1999) 

 

This step is regulated by allosteric control by feedback inhibition from 

adenosine and guanosine nucleotides.  Feedback inhibition occurs when 

an enzyme catalysing an early step in the metabolic pathway is inhibited 

by the end product of the pathway (Blackburn et al., 2006; Kornberg, 

1974). 

Biosynthesis of GMP and AMP is regulated to recognise which purine 

nucleotide is in excess and which is in short supply, whereby, the 

synthesis of AMP requires guanosine triphosphate (GTP) as a co-factor 

and conversely GMP synthesis requires ATP.  This regulation mechanism 
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ensures that AMP and GMP are in equivalent abundance (Garrett and 

Grisham, 1999; Kornberg, 1974). 

2.1.3.4 Pyrimidine Nucleotide Biosynthesis 

The pyrimidine nucleotides are all derived from uridine 5′-monophosphate 

(UMP).  The synthesis of pyrimidines differs significantly from that of 

purines in that the ring structure is assembled as a free base, not 

assembled stepwise from PRPP.  The biosynthetic pathway for 

pyrimidines is less complex than that of the purines and begins with the 

carbamoyl phosphate synthetase-II (CPS-II) catalysed formation of 

carbamoyl phosphate from bicarbonate, ATP and ammonia (from 

glutamine); Figure 8. 

The nucleophilic acyl substitution reaction of carbamoyl phosphate and 

aspartate, with phosphate as the leaving group forming carbamoyl 

aspartate, is catalysed by aspartate carbamoyltransferase.  Cyclisation 

catalysed by dihydroorotase then forms dihydroorotate; this is 

subsequently oxidised to orotate by dihydroorotate oxidase, a flavin-

dependent enzyme that uses coenzyme Q, as the ultimate electron 

acceptor.  The orotate phosphoribosyltransferase catalysed condensation 

of orotate and PRPP with elimination of inorganic pyrophosphate fixes the 

pyrimidine in the -configuration to form orotidine 5′-monophosphate 

(OMP).  The final step in UMP synthesis is the decarboxylation of OMP; 

catalysed by OMP decarboxylase.  Cytidine 5′-monophosphate (CMP) is 

not formed directly from UMP but in a series of reactions via uridine 

triphosphate (UTP) and cytidine triphosphate (CTP) (Boza and Martínez-

Augustin, 2002; Carver and Walker, 1995; Kornberg, 1974; McMurry and 

Begley, 2005). 
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Figure 8. Biosynthesis of UMP from glutamine and bicarbonate (from 
McMurray and Begley, 2005; Garrett and Grisham, 1999) 

 

UTP is derived from UMP via phosphate transfers from ATP catalysed by 

nucleoside monophosphate kinase to give uridine diphosphate (UDP), 

which in turn is phosphorylated to UTP by ATP in a reaction catalysed by 

nucleotide diphosphate kinase.  CTP is derived from amination of UTP 

catalysed by CTP synthetase (Garrett and Grisham, 1999; Kornberg, 

1974; McMurry and Begley, 2005). 

The de novo synthesis of UMP from bicarbonate and glutamine requires 2 

moles of ATP, and 1 mole each of aspartate and PRPP (Blackburn et al., 

2006; Garrett and Grisham, 1999; McMurry and Begley, 2005; NC-IUBMB, 

2010). 
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2.1.3.5 Regulation of Pyrimidine Nucleotide Synthesis 

Regulation of pyrimidine synthesis is controlled in animals at the first step 

through feedback inhibition of CPS-II by UDP and UTP.  ATP and PRPP 

are allosteric activators, whereby accumulation of these pyrimidine 

nucleotide precursors signals the need for more pyrimidine nucleotides; 

Figure 9 (Garrett and Grisham, 1999; Kornberg, 1974). 

 

 

 

 

 

 

 

 

 

Figure 9. Feed back inhibition in purine synthesis (adapted from Garrett 
and Grisham, 1999) 

2.1.3.6 The Salvage Pathway 

Biosynthesis of nucleotides de novo is expensive energetically requiring 

7 ATP equivalents per mole of IMP, and 4 ATP equivalents per mole of 

UMP.  Salvage and reuse of nucleotides is energetically more efficient 
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than de novo synthesis and requires only 1 mole ATP equivalent per mole 

UMP or IMP produced.  The salvage pathway utilises nucleobases and 

nucleosides scavenged from dietary sources or left over from cellular 

metabolism; Figures 10–11. 

 

 

 

 

 

 

 

 

Figure 10. Purine salvage pathways (adapted from la Marca et al. 2006) 

 

Salvage of nucleobases occurs via two mechanisms; one is the direct 

conversion of a nucleobase to the corresponding nucleotide catalysed by 

nucleotide pyrophosphorylase enzymes, and the other requires sequential 

conversion of the nucleobase to the nucleoside catalysed by nucleotide 

phosphorylase enzymes with subsequent phosphorylation of the 

nucleoside catalysed by a nucleoside kinase enzyme (Chu, 1991). 

Salvage of nucleotides occurs via the interconversion of nucleoside 

mono-, di-, and triphosphates in reactions catalysed by nucleoside 

monophosphate kinases and nucleoside diphosphate kinases.  In addition, 

base alteration via deamination of AMP→IMP, adenosine→inosine, and 
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cytosine→uracil catalysed by specific enzymes readily occurs (Kornberg, 

1974). 

 

 

 

 

 

 

 

 

Figure 11. Pyrimidine salvage pathways (adapted from la Marca et al. 
2006) 

2.1.3.7 Purine Nucleotide Catabolism 

Guanosine catabolism begins with GMP conversion by 5′-nucleotidase into 
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oxidised by urate oxidase to allantoin and excreted; Figure 12 (Garrett 

and Grisham, 1999; McMurry and Begley, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Pathway of purine nucleotide catabolism to uric acid (from 
McMurray and Begley, 2005; Garrett and Grisham, 1999) 
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2.1.3.8 Pyrimidine Nucleotide Catabolism 

Cytidine catabolism begins with cytidine deaminase catalysed hydrolytic 

deamination to uridine.  Unlike the purine nucleosides, pyrimidine 

nucleosides undergo ring cleavage.  The catabolism of uridine starts with 

the cleavage of the ribose moiety yielding uracil, which after reduction by 

NADPH to dihydrouracil, is then hydrolysed to the open-chain 

-ureidopropionate, with further hydrolysis and decarboxylation yielding 

-alanine, ammonia and carbon dioxide; Figure 13 (Garrett and Grisham, 

1999; McMurry and Begley, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Pathway of pyrimidine nucleotide catabolism to -alanine (from 
McMurray and Begley, 2005; Garrett and Grisham, 1999) 
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2.2. Nucleosides and Nucleotides in Milk 

Non-protein nitrogen accounts for approximately 20% of the total nitrogen 

in human milk but only 2% in bovine milk (Atkinson et al., 1980; Donovan 

and Lönnerdal, 1989).  Nucleotides account for between 0.4% and 0.6% of 

non-protein nitrogen content and between 0.10% and 0.15% of the total 

nitrogen content of human milk.  From 2-12 weeks post-partum, it was 

found that as lactation advances, the contribution of nucleotide nitrogen to 

total nitrogen in milk increases (Janas and Picciano, 1982). 

The origin of nucleosides and nucleotides in milk; whether they diffuse 

from the blood into the milk via the blood-milk barrier, or are actively 

secreted from lactating cells or formed by post-secretory metabolic 

processes in milk, has not yet been established (Liao et al., 2011; 

Schlimme et al., 2000). 

The major nucleotide-related compound in bovine milk is orotic acid, a 

precursor in the synthesis of UMP, although it is not detected in human 

milk (Gil and Sánchez-Medina, 1982; Gill and Indyk, 2007b; Indyk and 

Woollard, 2004; Larson and Hegarty, 1979).  Bovine milk orotic acid levels 

increase as lactation progresses, beginning at very low levels in early 

colostrum to over 200 mol hg-1 in mid-season milk, before reducing in 

late-season milk (Gill and Indyk, 2007b).  This is in contrast to nucleoside 

and nucleotide levels, which decline rapidly with lactation.  High levels of 

dietary orotic acid leads to severely fatty livers in rats, which appear to be 

unique in this respect amongst a number of species studied.  None of the 

evidence suggests that orotic acid in milk poses a problem to human 

consumers (Durschlag and Robinson, 1980). 
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2.2.1. NUCLEOTIDES IN MILK 

Nucleotides were first isolated from human milk by Deutsch and Nilsson in 

1960, and since that time, at least 13 acid-soluble nucleotides have been 

identified (Böhles et al., 1998).  The expression of nucleotides is highest 

immediately after parturition with a general trend of decreasing amounts 

with advancing lactation and with levels stabilising by the third week of 

lactation in both human and bovine milks (Gil and Sánchez-Medina, 1981; 

Gill and Indyk, 2007b; Sugawara et al., 1995). 

This pattern of high concentration in early colostrum followed by a rapid 

decrease as lactation progresses is analogous to changes in 

concentration of other bioactive components, such as immunoglobulin.  

The presence of immunoglobulins in bovine colostrum provides passive 

immunity to the newborn calf, until maturation of its own immune system 

(Mehra et al., 2006).  Elevated levels of nucleotides present in colostrum 

may be due to their capacity to enhance immune response.  Recently, it 

was shown that dietary UMP affected the immune response of newborn 

calves and may stimulate humoral and mucosal immunity (Mashiko et al., 

2009). 

It has been generally reported that nucleotides are present in higher 

amounts in human milk compared to bovine milk (Gill and Indyk, 2007b; 

Oliveira et al., 1999; Sugawara et al., 1995).  Qualitatively, there is a clear 

difference in the nucleotide profile between mature human milk and 

mature bovine milk, the former containing measurable levels of GMP, IMP, 

UMP, CMP, and AMP, whereas the latter typically contains only CMP and 

AMP.  A survey of the free nucleotide levels that have been reported for 

milk of both species shows a wide range of results that depend, at least in 

part, on the various analytical methodologies utilised for quantitation; 

Tables 2–3.  
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Nucleoside diphosphates and nucleotide sugars also contribute to the 

nucleotide pool in milks of both species (Gil and Sánchez-Medina, 1981, 

1982; Janas and Picciano, 1982; Johke, 1963; Sugawara et al., 1995).  

Significant levels of cytidine 5′-diphosphate (CDP), ranging from 6.95–

41.1 µmol dL-1 were found in a recent study of breast milk from Taiwanese 

women (Liao et al., 2011). 

Cyclic nucleotides are also present in human milk although results 

obtained show a wide range of concentrations from 0.1–0.7 nmol L-1 and 

0.01–0.15 nmol L-1 for adenosine 3′,5′-cyclic monophosphate (cAMP) and 

guanosine 3′,5′-cyclic monophosphate (cGMP), respectively.  Levels of 

cGMP were highest at the beginning of lactation and tended to decrease 

over the first fortnight, whereas levels of cAMP were relatively consistent 

throughout (Skala et al., 1981). 

The nucleotides levels in human milk are not consistent throughout each 

day but have been shown to vary in a diurnal rhythm.  This rhythmicity has 

been reported in AMP, UMP, GMP concentrations (Sánchez et al., 2009), 

and cGMP (Skala et al., 1981).  It is hypothesised that elevated nucleotide 

levels at night may induce sleep in infants (Sánchez et al., 2009). 

2.2.2. NUCLEOSIDES IN MILK 

Pyrimidine nucleosides are most abundant in mature bovine milk, whereas 

human milk has significant amounts of both purines and pyrimidine 

nucleosides; Tables 4–5.  In both human and bovine milk the nucleoside 

concentration decreases during the colostral phase and reaches a 

constant level approximately three weeks post-partum (Schlimme et al., 

2000). 
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In bovine milk, the levels of pyrimidine nucleosides are higher than purine 

nucleosides.  Uridine, while relatively high in early colostrum, decrease by 

approximately two orders of magnitude within hours post-partum, whereas 

cytidine reaches a maximum on the second day of lactation (Gill and 

Indyk, 2007b). 

Analysis of human and bovine milk by Schlimme et al. (1986a) found at 

least 10 nucleosides: uridine, cytidine, N-1-methyladenosine, inosine, N-3-

methyluridine, N-1-methylinosine, adenosine, N-2-methylguanosine, N-2-

dimethylguanosine, and N-6-carbamoyl-threonyladenosine. 

Cytidine, uridine, and adenosine are found at similar concentrations in 

most analyses of human milk, whereas guanosine is at lower 

concentrations and inosine was found only in one study (Liao et al., 2011).  

Dietary, geographical, and seasonal variations are all likely to have a 

significant influence upon nucleoside levels in the human milk (Liao et al., 

2011; Sugawara et al., 1995). 

2.2.3. TOTAL POTENTIALLY AVAILABLE NUCLEOSIDES 

IN MILK 

Leach et al. (1995) developed a method to quantify TPAN sources of 

human milk.  The TPAN method simulates enzymatic conversion of the 

various sources of nucleosides that occurs during digestion and 

absorption and hence, has the advantage of reporting a more 

representative result in terms of infant nutrition. 

The TPAN concentrations were determined in milks of both European and 

American women, with a mean concentration of 18.9 mol dL-1 and 

16.1 mol dL-1, respectively (Leach et al., 1995).  Similar results 

(20.3 mol dL-1) were obtained in a TPAN study of milk from Asian women 

(Tressler et al., 2003).  Little variation or trends in TPAN concentrations 
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were found over different stages of lactation in both studies (Leach et al., 

1995; Tressler et al., 2003).  The level of TPAN in human milk is more 

than twice the levels of nucleotides (Leach et al., 1995). 

2.3. Nutritional Effects of Nucleotides 

In times of rapid growth, the metabolic demand for nucleotides exceeds 

the capacity of de novo synthesis or the salvage pathway, and dietary 

sources of nucleotides may be essential for continued optimal metabolic 

function (Yu, 1998).  The role nucleotides play in infant nutrition has been 

reviewed comprehensively by Carver and Walker (1995) and more 

recently by Michaelidou and Steijns (2006), and by Schaller et al. (2007).  

The role nucleotides play in the immune and gastrointestinal systems was 

the focus of a recent review by Hess and Greenberg (2012). 

2.3.1. IMMUNE RESPONSE 

Nucleotide supplemented diets have been associated with enhanced 

humoral and cellular immune function, both in vitro and in vivo (Jyonouchi, 

1994).  The addition of nucleotides to infant formula provides immunologic 

benefits not available to unsupplemented infant formulas (Schaller et al., 

2007).  In particular, dietary nucleotide supplementation may be important 

for individuals at increased risk of acquiring infections such as infants, 

especially those born prematurely (Carver and Walker, 1995). 

Results reported from studies on the effect on serum immunoglobulin 

levels in infants receiving infant formula supplemented with nucleotides 

compared to those receiving unsupplemented formula are somewhat 

mixed.  Increased levels of serum immunoglobulin (Ig) A in healthy term 

infants fed nucleotide-supplemented formula (n = 166) were reported by 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

LITERATURE REVIEW 29 
NUTRITIONAL EFFECTS OF NUCLEOTIDES 

Yau et al. (2003).  Navarro et al. (1999) reported elevated levels of plasma 

IgA and IgM in a study of pre-term infants fed nucleotide-supplemented 

formula (n = 14).  In contrast to these results, no differences between 

infants fed nucleotide-supplemented or unsupplemented formula were 

found in serum levels of IgA and IgG (n = 101) (Pickering et al., 1998), IgM 

and IgE (n = 166) (Yau et al., 2003), and plasma levels of IgG (n = 14) 

(Navarro et al., 1999). 

The effect of dietary nucleotides has been shown to promote an increase 

in immune cell proliferation and may facilitate maturation in some 

lymphocyte populations similar to that of breast-fed infants (n = 138) (Buck 

et al., 2004).  A study by Carver et al. (1991) reported that at two months 

of age nucleotide-supplemented formula fed infants (n = 138) had 

significantly higher natural killer (NK) cell activity and interleukin-2 (IL2) 

levels than those receiving unsupplemented formula.  The difference 

between the two groups was only temporary however, as by four months 

of age no significant differences were found.  No effect of nucleotide 

supplementation on NK cell activity or IL2 levels was found in a similar 

study of 7-week-old infants (n = 98) by Hawkes et al. (2006).  A study of 

nucleotides supplemented to soy based infant formula (n = 94) resulted in 

no significant difference measured in NK cell levels in infants measured at 

6, 7 and 12 months of age (Cordle et al., 2002).  Unsupplemented 

soy-based formula contains high endogenous nucleotide levels rendering 

nucleotide supplementation unnecessary in contrast to bovine milk based 

formula.  The wide variation in individual results within these studies 

makes conclusions difficult with respect to any effect of nucleotide 

supplementation on NK and IL2 levels (Hawkes et al., 2006). 

Infant responses to immunisation have been used to assess development 

of the immune system.  Infants fed nucleotide-supplemented formula had 

increased Haemophilus influenzae type b (HiB) and diphtheria toxoid 

humoral antibody responses.  Antibody responses to tetanus and polio 

immunisation were not enhanced by nucleotide supplementation 
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(Pickering et al., 1998).  Yau et al. (2003) however, found no increase in 

the response to the HiB vaccine, but did measure an increased risk of 

upper respiratory tract infections in infants fed nucleotide-supplemented 

formula.  Schaller et al. (2004) found a significantly higher response to 

polio vaccine in nucleotide-supplemented formula fed infants (n = 138) 

compared to unsupplemented formula.   

Nucleotide-supplemented soy based infant formula (n = 94) showed no 

significant effect on childhood immunisation responses, as evidenced by 

normal IgA and IgG levels, and normal responses to vaccine antigens 

compared to breast-fed infants.  This may be attributable to the relatively 

high endogenous nucleotide levels in unsupplemented soy-based formula.  

However, human milk/formula-fed infants had higher poliovirus neutralising 

antibody at 12 months than soy-fed infants (Ostrom et al., 2002). 

A study of diarrhoeal disease in infants from a low socioeconomic group 

showed infants receiving nucleotide-supplemented formula (n = 141) 

experienced fewer episodes of diarrhoea, for a shorter duration, with fewer 

first episodes (Brunser et al., 1994).  Similar studies have also shown 

significant reduction in the incidences and severity of episodes of 

diarrhoea in infants fed nucleotide supplemented infant formula compared 

to the non-supplemented formula (Pickering et al., 1998; Yau et al., 2003).  

Not all studies have shown such effects, however.  Neri-Almeida et al. 

(2009) found that there was no therapeutic advantage during episodes of 

acute diarrhoea from consuming nucleotide-supplemented infant formula 

(n = 40) compared to unsupplemented formula. 

A meta-analysis of 15 randomised clinical trials studies comparing 

nucleotide-supplemented infant formula with non-supplemented formula or 

breast milk has been reported (Gutiérrez-Castrellon et al., 2007).  It was 

concluded that nucleotide-supplemented infant formula was associated 

with superior response to immunisation with the HiB vaccine, diphtheria 

toxoid and oral polio vaccine.  Additionally, episodes of diarrhoea were 
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fewer and there was no difference in risk of upper respiratory tract 

infections. 

2.3.2. INTESTINAL MICROFLORA 

In a comparison of faecal microflora of breast-fed infants and infants fed 

either nucleotide-supplemented formula (n = 11) or fed unsupplemented 

formula, breast-fed babies had significantly higher percentage of faecal 

bifidobacteria and lower percentages of lactobacilli and enterobacteria 

than either group of formula fed infants.  Infants fed nucleotide-

supplemented formula had intermediate values that were closer to breast-

fed infants (Gil et al., 1986a).  Conversely, a study by Balmer et al. (1994) 

did not confirm these observations, finding more Escherichia coli and less 

Bifidobacteria in nucleotide-supplemented infants (n = 32) than those fed 

standard infant formula.  In their review of prebiotics in human milk, Coppa 

et al. (2006) concluded that based upon available research, prebiotic 

effects of nucleotides are inconclusive. 

Results from a more recent study of infants in the United Kingdom showed 

an improved composition of gut microbiota in infants fed 

nucleotide-supplemented formula (n = 35), measured as the ratio of 

Bacteroides-Porphyromonas-Prevotella bacteria to Bifidobacteria, 

compared to the control formula, and similar to that of breast-fed infants 

(Singhal et al., 2008).  In contrast, a study on the effect of nucleotide 

supplementation in dairy calves, found that nucleotide-supplemented 

calves (n = 23) had the highest incidence of detrimental bacteria 

(Clostridium perfringens) and the lowest incidence of beneficial bacteria 

(bifidobacteria) of the calves in the study (Kehoe et al., 2008). 
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2.3.3. INTESTINAL GROWTH AND REPAIR 

Uauy et al. (1990) found increased mucosal protein, DNA, and villous 

height and disaccharidase activities in the intestine of weanling rats fed a 

diet over a 2-week period supplemented with 0.8% w/w dietary 

nucleosides (n = 10).  Moreover, López-Navarro et al. (1996) report a 

reduction in protein synthesis in the small intestine in rats fed nucleotide-

free diets (n = 10).  Following food deprivation dietary nucleotide intake 

may accelerate normal intestinal response.  Although the mechanism for 

this is not known, it is possible that increased nucleotide levels enhance 

DNA and RNA synthesis thereby enhancing cell growth and differentiation 

(Ortega et al., 1995). 

Dietary nucleotides may also be beneficial following intestinal injury with 

improved intestinal histology and ultra structure (Bueno et al., 1994), and 

increased DNA, lactase, maltase and sucrase activities (Nuñez et al., 

1990) in rats fed a nucleotide supplemented diet (n = 36) compared to rats 

fed an unsupplemented diet following diarrhoea.  Furthermore, healing of 

small bowel ulcers in rats was promoted by nucleotide supplementation 

(n = 6–18), which may be attributable to increase in cell proliferation 

(Sukumar et al., 1997). 

The intestinal epithelium has a high cell turnover rate and hence requires 

increased levels of nucleotides as precursors for nucleic acid synthesis 

(Carver, 1999; Yu, 2002).  Exogenous nucleotides may optimise tissue 

function as endogenous supplies may limit nucleic acid synthesis, 

particularly during periods of rapid growth, and during recovery from 

mucosal injury (Carver, 1999). 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

LITERATURE REVIEW 33 
NUTRITIONAL EFFECTS OF NUCLEOTIDES 

2.3.4. INFANT GROWTH 

Weight gain was observed in weanling rats receiving a low-protein diet 

supplemented with nucleotides compared to the control group, although 

this data was unpublished (György, 1971).  However, numerous clinical 

studies on healthy infants have not demonstrated any detectable effect of 

nucleotide supplementation on weight gain (Carver and Walker, 1995), 

suggesting that under normal conditions de novo nucleotide synthesis is 

sufficient to sustain normal growth (Cosgrove, 1998).  However, a study of 

term infants born severely small for gestational age (birth weight below the 

5th percentile), demonstrated enhanced growth in weight, length, and 

head circumference in the nucleotide supplemented formula group 

(n = 39).  The improved growth was attributed to tropic effects of 

nucleotides on the intestinal mucosa previously damaged by intrauterine 

malnutrition (Cosgrove et al., 1996). 

A study of severely malnourished infants showed that when fed infant 

formula with an appropriate calorie and protein content, the impact upon 

growth and other body composition indicators was favourable regardless 

of whether nucleotides were supplemented (n = 11) or not (Vásques-

Garibay et al., 2005). 

2.3.5. LIPID METABOLISM 

Supplementation of infant formula with nucleotides has been reported to 

influence plasma lipoprotein concentrations, particularly in pre-term infants 

(n = 10) (Sánchez-Pozo et al., 1994).  This differs from results obtained by 

Villarroel et al. (1987), who found no effect of nucleotide supplemented 

infant formula on serum lipoprotein levels in infants.  Siahanidou et al. 

(2004) showed pre-term infants fed nucleotide supplemented infant 

formula (n = 66) had significantly elevated high-density lipoprotein and 
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decreased low-density lipoprotein serum levels compared with infants fed 

unsupplemented formula. 

Nucleotide supplementation has also been associated with an increase in 

long-chain polyunsaturated fatty acids in plasma and erythrocytes in 

preterm and term infants (DeLucchi et al., 1987; Gil et al., 1986b; Pita 

et al., 1988) (n = 19, 35, 18, respectively).  However, other studies have 

shown no increase in long-chain polyunsaturated fatty acids production in 

erythrocytes in term and low birth-weight infants (Gibson et al., 2005; 

Woltil et al., 1995) (n = 98, 37, respectively). 

2.3.6. IRON ABSORPTION 

Inosine and its metabolites, hypoxanthine, xanthine and uric acid positively 

affect iron absorption in studies on rat intestine (n = 3–6) (Faelli and 

Esposito, 1970).  Iron is better absorbed from human milk than cow’s milk 

(McMillan et al., 1977), and it has been suggested that the relatively large 

component of nucleotides in human milk may have a biological effect on 

iron absorption (Cosgrove, 1998; Janas and Picciano, 1982).  However, 

the addition of nucleotides is reported to have no effect on the iron status 

of healthy-term infants fed low-iron formula (n = 10) (Hernell and 

Lönnerdal, 2002). 

2.4. Infant Formulas 

Human milk provides sufficient nourishment for growth as well as providing 

unique bio-immune factors for protecting infant health.  Human milk is 

therefore considered the ―gold standard‖ for infant nutrition with breast-

feeding regarded as one of the most important measures in improving 

child health (WHO, 1981).  However, in cases where breast-feeding is not 
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preferred, is not possible, or is insufficient, infant formulas are an 

appropriate substitute to breast-feeding infants during the first year of life.  

Infant formulas should be formulated to meet dietary needs and promote 

optimal growth, as well as to minimise stress upon the infants developing 

organ and enzymatic systems. 

Infant formulas fall into one of four broad categories; (1) milk-based, (2) 

whey-based, (3) milk-protein hydrolysates, and (4) soy-based.  The 

overwhelming majority of pediatric formulas are based on bovine milk or 

whey, with goat milk-based formula maintaining a niche position in the 

market.  For infants that experience intolerance of milk-based formulas, 

alternative products based on soy protein or milk-protein hydrolysates are 

available (Packard, 1982). 

2.4.1. NUCLEOTIDE SUPPLEMENTATION 

As understanding of the nucleotide composition of bovine and human milk 

has increased, manufacturers have endeavoured to modify the 

composition of infant formulas to resemble human milk more closely.  

Japan (1965) and Spain (1983) were the first countries to allow 

supplementation of nucleotides to infant formula, with the United States 

joining them in 1989 (Commission of the European Communities, 1991).  

Since the early 1990’s, nucleotides have been routinely added to infant 

formulas and to formulas manufactured specifically for pre-term infants 

since 2002 (Adamkin, 2007).  Due to the reported differences between 

bovine and human milk nucleotide levels, infant formulas are increasingly 

supplemented with nucleotides to levels equivalent to free nucleotide 

concentrations in human milk, to a maximum concentration of 

5 mg 100kcal-1 (Aggett et al., 2003).  While 12 nucleotides or more are 

present in human milk, supplementation is limited to only GMP, AMP, 

CMP, IMP and UMP in the form of the readily soluble sodium salts 

(Commission of the European Communities, 1991). 
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In recent years, numerous review articles have deliberated the evidence 

for the efficacy of nucleotide supplementation in infant formulas upon 

infant health (Adiv et al., 2004; Aggett et al., 2003; Agostini and Haschke, 

2003; Alles et al., 2004; Böhles et al., 1998; Carver, 2003; Hamosh, 1997; 

Klein, 2002; Motil, 2000; Riva et al., 2005; Schaller et al., 2007; Selimoğlu, 

2006; Yu, 2002).  Despite the purported benefits of nucleotides in infant 

nutrition, the supplementation of pediatric formulas with nucleotides is 

controversial (Adiv et al., 2004; Lerner and Shamir, 2000; Quan et al., 

1990; Yu, 2002), as unequivocal clinical evidence supporting 

supplementation is lacking (Hamosh, 1997; Lteif and Schwenk, 1998).  To 

date there have been no studies evaluating a dose-response relationship 

between nucleotide concentrations in infant formula and positive effects in 

infants (Niers et al., 2007) and more research is required into the 

appropriate levels of nucleotide supplementation and to assess the 

potential benefits (Yu, 2002).  However, infant formula products are 

currently considered safe when supplemented to levels equivalent to the 

free nucleotide levels of human milk (Gutiérrez-Castrellon et al., 2007; 

Riva et al., 2005). 

A study by Rueda et al. (2002) was undertaken to analyse extracts from 

an RNA-containing medium exposed to jejunal explants of weaning 

piglets.  Elevated levels of nucleosides found suggested that RNA present 

in human milk is hydrolysed in the intestinal tract of the breast-fed infant.  

This gives support to the argument that TPAN concentrations should be 

considered when formulating nucleotide-supplemented infant formula.  

The study by Leach et al. (1995) is cited as the rationale for advocating 

higher levels of nucleotide-supplementation in infant formulas, and in 

some respects has led to disagreement in determining the appropriate 

level of nucleotide supplementation to infant formulas.  Initially, infant 

formulas were supplemented to levels equivalent to free nucleotide 

concentrations in human milk, to a maximum concentration of 

5 mg 100kcal-1 (Aggett et al., 2003).  However, in recent years, fortification 

of infant formulas with nucleotides to the upper range of TPAN levels in 
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human milk (16 mg 100kcal-1) has been approved in more than 30 

countries (Aggett et al., 2003). 

In 2004, the Codex Committee on Nutrition and Foods for Special Delivery 

Uses asked the European Society for Pediatric Gastroenterology, 

Hepatology, and Nutrition to coordinate the formation of an international 

expert group (IEG) to find agreement on the optimum content of nutrients, 

including nucleotides, in infant formulas.  The IEG did not find sufficient 

data to support the optional addition of nucleotides to levels higher than 

5 mg 100kcal-1, and therefore recommended this as the maximum total 

content.  The recommended limits for individual nucleotides were 

2.5 mg 100kcal-1 for CMP, 1.75 mg 100kcal-1 for UMP, 1.5 mg 100kcal-1 

for AMP, 0.5 mg 100kcal-1 for GMP, and 1.0 mg 100kcal-1 IMP (Koletzko 

et al., 2005). 

Current regulations of nucleotide supplementation mandated by Codex 

have been left in the hands of individual nations (Codex Alimentarius 

Commission, 1981).  The maximum limits for nucleotides in infant formula 

defined by the IEG are recommended for use within European regulations 

(European Commission, 2003).  In Australasia, minimum limits have been 

set and maximum limits for each individual nucleotide are as those 

recommended above, curiously however, the limit for total nucleotides is 

set at proposed TPAN limits of 3.8 mg 100kJ (16 mg 100kcal-1, 

11.2 mg hg-1) (FSANZ, 2007).  Currently, nucleotides are not a regulated 

ingredient in infant formulas as specified in the US Code of Federal 

Regulations (FDA, 2012). 

In the future, it is possible that international agreement will lead to an 

update of Codex regulations that includes nucleotides.  However, 

coordinated international agreement on nucleotides has been hard to 

achieve particularly since two of the major parties, the European Union 

and the United States, have disparate views (Codex Alimentarius 

Commission, 2006; European Commission, 2003; LSRO, 1998). 
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2.4.2. ENZYMATIC DEGRADATION OF NUCLEOTIDES 

Over 70 endogenous enzymes have been identified in milk and their 

presence in milk arises from blood plasma through ―leaky junctions‖ 

between mammary cells, from secretory cell cytoplasm, from the milk fat 

globule membrane (MFGM), and from somatic cells (Fox and Kelly, 2006).  

Additionally, microbial contamination of milks introduces its own enzymes.  

These enzymes, either endogenous or microbially introduced, can 

influence the stability of nucleotide levels in dairy products.  During infant 

formula production there is a risk that exogenous nucleotides may be 

degraded by endogenous milk enzymes if the latter are not inactivated by 

heat prior to nucleotide introduction during manufacture; Figure 14. 

 

 

 

 

 

 

 

Figure 14. Time-temperature relationship of milk enzyme inactivation 
(adapted from Federal Dairy Research Centre, 1999; Richardson and 
Hyslop, 1985) 

 

Alkaline phosphatase [EC 3.1.3.1] is a phosphomonoester hydrolase with 

a wide range of substrate specificity, including nucleotides.  Since its heat 

stability profile is slightly higher than most pathogenic bacteria, residual 

bovine milk alkaline phosphatase activity is used as an indicator of the 

efficacy of pasteurisation.  Although alkaline phosphatase may be 
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inactivated initially, partial reactivation can occur after brief exposures to 

temperatures of 80–180 ºC followed by storage conditions of 4–40 ºC 

(Andrews, 1991; Shakeel-ur-Rehman et al., 2003).  Bacterial 

contamination of milk can result in the presence of microbial alkaline 

phosphatase, which is more heat resistant than bovine milk alkaline 

phosphatase (Karmas and Kleyn, 1990; Pratt-Lowe et al., 1987). 

Acid phosphatase [EC 3.1.3.2] is also a phosphomonoester hydrolase and 

although present in milk in significantly lower quantities, acid phosphatase 

is more resistant to heat treatment than alkaline phosphatase.  However, 

its substrate specificity is reportedly different from that of alkaline 

phosphatase and it does not appear to hydrolyse aliphatic 

phosphomonoesters such as adenosine 5′-monophosphate (Andrews, 

1991; Shakeel-ur-Rehman et al., 2003). 

Another phosphomonoester hydrolase for which nucleotides are 

substrates is 5′-nucleotidase [EC 3.1.3.5].  Both alkaline phosphatase and 

5′-nucleotidase are distributed in the MFGM (Andrews, 1991; Shakeel-ur-

Rehman et al., 2003).  Gill and Indyk (2007b) suggested that given that 

trace levels of intact, endogenous 5′-mononucleotides are found in raw 

milk, they might be segregated from phosphomonoester hydrolase 

enzymes in the MFGM, and hence protected as substrates from 

dephosphorylation 

In the analysis of nucleosides and nucleotides in human milk, Thorell et al. 

(1996) reported partial transformation of CMP and UMP to cytidine and 

uridine and of GMP and AMP to guanine and uric acid.  The presence of 

IMP reported in human milk by Janas and Picciano (1982) was postulated 

to be an artefact of enzymatic deamination of AMP after sample collection 

(Aggett et al., 2003; Gil and Rueda, 2000; Leach et al., 1995; Tressler 

et al., 2003). 

In a study of a retail sourced infant formula, the absence of supplemented 

nucleotides, coupled with an increase in nucleoside levels above those 
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normally expected in a bovine milk-based product, illustrated that 

dephosphorylation of nucleotides to nucleosides during manufacture had 

occurred (Gill and Indyk, 2007b).  While equivalent nutritionally, integrity of 

fortified nucleotides during manufacture is critical from a label claim and 

quality control perspective.  Further enzymatic degradation of nucleosides 

in infant formulas could lead to a complete loss of nutritional value, or even 

introduce potentially harmful compounds instead of nutritionally beneficial 

ones.  For example, dietary adenine has been shown to be nephrotoxic in 

animals when fed at high levels (Brule et al., 1988; Story et al., 1977) and 

hence the stability of supplemented AMP or adenosine should be 

documented throughout infant formula manufacture and storage (Quan 

et al., 1990). 

2.5. Analysis of Nucleosides and 

Nucleotides 

Chromatographic analysis of nucleosides and nucleotides has been the 

subject of review, the focus of which has been on analyses for clinical 

(Fallon et al., 1987; Perrett, 1986; Werner, 1993) and genomic studies 

(Brown et al., 2002).  Methods for analysis of nucleosides and nucleotides 

in milk have been reviewed by Gil and Uauy (1995) and more recently by 

Gill and Indyk (2007a). 

Due to the proliferation of nucleotide-supplemented infant formulas, 

methods incorporating minimal sample preparation and rapid 

chromatographic separations have been developed for routine product 

compliance analysis.  In general, the dominant strategy employed in 

analysis of nucleosides and nucleotides in milk and infant formulas has 

been protein removal by acid precipitation, with analysis of the crude 

extract by high performance liquid chromatography (HPLC) with ultraviolet 

(UV) detection. 
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2.5.1. SAMPLE EXTRACTION 

As milk is a highly complex biological fluid, some form of sample 

preparation is mandatory to simplify the matrix and facilitate unambiguous 

signal interpretation.  Further precautions may need to be taken before 

final analysis to ensure both signal fidelity and analyte integrity throughout 

the analytical process.  This is particularly critical in the analysis of raw 

milk, as nucleotides are susceptible to enzymatic conversions from a 

variety of endogenous enzymes (e.g., nucleotidases, nucleosidases, and 

phosphatases), which can rapidly degrade target analytes.  Therefore, it is 

important that following sampling, such potential post-secretory conversion 

of analytes be inhibited by inactivation of these enzymes immediately upon 

sample collection by such methods as acid-addition or flash freezing.  

Depending on the technique and the target analytes, prior separation of 

cellular and serum material may also be needed. 

2.5.1.1 Preparation of Crude Extracts 

Extraction of nucleosides and nucleotides from milk is usually achieved 

following initial protein precipitation with perchloric acid (PCA) or 

trichloroacetic acid (TCA).  Samples are then typically centrifuged and/or 

filtered, followed by neutralisation of the acid.  The use of PCA to obtain 

protein-free extracts has the advantage that PCA does not absorb UV 

light, although such extracts reportedly contain more residual 

UV-absorbing material than TCA extracts (Hernández and Sánchez-

Medina, 1981).  PCA offers the advantage of removal of poorly soluble salt 

KClO4 following neutralisation with KOH, however, occurrences of 

spurious chromatographic peaks from buffer salts, and loss of nucleotides, 

are risks following perchlorate precipitation (Werner, 1993). 

The extraction performed by Kobata et al. (1962) consisted of the addition 

of 2 M PCA.  After centrifugation, the precipitate was washed with 0.2 M 
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perchloric acid and the supernatants combined.  Gil and Sánchez-Medina 

(1981) utilised 1 M PCA and filtered the sample through glass wool after 

centrifugation.  Sow colostrum and milk were prepared for 

chromatographic analysis using 0.6 M PCA by Mateo et al. (2004), and 

this method was subsequently applied to canine milk and colostrum by 

Tonini et al. (2010).  The neutralisation of PCA was achieved with 

potassium hydroxide (Gil and Sánchez-Medina, 1981; Janas and Picciano, 

1982; Krpan et al., 2009; Mateo et al., 2004; Paubert-Braquet et al., 1992; 

Perrin et al., 2001) or potassium carbonate (Oliveira et al., 1999) with 

removal of precipitated potassium perchlorate.  Samples for end-point 

enzymatic analysis were adjusted to pH = 7.4–8.0 with a 0.2 M 

triethanolamine-0.16 M potassium carbonate solution (Gil and Sánchez-

Medina, 1981, 1982; Hernández and Sánchez-Medina, 1981).  Thorell 

et al. (1996) removed PCA by extraction with an equal volume of 0.5 M 

trioctylamine in 1,1,2-trichlorotrifluoroethane (Freon). 

Johke and Goto (1962) used a 10% TCA solution to remove proteins from 

cow milk and goat milk.  After centrifugation, the protein residue was 

homogenised, re-extracted, and the supernatants combined; the removal 

of excess TCA was accomplished by multiple extractions with diethyl 

ether.  A similar procedure was performed in the analysis of samples of 

human milk (Sugawara et al., 1995).  In the analysis of baby foods and 

infant formulas, a 3% TCA solution was used by Viñas et al. (2009).  A 10–

20% TCA solution employed in the analysis of cyclic nucleotides was 

neutralised with solid calcium carbonate (Skala et al., 1981). 

For the extraction of nucleotides from hypoallergenic formulas, an 

alternative protocol to the PCA extraction used for regular infant formulas 

was adopted by Perrin et al. (2001), whereby 1 M hydrochloric acid was 

added and the pH was adjusted to 7.0 with sodium hydroxide after 

centrifugation. 

Protein precipitation with acid, without neutralisation, offers the advantage 

of a rapid, simplified sample preparation.  However, there is potential for 
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losses of nucleotides with long-term storage of the nucleotides in acid 

(Perrett, 1986).  Gill and Indyk (2007b) prepared milk extracts with 3% 

acetic acid; the extracts were then centrifuged and filtered for immediate 

chromatographic analysis, with recoveries of 95–105% being reported.  

Boos et al. (1988) adjusted milk samples to pH = 4.0 with concentrated 

formic acid, stored the samples at -20 ºC for an unspecified time until 

analysis, and reported recoveries of 95–104%. 

In contrast to acid precipitation, alternative methods of deproteination have 

been described.  Tiemeyer et al. (1984) added sodium dodecyl sulfate to 

bovine milk to a final concentration of 1%; the milk was mixed with 

chloroform to eliminate proteins and lipids and centrifuged, and the upper 

layer was sampled for analysis.  Leach et al. (1995) added 1 M sodium 

hydroxide to pooled milk samples and neutralised to pH = 7.0–7.5 with 

hydrochloric acid.  Topp et al. (1993) extracted fat from samples with 

acetone:dichloromethane (9:1), discarded the supernatant, and extracted 

nucleosides from the sediment with 70% ethanol.  Proteins were then 

removed by addition of acetone and the supernatant was concentrated by 

rotary evaporator prior to analysis. 

Physical removal of proteinaceous material in infant formulas by use of 

centrifugal ultrafiltration (CUF) has been reported (Inoue et al., 2008; 

Inoue et al., 2010).  High molecular weight proteins and large peptides are 

retained by a semi-permeable membrane but low molecular weight solutes 

pass through the membrane.  This technique offers an advantage over the 

use of acid in that the risk of nucleotide loss in the protein removal step is 

reduced.  The disadvantages of this technique are that an evaluation of 

analyte recovery is required and that the tubes tend to be expensive and 

can significantly increase the cost of analysis per sample. 

The preferred sample extraction technique depends on the aim of the 

analysis.  In the first instance, it is necessary to eliminate endogenous 

enzyme activity, and second to simplify the sample matrix for further 

analysis.  For routine quantitation of nucleotides supplemented to infant 
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formula, the addition of acid followed by centrifugation of precipitated 

proteins is straightforward.  However, the stability of stored nucleotides at 

low pH is uncertain, therefore, acid neutralisation is advocated prior to 

extract storage. 

2.5.1.2 Extract Fractionation 

Further purification of protein-free extracts prior to analysis has often been 

recommended, and the early use of charcoal adsorption has been 

reported (Kobata et al., 1962; Rashid, 1973).  However, charcoal has 

variable adsorption characteristics and alternative methods of purifying 

extracts have been preferred in recent studies. 

Phenylboronate Affinity Chromatography 

The utilisation of a phenylboronate-modified affinity gel to improve the 

chromatographic selectivity of nucleosides in urine has been described 

(Davis et al., 1977; Uziel et al., 1976).  The affinity gel contains a 

phenylboronic acid bound to various solid supports via a meta-amino 

group.  The primary interaction of the phenylboronate functionality is the 

binding of 1,2 cis-diols, such as those found on the C-2 and C-3 of the 

ribose moiety of nucleosides.  This effectively separates ribose forms of 

nucleosides and nucleotides from similarly related molecules such as 

deoxyribose forms and cyclic nucleotides, which lack the required 1,2 

cis-diol moiety.  Under alkaline conditions, nucleosides are selectively 

retained as boronate complexes and released under acidic conditions; 

Figure 15 (Liu and Scouten, 2000). 

Secondary interactions such as hydrophobic effects, ionic interactions, 

hydrogen bonding, and charge transfer interactions may also play a role in 

promoting or retarding boronate cis-diol complex formation.  The purines 

tend to bind more strongly than pyrimidines, possibly due to hydrophobic 
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effects (Liu and Scouten, 2000).  Tuytten et al. (2007) illustrated that 

retention on the boronate gel is affected by mechanisms in addition to cis-

diol complexation.  The presence of an exocyclic amine group such as that 

present in adenosine and guanosine increased retention.  The lactam 

functionality found in uridine or xanthosine gives rise to reduced retention, 

postulated to be due the presence of an acidic proton, causing the 

nucleoside to be negatively charged at moderately alkaline pH, leading to 

electrostatic repulsion. 

 

 

 

 

 

 

 

 

Figure 15. Mechanism of cis-diol bonding to boronate affinity gel (adapted 
from Liu and Scouten, 2000) 

 

The presence of negatively charged phosphate groups adjacent to the 

ribose in nucleotides may reduce or prevent binding of the cis-diol 

functionality to the gel due to ionic repulsion with negatively charged 

tetrahedral boronate.  The addition of divalent ions, such as Mg2+, has 

been used to mask the negative charge from the nucleotide phosphate 

group and lessen this problem (Liu and Scouten, 2000). 
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Using a commercially available phenylboronate gel, this technique was 

applied to the analysis of human milk for the determination of nucleosides, 

with variable recoveries of 58–96% (Topp et al., 1993), and TPAN, with 

recoveries of 76–104% (Leach et al., 1995).  Perrin et al. (2001) found the 

phenylboronate gel to be unsuitable for use in the quantitative analysis of 

infant formulas, as only partial recovery of GMP, UMP, cytidine, 

guanosine, and uridine was achieved, from either infant formula or 

standard solutions. 

Reversed Phase Chromatography 

In the analysis of hypoallergenic infant formulas containing partially 

hydrolysed proteins, chromatographic analysis is more complicated due to 

the co-elution of peptides under conditions that are suitable for the 

separation of nucleotides.  A solid phase extraction (SPE) clean up 

procedure prior to chromatography was evaluated, and initial results 

obtained with a Chromabond-C18ec column showed only unspecified 

partial recovery of cytidine, guanosine, and adenosine, whereas uridine 

was not retained on the column (Perrin et al., 2001). 

Strata-X C18 SPE cartridges were used by Contreras-Sanz et al. (2012) to 

purify 12 nucleosides and nucleotides in urine and renal cells.  A 25 mM 

solution of ethanolamine was used to wash the cartridge and 30% 

methanol in 25 mM ethanolamine was used as elution solvent.  Recovery 

was evaluated at three different pH values of ethanolamine solution 

(pH = 5.0, 6.0, 7.0).  Optimal recovery was obtained at pH = 5.0 and this 

pH was chosen for use in the final method.  Excellent recovery was found 

values ranged from 98.8% to 104.4%, with the sole exception of uridine, 

which had recovery of 130.8%.  The high recovery was rationalised as 

being caused by a small peak eluting just prior to, but not resolved from, 

uridine. 
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Ion Exchange Chromatography 

Early strategies described protein-precipitated milk extracts adsorbed on 

to Dowex-1 (formate) columns, and elution with increasing concentrations 

of formic acid, ammonium formate, or sodium formate to determine 

acid-soluble nucleotides and nucleotide-sugars (Gil and Sánchez-Medina, 

1981; Johke and Goto, 1962; Kobata et al., 1962).  Subsequent removal of 

formate was achieved by freeze drying (Gil and Sánchez-Medina, 1982), 

by cation exchange (Johke and Goto, 1962), or by charcoal treatment 

(Kobata et al., 1962). 

More recently, a strong anion exchange (SAX) SPE column 

(Chromabond-SB) was evaluated with a nucleotide-spiked infant formula, 

with recoveries of individual nucleotides in the range of 92–99%, and the 

difference between duplicates of approximately 10% (Perrin et al., 2001).  

The use of two SPE columns in series reduced the differences between 

duplicates to approximately 1%, with an average recovery of 103%.  This 

study further evaluated SAX columns from different manufacturers, and 

established that two Bakerbond quaternary amine columns in series were 

optimal with repeatability of 0.8–2.7%, and recovery of individual 

nucleotides ranging from 93–113%. 

2.5.2. CHROMATOGRAPHIC ANALYSIS 

Milk of any mammalian species contains a complex mixture of nucleotides, 

nucleosides, nucleobases, and related molecular species.  Physico-

chemical analytical techniques rely on the unambiguous separation of 

these analytes following preliminary crude fractionation of the sample. 

Prior to the availability of HPLC systems, final analysis of nucleotides 

obtained from crude extracts was performed by paper chromatography 

(Hernández and Sánchez-Medina, 1981; Johke and Goto, 1962; Kobata 

et al., 1962), re-chromatography with a second low-pressure 
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chromatographic separation, and paper electrophoresis (Kobata et al., 

1962).  While gas chromatography (GC) and capillary electrophoresis (CE) 

have been employed for the analysis of nucleosides and nucleotides, in 

recent years, HPLC has become the dominant separation technique used. 

2.5.2.1 Gas Chromatography 

While chromatographic separation by GC is a rapid and sensitive 

technique, nucleotides and nucleosides need to be converted to volatile 

derivatives prior to analysis. 

The analysis of 14 nucleosides and modified nucleosides in the urine of 

cancer patients by gas chromatography-mass spectrometry (GC-MS) was 

reported by Langridge et al. (1993).  The nucleosides were isolated via a 

two-step SPE extraction procedure by means of both C18 and 

phenylboronate columns.  Trimethylsilyl (TMS) derivatives of the extracted 

nucleosides were prepared and analysed using a DB-5 capillary column 

(30 m x 0.25 mm, 0.25 m film thickness) with helium as carrier gas. 

2.5.2.2 Liquid Chromatography 

One of the great advantages of HPLC, particularly reversed-phase liquid 

chromatohraphy (RPLC) is the considerable number of parameters 

available to modify separation.  These parameters include altering the 

mobile phase pH, organic solvent content, temperature, and buffer 

concentration commensurate with the stability of the column.  The 

selection of buffer and its concentration are influenced by a number of 

factors; the pH desired, buffer solubility, and effects on detection. 

For UV, the buffer needs to be transparent at wavelengths suitable for 

detection of the analyte.  Where mass spectrometry (MS) detection is 
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used, compatible buffers are volatile to reduce maintenance and 

instrument downtime. 

Anion Exchange Chromatography 

Anion exchange liquid chromatography is a suitable technique for the 

separation of nucleotides through exploitation of the charged nature of the 

phosphate moieties over the operating range of silica (pH = 2–7).  The 

retention behaviour of nucleotides under ion-exchange chromatographic 

conditions tends to be predictable, as the prevailing mechanisms are 

largely electrostatic interactions between the negatively charged analyte 

and the positively charged stationary phase.  Thus, by varying pH, buffer 

ions, and ionic strength, retention can be manipulated (Brown et al., 2002). 

Separation of nucleotides (nucleoside mono-, di-, and triphosphates) of 

adenosine, guanosine, inosine, xanthosine, cytidine, uridine, and 

thymidine was achieved with an SAX column (Partisil 10-SAX) and an 

acidic phosphate buffer gradient (Hartwick and Brown, 1975).  This 

method was also applied in the analysis of nucleotides (nucleoside mono- 

and diphosphates) in human milk (Janas and Picciano, 1982).  Isocratic 

elution was used for the analysis of human milk by a similar approach, and 

good separation of nucleotide was achieved (Paubert-Braquet et al., 

1992).  Viñas et al. (2009), used a Tracer Extracil SAX and the mobile 

phase was a sodium phosphate buffer (10 mM, pH = 3.5) which provided 

high selectivity for four nucleotides, although the method was not applied 

to the analysis of samples that included supplemented IMP. 

Weak anion exchange chromatography was used for the analysis of a 

nucleoside analogue by LC-MS (Shi et al., 2002).  Satisfactory 

chromatographic separation was achieved for the mono-, di-, and 

triphosphorylated forms of β-D-2′,3′didehydro-2′,3′-dideoxy-5-

fluorocytosine.  Inoue et al. (2008) used a Capcellpak-NH2 column with a 

50 mM phosphate buffer optimised at pH = 4.0 for the analysis of the 

nucleotides in infant formula.  The column provides a mixed mode of 
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retention, which in addition to anion exchange properties, has significant 

reversed-phase characteristics. 

Reversed Phase Liquid Chromatography 

With the development of robust stationary phases based on porous silica 

and flexibility in mobile phase optimisation, RPLC, with or without the 

addition of ion-pair reagents, has become the method of choice for the 

analysis of nucleosides and nucleotides in milks. 

Buffer pH affects analyte retention due to dissociation properties of 

functional groups, and in its neutral form the analyte is better retained.  

When pH is near (usually ± 1.5 pH units) the functional group pKa, 

significant changes in retention are seen.  The capacity of a buffer (ability 

to resist changes in pH) is enhanced at higher concentrations leading to 

more reproducible separations of compounds.  Typically, buffer 

concentrations range from 10–50 mM.  Buffer solubility is important when 

considering gradient separations since the addition of organic solvent can 

lead to problems of buffer precipitation (Gloor and Johnson, 1977). 

The separation of nucleotides by RPLC is somewhat limited with 

conventional C18 columns due to inherently poor interaction of the polar 

analytes with the non-polar C18 phase resulting in poor retention and 

resolution.  However, by increasing the ionic strength and reducing the pH 

through the addition of acidic phosphate buffer, nucleotide 

monophosphates are adequately retained and resolved, with the order of 

elution typically correlated with hydrophobicity.  Organic solvents such as 

methanol or acetonitrile added to phosphate buffer can facilitate improved 

resolution (Fallon et al., 1987).  Additionally, recent advances in column 

technology, such as hybrid and polymer grafted columns and polar 

embedded C18 phases, offer advantages of suppressed silanol activity, 

phase stability under highly aqueous conditions, and unique selectivity 

compared with conventional C18 phases (Layne, 2002; Majors, 2004; 

Majors and Przybyciel, 2002).  In contrast, nucleosides lack the charged 
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phosphate groups present in nucleotides and are therefore relatively well 

retained on C18 phases. 

Hypoxanthine, xanthine, guanine, uridine, cytidine, pseudouridine, GMP, 

and CMP were determined in bovine milk using a -Bondapak C18 column 

with isocratic elution of a 0.01 M ammonium phosphate mobile phase 

adjusted to pH = 6.0 (Tiemeyer et al., 1984).  Human milk was analysed 

using a -Bondapak C18 column with a phosphate buffer:methanol:water 

linear gradient.  Detection of the nucleotides, nucleosides, and 

nucleobases was possible, although baseline resolution was not always 

achieved, and a second protocol was necessary to separate CMP from 

orotic acid (Thorell et al., 1996).  Quantitation of nucleosides and 

methylated nucleosides in human milk was achieved with ternary elution 

gradient of 10 mM ammonium phosphate buffer:methanol:acetonitrile 

(Topp et al., 1993). 

Derivatisation of nucleotides, nucleosides, and nucleobases has been 

reported to improve both reversed phase separation and MS responses.  

The analytes were derivatised by esterification of free hydroxyl groups 

using either propionyl or benzoyl acid anhydride.  The more hydrophobic 

derivatives exhibited enhanced retention under reversed phase conditions 

without the need for ion-pair reagents (Nordström et al., 2004).  

Elevated nucleoside and modified nucleoside levels are important 

biomarkers in cancer research, and hence the ability to accurately 

measure, low nucleoside levels is of critical importance.  Therefore, a 

number of authors have developed methods using LC-MS for the analysis 

of nucleosides and modified nucleosides in urine.  Dudley et al. (2004) and 

Bond et al. (2006) used a Spherisorb C18 column with 5 mM ammonium 

acetate and methanol gradient mobile phase system.  A similar analytical 

chromatographic system was used by Cho et al. (2006), who also 

incorporated a column switching technique in order to remove 

interferences prior to detection. 
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Nucleosides and nucleobases were analysed by LC-MS in Cordyceps 

sinensis by Fan et al. (2006) using a Zorbax Eclipse XDB-C18 column and 

an ammonium acetate buffer:methanol gradient mobile phase system, 

whereas, Guo et al. (2006) used a VP-ODS column with a higher (40 mM) 

ammonium acetate buffer content for a similar analysis. 

A reversed-phase gradient LC-MS method has been reported for the 

analysis of GMP, AMP and the corresponding cyclic nucleotides.  The 

chromatographic separation of nucleotides is poor however, and the 

selectivity of the MS detector was used to separately identify and quantify 

components (Lorenzetti et al., 2007). 

Gill and Indyk (2007b) developed a method for the simultaneous analysis 

of nucleotides and corresponding nucleosides in human and bovine milks, 

milk powders, and infant formulas using RPLC.  The separation of 

nucleotides was achieved predominantly based on increasing 

hydrophobicity.  The elution order for the corresponding nucleosides was 

the same with the exception that guanosine and inosine were reversed.  

This procedure used a polymer-grafted silica Gemini C18 column and 

gradient elution with a phosphate buffer:methanol mobile phase, 

facilitating the simultaneous analysis of nucleosides and nucleotides. 

An investigation of RPLC for the analysis of infant formulas and baby 

foods by Viñas et al. (2009) found that nucleotides were not retained on a 

Zorbax Eclipse XDB-C18 column.  This is hardly surprising however, since 

the mobile phases consisted of phosphate buffers with 30–100% 

acetonitrile. 

An LC-MS method for the analysis of supplemented nucleotides in a range 

of infant formulas was reported by Ren et al. (2011).  A reversed phase 

gradient from 100% mobile phase A (0.1% formic acid) to 100% mobile 

phase B (acetonitrile) was selected (mobile phase transition over 

7 minutes), with the best resolution achieved using a Symmetry C18 

column. 
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With the commercial availability of ultra high performance liquid 

chromatography (UHPLC), high-resolution separations with short run times 

and low solvent consumption are readily available.  This technique was 

applied to the simultaneous analysis of 14 nucleosides and nucleobases in 

fungi (Yang et al., 2007).  Ranogajec et al. (2010) assessed the retention 

of nucleosides and nucleotides on five different stationary phases.  A 

narrow-bore Synergy Hydro column was found to be the most efficacious 

to obtaining sufficient resolution and yet maintaining a relatively short run-

time.  This chromatographic method was then applied to the analysis of 

mushrooms. 

RPLC was applied to the analysis of nucleosides, nucleotides (nucleotide 

5′-monophosphates, 3′-monophosphates, and 2′-monophosphates), and 

nucleobases in animal feed supplements using an Atlantis T3 C18 column 

with a mobile phase gradient using 0.1% formic acid and 100% methanol.  

The resolution of analyte peaks was satisfactory, although significant peak 

tailing was observed (Neubauer et al., 2012). 

Ion-Pair Reversed Phase Liquid Chromatography 

Ion-pair reversed phase liquid chromatography (IPRPLC) has become the 

prevalent technique for the analysis of nucleotides in milk and pediatric 

products in recent years.  Retention of nucleotides at the appropriate pH is 

due to strong interactions between the anionic phosphate esters with 

cationic ion-pair reagents (Brown et al., 2002; Werner, 1993).  An 

alternative description of the separation mechanism is the adsorption of 

the positively charged ion-pair reagent onto the packing material, 

rendering it similar to an ion-exchange column (Fung et al., 2001).  At low 

pH, the charge increases with the number of phosphate residues and 

hence, in contrast to RPLC, nucleotide monophosphates elute first 

followed by di- and triphosphates. 

While IPRPLC offers significant advantages in chromatographic 

separation, however when coupled to LC-MS, sensitivity may be 
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compromised by ion suppression and source contamination.  Additionally, 

simultaneous detection of nucleosides and nucleotides using parallel 

positive and negative ionisation is not possible due to suppression and 

interference of added counter ions (Neubauer et al., 2012). 

A Spherisorb C18 column with tetrabutylammonium hydrogen sulfate 

(TBAHS) as ion-pair reagent and gradient elution was used for the 

analysis of nucleotides in dairy products (Ferreira et al., 2001; Oliveira 

et al., 1999).  Sugawara et al. (1995) used a Capcellpak C18 column with 

TBAHS for the analysis of nucleotides (nucleoside mono-, di-, and 

triphosphates) in breast milk from Japanese women.  A notable difference 

in elution under this protocol was the early elution of adenosine 

nucleotides, the late elution of which can, in other systems, be an 

impediment in developing assays with shorter run times.  A similar 

chromatographic system was used in the analysis of breast milk from 

Taiwanese women (Liao et al., 2011).  Contreras-Sanz et al. (2012) used 

TBAHS as ion-pair reagent with gradient elution of 12 nucleosides and 

nucleotides from urine and renal cells. 

Perrin et al. (2001) described a method based on isocratic elution with a 

mobile phase incorporating tetrabutylammonium dihydrogen phosphate as 

the ion-pair reagent, where two Nucleosil 120-C18 columns in series were 

required for adequate resolution.  A similar mobile phase was used by 

Krpan et al. (2009), although only a single C18 column (Supelcosil LC-18T) 

was sufficient to achieve the required separation. 

Alternative ion-pairing salts with more volatility have been employed 

successfully for MS detection.  Tetrabutylammonium bromide was applied 

in the analysis of cyclic nucleotides in rat brain (Witters et al., 1997).  In 

the analysis of nucleotide metabolites in bacteria, hexylamine was utilised 

as the ion-pair reagent (Coulier et al., 2006).  The LC-MS analysis of 11 

nucleotides in rat tissues was achieved using dibutylammonium formate 

(DBAA) as the ion-pair reagent (Klawitter et al., 2007).  Seifar et al. (2009) 

also used DBAA in the LC-MS analysis of nucleotides in cell cultures.  
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Pentafluorooctanoic acid was used as the ion-pair reagent in the analysis 

of Cordyceps militaris and C. sinensis by LC-MS (Yang et al., 2010). 

The ion-pair reagent most commonly used in studies of nucleotides and 

related compounds by LC-MS is N, N-dimethylhexylamine (DMHA) 

(Auriola et al., 1997; Cai, 2001; Cai et al., 2002; Cordell et al., 2008; Fung 

et al., 2001; Qian et al., 2004; Tuytten et al., 2002; Viñas et al., 2010).  

Auriola et al. (1997) reported that a higher concentration of DMHA was 

required to increase retention compared to typically used 

tetrabutylammonium salts and that 10 mM DMHA was required to obtain 

sufficient retention of nucleotides.  Similar concentrations of DMHA were 

found to be optimal by Qian et al. (2004) and Fung et al. (2001), 8 mM and 

20 mM respectively, to obtain good peak shapes and sufficient resolution.  

Reduced concentrations of DMHA were necessary when using capillary 

(0.5 mm) C18 columns (Cai et al., 2002).  Concentrations of DMHA in 

mobile phase below 0.5 mM have been shown to give poor retention of 

nucleotides.  Retention and peak shapes improved as DMHA 

concentration increased from 0.5–5 mM with only minor improvements in 

retention when the concentration was greater than 5 mM (Cordell et al., 

2008; Tuytten et al., 2002). 

The effects of DMHA containing mobile phase and pH on retention times 

and peak shapes on selected nucleotides were examined by Cordell et al. 

(2008).  Retention times generally decreased as pH decreased with peak 

shape degradation at lower mobile phase pH with nucleotides barely 

retained at pH = 3.  A mobile phase of pH = 7 was found to be optimal in 

terms of retention, resolution, and peak shape and it is this pH which is 

commonly used in chromatographic systems utilising DMHA as the ion-

pair reagent (Cai et al., 2002; Fung et al., 2001; Qian et al., 2004). 

Viñas et al. (2009) investigated the use of IPRPLC for the analysis of 

infant formulas and baby foods for nucleotides.  A Zorbax Eclipse XDB-C18 

with phosphate buffer (30 mM, pH = 4.3) containing 0.03% 

tetrabutylammonium hydroxide and different mixtures of acetonitrile (0–
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10%) was trialled.  While the best separation was achieved with 100% 

buffer, peaks were not completely resolved and peak tailing occurred.  

Variation of conditions such as mobile phase pH from 3.5–6.5; stationary 

phase, Zorbax Eclipse XDB-C8; flow rate of 0.25–1.0 mL min-1 did not 

improve separation. 

Yamaoka et al. (2010) analysed nucleosides and nucleotides in dietary 

foods and beverages using LC-MS.  An Acquity UHPLC HSS T3 column 

was used with dimethylammonium acetate as ion-pair reagent in an 

ammonium formate buffer and acetonitrile gradient.  While good resolution 

was obtained for the nucleosides, the nucleotides tended to co-elute 

based on number of phosphate groups (i.e. the nucleotide 

monophosphates closely eluted with each other, as did the di- and 

triphosphate forms).  Before each injection, the column was pre-

conditioned using a solution containing 0.1% phosphoric acid and 100% 

acetonitrile mixed 1:1.  The pre-conditioning of the column is essential to 

obtain efficient separation and good resolution of nucleotides.  If this pre-

conditioning is not done, the peaks of nucleotides, especially triphosphate, 

will become low and broad (Kaneko, 2011).  Severe peak tailing of 

phosphorylated compounds was investigated by Wakamatsu et al. (2005) 

the cause postulated as the interaction of these compounds with stainless 

steel components of the analytical system. 

Hydrophilic Interaction Chromatography 

Hydrophilic interaction liquid chromatography (HILIC) is a separation mode 

where a polar stationary phase is enriched with a stationary water layer.  

The more polar a solute, the more it associates with the stationary phase 

and therefore the later it elutes.  That is, retention is analogous to normal 

phase chromatography and has been described as a ―reversed reversed 

phase‖ (Hemström and Irgum, 2006). 

The analysis of nucleosides and nucleotides using HILIC offers a number 

of advantages over RPLC and IPRPLC techniques, particularly when 
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applied to LC-MS analyses.  The high organic content of mobile phase 

enhances spraying and desolvation, thereby increasing signal intensity.  

The polar nucleotides are well retained without need for ion-pair reagents 

that can complicate spectra, and there is less need for gradient elution, 

thereby reducing the impact of variances of mobile phase on ion 

suppression. 

HILIC-MS has been applied to the analysis of nucleosides and 

nucleotides.  Numerous water-soluble cellular metabolites including 

nucleotides were analysed by HILIC-MS using an aminopropyl column 

with ammonium acetate (pH = 9.45) and acetonitrile gradient.  The polar 

analytes were effectively separated prior to detection (Bajad et al., 2006).  

The same column and mobile phase was used with a modified gradient by 

Pucci et al. (2009), in the determination of a modified nucleotide, 

2′-methylcytidine triphosphate, in rat liver. 

The retention of a number of nucleoside mono-, di-, triphosphates and 

nucleotide adducts was assessed using HILIC with a titania (TiO2) column.  

It was found that ligand-exchange and HILIC retention mechanisms were 

present and that HILIC was favoured at higher acetonitrile concentrations 

(Zhou and Lucy, 2008). 

Tuytten et al. (2008) describe an automated online SPE-LC-MS method 

designed for high throughput clinical laboratories to measure modified 

nucleosides biomarkers in urine.  This method comprised a boronate 

affinity clean up and HILIC separation followed by MS detection. 

The separation of cAMP and ATP was achieved using a zwitterionic HILIC 

column in an investigation of cAMP agonists (Goutier et al., 2010).  In 

method development, a column temperature of 20–50 ºC was found not to 

affect retention time of the analytes.  The ammonium bicarbonate buffer 

strengths were varied between 1–100 mM at a constant pH of 9.4, with 

10 mM selected for final analysis. 
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The separation of 12 nucleobases and nucleosides was investigated using 

HILIC by Marrubini et al. (2010).  Two columns were evaluated, a TSK-gel 

NH2-80 column and a ZIC-HILIC.  The retention of the analytes was 

studied by varying the ammonium formate concentration, the acetonitrile 

content, the pH, and column temperature.  The results obtained confirmed 

the elution order of nucleobases and nucleosides based on their 

hydrophobicity.  Retention and peak shape were influenced by the 

presence of ammonium formate at different concentrations with increasing 

retention with increasing salt concentration.  Variation in retention due to 

the mobile-phase pH (3–5) affected the TSK-gel NH2-80 column more than 

the ZIC-HILIC column.  Column temperature subtly affected retention with 

increasing temperature resulting in shorter retention times.  Gradient 

elution was necessary to achieve run times shorter than that possible with 

isocratic elution, with the ZIC-HILIC column providing full resolution of the 

12 analytes within a 60-minute run time. 

Inoue et al. (2010) describe the application of a HILIC-MS method for the 

analysis of nucleotides in infant formula.  A TSK-gel NH2-100 column was 

used with ammonium formate buffer and methanol gradient.  CMP was 

weakly retained under this system and GMP and IMP were not resolved. 

Phenylboronate Affinity Chromatography 

The development of an automated dual column system combining pre-

column affinity chromatography and RPLC for the analysis of nucleosides 

in biological fluids has been reported.  With the utilisation of an 

m-aminophenylboronic acid substituted gel and column switching, online 

dual column clean up and analysis of nucleosides in protein-free extracts 

was achieved (Schlimme et al., 1986b). 

Further development of this technique allowed for the analysis of 

proteinaceous material such as milk (Boos et al., 1988; Schlimme and 

Boos, 1990).  With a novel bonded-phase material prepared by 

immobilisation of phenylboronic acid to a size exclusion gel support, two 
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different modes of separation based on size exclusion and affinity were 

exploited and this technique was applied to the analysis of nucleosides in 

human and bovine milks (Schlimme et al., 1997; Schlimme et al., 1996).  

Martin and Schlimme (1997) reported the use of Ca2+ and Mg2+ ions 

(50 mM) to reduce the influence of the nucleotide phosphate group in the 

simultaneous analysis of nucleosides and nucleotides.  The recovery of 

AMP was highest (86–97%), but the recoveries of CMP, GMP, and UMP 

were much lower and further method optimisation is required.  Without the 

incorporation of these cations, nucleotides remained unbound to the 

column. 

Porous Graphite Chromatography 

The use of a porous graphite chromatography (PGC) coupled to MS was 

used in the analysis of > 40 nucleotide and nucleotide sugars in Chinese 

hamster ovary cells.  The use of PGC alleviated the need for ion-pair 

reagents, and satisfactory chromatographic performance was found by 

treatment of the column with reducing agent and HCl (Pabst et al., 2010). 

2.5.2.3 Capillary Electrophoresis 

Nucleotides are readily analysed by CE as they are negatively charged 

over a wide pH range.  CE methods are generally considered to be faster 

than comparable HPLC methods and use lower quantities of inexpensive 

buffer salts rather than comparatively large quantities of organic solvents.  

A review summarising CE analysis of nucleosides and nucleotides in food 

matrices has been recently published (Chen et al., 2010). 

The application of CE to analyse nucleotides has been primarily aimed at 

clinical assays (Grob et al., 2003; Qurishi et al., 2002).  The application of 

CE to the analysis of nucleotides in human breast milk was reported by 

Cubero et al. (2007). 
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CE-MS has been used for the analysis of a wide range of metabolites of 

Bacillus subtilis, including nucleosides and nucleotides (Soga et al., 2003).  

A pressure assisted capillary electrophoresis (PACE) method was 

developed and applied to the analysis of cellular cultures from Escherichia 

coli (Soga et al., 2007).  The PACE-MS technique used phosphate ions to 

precondition the capillary to mask silanol groups and prevent the 

adsorption of multi-phosphorylated analytes.  A CE-MS method was 

applied to the analysis of 12 nucleosides and nucleobases in Cordyceps 

sinensis by Yang et al. (2007). 

A CE-UV method was developed and applied to infant formula by Ding 

et al. (2011).  Excellent resolution of the five nucleotides was obtained with 

a run time of 48 min.  The accuracy of the method was evaluated by 

comparison with a published RPLC method (Gill and Indyk, 2007b) and by 

spiked recovery experiments.  The results obtained for five different infant 

formula samples obtained were similar for both methods (Table 6). 

Table 6. CE and HPLC method comparison (from Ding et al., 2011) 

Sample Methoda 
Measured results (mg hg-1) 

AMP CMP GMP IMP UMP Total 

1 
CE 2.0 10.4 1.4 –b 7.3 21.1 

HPLC 1.9 12.3 1.7 –b 8.4 24.3 

2 
CE 3.3 9.1 2.5 –b 5.0 19.9 

HPLC 3.3 10.8 2.8 –b 5.9 22.7 

3 
CE 6.3 16.3 10.3 –b 9.3 42.2 

HPLC 6.5 18.3 15.3 –b 10.0 50.1 

4 
CE 2.9 11.7 2.3 1.5 4.8 23.1 

HPLC 3.1 12.4 2.3 1.6 5.5 24.8 

5 
CE 2.4 4.1 –c 1.4 2.6 10.5 

HPLC 2.8 4.4 1.0 1.8 3.5 13.5 
a
 CE method of Ding et al., 2011 

 HPLC method of Gill and Indyk 2007b 
b
 Not detected 

c
 Detected but lower than LOQ 
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2.5.3. ULTRA-VIOLET DETECTION 

Pyrimidines and purines readily absorb light in the UV range with 

maximum absorbances typically between 240 and 270 nm (Cavalieri and 

Bendich, 1948).  However, since the chromatographic pattern of milk 

extracts is frequently complex, characterisation of putative peaks by 

retention time with detection at a single wavelength, is generally 

insufficient for unambiguous identification. 

The ratio of the absorbances at 254 and 280 nm, co-chromatography with 

authentic standards, and enzymatic conversion, were used for 

confirmation of peak identity of nucleic acid metabolites in bovine milk 

(Tiemeyer et al., 1984).  Characteristic peak shifting, or quenching, due to 

pre-chromatographic chemical or enzymatic treatments can assist in the 

identification of nucleosides and nucleotides.  After a tentative 

classification of a chromatographic peak, either a substrate-specific 

enzyme or a reagent known to modify the target analyte selectively is 

employed.  The effect is seen in the subsequent chromatogram whereby 

the putative peak disappears with the possible appearance of an 

additional peak elsewhere.  Pre-chromatographic modifications by 

enzymatic (e.g., adenosine deaminase, purine nucleoside phosphorylase) 

and chemical (e.g., periodate oxidation, Dimroth rearrangement, glyoxal 

modification, etheno-derivatisation) treatments have been utilised in the 

identification of nucleosides (Haink and Deussen, 2003; Schlimme et al., 

1997; Schlimme et al., 1996). 

In recent years, photodiode array (PDA) detectors have been increasingly 

employed for the detection and identification of nucleosides and 

nucleotides in milk (Ferreira et al., 2001; Gill and Indyk, 2007b; Oliveira 

et al., 1999; Perrin et al., 2001; Thorell et al., 1996).  The ability to 

discriminate different peaks over a range of wavelengths is particularly 

beneficial, by comparison of putative peak spectra with those of authentic 

compounds and in assessing the chromatographic peak spectral purity.  



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

LITERATURE REVIEW 62 
ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES 

The use of PDA detectors also offers the advantage of optimal wavelength 

selection for multiple analytes, so that analyte absorption is maximised 

and chromatographic interferences may be minimised. 

2.5.4. MASS SPECTROMETRIC DETECTION 

MS is a powerful analytical technique that can provide both structural 

information of unknown compounds and can quantify known compounds.  

MS can be connected online to a variety of separation techniques such as 

GC, HPLC, and CE (El-Aneed et al., 2009). 

Ion sources are key components of the mass spectrometer that yield ions 

from neutral atoms or molecules.  Since different ion sources impart 

different amounts of energy to molecules during ionisation, the choice of 

ionisation mode is critical to the success of an experiment.  A number of 

ionisation techniques have been coupled to chromatographic techniques 

to analyse nucleosides and nucleotides and the applications of these in 

the early to mid 1990’s have been summarised by Esmans et al. (1998). 

In recent years, LC-MS has become widely used for both research and 

routine use in the pharmaceutical and related industries.  Due to the 

presence of one or more negatively charged phosphate groups, MS 

detection of nucleotides is frequently performed in the negative mode.  

However, detection in positive ion mode is used also, particularly for 

IPRPLC chromatographic methods where [nucleotide-adduct]+ ions are 

abundant. 
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2.5.4.1 Ionisation 

Electron Ionisation 

Electron ionisation (EI) is the oldest and one of the most commonly used 

ionisation techniques.  Molecules are ionised and fragmented by EI in a 

reproducible manner and large databases of spectra of known compounds 

are readily searchable.  However, EI is a harsh ionisation technique and is 

unsuitable for complex biomolecules since the analytes are destroyed.  

(El-Aneed et al., 2009). 

Characteristic fragment ions of TMS derivatives of nucleosides were 

obtained in the analysis of 14 nucleosides and modified nucleosides by 

GC-MS (Langridge et al., 1993).  Greater sensitivity and unambiguous 

identification through characteristic fragmentation of product ions make 

MS/MS preferable to flame ionisation detection for the analysis of 

nucleosides by GC (Schram, 1998). 

Electrospray Ionisation 

Electrospray ionisation (ESI) is an extremely effective technique for 

analysing polar compounds by MS.  Charged droplets are formed by the 

spraying of solution through an electrically charged needle, with 

evaporation and coulombic repulsion leading to release of free ions into 

the gas phase.  Since ions are generated directly from samples in solution, 

ESI is readily compatible with chromatographic separations such as CE 

and HPLC (El-Aneed et al., 2009; Niessen, 1999). 

Online chromatographic separation coupled to the sensitivity and 

selectivity of tandem mass spectrometry (MS/MS) techniques is effective 

when characterising complex mixtures that are difficult to analyse by 

standard HPLC-UV analysis.  The ―soft‖ ionisation afforded by ESI allows 

characterisation of non-volatile, thermally labile compounds with minimal 

fragmentation (Choi et al., 2001; Niessen, 1999). 
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In the LC-MS analysis of a nucleoside triphosphate analogue, ESI+ was 

used in order to overcome an interference found in ESI–, thereby 

sacrificing sensitivity for selectivity (Shi et al., 2002); however, this method 

suffers from compatibility problems between the LC and MS systems due 

to the high ionic strength of the mobiles phases. 

Ion suppression LC-MS for the analysis of cyclic nucleotides in rat tissue 

and plant leaves was found to be compatible with ESI (Witters et al., 

1996).  Quantitation of cyclic nucleotides in samples achieved a limit of 

detection (LOD) in the fmol range. 

Analysis of propionyl and benzoyl derivatives of nucleotides, nucleosides 

and nucleobases has shown that the derivatives possess better ionisation 

and ESI responses due to increased hydrophobicity and higher surface 

activity compared to the parent analyte.  A lower background noise tends 

to be found at higher molecular weights resulting in improved signal-to-

noise (S/N) (Nordström et al., 2004). 

DMHA as an ion-pair reagent was used in the development of an LC-MS 

method for the determination of 12 nucleotides, with ESI– detection 

(Tuytten et al., 2002).  It was reported that a decrease in signal intensity of 

the [M−H]− ion was seen as the concentration of DMHA was increased. 

ESI+ is more complex due to a high background from protonated DMHA 

and the presence of multiple adduct species (M+H+, M+Na+, M+K+, 

M+DMHA+H+), whereas this is not such a problem in ESI–.  While 

sensitivity is reduced, since total ion content of each compound is spread 

over a range of possible ions, the addition of the ion-pair reagent DMHA 

allows the possibility of enhancing the signal by detecting more easily 

ionised adduct ions that form between the ion-pairing agent and the 

nucleotides.  Cai et al. (2001) reported that the presence of DMHA ion-pair 

reagent enhanced protonation of nucleotides thereby enhancing ESI+ 

sensitivity.  This method was applied to the analysis of adenosine 

nucleotides in cultured cells (Qian et al., 2004). 
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The PACE-MS technique developed for the analysis of cellular cultures 

(Soga et al., 2007) used phosphate during a pre-conditioning phase with 

the nebuliser gas turned off to avoid contamination of the detector.  

Preconditioning of an UHPLC-MS system with phosphate was also used 

prior to the analysis of nucleosides and nucleotides (Yamaoka et al., 

2010). 

Nucleosides in pork were analysed by UHPLC-MS/MS by Clariana et al. 

(2010) with detection of adenosine in ESI+ mode, and detection of other 

nucleosides (guanosine, inosine, and uridine) in ESI– mode.  Quantitative 

product ions were detected from the loss of neutral ribosyl [M-132] group. 

Atmospheric Pressure Chemical Ionisation 

Atmospheric pressure chemical ionisation (APCI) combined with ESI was 

used to ionise analytes in a method to determine nucleotides in baby 

foods (Viñas et al., 2010).  While ESI is a gentler ionisation technique than 

APCI and suited to polar compounds, the coupling of ESI and APCI allows 

for a wider range of compounds to be ionised.  In positive ionisation 

modes, the spectra were more complex with high interference from the 

DMHA ion-pair reagent in the mobile phase.  Intensities of the molecular 

ions were much higher in negative mode with lower background. 

Inductively Coupled Plasma Ionisation 

Inductively coupled plasma-mass spectrometry (ICP-MS) is a technique 

for measuring elemental ions that are generated in hot plasma (6000–

8000 ºC).  A CE-ICP-MS method was developed for the analysis of 

nucleotides.  The coupling of CE with ICP-MS requires a special interface 

that introduces the sample to the plasma efficiently and does not degrade 

resolution achieved by the capillary.  Detection limits ranged from 0.036–

0.054 g mL-1 (phosphorus) and recovery ranged from 100–112% (Yeh 

and Jiang, 2002). 
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An LC-ICP-MS method was developed and applied to the analysis of 

nucleotides (nucleoside 5′-monophosphates, 3′-monophosphates, and 2′-

monophosphates) in animal feed supplements.  Phosphorus was 

measured as PO+ by use of a dynamic reaction cell.  Detection limits were 

significantly lower (>1 order of magnitude) using this technique compared 

to a complementary LC-MS/MS method (Neubauer et al., 2012). 

Matrix-Assisted Laser Desorption Ionisation 

Matrix-assisted laser desorption ionisation (MALDI) uses a pulsed laser to 

generate ions from analytes embedded in an appropriate solid matrix.  

MALDI is frequently coupled to a time-of-flight (TOF) detector and MALDI-

TOF-MS is popular for analysing both very large molecules as well as low 

molecular weight compounds.  Matrix interferences can be a problem in 

the analysis of low molecular weight compounds by the MALDI technique 

due to the similarity of molecular masses of the matrix compound and 

analyte ions (Hess et al., 1998). 

MALDI-TOF-MS has been applied to the analysis of nucleosides in urine.  

The nucleosides were extracted by affinity chromatography with 

phenylboronic acid gel, and then separated by either RPLC (Kammerer 

et al., 2005) or CE (Liebich et al., 2005).  The most suitable matrix with 

high sensitivity was found to be 2,5-dihydroxybenzoic acid (DHB).  For 

measurements with a high mass accuracy a thin layer of 

-cyano-4-hydroxycinnamic acid saturated in acetone:ethanol 50:50 v/v 

was used.  Using a DHB matrix 18 nucleosides were determined with the 

LOD from 0.1–10 pmol, with pyrimidines showing a higher LOD than 

purines (Kammerer et al., 2005). 
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2.5.4.2 Mass Analysers 

After ions have been formed by an ion source, mass analysers separate 

the ions by their mass-to charge ratio (m/z) and record relative 

abundances. 

In full-scan mode, a total ion current (TIC) plot records the total intensity 

summed across the entire range of masses being detected at every point 

in the analysis.  A TIC chromatogram often provides limited information as 

multiple analytes elute simultaneously, obscuring individual species. 

Selected ion monitoring (SIM) is used to record the abundances of specific 

ions instead of scanning the entire mass spectrum and is used in the 

quantitative analysis of known compounds to improve sensitivity.  Because 

a narrow mass range is used to collect data, SIM is more selective than 

full-scan TIC and since more time can be used to acquire a smaller mass 

range, S/N is improved. 

Quadrupole Mass Analyser 

Quadrupole instruments consist of four parallel rods, which are connected 

to direct current (DC) and radiofrequency (RF) generators.  By altering the 

DC and RF potentials, ions of certain m/z will be transmitted through the 

mass analyser to the detector, whereas ions with different m/z will possess 

a different trajectory and ultimately be eliminated prior to detection (El-

Aneed et al., 2009). 

A drawback to using a quadrupole mass analyser is that it is a scanning 

instrument; that is, it monitors a single m/z at any given time, which 

becomes an issue when scanning across a wide mass range.  Since 

quantitative analyses involve the measurement of known compounds, 

acquisition of a full mass spectrum is unnecessary, and increased signal 

can be obtained if specific ions are monitored in SIM mode (Choi et al., 
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2001).  Nucleotides and nucleotides in dietary food and beverages were 

analysed with a single quadrupole analyser by Yamaoka et al. (2010). 

A multiple reaction monitoring (MRM) experiment is accomplished by a 

tandem mass spectrometer.  In a triple quadrupole instrument, the first 

quadrupole selects a specific precursor ion, filtering out other ions with 

other m/z.  The selected ions are then collided with a neutral gas in the 

second quadrupole in a process called collision induced dissociation 

(CID).  Generated product ions are transferred into the third quadrupole 

where only a specific m/z is allowed to pass to the detector, with all other 

product ions filtered out.  Thus, MRM mode works like a double mass filter, 

and significantly increases S/N and selectivity.  MRM is a powerful tool for 

the identification of particular fragment ions in the determination of the 

molecular structure of an unknown analyte and also provides confirmation 

of identity of analyte parent ions of similar mass. 

Triple quadrupole instruments are popular instruments that use a number 

of different scanning modes, which can increase selectivity in studies of 

known analytes in complex matrices, and can achieve unambiguous 

identification of unknown analytes.  Triple quadrupole mass analysers are 

the most common detector type used in nucleoside and nucleotide 

analysis (Cai, 2001; Cohen et al., 2009; la Marca et al., 2006; Lorenzetti 

et al., 2007; Neubauer et al., 2012; Ren et al., 2011; Rodríguez-Gonzalo 

et al., 2011; Seifar et al., 2009; Shi et al., 2002; Soga et al., 2003; 

St Claire, 2000; Tuytten et al., 2002; Witters et al., 1997; Zhu et al., 2001). 

Quadrupole Ion Trap Mass Analyser 

Quadrupole ion trap mass analysers are highly sensitive instrument and 

can attain very low detection limits.  They consist of a circular ring 

electrode and two end caps.  Ions are trapped and accumulated within the 

ring and are sequentially ejected with each m/z measured.  Alternatively, a 

selected mass can be trapped and undergo CID from gas molecules within 

the trap producing fragment ions which may be then ejected, or undergo 
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further CID, producing further fragmentation.  Quadrupole ion trap 

instrumentation was used in the LC-MS/MS quantitation of nucleosides in 

human urine (Lee et al., 2004). 

Time of Flight Mass Analyser 

A TOF mass analyser accelerates ions through a potential, before they 

enter a free flight tube in which lighter ions travel faster than heavier ones 

allowing m/z ratios to be measured by arrival times at the detector.  In 

contrast to a quadrupole instrument, a TOF mass analyser is not a 

scanning instrument instead, the masses of all ions present are 

determined, and therefore sensitivity is not limited by the mass range 

making it suitable for qualitative applications (Choi et al., 2001). 

A TOF mass analyser has been used in the analysis of nucleosides in 

urine (Kammerer et al., 2005; Liebich et al., 2005), in the analysis of 

nucleotide and nucleotide sugars (Pabst et al., 2010), in the determination 

of 16 nucleosides and bases in marine organism extracts (Zhao et al., 

2011) and in the development of a method for analysis of nucleotides 

(Tuytten et al., 2004), as well as the application of a method for the 

analysis of nucleotides in baby foods (Viñas et al., 2010). 

Ion Mobility Spectrometry 

Ion mobility spectrometry separates ionised molecules by their arrival time 

at a detector.  The ions traverse a drift tube held filled with a gas at 

atmospheric pressure, rather than a vacuum.  Separation in ion mobility 

spectrometry occurs in response to ion size, ion shape, and ion charge. 

An ion-mobility spectrometer was constructed and coupled to an ESI 

source in the development of an ion mobility spectrometric method for the 

determination of 16 nucleotides and nucleosides.  Drift times and reduced 

mobility of nucleotides and nucleosides were determined and detection 

limits in the pmol range were reported (Kanu et al., 2010). 
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2.5.5. ENZYMATIC ANALYSIS 

An enzymatic assay for the determination of individual nucleotides and 

total nucleotides was developed by Hernández and Sánchez-Medina 

(1981) based on the method of Keppler (Keppler, 1974).  The method was 

applied to the analysis of cow, goat, sheep (Gil and Sánchez-Medina, 

1981), and human milks (Gil and Sánchez-Medina, 1982).  Nucleotides 

were released enzymatically from nucleotide pyrophosphates, nucleotide 

diphosphates, and nucleotide diphosphate sugars by snake venom 

phosphodiesterase and quantitatively reacted in a series of enzymatic 

reactions with measurement of the lactate-dehydrogenase catalysed 

stoichiometric decrease of NADH at 340 nm (AMP, CMP + UMP, GMP), 

with UMP determined by enzymatic conversion to UDP-glucose.  The 

recovery of AMP, CMP, GMP, and UMP was estimated at 96% with 

repeatability between determinations of less than 4%, comparing 

favourably to an ion-exchange technique (Hernández and Sánchez-

Medina, 1981). 

Determination of UDP-glucose in milk extracts was performed by a 

modification of the method of Keppler and Decker (1974), whereby an 

increase in absorption at 340 nm, due to the stoichiometric reduction of 

NAD+ to NADH catalysed by UDP-glucose dehydrogenase, was 

measured.  UDP-galactose was determined by conversion to UDP-glucose 

catalysed by UDP-glucose-hexose-1-phosphate uridylyltransferase in the 

presence of glucose-1-phosphate.  Free nucleotides were determined 

similarly, but without the phosphodiesterase hydrolysis step.  The recovery 

of UDP-glucose and UDP-galactose was estimated at 97% with a standard 

deviation between determinations of approximately 1 nmol mL-1 of milk 

(Hernández and Sánchez-Medina, 1981). 

While enzymatic techniques have been superseded by HPLC, enzyme-

based methods offer inherent advantages of analyte specificity, and aid in 

the identification of the multitude of nucleoside and nucleotide related 
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compounds.  In the TPAN analysis of human milks, a number of enzymes 

have been used to characterise the contributions of different molecular 

nucleoside sources to infant nutrition.  Polymeric nucleotides were 

hydrolyzed with nuclease, nucleotide adducts were hydrolyzed with 

pyrophosphatase, and nucleotides were dephosphorylated to nucleosides 

with phosphatase.  The enzymatic reactions employed in the TPAN 

analyses are illustrated in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Enzymatic conversion of TPAN to free nucleosides 
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In this manner, contributions from polymeric nucleotides, monomeric 

nucleotides, nucleosides, and nucleotide adducts to TPAN were 

separately estimated (Gerichhausen et al., 2000; Leach et al., 1995).  The 

recovery of nucleosides ranged from 76% for guanosine to 104% for 

cytidine, with precision (as repeatability relative standard deviation) of 

2.0% for cytidine, guanosine, and adenosine, and 3.6% for uridine (Leach 

et al., 1995). 

Luciferase catalyses the oxidative decarboxylation of D-luciferin, and, 

when ATP is the limiting reagent, the photon count is proportional to the 

ATP present.  In bovine milk, ATP was measured enzymatically using the 

luciferase-ATP reaction, with light detection by scintillation counter 

(Richardson et al., 1980). 

2.5.6. RADIOIMMUNOASSAY 

The cyclic nucleotides cAMP and cGMP in milk were determined using a 

radioimmunoassay technique.  This assay is based upon competitive 

binding between the cyclic nucleotide and an isotopically labelled 

derivative for a specific cyclic nucleotide antibody (Skala et al., 1981; 

Steiner et al., 1972.). 

2.5.7. MICROBIOLOGICAL ASSAY 

Larson and Hegarty (1977) described a microbiological assay for the 

determination of orotic acid and pyrimidine nucleotides in ruminant milks.  

This method is of limited applicability since only pyrimidine nucleotides are 

measured and they were not individually differentiated. 
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2.6. Method Validation 

2.6.1. SYSTEM SUITABILITY 

The aim of a chromatographic analysis is an optimum separation of the 

analyte(s) from other components in the shortest time practicable.  It is 

essential that the chromatographic separation is functioning in a 

satisfactory manner for accurate and precise data to be obtained.  

Therefore, prior to validation experiments it should be established that the 

HPLC system is suitable for carrying out a particular analysis. 

A system suitability study defines a number of parameters used to assess 

chromatographic performance that may be then evaluated against set 

criteria.  These parameters include resolution, tailing, retention factor, 

theoretical plates count, and repeatability of peak response and retention 

time (Bruce et al., 1998; CDER, 1994; Shabir, 2003). 

2.6.1.1 Resolution 

Well-separated peaks with little or no overlap are crucial for dependable 

quantitative analysis.  Resolution (Rs) is a measure of the separation of 

two peaks and is therefore a critical parameter in assessing the suitability 

of a chromatographic analysis.  It is measured as a function of peak 

retention times and peak widths.  A resolution of 1.5 or greater is 

acceptable, and a resolution of less than 1.0 is deemed not useable 

(AOAC International, 2002). 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

LITERATURE REVIEW 74 
METHOD VALIDATION 

2.6.1.2 Retention Factor 

The retention factor (k′), also called the capacity factor, is a measure of the 

retention of the peak of interest compared to a non-retained peak; that is 

the ratio of time spent for a compound in the mobile phase to the time 

spent in the stationary phase.  Modifying the retention factor is readily 

achieved by changing the mobile phase.  In RPLC, non-polar eluents have 

higher elution strength than polar eluents.  Increasing the non-polar nature 

of the mobile phase will elute peaks faster and decrease the retention 

factor.  Conversely, an increase in retention factor can be made by 

increasing the polarity of the mobile phase.  A peak should be resolved 

from interferences in the void volume and a generally accepted value is 

k′ > 2 (CDER, 1994). 

2.6.1.3 Theoretical Plate Number 

Band broadening is the extent to which molecules spread over time within 

the chromatographic system.  A more efficient chromatographic system is 

one that has less band broadening; this can be expressed numerically as 

theoretical plate number (N).  Larger values of N correspond to less band 

broadening and narrower peaks.  A generally accepted value for 

theoretical plate number is for N > 2000.  Since improvement in resolution 

is a function of the square root of N, a large change in plate number is 

required to make a small change in resolution.  Therefore, increasing the 

number of theoretical plates is often of less importance than increasing 

selectivity and retention factor (CDER, 1994). 

2.6.1.4 Tailing Factor 

Minor peak tailing is a consequence of band broadening, and hence, the 

trailing part of a peak tends to be wider than the front end.  However, 
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severely tailing peaks negatively affect the accuracy of quantitation due to 

difficulties in integration.  The determination of where a peak ends 

becomes much more subjective and hence introduces a source of error in 

peak area estimation.  The tailing factor (Tf) is a measurement of peak 

asymmetry and is calculated by comparing the relative distance of the 

leading and trailing halves of the peak. 

Significant peak tailing can be caused by number of reasons but is most 

commonly due to sample solvent strength being stronger than the mobile 

phase, silanol interaction with amines, adsorption of acidic compounds on 

silica, or void volumes in the column.  Once the cause of peak tailing is 

identified, steps can be taken to minimise it.  A recommended value for 

acceptable peak tailing is Tf  < 2 (CDER, 1994). 

2.6.1.5 Peak Retention Time/Area Repeatability 

Numerous factors can affect a chromatographic system; these include 

column temperature, mobile phase composition, injection volume, pump 

flow, detector drift, data sampling rates, and even variance in the way 

peaks are integrated.  An assessment of peak area stability is performed 

to determine whether the system is capable of reporting the same 

response for the same concentration of analyte.  Replicate injections of a 

standard are analysed to determine the repeatability of peak response 

(height or area) and retention time.  A repeatability of less than 1% is 

preferable (CDER, 1994). 

2.6.2. SINGLE LABORATORY VALIDATION 

Method validation is the process of proving that an analytical method is 

acceptable for its intended purpose (Green, 1996).  That is, an evaluation 

of the method’s reliability must be determined by a validation procedure.  
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Typically, SLV procedures usually involve linearity/range, precision, 

accuracy, limit of detection/quantitation, robustness/ruggedness, and 

specificity/selectivity studies (AOAC International, 2002; Bruce et al., 1998; 

CDER, 2001; Eurachem, 1998; Green, 1996; Thompson et al., 2002). 

2.6.2.1 Linearity 

Quantitation requires an understanding of how instrument response varies 

with concentration.  By either internal or external standard technique, a 

mathematical expression can be devised for calculating unknown analyte 

concentrations in samples.   

The correlation coefficient is widely used as an indication of a linear 

relationship between two measurements (Bruce et al., 1998; Green, 1996; 

ICH, 1996).  However, it can be misleading as a measure of linearity and 

hence, its use in not recommended and other tests for heteroscedacity are 

preferred (Analytical Methods Committee, 1988).  One of the simplest is a 

residuals plot where the differences of nominal measured values and that 

estimated by the calibration line are plotted as a function of concentration.  

If no structure is seen and random noise is small, then the calibration can 

be accepted (Bruce et al., 1998). 

2.6.2.2 Confirmation of Identity 

Matrix interferences are usually eliminated by sample extraction 

procedures.  However, residues from the sample matrix through sample 

preparation procedures may still contain compounds that interfere with the 

measurement.  Where applicable, confirmation of analyte identification can 

be achieved by comparison of the putative peak in the sample as 

compared to an authentic standard with respect to retention time (LC), 

spectral similarity and peak purity (PDA), detection of precursor 
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(molecular) ion (MS), and detection of characteristic fragment ions 

(MS/MS). 

2.6.2.3 Precision 

Repeatability is the smallest expected precision, whereby variability in 

results is estimated for a single analyst, over a short time frame.  

Intermediate precision is a useful measure of variability between analysts, 

over extended time-scale, in the same laboratory.  Reproducibility is the 

largest expected precision, whereby, variation in results is estimated for 

different analysts on different instruments, in different laboratories, on 

separate days (Eurachem, 1998).  Since reproducibility is measured over 

different laboratories, its determination requires a collaborative study. 

Several official guidelines give procedures for estimating precision (AOAC 

International, 2002, 2004; CDER, 2001; Eurachem, 1998).  The exact 

procedures for determining repeatability vary, but the principle is the same.  

A number of replicates are tested under repeatability conditions and is 

usually expressed as standard deviation (SD) or relative standard 

deviation (RSD). 

The Horwitz ratio (HorRat) has been implemented by a number of 

international technical and regulatory organisations to assess the 

acceptability of precision of a particular method.  The HorRat is a simple 

parameter that indicates the suitability of a method by comparing the 

reproducibility of the method to that of many other methods.  The HorRat 

may be applied to repeatability, although with less reliability.  Typically, the 

repeatability RSD is estimated as one-half to two thirds of reproducibility 

RSD (Horwitz and Albert, 2006), with limits of 0.3–1.3, although extreme 

values should be treated with caution (AOAC International, 2004). 
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2.6.2.4 Accuracy 

Accuracy of an analytical method is the closeness of agreement between 

the accepted true value and the measured value and can be assessed 

either as bias or recovery (Green, 1996; ICH, 1995; Snyder et al., 1997; 

Thompson et al., 2002). 

Method bias can be estimated by the analysis of a sample of known 

concentration, for example a Certified Reference Material (CRM), which 

can be obtained from standards organisations such as the National 

Institute of Standards and Technology (NIST).  Alternatively method bias 

can be determined as bias against a method known to be accurate.  This 

is particularly valuable when the method used for comparison is a 

reference method that has been assessed through a rigorous collaborative 

study, such as those reference methods published by AOAC International.  

The bias between methods is determined and a test for significance is 

performed with the null hypothesis, that there is no difference between 

methods, rejected if the p-value is less than 5%. 

In a recovery study, a sample of similar composition to a routine sample is 

analysed in its original state and after being spiked with a known amount 

of analyte.  An inherent problem with recovery studies as a measurement 

of accuracy is that the introduced analyte may not behave in the same 

manner through the analysis as analyte incorporated into the actual 

samples.  For this reason, good recovery may not necessarily be a 

guarantee of accuracy, but poor recovery is certainly a guarantee of lack 

of accuracy (Eurachem, 1998; Thompson et al., 2002).  The acceptable 

recovery range is dependent upon the sample concentration range and 

the purpose of the analysis.  As a guideline, acceptable limits have been 

proposed by AOAC International (2002).  In general, recoveries of less 

than 60–70% require further improvement, and recoveries greater than 

110% suggest a need for better separation. 
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2.6.2.5 Robustness 

A robustness trial is performed to assess the lack of influence of internal 

factors on the measured results.  The Youden ruggedness trial is an 

efficient experiment design, where seven factors can be evaluated with 

only eight analyses of one sample (AOAC International, 2002; Youden and 

Steiner, 1975).  The design is a two-level screening test in which the main 

effects of the factors are evaluated.  Higher order effects that are 

confounded with the main effects cannot be estimated separately in this 

design.  Typically, in a robustness trial, only the main effects are of 

concern and factor interactions can be considered negligible (Vander 

Heyden et al., 2001).  

The factors selected are those that are most likely to affect the analytical 

results.  They may not be limited to operational factors (explicit in the 

written procedure), but also include environmental factors (implicit in most 

procedures).  Generally, factors are studied at two extreme levels, with the 

interval between them equal to the likely variability that will occur during 

normal application of the method.  The choice of interval is a matter of 

experience; it should be noted however, that the broader the interval, the 

larger the probability that the factor will exhibit a significant effect.  

Conversely, the smaller the interval, the more likely the factor is deemed 

robust at that interval, but the more strictly it needs to be controlled during 

method use (Dejaegher and Vander Heyden, 2007). 

The results of a robustness trial can be interpreted both statistically and 

graphically.  Statistical analysis to identify critical effects consists of a 

t-test, whereby the calculated effect is compared to a critical value at a 

given level of statistical significance.  Graphical interpretation can be 

assessed by construction of a half-normal plot (measured effects vs. 

rankit), whereby non-significant effects tend to fall on a straight line 

through zero, while significant effects deviate from it (Vander Heyden 

et al., 2001).  
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2.6.2.6 Limits of Detection 

When measuring samples at low levels it is important to know the lowest 

concentration that can be detected by the method.  The instrument 

detection limit is based on visual evaluation of instrument output based on 

S/N (LOD = 3 x S/N; LOQ = 10 x S/N).  The method detection limit (MDL) 

is a value that defines how easily measurements of an analyte can be 

distinguished from background noise.  The MDL procedure sets the 

detection limit at the 99% confidence level, minimising false positive errors 

and is based upon the variability, or precision, between sample replicates 

run at identical concentrations (EPA, 1999; Su, 1998). 
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3. RESEARCH 

3.1. Nucleotide Analysis by LC-UV 

Despite the quantity of published methods, there has been no official 

internationally accepted reference method for the analysis of nucleotides 

in milk and infant formulas.  This situation has implications for international 

trade where disputes are possible. 

The aim of this study was to validate a simple, rapid, and robust method 

for routine compliance testing of nucleotide-supplemented infant formula.  

The method herein describes an SPE sample clean up that avoids the 

prior need to remove protein, coupled with a binary gradient RPLC system.  

Due to the multi-step nature of the analysis, the use of internal standard-

based quantitation provides additional confidence in analytical results.  

This technique has been applied to the analysis of bovine milk-based, 

caprine milk-based, soy-based, and hypoallergenic infant formula. 

A description of this method and the results obtained from this research 

were summarised and presented at the 123rd annual AOAC International 

conference in 2009 and subsequently published in the Journal of AOAC 

International (Gill et al., 2010) (see Appendix I, Appendix II). 

In September 2011, this method was reviewed by an expert review panel 

(ERP) convened by AOAC International.  Based on published SLV data as 

compared with the standard method performance requirements (SMPR) 

(Sullivan, 2012) established by the Stakeholder Panel on Infant Formula 

and Adult Nutritionals (SPIFAN), this method was determined to be 

acceptable and was approved for Official First Action status and identified 

as AOAC Official First Action Method 2011.20 (AOAC International, 

2012a; Gill et al., 2012a) (see Appendix II). 
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AOAC appointed the author as Study Director to evaluate the performance 

of the method in an SLV extension study against a set of infant formula 

and adult nutritional products (SPIFAN kit) that were designed to represent 

a wide range of different infant formula/adult nutritional products 

commercially available.  The SPIFAN kit covered intact protein and 

hydrolysate-based products, low and high fat products, soy protein-based, 

elemental products, used in adult nutritional (AN) and infant formulations, 

in ready-to-feed (RTF) and powder forms. 

In June 2012, an ERP evaluated the SLV extension data against the 

SMPR and in March 2013, the method was chosen ahead of another 

(AOAC International, 2012b; Inoue and Dowell, 2012) to continue to the 

next phase of validation.  This will require the determination of method 

reproducibility via a multi-laboratory collaborative study in order to become 

an AOAC Official Final Action Method. 

3.1.1. EXPERIMENTAL 

3.1.1.1 Apparatus 

HPLC separation was carried out with an LC-20AT pump, an SIL-20A 

sample injector unit equipped with a 50 L injection loop, a DGU-20A5 

degasser unit, a CTO-20AC column oven, and a SPD-M20A photodiode 

array detector.  LCSolutions software version 1.22 SP1 was used for 

instrument control and data processing (Shimadzu, Kyoto, Japan). 

Chromatographic separation was achieved with a Gemini C18, 5 m, 

4.6 mm x 250 mm column (Phenomenex, Torrance, CA).  UV absorbances 

for calibration standards were acquired with a model UV-1601 

spectrophotometer (Shimadzu) with digital readout to 4 decimal places.  A 

Meterlab PHM210 Standard pH Meter (Radiometer Analytical, Lyon, 
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France) was used for the determination of pH.  Polypropylene centrifuge 

tubes, 50 mL (Biolab, Auckland, New Zealand), 3 mL disposable syringes 

(Terumo, Laguna, Philippines), and Minisart 0.2 m syringe filters with 

cellulose acetate membranes (Sartorius, Göttingen, Germany) were used 

for sample preparation. 

SPE was performed on a Visiprep 12-port SPE vacuum manifold (Sigma-

Aldrich, St. Louis, MO) using Chromabond-SB polypropylene SAX SPE 

cartridges, 6 mL x 1000 mg (Macherey-Nagel, Düren, Germany). 

Prior to use, mobile phases were filtered and degassed using a filtration 

apparatus with 0.45 m nylon filter membranes (AllTech, Deerfield, IL). 

3.1.1.2 Reagents 

AMP (≥ 99%), CMP disodium salt (≥ 99%), GMP disodium salt hydrate 

(≥ 99%), IMP disodium salt (≥ 98%), and UMP (≥ 99%), thymidine 

5′-monophosphate (TMP) disodium salt hydrate (≥ 99%), and potassium 

bromide (≥ 99%), were purchased from Sigma-Aldrich.  Potassium 

dihydrogen phosphate, orthophosphoric acid, potassium hydroxide, 

ethylenediaminetetraacetic acid (EDTA), sodium chloride (GR ACS grade 

or equivalent), and methanol (HPLC grade) were supplied by Merck 

(Darmstadt, Germany).  Water was purified with resistivity ≥ 18 M using 

an E-pure water system (Barnstead, Dubuque, IA). 

A standardising buffer (KH2PO4, 0.25 M, pH = 3.5) was made by diluting 

34.02 g of KH2PO4 in 900 mL of water, adjusting the pH to 3.5 with 

orthophosphoric acid, and then making the solution to 1 L.  An extraction 

solution (NaCl,1 M: EDTA, 5 mM) was made by dissolving 58.5 g of NaCl 

and 1.9 g of EDTA in 1 L of water.  A wash solution (KBr, 0.3 M) was 

made by dissolving 3.57 g of KBr in 100 mL of water.  The SPE eluent 

(KH2PO4, 0.5 M, pH = 3.0) was made by dissolving 6.8 g of KH2PO4 in 
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90 mL of water, adjusting the pH = 3.0 with orthophosphoric acid, and then 

making the solution to 100 mL. 

Mobile phase A (KH2PO4, 0.1 M, pH = 5.6) was made by dissolving 13.6 g 

of KH2PO4 in 900 mL of water, adjusting the pH to 5.6 with KOH solution 

(25% w/v), and then making to 1 L with water.  Mobile phase B consisted 

of 100% methanol.  As microbial growth often occurs in phosphate buffers 

that contain little or no organic solvent at room temperature, the mobile 

phase was made fresh daily. 

3.1.1.3 Standard Solutions 

Nucleotide stock standards were prepared as described previously (Gill 

and Indykb, 2007), with concentrations measured using reported extinction 

coefficients; Table 7.  The extinction coefficient of TMP at the UV 

absorbance maximum (max) of 267 nm was determined experimentally as 

288.5 dL g-1 cm-1. 

 

Stock standards were prepared by accurately weighing approximately 

50 mg of each nucleotide into separate 50 mL volumetric flasks and 

making to volume with water.  The concentration of each nucleotide stock 

standard was determined by diluting 1.0 mL of stock standard to 50 mL 

Table 7. Nucleotide extinction coefficients 

Analyte max (nm) E 1%
1cm 

AMPa 257 430.4 

CMPa 280 398.0 

GMPa 254 393.3 

IMPa 249 357.3 

UMPa 262 313.5 

TMP 267 288.5 

a
 From Gill and Indyk, 2007b 
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with standardising buffer and measuring the absorbance at the appropriate 

max. 

An intermediate standard solution of TMP was made by diluting 4 mL of 

TMP stock standard into 50 mL of water.  A mixed intermediate standard 

solution of AMP, CMP, GMP, IMP, and UMP was made by diluting 2 mL of 

each stock standard in a single 50 mL volumetric flask and making to 

volume with water. 

Assay calibration standards were prepared by diluting the two intermediate 

standards with water to the required concentration.  The calibration 

standards contained a constant concentration of the internal standard 

TMP (~3 g mL-1) and variable concentrations (~0.5–7 g mL-1) of CMP, 

UMP, GMP, IMP, and AMP. 

3.1.1.4 Sample Preparation 

Approximately 1 g of infant formula powder was weighed accurately into a 

50 mL centrifuge tube and dissolved in 30 mL of extraction solution, 

1.0 mL of a TMP intermediate standard (~80 mg mL-1) was added, the 

tube was capped and vortex mixed.  The sample was allowed to stand for 

10 min to hydrate before dilution to a final volume of 50 mL with water. 

3.1.1.5 Solid Phase Extraction 

For each sample, a single SPE cartridge was placed on an SPE vacuum 

manifold.  The columns were conditioned by elution with 4 mL of methanol, 

followed by elution with 2 x 5 mL of water.  The cartridge was loaded with 

4 mL of sample solution at a flow rate of < 2 mL min-1.  The cartridge was 

washed (wash solution, 4 mL) to remove interferences.  The nucleotides 

were then eluted (eluent solution, 4 mL) into a test tube.  An aliquot of the 
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eluent was filtered through a 0.2 m syringe filter into an autosampler vial 

ready for analysis. 

3.1.1.6 Chromatography 

Chromatographic separation was achieved using a modification of the 

procedure described previously (Gill and Indyk, 2007b).  Gradients were 

formed by low pressure mixing of two mobile phases, A and B, with 

separation of nucleotides achieved using the procedure shown in Table 8. 

Table 8. Gradient procedure for LC-UV method 

Time 

(min) 

Column 
temperature 

(°C) 

Flow rate 

(mL min-1) 

Phase compositiona 

%A %B 

0 20 0.5 100 0 

5 20 0.5 100 0 

14 20 0.5 90 10 

15 20 0.5 80 20 

35 20 0.5 80 20 

36 20 0.5 100 0 

50 20 0.5 100 0 
a
 Mobile phase A = KH2PO4, 0.1 M, pH = 5.6 

 Mobile phase B = 100% methanol 

3.1.1.7 Detection, Identification and Quantitation 

The photodiode array detector acquired spectral data between 210 and 

300 nm.  Integration of peak area was achieved at specific wavelengths: 

250 nm (IMP), 260 nm (AMP, GMP, and TMP), 270 nm (CMP and UMP).  

A linear regression plot of the ratios of peak area against concentration for 

each nucleotide relative to TMP was generated, and the nucleotide 

contents in unknown samples were interpolated from this calibration curve; 

Equation 3. 
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Nucleotide 
=  

1000

100

W

)V(C

L

1

A

A

S

ISIS

IS

NT 


  (Equation 3) 
(mg dL-1) 

where: ANT  =  analyte (nucleotide) peak area 

 AIS  =  internal standard (TMP) peak area 

 L  =  linear regression slope of calibration curve 

 CIS  =  concentration of internal standard in sample (µg mL-1) 

 VIS  =  volume of internal standard in sample (µg mL-1) 

 Ws  = weight of sample (g) 

 100  =  unit conversion (from g-1 to per hg-1) 

 1000  =  unit conversion (from g to mg) 

3.1.1.8 Modifications to Chromatography 

As part of the extended SLV evaluation of this method with the SPIFAN kit, 

minor modifications to the chromatographic procedure were made in the 

following manner. 

The potassium phosphate content in the mobile phase A was reduced, 

(KH2PO4, 10 mM, pH = 5.6), the column temperature and the flow rate 

were increased, and a more gradual gradient transition to mobile phase B 

was used; Table 9. 

Table 9. Modified gradient procedure for LC-UV method 

Time 

(min) 

Column 
temperature 

(°C) 

Flow rate 

(mL min-1) 

Phase compositiona 

%A %B 

0 40 0.6 100 0 

25 40 0.6 80 20 

26 40 0.6 100 0 

40 40 0.6 100 0 
a
 Mobile phase A = KH2PO4, 10 mM, pH = 5.6 

 Mobile phase B = 100% methanol 
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3.1.2. RESULTS AND DISCUSSION 

3.1.2.1 Method Optimisation 

Method optimisation consisted of adapting the sample preparation and 

chromatographic conditions reported previously (Gill and Indyk, 2007b) to 

accommodate a SPE step for the removal of non-nucleotide interferences, 

thereby simplifying the chromatographic separation. 

Both acid precipitation and CUF techniques to remove protein prior to SPE 

were initially evaluated.  Acid precipitation is a rapid and simple means of 

removing caseins; however, the low pH of the sample extract may 

negatively affect SPE retention unless the extract is first neutralised.  CUF 

removes all proteinaceous material above the molecular weight cut-off 

(MWCO), and the sample remains at physiological pH.  However, CUF 

was found to be an unsatisfactory means of protein removal as it proved to 

be time consuming, and it was difficult to obtain sufficient permeate for the 

subsequent SPE step. 

Based on these trials, the assumption that it was necessary to remove the 

protein prior to the SPE was re-considered.  The dissolution of a powder 

sample in the high salt solution was found to be efficacious in producing a 

uniform sample solution that, when applied directly to the SPE cartridge, 

did not compromise the recovery of nucleotides.  Residual milk protein 

content in the eluent post-SPE clean up was equivalent to that of an acid-

precipitated sample and it is probable that some caseins precipitate and 

are retained in the SPE cartridge upon addition of the low pH buffer. 

The SAX cartridges contain quaternary amine anion-exchange sites, which 

strongly attract the anionic phosphate moiety of nucleotides.  In order to 

remove the majority of interfering components in the sample, different 

aqueous wash solutions, containing a variety of anions at a number of 
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concentrations, were evaluated.  Bromide ions were found to be most 

effective in removing potentially interfering components, such as 

nucleosides, orotic acid, and uric acid, while retaining nucleotides on the 

cartridge. 

In order to elute the nucleotides from the SAX cartridge, two options were 

available.  One option was to add sufficient acid to lower the pH to the pKa 

of the nucleotide phosphate (~pH = 1), thereby neutralising the negative 

charge and eluting the nucleotides for collection.  However, in order to 

protect the analytical column, neutralisation of the extract would be 

required prior to HPLC analysis.  Alternatively, the addition of anions that 

have a high affinity for the quaternary amine and added at high ionic 

strength could be utilised to elute the nucleotides.  This was achieved by 

the addition of 0.5 M phosphate in the eluent, which readily displaces 

nucleotides bound on the SAX cartridge. 

In complex samples that require multiple clean-up steps, internal standard 

calibration is indispensable in compensating for variation of analyte 

recovery.  Internal standard calibration requires a known amount of the 

selected compound to be added to each sample, blank and standard.  

This is done to correct for potential variation of analyte recovery during 

sample preparation steps.  In the selection of an analogous compound 

suitable for use as internal standard, it is vital that it behaves in a similar 

manner as the analyte throughout all stages of the analysis.  A calibration 

curve is generated by plotting the ratio of the analyte response to the 

internal standard response as a function of the concentration of the 

standards. 

The selection of TMP as an internal standard was supported by a number 

of factors: structural similarity to analyte nucleotides, absence of 

detectable quantities in infant formulas, retention under desired 

chromatographic separation, and commercial availability. 
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3.1.2.2 Method Performance 

The use of phosphate as mobile phase buffer has been reported 

previously (Gill and Indyk, 2007b) and is commonly used in RPLC and 

IPRPLC methods (Krpan et al., 2009; Perrin et al., 2001; Viñas et al., 

2009).  The optimal pH for a given mobile phase buffer is at pH ± 1 unit of 

the pKa.  The mobile phase at pH = 5.6 is outside the optimal range 

(phosphate pKa2 = 7.21) for use as buffer.  However, the use of a number 

of other buffers such as acetate and citrate was found to give poor peak 

shape and poor repeatability of peak area and retention, a problem that 

may be attributable to the interaction of stainless steel in HPLC instrument 

with nucleotides (Tuytten et al., 2006; Wakamatsu et al., 2005).  No such 

problems were found when using phosphate as mobile phase and the 

stability of retention time illustrates its suitability for use as a mobile phase 

buffer. 

System Suitability 

Chromatographic performance was assessed by replicate analyses (n = 6) 

of a mixed nucleotide standard; Table 10.  An example of typical 

chromatography is given in Figures 17–18. 
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Performance within recommended guidelines was achieved, with the 

exception of the retention factors for CMP and UMP (guideline > 2.0); 

however, this was deemed acceptable because of uncompromised peak 

integrity of these two compounds in all samples analysed. 

Single Laboratory Validation 

A single laboratory validation study was performed on the method and 

results for linearity, precision, and detection limits are summarised in 

Table 11. 

Seven mixed standard nucleotide solutions covering the expected working 

range were analysed in duplicate.  Linearity of dose response was 

confirmed by least squares regression analysis, with acceptable values 

obtained for the correlation coefficient.  Plots of standard residuals showed 

no structure and only a small amount of random noise, further 

demonstrating linearity; Figures 19–30. 

Repeatability was determined by analysing duplicate pairs (n = 10) of 

nucleotide-supplemented bovine milk-based infant formula.  Intermediate 

precision was determined from replicate analyses (n = 20) of the same 

sample tested on five different days by two different analysts.  The 

precision was acceptable, as illustrated by repeatability HorRat of 0.2–0.6, 

and an intermediate precision RSD of 3.1–9.4%. 

The MDL was determined in accordance with EPA (1999) procedures.  

The concentrations used to generate the MDL (0.52–1.68 mg hg-1) were 

appropriate to estimate the MDL.  The MDL’s obtained are approximately 

an order of magnitude lower than the lowest levels measured in a 

nucleotide-supplemented infant formula (Gill and Indyk, 2007b). 
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Figure 19. LC-UV method: CMP linear regression plot 

 

 

 

Figure 20. LC-UV method: CMP residuals plot 

 

y = 287762x - 2493 
R² = 0.9999

0

500000

1000000

1500000

2000000

2500000

3000000

0 2 4 6 8 10

P
e
a
k
 A

re
a

Concentration (μg mL-1)

-15000

-10000

-5000

0

5000

10000

15000

0 1 2 3 4 5 6 7R
e
s
id

u
a
ls

Concentration (μg mL-1)



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 97 
NUCLEOTIDE ANALYSIS BY LC-UV 

 

Figure 21. LC-UV method: UMP linear regression plot 

 

 

 

Figure 22. LC-UV method: UMP residuals plot 
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Figure 23. LC-UV method: GMP linear regression plot 

 

 

 

Figure 24. LC-UV method: GMP residuals plot 
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Figure 25. LC-UV method: IMP linear regression plot 

 

 

 

Figure 26. LC-UV method: IMP residuals plot 
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Figure 27. LC-UV method: AMP linear regression plot 

 

 

 

Figure 28. LC-UV method: AMP residuals plot 
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Figure 29. LC-UV method: TMP linear regression plot 

 

 

 

Figure 30. LC-UV method: TMP residuals plot 
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volume (4.1 mL, 3.9 mL), eluent solution (pH = 3.1, pH = 2.9), and eluent 

volume (4.1 mL, 3.9 mL).  The two factor levels were symmetric around 

the nominal values from the described analytical procedure, with the 

interval representing probable experimental error.  The seven factors 

assessed were: initial sample water volume (27 mL, 23 mL); vortex time 

(40 s, 20 s); wait time (14 min, 6 min); centrifuge volume (4.2 mL, 3.8 mL); 

centrifuge speed (4000 x g, 3000 x g); centrifuge time (70 min, 50 min); 

and a dummy factor.  Statistical and graphical interpretation of the results 

shows that the method to be robust for these factors at the levels studied; 

Figures 31–35. 

 

Figure 31. LC-UV method: CMP half-normal plot 
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Figure 32. LC-UV method: UMP half-normal plot 

 

 

Figure 33. LC-UV method: GMP half-normal plot 
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Figure 34. LC-UV method: IMP half-normal plot 

 

 

Figure 35. LC-UV method: AMP half-normal plot 
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The recoveries measured were within the limits of 80–115% at the 

10 g g-1 level recommended by the AOAC (Horwitz, 2002).  Method bias 

was assessed by testing replicate samples (n = 12) of a nucleotide-

supplemented formula by the method described herein and by a method 

published previously (Gill and Indyk, 2007b).  No significant bias was 

found, with p-values (α = 0.05) calculated to be 0.079, 0.529, 0.676, 0.341, 

and 0.069 for AMP, CMP GMP, IMP, and UMP, respectively. 

3.1.2.3 Nucleotides in Infant Formulas 

The method was applied to a number of commercially available bovine 

milk-based, hydrolysed milk protein-based, caprine milk-based, and soy 

protein-based infant formulas; Table 13.  The recoveries determined 

against label claim were typically found to be > 100%, which is not 

unexpected due to the practice of overage of fortified ingredients during 

formulation and production.  In the analysis of caprine milk-based infant 

formula, the presence of significant levels of endogenous nucleotide 

diphosphates was observed. 

3.1.2.4 SLV Extension Study 

Modified Chromatography System Suitability 

Performance of the modified chromatographic system was assessed by 

replicate analyses (n = 14) of a mixed nucleotide standard; Table 14.  An 

example of typical chromatography is given in Figures 36–37.  

Performance within recommended guidelines was achieved, with the 

benefits of better resolution between critical pairs of peaks (GMP and IMP, 

TMP and AMP), an increase in retention of CMP, and an overall reduction 

in total run time with less interfering peaks near TMP and AMP retention 

times when compared with the original chromatographic procedure.  



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 107 
NUCLEOTIDE ANALYSIS BY LC-UV 

T
a

b
le

 1
3
. 

N
u
c
le

o
ti
d

e
s
 i
n
 i
n
fa

n
t 
fo

rm
u

la
 

R
e

s
u

lt
s
 (

m
g

 h
g

-1
) 

A
M

P
 

(1
4

5
%

) 

(1
0

3
%

) 

–
 

(1
1

5
%

) 

(1
3

0
%

) 

–
 

–
 

–
 

(1
0

0
%

) 

–
 

a
 

IF
 =

 i
n
fa

n
t 

fo
rm

u
la

; 
F

O
 =

 f
o
llo

w
-o

n
 f

o
rm

u
la

; 
A

N
 =

 a
d
u
lt
 n

u
tr

it
io

n
a
l 
p

ro
d
u
c
t;

 W
M

P
 =

 w
h
o
le

 m
ilk

 p
o
w

d
e
r 

b
 

A
M

P
 =

 a
d
e
n
o
s
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a
te

; 
C

M
P

 =
 c

y
ti
d
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a
te

; 
G

M
P

 =
 g

u
a
n
o
s
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a

te
; 
IM

P
 =

 i
n
o
s
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a
te

; 

 
U

M
P

 =
 u

ri
d
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a
te

 
c
 

R
e
c
o
v
e
ry

 a
s
 p

e
rc

e
n
ta

g
e
 o

f 
la

b
e
l 
c
la

im
 

d
 

H
y
p
o
a
lle

rg
e
n

ic
 s

a
m

p
le

 s
p
ik

e
d
 w

it
h
 n

u
c
le

o
ti
d
e
 m

ix
e
d
 s

ta
n
d
a
rd

 p
ri
o
r 

to
 a

n
a
ly

s
is

 

4
.5

 

2
.1

 

0
 

2
.3

 

7
.2

 

0
.5

 

2
.3

 

0
 

3
.1

 

0
 

IM
P

 

(1
2

5
%

) 

(9
1

%
) 

–
 

(9
2

%
) 

–
 

–
 

–
 

–
 

(9
6

%
) 

–
 

2
.0

 

1
.0

 

0
.1

 

1
.0

 

0
 

0
 

0
.3

 

0
 

2
.6

 

0
 

G
M

P
 

(1
0

6
%

) 

(8
9

%
) 

–
 

(1
0

7
%

) 

(1
0

7
%

) 

–
 

–
 

–
 

(9
6

%
) 

–
 

1
.7

 

0
.9

 

0
 

1
.0

 

8
.0

 

0
.3

 

6
.4

 

0
 

2
.7

 

0
 

U
M

P
 

(9
5

%
) 

(8
7

%
) 

–
 

(8
9

%
) 

(7
5

%
) 

–
 

–
 

–
 

(9
2

%
) 

–
 

3
.7

 

2
.4

 

0
 

2
.4

 

4
.7

 

0
.3

 

8
.2

 

0
 

2
.6

 

0
 

C
M

P
b
 

(1
1

6
%

)c
 

(1
0

7
%

) 

–
 

(1
7

2
%

) 

(1
2

0
%

) 

–
 

–
 

–
 

(1
0

1
%

) 

–
 

1
1

.6
 

6
.0

 

1
.0

 

8
.5

 

1
7

.4
 

0
.1

 

4
.0

 

4
.0

 

2
.6

 

0
 

N
u

c
le

o
ti
d

e
 

s
u

p
p

le
m

e
n

te
d
 

Y
e

s
 

Y
e

s
 

N
o

 

Y
e

s
 

Y
e

s
 

N
o

 

N
o

 

N
o

 

N
o

 

N
o

 

S
a

m
p

le
 t

y
p

e
a
 

B
o

v
in

e
-m

ilk
-b

a
s
e

d
 I
F

 

B
o

v
in

e
-m

ilk
-b

a
s
e

d
 F

O
 

B
o

v
in

e
-m

ilk
-b

a
s
e

d
 F

O
 

B
o

v
in

e
-m

ilk
-b

a
s
e

d
 F

O
 

B
o

v
in

e
-m

ilk
-b

a
s
e

d
 A

N
 

S
o

y
-b

a
s
e
d

 I
F

 

C
a

p
ri
n
e

-m
ilk

-b
a

s
e
d

 I
F

 

B
o

v
in

e
-m

ilk
-b

a
s
e

d
 W

M
P

 

H
y
p

o
a

lle
rg

e
n

ic
 I

F
d
 

H
y
p

o
a

lle
rg

e
n

ic
 I

F
 

  



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 108 
NUCLEOTIDE ANALYSIS BY LC-UV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

T
a

b
le

 1
4
. 

L
C

-U
V

 m
e

th
o

d
 e

x
te

n
s
io

n
: 

s
y
s
te

m
 s

u
it
a

b
ili

ty
 

A
n

a
ly

te
a
 

A
M

P
 

(0
.7

%
) 

(0
.9

%
) 

3
.2

%
) 

(0
.0

%
) 

(1
.8

%
) 

(1
.4

%
) 

a
 

A
M

P
 =

 a
d
e
n
o
s
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a
te

; 
C

M
P

 =
 c

y
ti
d
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a
te

; 
G

M
P

 =
 g

u
a
n
o
s
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a

te
; 
IM

P
 =

 i
n
o
s
in

e
  

 
5
′-
m

o
n
o
p
h
o
s
p
h
a
te

; 
U

M
P

 =
 u

ri
d
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a
te

; 
T

M
P

 =
 t

h
y
m

id
in

e
 5

′-
m

o
n
o
p
h
o
s
p
h
a
te

 
b
 

R
e
te

n
ti
o
n
 t

im
e
 (

m
in

) 
c
 

M
e
a
n
 (

p
e
rc

e
n
t 

re
la

ti
v
e
 s

ta
n
d
a
rd

 d
e
v
ia

ti
o
n
) 

o
f 

1
0
 r

e
p
lic

a
te

s
 o

f 
a
 m

ix
e
d
 n

u
c
le

o
ti
d
e
 s

ta
n
d
a
rd

 

2
4

.0
 

8
.6

 

9
7
1

0
8
 

1
.1

 

4
.4

 

1
8
4

3
0

6
1
 

T
M

P
 

(0
.6

%
) 

(0
.7

%
) 

(3
.1

%
) 

(3
.9

%
) 

(4
.1

%
) 

(1
.5

%
) 

2
2

.6
 

8
.1

 

9
5
3

1
4
 

1
.1

 

1
4

.8
 

7
6
8

7
1

8
 

IM
P

 

(2
.7

%
 

(3
.1

%
) 

(3
.2

%
) 

(3
.9

%
) 

(1
.9

%
) 

(1
.7

%
) 

1
6

.6
 

5
.6

 

1
4
7

4
0
 

1
.1

 

2
.7

 

5
8
8

5
5

2
 

G
M

P
 

(2
.8

%
) 

(3
.4

%
) 

(1
.2

%
) 

(0
.0

%
) 

(1
.7

%
) 

(1
.5

%
) 

1
5

.2
 

5
.1

 

1
4
3

5
3
 

1
.1

 

1
2

.7
 

1
1
1

6
0

2
2
 

U
M

P
 

(2
.3

%
) 

(3
.0

%
) 

(0
.8

%
) 

(0
.0

%
) 

(2
.2

%
) 

(1
.5

%
) 

9
.8

 

2
.9

 

1
2
9

3
7
 

1
.2

 

7
.5

 

9
7
9

6
9

5
 

C
M

P
b
 

(1
.8

%
)c

 

(2
.5

%
) 

(2
.7

%
) 

(3
.5

%
) 

(–
) 

(1
.5

%
) 

7
.4

 

2
.0

 

1
0
8

2
7
 

1
.2

 

–
 

6
3
5

9
7

2
 

P
a

ra
m

e
te

r 

R
e

te
n

ti
o
n

 t
im

e
b
 

R
e

te
n

ti
o
n

 f
a

c
to

r,
 k

′ 

T
h

e
o

re
ti
c
a

l 
p

la
te

s
, 

N
 

T
a

ili
n

g
, 
T

f 

R
e

s
o

lu
ti
o

n
, 

R
s
 

P
e

a
k
 a

re
a

  



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 109 
NUCLEOTIDE ANALYSIS BY LC-UV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

F
ig

u
re

 3
6

. 
L

C
-U

V
 m

o
d

if
ie

d
 c

h
ro

m
a

to
g

ra
p

h
y
 o

f 
a

 n
u

c
le

o
ti
d

e
 s

ta
n

d
a

rd
. 
(A

M
P

 =
 a

d
e

n
o

s
in

e
 5

′-
m

o
n

o
p

h
o

s
p

h
a

te
; 

C
M

P
 =

 c
y
ti
d

in
e

  

5
′-
m

o
n

o
p
h

o
s
p

h
a

te
; 

G
M

P
 =

 g
u
a

n
o

s
in

e
 5

′-
m

o
n
o

p
h

o
s
p

h
a

te
; 

IM
P

 =
 i
n
o

s
in

e
 5

′-
m

o
n

o
p

h
o

s
p

h
a

te
; 

U
M

P
 =

 u
ri

d
in

e
  

5
′-
m

o
n

o
p
h

o
s
p

h
a

te
; 

T
M

P
 =

 t
h

y
m

id
in

e
 5

′-
m

o
n
o
p

h
o

s
p

h
a

te
. 

 C
h

ro
m

a
to

g
ra

p
h

y
: 

G
e

m
in

i 
C

1
8
, 

5
 

m
, 

4
.6

 x
 2

5
0

 m
m

; 
m

o
b

ile
 p

h
a

s
e

s
 A

 

=
 K

H
2
P

O
4
 (

1
0

 m
M

, 
p

H
 =

 5
.6

);
 B

 =
 m

e
th

a
n

o
l 
(1

0
0

%
);

 o
v
e

n
 t
e

m
p

 =
 4

0
°C

; 
fl
o

w
 r

a
te

 0
.6

 m
L

 m
in

–
1
, 

g
ra

d
ie

n
t 

0
 m

in
 (

1
0
0

%
 A

, 

0
%

 B
),

 2
5

 m
in

 (
8

0
%

 A
, 

2
0

%
 B

),
 2

6
–

4
0

  
m

in
 (

1
0

0
%

 A
, 

0
%

 B
).

 U
V

 d
e

te
c
ti
o

n
: 

2
6
0

 n
m

) 

CMP

UMP

GMP

IMP

TMP

AMP

M
in

u
te

s

0
.0

2
.5

5
.0

7
.5

1
0

.0
1

2
.5

1
5

.0
1

7
.5

2
0

.0
2

2
.5

2
5

.0
2

7
.5

3
0

.0
3

2
.5

3
5

.0
3

7
.5

4
0

.0-2
0

m
ix

ed
 n

uc
le

ot
id

e 
st

an
da

rd



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 110 
NUCLEOTIDE ANALYSIS BY LC-UV 

 

 

  

F
ig

u
re

 3
7

. 
L

C
-U

V
 m

o
d

if
ie

d
 c

h
ro

m
a

to
g

ra
p

h
y
 o

f 
in

fa
n

t 
fo

rm
u

la
 s

a
m

p
le

s
. 

(A
M

P
 =

 a
d

e
n

o
s
in

e
 5

′-
m

o
n

o
p
h

o
s
p

h
a
te

; 
C

M
P

 =
 c

y
ti
d

in
e
  

5
′-
m

o
n

o
p
h

o
s
p

h
a

te
; 

G
M

P
 =

 g
u
a

n
o

s
in

e
 5

′-
m

o
n
o

p
h

o
s
p

h
a

te
; 

IM
P

 =
 i
n
o

s
in

e
 5

′-
m

o
n

o
p

h
o

s
p

h
a

te
; 

U
M

P
 =

 u
ri

d
in

e
  

5
′-
m

o
n

o
p
h

o
s
p

h
a

te
; 

T
M

P
 =

 t
h

y
m

id
in

e
 5

′-
m

o
n
o
p

h
o

s
p

h
a

te
. 

 C
h

ro
m

a
to

g
ra

p
h

y
: 

G
e

m
in

i 
C

1
8

, 
5

 
m

, 
4

.6
 x

 2
5

0
 m

m
; 

m
o

b
ile

 p
h

a
s
e

s
 

A
 =

 K
H

2
P

O
4
 (

1
0

 m
M

, 
p

H
 =

 5
.6

);
 B

 =
 m

e
th

a
n

o
l 
(1

0
0

 %
);

 o
v
e

n
 t

e
m

p
 =

 4
0

°C
, 
fl
o

w
 r

a
te

 0
.6

 m
L

 m
in

–
1
, 

g
ra

d
ie

n
t 

0
 m

in
 (

1
0

0
%

 A
, 

0
%

 B
),

 2
5

 m
in

 (
8

0
%

 A
, 

2
0

%
 B

),
 2

6
–

4
0

  
m

in
 (

1
0

0
%

 A
, 

0
%

 B
).

 U
V

 d
e

te
c
ti
o

n
: 

2
6
0

 n
m

) 

M
in

u
te

s

0
.0

2
.5

5
.0

7
.5

1
0

.0
1

2
.5

1
5

.0
1

7
.5

2
0

.0
2

2
.5

2
5

.0
2

7
.5

3
0

.0
3

2
.5

3
5

.0
3

7
.5

4
0

.0-2
0

CMP

UMP

GMP

IMP

TMP

AMP

bo
vi

ne
 m

ilk
-b

as
ed

 f
or

m
ul

a

N
IS

T 
SR

M
 1

8
4

9
a

0

CMP

UMP

GMP

(IMP)

TMP

AMP

bo
vi

ne
 m

ilk
-b

as
ed

 R
TF

 fo
rm

ul
a

0

CMP

UMP

GMP

(IMP)

TMP

AMP

CMP

UMP

GMP

IMP

TMP

AMP

p
ar

ti
al

ly
 h

yd
ro

ly
se

d 
so

y-
b

as
e

d 
fo

rm
u

la



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 111 
NUCLEOTIDE ANALYSIS BY LC-UV 

Single Laboratory Validation Extension 

Eight standards were prepared over the range specified in the Nucleotides 

SMPR (Sullivan, 2012).  Three replicate experiments were performed with 

standards analysed in random order.  The detector response was plotted 

against concentration and regression analysis performed; Figures 38–49.   

 

Figure 38. LC-UV method extension: CMP linear regression plot 

 

 

Figure 39. LC-UV method extension: CMP residuals plot 

 

Expt 1: y = 116.46x - 1446.7
R² = 1.0000

Expt 2: y = 120.11x - 2667.9
R² = 1.0000

Expt 3: y = 119.18x - 3659.7
R² = 1.0000
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Figure 40. LC-UV method extension: UMP linear regression plot 

 

 

Figure 41. LC-UV method extension: UMP residuals plot 

 

 

Expt 1: y = 133.91x - 2092.4
R² = 1.0000

Expt 2: y = 133.12x - 3724.3
R² = 1.0000

Expt 3: y = 132.55x - 4483.1
R² = 1.0000
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Figure 42. LC-UV method extension: GMP linear regression plot 

 

 

Figure 43. LC-UV method extension: GMP residuals plot 

 

Expt 1: y = 154x - 3989.7
R² = 1.0000

Expt 2:y = 152.04x - 7482.7
R² = 0.9998

Expt 3: y = 154.36x - 13347
R² = 0.9993
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Figure 44. LC-UV method extension: IMP linear regression plot 

 

 

Figure 45. LC-UV method extension: IMP residuals plot 

 

Expt 1: y = 159.76x - 4813.1
R² = 1.0000

Expt 2: y = 156.34x - 6021.8
R² = 1.0000

Expt 3: y = 156.66x - 7756.2
R² = 0.9999
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Figure 46. LC-UV method extension: AMP linear regression plot 

 

 

Figure 47. LC-UV method extension: AMP residuals plot 

 

Expt  1: y = 170.24x - 1055.6
R² = 0.9997

Expt 2: y = 168.65x - 6705.9
R² = 1.0000

Expt 3: y = 168.2x - 8752.4
R² = 0.9999
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Figure 48. LC-UV method extension: TMP linear regression plot 

 

 

Figure 49. LC-UV method extension: TMP residuals plot 

 

Linearity of dose response was confirmed by least squares regression 

analysis, with correlation coefficients of >0.9995.  Plots of standard 

residuals showed no structure and only a small amount of random 

variability, also confirming linearity of the method. 

The instrument LOD and LOQ were determined and the standard 

concentrations were converted to sample concentrations on powder and 
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RTF liquid basis; Table 15.  The measured limit of quantitation of 

0.017 mg dL-1 is less than that specified in the SMPR of 0.02 mg dL-1, and 

correspond well with the MDLs reported previously (0.06–0.19 mg hg-1) 

(Gill et al., 2010). 

Table 15. LC-UV method extension: limit of detection and quantitation 

 
Analytea 

CMP UMP GMP IMP AMP 

LOD as dry weight (mg hg
-1

) 0.04 0.04 0.04 0.04 0.04 

LOQ as dry weight (mg hg
-1

) 0.13 0.14 0.13 0.13 0.13 

LOD as liquid (mg dL
-1

)b 0.005 0.005 0.005 0.005 0.005 

LOQ as liquid (mg dL
-1

)b 0.017 0.017 0.017 0.017 0.017 
a
 AMP = adenosine 5′-monophosphate 

 CMP = cytidine 5′-monophosphate 
 GMP = guanosine 5′-monophosphate 
 IMP = inosine 5′-monophosphate 
 UMP = uridine 5′-monophosphate 
b
 RTF calculated on 25g/200mL concentration basis as per SMPR 

LOD = limit of detection; LOQ = limit of quantitation 

 

Repeatability was evaluated in various infant formula products and 

assessed in a sample (low fat adult nutritional powder) spiked at the 

concentrations specified in the SMPR; Table 16. 

Repeatability for the method in typical samples ranges for 1.2–4.1% RSD 

with a HorRat of 0.4–0.9, within the expected range of 0.3–1.3.  

Repeatability was poorest in the milk-based infant formula RTF liquid, due 

to the low unfortified concentrations close to the MDL. 

For the adult nutritional sample spiked with nucleotides at higher 

concentrations (1 and 5 mg dL-1) repeatability ranged from 1.1–2.8%, well 

below the limit of 6% set in the SMPR.  The repeatability for the 

0.1 mg dL-1 concentration was 0.3–2.5% below the limit of 8% set in the 

SMPR.  The lowest concentration (0.02 mg dL-1) is near the limit of 

quantitation for this method and the poorer repeatability for GMP and AMP 

(13.1%) reflects this with values above the limit of 10% set in the SMPR. 
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Table 16. LC UV method extension: repeatability 

Sample 
Repeatabilitya,b 

CMP UMP GMP IMP AMP 

Milk-based IF powder 
1.2% 

(0.4) 

2.0% 

(0.6) 

1.8% 

(0.5) 

1.8% 

(0.5) 

1.8% 

(0.6) 

NIST1849a CRM 
2.1% 

(0.9) 

2.1% 

(0.8) 

2.0% 

(0.8) 
– 

1.8% 

(0.6) 

Milk-based IF powder 
1.2% 

(0.4) 

1.3% 

(0.4) 

2.0% 

(0.5) 
– 

1.7% 

(0.5) 

Milk-based IF RTF liquidc 
3.1% 

(0.8) 

2.6% 

(0.5) 

3.6% 

(0.7) 
– 

4.1% 

(0.9) 

AN powderd spiked to 
0.16 mg hg-1 

5.2% 

(0.7) 

3.2% 

(0.4) 

13.1% 

(1.8) 

5.9% 

(0.3) 

13.1% 

(1.8) 

AN powderd spiked to 
0.8 mg hg-1 

1.6% 

(0.3) 

2.5% 

(0.4) 

0.3% 

(0.1) 

1.7% 

(0.3) 

2.3% 

(0.4) 

AN powderd spiked to 
8 mg hg-1 

1.6% 

(0.4) 

1.3% 

(0.3) 

2.1% 

(0.5) 

1.5% 

(0.4) 

1.8% 

(0.4) 

AN powderd spiked to 
40 mg hg-1 

1.3% 

(0.4) 

2.8% 

(0.9) 

1.1% 

(0.4) 

1.6% 

(0.5) 

2.7% 

(0.9) 
a
 AMP = adenosine 5′-monophosphate; CMP = cytidine 5′-monophosphate; GMP = 

 guanosine 5′-monophosphate; IMP = inosine 5′-monophosphate; UMP = uridine 
 5′-monophosphate 
b Percent relative standard deviation (HorRat) 
c Endogenous levels near the limit of quantitation 
d
 Concentration spiked to a low fat adult nutritional powder 

IF = infant formula; CRM = certified reference material; RTF = ready-to-feed liquid;  
AN = adult nutritional 
– Not detected 

 

Intermediate precision for the method in nucleotide-supplemented samples 

was estimated between 3.0–5.7%; Table 17.  In a nucleotide-

unsupplemented infant formula RTF liquid sample, intermediate precision 

was poorest for UMP with 14.9% RSD, due to the low unfortified 

concentrations that were measured at or below the limit of quantitation. 

 

 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 119 
NUCLEOTIDE ANALYSIS BY LC-UV 

Table 17. LC-UV method extension: intermediate precision 

Sample 
Intermediate precisiona (RSD%) 

CMP UMP GMP IMP AMP 

Milk-based IF powder 4.3 5.7 3.8 3.0 4.1 

NIST1849a CRM 4.7 5.3 3.3 – 4.5 

Milk-based IF powder 4.1 5.1 4.6 – 4.9 

Milk-based IF RTF liquidb 5.5 14.9 5.3 – 5.8 
a
 AMP = adenosine 5′-monophosphate 

 CMP = cytidine 5′-monophosphate 
 GMP = guanosine 5′-monophosphate 
 IMP = inosine 5′-monophosphate 
 UMP = uridine 5′-monophosphate 
b 

Endogenous levels near the limit of quantitation 
– Not detected 
IF = infant formula 
CRM = certified reference material 
RTF = ready-to-feed liquid 

 

Recovery was evaluated in a range of different matrices from products in 

the SPIFAN kit.  Recovery was also evaluated in a single SPIFAN matrix 

(low fat adult nutritional powder) at each of the four concentrations levels 

as defined in the SMPR; Table 18. 

Recovery for samples spiked at 50% and 150% of typical concentrations 

were between 91.6–106.4%.  Recovery at three of the concentration levels 

defined in the SMPR (0.1, 1, 5 mg dL-1) were 92.5–103.4%.  The fourth 

and lowest concentration (0.02 mg dL-1) had recoveries of 91.3–124.7%, 

outside the 90–110% limit specified.  Since this concentration is near the 

limit of quantitation, higher uncertainty in results and a wider range of 

recoveries was observed. 

 

 

 

 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 120 
NUCLEOTIDE ANALYSIS BY LC-UV 

Table 18. LC-UV method extension: recovery 

Sample 
Recoverya,b (%) 

CMP UMP GMP IMP AMP 

Milk-based IF powderb 103 102 96.5 103 94.2 

AN milk protein-based powderb 98.3 92.8 104 99.3 97.7 

IF p/h milk-based powderb 101 94.1 106 96.5 106 

IF p/h soy-based powderb 99.3 103 96.7 95.7 97.0 

AN low fat powderb 103 98.0 102 102 95.3 

Child formula powderb 100 94.6 100 102 91.6 

Infant elemental powderb 97.8 100 104 97.9 98.0 

IF milk-based powderb 99.9 97.3 102 103 97.7 

IF milk-based RTF liquidb 101 96.9 102 101 101 

IF soy-based powderb 96.5 97.6 99.2 98.8 106 

AN high protein RTF liquidb 96.3 98.6 101 101 102 

AN high fat RTF liquidb 97.2 95.2 100 97.3 98.2 

AN powderc spiked to 
0.16 mg hg-1 

115 91.3 102 91.8 125 

AN powderc spiked to 
0.16 mg hg-1 c,d 

96.5 94.8 102 94.0 103 

AN powderc spiked to  
8 mg hg-1 

99.8 92.5 101 98.4 99.6 

AN powderc spiked to  
40 mg hg-1 

102 91.9 102 99.9 102 

a
 AMP = adenosine 5′-monophosphate; CMP = cytidine 5′-monophosphate; GMP = 

 guanosine 5′-monophosphate; IMP = inosine 5′-monophosphate; UMP = uridine 
 5′-monophosphate. 
b
 Mean of independent duplicate measurements for samples spiked at 50% and  150% 

 of typical concentration. 
c
 Mean recovery of independent triplicate measurements for spiked low fat adult 

 nutritional powder. 
IF = infant formula; AN = adult nutritional; RTF = ready-to-feed liquid; p/h = partially 
hydrolysed 

 

Bias was evaluated by replicate measurement of the NIST1849a CRM; 

Table 19.  Results vary somewhat from the tight limits expressed in the 

Certificate of Analysis.  At the 95% level of confidence, the reference 

values for UMP, GMP, and AMP are within the confidence interval of the 

measured data indicating no bias in the measured results, whereas CMP 
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is outside the confidence interval indicating the there is a bias between the 

reference value and the measured results. 

Table 19. LC-UV method extension: bias vs. CRM values 

Sample 
Resultsa (mg hg

-1
) 

CMP UMP GMP AMP 

Mean 28.0 12.5 14.9 10.8 

Standard deviation 1.3 0.6 0.5 0.5 

p–value (α=0.05, n=12, df=11) 0.01 0.07 0.06 0.11 

NIST1849a valueb 26.8 12.9 14.6 10.5 

CRM uncertainty 0.29 0.15 0.11 0.53 

Lower confidence limit 27.1 12.1 14.6 10.4 

Upper confidence limit 28.8 12.9 15.2 11.1 
a
 AMP = adenosine 5′-monophosphate; CMP = cytidine 5′-monophosphate; GMP = 

 guanosine 5′-monophosphate; IMP = inosine 5′-monophosphate; UMP = uridine 
 5′-monophosphate 
b
 nucleotide values for NIST1849a are reference values only and not certified 

α = level of significance, n = number of replicates, df = degrees of freedom 

 

Selectivity was assessed by determining chromatographic characteristics 

of retention time stability, peak asymmetry, capacity factor, resolution and 

peak purity for a nucleotide supplemented milk-based infant formula, and 

results are shown in Table 20. 

Table 20. LC-UV method extension: selectivity 

Nucleotide 
Retention 
Time (min) 

Asymmetry 
Capacity 
Factor 

Resolution 
3 point 
Peak 
Purity 

CMP 7.2 1.3 0.8 3.6 0.9995 

UMP 9.6 1.2 1.4 6.9 0.9997 

GMP 14.9 1.0 2.7 12.5 0.9997 

IMP 16.4 1.0 3.1 3.0 0.9996 

TMP 22.6 1.0 4.7 15.7 0.9998 

AMP 23.9 1.0 5.0 4.6 0.9999 
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3.2. Total Potentially Available Nucleosides 

in Milk 

The development of the TPAN method has been an important contribution 

to further understanding of the distribution of nucleosides and nucleotides 

in human milk.  However, the application of the TPAN methodology to the 

analysis of milk of species other than human has not been published 

previously.  The purpose of the first study was to analyse bovine milk to 

determine the relative contributions of nucleosides and different nucleotide 

forms to TPAN and determine how these varied over the first month of 

lactation.  A second study was then undertaken to assess the relative 

nucleoside and nucleotide contributions to TPAN in bovine, caprine, and 

ovine milk. 

A description of this method and results obtained from this research were 

summarised and presented at the 124th annual AOAC International 

conference in 2010 and subsequently published in the International Dairy 

Journal (Gill et al., 2011; Gill et al., 2012b) (see Appendix I, Appendix II). 

3.2.1. EXPERIMENTAL 

The enzymatic digestion and phenylboronate affinity sample clean-up 

steps of the TPAN analysis was performed in accordance with the method 

of Leach et al. (1995) as demonstrated by Molitor (2008). 

Oligonucleotides from RNA are released to nucleotide monophosphates 

by the phosphodiesterase, nuclease P1; nucleotides from adducts are 

converted by nucleotide pyrophosphatase; and nucleotides are 

dephosphorylated to nucleosides by alkaline phosphatase. 

Following enzymatic digestion, the free nucleosides are extracted from the 

reaction mixture using a boronate-derivatised gel and are separated 
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chromatographically by reversed-phase chromatography.  The TPAN 

value is obtained by summation of nucleosides measured through all 

enzyme treatments while speciation is determined from results obtained 

from individual enzyme treatments; Figure 50. 

3.2.1.1 Apparatus 

Milk samples were collected in disposable polypropylene containers 

(120 mL) and stored in disposable polypropylene centrifuge tubes (50 mL) 

supplied by Biolab.  Measurement of pH was achieved using a Meterlab 

PHM210 standard pH meter from Radiometer Analytical.  Samples were 

centrifuged using a Varifuge 3.0 centrifuge (Heraeus, Newport Pagnell, 

UK).  Syringe filtering of sample extracts was achieved using 3 mL 

disposable syringes (Terumo) and 0.22 m Millex MCE syringe filters 

(Millipore, Billerica, MA).  Sample treatment was performed in glass Kimax 

tubes (10 mL) with teflon-lined screw caps (Kimble-Chase, Vineland, NJ). 

The HPLC system used consisted of a SCL-10Avp system controller, 

LC-10ADvp pump, FCV-10ALvp low pressure gradient unit, SIL-10AF 

sample injector unit equipped with a 50 L injection loop, DGU-14A 

degasser unit, CTO-10ASvp column oven, and a SPD-M10Avp photodiode 

array detector (Shimadzu).  Class-vp software version 6.12 was used for 

instrument control and data processing.  The column used for HPLC 

analysis was a Prodigy C18 column, 5 m, 4.6 mm x 150 mm 

(Phenomenex). 
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3.2.1.2 Reagents 

Ado (≥ 99%), Cyd (≥ 99%), Guo (≥ 98%), Ino (≥ 99%), Urd (≥ 99%), 

5-methylcytidine  (5mCyd) (≥ 99%), 8-bromoguanosine (≥ 99%), uridine 

5′-diphosphoglucose (≥ 98%), RNA, cytidine 5′-diphosphocholine (≥ 99%), 

-nicotinamide adenine dinucleotide (≥ 99%), AMP (≥ 99%), CMP 

disodium salt (≥ 99%), GMP disodium salt hydrate (≥ 99%), UMP (≥ 99%); 

potassium acetate, zinc sulphate heptahydrate, and magnesium chloride 

hexahydrate (GR ACS grade or equivalent); pyrophosphatase, nuclease 

P1, and alkaline phosphatase, were purchased from Sigma-Aldrich.  The 

boronate affinity gel (Affi-gel 601) was purchased from Bio-Rad (Hercules, 

CA).  Glacial acetic acid, sodium hydroxide, dipotassium hydrogen 

phosphate, 85% phosphoric acid, 37% hydrochloric acid, potassium 

hydroxide, 30% ammonium hydroxide (GR ACS grade or equivalent), and 

methanol (HPLC grade) were supplied by Merck.  Water was purified to a 

resistivity ≥18 M using an E-pure water system (Barnstead).   

The alkaline phosphatase was tested for possible adenosine deaminase 

activity before use (Gehrke and Kuo, 1989; Molitor, 2008).  A 5 mg dL-1 

solution of adenosine was incubated with alkaline phosphatase under 

conditions described below (see 3.2.1.4 below) and no deamination of 

adenosine to inosine was found (recovery 94.8%). 

Solutions containing enzymes were prepared in the following manner:  

Nuclease P1 solution was made by adding sodium acetate (0.1 M, 

pH = 5.1, 4 mL) directly to the vial from the supplier containing ~1.2 mg of 

protein, followed by capping the vial and gently mixing.  Pyrophosphatase 

solution was made by adding ammonium acetate (0.5 M, pH = 8.5, 4 mL) 

directly to the vial from the supplier containing ~11 mg of protein, followed 

by capping the vial and gently mixing.  Alkaline phosphatase supplied as a 

suspension in 2.5 M (NH4)2SO4. 
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Stock nucleoside standard solutions (~1 mg mL-1) were prepared by 

adding ~50 mg of the nucleosides, uridine, cytidine, guanosine, inosine, 

adenosine, 5-methylcytidine, and 8-bromoguanosine to separate 50 mL 

volumetric flasks and making to volume with water.  A working internal 

standard solution (~100 µg mL-1) was made by pipetting 5 mL each of 

5-methylcytidine and 8-bromoguanosine stock internal standard solution 

into a 50 mL volumetric flask and making to volume with water. 

The boronate affinity gel was hydrated by adding the contents of a 5 g vial 

of Affi-gel 601 to a 100 mL beaker with a stir bar containing potassium 

phosphate (0.1 M, 50 mL) and left stirring for two hours.  After hydrating, 

350 L aliquots of slurry were transferred to 2 mL snap cap 

microcentrifuge tubes, which were then stored in the freezer at < -15 ºC for 

later use. 

Mobile phase A (NaCH3COO, 0.05 M, pH = 4.8) was made by dissolving 

4.10 g of NaCH3COO in 900 mL of water, adjusting the pH to 4.8 with 

acetic acid solution (25% w/v), and then making to 1 L with water.  Mobile 

phase B consisted of 100% methanol. 

3.2.1.3 Sample Collection and Storage 

Milk samples were collected from two herds of Jersey cows from two 

separate farms (9 km apart) in the eastern Waikato region of New Zealand 

(Figure 51).  From each herd, seven cows were selected to provide milk 

for analysis.  The first herd was a winter-milk herd with the first cow calving 

on the 24th March 2008 (early autumn) and the final one calving on the 

18th of April 2008.  The second herd was a summer-milk herd with the first 

one calving on the 1st August 2009 (late winter) and the final one calving 

on the 7th August 2009.  Cows selected for inclusion in this study were 

chosen because calving occurred between 6:00 and 10:00 am, provided 

they were healthy cows in their second or subsequent calving and had 
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normal calvings with no complications.  With the exception of the 6-hour 

sample, sample collection was performed in the morning between 6:00 

and 10:00 am, which coincided with regular milking times. 

 

Figure 51. Map of the Waikato region of New Zealand (source: Google 
Maps) 

 

From each cow, approximately 80 mL of milk/colostrum was collected in a 

120 mL disposable container by the farmer.  These were collected at 

various time intervals throughout the first month of lactation, more 

frequently in the beginning and less so as the month progressed.  The 

scheduled collection times were: 

 parturition + 0 hours 

 parturition + 6 hours 

 parturition + 24 hours 

 parturition + 2 days 

 parturition + 3 days 

 parturition + 5 days 

Hamilton

Morrinsville

Tauranga

Summer Milk Herd

Winter Milk Herd
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 parturition + 10 days 

 parturition + 20 days 

 parturition + 30 days 

 

Milk/colostrum samples were collected from the cows at the appropriate 

time and immediately refrigerated at 4 ºC.  The sample was then picked-

up from the farm as soon as practicable (within 6 hours), taken to the 

laboratory, and immediately prepared for storage.   

Upon return to the laboratory, each sample mixed by hand, and then 

divided into four separate 50 mL centrifuge tubes.  A 20 mL aliquot was 

taken for proximate testing, protein by Kjeldahl (IDF, 2001) and total solids 

by microwave gravimetric analysis (IDF, 1987).  A 10 mL aliquot was taken 

and prepared for storage for later TPAN analysis, with the remainder of 

milk sample frozen intact at -18 ºC. 

In May 2009, samples of bovine milk and caprine milk were collected 

directly from tanker silos prior to processing at two manufacturing sites in 

the Waikato region of New Zealand.  A mature ovine milk sample was 

supplied from a subset of a flock of sheep in a New Zealand research 

herd.  Upon collection, the samples were taken to the laboratory and 

immediately prepared for storage for later analysis. 

Samples were prepared for storage prior to TPAN analysis by pipetting a 

10 mL aliquot of sample, adding NaOH (1 M, 20 mL), vortex mixing, and 

standing for 30 min, before neutralising to pH = 7.35 ± 0.05 with HCl and 

making to 50 mL volume and freezing at < -15 ºC. 

3.2.1.4 Enzymatic Digestion 

Immediately prior to analysis, all milk samples were mixed by hand to 

ensure sample homogeneity. 
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Heat Deactivation of Enzymes 

Since milk contains a number of endogenous enzymes that can degrade 

polymeric and monomeric nucleotides, the sample was heated to denature 

the enzymes thereby eliminating any enzyme activity.  To 10 mL glass 

tubes, 5 mL of milk storage samples were added; the tubes were capped 

then immersed in a water bath (95 ºC) for 30 min with periodic mixing.  

The tubes were then removed from water bath and allowed to cool to room 

temperature for subsequent enzyme treatment.  Bovine milk samples from 

the seven cows in the lactation study were pooled for each post-partum 

time period prior to analysis. 

Determination of TPAN 

The sample preparation for the determination of TPAN, requires enzyme 

digestion with nuclease to release polymeric nucleotides, then enzyme 

digestion with pyrophosphatase to release nucleotide adducts, and 

alkaline phosphatase to convert nucleotides to nucleotides; Figure 50 

(enzyme treatment D). 

To a 10 mL glass tube from the enzyme deactivation treatment was 

added: sodium acetate (0.1 M, pH = 5.1, 2 mL), zinc sulphate (0.01 M, 

50 L), nuclease P1 solution (50 L), and working internal standard 

solution (100 L).  The tube was capped and incubated at 37 ± 1 ºC 

overnight for 18 ± 1 hour.  After initial incubation ammonium acetate 

(0.5 M, pH = 8.75, 1 mL), ammonium hydroxide (30%, 50 L), magnesium 

chloride (1 M, 50 L), alkaline phosphatase (50 µL, ~14 units), and 

pyrophosphatase (50 L) were added.  The tube was capped and 

incubated at 37 ± 1 ºC for 3 hours.  The contents of the tube were 

transferred to a 25 mL volumetric flask, which was made to volume with 

potassium phosphate (0.25 M, pH = 10.5).  The sample mixture was then 

cleaned-up on boronate affinity gel (see 3.2.1.5 below). 
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Determination of Polymeric RNA + Nucleotides + Nucleosides 

The sample preparation for the determination of free nucleosides, and 

nucleosides from RNA and nucleotides, requires enzyme digestion with 

nuclease to release polymeric nucleotides, then enzyme digestion with 

alkaline phosphatase to convert nucleotides to nucleosides; Figure 50 

(enzyme treatment C). 

To a 10 mL glass tube from enzyme deactivation treatment was added: 

sodium acetate (0.1 M, pH = 5.1, 2 mL), zinc sulphate (0.01 M, 50 L), 

nuclease P1 solution (50 L), and working internal standard solution 

(500 L).  The tube was capped and incubated at 37 ± 1 ºC overnight for 

18 ± 1 hour.  After initial incubation ammonium acetate (0.5 M, pH = 8.75, 

1 mL), ammonium hydroxide (30%, 50 L), magnesium chloride (1 M, 

50 L), and alkaline phosphatase (50 µL, ~14 units) were added.  The 

tube was capped and incubated at 37 ± 1 ºC for 3 hours.  The contents of 

the tube were transferred to a 25 mL volumetric flask, which was made to 

volume with potassium phosphate (0.25 M, pH = 10.5).  The sample 

mixture was then cleaned-up on boronate affinity gel (see 3.2.1.5 below). 

Determination of Nucleotides + Nucleosides 

The sample preparation for the determination of free nucleosides and 

nucleosides from nucleotides requires enzyme digestion with alkaline 

phosphatase to convert nucleotides to nucleotides; Figure 50 (enzyme 

treatment B). 

To a 10 mL glass tube from enzyme deactivation treatment ammonium 

acetate (0.5 M, pH = 8.75, 1 mL), ammonium hydroxide (30%, 50 L), 

magnesium chloride (1 M, 50 L), alkaline phosphatase (50 µL, ~14 units) 

and working internal standard solution (500 L) were added.  The tube 

was capped and incubated at 37 ± 1 ºC for 3 hours.  The contents of the 

tube were transferred to a 25 mL volumetric flask that was made to volume 
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with potassium phosphate (0.25 M, pH = 10.5).  The sample mixture was 

then cleaned-up on boronate affinity gel (see 3.2.1.5 below). 

Determination of Free Nucleosides  

The sample preparation for the determination of free nucleosides requires 

no enzyme digestion; Figure 50 (enzyme treatment A). 

To a 10 mL glass tube from enzyme deactivation treatment working 

internal standard solution (500 L) was added.  The contents of the tube 

were transferred to a 25 mL volumetric flask that was made to volume with 

potassium phosphate (0.25 M, pH = 10.5).  The sample mixture was then 

cleaned-up on boronate affinity gel (see 3.2.1.5 below). 

3.2.1.5 Boronate Affinity Clean-up 

For each sample, a 2 mL snap cap microcentrifuge tube containing the 

hydrated affinity gel was removed from the freezer and allowed to thaw to 

room temperature.  The microcentrifuge tube was centrifuged at 

10,000 x g for 2 min; the supernatant was aspirated to waste while 

avoiding significant gel loss.  Phosphoric acid (0.25 M, 1 mL) was added to 

the microcentrifuge tube to remove any interferences complexed to the 

boronate moiety.  The microcentrifuge tube was vortex mixed for 30 s to 

re-suspend the gel then centrifuged and the supernatant aspirated to 

waste.  Potassium phosphate (0.25 M, pH = 10.5, 1 mL) was added to the 

microcentrifuge tube to convert the affinity gel to its basic form.  The 

microcentrifuge tube was then vortex mixed for 30 s to re-suspend the gel 

then centrifuged and the supernatant aspirated to waste.  Potassium 

phosphate (0.25 M, pH = 10.5, 1 mL) was added once more to the 

microcentrifuge tube, which was then vortex mixed for 30 s to re-suspend 

the gel.  The microcentrifuge tube was allowed to stand for 15 min with 

vortex mixing for 30 s every 5 min to convert the gel to the basic form.  
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The tube was then centrifuged and the supernatant aspirated to waste.  

The sample extract (1.5 mL) from the enzyme digest was added to the 

microcentrifuge tube, which was allowed to stand for 15 min with vortex 

mixing for 30 s every 5 min during which formation of nucleoside-boronate 

complex occurs.  The tube was then centrifuged and the supernatant 

aspirated to waste.  The gel was washed twice by adding potassium 

phosphate (0.25 M, pH = 10.5, 1 mL), vortex mixing for 30 s, centrifuging, 

aspirating the supernatant to waste and repeating.  To release bound 

nucleosides phosphoric acid (0.25 M, 1 mL) was added to the tube, which 

was then vortex mixed for 30 s.  The entire contents of the tube were 

transferred to a syringe with a 0.22 m filter and filtered into an HPLC vial 

ready for chromatographic analysis. 

3.2.1.6 Chromatography 

The initial chromatographic protocol was a modification of a reversed-

phase system described by Gill and Indyk (2007b), using phosphate buffer 

and a methanol gradient.  As optimum separation of nucleosides was 

achieved at pH = 4.8, phosphate was replaced with acetate (pKa = 4.75), 

thereby offering greater buffer capacity at the desired pH. 

An organic solvent component is required in the mobile phase to facilitate 

the timely elution of nucleosides from the C18 column.  However, to obtain 

sufficient resolution between peaks, a gradient elution procedure would be 

necessary.  Gradients were formed by low pressure mixing of two mobile 

phases, A and B.  A number of gradient procedures were evaluated to 

determine an optimum protocol that would have a relatively short run-time 

coupled with sufficient resolution between peaks.  An optimum separation 

of nucleosides was achieved using the gradient procedure described in 

Table 21. 
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Table 21. TPAN method: chromatographic procedurea 

Time (min) 
Phase compositionb 

% A % B 

0 95 5 

3 95 5 

7 75 25 

22 75 25 

23 95 5 

30 95 5 
a
 Flow rate 0.7 mL min

-1
; column temperature 20 °C 

b
 Mobile phase A = 0.05 M NaCH3COO, pH = 4.8 

 Mobile phase B = 100% methanol 

3.2.1.7 Detection, Identification and Quantitation 

Spectral data were acquired by the PDA detector from 210–300 nm.  Peak 

identification was by retention time and similarity of chromatographic peak 

spectrum against standards (similarity index >0.99).  Chromatograms were 

integrated at a wavelength of 260 nm and results determined by internal 

standard technique using 5-methylcytidine; Equation 4. 

Internal standards were used to account for recovery losses through the 

enzymatic and phenylboronate affinity clean-up steps.  Leach et al. (1995) 

used 5-methylcytidine as internal standard to quantitate adenosine, 

cytidine, and uridine.  The use of 5-methylcytidine gave lower than 

expected recovery of guanosine; therefore, 1-methylguanosine was used 

to quantitate guanosine.  However, 1-methylguanosine was not 

commercially available and other modified guanosine alternatives were 

identified for this study.  Trials with 7-methylguanosine were not successful 

as standard concentrations were not stable and degraded rapidly with 

time.  This was attributed to the susceptibility of 7-methylguanosine to 

cleavage of the imidazole ring making it unsuitable as an internal standard 

(Barbarella et al., 1991).   
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Nucleoside 
=  

1000

100
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V

V

)V(C

L

1

A

A

D

T

U

ISIS

IS

NT 


  (Equation 4) 
(mg dL-1) 

where: ANT  =  analyte (nucleoside) peak area 

 AIS  =  internal standard (5mCyd) peak area 

 L  =  linear regression slope of calibration curve 

 CIS  =  concentration of internal standard (µg mL-1) 

 VIS  =  volume of internal standard (µg mL-1) 

 VU  =  volume of aliquot of diluted sample analysed (mL) 

 VT  =  total volume of diluted sample (mL) 

 VD  =  volume of milk in diluted sample (mL) 

 100  =  unit conversion from mL-1 to dL-1 

 1000  =  convert mass result from g to mg 

 

8-bromoguanosine was selected as an internal standard candidate for 

guanosine.  However, the recoveries for this standard were no better than 

5-methylcytidine, therefore quantitation for all four nucleosides was 

measured against 5-methylcytidine, accepting that lower recoveries were 

possible for guanosine. 

3.2.1.8 Statistical Analysis 

Statistical analyses were performed using Minitab version 15.1 (State 

College, PA).  Data obtained in bovine colostrum and milk was analysed 

by one-way analysis of variance of the response of season (winter-milk, 

summer-milk) with covariate time (0, 0.25, 1, 2, 3, 5, 10, 20, 30 days post-

partum).  All results (X) were transformed log10(1 + X), so that the 

postulated model was an exponential decrease in levels with time, with the 

initial levels and the rates of decrease dependent upon season.  The 

―exponential decay‖ model was found to provide a better fit than a linear or 
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quadratic model in time.  For hypothesis testing, significance was 

evaluated at the  = 0.05 level.  Data obtained in mature bovine, caprine, 

and ovine milk were analysed by one-way analysis of variance of the 

response of each species (bovine, caprine, ovine) and Tukey’s multiple 

comparison test. 

3.2.2. RESULTS AND DISCUSSION 

3.2.2.1 Method Performance 

System Suitability 

Chromatographic performance was assessed by replicate analyses (n = 6) 

of a mixed nucleotide standard; Table 22, Figure 52.   

Performance within recommended guidelines was achieved, with the 

exception of the retention factors for cytidine, uridine, and 5-methylcytidine 

(guideline > 2.0).  The specific nature of the phenylboronate sample clean 

up provides analytical chromatography relatively free of interferences and 

therefore, early retention was deemed acceptable. 

Recovery 

A spiked recovery study was performed on free nucleosides and was 

assessed through the affinity gel clean up.  A stored pooled milk sample 

was spiked with a single mixed standard containing cytidine, guanosine, 

uridine, adenosine, and 5-methylcytidine (95.0–135.0 g mL−1).  Recovery 

was assessed by comparison of peak areas for the spiked and unspiked 

samples, relative to those of the mixed standard. 
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Recovery of nucleosides from the enzymatic digestion was estimated 

following the protocol described by Leach et al. (1995).  A solution (TPAN 

fortified) containing ribonucleosides, nucleotides, nucleotide adducts and 

RNA was prepared for a spiked recovery study.  A solution (TPAN digest) 

was made from an aliquot (5 mL) of the TPAN-fortified solution that was 

hydrolysed for 20 hours with KOH (0.2 mol L−1, 50 mL) in order to convert 

polymeric RNA to monomeric nucleotides.  The pH of the solution was 

adjusted to 9.0 with HCl and then incubated with alkaline phosphatase and 

nucleotide pyrophosphatase to convert adducts and monomeric 

nucleotides to nucleosides.  The concentration of nucleosides in the TPAN 

digest solution was determined by HPLC and was used to calculate the 

TPAN content in the TPAN-fortified solution. 

A stored pooled milk sample was then spiked (in triplicate) with an aliquot 

of the TPAN-fortified solution and, together with unspiked sample 

replicates, was analysed and TPAN concentrations determined.  Recovery 

was assessed by comparison of the difference in results for the spiked and 

unspiked samples, divided by the TPAN concentration of the TPAN-

fortified solution.  The recoveries of nucleosides through the affinity 

clean-up step, and both enzymatic digestion and affinity clean-up is given 

in Table 23.   

 
Table 23. Nucleoside recovery through TPAN sample preparation 

Sample Preparation Step 
Recovery% (SD) 

Cyda Urd Guo Ado 

Affi-gel clean-up 93.4 (1.1)b 92.3 (5.1) 88.3 (4.9) 95.2 (4.2) 

Enzymatic digestion and 
Affi-gel clean up 

95.5 (2.8) 101.7 (3.7) 89.2 (2.4) 94.7 (3.0) 

a
 Ado = adenosine; Cyd = cytidine; Guo = guanosine; Urd = uridine 

b
 Mean (standard deviation) of 3 replicates 
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The theoretical binding capacity of the Affi-gel is 0.033 milli-equivalents 

per tube.  This is over 40 times the concentration of the highest standard.  

However, in addition to nucleosides any other components containing a 

cis-diol functionality may also bind to the gel, reducing overall binding 

capacity available for nucleosides (Molitor, 2008).  

3.2.2.2 TPAN in Bovine Colostrum and Milk 

The levels and distribution of TPAN in mature bovine milk are important in 

the manufacture of infant formulas, particularly when formulating to TPAN 

regulatory limits.  If all endogenous forms of nucleosides and nucleotides 

that contribute to TPAN are not accounted for prior to nucleotide 

supplementation, possible over-fortification could occur during the 

manufacture of bovine milk-based infant formula. 

The contribution of each nucleobase and form obtained in this study of 

winter-milk and summer-milk lactation series are summarised in 

Tables 24–25.  For each parameter (each base within each form), 

comparisons of the initial levels and rates of decrease were made between 

seasons and whether each seasonal slope differed from zero; Tables 26.  

The trend of nucleobase and form over lactation for each season is 

illustrated graphically in Figures 53–54.   

 
Table 24. Total potentially available nucleosides in winter herd milk 

Daya Form 
Resultsb,c (mol dL-1) 

Cyd Urd Guo Ado Total 

0 

Nucleoside 
5.4 

(0.1) 

57.9 

(1.6) 

0.3 

(0.0) 

– 63.6 

(1.5) 

Monomeric 
NT 

6.1 

(0.3) 

143.7 

(8.5) 

2.8 

(0.0) 

2.9 

(0.2) 

156   

(8.7) 

NT Adduct 
0.9 

(0.2) 

23.7 

(9.0) 

3.9 

(0.8) 

2.4 

(0.0) 

30.9 

(9.6) 
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Polymeric 
NT 

0.6 

(0.0) 

5.4 

(7.2) 

1.4 

(0.2) 

1.4 

(0.1) 

8.7 

(7.4) 

TPAN 
13.0 

(0.5) 

230.7 

(6.1) 

8.5 

(0.9) 

6.6 

(0.2) 

258.7 

(6.8) 

0.25 

Nucleoside 
4.0 

(0.2) 

39.8 

(0.2) 

0.2 

(0.0) 

– 44.0 

(0.4) 

Monomeric 
NT 

1.3 

(0.4) 

26.9 

(4.7) 

1.0 

(0.0) 

1.4 

(0.0) 

30.6 

(5.0) 

NT Adduct 
0.9 

(0.2) 

3.2 

(0.9) 

1.1 

(0.2) 

0.5 

(0.1) 

5.8 

(0.6) 

Polymeric 
NT 

0.1 

(0.0) 

3.9 

(1.1) 

1.1 

(0.1) 

0.9 

(0.0) 

6.0 

(0.9) 

TPAN 
6.3 

(0.0) 

73.8 

(4.3) 

3.5 

(0.1) 

2.8 

(0.1) 

86.4 

(4.3) 

1 

Nucleoside 
3.5 

(0.1) 

49.8 

(0.8) 

0.5 

(0.0) 

– 53.9 

(0.7) 

Monomeric 
NT 

13.1 

(0.3) 

77.5 

(2.8) 

4.0 

(0.2) 

3.0 

(0.2) 

97.5 

(3.2) 

NT Adduct 
0.4 

(0.2) 

11.9 

(6.8) 

2.4 

(0.2) 

2.0 

(0.6) 

16.5 

(7.6) 

Polymeric 
NT 

0.5 

(0.5) 

3.0 

(3.8) 

1.3 

(0.2) 

1.5 

(0.5) 

6.4 

(3.6) 

TPAN 
17.5 

(0.9) 

142.2 

(6.6) 

8.1 

(0.0) 

6.5 

(0.3) 

174   

(7.9) 

2 

Nucleoside 
2.5 

(0.3) 

60.4 

(0.4) 

0.8 

(0.0) 

0.6 

(0.1) 

64.2 

(0.8) 

Monomeric 
NT 

16.9 

(0.6) 

30.4 

(3.4) 

2.0 

(0.1) 

2.6 

(0.0) 

51.6 

(4.2) 

NT Adduct 
0.3 

(0.2) 

6.7 

(1.4) 

2.4 

(0.2) 

2.6 

(0.3) 

12.0 

(1.3) 

Polymeric 
NT 

1.0 

(0.1) 

2.7 

(1.3) 

1.0 

(0.1) 

1.2 

(0.1) 

6.0 

(1.3) 

TPAN 
  20.7 

(0.0) 

99.8 

(3.2) 

6.2 

(0.1) 

7.1 

(0.3) 

134   

(3.4) 

3 

Nucleoside 
2.0 

(0.2) 

42.7 

(2.0) 

0.5 

(0.1) 

0.6 

(0.1) 

45.9 

(2.4) 

Monomeric 
NT 

16.2 

(0.4) 

22.2 

(3.4) 

1.5 

(0.2) 

3.6 

(0.9) 

43.5 

(4.9) 

NT Adduct 
0.4 

(0.5) 

5.9 

(0.3) 

2.2 

(0.2) 

2.3 

(0.1) 

10.7 

(0.9) 
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Polymeric 
NT 

0.3 

(0.1) 

1.0 

(0.3) 

0.6 

(0.1) 

0.5 

(0.6) 

2.5 

(0.4) 

TPAN 
19.0 

(0.2) 

71.8 

(1.5) 

4.8 

(0.2) 

7.0 

(0.2) 

103   

(1.2) 

5 

Nucleoside 
1.5 

(0.3) 

21.5 

(0.8) 

– 0.2 

(0.0) 

23.3 

(0.5) 

Monomeric 
NT 

12.1 

(0.3) 

1.4 

(0.1) 

0.6 

(0.0) 

3.3 

(0.1) 

17.4 

(0.3) 

NT Adduct 
0.1 

(0.0) 

0.8 

(0.0) 

0.6 

(0.2) 

0.6 

(0.2) 

2.2 

(0.4) 

Polymeric 
NT 

0.5 

(0.1) 

0.4 

(0.4) 

0.8 

(0.1) 

0.7 

(0.1) 

2.4 

(0.5) 

TPAN 
14.1 

(0.3) 

24.2 

(1.0) 

2.1 

(0.1) 

4.8 

(0.3) 

45.2 

(1.7) 

10 

Nucleoside 
0.8 

(0.2) 

3.2 

(0.2) 

– 0.1 

(0.0) 

4.1 

(0.0) 

Monomeric 
NT 

6.9 

(0.3) 

0.4 

(0.0) 

0.2 

(0.0) 

2.4 

(0.1) 

9.9 

(0.4) 

NT Adduct 
0.1 

(0.1) 

0.2 

(0.2) 

0.1 

(0.0) 

0.2 

(0.1) 

0.6 

(0.4) 

Polymeric 
NT 

0.3 

(0.4) 

0.1 

(0.1) 

0.4 

(0.1) 

0.2 

(0.0) 

1.0 

(0.6) 

TPAN 
8.0 

(0.1) 

3.9 

(0.2) 

0.7 

(0.1) 

3.0 

(0.2) 

15.6 

(0.2) 

20 

Nucleoside 
0.7 

(0.2) 

1.3 

(0.1) 

– 0.1 

(0.0) 

2.1 

(0.3) 

Monomeric 
NT 

3.9 

(0.0) 

0.1 

(0.1) 

– 0.8 

(0.1) 

4.8 

(0.2) 

NT Adduct 
0.1 

(0.0) 

0.2 

(0.1) 

0.1 

(0.1) 

0.1 

(0.0) 

0.4 

(0.2) 

Polymeric 
NT 

0.2 

(0.1) 

0.1 

(0.0) 

0.3 

(0.0) 

0.2 

(0.1) 

0.7 

(0.2) 

TPAN 
4.8 

(0.2) 

1.6 

(0.1) 

0.4 

(0.0) 

1.3 

(0.2) 

8.0 

(0.1) 

30 

Nucleoside 
0.6 

(0.1) 

0.8 

(0.1) 

– 0.1 

(0.0) 

1.5 

(0.0) 

Monomeric 
NT 

2.5 

(0.0) 

0.1 

(0.0) 

– 0.3 

(0.1) 

3.0 

(0.1) 

NT Adduct 
– – – 0.1 

(0.0) 

0.2 

(0.1) 
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Polymeric 
NT 

0.2 

(0.0) 

0.1 

(0.0) 

0.2 

(0.0) 

0.1 

(0.0) 

0.7 

(0.1) 

TPAN 
3.4 

(0.0) 

1.1 

(0.0) 

0.3 

(0.0) 

0.6 

(0.1) 

5.3 

(0.1) 
a
 Day post-partum ± 2 h 

b
 Mean (standard deviation) of duplicate analyses 

c
 Cyd = cytidine, Urd = uridine, Guo = guanosine, Ado = adenosine 

– = not detected 

 

Table 25. Total potentially available nucleosides in summer herd milk 

Daya Form 
Resultsb,c (mol dL-1) 

Cyd Urd Guo Ado Total 

0 

Nucleoside 
2.6 

(0.2) 

50.6 

(5.8) 

2.2 

(0.3) 

– 55.4 

(5.8) 

Monomeric 
NT 

1.5 

(0.1) 

1.2 

(0.0) 

0.2 

(0.0) 

– 2.8 

(0.2) 

NT Adduct 
0.1 

(0.1) 

0.5 

(0.1) 

0.3 

(0.0) 

0.2 

(0.0) 

1.1 

(0.2) 

Polymeric 
NT 

0.4 

(0.0) 

0.3 

(0.3) 

1.1 

(0.0) 

0.9 

(0.0) 

2.7 

(0.3) 

TPAN 
4.7 

(0.2) 

52.5 

(6.1) 

3.7 

(0.3) 

1.2 

(0.0) 

62.1 

(6.2) 

0.25 

Nucleoside 
3.6 

(0.1) 

28.0 

(0.4) 

1.8 

(0.0) 

– 33.4 

(0.5) 

Monomeric 
NT 

0.5 

(0.3) 

0.4 

(0.1) 

0.1 

(0.0) 

– 1.0 

(0.5) 

NT Adduct 
0.2 

(0.0) 

0.9 

(0.2) 

0.1 

(0.0) 

0.1 

(0.0) 

1.4 

(0.1) 

Polymeric 
NT 

0.3 

(0.0) 

1.7 

(0.3) 

0.8 

(0.1) 

0.8 

(0.0) 

3.6 

(0.2) 

TPAN 
4.7 

(0.2) 

31.0 

(0.8) 

2.9 

(0.2) 

0.9 

(0.1) 

39.4 

(0.3) 

1 

Nucleoside 
5.4 

(0.4) 

40.9 

(1.2) 

2.1 

(0.2) 

– 48.5 

(1.0) 

Monomeric 
NT 

7.3 

(0.1) 

4.3 

(0.3) 

0.3 

(0.0) 

– 11.9 

(0.2) 

NT Adduct 
1.6 

(0.3) 

6.8 

(0.9) 

1.2 

(0.1) 

0.3 

(0.1) 

10.0 

(1.2) 
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Polymeric 
NT 

0.6 

(0.1) 

1.1 

(0.4) 

1.0 

(0.1) 

0.7 

(0.3) 

3.4 

(0.0) 

TPAN 
15.0 

(0.4) 

53.1 

(0.4) 

4.7 

(0.1) 

1.0 

(0.3) 

73.8 

(0.4) 

2 

Nucleoside 
3.7 

(0.4) 

39.2 

(0.1) 

2.7 

(0.4) 

– 45.6 

(0.9) 

Monomeric 
NT 

10.4 

(0.8) 

0.4 

(0.1) 

0.2 

(0.0) 

0.9 

(0.1) 

11.8 

(1.0) 

NT Adduct 
– 1.7 

(0.4) 

0.9 

(0.0) 

0.4 

(0.0) 

2.9 

(0.4) 

Polymeric 
NT 

0.5 

(0.0) 

1.0 

(0.0) 

0.4 

(0.1) 

0.3 

(0.0) 

2.3 

(0.0) 

TPAN 
14.5 

(0.4) 

42.3 

(0.4) 

4.2 

(0.4) 

1.5 

(0.2) 

62.6 

(0.2) 

3 

Nucleoside 
6.7 

(0.2) 

21.5 

(1.6) 

1.2 

(0.1) 

– 29.4 

(1.3) 

Monomeric 
NT 

5.8 

(0.8) 

3.6 

(0.8) 

0.3 

(0.0) 

2.1 

(0.4) 

11.9 

(1.2) 

NT Adduct 
0.1 

(0.0) 

0.5 

(0.0) 

0.4 

(0.1) 

0.4 

(0.0) 

1.5 

(0.1) 

Polymeric 
NT 

0.5 

(0.1) 

1.4 

(0.5) 

0.4 

(0.0) 

0.3 

(0.0) 

2.7 

(0.6) 

TPAN 
13.2 

(0.7) 

27.0 

(3.0) 

2.3 

(0.1) 

2.9 

(0.4) 

45.3 

(3.4) 

5 

Nucleoside 
1.0 

(0.1) 

9.2 

(0.1) 

0.2 

(0.3) 

– 10.4 

(0.3) 

Monomeric 
NT 

8.0 

(0.2) 

0.4 

(0.0) 

0.2 

(0.0) 

2.0 

(0.1) 

10.7 

(0.1) 

NT Adduct 
0.3 

(0.2) 

0.4 

(0.0) 

0.1 

(0.0) 

0.3 

(0.0) 

1.0 

(0.3) 

Polymeric 
NT 

0.8 

(0.2) 

0.5 

(0.1) 

0.3 

(0.0) 

0.2 

(0.1) 

1.9 

(0.2) 

TPAN 
10.2 

(0.1) 

10.5 

(0.3) 

0.8 

(0.3) 

2.4 

(0.0) 

24.0 

(0.1) 

10 

Nucleoside 
0.6 

(0.1) 

3.0 

(0.0) 

– – 3.6 

(0.0) 

Monomeric 
NT 

4.1 

(0.2) 

0.1 

(0.0) 

– 1.2 

(0.1) 

5.3 

(0.0) 

NT Adduct 
0.2 

(0.1) 

– 0.1 

(0.0) 

0.2 

(0.1) 

0.5 

(0.2) 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 144 
TOTAL POTENTIALLY AVAILABLE NUCLEOSIDES IN MILK 

Polymeric 
NT 

0.2 

(0.1) 

0.2 

(0.0) 

0.4 

(0.0) 

0.1 

(0.0) 

0.9 

(0.1) 

TPAN 
5.0 

(0.4) 

3.4 

(0.0) 

0.4 

(0.0) 

1.5 

(0.1) 

10.3 

(0.4) 

20 

Nucleoside 
0.7 

(0.0) 

1.5 

(0.5) 

– – 2.1 

(0.5) 

Monomeric 
NT 

3.0 

(0.2) 

0.1 

(0.0) 

– 0.4 

(0.0) 

3.4 

(0.1) 

NT Adduct 
0.1 

(0.0) 

0.1 

(0.0) 

– 0.1 

(0.0) 

0.2 

(0.0) 

Polymeric 
NT 

– 0.1 

(0.0) 

– 0.1 

(0.0) 

0.1 

(0.0) 

TPAN 
3.8 

(0.2) 

1.6 

(0.5) 

– 0.5 

(0.1) 

5.9 

(0.4) 

30 

Nucleoside 
0.6 

(0.0) 

1.3 

(0.0) 

– – 1.9 

(0.0) 

Monomeric 
NT 

1.6 

(0.2) 

– – – 1.6 

(0.2) 

NT Adduct 
0.1 

(0.0) 

0.1 

(0.0) 

– 0.3 

(0.0) 

0.5 

(0.0) 

Polymeric 
NT 

– – – – 0.1 

(0.0) 

TPAN 
2.3 

(0.2) 

1.4 

(0.0) 

– 0.3 

(0.0) 

4.0 

(0.2) 
a
 Day post-partum ± 2 h 

b
 Mean (standard deviation) of duplicate analyses 

c
 Cyd = cytidine, Urd = uridine, Guo = guanosine, Ado = adenosine 

– = not detected 

 

Nucleoside Contribution to TPAN 

Uridine was the most prevalent nucleoside in both winter and summer 

milk, with levels of ~50 mol dL−1 in colostrum, but these levels were not 

sustained beyond the third day post-partum and rapidly decreased to 

levels similar to those of cytidine and guanosine at 1–3 mol dL−1.  

Adenosine was present at much lower levels but these low levels were 

maintained throughout the lactation period for both seasons’ milk.  The 

nucleoside levels measured in this study were consistent with those 
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reported previously (Gill and Indyk, 2007b).  Although nucleosides were 

present at higher concentrations in bovine colostrum than in mature bovine 

milk, they rapidly decreased to levels similar to that in mature human milk, 

as reported by Leach et al. (1995). 

 
Table 26. Significance of rates of decrease through lactationa 

Form 
Resultsa,b 

Cydb Urd Guo Ado Total 

Seasonal differences (winter vs. summer) between slopes: p-valuesc 

Nucleoside < 0.001 < 0.001 < 0.001    0.600 < 0.001 

Monomeric NT    0.310 < 0.001 < 0.001    0.007 < 0.001 

NT Adduct    0.048 < 0.001 < 0.001    0.002 < 0.001 

Polymeric NT    0.303    0.002 < 0.001 < 0.001 < 0.001 

Total Base    0.676 < 0.001 < 0.001    0.107 < 0.001 

Non-zero slope (summer): p-valuesd 

Nucleoside < 0.001 < 0.001 < 0.001    1.000 < 0.001 

Monomeric NT    0.168    0.182    0.384    0.002    0.207 

NT Adduct    0.437    0.051    0.097   0.552    0.030 

Polymeric NT    0.196    0.233 < 0.001    0.001 < 0.001 

Total Base    0.769 < 0.001 < 0.001    0.386 < 0.001 

Non-zero slope (winter): p-valuesd 

Nucleoside < 0.001 < 0.001    0.048    0.316 < 0.001 

Monomeric NT    0.511 < 0.001 < 0.001    0.905 < 0.001 

NT Adduct    0.019 < 0.001 < 0.001    0.001 < 0.001 

Polymeric NT    0.399    0.001 < 0.001 < 0.001 < 0.001 

Total Base    0.408 < 0.001 < 0.001    0.053 < 0.001 
a
 p-value, level of significance = 0.05 

b
 Cyd = cytidine, Urd = uridine, Guo = guanosine, Ado = adenosine 

c
 Statistical significance means there is evidence of a real difference between 

 seasons 
d
 Statistical significance means there is evidence that the levels are actually 

 decreasing 
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Figure 53. Nucleotides and nucleosides in winter herd milk 
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Figure 54. Nucleotides and nucleosides in summer herd milk 
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Monomeric Nucleotide Contribution to TPAN 

Levels of nucleotides measured in this study were generally higher than 

those reported previously (Gill and Indyk, 2007b); however, there was 

likely to have been a contribution from multiple phosphorylated forms, 

which the TPAN analytical method aggregates as a single value.  

Differences in colostral monomeric nucleotide levels between the two 

herds were evident, with the winter-milk herd initially containing 5–10 times 

the levels of the summer-milk herd.  However, by the fifth day, nucleotide 

levels decreased to approximately 10 mol dL−1 in both herds, somewhat 

lower than those reported in human milk (Leach et al., 1995).  The high 

initial uridine nucleotides levels and subsequent rapid decrease in 

concentration seen in winter-milk was absent in summer-milk which 

maintained constant levels throughout lactation.  Cytidine and adenosine 

nucleotides are stable throughout lactation for both seasons.  The most 

abundant nucleotides in bovine colostrum were based on uridine; 

however, as colostrum transitioned into mature milk, cytidine nucleotides 

became the dominant form. 

Uridine nucleotides are critical components in the biosynthesis of lactose.  

As lactose is a major osmotic component of milk, there is a correlation 

between the amount of lactose and the volume of milk produced (Arthur 

et al., 1991; Linzell and Peaker, 1971).  It has been suggested that high 

levels of uridine and UMP are present in milk, as breakdown products of 

UDP and UTP, due to their function in the synthesis of lactose (Mateo 

et al., 2004; Schlimme et al., 2000).  It was proposed that support for this 

hypothesis is seen by the correlation of decreasing total milk solids and 

UMP concentrations in sow’s milk as lactation progresses (Mateo et al., 

2004).  However, as colostrum contains higher total milk solids and lower 

lactose levels (on a dry weight basis) than mature milk (Heng, 1999), a 

reduced proportion of uridine nucleotides compared to mature milk might 

be expected based on this proposal.  Alternative reasons must therefore 

be sought to account for the higher relative proportions of uridine 

nucleotides in colostrum.  It has also been suggested that uridine accounts 
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for many of the immunological properties of nucleotides in colostrum 

(Kulkarni et al., 1986; Leach et al., 1995; Van Buren et al., 1985) and 

recently, Mashiko et al. (2009) demonstrated that dietary UMP affected the 

immune response of newborn calves. 

Nucleotide Adduct Contribution to TPAN 

The results for uridine adducts in the present study ranged from not 

detected to 23.7 mol dL−1 in the winter-milk herd and from not detected to 

6.8 mol dL−1 in the summer-milk herd, with a rapid reduction in 

concentration after the third day post-partum.  Guanosine adducts 

measured ranged from not detected to 3.9 mol dL−1 in the winter milk 

herd and from not detected to 1.2 mol dL−1 in the summer-milk herd.  

Similar levels of adenosine adducts were found, presumably derived from 

flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide 

(Fox and McSweeney, 1998; Kanno et al., 1991).  Utilising enzymatic 

techniques, UDP hexosamine, UDP hexose and UDP galactose 

concentrations were measured in bovine colostrum and milk, and ranged 

from not detected to ~104 mol dL−1.  Levels were highest at 27 and 78 h 

and much lower or absent in subsequent stages of lactation.  Guanosine 

diphosphate fucose was also reported at 27 and 78 h, at levels of 6.7 and 

4.1 mol dL−1 respectively (Gil and Sánchez-Medina, 1981). 

Polymeric Nucleotide Contribution to TPAN 

The concentration of polymeric nucleotides in bovine colostrum was 

similar to that in human colostrum and milk (Leach et al., 1995), however, 

with advancing lactation, the levels in bovine milk decreased below those 

in human milk.  Both cytidine and uridine contributions to polymeric 

nucleotides are steady throughout lactation for summer-milk, whereas the 

higher initial levels of polymeric uridine shows distinct decrease in 

concentration as lactation progresses in winter-milk. 
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Nucleobase Contribution to TPAN 

Differences in the contributions of each nucleobase from the various 

nucleoside and nucleotide forms were found.  The pyrimidines differed 

markedly from each other through lactation.  Whereas the quantities of 

cytidine and cytidine nucleotides were relatively constant throughout, 

uridine and uridine nucleotides levels varied considerably.  Cytidine 

concentrations were similar to those in human milk, whereas uridine was 

present at considerably higher levels in bovine colostrum and in lower 

amounts in mature bovine milk compared to results in human milk reported 

by Leach et al. (1995). 

The concentrations of the purines also differed, with adenosine levels 

constant throughout the first month of lactation for both herd milks, 

whereas guanosine showed a significant decrease in levels for both herds.  

The quantities of both guanosine and adenosine, and their respective 

nucleotides were slightly higher in bovine colostrum than in human 

colostrum and milk, but concentrations were lower as colostrum 

transitioned to mature milk.  In bovine milk, purine nucleosides and 

nucleotides made a relatively small contribution to TPAN (6–20%), 

whereas human milk purine nucleosides and nucleotides consistently 

represent a greater proportion of TPAN (> 30%)  (Leach et al., 1995). 

Total Potentially Available Nucleosides 

In general, the absolute concentrations indicated a distinct difference 

between the two herds, although the general trends were the same; 

Figures 55–56.  Winter had higher initial levels of TPAN but the rate of 

decrease was greater, such that the seasonal differences in TPAN 

concentration found in colostrum were largely absent in mature milk. 
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TPAN levels in winter-milk colostrum were attributable largely to 

significantly higher amounts of uridine nucleotides compared with summer-

milk colostrum; however, by the tenth day, both herd milks showed similar 

TPAN levels.  The TPAN levels in bovine colostrum were higher than 

those in both human colostrum and milk; however, after transition to 

mature milk, the TPAN levels were lower than those reported in human 

milk (Leach et al., 1995).  

It has been reported that nucleotides in human milk exhibit a circadian 

rhythmicity (Sánchez et al., 2009).  Anomalous results for uridine and 

uridine nucleotides were found in bovine colostrum samples collected from 

both herds at 6 hours post-partum, and such diurnal variation may suggest 

a plausible rationale given that this sample was uniquely collected in the 

afternoon. 

Herd Conditions 

Although the feeding practices were similar on both farms, it is possible 

that seasonal or pasture differences could have had a significant effect on 

the nucleoside precursors expressed in the milk of each herd.  Prior to 

calving, the cows’ diet was extensive grass grazing supplemented with 

maize silage and palm kernel, and after calving, intake of grass and palm 

kernel increased with inclusion of whey permeate.  One uncontrolled 

variable that may have had a significant influence is the climate.  Calving 

for the winter milk herd began in the early autumn of 2008, which followed 

a summer characterised by a La Niña weather pattern that contributed to 

record high temperatures (20.3 °C mean air temperature) and a drought 

with severe soil moisture deficits (>130 mm) in the Waikato.  The summer 

milk herd began calving in late winter 2009, which had the warmest August 

on record nationally, with above average rainfall in the Waikato (NIWA, 

2010).  In addition to obvious climatic factors, other factors could have 

affected TPAN levels in both herds, such as the conditions under which 

the cows were raised and fed, tolerance to stress, sunlight exposure and 
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other environmental factors.  Further study controlling each of these 

factors would be required to identify those factors that influence 

nucleoside and nucleotide expression in milk.  Limitations of the current 

study could be expanded upon in future experiments that consider the 

effects of breed, location, and diet on TPAN expression in milk. 

3.2.2.3 TPAN in Bovine, Caprine, and Ovine milk 

With the increasing awareness of the nutritional benefit of nucleotides in 

infant nutrition, and the proliferation of milk of various species being used 

as replacements for breast milk, the data on endogenous TPAN in milk in 

this study are timely. 

The TPAN concentrations obtained in this study of bovine, caprine and 

ovine milk are summarised in Table 27, and illustrated in Figure 57. 

Nucleoside Contribution to TPAN 

The cytidine concentrations ranged from 0.9–2.3 µmol dL−1 and were 

comparable among the milk of the three species, as were the relatively low 

concentrations of both adenosine and guanosine.  In contrast, uridine was 

present in higher concentrations in both caprine milk (11.3 µmol dL−1) and 

ovine milk (14.8 µmol dL−1), differentiating these milks from bovine milk 

(1.9 µmol dL−1).  This dominance of uridine in ovine milk and caprine milk 

has been reported previously (Martin et al., 2005; Plakantara et al., 2010). 

The higher nucleoside concentrations in caprine and ovine milk 

represented only minor contributions to TPAN, whereas the contribution of 

nucleosides to the TPAN of bovine milk was > 30%.  Ruminant milk 

contains higher concentrations of total nucleosides than those reported in 

human milk (Leach et al., 1995). 
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Table 27. TPAN in bovine, caprine, and ovine milk 

Species Form 
Resultsa (mol dL-1) 

Cydb Urd Guo Ado Total 

Bovine 

Nucleoside 
0.9 

(0.1)a 

1.9 

(0.1) 

– – 2.8  

(0.3) 

Monomeric NT 
3.3 

(0.1) 

0.5 

(0.2) 

– – 3.8 

(0.3) 

NT Adduct 
0.1 

(0.0) 

0.1 

(0.0) 

0.4 

(0.1) 

0.1 

(0.0) 

0.6 

(0.0) 

Polymeric NT 
0.1 

(0.1) 

0.1 

(0.1) 

– 0.5 

(0.0) 

0.7 

(0.3) 

TPAN 
4.4 

(0.2) 

2.6 

(0.2) 

0.4 

(0.1) 

0.5 

(0.0) 

7.9 

(0.5) 

Caprine 

Nucleoside 
1.6 

(0.1) 

11.3 

(0.4) 

– – 12.9 

(0.3) 

Monomeric NT 
3.6 

(0.2) 

37.2 

(0.8) 

9.4 

(0.5) 

2.4 

(0.2) 

52.7 

(1.7) 

NT Adduct 
0.7 

(0.0) 

10.1 

(1.2) 

14.5 

(0.1) 

3.4 

(0.1) 

28.7 

(1.2) 

Polymeric NT 
0.6 

(0.2) 

1.0 

(0.9) 

1.1 

(0.5) 

0.5 

(0.2) 

3.2 

(1.9) 

TPAN 
6.5 

(0.3) 

59.5 

(1.8) 

25.0 

(0.7) 

6.3 

(0.3) 

97.4 

(2.8) 

Ovine 

Nucleoside 
2.3 

(0.1) 

14.8 

(1.1) 

0.6 

(0.0) 

– 17.6 

(1.2) 

Monomeric NT 
5.7 

(0.3) 

187.4 

(4.4) 

6.3 

(0.0) 

12.1 

(0.0) 

211.4 

(4.0) 

NT Adduct 
0.9 

(0.1) 

100.4 

(7.8) 

22.1 

(0.2) 

14.4 

(0.6) 

137.8 

(8.7) 

Polymeric NT 
0.5 

(0.3) 

4.3 

(0.1) 

1.2 

(0.3) 

1.3 

(0.6) 

7.3 

(1.2) 

TPAN 
9.4 

(0.4) 

306.8 

(9.0) 

30.2 

(0.3) 

27.8 

(0.9) 

374.1 

(9.8) 
a 

Mean (standard deviation) of duplicate analyses 
b
 Cyd = cytidine, Urd = uridine, Guo = guanosine, Ado = adenosine 

– = not detected 
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Figure 57. TPAN in bovine, caprine, and ovine milk 
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Monomeric Nucleotide Contribution to TPAN 

The trends in nucleotide concentrations measured in this study were 

similar to those reported previously in bovine, caprine, and ovine milk 

(Ferreira et al., 2001; Gil and Sánchez-Medina, 1981; Gill and Indyk, 

2007b; Martin et al., 2005; Plakantara et al., 2010).  The cytidine 

nucleotide concentration ranges were comparable among the three 

species, as were the nucleotide concentration ranges for both adenosine 

and guanosine, which were at similarly low concentrations.  The 

concentrations of uridine nucleotides varied greatly among the milk of the 

three species, with the range spanning 0.5–187 µmol dL−1, with the lowest 

concentration in bovine milk and the highest concentration in ovine milk.  

Bovine milk contained significantly lower concentrations of monomeric 

nucleotides than caprine and ovine milk. 

Nucleotide Adduct Contribution to TPAN 

The uridine adducts measured in ovine milk were an order of magnitude 

higher than those in caprine milk and were three orders of magnitude 

higher than those in bovine milk.  Similar results were obtained in mature 

milk by Gil and Sánchez-Medina (1981) in their determination of UDP 

hexosamine, UDP hexose, and UDP galactose in the milk of the three 

species.  The concentrations of guanosine adducts measured were 0.4, 

14.5, and 22.1 µmol dL−1 in bovine, caprine, and ovine milk, respectively.  

Nucleotide adducts contributed significantly (> 30%) to TPAN in caprine 

and ovine milks, whereas their contribution to TPAN in bovine milk was 

~10%. 

The result for guanosine adducts compared well with the aggregate of 

guanosine−sugar adduct concentrations previously reported at 1 month 

(Martin et al., 2005).  Similar concentrations of adenosine adducts were 

found, presumably derived from FAD and NADH (Fox and McSweeney, 

1998; Kanno et al., 1991).  The adenosine concentrations in bovine milk 

were much lower than those in caprine milk and ovine milk. 
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Polymeric Nucleotide Contribution to TPAN 

Polymeric nucleotides showed the least difference among the milk of the 

three species and, as with the other nucleoside forms, polymeric uridine 

from ovine milk was most abundant and was comparable to the 

concentration in human milk (Leach et al., 1995).  Given the overwhelming 

concentration of uridine in ovine milk from monomeric nucleotides, it is 

possible that polymeric uridine concentrations were elevated as a 

consequence of calculation by difference. 

Nucleobase Contribution to TPAN 

The pyrimidines, cytidine and uridine, were present primarily as 

monomeric nucleotides in the milk of the three species.  This was in 

contrast to the purines, guanosine and adenosine, which were 

predominantly present as adducts in the milk of each of these species.  

Cytidine and cytidine nucleotides were the most prevalent forms in bovine 

milk; similar results were obtained in the TPAN analysis of human milk 

(Leach et al., 1995).  In contrast, uridine was the dominant nucleobase in 

caprine and ovine milk.  The total cytidine concentration was lowest in 

bovine milk, whereas caprine and ovine milk contained similar amounts.  

The concentrations of total uridine, guanosine, and adenosine were lowest 

in bovine milk and highest in ovine milk.  The concentrations of total 

uridine, guanosine, and adenosine reported in human milk (Leach et al., 

1995) were higher than those measured in bovine milk but much lower 

than those of caprine milk and ovine milk. 

Total Potentially Available Nucleosides 

The TPAN concentrations in the milk of the three species varied markedly, 

with ovine milk having the highest concentrations and bovine milk having 

the lowest concentrations; Figures 58–59.   
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Figure 58. TPAN concentration in bovine, caprine, and ovine milk 
 
 

 

 

 

 

 

 

 

 

Figure 59. Relative TPAN levels in bovine, caprine, and ovine milk 
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Ovine milk contained the highest concentrations of nucleosides, free 

nucleotides, nucleotide adducts, and polymeric nucleotides, as well as the 

highest contribution from each nucleobase.  Similarly, bovine milk 

contained the lowest concentrations of all forms of nucleosides and 

nucleotides, with caprine milk being intermediate.  The TPAN 

concentration reported in human milk (Leach et al., 1995) is higher than 

that measured in bovine milk but much lower than those of caprine milk 

and ovine milk. 

Previous studies on nucleotides in both bovine and caprine milk have 

shown higher concentrations of free nucleotides and related compounds in 

the latter (Gil and Sánchez-Medina, 1981; Johke and Goto, 1962), while 

the nucleotide concentrations in caprine milk have been favourably 

compared with those in human milk (Prosser et al., 2008).  Because of 

this, supplementation of caprine milk-based infant formulas with 

nucleotides is not necessary, as such products provide similar quantities of 

free nucleotides to those in nucleotide supplemented bovine milk-based 

infant formulas.  However, this present study showed that, when TPAN 

concentrations were calculated, caprine milk contained 97.4 µmol dL−1, 

i.e., more than four times greater than the highest TPAN concentration 

reported in human milk (Leach et al., 1995). 

The contribution of various forms to TPAN in bovine milk in this study, 

correspond well to the results for mature milk (days 10, 20, 30) for both 

winter and summer milk in the preceding study.  This is expected since 

bovine milk collected from a pooled in factory silo will be sourced from 

cows producing mature milk. 

The TPAN concentration in bovine milk measured in the present study was 

most comparable with the concentration in human milk, as reported by 

Leach et al. (1995).  Bovine milk contained cytidine and uridine 

nucleosides and nucleotides in approximately equal molar proportions, 

whereas ovine and caprine milk were dominated by uridine and uridine 

nucleotides. 
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3.3. Nucleoside and Nucleotide Analysis by 

LC-MS 

The analysis of nucleosides as well as nucleotides was identified by the 

Nucleotides Working Group within SPIFAN as a key tool for compliance 

testing of nucleotides in infant formulas (Sullivan, 2012).  The aim of this 

study is to develop and validate an accurate and robust method for the 

simultaneous analysis of nucleosides and nucleotides in fortified infant 

formulas.   

For many compounds, LC-MS is a more sensitive and specific technique 

than LC-UV.  It can analyse compounds that lack a suitable chromophore 

as well as identifying components in unresolved chromatographic peaks, 

thereby reducing the need for perfect chromatography.  Security of 

accurate analytical results is enhanced by the use of isotopically labelled 

internal standards.  The method herein describes a simple centrifugal 

ultrafiltration clean up followed by LC-MS/MS analysis.  This method has 

been validated for the analysis of bovine milk-based, caprine milk-based, 

soy-based, elemental, and hypoallergenic infant formula. 

A description of this method and results obtained from this research were 

summarised and have been submitted for publication. 

3.3.1. EXPERIMENTAL 

3.3.1.1 Apparatus 

The HPLC system used consisted of a CBM20A system controller, two 

LC20ADXR pumps for a high-pressure gradient, a CTO20AC column 

oven, and a SIL20ACXR autosampler equipped with a 50 L injection 
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loop, (Shimadzu).  The MS/MS system consisted of a 3200 QTRAP 

quadrupole mass spectrometer with a Turbo V ion source equipped with 

an ESI probe; Analyst 1.5.1 software was used for instrument control and 

data processing (ABSciex, Foster City, CA).   

UV absorbances for calibration standards were acquired with a model 

UV-1601 spectrophotometer (Shimadzu) with digital readout to 4 decimal 

places.  An Orion SA520 pH meter (Thermo Scientific, Waltham, MA) was 

used for the determination of pH. 

Chromatographic separation was achieved using a Gemini column, 5 m, 

4.6 mm x 250 mm (Phenomenex).  Polypropylene centrifuge tubes were 

sourced from Biolab and Amicon Ultra-4 3 kDa MWCO centrifugal filter 

units from Millipore. 

3.3.1.2 Reagents 

Ammonium acetate (≥ 98%), ammonium bicarbonate (≥ 99.5%), Ado 

(≥ 99%), Cyd (≥ 99%), Guo (≥ 98%), Ino (≥ 99%), Urd (≥ 99%), AMP 

(≥ 99%), CMP disodium salt (≥ 99%), GMP disodium salt hydrate (≥ 99%), 

IMP disodium salt (≥ 98%), and UMP (≥ 99%) were obtained from Sigma-

Aldrich.  SIL nucleoside standards (chemical purity), 13C5 Ado (≥ 97%), 

13C9
15N3 Cyd (≥ 98%), 15N5 Guo (≥ 98%), 15N4 Ino (≥ 98%), and 13C9

15N2 

Urd (≥ 98%), were purchased from Cambridge Isotope Laboratories 

(Andover, MA, USA).  SIL nucleotide standards (chemical purity), 

13C10
15N5 AMP (≥ 90%), 13C9

15N3 CMP (≥ 90%), 13C10
15N5 GMP (≥ 90%),  

and 13C9
15N2 UMP (≥ 90%), were purchased from Sigma-Aldrich; 13C10

15N4 

IMP (≥ 90%), was purchased from Medical Isotopes (Pelham, NH, USA).  

Potassium dihydrogen phosphate, orthophosphoric acid, potassium 

hydroxide (GR ACS grade or equivalent), and methanol (LC-MS grade) 

were supplied by Merck.  Water was purified with resistivity ≥ 18 M using 

an E-pure water system (Barnstead). 
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A standardising buffer (KH2PO4, 0.25 M, pH = 3.5) was made as described 

previously (see 3.1.1.2).  Mobile phase A (NH4CH3COO, 10 mM; 

NH4HCO3, 5 mM, pH = 5.6) was made daily by dissolving 0.771 g 

NH4CH3COO and 0.395 g NH4HCO3 in 950 mL of water, adjusting the pH 

to 5.6 with acetic acid solution (10% w/v), then making to 1 L with water.  

Mobile phase B consisted of 100% methanol. 

3.3.1.3 Standard Solutions 

SIL nucleoside and nucleotide stock standards were prepared by 

accurately weighing 50 mg each of 13C5 adenosine (13C isotope label, 

subscript number of atoms labelled), 13C9
15N3 cytidine, 15N5 guanosine, 

15N4 inosine, 13C9
15N2 uridine, 13C10

15N5 AMP, 13C9
15N3 CMP, 13C10

15N5 

GMP, 13C10
15N4 IMP, and 13C9

15N2 UMP into separate 50 mL volumetric 

flasks.  To each flask 40 mL of water was added, and then shaken (with 

gentle warming if necessary) until the standard was completely dissolved, 

before water was added to volume.  Aliquots (~1.5 mL) of SIL stock 

standards were immediately dispensed into individual cryogenic vials and 

frozen at -15°C for later use.  Prior to analysis cryogenic vials containing 

each SIL nucleoside and nucleotide stock standard were allowed to thaw 

to room temperature. 

Non-isotopically labelled (NIL) nucleoside and nucleotide stock standards 

were prepared in the similar manner as described previously (Gill and 

Indyk, 2007b; see 3.1.1.3) by accurately weighing approximately 50 mg of 

each nucleotide into separate 50 mL volumetric flasks and making to 

volume with water.  These were refrigerated at 4 °C for up to 1 month. 

Estimation of moisture content in nucleosides was performed by the oven 

moisture method (102 °C) and the concentration was calculated on a dry 

weight basis.  Extinction coefficients at UV absorbance maxima were then 

determined for each nucleoside.  These were compared with the values 
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previously determined in nucleotides (Gill and Indyk, 2007b), with 

correction for molecular weights.  The values obtained for each nucleoside 

were in close agreement with those for the corresponding nucleotide.  

Mean extinction coefficient values (nucleoside and corresponding 

nucleotide) were calculated and are reported in Table 28. 

The concentration of each NIL nucleoside and nucleotide stock standard 

was determined by adding 500 µL of each stock standard into separate 

25 mL volumetric flasks, diluting with standardising buffer, and measuring 

the absorbance at the appropriate max. 

 

A mixed SIL intermediate standard was prepared by diluting 2.0 mL of 

each SIL stock standard into a 25 mL volumetric flask and making to 

volume with water.  A mixed NIL intermediate standard was made by 

Table 28. Nucleoside and nucleotide extinction coefficients 

Analytea E 1%
1cm max (nm) 

AMP 428.6 
257 

Ado 557.0 

CMP 390.9 
280 

Cyd 519.5 

GMP 392.0 
254 

Guo 502.8 

IMP 356.5 
249 

Ino 462.7 

UMP 312.7 
262 

Urd 415.1 
a 

AMP = adenosine 5′-monophosphate 
 CMP = cytidine 5′-monophosphate 
 GMP = guanosine 5′-monophosphate 
 IMP = inosine 5′-monophosphate 

 UMP = uridine 5′-monophosphate 
 Ado = adenosine 
 Cyd = cytidine 
 Guo = guanosine 
 Ino = inosine 
 Urd = uridine 
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adding 1.0 mL of each NIL stock standard into a 25 mL volumetric flask 

and making to volume with water. 

Four calibration standards were prepared by pipetting 1.0, 1.0, 0.5, and 

0.2 mL of SIL intermediate standard and 2.0, 4.0, 5.0, and 8.0 mL of NIL 

intermediate standard into 50, 50, 25, and 10 mL volumetric flasks 

respectively.  The calibration standards were then made to volume with 

water and mixed thoroughly. 

3.3.1.4 Sample Preparation 

Approximately 5.0 g of infant formula powder was weighed accurately into 

a 50 mL polypropylene centrifuge tube (Biolab, Auckland, New Zealand) 

and dissolved in 25 mL of water.  To this was added 1.0 mL of SIL 

intermediate standard and the tube was capped and vortex mixed, 

followed by 10 min standing to allow sample to hydrate, before dilution to a 

final volume of 50 mL with water. 

A 4.0 mL aliquot of sample solution was added to an Amicon Ultra-4 3 kDa 

MWCO centrifugal ultrafiltration unit (Millipore, Billerica, MA, USA) and 

centrifuged at 3500 x g for 60 min.  The filter was then removed and 

discarded and a 1 mL aliquot of filtrate was transferred to an HPLC vial 

ready for analysis. 

3.3.1.5 Chromatography 

High-pressure gradients were formed by mixing two mobile phases, 

A and B, at a constant flow rate of 0.75 mL min-1, Table 29. 
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Table 29. Gradient procedure for RPLC-MS method 

Time 

(min) 

Temperature 
(°C) 

Flow rate 

(mL min-1) 

Mobile phase compositiona 

%A %B 

  0.0 40 0.75 100   0 

  3.5 40 0.75 100   0 

10.0 40 0.75   80 20 

20.0 40 0.75   80 20 

21.0 40 0.75 100   0 

35.0 40 0.75 100   0 

a Mobile phase A = NH4CH3COO, 10 mM; NH4HCO3, 5 mM, pH = 5.6 
 Mobile phase B = 100% methanol 

3.3.1.6 Mass Spectrometry 

The mass spectrometer was operated using an ESI source in positive 

mode with nitrogen utilised as drying and collision gas.  The instrumental 

parameters were set as follows: curtain gas at 30 psi, nebuliser gas GS1 

and GS2 at 50 and 70 psi respectively, desolvation temperature at 700 °C, 

CID gas at medium, and ion spray voltage at 5500 V.  MRM transitions 

and instrument settings for generation of product ions for nucleosides and 

nucleotides is given in Table 30–31. 

.  
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3.3.2. RESULTS AND DISCUSSION 

3.3.2.1 Method Development 

Sample Preparation 

The aim of the sample preparation procedure was to remove co-eluting 

matrix components without reducing overall recoveries of analytes.  Any 

risk of reduced recovery though sample preparation is mitigated in an 

LC-MS assay by the use of an SIL standard, therefore, provided sufficient 

analyte is recovered to ensure than ample signal is obtained, quantitative 

recovery through sample preparation step is not essential for accurate 

results. 

Initial sample preparation was developed with the intention of using HILIC 

for quantitative analysis.  The pH of the sample was lowered with acetic 

acid, followed by centrifugation and separating off the supernatant, which 

was adjusted to pH 6.5 with ammonium hydroxide.  An aliquot was added 

to an HPLC vial with sufficient acetonitrile added to reduce aqueous 

content to < 30%, thereby facilitating optimal chromatographic separation 

and eliminate peak splitting.  However, it was observed that phase 

separation was occurring within the HPLC vial.  Normally water and 

acetonitrile are miscible, but phase separation was attributed to the high 

salt content of the sample extract.  This is the principle involved in the 

QuEChERS (quick, easy, cheap, effective, rugged and safe) technique, 

typically applied to the analysis of pesticide residues (Anastassiades et al., 

2003).   

The QuEChERS technique was investigated and is based on acetonitrile 

partitioning whereby water and proteins are removed from the sample by 

salting out with magnesium sulphate and sodium chloride.  This is then 

followed up with dispersive SPE to remove potential interferences.  The 
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method was developed for the analysis of pesticides in low-fat commodity 

products, although more recently it has been adapted to intermediate and 

high-fat products (Lehotay et al., 2005).  The QuEChERS method covers a 

wide range of analytes including polar pesticides (Payá et al., 2007).  The 

extraction of nucleosides and nucleotides into an acetonitrile/water phase 

in the sample preparation is potentially attractive, as this can be readily 

coupled to a HILIC system, which offers a number of advantages over 

RPLC in the LC-MS analysis of polar compounds.  Although the initial use 

of QuEChERS in this study gave quantitative recovery of nucleosides, the 

recovery of nucleotides was negligible, as they remained in the aqueous 

phase and did not partition into the organic phase.  The ionic nature of 

nucleotides therefore makes them unsuitable as candidates for use with 

the QuEChERS extraction procedure. 

The use of CUF for protein removal from infant formula in the analysis of 

nucleotides was previously described by Inoue et al. (2008) and was 

evaluated in the development of the LC-UV method described previously 

(see 3.1.2.1).  Two brands of CUF tubes were assessed, Vivaspin (GE 

Healthcare, Little Chelfont, UK) and Amicon, in 4 and 15 or 20 mL sizes 

and at 3 and 10 kDa.  Powder samples were reconstituted at 10 % and 

25 % w/v and it was found that at either concentration, high centrifuge 

speeds were required to obtain sufficient filtrate (~1 mL), which 

necessitated the use of the smaller 4 mL CUF tubes.  A higher 

concentration of powder was considered ideal in order to increase signal in 

subsequent LC-MS analysis.  Because only a small volume of extract was 

required for LC-MS analysis, the higher concentration sample and lower 

MWCO tubes were chosen for use as part of the method.  For cost 

reasons, the Amicon Ultra-4, 3 kDa MWCO CUF tubes were selected for 

continued use in method development and evaluation. 
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Chromatography 

HILIC has been used previously in the analysis of nucleosides and 

nucleotides, and the use of this technique was evaluated.  However, 

problems associated with nucleotide peak shape and retention were 

found.  An additional concern was the solubility of nucleotides at high 

organic solvent conditions (> 90%).  PGC was also assessed, but similar 

problems with nucleotide peak shape and retention were found. 

The simultaneous chromatographic analysis of both nucleosides and 

nucleotides in infant formulas has previously been described using LC-UV 

(Gill and Indyk, 2007b).  However, the mobile phase contained a 0.1 M 

phosphate buffer, which is generally regarded as unsuitable for use in 

LC-MS.  Ammonium acetate (10 mM, pH = 5.6) was chosen to buffer the 

mobile phase due to its compatibility with LC-MS and its pH buffering 

range of ~3.8–5.8 which is appropriate given the pKa of various 

nucleosides and nucleotides.  However, significant peak tailing was 

observed for nucleotide peaks when this buffer was used. 

The interaction of phosphorylated compounds with metal surfaces in liquid 

chromatographic applications has been reported previously (Asakawa 

et al., 2008; De Vijlder et al., 2011; Kim et al., 2004; Liu et al., 2005; 

Wakamatsu et al., 2005).  Peak tailing of phosphorylated compounds has 

been observed in a wide range of liquid chromatographic techniques such 

that acquiring symmetrical peaks can be extremely difficult (Asakawa 

et al., 2008).  Conventional LC-UV nucleotide analyses typically contain 

phosphate in the mobile phase and no significant peak tailing is observed 

(Gill and Indyk, 2007b; Perrin et al., 2001).  It was postulated that the 

interaction between phosphate compounds and stainless steel may be 

suppressed by a passive film formed on the stainless steel surface at 

relatively low phosphate concentrations, thereby obtaining good peak 

shapes (Wakamatsu et al., 2005).  Unfortunately, the use of non-volatile 

buffers such as phosphate in LC-MS is generally not recommended due to 

a decrease in sensitivity, and contamination of the ion source. 
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A number of approaches have been employed in order to overcome this 

problem.  Wakamatsu et al. (2005) evaluated a pre-treatment phase for 

the chromatographic system using phosphoric acid prior to switching to a 

non-phosphate eluent during analysis.  This approach was applied to the 

analysis of nucleosides and nucleotides in dietary foods using 1% 

phosphoric acid in 50% acetonitrile (0.3 mL min-1, 60 min) to pre-condition 

the UHPLC system without introduction to the mass spectrometer prior to 

each measurement Yamaoka et al. (2010).  While successful in reducing 

peak tailing, pre-treatment of the chromatographic system came at the 

cost of a substantial increase in analysis time.  The substitution of 

polyether ether ketone (PEEK) tubing for stainless steel can reduce peak 

tailing (Wakamatsu et al., 2005), however, the removal of all stainless 

steel is problematic, and PEEK has limited tolerance to back pressure.  A 

highly basic mobile phase (25-50% ammonium hydroxide, pH ≈ 12) was 

used by Tuytten et al. (2006); however, these conditions would be 

detrimental to silica-based HPLC columns.  The addition of EDTA to either 

sample or the mobile phase was also found to be beneficial in reducing 

phosphorylated compounds metal interactions (Liu et al., 2005); however, 

as EDTA is not volatile, its use in LC-MS is not ideal.   

Several mass spectrometer manufacturers have evaluated the use of 

phosphate buffers for use with their instruments and shown that modern 

source designs can handle non-volatile buffers better than older designs 

(Agilent Technologies, 1998; Applied Biosystems, 2006; Dionex 

Corporation, 2001; Waters Corporation, 1998).  A phosphate-based 

IPRPLC−MS method was successfully applied to the quantitative analysis 

of intracellular nucleotides utilising a microbore column to reduce the 

amount of phosphate introduced to the ion source (St. Claire, 2000). 

In the present study, a low phosphate buffer (NH4H2PO4 0.08 mM, 

pH = 5.6) was evaluated for use with the mass spectrometer.  

Chromatographic parameters of resolution, retention factor, peak area 

repeatability, retention time repeatability, plate number, and asymmetry 
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were evaluated, and with acceptable results obtained; Table 32.  There 

was some loss of sensitivity as the analytical run progressed, and a small 

build-up of buffer on the cone was observed, but did not block the orifice.  

The method was applied to the analysis of nucleotides in infant formula 

samples in a validation study; Table 33.   

Linear response was demonstrated for the ratio of NL/SIL peak areas vs. 

the ratio of NL/SIL analyte concentration (r2 = 0.997–0.999).  Accuracy 

and precision were evaluated with both spike recovery (84.2–107.1%) and 

repeatability (1.5–3.1% RSD) deemed acceptable.  A limitation with this 

approach was that the number of samples within each analytical run was 

limited due to build-up of phosphate in the ion source, which required 

regular cleaning.  

Asakawa et al. (2008) investigated the effect of a number of mobile phase 

additives on peak tailing and found some that showed positive effects 

similar to that found with phosphate and EDTA.  Of those evaluated, only 

ammonium bicarbonate is volatile and deemed suitable for use in LC-MS.   

Under acidic conditions, only a small fraction of the dissolved CO2 is 

present as H2CO3.  The dissolved CO2 concentration in water is in 

equilibrium with the partial pressure of CO2 in the atmosphere.  Acid/base 

equilibria for ammonium bicarbonate are illustrated in Figure 60.  This 

complicates the use of bicarbonate as a buffering agent, therefore 

bicarbonate was used as an additive to acetate buffered mobile phase.   

 

 

 

 
Figure 60. Ammonium bicarbonate equilibria  

pKa = 6.3

H2CO3 HCO3
– + H+

pKa = 9.2

NH4
+ NH3+ H+

pKa = 10.3

HCO3
– CO3

2– + H+
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The mechanism of how bicarbonate reduces peak tailing was not 

explained by Asakawa et al., however, it is likely that it acts in the same 

manner to phosphate, which has been postulated to act as a layer on the 

stainless steel reducing interactions with nucleotides (Wakamatsu et al., 

2005). 

Mass Spectrometry 

The optimisation of the MS conditions was performed by infusion of a 

standard of each nucleoside or nucleotide (~10 µg mL−1) diluted in a 

mixture of mobile phases A and B (90:10).  Initial development focused on 

ESI+ for nucleosides and ESI– for nucleotides, it was found that ESI+ gave 

superior response for both analytes, with the [M+H]+ ion most abundant 

with low levels of potassium adducts.  This simplified the analysis given 

that polarity switching would not be necessary.  Conditions for MRM were 

optimised by selecting individual fragments and adjusting collision 

energies in order to maximise product ion signal. 

Quantitative product ions for nucleosides were obtained from parent ions 

by loss of neutral ribosyl group (m/z = 132).  This fragmentation is typical, 

since a relatively small amount of energy is required to break one 

(glycosidic) bond, and has been seen in numerous studies (Clariana et al., 

2010; Kammerer et al., 2005; la Marca et al., 2006; Lee et al., 2004; 

Tuytten et al., 2008).  While fragmentation of CMP, GMP, IMP, and AMP 

resulted in the loss of the ribosyl-phosphate group (212 Da) with detection 

of the positively charged base, UMP underwent a more complicated 

fragmentation to obtain a predominant product ion of m/z = 97.  This 

product ion for UMP was also reported by Inoue et al. (2010).  A possible 

pathway to generate this product ion is given in Figure 61.   

A similar fragmentation scheme was described by Curtis et al. (2010), for 

the generation of a product ion with m/z = 81.0 from the fragmentation of 

deoxycytidine 5′-monophosphate. 
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This fragment satisfies a number of conditions:  

1) for non-labelled UMP the product ion, m/z = 97 is seen, whereas for 

SIL UMP the corresponding product ion m/z = 102; therefore of the 

11 isotope labels in parent isotopically labelled UMP, 5 must appear 

in product ion. 

2) the nitrogen rule indicates that the product ion must have either 

both of the nitrogen’s from the precursor ion, or neither of them 

(Yadav, 2005). 

3) since a similar product is not found with uridine, it is probable that 

the phosphate group is critical to the formation of the product ion. 

 

 

Figure 61. Possible fragmentation of UMP 
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Using the developed LC-MS/MS method, the simultaneous detection of 

nucleosides and nucleotides in a standard solution was achieved; 

Figures 62–63. 

 

 

Figure 62. NIL nucleoside and nucleotide MRM chromatograms 
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Quantitation 

When a compound is introduced into the ion source not all of the 

molecules are ionised.  The ionisation efficiency is the fraction of 

introduced compound that becomes ionised, and this differs depending 

upon the chemical structure of the compound, but also due to various 

source parameters, such as temperature and pressure, within the source 

that can vary during day-to-day operation, and are impossible to control 

precisely (Stokvis et al., 2005).  LC-MS is different from other modes of 

detection, such as UV and fluorescence, in that co-eluting compounds that 

are not detected can enhance or suppress the analyte response.  

Additionally, even similar samples may have different combinations and 

concentrations of endogenous compounds that yield different ionisation 

responses of the analyte (Hewavitharana, 2011).  A number of strategies 

can be employed in order to reduce or eliminate matrix effects upon MS 

signal.  However, with complex matrices such as milk products, there is a 

limit to the effectiveness of sample clean-up strategies. 

Matrix matched calibration curves are a common way to compensate for 

signal suppression or enhancement.  However, when a blank matrix is not 

readily available, this approach becomes less feasible (Lehotay et al., 

2010). 

An internal standard calibration technique is appropriate, since it does not 

depend upon the absolute response of the analyte, as long as the 

changes in sensitivity are consistent for the analyte and internal standard.  

If the analyte and internal standard co-elute, changes in sensitivity of the 

analyte due to matrix effects are compensated for.  However, if the analyte 

and internal standard have different retention times they can experience 

different ionisation environments, yielding inaccurate results. 

SIL internal standards are forms of the analyte in which several atoms are 

replaced by isotopes such as 13C, 2H, 18O, or 15N.  It is generally accepted 

that SIL internal standards are chemically and physically identical to the 
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analyte and therefore they have the same retention time, and since their 

atomic mass differs by a few Daltons, they are distinguishable from one 

another by MS making them ideal candidates as internal standards.  It 

should be noted that deuterated internal standards can have stronger 

bonding to carbon atoms, thereby subtly affecting their physicochemical 

properties such that they may exhibit different retention times or recoveries 

(Stokvis et al., 2005; Wang et al., 2007).  For this reason, 13C and 15N 

labelled nucleosides and nucleotides were selected as internal standards 

in the development of this method.  

3.3.2.2 Method Performance 

System Suitability 

A high degree of selectivity is afforded by an MRM experiment; however, 

chromatographic separation is required for critical peaks with similar MRM 

transitions if accurate quantitation is to be achieved.  Chromatographic 

performance was assessed by replicate analyses (n = 6) of a mixed 

nucleoside and nucleotide standard with satisfactory resolution being 

obtained between IMP/AMP (6.7), Ino/Ado (6.8), and Cyd/Urd (4.3) critical 

pairs which differ in mass by < 2 D.  While some peak tailing of 

nucleotides was seen when comparing them with corresponding 

nucleosides, peak tailing was acceptable and would not impede accurate 

estimation of peak area for quantitative purposes; Table 34. 

Single Laboratory Validation 

Method validation experiments to determine linearity, detection limits, and 

precision are summarised in Table 35.  Linearity was evaluated by least-

squares regression analysis, with acceptable values being obtained for the 

correlation coefficient and with standard residuals plots showing no pattern 

and only a small amount of random variation; Figures 64–83.    
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Figure 64. LC-MS method: Cyd linear regression plot 

 

 

Figure 65. LC-MS method: Cyd residuals plot 
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Figure 66. LC-MS method: Urd linear regression plot 

 

 

 

Figure 67. LC-MS method: Urd residuals plot 
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Figure 68. LC-MS method: Guo linear regression plot 

 

 

 

Figure 69. LC-MS method: Guo residuals plot 
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Figure 70. LC-MS method: Ino linear regression plot 

 

 

 

Figure 71. LC-MS method: Ino residuals plot 
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Figure 72. LC-MS method: Ado linear regression plot 

 

 

 

Figure 73. LC-MS method: Ado residuals plot 
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Figure 74. LC-MS method: CMP linear regression plot 

 

 

 

Figure 75. LC-MS method: CMP residuals plot 
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Figure 76. LC-MS method: UMP linear regression plot 

 

 

Figure 77. LC-MS method: UMP residuals plot 
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Figure 78. LC-MS method: GMP linear regression plot 

 

 

 

Figure 79. LC-MS method: GMP residuals plot 
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Figure 80. LC-MS method: IMP linear regression plot 

 

 

 

Figure 81. LC-MS method: IMP residuals plot 
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Figure 82. LC-MS method: AMP linear regression plot 

 

 

 

Figure 83. LC-MS method: AMP residuals plot 
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Indyk, 2007b).  Precision was evaluated as repeatability from 1.9–14.5% 

(HorRat = 0.2–0.8) and intermediate precision from 2.9–14.4%. 

Accuracy determined as spiked recovery results measured in the six 

different product types were within the acceptable limits of 80–115% at the 

10 µg g-1 level as suggested by the AOAC (Horwitz, 2002); Table 36.  

Accuracy estimated as bias was evaluated against reference values for 

NIST 1849a CRM and against AOAC Method 2011.20; Tables 37–38.  

Although there were statistically significant differences for some of the 

results, the differences were small enough (0–13%) that they are unlikely 

to be of practical significance for compliance and labelling requirements. 

A robustness trial was performed evaluating seven factors at levels likely 

to occur during normal use of the method.  The seven factors assessed 

were: initial sample water volume (27 mL, 23 mL); vortex time (40 s, 20 s); 

wait time (14 min, 6 min); centrifuge volume (4.2 mL, 3.8 mL); centrifuge 

speed (4000 x g, 3000 x g); centrifuge time (70 min, 50 min); and a 

dummy factor.  The two factor levels were symmetric around the nominal 

values from the described analytical procedure, with the interval 

representing probable experimental error.  The method was found to be 

robust for the seven parameters studied with variances in the results 

obtained not being significantly different from those expected by chance; 

Figures 84–93.  Given the method’s simplicity, two critical steps are 

required to ensure the accuracy of the results obtained: accurate 

measurement of the amount of sample weighed, and accurate addition of 

the internal standard. 
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Table 38. LC-MS method: bias vs. AOAC Official Method 2011.20 

 
Biasa 

CMP UMP GMP IMP AMP 

Measured resultsb 
12.9 

(0.39) 
4.1 

(0.14) 
1.6 

(0.04) 
0 

(0) 
3.6 

(0.11) 

AOAC 2011.20 

results
b
 

12.3 
(0.5) 

4.0 
(0.21) 

1.6 
(0.07) 

0 
(0) 

3.2 
(0.16) 

Bias (p-value) <0.001 0.24 0.44 0 <0.001 
a
 AMP = adenosine 5′-monophosphate 

 CMP = cytidine 5′-monophosphate 
 GMP = guanosine 5′-monophosphate 
 IMP = inosine 5′-monophosphate 
 UMP = uridine 5′-monophosphate

 

b
 Mean (standard deviation) of analytical results for bovine milk-based infant formula in 

 mg hg
-1

 (n = 12 replicates) 

 

 

 

Figure 84. LC-MS method: Cyd half-normal plot 
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Figure 85. LC-MS method: Urd half-normal plot 

 

 

 

Figure 86. LC-MS method: Guo half-normal plot 
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Figure 87. LC-MS method: Ino half-normal plot 

 

 

 

Figure 88. LC-MS method: Ado half-normal plot 

 

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0 0.5 1 1.5 2

E
ff

e
c
t 

-
fi

n
a
l 
re

s
u

lt
 (

m
g

/1
0
0
g

)

Rankit

ME

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 0.5 1 1.5 2

E
ff

e
c
t 

-
fi

n
a
l 
re

s
u

lt
 (

m
g

/1
0
0
g

)

Rankit

ME



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

RESEARCH 200 
NUCLEOSIDE AND NUCLEOTIDE ANALYSIS BY LC-MS 

 

Figure 89. LC-MS method: CMP half-normal plot 

 

 

 

Figure 90. LC-MS method: UMP half-normal plot 
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Figure 91. LC-MS method: GMP half-normal plot 

 

 

 

Figure 92. LC-MS method: IMP half-normal plot 
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Figure 93. LC-MS method: AMP half-normal plot 
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4. CONCLUSIONS 

LC-UV Method 

The optimisation and validation of a simple and rapid method for the 

routine analysis of nucleotides in infant formulas has been described.  The 

simplicity of analysis is facilitated by the use of SPE without the need for 

prior protein removal.  The use of an internal standard gives additional 

confidence in the accuracy of the results obtained.  The method has been 

demonstrated to be applicable to the analysis of bovine milk-based, 

caprine milk-based, soy-based, and hydrolysed milk protein-based infant 

formulas.  An extension study demonstrated the expansion in scope to a 

wider range of different infant formula products.  This method was 

approved for Official First Action status by by AOAC International and 

approved for further evaluation of reproducibility via a collaborative study, 

which will be undertaken in the near future. 

TPAN Analysis of Milk 

The increasing trend towards nucleotide supplementation of bovine milk-

based infant formulas, and the need for compliance with TPAN regulatory 

limits, the data presented in this study provide a greater understanding of 

the contributions of endogenous nucleosides and nucleotides in bovine 

milk.  The TPAN concentrations in bovine milk and colostrum were 

studied, with differences in TPAN concentrations between summer-milk 

and winter-milk herds attributed particularly to variability in uridine and 

nucleotide concentrations.  As lactation progressed, TPAN concentration 

decreased, as did each of the contributing forms.  In a study of mature 

bovine, caprine, and ovine milk, significant differences among the milk of 

each species were found.  Data obtained for samples collected during the 

afternoon may be evidence of diurnal rhythmicity of nucleoside and 

nucleotide production in milk.  Further study would be useful in 
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establishing the extent and possible causes for the diurnal pattern of 

nucleoside and nucleotide expression in milk. 

Numerous climatic and dietary factors could affect TPAN levels in milk.  

Further study controlling each of these factors would be required to identify 

those factors that influence nucleoside and nucleotide expression in milk.  

An expansion of the current study could be undertaken to consider the 

effects of breed, location, and diet on TPAN expression in milk. 

LC-MS/MS Method 

It has been identified that a key industry need was an accurate, precise, 

and robust method for the simultaneous analysis of both nucleotides and 

nucleosides to ensure food safety to the infant consumer and to provide a 

reference method for dispute resolution across trade borders.  The 

optimisation and validation of an LC-MS/MS method for the analysis of 

nucleosides and nucleotides in infant formulas has been described. 

The use of SIL internal standards provides confidence in the accuracy of 

the results obtained.  Despite the attributes of tandem MS in facilitating a 

potentially unequivocal analysis, the technique is challenging with respect 

to mobile phase conditions and the need for stable isotope labelled 

standards.  The method was demonstrated to be precise and accurate, 

and has been validated for the analysis of nucleotides and nucleosides in 

bovine milk-based, soy-based, caprine milk-based and hydrolysed milk 

protein-based infant formulas. 

The infant formula industry is currently evaluating methods to be used as 

standards for analysing various nutrients, and this method makes a novel 

and significant addition to those currently under consideration. 
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Nucleotides are compounds of critical importance to cellular function. They operate as precursors to nucleic acids, as mediators of 

chemical energy transfer and cell signalling, and as integral components of coenzymes in the metabolism of carbohydrates, lipids

and protein.

and improve gastrointestinal tract repair after damage. With the proliferation of nucleotide-supplemented pediatric formulas, 

robust methods that incorporate minimal sample preparation and rapid chromatographic separations are required for routine 

product compliance analysis.

This method below describes a simple SPE sample clean-up that avoids the prior need to remove protein, coupled with a binary 

gradient reversed-phase liquid chromatographic system for the purpose of routine analysis of nucleotide supplemented infant 

formula. Analytical security is enhanced with an internal standard based quantitation.

METHODOLOGY

CONCLUSIONS
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Parametersa CMPb UMP GMP IMP TMP AMP

c

Capacity factor

–

Tailing

Theoretical Plates

Peak Area

a

b AMP = adenosine 5’-monophosphate, CMP = cytidine 5’-monophosphate, GMP = guanosine 5’-monophosphate, IMP = inosine 5’-monophosphate, UMP = uridine 5’-monophosphate, TMP = 
thymidine 5’-monophosphate” 

c

Analytea
Range

(mg mL–1)
Linear regression r2

MDL

(mg 100 g–1)b

RSDr

(%)c
HorRat

r
d

RSD
iR

(%)e

Recovery

(%)f

AMP 1.25 - 17.49 y = 255805x + 11862 1.0000 0.19 2.0 0.4 4.5

CMP 0.61 - 8.55 y = 287762x - 2493 0.9999 0.08 1.0 0.3 6.0

GMP 1.11 - 15.55 y = 200342x - 1807 1.0000 0.06 2.1 0.4 5.2

IMP 1.09 - 15.27 y = 198519x + 3879 1.0000 0.10 1.4 0.3 3.8

UMP 1.12 - 15.68 y = 146931x - 1839 0.9999 0.08 2.3 0.5 8.6

TMP 1.61 - 22.54 y = 150494x - 455 1.0000 – – – –

a AMP = adenosine 5’-monophosphate, CMP = cytidine 5’-monophosphate, GMP = guanosine 5’-monophosphate, IMP = inosine 5’-monophos phate, UMP = uridine 5’-monophosphate, TMP = 
thymidine 5’-monophosphate

b Determined from n t  x sd, where n = 10 and  = 0.01. 
c

d
r r

 = C-0.15 at 10 ppm concentration level 
e

f

Sample Typea
Nucleotide

Supplemented
Results (mg/100g-1)

CMPb UMP GMP IMP AMP

Bovine milk-based IF c

Bovine milk-based FO

Bovine milk-based FO No 1.0 0 0 0.1 0

Bovine milk-based FO

Bovine milk-based AN 0    –

Soy-based IF No 0.1 0.3 0.3 0 0.5

Caprine milk-based IF No 4.0 8.2 6.4 0.3 2.3

Bovine milk-based WMP No 4.0 0 0 0 0

Hypoallergenic IF Nod

Hypoallergenic IF No 0.0 0 0 0 0

a  IF = infant formula, FO = follow-on formula, AN = adult nutritional product, WMP = whole milk powder.
b  AMP = adenosine 5’-monophosphate, CMP = cytidine 5’-monophosphate, GMP = guanosine 5’-monophosphate, IMP = inosine 5’ monophosphate, UMP = uridine 5’-monophosphate.
c

d  Hypoallergenic sample spiked with nucleotide mixed standard prior to analysis.

–  IMP not added

INTRODUCTIONABSTRACT

pediatric formulas and milk products is described. Following sample dissolution, potential interferences were removed by strong

anion-exchange solid-phase extraction. Chromatographic analyses were performed using a C18 stationary phase with gradient 

analysis of nucleotide-supplemented bovine milk-based infant and follow-on formulas.

Paper submitted to Journal of AOAC International, 2009.

SAMPLE PREPARATION

-1

well.

SOLID PHASE EXTRACTION

of H
2
O.

2
PO

4
, pH 3.0 into a 

test tube. 

HPLC ANALYSIS
Column: Gemini C

18

Mobile Phase A: KH
2
PO

4

Detection: Photo-diode array, quantify at 250nm 

factor for CMP and UMP, however, this was deemed acceptable due to uncompromised peak integrity of these two compounds in all samples analysed.

small amount of random noise further demonstrating linearity. Method detection limits determined are well below levels typically supplemented to pediatric formulas. A Plackett-Burman robustness 

Int. Dairy J

The method was applied to a number of commercially available pediatric and nutritional powders. Products included for testing were infant formulas, follow-on formulas and an adult nutritional 

product. These products included a range of different sources; bovine milk, hydrolysed milk protein, caprine milk, and soy protein.

A rapid robust analytical method for the analysis of 5’-mononucleotides 
supplemented to pediatric formulas is described

}

RESULTS AND DISCUSSION



 



Sample Collection
Samples from a winter-milk herd were collected over a 1 month period in late March 2008 
and samples from a summer-milk herd were collected over a 1 month period in early August 
2009. Collected samples were initially refrigerated at 4 ºC, then taken to the laboratory where 
endogenous enzymes were chemically inactivated prior to storage at < -15 ºC.

Sample Preparation
Each sample was pooled, then split into four 5 mL sub-samples, to each of which internal 
standard (10 μg, 5-methylcytidine) was added, and then each sub-sample was subjected to a 
different enzymatic treatment.

Figure 1: Schematic of TPAN experiments

Solid Phase Extraction
Clean-up of enzymatic extracts was achieved by solid phase extraction using a phenylboronate 
affinity gel (Bio-Rad), whereby nucleosides are covalently bonded to the gel at high pH, and 
interferences were then removed with two washings in high pH buffer. The nucleosides were 
then eluted from the affinity gel at low pH with the addition of phosphoric acid, and filtered 
ready for analysis.

Chromatographic Analysis
Column: Prodigy C18 5 μm, 4.6 x 150 mm (Phenomenex)
Mobile Phase: (A) NaCH3COO (0.05 M), pH = 5.6, (B) MeOH (100%)
Flowrate: 0.7 mL/min with low-pressure gradient mixing (A) & (B)
Detection: Photo-diode array 210–300 nm, quantitation at 260 nm
Quantitation: Internal standard technique (5-methylcytidine)

Determination of Total Potentially 
Available Nucleosides in Bovine 
Colostrum and Milk
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ANALYTICAL TECHNIQUE

INTRODUCTION
Nucleosides and nucleotides are compounds of critical importance to cellular function.  Dietary 
sources of nucleotides are considered conditionally essential for continued optimal metabolic 
function.  Dietary nucleotides are ingested in the form of nucleoproteins, polymeric nucleotides 
(nucleic acids) and nucleotide adducts as well as free nucleotides.

In order to determine the total potentially available nucleosides (TPAN), an analytical protocol 
to characterise the contributions of different molecular nucleoside sources to infant nutrition 
was developed (Leach et al. Am. J. Clin. Nutr. 1995, 61, 1224–1230). The analytical method uses a 
number of enzymatic treatments and incorporates combinations of nuclease, pyrophosphatase 
and phosphatase enzymes into the sample preparation. The development of this protocol has 
been an important contribution to further understanding the distribution of nucleosides and 
nucleotides and their implications for infant nutrition.

Bovine milk is almost exclusively used in the manufacture of infant formula intended to 
substitute for human breast milk, and since the levels of TPAN in bovine milk have not been 
previously reported, the purpose of the current study was to evaluate bovine milk TPAN levels 
and variation over the first month of lactation.

Bovine milk samples from two herds were studied over the course of the first month of lactation, 
and total potentially available nucleosides were determined. 

•	 Uridine and uridine nucleotides were the major contributor to TPAN in early colostrum 
•	 Differences in TPAN concentrations between summer milk and winter-milk herds were largely 	
	 attributable to variability in uridine and nucleotide concentrations.
•	 TPAN concentration decreased as lactation progressed, as did each of the contributing forms.

CONCLUSIONS
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RESULTS AND DISCUSSION

The absolute concentrations indicated a distinct difference between the two herds, although the 
general trends were the same.  High levels of TPAN were found in colostrum, with a decrease in 
their concentrations as lactation progressed.  

Figure 3: TPAN in bovine milk over the first month of lactation

A comparison of the two herds showed little difference in total free nucleoside content as 
lactation progressed. Differences in colostral monomeric nucleotide levels between the herds
were seen, with the winter-milk herd containing 5–10 times the levels of the summer-milk 
herd although by the fifth day, nucleotide levels decreased to similar levels between the two 
herds. The levels of monomeric nucleotides measured in this study were generally higher than 
those reported previously (Gill and Indyk, Int. Dairy J. 2007, 17, 596–605), most likely due to a 
significant contribution from multiple phosphorylated forms, which the TPAN analytical method 
aggregates as a single value.

The pyrimidines (cytidine and uridine) differed markedly from each other through lactation.  
Whereas the quantities of cytidine and cytidine nucleotides were relatively constant throughout, 
uridine and uridine nucleotides levels varied considerably.  In contrast, concentrations of the 
purines (guanosine and adenosine) in bovine milk were more consistent through lactation.  
Purine nucleosides and nucleotides made a relatively small contribution to TPAN (6–20%).

The nucleoside results for each of the four sub-samples allowed the contributions of the 
different forms (nucleosides, nucleotide adducts, monomeric and polymeric nucleotides) to TPAN 
to be calculated.

Figure 2: Chromatograms of a mixed standard and colostrum sample

Milk Sample

Enzyme Treatment

Species Measured

Results Obtained

no enzyme
phosphatase
(pH 8.5, 3 h)

nuclease
(pH 5.1, 16 h)
phosphatase
(pH 8.5, 3 h)

pyrophosphatase
(pH 8.5, 3 h)

nuclease
(pH 5.1, 16 h)
phosphatase
(pH 8.5, 3 h)

Nucleosides

Nucleosides

Nucleosides Nucleosides Nucleosides

Nucleosides from Nucleotides Nucleosides from Nucleotides Nucleosides from Nucleotides

Nucleosides from RNA Nucleosides from RNA

Nucleosides from Adducts

Nucleosides from AdductsPolymeric NucleosidesMonomeric Nucleotides

TPAN

cy
tid

in
e

ur
id

in
e

5-
m

et
hy

l c
yt

id
in

e

gu
an

os
in

e

ad
en

os
in

e

8-
br

om
og

ua
no

si
ne

Colostrum

Mixed Standard

Minutes
0             2              4              6              8             10           12            14             16            18            20           22            24            26            28            30

Winter-milk - TPAN

300

250

200

150

100

50

0

0

50

100

150

200

250

300

0    0.25    1      2       3      5      10    20    30

C
on

ce
nt

ra
tio

n 
(µ

m
ol

 d
L-1

)

D
ay

s
Po

st
-p

ar
tu

m

Cytidine
Uridine
Guanosine
Adenosine

Polymeric nucleotides
Nucleotide adducts
Monomeric nucleotides
Nucleosides

Summer-milk - TPAN

300

250

200

150

100

50

0

0

50

100

150

200

250

300

0    0.25    1       2       3      5      10     20    30
C

on
ce

nt
ra

tio
n 

(µ
m

ol
 d

L-1
)

D
ay

s
Po

st
-p

ar
tu

m

Cytidine
Uridine
Guanosine
Adenosine

Polymeric nucleotides
Nucleotide adducts
Monomeric nucleotides
Nucleosides



 



   

  

 



 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

APPENDIX II: PUBLICATIONS 245 
 

APPENDIX II: PUBLICATIONS 

A Liquid Chromatographic Method for Routine Analysis of 

5′-Mononucleotides in Pediatric Formulas 

Reprinted from the Journal of AOAC International, Vol.93 (3), Gill, B.D., 

Indyk, H.E., Kumar, M.C., Sievwright, N.K., Manley-Harris, M., A liquid 

chromatographic method for routine analysis of 5′-mononucleotides in 

pediatric formulas, 966–973, copyright (2010), with permission from AOAC 

International. 

 

Determination of total potentially available nucleosides in bovine 

milk. 

Reprinted from the International Dairy Journal, Vol.21, Gill, B.D., Indyk, 

H.E., Manley-Harris, M., Determination of total potentially available 

nucleosides in bovine milk, 34–41, copyright (2011), with permission from 

Elsevier. 

 

Determination of total potentially available nucleosides in bovine, 

caprine, and ovine milk. 

Reprinted from the International Dairy Journal, Vol.24, Gill, B.D., Indyk, 

H.E., Manley-Harris, M., Determination of total potentially available 

nucleosides in bovine, caprine, and ovine milk, 40–43, copyright (2012), 

with permission from Elsevier. 

 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

APPENDIX II: PUBLICATIONS 246 
 

Analysis of 5′-Mononucleotides in Infant Formula and Adult/Pediatric 

Nutritional Formula by Liquid Chromatography: First Action 2011.20. 

Reprinted from the Journal of AOAC International, Vol.95 (3), Gill, B.D., 

Indyk, H.E., Kumar, M.C., Sievwright, N.K., Manley-Harris, M., Dowell, D. 

Analysis of 5′-Mononucleotides in Infant Formula and Adult/Pediatric 

Nutritional Formula by Liquid Chromatography: First Action 2011.20, 599–

602, copyright (2012), with permission from AOAC International. 

 

Analysis of nucleosides and nucleotides in infant formula by liquid 

chromatography-tandem mass spectrometry. 

Springer and the original publisher (Analytical Bioanalytical Chemistry, 

Vol. 405; Gill, B.D., Indyk, H.E., Manley-Harris, M. Analysis of nucleosides 

and nucleotides in infant formula by liquid chromatography–tandem mass 

spectrometry. 5311–5319, 2013) is given to the publication in which the 

material was originally published, with kind permission from Springer 

Science and Business Media. 

 



FOOD COMPOSITION AND ADDITIVES

A Liquid Chromatographic Method for Routine Analysis of
5¢-Mononucleotides in Pediatric Formulas

BRENDON D. GILL

Fonterra Co-operative Group Ltd, PO Box 7, Waitoa 3380, New Zealand and University of Waikato, Private Bag 3105,
Hamilton 3240, New Zealand
HARVEY E. INDYK, MAUREEN C. KUMAR, and NATHAN K. SIEVWRIGHT

Fonterra Co-operative Group Ltd, PO Box 7, Waitoa 3380, New Zealand
MERILYN MANLEY-HARRIS

University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand

An RP-HPLC method for the routine determination
of supplemented 5¢-mononucleotides (uridine
5¢-monophosphate, inosine 5¢-monophosphate,
adenosine 5¢-monophosphate, guanosine
5¢-monophosphate, and cytidine
5¢-monophosphate) in pediatric formulas and milk
products is described. Following sample
dissolution, potential interferences were removed
by anion-exchange SPE. Chromatographic
analyses were performed using a C18 stationary
phase with gradient elution, UV detection, and
quantitation by an internal standard technique. A
single-laboratory validation was performed, with
recoveries of 92–101% and repeatability RSDs of
1.0–2.3%. The method was optimized for the rapid,
routine analysis of nucleotide-supplemented
bovine milk-based infant and follow-on formulas.

N
ucleotides are compounds of critical importance to
cellular function. They operate as precursors to
nucleic acids, as mediators of chemical energy

transfer and cell signaling, and as integral components of
coenzymes in the metabolism of carbohydrates, lipids, and
proteins (1–3). Nucleotides are not essential dietary nutrients
as they can be synthesized de novo or recovered via salvage
pathways. However, in times when the endogenous supply is
inadequate, such as during periods of rapid growth or after
injury, they may become conditionally essential (1).

Nucleotide-supplemented infant formulas have been
reported to enhance immune response (4–6), influence
metabolism of fatty acids, and improve gastrointestinal tract
repair after damage (1, 7). Infants fed formula supplemented
with nucleotides are reportedly less likely to experience
diarrhea and have elevated serum immunoglobulin A
concentrations (8). Nucleotide-supplemented infant formula
has been shown to positively modify the composition of the

intestinal microflora, compared with unsupplemented
formula (1, 9).

As understanding of the nucleotide composition of bovine
milk and human milk has increased, manufacturers have
endeavored to modify the composition of infant formulas to
resemble that of human milk more closely. Nucleotides have,
therefore, been added routinely to infant formulas since the
1980s, and added to formulas manufactured specifically for
pre-term infants since 2002 (10). Although more than 12
nucleotides are present in human milk, supplementation is
limited to adenosine 5¢-monophosphate (AMP), cytidine
5¢-monophosphate (CMP), guanosine 5¢-monophosphate
(GMP), inosine 5¢-monophosphate (IMP), and uridine
5¢-monophosphate (UMP) in the form of the readily soluble
sodium salts (11).

With the proliferation of nucleotide-supplemented
pediatric formulas, robust methods that incorporate minimal
sample preparation and rapid chromatographic separations
have been developed for routine product compliance analysis. 
Analytical methods for nucleos(t)ides in milk have been
reviewed previously by Gil and Uauy (12), and more recently
by Gill and Indyk (13). Initial preparation of infant formulas
for analysis is usually achieved by acid precipitation of casein
proteins from the reconstituted sample (14, 15), although
ultrafiltration has also been reported (16). Additional cleanup
of sample extracts using ion-exchange SPE has been
reported (14).

Over the last decade, LC with UV detection has become the
dominant technique for the final determination of nucleotides in 
milk products following sample preparation. Ion-pair
reversed-phase liquid chromatography (IP-RPLC) is frequently 
used to separate nucleotides and can offer advantages in
selectivity and efficiency over RPLC for the separation of
charged analytes (14, 17, 18). However, IP-RPLC can require
long equilibration times, and ion-pair reagents tend to be
corrosive, thereby reducing column life (19). Unmodified
reversed-phase chromatography offers the advantage of a
simplified mobile phase system and is preferable if acceptable
retention and resolution are achieved. Therefore, at an
appropriate mobile phase pH, mononucleotides are readily
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retained on a C18 column and a methanol gradient is sufficient
to remove late-eluting nucleotides (15).

However, despite the quantity of published methods, there
is currently no official internationally accepted reference
method for the analysis of nucleotides in milk and pediatric
formulas, a situation that renders international trade and infant 
nutrition difficult to standardize.

The aim of this study is to validate a simple, rapid and
robust method for routine compliance testing of
nucleotide-supplemented pediatric formulas. The method
herein describes an SPE sample cleanup that avoids the prior
need to remove protein, coupled with a binary gradient
RP-HPLC system. Analytical security is enhanced with an
internal standard-based quantitation. This technique has been
applied to the analysis of bovine milk-based, caprine
milk-based, soy-based, and hypoallergenic pediatric
formulas.

Experimental

Apparatus

HPLC was carried out with an LC-20AT pump, an
SIL-20A sample injector unit equipped with a 50 mL injection
loop, a DGU-20A5 degasser unit, a CTO-20AC column oven, 
and an SPD-M20A photodiode array detector (Shimadzu,
Kyoto, Japan). Shimadzu LC solutions software Version 1.22
SP1 was used for instrument control and data processing.

Separation was achieved with a Gemini C18 column, 5 mm,
4.6 ´ 250 mm (Phenomenex, Torrance, CA). UV absorbances 
for calibration standards were acquired with a model
UV-1601 spectrophotometer (Shimadzu) with digital readout
to four decimal places. A Meterlab PHM210 standard pH
meter (Radiometer Analytical, Lyon, France) was used for the 
determination of pH. Polypropylene centrifuge tubes, 50 mL
(Biolab, Auckland, New Zealand), Terumo 3 mL disposable
syringes (Terumo Corp., Laguna, Philippines), and Minisart
0.2 mm syringe filters with cellulose acetate membranes
(Sartorius, Göttingen, Germany) were used for sample
preparation.

SPE was performed on a Visiprep 12 port SPE vacuum
manifold (Sigma Chemical Co., St. Louis, MO) using
Chromabond SB polypropylene strong-anion exchange
(SAX) SPE cartridges, 6 mL ´ 1000 mg (Macherey-Nagel,
Düren, Germany).

Before use, mobile phases were filtered and degassed
using a filtration apparatus with 0.45 mm nylon filter
membranes (Alltech, Deerfield, IL).

Reagents

Thymidine 5¢-monophosphate (TMP), AMP sodium salt,
CMP disodium salt, GMP disodium salt, IMP disodium salt,
UMP disodium salt, and potassium bromide were
purchased from Sigma Chemical Co. Potassium dihydrogen
phosphate, orthophosphoric acid, potassium hydroxide,
ethylenediaminetetraacetic acid (EDTA), sodium chloride,
and methanol were supplied by Merck (Darmstadt, Germany). 
Water was purified with resistivity ³18 MW using an E-pure
water system (Barnstead, Dubuque, IA).

A standardizing buffer (KH2PO4, 0.25 M, pH = 3.5) was
made by diluting 34.02 g KH2PO4 in 900 mL water, adjusting
the pH to 3.0 with orthophosphoric acid, and then making the
solution to 1 L. An extraction solution (NaCl, 1 M: EDTA
5 mM) was made by dissolving 58.5 g NaCl and 1.9 g EDTA
in 1 L water. A wash solution (KBr, 0.3 M) was made by
dissolving 3.57 g KBr in 100 mL water. The SPE eluent
(KH2PO4, 0.5 M, pH = 3.0) was made by dissolving 6.805 g
of KH2PO4 in 90 mL water, adjusting the pH to 3.0 with
orthophosphoric acid, and then making the solution to
100 mL.

Mobile phase A (KH2PO4, 0.1 M, pH = 5.6) was made by
dissolving 13.6 g KH2PO4 in 900 mL of water, adjusting the
pH to 5.6 with KOH solution (25% w/v), and then making to
1 L with water. Mobile phase B consisted of 100% methanol.
As microbial growth often occurs in phosphate buffers that
contain little or no organic solvent at room temperature, the
mobile phase was made fresh daily.
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Table 1. UV absorbance maxima and extinction
coefficients for 5¢-mononucleotides

Nucleotidea lmax, nm E cm1
1%

AMPb 257 430.4

CMPb 280 398.0

GMP
b

254 393.3

IMP
b

249 357.3

UMP
b

262 313.5

TMP 267 288.5

a AMP = adenosine 5¢-monophosphate; CMP = cytidine
5¢-monophosphate; GMP = guanosine 5¢-monophosphate; 
IMP = inosine 5¢-monophosphate; UMP = uridine
5¢-monophosphate; TMP = thymidine 5¢-monophosphate.

b From reference (15).

Table 2. Gradient procedure for chromatographic
separation

Phase composition

Time, min
Flow rate,
mL/min % A % B

  0 0.5 100 0

  5 0.5 100 0

14 0.5  90 10 

15 0.5  80 20 

35 0.5  80 20 

36 0.5 100 0

50 0.5 100 0



Standard Solutions

The extinction coefficient of internal standard TMP at the
UV absorbance maximum (lmax) of 267 nm was determined
experimentally. The concentrations of analyte nucleotide
stock standards were measured using previously reported
extinction coefficients (Table 1; 15).

Stock standards were prepared by accurately weighing
approximately 50 mg of each nucleotide into separate 50 mL
volumetric flasks and filling to volume with water. The
concentration of each nucleotide stock standard was
determined by diluting 1.0 mL of stock standard to 50 mL
with standardizing buffer (KH2PO4, 0.25 M, pH = 3.5) and
measuring the absorbance at the appropriate lmax.

An intermediate standard solution of TMP was made by
diluting 4 mL TMP stock standard into 50 mL water. A mixed
intermediate standard solution of AMP, CMP, GMP, IMP,
and UMP was made by diluting 2 mL of each stock standard in 
a single 50 mL volumetric flask and filling to volume with
water.

Assay calibration standards were prepared by diluting the
two intermediate standards with water to the required
concentration. The calibration standards contained a constant
concentration of the internal standard TMP (about 3 mg/mL)
and variable concentrations (about 0.5–7 mg/mL) of CMP,
UMP, GMP, IMP, and AMP.

Sample Preparation

Approximately 1 g of infant formula powder was weighed
accurately into a 50 mL centrifuge tube and dissolved in
30 mL of extraction solution (NaCl,1 M: EDTA 5 mM);
1.0 mL of a TMP intermediate standard (about 80 mg/mL) was 
added, and the tube was capped and vortex mixed. The sample 
was allowed to stand for 10 min to ensure complete hydration
before dilution to a final volume of 50 mL with water.

SPE

For each sample, a single SPE cartridge was placed on an
SPE vacuum manifold. The columns were conditioned by
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Table 3. Chromatographic performance

Parametersa CMPb UMPb GMPb IMPb TMPb AMPb

Retention time, min       8.8 (0.22%)c       11.8 (0.17%)     19.8 (0.15%)      20.6 (0.10%)       25.0 (0.04%)      25.8 (0.04%)

Capacity factor    0.6 (0%)        1.2 (0.83%)    2.7 (0%)     2.8 (0%)     3.6 (0%)     3.8 (0%)

Resolution —       6.3 (0.07)     16.9 (1.11%)      2.2 (0.45%)      15.6 (0.19%)       3.5 (0.57%)

Tailing       1.3 (3.84%)        1.2 (3.33%)    1.0 (0%)      1.0 (5.00%)     1.1 (0%)      1.1 (3.6%)

Theoretical plates   6810 (0.87%)   8527 (5.51%) 33692 (3.28%) 60448 (1.22%) 194363 (0.81%) 241749 (0.22%)

Peak area 142255 (0.51%) 200488 (1.39%) 225242 (0.23%) 122536 (0.75%) 488585 (0.11%) 308754 (0.05%)

a Calculations as defined by U.S. Pharmacopeia.
b AMP = Adenosine 5¢-monophosphate; CMP = cytidine 5¢-monophosphate; GMP = guanosine 5¢-monophosphate; IMP = inosine

5¢-monophosphate; UMP = uridine 5¢-monophosphate; TMP = thymidine 5¢-monophosphate.
c Mean (percent RSD) of six replicates of a mixed nucleotide standard.

Table 4. Method performance as linearity, detection limit, and precision

Analytea
Range, 
mg/mL Linear regression r2

MDL, 
mg/100 gb RSDr, %

c HorRatr
d RSDiR, %e

AMP 1.25–17.49 y = 255805x + 11862 1.0000 0.19 2.0 0.4 4.5

CMP 0.61–8.55  y = 287762x – 2493 0.9999 0.08 1.0 0.3 6.0

GMP 1.11–15.55 y = 200342x – 1807 1.0000 0.06 2.1 0.4 5.2

IMP 1.09–15.27 y = 198519x + 3879 1.0000 0.10 1.4 0.3 3.8

UMP 1.12–15.68 y = 146931x – 1839 0.9999 0.08 2.3 0.5 8.6

TMP 1.61–22.54 y = 150494x – 455 1.0000 — — — —

a AMP = Adenosine 5¢-monophosphate; CMP = cytidine 5¢-monophosphate; GMP = guanosine 5¢-monophosphate; IMP = inosine
5¢-monophosphate; UMP = uridine 5¢-monophosphate; TMP = thymidine 5¢-monophosphate.

b Determined from n replicates at or near the expected detection limit, MDL = t(n – 1, 1 – a) ´ SD, where n = 10 and a = 0.01.
c Relative standard deviation repeatability(RSDr) = SD/mean ´ 100 (n = 6).
d Horwitz ratio = RSDr/pRSDr, where pRSDr = C–0.15 at 10 ppm concentration level.
e RSD intermediate reproducibility = SD/mean ´ 100 (n = 24).



elution with 4 mL methanol, followed by elution with
2 ´ 5 mL water. The cartridge was loaded with 4 mL sample
solution at a flow rate of <2 mL/min. The cartridge was
washed (KBr, 0.3 M, 4 mL) to remove interferences. The
nucleotides were then eluted with SPE eluent solution
(KH2PO4, 0.5 M, pH 3.0, 4 mL) into a test tube. An aliquot of
the eluent was filtered through a 0.2 mm syringe filter into an
autosampler vial.

Chromatography

Chromatographic separation was achieved using a
modification of the procedure described previously (15).
Gradients were formed by low pressure mixing of two mobile
phases, A and B, with separation of nucleotides achieved
using the procedure shown in Table 2.

The photodiode array detector acquired spectral data
between 210 and 300 nm. Integration of peak area was
achieved at specific wavelengths: 250 nm for IMP; 260 nm for 
AMP, GMP, and TMP; and 270 nm for CMP and UMP. A
linear regression plot of the ratios of peak area against
concentration for each nucleotide relative to TMP was
generated, and the nucleotide contents in unknown samples
were interpolated from this calibration curve.

( )Nucleotide mg g
A

A L

C

W
NT

IS

IS/ 100
1

100= ´ ´ ´

where ANT = nucleotide peak area in sample; AIS = TMP peak 
area in sample; L = linear regression slope of calibration
curve; CIS = amount in milligrams of internal standard added;
W = weight of sample in grams; and 100 = mass conversion
of result to per 100 g.

Method Validation

Seven mixed standard nucleotide solutions covering the
expected working range were analyzed in duplicate, and
linearity of dose response was evaluated by least-squares
regression analysis. A value of 0.997 for the correlation
coefficient (r2) was deemed to be the minimum suitable for
acceptable analysis. Plots of standard residuals were assessed
as a further test for linearity.

Repeatability was determined by analyzing replicates
(n = 6) of a nucleotide-supplemented bovine milk-based
infant formula. Intermediate precision was determined from

replicate analyses (n = 6) of the same sample tested on
4 different days by two different analysts.

Method detection limits (MDLs) were determined in
accordance with U.S. Environmental Protection Agency
procedures (20). The MDL procedure sets the detection limit
at the 99% confidence level, minimizing false positive errors.

The robustness of the method was assessed by conducting
a Plackett-Burman trial (21), with evaluation of seven factors
deemed to potentially affect the final results, at levels likely to
occur during normal use of the method. Statistical analysis to
identify critical effects consisted of a t-test, whereby a
calculated t-value based on the effect, EX, and an estimation of 
the standard error, (SE)E, were compared with a critical value
(significance level a = 0.05). Graphical interpretation was
assessed by construction of a half-normal plot, whereby
nonsignificant effects tended to fall on a straight line through
zero, whereas significant effects deviated from the straight
line. The standard error estimate was used to calculate the
margin of error (ME), which was plotted on the half-normal
plot to identify the limit above which effects were deemed to
be significant (22, 23).

In the absence of a currently available infant formula
standard reference material (SRM) with certified levels of
nucleotides, method accuracy was determined based on
recovery and bias. Recovery was evaluated at three
concentration levels for three different sample matrixes:
bovine milk-based infant formula; soy-based infant formula;
and a hypoallergenic infant formula containing hydrolyzed
milk protein. Method bias was assessed by testing replicate
samples (n = 12) of a nucleotide-supplemented formula by the 
method described herein and a method published
previously (15).

Results and Discussion

Method Optimization

Method optimization consisted of adapting the sample
preparation and chromatographic conditions reported
previously (15) to accommodate direct SPE for the removal of 
non-nucleotide interferences, thereby simplifying both the
overall analytical scheme and the chromatographic
separation.

Both acid precipitation and ultrafiltration techniques to
remove protein prior to SPE were initially evaluated. Acid
precipitation is a rapid and simple means of removing caseins; 
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Table 5. Recovery (%) of nucleotides in spiked samplesa

AMP CMP GMP IMP UMP TMP

Bovine milk-based infant formula 100 (2.10%)b 99 (1.82%) 98 (2.14%) 98 (1.63%) 94 (3.30%) 97 (1.34%)

Soy-based infant formula 98 (3.57%) 98 (3.57%) 99 (2.42%) 97 (4.74%) 97 (5.88%) 101 (5.94%)

Hypoallergenic infant formula 100 (3.70%) 99 (1.92%) 101 (1.29%) 98 (3.78%) 92 (5.00%) 100 (3.70%)

a AMP = adenosine 5¢-monophosphate; CMP = cytidine 5¢-monophosphate; GMP = guanosine 5¢-monophosphate; IMP = inosine
5¢-monophosphate; UMP = uridine 5¢-monophosphate; TMP = thymidine 5¢-monophosphate.

b Mean recovery (percent RSD) of six replicates over three concentration levels.



however, the low pH of the sample extract may negatively
impact SPE retention unless the extract is first neutralized.
Ultrafiltration removes all proteinaceous material above the
molecular weight cut-off, and the sample remains at
physiological pH, thereby removing a potential neutralization
step prior to SPE. However, ultrafiltration was found to be an
unsatisfactory means of protein removal as it proved to be
time-consuming, difficult to obtain sufficient permeate, and
variable in the recovery of individual nucleotides.

Based on these trials, the assumption that it was necessary to
remove protein prior to SPE was considered. The dissolution of 
a powder sample in the high salt solution was found to be
efficacious in producing a uniform sample solution that, when
applied directly to the SPE cartridge, did not compromise the
recovery of nucleotides. Residual milk protein content in the
eluent was equivalent to that of an acid-precipitated sample
and it is probable that some caseins precipitate in the SPE
cartridge with the addition of the low pH buffer.

The SAX cartridges contain quaternary amine
anion-exchange sites, which strongly attract the anionic
phosphate moiety of nucleotides. In order to remove the
majority of interfering components in the sample, different
aqueous wash solutions, containing a variety of anions at a
number of concentrations, were evaluated. Bromide ions were 
found to be most effective in removing potentially interfering
components, such as nucleosides, orotic acid, and uric acid,
while still retaining nucleotides on the cartridge.

In order to elute the nucleotides from the SAX cartridge,
two options were available. One option was to add sufficient
acid to lower the pH to the pKa of the nucleotide phosphate
(approximate pH = 1), thereby neutralizing the negative
charge and eluting the nucleotides for collection. However, in
order to protect the analytical column, neutralization of the
extract would be required prior to HPLC analysis.
Alternatively, the addition of anions that have a high affinity
for the quaternary amine and added at high ionic strength,
could be utilized to elute the nucleotides. This was achieved
by the addition of 0.5 M phosphate in the eluent, which
readily displaces nucleotides bound on the SAX cartridge.

In multi-step analytical procedures, such as those
involving SPE cleanup, there is potential for analyte loss and,
hence, the use of an internal standard is considered to be
mandatory to obtain consistently accurate and precise results.
With an internal standard, it is possible to correct for losses
associated with SPE cleanup, either by analyte breakthrough
or by incomplete desorption. The selection of TMP as an
internal standard was supported by a number of factors:
structural similarity to analyte nucleotides; absence of
detectable quantities in infant formulas; retention under
desired chromatographic separation; and commercial
availability.

Method Performance

Chromatographic performance was assessed by replicate
analyses (n = 6) of a mixed nucleotide standard (Table 3).
Performance within recommended guidelines was achieved,
with the exception of the capacity factors for CMP and UMP
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Figure 1. Half-normal plot of results for robustness
trial (a) inosine 5¢-monophosphate, (b) adenosine
5¢-monophosphate, (c) cytidine 5¢-monophosphate, 
(d) uridine 5¢-monophosphate, and (e) guanosine
5¢-monophosphate. ME = margin of error.



(guideline >2.0); however, this was deemed to be acceptable
because of uncompromised peak integrity of these two
compounds in all samples analyzed.

The results from validation studies are summarized in
Tables 4 and 5. Linearity of dose response was confirmed by
least-squares regression analysis, with acceptable values
obtained for the correlation coefficient. Plots of standard
residuals showed no structure and only a small amount of
random noise, further demonstrating linearity.

The precision was acceptable and similar to what could be
expected, as illustrated by a repeatability Horwitz ratio
between 0.3 and 0.5, slightly better than the acceptable range
of 0.5–2.0, and an intermediate precision of 3.8–8.6% (24).

As the calculated MDL is dependent on the concentration
of the replicate samples, the level of analyte in the sample
should not exceed 10 times the calculated MDL; nor should it
be less than the MDL. The concentrations used to generate the
MDL (0.52–1.68 mg/100 g) were appropriate to correctly
establish the MDL.

The seven factors assessed in the robustness trial were:

concentration of salt solution, sample wait time, load volume,

wash solution, wash volume, eluent solution, and eluent

volume. The two factor levels were symmetric around the

nominal values from the described analytical procedure, with

the interval representing experimental error of the equipment

used (pipets, volumetric flasks, balances) and an estimated

error on the part of the analyst. The method was found to be

robust for these factors at the levels studied (Figure 1).

Acceptable recovery is a function of the concentration and

the purpose of the analysis. The recoveries measured were

well within the limits of 80–115% at the 10 mg/g level

suggested by AOAC (24).

An estimation of bias between the method described herein 

and a method published previously (15) showed no bias, with

P values (95%) calculated to be 0.079, 0.529, 0.676, 0.341,

and 0.069 for AMP, CMP GMP, IMP, and UMP,

respectively.
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Figure 2. Chromatography of (a) standard mixture of nucleotides, (b) bovine milk-based infant formula,
(c) soy-based infant formula, (d) hydrolyzed milk protein-based infant formula, and (e) caprine milk-based infant
formula. AMP = Adenosine 5¢-monophosphate; CMP = cytidine 5¢-monophosphate; GMP = guanosine
5¢-monophosphate; IMP = inosine 5¢-monophosphate; UMP = uridine 5¢-monophosphate; TMP = thymidine
5¢-monophosphate. HPLC conditions: column, Gemini C18, 5 mm, 4.6 ´ 250 mm (Phenomenex); mobile phase A,
KH2PO4 (0.1 M, pH = 5.6); mobile phase B, methanol (100%); gradient elution, flow rate 0.5 mL/min, 0–5 min (100% A,
0% B), 14 min (90% A, 10% B), 15–35 min (80% A, 20% B), 36–50 min (100% A, 0% B). UV detection: 260 nm.



Method Application

The method was applied to a number of commercially
available pediatric and nutritional powders. Products included 
for testing were infant formulas, follow-on formulas, and an
adult nutritional product. These products included a range of
different sources: bovine milk, hydrolyzed milk protein,
caprine milk, and soy protein (Figure 2). The concentrations
of 5¢-mononucleotides are given in Table 6. The recoveries
determined against label claim, where available, further
indicate the reliability of the method. In the analysis of caprine 
milk-based infant formula, the presence of significant levels
of endogenous nucleotide diphosphates was confirmed.

Conclusions

The optimization and validation of a simple, rapid
method for the routine analysis of nucleotides in
nucleotide-supplemented infant formulas has been described.
The simplicity of analysis is facilitated by the use of SPE
without the need for prior protein removal. The use of an
internal standard gives additional confidence in the accuracy
of the result obtained. The applicability of the method has
been demonstrated for the analysis of bovine milk-based,
caprine milk-based, soy-based, and hydrolyzed milk
protein-based infant formulas
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a b s t r a c t

Bovine colostrum and milk samples were collected from two herds over the course of the first month
post-partum, pooled for each herd by stage of lactation and total potentially available nucleosides were
determined. Sample analysis consisted of parallel enzymatic treatments, phenylboronate clean-up, and
liquid chromatography to quantify contributions of nucleosides, monomeric nucleotides, nucleotide
adducts, and polymeric nucleotides to the available nucleosides pool. Bovine colostrum contained high
levels of nucleosides and monomeric nucleotides, which rapidly decreased as lactation progressed into
transitional milk. Mature milk was relatively consistent in nucleoside and monomeric nucleotide
concentrations from approximately the tenth day post-partum. Differences in concentrations between
summer-milk and winter-milk herds were largely attributable to variability in uridine and monomeric
nucleotide concentrations.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Nucleosides are low molecular weight compounds consisting of
a purine or pyrimidine base (e.g., adenine, cytosine, guanine and
uridine) attached via a b-glycosidic linkage to a ribose sugar
(ribonucleosides). Nucleotides are o-phosphoric acid esters of
nucleosides containing one to three phosphate groups on C-2, C-3
or most commonly C-5 of the ribose (ribonucleotides).

Nucleotides are compounds of critical importance to cellular
function. They operate as precursors to nucleic acids, as mediators
of chemical energy transfer and cell signalling, and as integral
components of coenzymes in the metabolism of carbohydrates,
lipids and proteins (Carver & Walker, 1995; Cosgrove, 1998).

Nucleotides can be synthesised de novo or recovered via salvage
pathways and thus are not essential dietary nutrients. However,
during periods of rapid growth or after injury, when the metabolic
demand for nucleotides exceeds the combined capacity of de novo
synthesis and the salvage pathway, dietary sources of nucleotides
are considered to be conditionally essential for continued optimal
metabolic function (Carver & Walker, 1995; Yu, 1998). Dietary
nucleotides are ingested in the form of nucleoproteins, polymeric
nucleotides (nucleic acids) and nucleotide adducts as well as free
nucleotides. These are digested in the gastrointestinal tract by
proteases, nucleases, phosphatases and nucleotidases, and are

available for absorption predominantly as nucleosides (Quan,
Barness, & Uauy, 1990; Uauy, Quan, & Gil, 1994).

Dietary nucleotides have been shown to increase immune
response in infants (Carver, Pimentel, Cox, & Barness, 1991;
Pickering et al., 1998), to influence metabolism of long chain fatty
acids and to enhance gastrointestinal tract repair after damage,
when compared with nucleotide-unsupplemented diets (Carver &
Walker, 1995; Gil, Corral, Martínez, & Molina, 1986). Dietary
supplementation of infant formula with nucleotides has also been
reported to beneficially modify the composition of intestinal
microflora (Uauy et al., 1994), to elevate serum immunoglobulin
concentrations and to reduce incidences of diarrhoea (Yau et al.,
2003).

The expression of nucleosides and nucleotides in bovine milk is
highest immediately after parturition with a general decreasing
trend in concentration with advancing lactation, with levels sta-
bilising by the third week of lactation (Gill & Indyk, 2007b; Gil &
Sánchez-Medina, 1981; Schlimme, Martin, & Meisel, 2000;
Sugawara, Sato, Nakano, Idota, & Nakajima, 1995). This pattern of
high concentration in early colostrum followed by a rapid reduction
as lactation progresses is analogous to changes of other bioactive
components, such as immunoglobulins.

In general, the dominant strategy employed in analysis of free
nucleosides and nucleotides in colostrum and milk has been
protein removal by acid precipitation, followed by HPLCeUV
analysis of the crude or fractionated extract (Ferreira, Mendes,
Gomes, Faria, & Ferreira, 2001; Gill & Indyk, 2007a, 2007b;
Sugawara et al., 1995).
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Early clinical studies employed infant formulas containing
nucleotides supplemented to levels based on estimates of the free
nucleotide content of human milk (Aggett, Leach, Rueda, &
MacLean, 2003). However, the measurement of free nucleotide
levels does not account for nucleosides, polymeric nucleotides or
nucleotide adducts that are also nutritionally available to the infant.
In order to determine the total potentially available nucleosides
(TPAN), an analytical protocol to characterise the contributions of
different molecular nucleoside sources to infant nutrition was
developed (Leach, Baxter, Molitor, Ramstack, & Masor, 1995). The
development of this protocol has been an important contribution to
further understanding the distribution of nucleosides and nucleo-
tides and their implications for infant nutrition. The analytical
method uses a number of enzymatic treatments incorporating
combinations of nuclease, pyrophosphatase and phosphatase
enzymes into the sample preparation. In this manner, contributions
from nucleoside precursors to TPAN in human milk have been
estimated, and it was reported that the nutritionally relevant
concentrations of nucleosides and nucleotides in human milk had
been underestimated by approximately 50% when compared with
free nucleotide concentrations only (Gerichhausen, Aeschlimann,
Baumann, Inäbnit, & Infanger, 2000; Leach et al., 1995; Tressler
et al., 2003).

Bovine milk is almost exclusively used in the manufacture of
infant formula intended to substitute for human breast milk, and
since the levels of TPAN in bovine milk have not been previously
reported, the purpose of the current study was to evaluate bovine
milk TPAN levels and variation over the first month of lactation.

2. Materials and methods

2.1. Apparatus

The high performance liquid chromatography (HPLC) system
consistedof anSCL-10Avpsystemcontroller, LC-10ADvppump, FCV-
10ALvp low pressure gradient unit, SIL-10AF sample injector unit
equipped with a 50 mL injection loop, DGU-14A degasser unit, CTO-
10ASvp column oven and SPD-M10Avp photodiode array detector
(Shimadzu, Kyoto, Japan). Instrument control and data processing
were implemented using Shimadzu Class-VP version 6.12.

The column selected was a Prodigy C18 column, 5 mm,
4.6�150 mm (Phenomenex, Torrance, CA, USA). Prior to use,
mobile phases were filtered and degassed using a filtration appa-
ratus with 0.45 mm nylon filter membranes (AllTech, Deerfield, IL,
USA). Solid phase extraction of nucleosides was performed using
Affi-gel 601 (Bio-Rad, Hercules, CA, USA).

2.2. Reagents

Adenosine, cytidine, guanosine, uridine, 5-methylcytidine,
uridine 50-diphosphoglucose, RNA, cytidine 50-diphosphocholine,
b-nicotinamide adenine dinucleotide, adenosine 50-mono-
phosphate (AMP), cytidine 50-monophosphate (CMP), guanosine
50-monophosphate (GMP), uridine 50-monophosphate (UMP)
nuclease P1, pyrophosphatase, and alkaline phosphatase were
purchased from Sigma Chemical Co. (St. Louis, MO, USA). Potassium
dihydrogen phosphate, orthophosphoric acid, hydrochloric acid,
sodium hydroxide and potassium hydroxide were supplied by
Merck (Darmstadt, Germany). Water was purified with resistivi-
ty� 18 MU using an E-pure water system (Barnstead, IA, USA).

2.3. Sample collection

Milk and colostrum samples were collected from seven cows
from each of two Jersey herds from two separate farms in the

eastern Waikato region of New Zealand. Samples from a winter-
milk herd were collected over a 1 month period in late March 2008
and samples from a summer-milk herd were collected over a 1
month period in early August 2009. Cows selected for inclusion in
this study were in general good health, in their second or subse-
quent calving and had experienced normal calvings without
complications. With the exception of the 6 h sample, sample
collection was performed between 6:00 and 10:00 am, which
coincided with regular morning milking times.

From each cow, approximately 80 mL of sample was collected in
a 120 mL disposable container. These samples were collected at
various time intervals throughout the first month of lactation, with
a frequency that reduced as the month progressed.

Collected samples were refrigerated at 4 �C, picked up from the
farm as soon as practicable (within 6 h), taken to the laboratory and
immediately prepared for storage. NaOH (1 M, 20 mL) was added to
a 10 mL sample aliquot and mixed, and the sample was then left to
stand for 30 min, neutralised to pH¼ 7.35� 0.05 with HCl and
made to 50 mL volume before freezing at <�15 �C.

2.4. Sample analysis

Samples from the seven cows at each time period post-partum
were pooled for analysis, and enzymatic hydrolysis and boronate
affinity extraction were performed as described by Leach et al.
(1995). Each pooled sample was tested in duplicate with the
mean and standard deviation calculated.

Samples were enzymatically hydrolysed using nucleotide
pyrophosphatase, nuclease P1 and bacterial alkaline phosphatase
(Sigma Chemical Co., St. Louis, MO, USA). Each pooled sample was
split into four 5 mL sub-samples, to each of which internal standard
(10 mg, 5-methylcytidine) was added, and each sub-sample was
subjected to a different enzymatic treatment. The first treatment
had no added enzymes and innate nucleosides only were therefore
measured. The second treatment involved phosphatase (pH¼ 8.5,
3 h), which dephosphorylated monomeric nucleotides to nucleo-
sides. The third treatment incorporated nuclease (pH¼ 5.1, 16 h)
and phosphatase (pH¼ 8.5, 3 h), which hydrolysed polymeric
nucleotides to monomeric nucleotides, which were subsequently
dephosphorylated to nucleosides. The fourth treatment consisted
of nuclease (pH¼ 5.1, 16 h), pyrophosphatase and phosphatase
(pH¼ 8.5, 3 h), which converted all nucleoside precursors (poly-
meric and monomeric nucleotides, and nucleotide adducts) to free
nucleosides.

Clean-up of enzymatic extracts was achieved by solid phase
extraction using a phenylboronate affinity gel as described by Leach
et al. (1995), whereby nucleosides were covalently bonded to the
gel at high pH, and interferences removed with two washings of
high pH buffer. The nucleosides were eluted from the affinity gel at
low pH by the addition of phosphoric acid (0.25 M), and filtered
ready for analysis (Liu & Scouten, 2000).

2.5. Chromatographic analysis

The initial chromatographic protocol was a modification of
a reversed-phase system described by Gill and Indyk (2007b), using
phosphate buffer and a methanol gradient. As optimum separation
of nucleosides was achieved at pH¼ 4.8, phosphate was replaced
with acetate (pKa¼ 4.75), thereby offering greater buffer capacity
at the desired pH.

An organic solvent component is required in themobile phase to
facilitate elution of nucleosides from the C18 column. However, to
obtain sufficient resolution between peaks, a gradient elution
procedure was necessary. A number of gradient procedures were
evaluated to determine an optimum protocol that had a relatively
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short run-time coupled with sufficient resolution between peaks.
An optimum separation of nucleosides was achieved at a flow rate
of 0.7 mLmin�1 with gradients formed by low pressure mixing of
twomobile phases, A (0.05 M sodium acetate, pH¼ 4.8) and B (100%
methanol) (0e3 min, 95:5, v/v, A:B; 7e22 min 75:25, v/v, A:B;
23e30 min 95:5, v/v, A:B).

The photodiode array detector acquired spectral data between
210 and 300 nm. Peak identification was by co-chromatography
and similarity of the chromatographic peak spectrum to authentic
standards, as estimated by a similarity index of >0.99. Chromato-
grams were integrated at a wavelength of 260 nm and results
were determined by an internal standard technique using 5-
methylcytidine.

The contributions of the different forms (nucleosides, nucleo-
tide adducts, monomeric and polymeric nucleotides) to TPAN were
calculated in the manner described by Leach et al. (1995) using
Excel spreadsheet software (Microsoft, Redmond, WA, USA).

2.6. Recovery

A spiked recovery study was performed on free nucleosides and
was assessed through the affinity gel sample clean-up. A stored
pooled milk sample was spiked with a single mixed standard
containing cytidine, guanosine, uridine, adenosine and 5-methyl-
cytidine (95.0e135.0 mgmL�1). Recovery was assessed by compar-
ison of peak areas for the spiked and unspiked samples, relative to
those of the mixed standard.

Recovery of nucleosides from the enzymatic digestion was
estimated following the protocol described by Leach et al. (1995). A
solution (TPAN-fortified) containing ribonucleosides, 50-mono-
nucleotides, nucleotide adducts and RNAwas prepared for a spiked
recovery study. A solution (TPAN-digest) was made from an aliquot
(5 mL) of the TPAN-fortified solution that was hydrolysed for 20 h
with KOH (0.2 mol L�1, 50 mL) to convert polymeric RNA to
monomeric nucleotides. The pH of the solution was adjusted to 9.0
with HCl and then incubated with alkaline phosphatase and
nucleotide pyrophosphatase to convert adducts and monomeric
nucleotides to nucleosides. The concentration of nucleosides in the
TPAN-digest solution was determined by HPLC and was used to
calculate the TPAN content in the TPAN-fortified solution.

A stored pooled milk sample was then spiked (in triplicate) with
an aliquot of the TPAN-fortified solution and, along with unspiked
sample replicates, was analysed and TPAN concentrations deter-
mined. Recovery was assessed by comparison of the difference in
results for the spiked and unspiked samples, divided by the TPAN
concentration of the TPAN-fortified solution.

2.7. Statistical analysis

The experimental data were analysed by one-way analysis of
variance (ANOVA) of the response of season (winter-milk, summer-
milk) with covariate time (0, 0.25, 1, 2, 3, 5, 10, 20, 30 days post-
partum). All results (X) were transformed log10(1þ X), so that the
postulated model was an exponential decrease in levels with time,
with the initial levels and the rates of decrease dependent upon
season. The “exponential decay”modelwas found toprovideabetter
fit than a linear or quadratic model in time. For hypothesis testing,
significance was evaluated at the p< 0.05 level. Statistical analyses
were performed using Minitab version 15.1 (State College, PA, USA).

3. Results and discussion

3.1. Recovery

The recoveries of nucleosides (recovery� standard deviation)
through the affinity gel clean-up were as follows: cytidine
(93.4�1.1%), uridine (92.3� 5.1%), guanosine (88.3� 4.9%), aden-
osine (95.2� 4.2%), and 5-methylcytidine (92.6� 2.3%). Recoveries
measured through the enzymatic digestion and subsequent affinity
gel clean-up were: cytidine (95.5� 2.8%), uridine (101.7� 3.7%),
guanosine (89.2� 2.4%) and adenosine (94.7�3.0%). These
recovery values were acceptable for the quantitative analysis of
nucleosides at concentrations typical of bovine milk samples
(AOAC, 2002).

3.2. Chromatography

Chromatographic performance evaluated as resolution, peak
tailing, retention factor, and peak area repeatability, was deemed
acceptable by replicate analyses (n¼ 6) of a mixed nucleotide
standard (Fig. 1A). The specificity of the phenylboronate sample
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Fig. 1. Chromatograms of a mixed nucleoside standard and colostrum sample. Conditions: mobile phase A: 0.05 M sodium acetate, pH¼ 4.8; mobile phase B: 100% methanol;
gradient elution: flow rate 0.7 mLmin�1 throughout, 0e3 min (95% A, 5% B v/v), 7e22 min (75% A, 25% B v/v), 23e30 min (95% A, 5% B v/v). UV detection 260 nm.
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clean-up provides analytical chromatography relatively free of
interferences (Fig. 1B).

3.3. Total potentially available nucleosides in bovine milk

The TPAN concentrations and contribution of each nucleobase
and form obtained in this study of winter-milk and summer-milk
lactation series are summarised in Tables 1 and 2 and illustrated
graphically in Figs. 2 and 3. For each parameter (each base within
each form), comparisons of the initial levels and rates of decrease
were made between seasons and whether each seasonal slope
differed from zero (Table 3).

3.3.1. Nucleoside contribution to total potentially available
nucleosides

Uridine was the most prevalent nucleoside, at levels of
w50 mmol dL�1 in colostrum, but these levels were not sustained

beyond the third day post-partum and rapidly decreased to levels
similar to those of cytidine and guanosine, at 1e3 mmol dL�1.
Adenosine was present at much lower levels but these low levels
were maintained throughout the lactation period for both seasons
milk. The nucleoside levels measured in this study were consistent
with those reported previously (Gill & Indyk, 2007b). Although
nucleosides were present at higher concentrations in bovine
colostrum than in mature bovine milk, they rapidly decreased to
levels similar to that in mature human milk, as reported by Leach
et al. (1995).

3.3.2. Monomeric nucleotide contribution to TPAN
Levels of nucleotides measured in this study were generally

higher than those reported previously (Gill & Indyk, 2007b);
however, there was likely to have been a significant contribution
from multiple phosphorylated forms (cyclic-, mono-, di- and tri-
phosphorylated nucleotides), which the TPAN analytical method

Table 1
Nucleosides and nucleotides in bovine milk from a winter-milk herd (mmol dL�1).a

Dayb Formc Cytidine Uridine Guanosine Adenosine Total

0 Nucleoside 5.4� 0.1 57.9� 1.6 0.3� 0.0 nd 63.6� 1.5
Monomeric NT 6.1� 0.3 143.7� 8.5 2.8� 0.0 2.9� 0.2 155.5� 8.7
NT adduct 0.9� 0.2 23.7� 9.0 3.9� 0.8 2.4� 0.0 30.9� 9.6
Polymeric NT 0.6� 0.0 5.4� 7.2 1.4� 0.2 1.4� 0.1 8.7� 7.4
Total base 13.0� 0.5 230.7� 6.1 8.5� 0.9 6.6� 0.2 258.7� 6.8

þ0.25 Nucleoside 4.0� 0.2 39.8� 0.2 0.2� 0.0 nd 44.0� 0.4
Monomeric NT 1.3� 0.4 26.9� 4.7 1.0� 0.0 1.4� 0.0 30.6� 5.0
NT adduct 0.9� 0.2 3.2� 0.9 1.1� 0.2 0.5� 0.1 5.8� 0.6
Polymeric NT 0.1� 0.0 3.9� 1.1 1.1� 0.1 0.9� 0.0 6.0� 0.9
Total base 6.3� 0.0 73.8� 4.3 3.5� 0.1 2.8� 0.1 86.4� 4.3

þ1 Nucleoside 3.5� 0.1 49.8� 0.8 0.5� 0.0 nd 53.9� 0.7
Monomeric NT 13.1� 0.3 77.5� 2.8 4.0� 0.2 3.0� 0.2 97.5� 3.2
NT adduct 0.4� 0.2 11.9� 6.8 2.4� 0.2 2.0� 0.6 16.5� 7.6
Polymeric NT 0.5� 0.5 3.0� 3.8 1.3� 0.2 1.5� 0.5 6.4� 3.6
Total base 17.5� 0.9 142.2� 6.6 8.1� 0.0 6.5� 0.3 174.4� 7.9

þ2 Nucleoside 2.5� 0.3 60.4� 0.4 0.8� 0.0 0.6� 0.1 64.2� 0.8
Monomeric NT 16.9� 0.6 30.4� 3.4 2.0� 0.1 2.6� 0.0 51.6� 4.2
NT adduct 0.3� 0.2 6.7� 1.4 2.4� 0.2 2.6� 0.3 12.0� 1.3
Polymeric NT 1.0� 0.1 2.7� 1.3 1.0� 0.1 1.2� 0.1 6.0� 1.3
Total base 20.7� 0.0 99.8� 3.2 6.2� 0.1 7.1� 0.3 133.8� 3.4

þ3 Nucleoside 2.0� 0.2 42.7� 2.0 0.5� 0.1 0.6� 0.1 45.9� 2.4
Monomeric NT 16.2� 0.4 22.2� 3.4 1.5� 0.2 3.6� 0.9 43.5� 4.9
NT adduct 0.4� 0.5 5.9� 0.3 2.2� 0.2 2.3� 0.1 10.7� 0.9
Polymeric NT 0.3� 0.1 1.0� 0.3 0.6� 0.1 0.5� 0.6 2.5� 0.4
TPAN 19.0� 0.2 71.8� 1.5 4.8� 0.2 7.0� 0.2 102.6� 1.2

þ5 Nucleoside 1.5� 0.3 21.5� 0.8 nd 0.2� 0.0 23.3� 0.5
Monomeric NT 12.1� 0.3 1.4� 0.1 0.6� 0.0 3.3� 0.1 17.4� 0.3
NT adduct 0.1� 0.0 0.8� 0.0 0.6� 0.2 0.6� 0.2 2.2� 0.4
Polymeric NT 0.5� 0.1 0.4� 0.4 0.8� 0.1 0.7� 0.1 2.4� 0.5
Total base 14.1� 0.3 24.2� 1.0 2.1� 0.1 4.8� 0.3 45.2� 1.7

þ10 Nucleoside 0.8� 0.2 3.2� 0.2 nd 0.1� 0.0 4.1� 0.0
Monomeric NT 6.9� 0.3 0.4� 0.0 0.2� 0.0 2.4� 0.1 9.9� 0.4
NT adduct 0.1� 0.1 0.2� 0.2 0.1� 0.0 0.2� 0.1 0.6� 0.4
Polymeric NT 0.3� 0.4 0.1� 0.1 0.4� 0.1 0.2� 0.0 1.0� 0.6
Total base 8.0� 0.1 3.9� 0.2 0.7� 0.1 3.0� 0.2 15.6� 0.2

þ20 Nucleoside 0.7� 0.2 1.3� 0.1 nd 0.1� 0.0 2.1� 0.3
Monomeric NT 3.9� 0.0 0.1� 0.1 nd 0.8� 0.1 4.8� 0.2
NT adduct 0.1� 0.0 0.2� 0.1 0.1� 0.1 0.1� 0.0 0.4� 0.2
Polymeric NT 0.2� 0.1 0.1� 0.0 0.3� 0.0 0.2� 0.1 0.7� 0.2
Total base 4.8� 0.2 1.6� 0.1 0.4� 0.0 1.3� 0.2 8.0� 0.1

þ30 Nucleoside 0.6� 0.1 0.8� 0.1 nd 0.1� 0.0 1.5� 0.0
Monomeric NT 2.5� 0.0 0.1� 0.0 nd 0.3� 0.1 3.0� 0.1
NT adduct nd nd nd 0.1� 0.0 0.2� 0.1
Polymeric NT 0.2� 0.0 0.1� 0.0 0.2� 0.0 0.1� 0.0 0.7� 0.1
Total base 3.4� 0.0 1.1� 0.0 0.3� 0.0 0.6� 0.1 5.3� 0.1

a Values are given as the mean� standard deviation of duplicate analyses; nd, not detected.
b Day post-partum� 2 h.
c NT, nucleotide.
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aggregates as a single value. Differences in colostral monomeric
nucleotide levels between the herds were evident, with the winter-
milk herd initially containing 5e10 times the levels of the summer-
milk herd. However, by the fifth day, nucleotide levels decreased to
approximately 15 mmol dL�1 in both herds, somewhat lower than
those reported in human milk (Leach et al., 1995). The high initial
uridine nucleotides levels and subsequent rapid decrease in
concentration seen in winter-milk was absent in summer-milk
which maintained constant levels throughout lactation. Cytidine
and adenosine nucleotides are stable throughout lactation for both
seasons. The most abundant nucleotides in bovine colostrum were
based on uridine; however, as colostrum transitioned into mature
milk, cytidine nucleotides became the dominant form.

Uridine nucleotides are critical components in the biosynthesis
of lactose. As lactose is a major osmotic component of milk, there is

a correlation between the amount of lactose and the volume ofmilk
produced (Arthur, Kent, & Hartmann, 1991; Linzell & Peaker, 1971).
It has been suggested that high levels of uridine and UMP are
present in milk, as breakdown products of uridine diphosphate
(UDP) and uridine triphosphate (UTP), due to their function in the
synthesis of lactose (Mateo, Peters, & Stein, 2004; Schlimme et al.,
2000). It has been proposed that support for this hypothesis is
seen by the correlation of decreasing total milk solids and 50-UMP
concentrations in sow’s milk as lactation progresses (Mateo et al.,
2004). However, as colostrum contains higher total milk solids
and lower lactose levels (on a dry weight basis) than mature milk
(Heng, 1999), a reduced proportion of uridine nucleotides than in
mature milk might be expected based on this proposal. Alternative
reasons must therefore be sought to account for the higher relative
proportions of uridine nucleotides in colostrum. It has also been
suggested that uridine accounts for many of the immunological
properties of nucleotides in colostrum (Kulkarni, Fanslow, Rudolph,
& Van Buren, 1986; Leach et al., 1995; Van Buren, Kulkarni, Fanslow,
& Rudolph, 1985) and, more recently, Mashiko et al. (2009)
demonstrated that dietary UMP affected the immune response of
newborn calves.

3.3.3. Nucleotide adduct contribution to TPAN
The results for uridine adducts in the present study ranged from

not detected to 23.7 mmol dL�1 in the winter-milk herd and from
not detected to 6.8 mmol dL�1 in the summer-milk herd, with
a rapid reduction in concentration after the third day post-partum.
Guanosine adducts measured ranged from not detected to
3.9 mmol dL�1 in the winter-milk herd and from not detected to
1.2 mmol dL�1 in the summer-milk herd. Similar levels of adenosine
adducts were found, presumably derived from flavin adenine
dinucleotide and nicotinamide adenine dinucleotide (Fox &
McSweeney, 1998; Kanno, Shirahuji, & Hoshi, 1991). Utilising
enzymatic techniques, Gil and Sánchez-Medina (1981) measured
UDP hexosamine, UDP hexose and UDP galactose concentrations in
bovine colostrum and milk, which ranged from not detected to
w104 mmol dL�1. Levels were highest at 27 and 78 h and much
lower or absent in subsequent stages of lactation. Guanosine
diphosphate fucosewas also reported at 27 and 78 h, at levels of 6.7
and 4.1 mmol dL�1, respectively.

3.3.4. Polymeric nucleotide contribution to TPAN
The concentration of polymeric nucleotides in bovine colostrum

was similar to that in human colostrum and milk, however, with
advancing lactation, the levels in bovine milk decreased below
those in human milk. Both cytidine and uridine contributions to
polymeric nucleotides are steady throughout lactation for summer-
milk, whereas the higher initial levels of polymeric uridine shows
distinct decrease in concentration as lactation progresses inwinter-
milk.

3.3.5. Nucleobase contribution to TPAN
Differences in the contributions of each nucleobase from the

various nucleoside and nucleotide forms were found. The pyrimi-
dines differed markedly from each other through lactation.
Whereas the quantities of cytidine and cytidine nucleotides were
relatively constant throughout, uridine and uridine nucleotides
levels varied considerably. Cytidine concentrations were similar to
those in human milk reported by Leach et al. (1995), whereas
uridine was present at considerably higher levels in bovine colos-
trum and in lower amounts in mature bovine milk.

The concentrations of the purines also differed with adenosine
levels throughout the first month of lactation for milk from both
herds, whereas guanosine showed a significant decrease in levels
for both herds. The quantities of both guanosine and adenosine, and

Table 2
Nucleosides and nucleotides in bovine milk from a summer-milk herd (mmol dL�1).a

Dayb Formc Cytidine Uridine Guanosine Adenosine Total

0 Nucleoside 2.6� 0.2 50.6� 5.8 2.2� 0.3 nd 55.4� 5.8
Monomeric NT 1.5� 0.1 1.2� 0.0 0.2� 0.0 nd 2.8� 0.2
NT adduct 0.1� 0.1 0.5� 0.1 0.3� 0.0 0.2� 0.0 1.1� 0.2
Polymeric NT 0.4� 0.0 0.3� 0.3 1.1� 0.0 0.9� 0.0 2.7� 0.3
Total base 4.7� 0.2 52.5� 6.1 3.7� 0.3 1.2� 0.0 62.1� 6.2

þ0.25 Nucleoside 3.6� 0.1 28.0� 0.4 1.8� 0.0 nd 33.4� 0.5
Monomeric NT 0.5� 0.3 0.4� 0.1 0.1� 0.0 nd 1.0� 0.5
NT adduct 0.2� 0.0 0.9� 0.2 0.1� 0.0 0.1� 0.0 1.4� 0.1
Polymeric NT 0.3� 0.0 1.7� 0.3 0.8� 0.1 0.8� 0.0 3.6� 0.2
Total base 4.7� 0.2 31.0� 0.8 2.9� 0.2 0.9� 0.1 39.4� 0.3

þ1 Nucleoside 5.4� 0.4 40.9� 1.2 2.1� 0.2 nd 48.5� 1.0
Monomeric NT 7.3� 0.1 4.3� 0.3 0.3� 0.0 nd 11.9� 0.2
NT adduct 1.6� 0.3 6.8� 0.9 1.2� 0.1 0.3� 0.1 10.0� 1.2
Polymeric NT 0.6� 0.1 1.1� 0.4 1.0� 0.1 0.7� 0.3 3.4� 0.0
Total base 15.0� 0.4 53.1� 0.4 4.7� 0.1 1.0� 0.3 73.8� 0.4

þ2 Nucleoside 3.7� 0.4 39.2� 0.1 2.7� 0.4 nd 45.6� 0.9
Monomeric NT 10.4� 0.8 0.4� 0.1 0.2� 0.0 0.9� 0.1 11.8� 1.0
NT adduct nd 1.7� 0.4 0.9� 0.0 0.4� 0.0 2.9� 0.4
Polymeric NT 0.5� 0.0 1.0� 0.0 0.4� 0.1 0.3� 0.0 2.3� 0.0
Total base 14.5� 0.4 42.3� 0.4 4.2� 0.4 1.5� 0.2 62.6� 0.2

þ3 Nucleoside 6.7� 0.2 21.5� 1.6 1.2� 0.1 nd 29.4� 1.3
Monomeric NT 5.8� 0.8 3.6� 0.8 0.3� 0.0 2.1� 0.4 11.9� 1.2
NT adduct 0.1� 0.0 0.5� 0.0 0.4� 0.1 0.4� 0.0 1.5� 0.1
Polymeric NT 0.5� 0.1 1.4� 0.5 0.4� 0.0 0.3� 0.0 2.7� 0.6
Total base 13.2� 0.7 27.0� 3.0 2.3� 0.1 2.9� 0.4 45.3� 3.4

þ5 Nucleoside 1.0� 0.1 9.2� 0.1 0.2� 0.3 nd 10.4� 0.3
Monomeric NT 8.0� 0.2 0.4� 0.0 0.2� 0.0 2.0� 0.1 10.7� 0.1
NT adduct 0.3� 0.2 0.4� 0.0 0.1� 0.0 0.3� 0.0 1.0� 0.3
Polymeric NT 0.8� 0.2 0.5� 0.1 0.3� 0.0 0.2� 0.1 1.9� 0.2
Total base 10.2� 0.1 10.5� 0.3 0.8� 0.3 2.4� 0.0 24.0� 0.1

þ10 Nucleoside 0.6� 0.1 3.0� 0.0 nd nd 3.6� 0.0
Monomeric NT 4.1� 0.2 0.1� 0.0 nd 1.2� 0.1 5.3� 0.0
NT adduct 0.2� 0.1 nd 0.1� 0.0 0.2� 0.1 0.5� 0.2
Polymeric NT 0.2� 0.1 0.2� 0.0 0.4� 0.0 0.1� 0.0 0.9� 0.1
Total base 5.0� 0.4 3.4� 0.0 0.4� 0.0 1.5� 0.1 10.3� 0.4

þ20 Nucleoside 0.7� 0.0 1.5� 0.5 nd nd 2.1� 0.5
Monomeric NT 3.0� 0.2 0.1� 0.0 nd 0.4� 0.0 3.4� 0.1
NT adduct 0.1� 0.0 0.1� 0.0 nd 0.1� 0.0 0.2� 0.0
Polymeric NT nd 0.1� 0.0 nd 0.1� 0.0 0.1� 0.0
Total base 3.8� 0.2 1.6� 0.5 nd 0.5� 0.1 5.9� 0.4

þ30 Nucleoside 0.6� 0.0 1.3� 0.0 nd nd 1.9� 0.0
Monomeric NT 1.6� 0.2 nd nd nd 1.6� 0.2
NT adduct 0.1� 0.0 0.1� 0.0 nd 0.3� 0.0 0.5� 0.0
Polymeric NT nd nd nd nd 0.1� 0.0
Total base 2.3� 0.2 1.4� 0.0 nd 0.3� 0.0 4.0� 0.2

a Values are given as the mean� standard deviation of duplicate analyses; nd, not
detected.

b Day post-partum� 2 h.
c NT, nucleotide.
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their respective nucleotides were slightly higher in bovine colos-
trum than in human colostrum and milk, but concentrations were
lower as colostrum transitioned to mature milk. In bovine milk,
purine nucleosides and nucleotides made a relatively small
contribution to TPAN (6e20%), whereas human milk purine
nucleosides and nucleotides consistently represent a greater
proportion of TPAN (>30%).

3.3.6. Total potentially available nucleosides
In general, the absolute concentrations indicated a distinct

difference between the two herds, although the general trends
were the same. Winter had higher initial levels of TPAN but the
rate of decrease was greater, such that the seasonal differences in

TPAN concentration found in colostrum were largely absent in
mature milk.

TPAN levels in winter-milk colostrum were attributable largely
to significantly higher amounts of uridine nucleotides compared
with summer-milk colostrum; however, by the tenth day, milk
from both herds showed similar TPAN levels. The TPAN levels in
bovine colostrumwere higher than those in both human colostrum
and milk, however, after transition to mature milk, the TPAN levels
were lower than those reported in human milk (Leach et al., 1995).

It has been reported that nucleotides in human milk exhibit
a circadian rhythmicity (Sánchez et al., 2009). Anomalous results
for uridine and uridine nucleotides were found in bovine colostrum
samples collected from both herds at 6 h post-partum, and such

Winter-Milk

0

50

100

150

200

250

300

0 0.25 1 2 3 5 10 20 30

C
o
n
c
e
n
t
r
a
t
io
n
 (

µ
m
o
l 
d
L
-
1

)

0

50

100

150

200

250

300

0 0.25 1 2 3 5 10 20 30
Days post-partum

Summer-Milk

0

50

100

150

200

250

300

0 0.25 1 2 3 5 10 20 30

C
o
n
c
e
n
t
r
a
t
io
n
 (

µ
m
o
l 
d
L
-
1

)

0

50

100

150

200

250

300

0 0.25 1 2 3 5 10 20 30

Days post-partum

A C

DB
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cytidine; , uridine; , guanosine; , adenosine. B, D: , polymeric nucleotides; , nucleotide adducts; , monomeric nucleotides; , nucleosides.
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diurnal variation may suggest a plausible rationale given that this
sample was uniquely collected in the afternoon.

The levels and distribution of TPAN in mature bovine milk are
important in the manufacture of infant formulas, particularly when
formulating to TPAN regulatory limits. If all endogenous forms of
nucleosides and nucleotides that contribute to TPAN are not
accounted for prior to nucleotide supplementation, possible over-
fortification could occur during the manufacture of bovine milk-
based infant formula.

3.4. Herd conditions

Although the feeding practices were similar on both farms, it
is possible that seasonal or pasture differences could have had
a significant effect on the nucleoside precursors expressed in
the milk of each herd. Prior to calving, the cows’ diet was
extensive grass grazing supplemented with maize silage and
palm kernel, and after calving, intake of grass and palm kernel
increased with inclusion of whey permeate. One uncontrolled
variable that may have had a profound influence is the climate.
Calving for the winter-milk herd began in the early autumn of
2008, which followed a summer characterised by a La Niña
weather pattern that contributed to record high temperatures
and a drought with severe soil moisture deficits in the Waikato
region of New Zealand. The summer-milk herd began calving in
late winter 2009, which had the warmest August on record,
although rainfall was normal (National Institute of Water and
Atmospheric Research [NIWA], 2010). In addition to obvious
climatic factors, other factors could have affected TPAN levels in
both herds, such as the conditions under which the cows were
raised and fed, tolerance to stress, sunlight exposure and other
environmental factors. Further study controlling each of these
factors would be required to identify those factors that influ-
ence nucleoside and nucleotide expression in milk. Limitations
of the current study could be expanded upon in future experi-
ments that consider the effects of breed, location and diet on
TPAN expression in milk.

4. Conclusions

Nucleosides and monomeric nucleotides were the dominant
forms of TPAN in bovine milk and colostrum, whereas nucleotide
adducts and polymeric nucleotides contributed relatively little.
Uridine and uridine nucleotides were the major contributor to
TPAN in early colostrum, and cytidine and cytidine nucleotides
dominated later in lactation. Differences in TPAN concentrations
between summer-milk and winter-milk herds were largely attrib-
utable to variability in uridine and nucleotide concentrations. As
lactation progressed, TPAN concentration decreased, as did each of
the contributing forms.

With the increasing trend towards nucleotide supplementation
of bovine milk-based infant formulas, and the need for compliance
with TPAN regulatory limits, the data presented in this study
provide a greater understanding of the contributions of endoge-
nous nucleosides and nucleotides in bovine milk. In addition,
colostrum is increasingly being used as a dietary supplement and
the high level of TPAN present may be nutritionally significant.
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a b s t r a c t

The total potentially available nucleosides (TPAN) in bovine, caprine, and ovine milk were analyzed
through the sequential application of phosphatase, pyrophosphatase, and nuclease enzyme treatments
prior to high performance liquid chromatographic analysis of released nucleosides. The contributions to
TPAN from polymeric nucleotides, monomeric nucleotides, and nucleotide adducts were then calculated.
Ovine milk contained the highest concentration of TPAN, i.e., 374.1 mmol dL�1, with lower concentrations
in caprine milk (97.4 mmol dL�1) and bovine milk (7.9 mmol dL�1). Ovine milk contained the highest
concentrations of each of the different nucleoside and nucleotide forms, and bovine milk contained the
lowest.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The dietary significance of nucleosides and nucleotides, the
forms in which they can exist in milk, their role as semi-essential
nutrients in the human diet and their analytical determination in
bovine milk have been described in a recent study that formed the
basis for the developments currently presented (Gill, Indyk, &
Manley-Harris, 2011).

Dietary nucleotides have been shown to beneficially affect
intestinal growth, gut microflora, and liver growth and repair, and
clinical studies have shown that infant formula supplementation
with nucleotides provides a benefit to neonatal immune function
when compared with unsupplemented formulae (Boza &Martínez-
Augustin, 2002; Schaller, Buck, & Rueda, 2007; Yu, 2002). Nucleo-
tides have been routinely supplemented in bovine milk-based
infant formulae since the 1980s in recognition of the purported
health benefits of nucleotide supplementation and the lower
concentrations of free nucleotides in bovine milk compared with
human milk (Adamkin, 2007). In recent years, nucleotide supple-
mentation of infant formulae to TPAN concentrations (72 mg L�1)
has been approved inmore than 30 countries (Aggett, Leach, Rueda,
& MacLean, 2003).

Enzymatic methods were used by Gil and Sánchez-Medina
(1981) to measure nucleotides in bovine, ovine, and caprine milk.
Nucleoside 50-monophosphates were released enzymatically from

nucleoside precursors using snake venom phosphodiesterase and
were quantitatively reacted in a series of enzymatic reactions with
an NADH end-point at 340 nm. In recent years, nucleosides and
nucleotides have most commonly been analyzed by protein
removal using acid precipitation, followed by high performance
liquid chromatography�ultraviolet (HPLC�UV) analysis of the
crude or fractionated extract (Ferreira, Mendes, Gomes, Faria, &
Ferreira, 2001; Gill & Indyk, 2007a, b).

The content of free nucleosides and nucleotides have been
studied in milk of a number of mammalian species, including
human, bovine, caprine, and ovine, and the concentration and
relative proportions of their free forms in the milk of different
species has been reported to vary (Gil & Sánchez-Medina, 1981; Gill
& Indyk, 2007a; Johke & Goto, 1962; Martin, Clawin-Rädecker,
Lorenzen, Ziebart, & Barth, 2005; Schlimme et al., 1997).
However, measurement of the concentrations of free nucleosides
and monomeric nucleotides does not account for the significant
nucleotide adducts or polymeric nucleotides that are also nutri-
tionally available to the neonate of mammalian species.

To determine the total potentially available nucleosides (TPAN)
in human milk and to characterize the contributions of different
molecular TPAN sources to infant nutrition, a combined multi-
enzyme method incorporating a boronate extract clean-up fol-
lowed by HPLCeUV analysis was developed (Leach, Baxter, Molitor,
Ramstack, & Masor, 1995; Liu & Scouten, 2000). This analytical
strategy allows specific contributions to the TPAN pool from poly-
meric nucleotides, monomeric nucleotides, nucleosides, and
nucleotide adducts to be estimated. Recently, this technique was
applied to a lactational study of bovine colostrum and milk given
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the importance of this component in infant formula production
(Gill et al., 2011).

Given the global importance of large domesticated ruminants to
human nutrition, the purpose of the current study was to provide
a comparative assessment of the TPAN contents of mature bovine,
caprine, and ovine milk and to differentiate the contributing
nucleoside and nucleotide forms for each species.

2. Materials and methods

Materials, instrumentation and methods were as described in
Gill et al. (2011). Sample collection and statistical analysis in the
present study are detailed below.

2.1. Sample collection

In May 2009, samples of bovine milk (mixed Holstein-Friesian
and Jersey) and caprine milk (Saanen) were collected directly from
tanker silos prior to processing at two manufacturing sites in the
Waikato region of New Zealand. A mature ovine milk sample (East
Friesian) was supplied from a flock of sheep from the Southland

region of New Zealand. Upon collection, the samples were taken to
the laboratory and immediately prepared for storage in the same
manner as previously described (Gill et al., 2011).

2.2. Statistical analysis

The experimental data were statistically analyzed by one-way
analysis of variance (ANOVA) of the response of each species
(bovine, caprine, ovine) and Tukey’s multiple comparison test
(Minitab v.15, State College, PA).

3. Results and discussion

3.1. Chromatographic analysis of sample extracts

Chromatographic performance was evaluated on the basis of
retention factor, peak symmetry, peak resolution, and area
repeatability, and was deemed to be acceptable from replicate
analyses (n ¼ 6) of a mixed nucleoside standard (Fig. 1).

3.2. TPAN in bovine, caprine, and ovine milk

The results of the TPAN analysis of the milks of the three species
are given in Table 1. A comparison of the concentration and the
relative contribution of each nucleoside source is illustrated in
Fig. 2. A comparison of the concentration and the relative contri-
bution of each nucleoside, categorised by nucleobase, is shown in
Fig. 3.

3.2.1. Nucleoside contribution to TPAN
The cytidine concentrations ranged from 0.9 to 2.3 mmol dL�1

and were comparable among the milk of the three species, as were
the relatively low concentrations of both adenosine and guanosine.
In contrast, uridine was present in higher concentrations in both
caprine milk (11.3 mmol dL�1) and ovine milk (14.8 mmol dL�1),
differentiating these milks from bovine milk (1.9 mmol dL�1). This
dominance of uridine in ovine milk and caprine milk has been re-
ported previously (Martin et al., 2005; Plakantara, Michaelidou,
Polychroniadou, Menexes, & Alichanidis, 2010).

Nevertheless, the higher nucleoside concentrations in caprine
and ovine milk represented only minor contributions to TPAN,
whereas the contribution of nucleosides to the TPAN of bovine milk
was >30%. It is noteworthy that ruminant milk contains higher
concentrations of total nucleosides than those reported in human
milk (Leach et al., 1995).

Fig. 1. Chromatogramsof amixednucleoside standard, and of bovine, caprine, and ovine
milk. Conditions: mobile phase A: 0.05 M sodium acetate, pH 4.8; mobile phase B: 100%
methanol; gradient elution: flow rate 0.7mLmin�1 throughout, 0e3min (95% A, 5% B, v/
v), 7e22 min (75% A, 25% B, v/v), 23e30 min (95% A, 5% B, v/v). UV detection 260 nm.

Table 1
Total potentially available nucleosides in bovine, caprine, and ovine milk.a

Milk Form Cytidine Uridine Guanosine Adenosine Total

Bovine Nucleoside 0.9 � 0.1 1.9 � 0.1 nd nd 2.8 � 0.3
Monomeric NT 3.3 � 0.1 0.5 � 0.2 nd nd 3.8 � 0.3
NT adduct 0.1 � 0.0 0.1 � 0.0 0.4 � 0.1 0.1 � 0.0 0.6 � 0.0
Polymeric NT 0.1 � 0.1 0.1 � 0.1 nd 0.5 � 0.0 0.7 � 0.3
Total base 4.4 � 0.2 2.6 � 0.2 0.4 � 0.1 0.5 � 0.0 7.9 � 0.5

Caprine Nucleoside 1.6 � 0.1 11.3 � 0.4 nd nd 12.9 � 0.3
Monomeric NT 3.6 � 0.2 37.2 � 0.8 9.4 � 0.5 2.4 � 0.2 52.7 � 1.7
NT adduct 0.7 � 0.0 10.1 � 1.2 14.5 � 0.1 3.4 � 0.1 28.7 � 1.2
Polymeric NT 0.6 � 0.2 1.0 � 0.9 1.1 � 0.5 0.5 � 0.2 3.2 � 1.9
Total base 6.5 � 0.3 59.5 � 1.8 25.0 � 0.7 6.3 � 0.3 97.4 � 2.8

Ovine Nucleoside 2.3 � 0.1 14.8 � 1.1 0.6 � 0.0 nd 17.6 � 1.2
Monomeric NT 5.7 � 0.3 187.4 � 4.4 6.3 � 0.0 12.1 � 0.0 211.4 � 4.0
NT adduct 0.9 � 0.1 100.4 � 7.8 22.1 � 0.2 14.4 � 0.6 137.8 � 8.7
Polymeric NT 0.5 � 0.3 4.3 � 0.1 1.2 � 0.3 1.3 � 0.6 7.3 � 1.2
Total base 9.4 � 0.4 306.8 � 9.0 30.2 � 0.3 27.8 � 0.9 374.1 � 9.8

a Values (mmol dL�1) are means � standard deviation of duplicate analyses: NT, nucleotide; nd, not detected.
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3.2.2. Monomeric nucleotide contribution to TPAN
The trends in nucleotide concentrations measured this study

were similar to those reported previously in bovine, caprine, and
ovinemilk (Gil & Sánchez-Medina,1981; Gill & Indyk, 2007a;Martin
et al., 2005; Plakantara et al., 2010). Bovine milk contained signifi-
cantly lower concentrations ofmonomeric nucleotides than caprine
and ovine milk. The cytidine nucleotide concentration ranges were
comparable among the three species, as were the nucleotide
concentration ranges for both adenosine and guanosine, which
were at similarly low concentrations. The concentrations of uridine
nucleotides varied greatly among themilk of the three species, with
the range spanning 0.5e187 mmol dL�1, with the lowest concen-
tration in bovine milk and the highest concentration in ovine milk.
The uridine nucleotide concentration of 37.2 mmol dL�1 in caprine
milk is similar to those reported previously (Ferreira et al., 2001;
Plakantara et al., 2010), and although these studies did not report
substantially higher levels of uridine nucleotides in ovine milk, the
value of 187.4 mmol dL�1 in the present study is similar to the levels
reported in early lactation ovine milk reported by Gil and Sánchez-
Medina (1981). Elevated uridine nucleotide levels may, in part, be
rationalised on the basis of their role in lactose biosynthesis (Arthur,
Kent, & Hartmann, 1991; Linzell & Peaker, 1971) and their potential
immunological properties (Kulkarni, Fanslow, Rudolph, & Van
Buren, 1986; Van Buren, Kulkarni, Fanslow, & Rudolph, 1985) as
has been noted previously (Gill et al., 2011).

3.2.3. Nucleotide adduct contribution to TPAN
The range of concentrations of nucleotide adducts in the milk

of the three species was similar to that of nucleotides, with the

lowest concentration in bovine milk and the highest concentration
in ovine milk. The uridine adducts measured in ovine milk were
an order of magnitude higher than those in caprine milk and three
orders of magnitude higher than those in bovine milk. Similar
results were obtained in mature milk by Gil and Sánchez-Medina
(1981) in their determination of UDP hexose, UDP hexosamine,
and UDP galactose in the milk of the three species. The concen-
trations of guanosine adducts measured were 0.4, 14.5, and
22.1 mmol dL�1 in bovine, caprine, and ovine milk, respectively.
Nucleotide adducts contributed significantly (>30%) to TPAN in
caprine and ovine milks, whereas their contribution to TPAN in
bovine milk was w10%.

The result for guanosine adducts compared well with the
aggregate of guanosine�sugar adduct concentrations previously
reported at 1 month (Martin et al., 2005). Similar concentrations
of adenosine adducts were found, presumably derived from
flavin adenine dinucleotide and NADH (Fox & McSweeney, 1998;
Kanno, Shirahuji, & Hoshi, 1991). The adenosine concentrations in
bovine milk were much lower than those in caprine milk and
ovine milk.

3.2.4. Polymeric nucleotide contribution to TPAN
Polymeric nucleotides showed the least difference among themilk

of the three species and, aswith theothernucleoside forms, polymeric
uridine from ovine milk was most abundant and was comparable to
the concentration in human milk (Leach et al., 1995). Given the over-
whelming concentration of uridine in ovine milk from monomeric
nucleotides, it is possible that polymeric uridine concentrations were
elevated as a consequence of calculation by difference.

Fig. 3. A comparison of the concentration and the relative contribution of each
nucleoside (by nucleobase) in bovine, caprine, and ovine milk samples (mean of
duplicate analyses): , uridine; , guanosine; , adenosine; , cytidine.

Fig. 2. A comparison of the concentration and the relative contribution of each
nucleoside (by phosphorylated form) in bovine, caprine, and ovine milk samples
(mean of duplicate analyses): , nucleosides; , nucleotide adducts; , monomeric
nucleotides; , polymeric nucleotides.
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3.2.5. Nucleobase contribution to TPAN
The pyrimidines, cytidine and uridine, were present primarily as

monomeric nucleotides in the milk of the three species. This was in
contrast to the purines, guanosine and adenosine, which were
predominantly present as adducts in the milk of each of these
species (Table 1). Cytidine and cytidine nucleotides were the most
prevalent forms in bovinemilk; similar results were obtained in the
TPAN analysis of human milk (Leach et al., 1995). In contrast,
uridine was the dominant nucleobase in caprine and ovine milk.
The total cytidine concentration was lowest in bovine milk and
highest in ovine milk. The concentrations of total uridine, guano-
sine, and adenosine were lowest in bovine milk and highest in
ovine milk. The concentrations of total uridine, guanosine, and
adenosine of human milk (Leach et al., 1995) were higher than
those measured in bovine milk but much lower than those of
caprine milk and ovine milk.

3.2.6. Total potentially available nucleosides
The TPAN concentrations in the milk of the three species varied

markedly, with ovine milk having the highest concentrations and
bovine milk having the lowest concentrations. Ovine milk contained
the highest concentrations of nucleosides, nucleotide adducts, free
nucleotides, and polymeric nucleotides, as well as the highest
contribution from each nucleobase. Similarly, bovine milk contained
the lowest concentrations of all forms of nucleosides andnucleotides,
with caprine milk being intermediate. The TPAN concentration of
humanmilk (Leachetal.,1995) ishigher than thatmeasured inbovine
milk but much lower than those of caprine milk and ovine milk.

Previous studies on nucleotides in both bovine and caprine milk
have shown higher concentrations of free nucleotides and related
compounds in the latter (Gil & Sánchez-Medina, 1981; Johke &
Goto, 1962), while the nucleotide concentrations in caprine milk
have been favourably compared with those in humanmilk (Prosser,
McLaren, Frost, Agnew, & Lowry, 2008). Because of this, supple-
mentation of caprine milk-based infant formulae with nucleotides
is not necessary as such products provide similar quantities of free
nucleotides to those in nucleotide-supplemented bovine milk-
based infant formulae. However, this present study showed that,
when TPAN concentrations were calculated, caprinemilk contained
97.4 mmol dL�1, i.e., more than four times greater than the highest
TPAN concentration reported in human milk (Leach et al., 1995).

The TPAN concentration in bovine milk measured in the present
study was most comparable with the concentration in humanmilk,
as reported by Leach et al. (1995). Bovine milk contained cytidine
and uridine nucleosides and nucleotides in approximately equal
molar proportions, whereas ovine and caprine milk were domi-
nated by uridine and uridine nucleotides.

4. Conclusions

Despite the increasing awareness of the nutritional benefit of
nucleotides in infant nutrition, and the proliferation of milk of
various species being used as replacements for breast milk,
a comparative study of TPAN across three ruminant species has not
been previously reported.

The TPAN concentrations in bovine, caprine, and ovine milk
were studied and significant differences among the milk of each
species were found. The highest concentration of TPAN was found
in ovine milk, with significantly lower concentrations in caprine
milk and bovine milk. Ovine milk contained the highest concen-
trations of each of the individual nucleoside and nucleotide forms,
whereas bovine milk contained the lowest. Bovine milk contained
cytidine and uridine nucleosides and nucleotides in approximately
equal molar proportions, whereas ovine milk and caprine milk
were dominated by uridine and uridine nucleotides.
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INFANT FORMULA AND ADULT NUTRITIONALS

A method for the routine determination of 
5′-mononucleotides (uridine 5′-monophosphate, 
inosine 5′-monophosphate, adenosine 
5′-monophosphate, guanosine 5′-monophosphate, 
and cytidine 5′-monophosphate) in infant formula 
and adult nutritionals is described. After sample 
dissolution and addition of internal standard, potential 
interferences were removed by anion-exchange SPE 
followed by HPLC-UV analysis. Single-laboratory 
validation performance parameters include recovery 
(92–101%) and repeatability (1.0–2.3% RSD). The 
method was approved for Official First Action status 
by an AOAC expert review panel.

Nucleotides are compounds of critical importance to 
cellular function, and although not essential dietary 
nutrients, it has been demonstrated that supplementation 

of pediatric formulas with nucleotides is of benefit in neonatal 
nutrition. The described method was developed to provide 
an accurate, rapid, and robust technique for the routine 
compliance testing of uridine 5′-monophosphate (UMP), 
inosine 5′-monophosphate (IMP), adenosine 5′-monophosphate 
(AMP), guanosine 5′-monophosphate (GMP), and cytidine 
5′-monophosphate (CMP) in infant formula and adult/pediatric 
nutritional formula, and was recently reported (1).

In September 2011, the method was reviewed by an AOAC 
expert review panel and, based on the published single-
laboratory validation (SLV) data as compared with the standard 

method performance requirements (AOAC SMPR 2011.008; 
2) set by the Stakeholder Panel on Infant Formula and Adult 
Nutritionals (SPIFAN), it was approved for Official First Action 
status as AOAC Official MethodSM 2011.20.

AOAC Official Method 2011.20 
5′-Mononucleotides in Infant Formula

and Adult/Pediatric Nutritional Formula
Liquid Chromatography 

First Action 2011
(Applicable to the determination of 5′-mononucleotides in 

infant formula and adult/pediatric nutritional formula.)
Caution:  Refer to the material safety data sheets for all 

chemicals prior to use. Use all appropriate personal 
protective equipment, and follow good laboratory 
practices.

A.  Principle

Sample is dissolved in high-salt solution to inhibit protein 
and fat interactions. The 5′-mononucleotides—uridine 
5′-monophosphate (UMP), inosine 5′-monophosphate 
(IMP), adenosine 5′-monophosphate (AMP), guanosine 
5′-monophosphate (GMP), and cytidine 5′-phosphate (CMP)—
are separated from the sample matrix by strong-anion exchange 
solid-phase extraction (SPE), followed by chromatographic 
analysis using a C18 stationary phase with gradient elution, UV 
detection, and quantitation by an internal standard technique 
using thymidine 5′-monophosphate (TMP).
B.  Apparatus

(a)  HPLC system.—Equipped with pump, sample injector 
unit with a 50 μL injection loop, degasser unit, column oven, 
and photodiode array detector.

(b)  C18 column.—Gemini C18, 5  μm, 4.6 × 250  mm 
(Phenomenex, Torrance, CA).

(c)  Spectrophotometer.—Capable of digital readout to 
3 decimal places.

(d)  pH meter.
(e)  Polypropylene centrifuge tubes.—50 mL.
(f)  Disposable syringes.—3 mL.
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(g)  Syringe filters.—0.2  μm with cellulose acetate 
membranes.

(h)  SPE vacuum manifold.
(i)  Chromabond SB polypropylene strong-anion exchange 

SPE cartridges.—6 mL × 1000 mg (Macherey-Nagel, Düren, 
Germany).

(j)  Filter membranes.—0.45 µm nylon.
C.  Reagents

(a)  Standards.—Should be ≥99% pure (Sigma or equivalent). 
Nucleotide sodium salts or sodium salt hydrates may be 
substituted if free acid forms are not readily available.

(1)  TMP.—CAS No. 365-07-1.
(2)  AMP.—CAS No. 61-19-8.
(3)  CMP.—CAS No. 63-37-6.
(4)  GMP.—CAS No. 85-32-5.
(5)  IMP.—CAS No. 131-99-7.
(6)  UMP.—CAS No. 58-97-9.
(b)  Potassium bromide.
(c)  Potassium dihydrogen phosphate.
(d)  Orthophosphoric acid.
(e)  Potassium hydroxide.
(f)  Ethylenediaminetetraacetic acid.
(g)  Sodium chloride.
(h)  Methanol.
(i)  Water.—Purified with resistivity ≥18 MΩ. 

D.  Reagent Preparation

(a)  Standardizing buffer (KH2PO4, 0.25 M, pH 3.5).—
Dissolve 34.02 g KH2PO4 in 900 mL water and adjust pH to 3.5 
with orthophosphoric acid. Dilute to 1 L.

(b)  Extraction solution (NaCl, 1 M:EDTA, 5 mM).—
Dissolve 58.5 g NaCl and 1.46 g EDTA. Dilute in 1 L water.

(c)  Wash solution (KBr, 0.3 M).—Dissolve 3.57  g KBr in 
100 mL water.

(d)  Eluent (KH2PO4, 0.5 M, pH 3.0).—Dissolve 
6.805  g KH2PO4 in 90  mL water and adjust pH to 3.0 with 
orthophosphoric acid. Dilute to 100 mL.

(e)  Mobile phase A (KH2PO4, 10 mM, pH 5.6).—Dissolve 
1.36 g KH2PO4 in 900 mL water and adjust pH to 5.6 with KOH 
solution (10%, w/v). Dilute to 1 L with water. Make daily as 
microbial growth often occurs at room temperature in phosphate 
buffers that contain little or no organic solvent.

(f)  Mobile phase B (100% methanol).
E.  Standard Preparation

See Table 2011.20A for the UV absorbance maxima and 
extinction coefficients for 5′-mononucleotides.

(a)  Stock standards (~1  mg/mL).—(1)  Accurately weigh 
approximately 50  mg each nucleotide into separate 50  mL 
volumetric flasks. (2)  Add 40 mL water, mix until dissolved, 
and fill to volume with water.

(b)  Purity standards.—Pipet 1.0  mL each stock standard 
into separate 50  mL volumetric flasks, make to volume with 
standardizing buffer (KH2PO4, 0.25 M, pH 3.5), and measure 
absorbance at the appropriate λmax to determine the concentration 
of each nucleotide stock standard.

(c)  Internal standard solution (~80  µg/mL).—Dilute 4  mL 
TMP stock standard into 50 mL water.

(d)  Working standard solution (~40  µg/mL).—Pipet 2  mL 
each stock standard (AMP, CMP, GMP, IMP, and UMP) into a 
single 50 mL volumetric flask and make to volume with water.

(e)  Calibration standard solutions.—See Table 2011.20B for 
nucleotide concentrations of the calibration standard solutions.

(1) Calibration solution 1.—Pipet 0.25 mL working standard 
solution and 1  mL internal standard solution into a 25  mL 
volumetric flask and make to volume with water.

(2) Calibration solution 2.—Pipet 0.5 mL working standard 
solution and 1  mL internal standard solution into a 25  mL 
volumetric flask and make to volume with water.

(3) Calibration solution 3.—Pipet 2  mL working standard 
solution and 1  mL internal standard solution into a 25  mL 
volumetric flask and make to volume with water.

(4) Calibration solution 4.—Pipet 5  mL working standard 
solution and 1  mL internal standard solution into a 25  mL 
volumetric flask and make to volume with water.
F.  Sample Preparation

(a)  Accurately weigh approximately 1 g powder, or 10 mL 
liquid milk or ready-to-feed infant/nutritional formula, into a 
50 mL centrifuge tube.

(b)  Dissolve in 30 mL extraction solution (NaCl, 1 M:EDTA 
5 mM).

(c)  Add 1.0 mL TMP intermediate standard (~80 µg/mL).
(d)  Cap the tube and vortex mix.
(e)  Allow sample to stand for 10  min to ensure complete 

hydration.
(f)  Dilute to a final volume of 50 mL with water.
(g)  Cap the tube and vortex mix.

G.  Extraction

Throughout the extraction procedure, do not let the cartridge 
run dry but drain to the top of the cartridge bed only. When 
draining the cartridge the flow rate should be <2 mL/min.

Table  2011.20A.  UV absorbance maxima and 
extinction coefficients for 5′-mononucleotides

Nucleotide λmax, nm
1%
1cmE

 

Adenosine 5′-monophosphate 257 430.4

Cytidine 5′-monophosphate 280 398.0

Guanosine 5′-monophosphate 254 393.3

Inosine 5′-monophosphate 249 357.3

Uridine 5′-monophosphate 262 313.5

Thymidine 5′-monophosphate 267 288.5

Table  2011.20B.  Nominal concentration of 
calibration solutions

Calibration solution
AMP, CMP, GMP,  
IMP, UMP, µg/mL TMP, µg/mL

1 0.4 3.2

2 0.8 3.2

3 3.2 3.2

4 8 3.2
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(a)  For each sample, place a single SPE cartridge on a 
vacuum manifold.

(b)  Condition the columns by elution with 4 mL methanol 
followed by elution with 2 × 5 mL water. 

(c)  Load the cartridge with 4 mL sample solution.
(d)  Wash the cartridge with KBr (0.3 M, 4 mL) to remove 

interferences.
(e)  Elute the nucleotides with SPE eluent solution (KH2PO4, 

0.5 M, pH 3.0, 4 mL) into a test tube.
(f)  Filter an aliquot (~2 mL) of the eluent through a 0.2 µm 

syringe filter into an autosampler vial.
H.  Chromatography

(a)  Form gradients by low pressure mixing of the two mobile 
phases, A and B, with separation of nucleotides achieved using 
the procedure shown in Table 2011.20C.

(b)  Acquire spectral data between 210 and 300 nm by the 
photodiode array detector with chromatograms monitored at the 
specified wavelengths below for quantitation.

(1)  IMP wavelength at 250 nm.
(2)  AMP, GMP, and TMP wavelengths at 260 nm.
(3)  CMP and UMP wavelengths at 270 nm.
(c)  Set column oven to 40°C.

I.  Calculations

(a)  Percentage purity of each nucleotide (as free acid) in 
purity standard:

Purity, % = 
1

5050
××

wtSSE
Abs

1%
1cm

λmax

 

where Absλmax = UV absorbance at maximum wavelength; 
1%
1cmE

 

 = extinction coefficient for nucleotide; wtSS = weight 
of nucleotide in stock standard (g); 50 = total volume of stock 
standard (mL); 50 = total volume of purity standard (mL); 1 = 
volume of stock standard added to purity standard (mL).

(b)  Concentration of nucleotide in stock standards:

Stock standard, µg/mL = 610
100

%
50

××
PwtSS

 

where wtSS = weight of nucleotide in stock standard (g); 50 
= total volume of stock standard (mL); 106 = concentration 
conversion (g/mL to µg/mL); P% = purity (%); 100 = mass 
conversion from % to decimal.

(c)  Concentration of TMP in internal standard:

Internal standard, µg/mL = 
50
4

×SS
 

where SS = concentration of nucleotide in stock standard 
(µg/mL); 4 = volume of stock standard in internal standard 
(mL); 50 = total volume of internal standard (mL).

(d)  Concentration of nucleotide in calibration standards:

Calibration standard, µg/mL = 
2550

2 VSSS ××
 

where SS = concentration of nucleotide in stock standard 
(µg/mL); 2 = volume of stock standard in working standard 
(mL); 50 = total volume of working standard (mL); VS = 
volume of working standard in calibration standard (mL); 25 = 
total volume of calibration standard (mL).

(e)  Concentration of TMP in calibration standards:

Calibration standard, µg/mL = 
25
1

×IS
 

where IS = concentration of TMP in internal standard (µg/mL); 
1 = volume of working standard in calibration standard (mL); 
25 = total volume of calibration standard (mL).

(f)  Determine the linear regression curve for the ratio of peaks 
areas (nucleotide/TMP; y-axis) vs the ratio of concentrations 
(nucleotide/TMP; x-axis) for calibration standards and calculate 
the slope with the y-intercept forced through 0.

(g)  Interpolate the nucleotide contents in unknown samples 
from this calibration curve.

For powders:

Nucleotide, mg/hg = 1000
100)(1

×
×

××
S

SISI

SI

TN

W
VC

LA
A

For ready-to feed liquids:

Nucleotide, mg/dL = 
1000
100)(1

×
×

××
S

SISI

SI

TN

V
VC

LA
A

where ANT = nucleotide peak area in sample; AIS = TMP peak 
area in sample; L = linear regression slope of calibration curve; 
CIS = concentration of internal standard added to sample 
(µg/mL); VIS = volume of internal standard added to sample 
(mL); WS = weight of sample (g); 100 = mass conversion of 
result (g to hg); 1000 = mass conversion of result (µg to mg); VS 
= volume of sample (mL); 100 = volume conversion of result 
(mL to dL).
J.  Data Handling

Report results in mg/hg to 1 decimal place.
Reference: J. AOAC Int. 95, 599(2012)

Results and Discussion

An SLV of the method previously published (1) indicated 
that this method is suitable for the routine determination of the 
5′-mononucleotide content in milk and milk-based pediatric and 
adult nutritional products. The validation parameters investigated 
included linearity and working range, method detection limit, 
accuracy as recovery and bias, precision as repeatability 
and intermediate precision, and robustness. Linearity was 
demonstrated for all five nucleotides with correlation coefficients 
of >0.9999, and a visual inspection of residual plots. The method 
detection limits for individual nucleotides ranged from 0.06 
to 0.19  mg/kg. The working range for individual nucleotides 
evaluated was from 0.06 to 17.4 mg/kg. Accuracy was determined 
as recovery, with values measured from 92 to 101%, within the 
suggested AOAC limits of 80−115% at the 10 ppm level (3), and 
no bias was found (P values all >0.05) when compared with a 

Table  2011.20C.  Gradient procedure for 
chromatographic separation

Time, min Flow rate, mL/min Phase A, % Phase B, %

0 0.6 100 0

25 0.6 80 20

26 0.6 100 0

40 0.6 100 0
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previously published method (4). Precision as repeatability was 
estimated as 1.0–2.3 %RSD with a range for HorRat of 0.3–0.5 
and for intermediate precision of 3.8–8.6 RSD%. A Plackett−
Burman robustness study (5) was performed and the seven factors 
evaluated were shown not to affect the final results within typical 
experimental variations.

The method was applied to the analysis of a number of 
commercially available pediatric and nutritional powders. The 
products used for sampling included infant formula, follow-on 
formulas, and an adult nutritional product. The range of sources 
for these products included bovine milk, hydrolyzed milk 
protein, caprine milk, and soy protein. The method was found 
to be suitable for use with these various product matrixes.

It is recommended that this method be further examined 
against a set of infant formula and adult nutritional matrixes 

developed for this purpose by the SPIFAN community, and 
its performance evaluated against the SMPRs established by 
SPIFAN.
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Abstract A method for the simultaneous analysis of nucle-
osides and nucleotides in infant formula using reversed-
phase liquid chromatography–tandem mass spectrometry is
described. This approach is advantageous for compliance
testing of infant formula over other LC-MS methods in
which only nucleotides or nucleosides are measured. Fol-
lowing sample dissolution, protein was removed by centrif-
ugal ultrafiltration. Chromatographic analyses were
performed using a C18 stationary phase and gradient elution
of an ammonium acetate/bicarbonate buffer, mass spectro-
metric detection and quantitation by a stable isotope-
labelled internal standard technique. A single laboratory
validation was performed, with spike recoveries of 80.1–
112.9 % and repeatability relative standard deviations of
1.9–7.2 %. Accuracy as bias was demonstrated against
reference values for NIST1849a certified reference material.
The method has been validated for the analysis of bovine
milk-based, soy-based, caprine milk-based and hydrolysed
milk protein-based infant formulae.

Keywords Nucleotides . Nucleosides . Infant formula .

LC-MS

Introduction

The structure of nucleosides and nucleotides and their im-
portance to infant nutrition have been described previously

[1–3]. In view of their physiological benefits, nucleotides
are routinely supplemented into infant formulae as sodium
salts of adenosine 5′-monophosphate (AMP), cytidine 5′-
monophosphate (CMP), guanosine 5′-monophosphate
(GMP), inosine 5′-monophosphate (IMP) and uridine 5′-
monophosphate (UMP) [4]. Although nucleosides are not
supplemented into infant formulae, dephosphorylation of
nucleotides to the corresponding nucleosides—adenosine
(Ado), cytidine (Cyd), guanosine (Guo), inosine (Ino)
and uridine (Urd)—can occur under certain processing
conditions [5].

Analytical methods for nucleosides and nucleotides in in-
fant formulae and milk have previously been reviewed [6].
Sample preparation of infant formulae is frequently achieved
by acidic precipitation of casein proteins from the reconstituted
sample [5, 7]. Alternatively, centrifugal ultrafiltration has also
been reported [8] and offers a simple mechanism to remove
high-molecular-weight material. Further cleanup of sample
extracts using ion exchange solid phase extraction and a
phenylboronate affinity gel has been reported [9–11].

Liquid chromatography, i.e. reversed-phase liquid chro-
matography (RPLC), ion pair RPLC, ion exchange liquid
chromatography and hydrophilic interaction liquid chroma-
tography, with UV detection is commonly used for the
quantitation of nucleotides in milk products [5, 7, 8,
12–15]. RPLC is easily adapted for the analysis of nucleo-
sides, although the retention of nucleotides is more chal-
lenging. However, at the appropriate mobile phase pH, polar
nucleotides are retained on a C18 column and an organic
solvent gradient is able to remove late-eluting nucleosides.

The use of mass spectrometry (MS) offers potential
advantages with respect to accuracy and simplicity by
incorporating the addition of stable isotope-labelled (SIL)
internal standards, whilst the selectivity of tandem MS
reduces the need to remove other components that often
compromise UV analyses [16–18]. The aim of this study
was, therefore, to develop an LC-MS/MS method for the

B. D. Gill :H. E. Indyk
Fonterra Co-operative Group Ltd., P.O. Box 7, Waitoa 3380,
New Zealand

B. D. Gill (*) :M. Manley-Harris
University of Waikato, Private Bag 3105, Hamilton 3240,
New Zealand
e-mail: brendon.gill@fonterra.com

Anal Bioanal Chem (2013) 405:5311–5319
DOI 10.1007/s00216-013-6935-9



simultaneous analysis of nucleosides and nucleotides in
infant formulae. The method described involves a simple
centrifugal ultrafiltration procedure followed by high-
performance liquid chromatography (HPLC) with detec-
tion and quantitation by tandem MS. Confidence in an-
alytical accuracy is assured through the use of a SIL
standard for each analyte. This technique has been vali-
dated for a range of bovine milk-based, caprine milk-
based, soy-based and hypoallergenic infant formulae.

Experimental

Reagents

Ammonium acetate (NH4CH3COO), ammonium bicarbonate
(NH4HCO3), AMP sodium salt, CMP disodium salt, GMP
disodium salt, IMP disodium salt, UMP disodium salt, and
corresponding nucleosides were obtained from Sigma-Aldrich
(St. Louis, MO, USA). SIL nucleoside standards—13C5 Ado,
13C9

15N3 Cyd,
15N5 Guo,

15N4 Ino and 13C9
15N2 Urd—were

purchased from Cambridge Isotope Laboratories (Andover,
MA, USA). SIL nucleotide standards—13C10

15N5 AMP,
13C9

15N3 CMP, 13C10
15N5 GMP and 13C9

15N2 UMP—were
purchased from Sigma-Aldrich. 13C10

15N4 IMP was purchased
from Medical Isotopes (Pelham, NH, USA).

Potassium dihydrogen phosphate (KH2PO4), acetic acid,
orthophosphoric acid, potassium hydroxide and methanol
were supplied by Merck. Water was purified with resistivity
≥18 M Ω using an E-pure water system (Barnstead, Du-
buque, IA, USA).

A standardising buffer (KH2PO4, 0.25 M, pH 3.5) was
made by dissolving 34.02 g of KH2PO4 in 900 mL of water,
adjusting the pH to 3.5 with orthophosphoric acid and then
making the solution to 1 L. Mobile phase A (NH4CH3COO,
10 mM; NH4HCO3, 5 mM, pH 5.6) was made daily by
dissolving 0.771 g of NH4CH3COO and 0.395 g of
NH4HCO3 in 950 mL of water, adjusting the pH to 5.6 with
acetic acid solution (10 %, w/v) and then making to 1 L with
water. Mobile phase B consisted of 100 % methanol.

Standard solutions

SIL nucleoside and nucleotide stock standards were pre-
pared by accurately weighing 50 mg each of 13C5 Ado,
13C9

15N3 Cyd, 15N5 Guo, 15N4 Ino, 13C9
15N2 Urd,

13C10
15N5 AMP, 13C9

15N3 CMP, 13C10
15N5 GMP,

13C10
15N4 IMP and 13C9

15N2 UMP into separate 50-mL
volumetric flasks. To each flask, 40 mL of water was added
and then shaken (with gentle warming if necessary) until the
standard was completely dissolved before water was added
to volume. Aliquots (∼1.5 mL) of SIL stock standards were
immediately dispensed into individual cryogenic vials and

frozen at −15 °C for later use. Prior to analysis, cryogenic
vials containing each SIL nucleoside and nucleotide stock
standard were allowed to thaw to room temperature.

Non-isotopically labelled (NL) nucleoside and nucleotide
stock standards were prepared in a similar manner by accu-
rately weighing approximately 50 mg of each into separate
50-mL volumetric flasks and making to volume with water.
These were refrigerated at 4 °C for up to 1 month.

Estimation of the moisture content of nucleosides was
performed using the oven moisture method (102±2 °C,
4 h) and the concentration was calculated on a dry
weight basis. Extinction coefficients at UV absorbance
maxima were then determined for each nucleoside. These
were compared with the values previously determined for
nucleotides [5], with correction for molecular weight.
The values obtained for each nucleoside were in close
agreement with those for the corresponding nucleotide.
Mean extinction coefficient values (nucleoside and cor-
responding nucleotide) were calculated by adjusting for
molecular weight and are reported in Table 1. The con-
centration of each nucleoside and nucleotide stock stan-
dard was determined by adding 500 μL of each stock
standard into separate 25-mL volumetric flasks, diluting
with standardising buffer and measuring the absorbance
at the appropriate lmax.

A mixed SIL intermediate standard was prepared by
diluting 2.0 mL of each SIL stock standard into a 25-mL
volumetric flask and making to volume with water. A mixed
NL intermediate standard was made by adding 1.0 mL of
each NL stock standard into a 25-mL volumetric flask and
making to volume with water.

Four calibration standards were prepared by pipetting
1.0, 1.0, 0.5 and 0.2 mL of SIL intermediate standard and
2.0, 4.0, 5.0 and 8.0 mL of NL intermediate standard into

Table 1 Mean extinction coefficients at UV absorbance maxima of
nucleosides and corresponding nucleotides

Nucleoside/nucleotide Extinction
coefficient (E1 %)

lmax

(nm)

AMP 428.6 257
Ado 557.0

CMP 390.9 280
Cyd 519.5

GMP 392.0 254
Guo 502.8

IMP 356.5 249
Ino 462.7

UMP 312.7 262
Urd 415.1

Ado adenosine, Cyd cytidine, Guo guanosine, Ino inosine, Urd uridine,
AMP adenosine 5′-monophosphate, CMP cytidine 5′-monophosphate,
GMP guanosine 5′-monophosphate, IMP inosine 5′-monophosphate,
UMP uridine 5′-monophosphate
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50-, 50-, 25- and 10-mL volumetric flasks, respectively. The
calibration standards were then made to volume with water
and mixed thoroughly.

Samples

A range of different infant formula samples were evaluated
during the validation of the method. These included a par-
tially hydrolysed bovine milk-based powder, a partially
hydrolysed soy-based powder, an infant elemental powder,
a bovine milk-based powder, a soy-based powder and a
caprine milk-based powder.

Sample preparation

Approximately 5.0 g of infant formula powder was weighed
accurately into a 50-mL polypropylene centrifuge tube
(Biolab, Auckland, New Zealand) and dissolved in 25 mL
of water. To this was added 1.0 mL of the SIL intermediate
standard and the tube was capped and vortex-mixed. The
sample was allowed to stand for 10 min to ensure complete
hydration before dilution to a final volume of 50 mL with
water.

A 4.0-mL aliquot of sample solution was added to an
Amicon Ultra-4 3000 MWCO centrifugal ultrafiltration unit
(Millipore, Billerica, MA, USA) and centrifuged at 3,500×g
for 60 min. The filter was then removed and discarded and a
1-mL aliquot of filtrate was transferred to an HPLC vial
ready for analysis.

Instrumentation

The HPLC system used consisted of a CBM20A system
controller, two LC20ADXR pumps for high-pressure gradi-
ents, a CTO20AC column oven and a SIL20ACXR
autosampler equipped with a 50-μL injection loop
(Shimadzu, Kyoto, Japan). Chromatographic separation
was achieved using a Gemini column, 5 μm, 4.6×250 mm
(Phenomenex, Torrance, CA, USA), with a high-pressure
gradient elution programme as described in Table 2.

The MS/MS system consisted of a 3200 QTRAP quadru-
pole mass spectrometer with a Turbo V ion source equipped
with an electrospray ionisation (ESI) probe. Analyst 1.5.1
software was used for instrument control and data processing
(ABSciex, Foster City, CA, USA). The mass spectrometer
was operated in ESI+ modewith nitrogen utilised as the drying
and collision gas. The instrumental parameters were set as
follows: curtain gas at 30 psi, nebuliser gases GS1 and GS2 at
50 and 70 psi, respectively, desolvation temperature at 700 °C,
collision-induced dissociation gas at medium and ion spray
voltage at 5,500 V. Instrument settings and multiple reaction
monitoring (MRM) transitions for the generation of product
ions for nucleosides and nucleotides are given in Table 3.

Method validation

Six mixed nucleoside and nucleotide solutions covering the
expected working range were prepared and linearity was
evaluated by least-squares regression analysis of the SIL-
corrected response (ratio of NL/SIL analyte peak area versus
ratio of NL/SIL analyte concentration). A minimum value of

Table 2 Gradient procedure for chromatographic separation

Time (min) Flow rate
(mL min−1)

Phase
composition

%Aa %Bb

0.0 0.75 100 0

3.5 0.75 100 0

10.0 0.75 80 20

20.0 0.75 80 20

21.0 0.75 100 0

35.0 0.75 100 0

aMobile phase A: NH4CH3COO, 10 mM; NH4HCO3, 5 mM, pH 5.6
bMobile phase B: 100 % methanol

Table 3 MS/MS parameters

Analyte Precursor ion
[M-H]+ (m/z)

Product
ions (m/z)

DP
(V)

EP
(V)

CEP
(V)

CE
(V)

CXP
(V)

CMP 324.1 112.0 26 3.5 32 27 4
SIL CMP 336.1 119.0

UMP 325.0 97.0 21 9.5 18 23 4
SIL UMP 336.1 102.1

GMP 364.1 152.0 36 4.5 22 23 4
SIL GMP 379.1 160.0

IMP 349.1 137.0 31 6.0 28 23 4
SIL IMP 362.1 145.0

Cyd 244.1 112.0 11 6.5 22 19 4
SIL Cyd 256.1 119.0

Urd 245.1 113.0 16 5.0 16 19 4
SIL Urd 256.1 119.0

AMP 348.1 136.0 36 1.0 24 25 4
SIL AMP 363.1 146.0

Ino 269.1 137.0 16 4.5 18 23 4
SIL Ino 273.1 141.0

Guo 284.1 152.0 11 4.0 24 23 4
SIL Guo 289.1 157.0

Ado 268.1 136.0 21 8.5 16 39 4
SIL Ado 273.1 136.0

SIL stable isotope-labelled, Ado adenosine, Cyd cytidine, Guo guano-
sine, Ino inosine, Urd uridine, AMP adenosine 5′-monophosphate,
CMP cytidine 5′-monophosphate, GMP guanosine 5′-monophosphate,
IMP inosine 5′-monophosphate, UMP uridine 5′-monophosphate, DP
declustering potential, EP entrance potential, CEP collision cell en-
trance potential, CE collision energy, CXP collision cell exit potential
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0.997 for the correlation coefficient (r2) was deemed to be
suitable. Plots of standard residuals were visually assessed
as a further test of linearity.

Repeatability was estimated by analysing replicate pairs
(n=9 pairs) of a bovine milk-based infant formula and NIST

1849a. Intermediate precision was determined from replicate
analyses (n=6) of a bovine milk-based infant formula and
NIST 1849a tested on three different days. Method detection
limits (MDLs) were estimated in accordance with US Envi-
ronmental Protection Agency procedures [19].
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Fig. 1 LC-MS/MS MRM chromatograms of a mixed nucleotide and nucleotide standard solution (∼7 μg mL−1)

5314 B.D. Gill et al.



The robustness of the method was assessed by conducting
a Plackett–Burman trial [20], as described previously [15].
The seven factors assessed were: initial sample water volume
(27 and 23 mL), vortex time (40 and 20 s), wait time (14 and
6 min), centrifuge volume (4.2 and 3.8 mL), centrifuge speed
(4,000 and 3,000×g), centrifuge time (70 and 50 min) and a
dummy factor.

Method accuracy was determined as both recovery
and bias. Recovery of both nucleosides and nucleotides
was evaluated by spiking a range of sample matrices at
50 and 150 % of the concentration levels typically
found in infant formulae. Bias was evaluated by
performing a paired t test for nucleotides both against
reference values of a NIST 1849a powder and against
values for a bovine milk-based infant formula tested
using AOAC Official Method 2011.20 [21].

Results and discussion

Method optimisation

The simultaneous chromatographic analysis of both nucleo-
sides and nucleotides in infant formulae using LC-UV has
previously been described [5]. However, the mobile phase
contained a 0.1 M phosphate buffer, which is unsuitable for
use in LC-MS. In this study, ammonium acetate (10 mM,
pH 5.6) was initially chosen to buffer the mobile phase because
of its compatibility with electrospray mass spectrometric detec-
tion and a pH buffering range (∼3.8–5.8) consistent with nu-
cleoside and nucleotide pKa values. However, significant peak
tailing for nucleotides was observed when this buffer was used.

Conventional LC-UV nucleotide analyses typically
contain phosphate in the mobile phase and no signifi-
cant peak tailing is observed [5, 7]. Unfortunately, the

use of non-volatile buffers such as phosphate in LC-MS
is generally not recommended because of contamination
of the ion source leading to a decrease in sensitivity.
Furthermore, the interaction of phosphorylated com-
pounds with metal surfaces in liquid chromatographic
applications resulting in peak tailing has been reported
[22–26]. Pretreatment of the chromatographic system
using phosphoric acid prior to switching to a non-
phosphate eluent during analysis [26, 27], the substitu-
tion of polyether ether ketone tubing for stainless steel,
the use of a high pH mobile phase [28] and the addition
of EDTA to the mobile phase [25] have all been
employed to overcome this problem.

A number of mass spectrometer manufacturers have
evaluated phosphate buffers for use with their instru-
ments and have demonstrated that modern source de-
signs can tolerate the use of non-volatile buffers
[29–32]. A phosphate-based ion pair RPLC-MS method
was successfully applied to the quantitative analysis of
intracellular nucleotides utilising a microbore column to
reduce the amount of phosphate introduced to the ion
source [33].

In the present study, a low ionic strength phosphate
buffer (NH4H2PO4 0.08 mM, pH 5.6) was initially evaluat-
ed for compatibility with the mass spectrometer. The chro-
matographic parameter resolution, retention factor, peak
area repeatability, retention time repeatability, plate number
and asymmetry were evaluated, with acceptable results be-
ing obtained (data not shown). There was some loss of
sensitivity as replicate analyses progressed, consistent with
a small accumulation of phosphate on the cone. The method
was applied to the analysis of nucleotides in infant formula
samples in a validation study. Linear response was demon-
strated for NL/SIL peak area versus NL/SIL analyte con-
centration (r2=0.997–0.999). Accuracy and precision were

Table 4 Chromatographic performance

Parameter Analyte

Cyd Urd Guo Ino Ado CMP UMP GMP IMP AMP

Retention time
(min)

9.6 (0.0)c 10.8 (0.0) 12.6 (0.0) 12.3 (0.0) 15.3 (0.0) 5 (0.0) 6.1 (0.0) 8.5 (0.0) 9.0 (0.0) 11.6 (0.0)

Capacity factora 2.0 (0.0) 2.4 (0.0) 2.9 (0.0) 2.8 (0.0) 3.8 (0.0) 0.6 (0.0) 0.9 (0.0) 1.6 (0.0) 1.8 (0.0) 2.6 (0.0)

Resolutiona 1.3 (0.2) 3.5 (0.9) 0.8 (0.2) 2.2 (0.4) 4.6 (0.8) − 2.8 (0.4) 4.3 (0.6) 0.9 (0.1) 2.8 (0.4)

Tailing factora 1.8 (1.0) 1.2 (0.3) 1.7 (0.5) 1.4 (0.6) 1.8 (0.7) 1.6 (0.3) 1.7 (0.4) 1.6 (0.3) 1.5 (0.3) 1.7 (0.3)

Peak area ratio
repeatabilityb

0.42 (0.01) 0.46 (0.02) 0.51 (0.02) 0.55 (0.02) 0.50 (0.01) 0.49 (0.03) 0.36 (0.01) 0.46 (0.01) 5.34 (0.13) 0.51 (0.03)

Ado adenosine, Cyd cytidine, Guo guanosine, Ino inosine, Urd uridine, AMP adenosine 5′-monophosphate, CMP cytidine 5′-monophosphate, GMP
guanosine 5′-monophosphate, IMP inosine 5′-monophosphate, UMP uridine 5′-monophosphate
a Calculations as defined by US Pharmacopeia
b Peak area ratio measured as non-labelled nucleoside or nucleotide/stable isotope-labelled nucleoside or nucleotide
c Analysis of six replicates of a mixed nucleoside and nucleotide standard reported as the mean (standard deviation)

Analysis of nucleosides and nucleotides in infant formula 5315



evaluated, with both spike recovery (84.2–107.1 %) and
repeatability relative standard deviation (1.5–3.1 %) deemed
to be acceptable. Despite this performance, a limitation with
this phosphate-based approach was that the number of sam-
ples within each analytical run was limited due to the
requirement for regular maintenance of the source.

An alternative chromatographic system was evaluated
based on the observations of Asakawa et al. [22], who found
a beneficial chromatographic effect with a number of mobile
phase additives. Of those evaluated, only ammonium bicar-
bonate is volatile and considered suitable for use in LC-MS
and was therefore incorporated as an additive in the ammo-
nium acetate eluent.

The optimisation of the MS conditions was performed by
infusion of a standard of each nucleoside or nucleotide
(∼10 μg mL−1) diluted in a mixture of mobile phases A
and B (90:10). Initial development focused on ESI+ for
nucleosides and ESI− for nucleotides. However, it was
found that ESI+ gave superior response for both analytes,
with the [M+H]+ ion most abundant and low levels of
potassium adduct, thereby simplifying the analysis with
the detection of all analytes in positive mode.

The conditions for MRM were optimised by selecting
individual fragments and adjusting collision energies to
maximise the product ion signal. The most abundant frag-
ment ion observed for nucleosides and nucleotides was

Table 6 Mean recovery of nucleosides and nucleotides in spiked samples at 50 and 150 % of typical concentrations

Sample Recovery
(%)

Cyd Urd Guo Ino Ado CMP UMP GMP IMP AMP

IF powder p/h bovine milk-based 95.4 84.9 104.4 94.1 99.3 101.3 81.8 104.8 112.9 95.1

IF powder p/h soy-based 101.1 98.9 107.2 96.8 100.1 101.8 88.8 101.6 98.4 101.7

Infant elemental powder 98.7 97.2 104.1 98.2 99.0 103.8 91.0 104.8 109.0 98.6

IF powder bovine milk-based 93.4 86.6 102.6 100.1 97.9 95.7 90.7 102.0 101.3 101.8

IF powder soy-based 101.7 80.1 107.9 103.0 95.3 101.8 90.3 103.5 94.8 98.7

IF powder caprine milk-based 96.4 109.1 112.0 100.1 100.5 103.0 97.5 100.9 98.9 110.1

AMP adenosine 5′-monophosphate, CMP cytidine 5′-monophosphate, GMP guanosine 5′-monophosphate, IMP inosine 5′-monophosphate, UMP
uridine 5′-monophosphate, Ado adenosine, Cyd cytidine, Guo guanosine, Ino inosine, Urd uridine, IF infant formula, p/h partially hydrolysed

Table 5 Method performance as linearity, detection limit and precision

Analyte Range
(μg mL−1)

Linear regressiona r2 MDLb

(mg hg−1)
RSDr

c (%) HorRatr
d RSDiR

e (%)

Cyd 0.7–58.6 y=0.737x+0.1053 0.9996 0.03 4.8 0.4 14.4

Urd 0.8–60.9 y=0.957x−0.3441 0.9987 0.12 4.1 0.4 14.1

Guo 0.7–54.9 y=0.837x+0.2553 0.9996 0.01 6.2 0.4 7.9

Ino 0.8–62.1 y=1.059x−0.0417 0.9982 0.01 7.2 0.4 11.2

Ado 0.7–59.2 y=0.778x+0.1853 0.9997 0.01 –f – –

CMP 0.6–45.3 y=0.94x+0.0113 0.9998 0.13 4.0 0.6 4.6

UMP 0.5–42.6 y=0.872x−0.1152 0.9997 0.01 5.0 0.6 6.2

GMP 0.6–45.7 y=0.928x+0.1423 0.9993 0.01 1.9 0.2 2.9

IMP 0.6–46.8 y=1.069x+0.5071 0.9999 0.03 – – –

AMP 0.8–60.6 y=0.787x+0.35 0.9986 0.01 2.8 0.4 7.8

AMP adenosine 5′-monophosphate, CMP cytidine 5′-monophosphate, GMP guanosine 5′-monophosphate, IMP inosine 5′-monophosphate, UMP
uridine 5′-monophosphate, Ado adenosine, Cyd cytidine, Guo guanosine, Ino inosine, Urd uridine
a Linear regression plotted as the ratio of peak area of unlabelled analyte to stable isotope-labelled standard versus the ratio of the concentration of
unlabelled analyte to stable isotope-labelled standard
b Determined from n replicates at or near the expected detection limit: MDL=t(n−1, 1−α)×SD, where n=7 and α=0.01
c Relative standard deviation repeatability (RSDr)=SD of n duplicate pairs/mean×100 (n=9)
d Horwitz ratio=RSDr/pRSDR, where pRSDR=2C

−0.1505 at the 10-ppm concentration level (typical range, 0.3–1.3)
e Intermediate reproducibility of six replicates measured on three different days (n=18). RSD%=SD/mean×100
f Concentration at or below the detection limit
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formed by cleaving of the glycosidic bond, resulting in
the loss of ribose or ribose + phosphate group and the
detection of the positively charged nucleobase. The ex-
ception to this was UMP, which underwent fragmentation
and rearrangement to generate the m/z 97.0 ion. A similar
fragmentation scheme has been reported for the generation of
a product ion with m/z 81.0 from the fragmentation of
deoxycytidine 5′-monophosphate [34].

Using the LC-MS/MS method developed, the simulta-
neous detection of nucleosides and nucleotides in a standard
solution was achieved (Fig. 1).

Method performance

A high degree of selectivity is afforded by an MRM exper-
iment; however, chromatographic separation is required for
critical peaks with similar MRM transitions if accurate
quantitation is to be achieved. Chromatographic perfor-
mance was assessed by replicate analyses (n=6) of a mixed
nucleoside and nucleotide standard, with satisfactory reso-
lution being obtained between IMP/AMP (6.7), Ino/Ado
(6.8) and Cyd/Urd (4.3) critical pairs, compounds which
differ in mass by <2 Da (Table 4).

Method validation experiments to determine linearity,
detection limits and precision are summarised in Table 5.
Linearity was evaluated by least-squares regression analy-
sis, with acceptable values being obtained for the correlation
coefficient and with standard residual plots showing no
pattern and only a small amount of random variation. The
detection limits were appropriate, as defined by the infant
formula industry, with the exception of those for CMP and
Urd [35]. Although the detection limits of CMP and Urd
were higher than those specified, the MDL was two orders
of magnitude lower than that found in unfortified milk
powder [5]. Precision was evaluated as repeatability (1.9–
7.2 %) and intermediate precision (2.9–14.4 %). The suit-
ability of these results was demonstrated by a Horwitz
(repeatability) ratio of 0.2–0.6 [36].

The method was found to be robust for the seven method
performance parameters studied, with variances in the

results obtained not being significantly different from those
expected by chance. Given the method’s simplicity, two
critical steps are required to ensure the accuracy of the
results obtained: accurate measurement of the amount of
sample weighed and accurate addition of the internal
standard.

Accuracy determined as spiked recovery results measured in
the six different product types were within the acceptable limits
of 80–115% at the 10-μg g−1 level, as suggested by the AOAC
[36] (Table 6). Accuracy estimated as bias was evaluated
against reference values for NIST 1849a CRM (Table 7) and
against an LC-UVmethod for determining nucleotides in infant
formula (AOAC method 2011.20; Table 8). Although there
were statistically significant differences for some of the results,
the differences were small enough (0–13 %) that they are
unlikely to be of practical significance for compliance and
labelling requirements.

Conclusions

The optimisation and validation of an LC-MS/MS method
for the analysis of nucleosides and nucleotides in infant
formulae has been described. The use of SIL internal

Table 8 Method bias against AOAC Official Method 2011.20

Analyte

CMP UMP GMP IMP AMP

Measured
resultsa

12.9 (0.39) 4.1 (0.14) 1.6 (0.04) 0 (0) 3.6 (0.11)

AOAC
2011.20
resultsa

12.3 (0.50) 4.0 (0.21) 1.6 (0.07) 0 (0) 3.2 (0.16)

Bias (p value) <0.001 0.24 0.44 0 <0.001

AMP adenosine 5′-monophosphate, CMP cytidine 5′-monophosphate,
GMP guanosine 5′-monophosphate, UMP uridine 5′-monophosphate,
IMP inosine 5′-monophosphate
aMean (standard deviation) of analytical results for bovine milk-based
infant formula in milligrams per hectogram (n=12 replicates)

Table 7 Method bias against NIST 1849a reference values

Analyte

CMP UMP GMP AMP CMP+Cyd UMP+Urd GMP+Guo AMP+Ado

Measureda results 27.0 (0.99) 12.0 (0.66) 14.8 (0.45) 10.3 (0.29) 28.1 (1.00) 14.4 (0.68) 15.0 (0.45) 10.3 (0.29)

Reference values 26.8±2.9 12.9±1.5 14.6±1.1 10.51±0.5 31.7 15.5 14.6 10.8

Bias (p value) 0.44 <0.001 0.16 0.03 <0.001 <0.001 0.01 0.05

AMP adenosine 5′-monophosphate, CMP cytidine 5′-monophosphate, GMP guanosine 5′-monophosphate, UMP uridine 5′-monophosphate, Ado
adenosine, Cyd cytidine, Guo guanosine, Urd uridine
aMean (standard deviation) of analytical results of NIST 1849a CRM in milligrams per hectogram (n=12 replicates)

Analysis of nucleosides and nucleotides in infant formula 5317



standards provides confidence in the accuracy of the results
obtained. The method has been demonstrated to be precise
and accurate and has been validated for the analysis of
bovine milk-based, soy-based, caprine milk-based and
hydrolysed milk protein-based infant formulae.
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APPENDIX III: LC-UV METHOD RAW DATA 

Table 39. LC-UV method: resolution 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 2.2 17.2 3.5 0.0 6.5 15.6 

Rep-2 2.2 16.7 3.5 0.0 6.3 15.6 

Rep-3 2.2 16.9 3.5 0.0 6.3 15.7 

Rep-4 2.2 16.8 3.5 0.0 6.3 15.6 

Rep-5 2.2 16.9 3.5 0.0 6.3 15.6 

Rep-6 2.2 16.8 3.6 0.0 6.3 15.6 

 

Table 40. LC-UV method: retention factor 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1–6 2.8 2.7 3.8 0.6 1.2 3.6 

 

Table 41. LC-UV method: theoretical plate number 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 58936 31344 242105 6728 9549 193432 

Rep-2 60714 33807 242122 6759 8144 196772 

Rep-3 60658 34690 240791 6895 8319 195607 

Rep-4 61290 34469 241952 6872 8249 195092 

Rep-5 60300 34120 241297 6822 8470 192936 

Rep-6 60792 33724 242225 6785 8431 192337 
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Table 42. LC-UV method: tailing factor 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 1.0 1.0 1.2 1.3 1.2 1.1 

Rep-2–3 1.1 1.0 1.1 1.3 1.2 1.1 

Rep-4 1.0 1.0 1.1 1.4 1.2 1.1 

Rep-5 1.0 1.0 1.1 1.4 1.1 1.1 

Rep-6 1.0 1.0 1.1 1.3 1.2 1.1 

 

Table 43. LC-UV method: retention time 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 20.6a 19.7 25.8 8.8 11.8 25.0 

Rep-2–6 20.6 19.8 25.8 8.8 11.8 25.0 

a
 time (min) 

 

Table 44. LC-UV method: peak area 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 123748 225546 309034 141090 201075 489133 

Rep-2 121833 225604 308867 142148 200878 488891 

Rep-3 121746 225576 308684 141865 199218 489026 

Rep-4 121446 225612 308522 143459 203759 488691 

Rep-5 122807 224207 308783 142219 199183 488058 

Rep-6 123633 224907 308633 142749 202813 487711 
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Table 45. LC-UV method: CMP linearity 

Standard Concentration Peak Area 

Number (μg mL-1) Expt-1 Expt-2 Mean 

1 0.61 176776 174227 175502 

2 1.22 347187 349061 348124 

3 2.44 708336 707102 707719 

4 3.67 1048784 1052265 1050525 

5 4.89 1385545 1395938 1390742 

6 6.11 1753167 1758614 1755891 

7 8.55 2461364 2467887 2464626 

 

Table 46. LC-UV method: UMP linearity 

Standard Concentration Peak Area 

Number (μg mL-1) Expt-1 Expt-2 Mean 

1 1.12 164979 163776 164378 

2 2.24 324607 326570 325589 

3 4.48 663277 661509 662393 

4 6.72 983556 988010 985783 

5 8.96 1298586 1307318 1302952 

6 11.20 1641850 1649499 1645675 

7 15.68 2301120 2310325 2305723 

 

Table 47. LC-UV method: GMP linearity 

Standard Concentration Peak Area 

Number (μg mL-1) Expt-1 Expt-2 Mean 

1 1.11 221513 221836 221675 

2 2.22 439150 439407 439279 

3 4.44 893367 889918 891643 

4 6.66 1339470 1340023 1339747 

5 8.88 1778542 1749201 1763872 

6 11.11 2225169 2229101 2227135 

7 15.55 3126921 3103321 3115121 
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Table 48. LC-UV method: IMP linearity 

Standard Concentration Peak Area 

Number (μg mL-1) Expt-1 Expt-2 Mean 

1 1.09 217540 217228 217384 

2 2.18 430114 439407 434761 

3 4.36 876836 875499 876168 

4 6.54 1302257 1304263 1303260 

5 8.72 1725020 1733135 1729078 

6 10.90 2169873 2175433 2172653 

7 15.27 3028787 3037687 3033237 

 

Table 49. LC-UV method: AMP linearity 

Standard Concentration Peak Area 

Number (μg mL-1) Expt-1 Expt-2 Mean 

1 1.25 328042 326090 327066 

2 2.50 643253 642699 642976 

3 5.00 1299637 1305955 1302796 

4 7.49 1940122 1929875 1934999 

5 9.99 2558580 2565982 2562281 

6 12.49 3202858 3217996 3210427 

7 1.25 328042 326090 327066 

 

Table 50. LC-UV method: TMP linearity 

Standard Concentration Peak Area 

Number (μg mL-1) Expt-1 Expt-2 Mean 

1 1.61 237138 240469 238804 

2 3.22 479645 481904 480775 

3 6.44 977263 978047 977655 

4 9.66 1458787 1452497 1455642 

5 12.88 1931108 1933364 1932236 

6 16.10 2418014 2430058 2424036 

7 22.54 3389353 3392650 3391002 
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Table 51. LC-UV method: precision 

Sample 
Day 

Tested 

Result (mg hg-1) 

CMP UMP GMP IMP AMP 

Milk-based IF dup-1 1 12.6 4.0 1.9 2.0 4.7 

Milk-based IF dup-2 1 12.3 4.0 1.8 2.0 4.5 

Milk-based IF dup-1 1 12.4 4.1 1.8 2.0 4.6 

Milk-based IF dup-2 1 12.4 4.1 1.8 2.0 4.5 

Milk-based IF dup-1 2 12.8 4.1 1.8 2.0 4.4 

Milk-based IF dup-2 2 12.7 4.2 1.8 2.1 4.3 

Milk-based IF dup-1 2 13.1 4.2 1.9 2.1 4.8 

Milk-based IF dup-2 2 12.9 4.4 1.8 2.1 4.7 

Milk-based IF dup-1 3 11.1 3.4 1.7 1.9 4.2 

Milk-based IF dup-2 3 11.0 3.4 1.7 1.9 4.2 

Milk-based IF dup-1 3 11.0 3.5 1.7 1.9 4.1 

Milk-based IF dup-2 3 10.9 3.5 1.7 1.9 4.1 

Milk-based IF dup-1 4 12.1 3.6 1.7 2.0 4.3 

Milk-based IF dup-2 4 12.2 3.8 1.7 2.1 4.3 

Milk-based IF dup-1 4 12.2 3.8 1.7 2.1 4.3 

Milk-based IF dup-2 4 12.3 3.9 1.8 2.1 4.4 

Milk-based IF dup-1 5 11.3 4.6 1.7 2.0 4.2 

Milk-based IF dup-2 5 11.7 4.2 1.8 2.0 4.6 

Milk-based IF dup-1 5 11.4 4.5 1.5 2.0 4.3 

Milk-based IF dup-2 5 11.4 4.5 1.5 2.0 4.3 

 

Table 52. LC-UV method: robustness 

Experiment 
Results (mg hg-1) 

IMP GMP AMP CMP UMP 

1 1.95 1.66 4.26 11.19 3.65 

2 1.99 1.70 4.32 11.38 3.68 

3 1.99 1.70 4.34 11.41 3.79 

4 2.00 1.75 4.40 11.46 3.70 

5 2.01 1.75 4.43 11.53 3.67 

6 2.01 1.74 4.43 11.54 3.74 

7 2.01 1.78 4.50 11.72 3.69 

8 1.99 1.70 4.32 11.38 3.78 
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Table 53. LC-UV method: method detection limit 

Replicatea 
Results (mg hg-1) 

CMP UMP GMP IMP AMP 

1 1.74 0.56 0.53 0.50 0.72 

2 1.75 0.57 0.54 0.53 0.72 

3 1.74 0.56 0.53 0.52 0.70 

4 1.70 0.56 0.53 0.50 0.69 

5 1.65 0.55 0.50 0.49 0.72 

6 1.75 0.53 0.53 0.52 0.68 

7 1.64 0.57 0.48 0.49 0.64 

8 1.56 0.57 0.52 0.54 0.70 

9 1.63 0.52 0.54 0.56 0.71 

10 1.62 0.49 0.49 0.59 0.73 
a
 Milk-based infant formula not fortified with nucleotides 
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Table 56. LC-UV method: CMP bias 

Replicate 
Numbera 

Day Tested 
CMP Paired Results (mg hg-1) 

Candidate Method Reference Methodb 

1  1 12.8 12.8 

2  1 12.7 12.4 

3  1 13.1 13.0 

4  1 12.9 12.7 

5  1 12.6 13.1 

6  1 13.1 12.8 

7  2 11.3 11.7 

8  2 11.7 11.6 

9  2 11.3 11.6 

10  2 11.4 11.5 

11  2 11.5 11.6 

12  2 11.4 11.6 
a
 Milk-based infant formula 

b 
Gill and Indyk, 2007 

 

Table 57. LC-UV method: UMP bias 

Replicate 
Numbera 

Day Tested 
UMP Paired Results (mg hg-1) 

Candidate Method Reference Methodb 

1  1 4.1 4.3 

2  1 4.2 4.2 

3  1 4.2 4.4 

4  1 4.4 4.1 

5  1 4.4 4.4 

6  1 4.1 4.4 

7  2 4.6 4.0 

8  2 4.2 4.0 

9  2 4.2 3.6 

10  2 4.5 4.0 

11  2 4.2 3.7 

12  2 4.0 3.7 
a
 Milk-based infant formula 

b 
Gill and Indyk, 2007 
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Table 58. LC-UV method: GMP bias 

Replicate 
Numbera 

Day Tested 
GMP Paired Results (mg hg-1) 

Candidate Method Reference Methodb 

1  1 1.8 1.7 

2  1 1.8 1.7 

3  1 1.9 1.8 

4  1 1.8 1.7 

5  1 1.7 1.6 

6  1 1.8 1.7 

7  2 1.7 1.6 

8  2 1.8 1.6 

9  2 1.5 1.9 

10  2 1.5 1.9 

11  2 1.7 1.6 

1  1 1.8 1.7 
a
 Milk-based infant formula 

b 
Gill and Indyk, 2007 

 

 

Table 59. LC-UV method: IMP bias 

Replicate 
Numbera 

Day Tested 
IMP Paired Results (mg hg-1) 

Candidate Method Reference Methodb 

1  1 2.0 2.0 

2  1 2.1 2.1 

3  1 2.1 2.0 

4  1 2.1 1.8 

5  1 2.0 1.9 

6  1 2.1 2.0 

7  2 2.0 2.0 

8  2 2.0 2.0 

9  2 2.0 2.0 

10  2 2.0 2.0 

11  2 2.0 2.0 

12  2 1.8 2.0 
a
 Milk-based infant formula 

b 
Gill and Indyk, 2007 
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Table 60. LC-UV method: AMP bias 

Replicate 
Numbera 

Day Tested 
AMP Paired Results (mg hg-1) 

Candidate Method Reference Methodb 

1  1 4.4 4.2 

2  1 4.3 4.2 

3  1 4.8 4.4 

4  1 4.7 4.2 

5  1 4.4 4.2 

6  1 4.4 4.2 

7  2 4.2 4.3 

8  2 4.6 4.4 

9  2 4.1 4.3 

10  2 4.3 4.3 

11  2 4.4 4.2 

12  2 4.3 4.2 
a
 Milk-based infant formula 

b 
Gill and Indyk, 2007 

 

 

Table 61. LC-UV method extension: resolution 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 0.0 7.2 12.4 2.7 15.7 4.4 

Rep-2 0.0 7.3 12.4 2.7 15.5 4.4 

Rep-3 0.0 7.3 12.4 2.7 15.3 4.4 

Rep-4 0.0 7.5 12.6 2.7 15.0 4.3 

Rep-5 0.0 7.5 12.6 2.7 14.8 4.4 

Rep-6 0.0 7.5 12.7 2.7 14.5 4.4 

Rep-7 0.0 7.6 12.7 2.8 14.1 4.4 

Rep-8 0.0 7.6 12.8 2.8 14.0 4.4 

Rep-9 0.0 7.6 12.9 2.8 14.2 4.5 

Rep-10 0.0 7.7 13.0 2.8 14.5 4.6 

Rep-11 0.0 7.7 13.1 2.8 14.8 4.5 

Rep-12 0.0 7.7 13.2 2.8 15.1 4.6 

Rep-13 0.0 7.7 13.4 2.7 15.5 4.6 

Rep-14 0.0 7.8 13.6 2.7 15.6 4.6 
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Table 62. LC-UV method extension: retention factor 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 1.9 2.8 4.8 5.4 8.0 8.5 

Rep-2 1.9 2.8 4.9 5.4 8.0 8.5 

Rep-3 1.9 2.8 4.9 5.5 8.0 8.5 

Rep-4 2.0 2.9 5.0 5.5 8.0 8.5 

Rep-5 2.0 2.9 5.0 5.6 8.0 8.6 

Rep-6 2.0 2.9 5.1 5.7 8.1 8.6 

Rep-7 2.0 3.0 5.1 5.7 8.1 8.6 

Rep-8 2.0 3.0 5.2 5.8 8.1 8.6 

Rep-9 2.0 3.0 5.3 5.8 8.1 8.7 

Rep-10 2.0 3.0 5.3 5.9 8.1 8.7 

Rep-11 2.0 3.0 5.4 5.9 8.1 8.7 

Rep-12 2.1 3.1 5.4 5.9 8.1 8.7 

Rep-13–14 2.1 3.1 5.5 6.0 8.1 8.7 

 

 

Table 63. LC-UV method extension: theoretical plates 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 10192 12996 14017 13867 95549 99638 

Rep-2 10602 12859 14300 14343 96916 101672 

Rep-3 10664 12897 14281 14326 99592 99300 

Rep-4 11237 13186 14415 14738 96668 99121 

Rep-5 10875 12992 14645 14826 98134 97892 

Rep-6 10877 12896 14472 15032 97540 97943 

Rep-7 11006 12978 14271 15783 94302 95966 

Rep-8 11106 12857 14268 16709 91588 93421 

Rep-9 10789 12806 14332 18375 91755 93547 

Rep-10 10918 12901 14524 21504 91098 92581 

Rep-11 10731 12615 14624 23934 88864 90545 

Rep-12 10795 12487 14878 27248 87701 90249 

Rep-13 10728 12386 15711 30341 87727 90184 

Rep-14 10737 12441 16317 32304 86550 88390 
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Table 64. LC-UV method extension: tailing factor 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 1.2 1.2 1.1 1.1 1.1 1.1 

Rep-2 1.3 1.2 1.1 1.1 1.1 1.1 

Rep-3–5 1.2 1.2 1.1 1.1 1.1 1.1 

Rep-6 1.3 1.2 1.1 1.1 1.1 1.1 

Rep-7–8 1.2 1.2 1.1 1.1 1.0 1.1 

Rep-9–12 1.2 1.2 1.1 1.0 1.1 1.1 

Rep-13 1.2 1.2 1.0 1.0 1.0 1.1 

Rep-14 1.3 1.2 1.1 1.0 1.1 1.1 

 

 

Table 65. LC-UV method extension: retention time 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 7.2 9.4 14.5 15.9 22.4 23.7 

Rep-2 7.3 9.5 14.7 16.1 22.5 23.8 

Rep-3 7.3 9.6 14.8 16.2 22.5 23.8 

Rep-4 7.4 9.7 14.9 16.4 22.6 23.9 

Rep-5 7.4 9.7 15.1 16.5 22.6 23.9 

Rep-6 7.4 9.8 15.2 16.6 22.7 24.0 

Rep-7 7.5 9.9 15.4 16.8 22.7 24.0 

Rep-8 7.5 9.9 15.5 17.0 22.7 24.1 

Rep-9 7.6 10.0 15.6 17.1 22.8 24.2 

Rep-10 7.6 10.1 15.8 17.2 22.8 24.2 

Rep-11 7.6 10.1 15.9 17.3 22.8 24.3 

Rep-12 7.6 10.2 16.0 17.3 22.8 24.3 

Rep-13 7.7 10.2 16.1 17.4 22.9 24.3 

Rep-14 7.7 10.3 16.2 17.4 22.9 24.3 

 

 

 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

APPENDIX III: LC-UV METHOD RAW DATA 294 
 

Table 66. LC-UV method extension: peak area 

Mixed 
Standard 

Results 

IMP GMP AMP CMP UMP TMP 

Rep-1 638138 982334 1119976 593685 770011 1843228 

Rep-2 640022 986420 1127234 597848 773187 1855738 

Rep-3 636447 981626 1120259 592765 769603 1842289 

Rep-4 645569 993141 1133985 597917 779022 1866522 

Rep-5 632147 975974 1111935 585924 766264 1838637 

Rep-6 624578 962047 1095944 573769 753739 1809489 

Rep-7 653286 1006752 1145159 600617 790462 1892580 

Rep-8 637618 981851 1116001 588061 773469 1854067 

Rep-9 630436 967112 1099008 580259 758997 1821988 

Rep-10 621475 959689 1090717 574672 752423 1806074 

Rep-11 630009 967348 1109294 583220 761399 1825315 

Rep-12 638728 983285 1128934 591601 771544 1856610 

Rep-13 637092 980414 1117724 587872 769926 1842529 

Rep-14 616894 946592 1084900 572612 743720 1779084 

 

 

Table 67. LC-UV method extension: CMP linearity 

Standard Concentration Peak Area 

Number (ng mL-1) Expt-1 Expt-2 Expt-3 

1 30.40 3068 2764 2951 

2 75.99 7950 6901 6208 

3 151.98 15870 15743 14559 

4 303.97 33905 33426 30072 

5 790.32 91542 89617 87619 

6 1641.44 185087 194640 191435 

7 4012.40 469266 479866 477601 

8 8207.19 953511 983051 973409 
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Table 68. LC-UV method extension: UMP linearity 

Standard Concentration Peak Area 

Number (ng mL-1) Expt-1 Expt-2 Expt-3 

1 29.9 3287 2762 3068 

2 74.7 8295 7248 6433 

3 149.5 17528 17060 15393 

4 299.0 37265 35897 33386 

5 777.4 102256 96457 95696 

6 1614.6 212913 210417 207391 

7 3946.7 526514 520532 521321 

8 8072.9 1079162 1071946 1065016 

 

Table 69. LC-UV method extension: GMP linearity 

Standard Concentration Peak Area 

Number (ng mL-1) Expt-1 Expt-2 Expt-3 

1 30.1 3139 3356 2685 

2 75.3 9279 7244 4161 

3 150.6 19241 17251 12724 

4 301.3 41543 39812 32870 

5 783.3 114857 106351 108758 

6 1626.8 243900 238192 225350 

7 3976.6 609095 584126 579317 

8 8133.9 1248954 1236241 1254776 

 

Table 70. LC-UV method extension: IMP linearity 

Standard Concentration Peak Area 

Number (ng mL-1) Expt-1 Expt-2 Expt-3 

1 30.3 3310 3044 3486 

2 75.7 9418 7958 6443 

3 151.4 18290 18569 16915 

4 302.8 42722 40371 36493 

5 787.2 121191 112168 111833 

6 1634.9 253892 246719 245055 

7 3996.5 630236 619282 617073 

8 8174.6 1303341 1272772 1274573 
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Table 71. LC-UV method extension: AMP linearity 

Standard Concentration Peak Area 

Number (ng mL-1) Expt-1 Expt-2 Expt-3 

1 30.1 3935 2695 3429 

2 75.2 10245 8343 6771 

3 150.4 20433 20009 17738 

4 300.8 44687 43798 38795 

5 782.0 146449 120017 119155 

6 1624.1 266211 263989 259700 

7 3969.9 685088 661717 656761 

8 8120.4 1377034 1364391 1359536 

 

Table 72. LC-UV method extension: TMP linearity 

Standard Concentration Peak Area 

Number (ng mL-1) Expt-1 Expt-2 Expt-3 

1 30.3 4236 2818 4052 

2 75.6 10261 8306 8029 

3 151.3 20669 19434 18994 

4 302.6 44382 43441 39653 

5 786.7 124543 114412 116256 

6 1633.8 255504 252406 250776 

7 3993.8 635068 631412 631464 

8 8169.2 1301278 1294196 1286217 
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Table 79. LC-UV method extension: bias (NIST1849a CRM results) 

Sample 
Results (mg hg

-1
) 

CMP UMP GMP AMP 

NIST 1849a day one, rep-1 27.60 13.00 14.93 10.71 

NIST 1849a day one, rep-2 28.68 12.88 15.71 11.15 

NIST 1849a day two, rep-1 26.99 13.16 14.25 10.08 

NIST 1849a day two, rep-2 27.66 13.17 14.76 10.45 

NIST 1849a day three, rep-1 25.97 12.02 14.55 10.52 

NIST 1849a day three, rep-2 26.26 12.77 14.34 10.28 

NIST 1849a day four, rep-1 27.37 13.12 14.64 10.33 

NIST 1849a day four, rep-2 27.41 13.10 14.35 10.30 

NIST 1849a day five, rep-1 30.06 12.00 15.43 11.31 

NIST 1849a day five, rep-1 28.56 11.56 15.29 11.25 

NIST 1849a day six, rep-1 29.77 11.54 15.40 11.44 

NIST 1849a day six, rep-2 29.34 11.80 15.15 11.24 
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APPENDIX IV: TPAN ANALYSIS RAW DATA 

Table 86. TPAN chromatography: resolution 

Mixed 
Standard 

Results 

Cyd Urd 5mCyd Ino Guo Ado 8BrGuo 

Rep-1 0.0 6.3 8.1 8.3 2.6 12.8 9.5 

Rep-2 0.0 6.4 8.3 7.7 2.6 12.7 9.5 

Rep-3 0.0 6.2 7.7 9.1 2.7 12.8 9.1 

Rep-4 0.0 6.0 7.5 9.4 2.8 12.6 9.0 

Rep-5 0.0 6.1 7.5 9.4 2.8 12.8 9.1 

Rep-6 0.0 6.0 7.5 9.5 2.7 12.8 8.9 

Rep-7 0.0 6.1 7.5 9.5 2.7 12.7 8.9 

Rep-8 0.0 6.1 7.5 9.5 2.8 12.4 8.9 

Rep-9 0.0 6.0 7.5 9.5 2.8 12.7 9.0 

Rep-10 0.0 6.0 7.4 9.5 2.7 12.5 9.0 

Rep-11 0.0 6.0 7.5 9.4 2.7 12.4 8.9 

Rep-12 0.0 6.0 7.5 9.4 2.8 12.5 8.9 

Rep-13 0.0 6.0 7.4 9.3 2.7 12.3 8.9 
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Table 87. TPAN method: retention factor 

Mixed 
Standard 

Results 

Cyd Urd 5mCyd Ino Guo Ado 8BrGuo 

Rep-1 1.5 2.4 3.8 5.1 5.3 6.5 7.6 

Rep-2 1.6 2.4 4.0 5.1 5.4 6.5 7.7 

Rep-3 1.4 2.2 3.6 5.0 5.2 6.3 7.4 

Rep-4–5 1.4 2.2 3.5 4.9 5.1 6.3 7.3 

Rep-6–7 1.4 2.2 3.4 4.9 5.1 6.3 7.3 

Rep-8–9 1.4 2.2 3.5 4.9 5.1 6.3 7.3 

Rep-10–12 1.4 2.2 3.5 4.9 5.2 6.3 7.3 

Rep-13 1.4 2.2 3.5 4.9 5.2 6.3 7.4 

 

 

Table 88. TPAN method: theoretical plates 

Mixed 
Standard 

Results 

Cyd Urd 5mCyd Ino Guo Ado 8BrGuo 

Rep-1 6672 7887 8519 70604 89268 96811 56826 

Rep-2 6701 7989 8647 74783 94298 93766 56620 

Rep-3 6786 7712 8223 61494 83362 98738 62705 

Rep-4 6398 7587 8148 52520 78441 94140 61317 

Rep-5 6664 7551 8056 53554 80348 98512 62110 

Rep-6 6582 7612 8067 50148 79176 98374 61100 

Rep-7 6577 7697 8151 50714 79199 96656 60978 

Rep-8 6685 7677 8181 52691 75328 94129 61109 

Rep-9 6429 7626 8173 53735 80204 97516 60310 

Rep-10 6600 7481 8071 55531 79830 94802 60606 

Rep-11 6309 7476 8134 54349 80597 92142 59610 

Rep-12 6442 7603 8132 55589 81436 91610 58672 

Rep-13 6570 7552 8005 55645 78695 91755 59102 
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Table 89. TPAN method: tailing factor 

Mixed 
Standard 

Results 

Cyd Urd 5mCyd Ino Guo Ado 8BrGuo 

Rep-1 1.2 1.1 1.0 1.1 1.1 1.2 1.1 

Rep-2–5 1.2 1.1 1.0 1.1 1.2 1.2 1.1 

Rep-6 1.2 1.2 1.0 1.1 1.2 1.2 1.2 

Rep-7 1.2 1.1 1.0 1.1 1.2 1.2 1.1 

Rep-8 1.2 1.1 1.0 1.1 1.1 1.2 1.1 

Rep-9 1.2 1.2 1.0 1.2 1.2 1.2 1.1 

Rep-10 1.2 1.1 1.0 1.1 1.1 1.2 1.1 

Rep-11 1.2 1.1 1.0 1.1 1.2 1.2 1.1 

Rep-12 1.2 1.2 1.0 1.1 1.2 1.2 1.1 

Rep-13 1.2 1.1 1.0 1.1 1.1 1.2 1.1 

 

 

Table 90. TPAN method: retention time 

Mixed 
Standard 

Results 

Cyd Urd 5mCyd Ino Guo Ado 8BrGuo 

Rep-1 5.5 7.4 10.6 13.4 13.9 16.4 18.9 

Rep-2 5.6 7.6 10.9 13.5 14.0 16.5 19.1 

Rep-3 5.3 7.1 10.1 13.1 13.6 16.2 18.4 

Rep-4 5.2 7.0 9.8 12.9 13.5 16.0 18.3 

Rep-5 5.2 7.0 9.8 12.9 13.5 16.1 18.3 

Rep-6 5.2 6.9 9.7 12.9 13.5 16.0 18.2 

Rep-7–9 5.2 7.0 9.8 12.9 13.5 16.0 18.3 

Rep-10 5.3 7.0 9.9 13.0 13.5 16.1 18.3 

Rep-11 5.3 7.0 9.9 13.0 13.6 16.1 18.3 

Rep-12 5.3 7.0 9.9 13.0 13.6 16.1 18.4 

Rep-13 5.3 7.1 9.9 13.0 13.6 16.1 18.4 
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Table 91. TPAN method: peak area 

Mixed 
Standard 

Results 

Cyd Urd 5mCyd Ino Guo Ado 8BrGuo 

Rep-1 101975 136868 94477 107797 130840 184237 177727 

Rep-2 105768 141774 98055 111589 135530 190849 183974 

Rep-3 105551 142184 97903 111931 135823 191183 184517 

Rep-4 100819 135980 93473 107415 130514 184413 177853 

Rep-5 101162 136223 93597 107182 130006 183118 176836 

Rep-6 102232 137473 94690 108501 131816 186241 180033 

Rep-7 101667 136607 94439 107596 130516 183946 177581 

Rep-8 103696 139471 96106 109759 133043 187420 181116 

Rep-9 103636 139555 96139 109670 132891 187400 180905 

Rep-10 100363 134937 93228 106175 128751 181702 176011 

Rep-11 106120 142754 98189 112251 136077 192060 186263 

Rep-12 112602 151446 104781 119170 144577 203855 197927 

Rep-13 103396 138942 95438 109222 132363 186623 181340 
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Table 92. TPAN raw data: winter herd milk (rep-1) 

Samplea,b 
Enzyme 

Treatment 

Results (mg dL-1) 

Cyd Urd Guo Ado 

Day 0 

A 1.29 14.43 0.08 0.00 

B 2.82 50.99 0.88 0.74 

C 2.97 51.05 1.25 1.09 

D 3.23 55.29 2.22 1.72 

Day 0.25 

A 0.94 9.67 0.07 0.00 

B 1.33 17.05 0.36 0.36 

C 1.34 17.81 0.70 0.61 

D 1.52 18.76 0.98 0.77 

Day 1 

A 0.84 12.31 0.14 0.00 

B 4.07 31.72 1.24 0.84 

C 4.29 31.81 1.64 1.16 

D 4.42 35.87 2.31 1.80 

Day 2 

A 0.55 14.69 0.22 0.14 

B 4.76 22.61 0.81 0.85 

C 4.99 23.04 1.11 1.19 

D 5.03 24.92 1.74 1.95 

Day 3 

A 0.46 10.09 0.13 0.14 

B 4.46 16.11 0.58 1.26 

C 4.55 16.41 0.73 1.28 

D 4.58 17.79 1.31 1.90 

Day 5 

A 0.32 5.40 0.00 0.05 

B 3.33 5.72 0.17 0.94 

C 3.46 5.87 0.39 1.13 

D 3.48 6.08 0.60 1.33 

Day 10 

A 0.16 0.82 0.00 0.03 

B 1.89 0.91 0.07 0.69 

C 1.90 0.92 0.15 0.75 

D 1.94 0.99 0.18 0.84 

Day 20 

A 0.13 0.29 0.00 0.04 

B 1.07 0.33 0.00 0.28 

C 1.13 0.35 0.08 0.35 

D 1.14 0.38 0.09 0.37 

Day30 A 0.13 0.22 0.00 0.03 
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B 0.75 0.24 0.00 0.13 

C 0.81 0.26 0.06 0.18 

D 0.81 0.27 0.07 0.20 
a
 Milk/colostrum samples from 7 cows pooled at each sampling time. 

b
 Sampling time in days post-partum. 
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Table 93. TPAN raw data: winter herd milk (rep-2) 

Samplea,b 
Enzyme 

Treatment 

Results (mg dL-1) 

Cyd Urd Guo Ado 

Day 0 

A 1.31 13.87 0.09 0.00 

B 2.76 47.49 0.88 0.80 

C 2.89 50.04 1.31 1.17 

D 3.07 57.39 2.58 1.81 

Day 0.25 

A 1.00 9.75 0.07 0.00 

B 1.25 15.52 0.35 0.37 

C 1.27 16.65 0.65 0.61 

D 1.53 17.28 1.01 0.72 

Day 1 

A 0.87 12.03 0.15 0.00 

B 4.01 30.46 1.30 0.76 

C 4.06 31.85 1.64 1.26 

D 4.11 33.58 2.30 1.68 

Day 2 

A 0.65 14.81 0.24 0.17 

B 4.66 21.54 0.78 0.87 

C 4.92 22.44 1.06 1.19 

D 5.03 23.82 1.78 1.83 

Day 3 

A 0.53 10.78 0.16 0.19 

B 4.40 15.62 0.55 0.97 

C 4.47 15.81 0.75 1.23 

D 4.67 17.29 1.41 1.82 

Day 5 

A 0.41 5.12 0.00 0.07 

B 3.30 5.50 0.16 0.92 

C 3.39 5.53 0.41 1.09 

D 3.40 5.73 0.56 1.22 

Day 10 

A 0.23 0.76 0.00 0.03 

B 1.84 0.86 0.07 0.64 

C 1.97 0.92 0.19 0.71 

D 1.98 0.94 0.20 0.74 

Day 20 

A 0.19 0.34 0.00 0.04 

B 1.13 0.34 0.00 0.24 

C 1.17 0.35 0.08 0.27 

D 1.19 0.41 0.11 0.30 

Day30 A 0.16 0.18 0.00 0.03 
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B 0.76 0.23 0.00 0.10 

C 0.82 0.25 0.07 0.12 

D 0.83 0.26 0.08 0.14 
a
 Milk/colostrum samples from 7 cows pooled at each sampling time. 

b
 Sampling time in days post-partum. 
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Table 94. TPAN raw data: summer herd milk (rep-1) 

Samplea,b 
Enzyme 

Treatment 

Results (mg dL-1) 

Cyd Urd Guo Ado 

Day 0 

A 0.61 13.36 0.66 0.00 

B 0.94 13.64 0.71 0.00 

C 1.05 13.75 1.02 0.25 

D 1.10 13.89 1.11 0.31 

Day 0.25 

A 0.86 6.76 0.51 0.00 

B 1.04 6.88 0.55 0.00 

C 1.11 7.24 0.81 0.21 

D 1.18 7.43 0.85 0.24 

Day 1 

A 1.26 10.21 0.63 0.00 

B 3.05 11.20 0.73 0.00 

C 3.23 11.40 1.00 0.24 

D 3.58 12.91 1.33 0.33 

Day 2 

A 0.82 9.56 0.69 0.00 

B 3.48 9.67 0.75 0.25 

C 3.61 9.92 0.89 0.32 

D 3.61 10.27 1.13 0.43 

Day 3 

A 1.59 5.53 0.32 0.00 

B 3.15 6.54 0.42 0.50 

C 3.29 6.97 0.53 0.59 

D 3.32 7.11 0.66 0.71 

Day 5 

A 0.27 2.23 0.11 0.00 

B 2.26 2.33 0.18 0.52 

C 2.43 2.44 0.26 0.58 

D 2.47 2.52 0.29 0.65 

Day 10 

A 0.15 0.74 0.00 0.00 

B 1.17 0.77 0.00 0.29 

C 1.22 0.84 0.10 0.32 

D 1.29 0.85 0.12 0.37 

Day 20 

A 0.17 0.44 0.00 0.00 

B 0.86 0.45 0.00 0.11 

C 0.86 0.47 0.00 0.12 

D 0.89 0.49 0.00 0.14 

Day30 A 0.15 0.31 0.00 0.00 
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B 0.57 0.32 0.00 0.00 

C 0.57 0.33 0.00 0.00 

D 0.60 0.34 0.00 0.08 
a
 Milk/colostrum samples from 7 cows pooled at each sampling time. 

b
 Sampling time in days post-partum. 
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Table 95. TPAN raw data: summer herd milk (rep-2) 

Samplea,b 
Enzyme 

Treatment 

Results (mg dL-1) 

Cyd Urd Guo Ado 

Day 0 

A 0.67 11.37 0.56 0.00 

B 1.05 11.66 0.61 0.00 

C 1.15 11.67 0.93 0.25 

D 1.17 11.77 1.00 0.31 

Day 0.25 

A 0.90 6.91 0.50 0.00 

B 0.96 6.99 0.54 0.00 

C 1.05 7.44 0.76 0.20 

D 1.10 7.71 0.79 0.22 

Day 1 

A 1.38 9.78 0.57 0.00 

B 3.14 10.87 0.64 0.00 

C 3.27 11.20 0.94 0.14 

D 3.72 13.03 1.31 0.20 

Day 2 

A 0.96 9.59 0.84 0.00 

B 3.34 9.67 0.90 0.21 

C 3.46 9.93 1.01 0.28 

D 3.46 10.40 1.27 0.37 

Day 3 

A 1.66 4.96 0.35 0.00 

B 2.95 5.69 0.43 0.65 

C 3.06 5.95 0.54 0.73 

D 3.09 6.08 0.63 0.84 

Day 5 

A 0.23 2.27 0.00 0.00 

B 2.15 2.37 0.07 0.53 

C 2.39 2.51 0.15 0.58 

D 2.50 2.61 0.17 0.66 

Day 10 

A 0.13 0.75 0.00 0.00 

B 1.09 0.78 0.00 0.34 

C 1.12 0.83 0.10 0.37 

D 1.16 0.83 0.11 0.40 

Day 20 

A 0.17 0.28 0.00 0.00 

B 0.91 0.29 0.00 0.09 

C 0.91 0.31 0.00 0.10 

D 0.95 0.32 0.00 0.12 

Day30 A 0.15 0.32 0.00 0.00 



ANALYSIS OF NUCLEOSIDES AND NUCLEOTIDES IN MILK AND INFANT FORMULA 

APPENDIX IV: TPAN ANALYSIS RAW DATA 322 
 

B 0.50 0.32 0.00 0.00 

C 0.51 0.33 0.00 0.00 

D 0.53 0.34 0.00 0.08 
a
 Milk/colostrum samples from 7 cows pooled at each sampling time. 

b
 Sampling time in days post-partum. 
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Table 96. TPAN raw data: bovine, caprine, ovine milk (rep-1) 

Sample 
Enzyme 

Treatment 

Results (mg dL-1) 

Cyd Urd Guo Ado 

Bovinea 

A 0.20 0.44 0.00 0.00 

B 1.03 0.59 0.00 0.00 

C 1.04 0.60 0.00 0.11 

D 1.06 0.62 0.10 0.14 

Caprinea 

A 0.39 2.70 0.00 0.00 

B 1.23 11.64 2.58 0.62 

C 1.42 12.03 2.99 0.81 

D 1.59 14.29 7.09 1.72 

Ovineb 

A 0.54 3.42 0.16 0.00 

B 1.96 48.41 1.94 3.24 

C 2.04 49.43 2.25 3.48 

D 2.29 75.28 8.56 7.44 
a
 Pooled samples taken from silos prior to manufacturing. 

b
 Pooled sample taken from research herd. 

 

Table 97. TPAN raw data: bovine, caprine, ovine milk (rep-2) 

Sample 
Enzyme 

Treatment 

Results (mg dL-1) 

Cyd Urd Guo Ado 

Bovinea 

A 0.24 0.49 0.00 0.00 

B 1.02 0.58 0.00 0.00 

C 1.07 0.63 0.00 0.13 

D 1.08 0.64 0.13 0.15 

Caprinea 

A 0.37 2.83 0.00 0.00 

B 1.28 12.05 2.77 0.68 

C 1.39 12.12 2.97 0.78 

D 1.57 14.78 7.09 1.66 

Ovineb 

A 0.56 3.80 0.16 0.00 

B 1.89 50.31 1.93 3.23 

C 2.06 51.37 2.33 3.69 

D 2.28 74.54 8.56 7.40 
a
 Pooled samples taken from silos prior to manufacturing. 

b
 Pooled sample taken from research herd. 
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APPENDIX V: LS-MS METHOD RAW DATA 

Table 98. LC-MS method: bias (AOAC 2011.20 results) 

Sample 
Result (mg hg-1) 

CMP UMP GMP IMP AMP 

Bovine milk-based IF rep-1 12.6 4.3 1.6 0.0 3.2 

Bovine milk-based IF rep-2 13.0 4.1 1.7 0.0 3.5 

Bovine milk-based IF rep-3 11.8 4.2 1.5 0.0 3.1 

Bovine milk-based IF rep-4 11.7 4.2 1.5 0.0 3.0 

Bovine milk-based IF rep-5 12.2 3.8 1.6 0.0 3.3 

Bovine milk-based IF rep-6 12.6 3.8 1.6 0.0 3.3 

Bovine milk-based IF rep-7 12.7 4.2 1.5 0.0 3.3 

Bovine milk-based IF rep-8 13.0 4.1 1.8 0.0 3.5 

Bovine milk-based IF rep-9 11.9 4.2 1.6 0.0 3.1 

Bovine milk-based IF rep-10 11.9 4.2 1.6 0.0 3.1 

Bovine milk-based IF rep-11 11.7 3.7 1.6 0.0 3.2 

Bovine milk-based IF rep-12 12.8 3.7 1.6 0.0 3.3 

 

Table 99. LC-MS method: bias (LC-MS method results) 

Sample 
Result (mg hg-1) 

CMP UMP GMP IMP AMP 

Bovine milk-based IF rep-1 13.3 4.2 1.6 0.0 3.6 

Bovine milk-based IF rep-2 13.2 4.2 1.6 0.0 3.5 

Bovine milk-based IF rep-3 12.9 4.1 1.6 0.0 3.5 

Bovine milk-based IF rep-4 12.8 4.2 1.6 0.0 3.6 

Bovine milk-based IF rep-5 12.7 3.8 1.7 0.0 3.6 

Bovine milk-based IF rep-6 12.4 4.0 1.6 0.0 3.6 

Bovine milk-based IF rep-7 13.4 4.2 1.6 0.0 3.6 

Bovine milk-based IF rep-8 13.5 3.9 1.6 0.0 3.9 

Bovine milk-based IF rep-9 12.6 4.2 1.6 0.0 3.6 

Bovine milk-based IF rep-10 12.5 4.3 1.6 0.0 3.5 

Bovine milk-based IF rep-11 12.7 3.9 1.6 0.0 3.6 

Bovine milk-based IF rep-12 12.3 4.2 1.6 0.0 3.7 
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