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Abstract In this paper, we present a novel meta-feature generation method in the
context of meta-learning, which is based on rules that compare the performance of
individual base learners in a one-against-one manner. In addition to these new meta-
features, we also introduce a new meta-learner called Approximate Ranking Tree
Forests (ART Forests) that performs very competitively when compared with several
state-of-the-art meta-learners. Our experimental results are based on a large collec-
tion of datasets and show that the proposed new techniques can improve the overall
performance of meta-learning for algorithm ranking significantly. A key point in our
approach is that each performance figure of any base learner for any specific dataset
is generated by optimising the parameters of the base learner separately for each
dataset.

Keywords Meta-learning · Algorithm ranking · Ranking trees · Ensemble learning

1 Introduction

Training a good model for a given dataset is one of the common tasks of a data
analyst. The straightforward approach of simply applying and optimising all known
learning algorithms is usually not feasible. Thus an experienced data analyst will gen-
erally perform some form of preliminary analysis and then focus on a few promising
algorithms. This selection is guided by the prior experience of the analyst. Meta-
learning tries to support and automate this process. It tries to predict the probably
best or close to best algorithms, thus considerably reducing the amount of training
and optimisation time needed for finding a good model on a given dataset. This re-
duction in resource consumption should be accompanied by no or only a small loss
in predictive performance when compared to the best possible result [8, 7]. Meta-
learning for algorithm ranking uses a general machine learning approach to generate
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meta-knowledge mapping the characteristics of a dataset, captured by meta-features,
to the relative performances of the available algorithms.

The advantage of the meta-learning approach is that high quality algorithm rank-
ing can be done on the fly, i.e., in seconds, which is particularly important for busi-
ness domains that require rapid deployment of analytical techniques. In machine
learning research, meta-learning has also been used for boosting the performance
of evolutionary-algorithm-based model selection techniques [33]. The work by [36]
has discussed cross-disciplinary perspectives on meta-learning. Theoretical motiva-
tions on meta-learning research are due to the No Free Lunch (NFL) theorem [42]
and the Law of Conservation for Generalization Performance (LCG) [34]. Recent re-
search seems to suggest that it is possible to show that meta-learning offers a viable
mechanism for building a “general-purpose” learning algorithm [17]. For a compre-
hensive review of meta-learning research and its applications, we refer the reader to
[17, 7, 21, 35].

This paper makes three contributions: a novel meta-feature generator for meta-
learning, a new meta-learner, and a more appropriate experimental configuration, for
improving the overall performance of meta-learning for algorithm ranking.

2 Background

“Meta-learning” is a broad field; in this paper, for simplicity, the term meta-learning
is used in the sense of “meta-learning for algorithm ranking or recommendation”. We
first introduce the mechanics of meta-learning. The basic steps of a meta-learning task
are as follows. Firstly, a set of datasets is collected; secondly, we need to define some
meta-features as the characteristics of each dataset, e.g., the number of instances, the
number of numeric or categorical features, and many more; for more details on meta-
features please refer to Section 3. Thirdly, we estimate the predictive performance of
the available algorithms, e.g., using cross-validation, for every dataset in the dataset
collection. Thus, for each dataset we get a list of available algorithms with their per-
formance estimates. Given the above information, we can construct a meta-dataset,
which is a n×m data matrix, where m=m f +mt . Here, m is the sum of the number of
meta-features m f and the number of algorithms mt , and n is the number of datasets.
Figure 1 (left-hand side table) shows an example of a meta-dataset in a general multi-
target regression setting.

For algorithm recommendation, our goal is not to predict the absolute expected
performance of any algorithm, but rather the relative performance between algo-
rithms. Thus, the meta-dataset can be transformed to represent the rankings of the
algorithms. Figure 1 (from left-hand side to right-hand side table) shows an example
of how a “raw” meta-dataset is transformed. In this case, ranking is a special case of
the general multi-target regression setting. Then, a meta-learner, which we will call
it a “ranker” here, will take this n×m matrix as its training input to learn a ranking
model. Given a new dataset, we first calculate its meta-features and use the meta-
features (e.g., the f1, f2, f3 values for the example in Figure 1) as input to the ranker.
The ranker finally returns a ranked list of all algorithms. As is true in general for ma-
chine learning, the performance of meta-learning depends crucially on the quality of
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Fig. 1 Two formats of a meta-dataset constructed from three datasets (d1,d2,d3), three meta-features
( f1, f2, f3) and three algorithms (t1, t2, t3). Left-hand side table shows the format using the actual perfor-
mance values (higher is better) as targets; the right-hand side table shows a format using the ranks (lower
is better) as targets.

both the meta-features and the meta-learners available. In addition, the performance
of the base-level learners must also be estimated to a high quality to enable successful
meta-learning.

Existing meta-learning systems are mainly based on three types of meta-features:
statistical, information-theoretic and landmarking-based meta-features, or SIL for
short. Thorough reviews of these meta-features can be found in [6, 31, 23, 37]. Re-
cently, more meta-feature sets have been developed, for example, the learning-curve-
based meta-features [26], tree-structure-information-based [3] and histogram-based
[23].

In this paper, we propose a novel method for meta-learning that generates “meta-
level” meta-features from the “base-level” meta-features via rule induction that tries
to predict the better algorithm for each pair of algorithms. Here the “base-level” meta-
features can come from any of the meta-feature sets mentioned above. Meta-features
generated by the proposed method (described in Section 3) contain pairwise infor-
mation between algorithms. Adding them to the original feature space can help to
improve the performance of many meta-learners.

Next, we will discuss several ranking approaches from an algorithmic perspective
as the underlying multi-target or ranking problem is being studied in various fields,
including social sciences, economics and mathematical sciences. Although the ter-
minologies and presentations of the same models can be quite different for different
fields, the algorithmic properties are similar in concept and relatively easy to describe.

2.1 The k-Nearest Neighbors Approach

The k-NN ranking approach has two steps: the nearest neighbor search step and the
ranking generation step. In the first step, given a new dataset, we first calculate its
meta-features to construct an instance as a query (an m f -value array). Then, we select
a set of instances (nearest neighbors) in the training set (the n×m f data matrix) that
are similar to the query instance. The similarity between instances is usually based
on a distance function, e.g., Euclidean distance. In the second step, we combine the
rankings of the nearest neighbors to generate an aggregated algorithm ranking for the
new dataset. For our experiments, we use the average ranks method described in [7].
Let Ri, j be the rank of algorithm Tj, j = 1, ..., t on dataset i, where t is the number of
algorithms. The average rank for each algorithm Tj is defined as: R̄ j = (∑k

i=1 Ri, j)/k,
where k is the number of nearest neighbors. The k-NN ranker’s performance is related
to the value of k, appropriate values for k are usually determined by cross-validation.
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The k-NN ranker is often used as a benchmark learner for testing the performance of
different meta-feature sets.

2.2 The Binary Pairwise Classification Approach

Given the n×m data matrix as the training data, multiple binary (pairwise) classifi-
cation models can be used to construct a ranking model. For example, if there were
three meta-features and three algorithms in the training set (e.g., Figure 1 right-hand
side table), one could build three binary classification models for each pair of algo-
rithms: Algorithm-1 vs. Algorithm-2, Algorithm-1 vs. Algorithm-3, and Algorithm-2
vs. Algorithm-3. The training data for the three binary classification models are the
same, which is the n×m f data matrix. Given a new dataset, we first calculate its
meta-features, again an m f -value array as a query. Then, we use the three binary clas-
sification models to classify the query. The final algorithm ranking list for the new
dataset is computed based on how many times each algorithm has been predicted
as “is better”. If there were more than three algorithms to rank, then there might be
ties in the list. Several tie breaking techniques have been examined in the literature
[23, 7], but usually this choice does not have a strong influence on the performance
of a meta-learning system.

The advantage of the binary classification ranking approach is that existing binary
classification algorithms can be employed directly. However, if there are many algo-
rithms to rank, then the number of binary models required can be large and hard to
manage in practice, e.g., for 20 algorithms, this would require T×(T−1)

2 = 20×19
2 = 190

binary classification models to be built, which could be costly if one also considered
using different – and fine tuned – classification algorithms for each of the 190 binary
classification problems. The binary pairwise classification approach has also been
studied in label ranking [20].

2.3 The Learning to Rank Approach

From the end-user’s perspective, algorithm ranking is similar to the ranking problem
in a search engine scenario, where a ranked list is returned for responding to a query.
The search engine scenario has been extensively studied in learning to rank and in-
formation retrieval (IR). One obvious candidate for rank prediction is the AdaRank
algorithm proposed in [43]. AdaRank is a boosting algorithm that minimizes a loss
function directly defined on the ranking performance measure. The algorithm repeat-
edly constructs “weak rankers” on the basis of re-weighted training data and finally
linearly combines the weak rankers for making ranking predictions. In addition to
supplying algorithms, the IR literature is also an excellent source for ranking evalu-
ation metrics. Similar to search engine users, meta-learning users are usually mainly
interested in the top candidates, be it websites or algorithms. An IR measure which
captures this bias towards the top ranked items well is the normalized discounted
cumulative gain (NDCG) metric [22, 29], which has not been used in meta-learning
evaluation previously.
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2.4 The Label Ranking Approach

Label ranking can be seen as an extension of the conventional setting of classifica-
tion. The former can be obtained from the latter by replacing single class labels by
complete label rankings [12, 11]. From an algorithmic view point, one type of label
ranking approach, such as the ranking by pairwise comparison (RPC) algorithm [20],
is based on extending the pairwise binary classification approach by using more so-
phisticated ranking aggregation methods. Another type of label ranking algorithm,
such as the label ranking trees (LRT) algorithm [11], tries to apply probabilistic mod-
els under the label ranking setting. Meta-learning for algorithm ranking using the
multi-target regression setting can also be transformed to a label ranking problem, so
that label ranking algorithms can be used directly.

2.5 The Multi-Target Regression Approach

As we can see in Figure 1, the algorithm ranking problem can also be seen as a
multi-target (multi-response) regression problem, where the rank position values of
each algorithm are the targets in the multi-target regression setting. In multi-target
regression, the task is to estimate several target, or response variables using a common
set of input variables or features. Two approaches are usually employed. One is to
build separate single-target regression models for each target variable; the other is to
use a single model to estimate all the targets simultaneously. For meta-learning, the
former approach is similar to the binary classification ranking approach but requiring
fewer models to be built, e.g., for 20 algorithms, only 20 single-target regression
models are needed. In this section, we focus on the latter approach and start from the
linear model. A linear multi-target regression model can be expressed as:

Y = XW∗+E, (1)

where W∗ is the regression coefficient matrix (an n×m f matrix), X is the data (fea-
ture value) matrix, Y is the target matrix (which can be rankings) and E is the noise
term matrix. The problem is usually formulated as a single convex optimisation prob-
lem of the form:

minimize
W

f (W) subject to g(W)≤ r, (2)

where f (W) is a loss function, e.g., squared loss, g(W) is the regularization term, e.g.,
l2-norm-based, and r is a constant. Although this kind of formulation is mathemati-
cally straightforward, efficient numerical techniques and relatively easy-to-implement
algorithms are not readily available for sophisticated ranking-based loss/regularization
functions. Also, algorithms in this category are usually designed for relatively low-
dimensional problems or it is assumed that the number of training instances is much
greater than the number of features, or the number of model parameters to estimate.
In addition, we know that the various kinds of meta-features are “logically” related,
so a nonlinear model might be more appropriate. Figure 2 shows two model output
examples from a decision tree learner and a propositional rule learner for a binary-
classification-based meta-learning problem, where only two algorithms are consid-
ered. In this example, three types of meta-features (SIL) are used. We can see that
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(a) A decision tree model (b) A rule model

Fig. 2 Relationships between base-level meta-features.

whether an algorithm is preferred depends on some logical relationships between
meta-features. For example, the second rule in Figure 2 (b) suggests that when there
are no strong features (indicated by the “weak” tree-based landmarkers’ AUCs being
low) then SGD (a WEKA implementation of an algorithm based on stochastic gradi-
ent descent) is likely to work better than Naive Bayes. For these reasons we leave the
linear, single-model multi-target approach for future research.

Here, we focus on a special class of algorithms that are based on a nonlinear
multi-target model:

Y = z(X), (3)

where z is a decision-tree-based function. A well-known algorithm of this kind is
called predictive clustering trees (PCT) [5], which have been adapted for ranking
problems in [40]. There are several advantages in using decision-tree-based rankers,
including: a decision tree naturally identifies partitions of the data, where “similar”
individuals are supposed to be in the same “cluster”. This leads to a relatively natural
interpretation for the meta-learning mechanism at the conceptual level; decision tree
algorithms are reasonably fast as their training complexity is nlogn, where n is the
number of training instances. In Section 4, we introduce a new ranker, which is an
ensemble of decision-tree-based rankers.

3 Pairwise Meta-Rules

In this section, we introduce a novel meta-feature generation method in the context of
meta-learning. The main motivation comes from our observation that existing meta-
feature sets have ignored one potential source of information: the logical pairwise
relationships between each pair of the target algorithms to rank. Explicitly adding
this information to the meta-feature space might improve a meta-learner’s predictive
accuracy.

Of course, when predicting for a new dataset, this information will not be avail-
able, as otherwise we would not try to predict rankings in the first place. Therefore
we propose to use a rule learner to learn pairwise rules first, and then use these rules
as new meta-features. Two steps are involved: the first step is similar to the binary
classification ranking approach, where T×(T−1)

2 (T is the number of algorithms to
rank) binary classification training datasets are constructed from the original n×m



Pairwise Meta-Rules for Better Meta-Learning-Based Algorithm Ranking 7

Fig. 3 Example datasets for learning pairwise meta-rules.

data matrix. Each binary dataset has two class labels: {“algorithm ti is better”, “al-
gorithm t j is better”}. Whether an algorithm is better than the other is determined by
their ranking position in the ranked list of a particular dataset.

Taking the dataset illustrated in the right-hand side table of Figure 1 as an exam-
ple, we need to construct 3×(3−1)

2 = 3 binary datasets as shown in Figure 3. Then, we
build 3 rule-based binary classification models based on the 3 binary classification
meta-datasets. In principle any rule learner could be used. We choose the RIPPER
algorithm [13], because it is relatively fast and its rule models are generally very
compact compared to other rule learners. Figure 2 (b) shows a RIPPER rule model.
For each pair of algorithms, we compute a ruleset describing in which situation an al-
gorithm is to be preferred over another. We call these rules the Pairwise Meta-Rules.
Next, we discuss how these rules can be used as new meta-features. Using Figure
2 (b) as an example, this RIPPER ruleset comprises three rules. The first two are
individual rules, whereas the third one is a default catch-all rule. We generate two
different sets of meta-features from Pairwise Meta-Rules.

Method 1 turns each individual rule into one boolean meta-feature. For example,
we may have a Pairwise Meta-Rule:

If BaseMetaFeature-X ≤ 0.5 AND BaseMetaFeature-Y ≥ 0,

Then Algorithm A is better than Algorithm B.
The value of the new meta-feature constructed from this Meta-Rule will be deter-

mined by looking at the (base-level) meta-feature values of a new dataset defined by
a Meta-Rule. For a new dataset, the Meta-Rule-based meta-feature value is set to true
if the rule condition “BaseMetaFeature-X ≤ 0.5 AND BaseMetaFeature-Y ≥
0” is met, otherwise false. For the meta-learning problem, the RIPPER algorithm
returns on average about two individual rules for each of the 190 algorithm pairs.

Method 2 creates just one boolean meta-feature representing the outcome of ap-
plying the full ruleset. For a new dataset, the Meta-Rule-based meta-feature value is
set to true if the default catch-all rule of a ruleset is true, otherwise false. For the
meta-learning problem, the RIPPER algorithm returns 190 rulesets for each of the
190 algorithm pairs, so in Method 2, 190 Meta-Rule-based meta-features are added
to the original feature space.

The Pairwise Meta-Rules method is different from the standard stacking [41]
method, where we do not use the predicted complete ranking of base models instead
we use the RIPPER rule sets to construct new meta-features. A meta-learner will use
all meta-features (including both base-level and Meta-Rule-based meta-features) for
building the final model, which is also different from stacking.

In the experiments reported below we compare three different meta-feature sets:
SIL-Only: 80 different SIL meta-features only;
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SIL+Meta-Rules-1: the 80 SIL meta-features plus meta-features generated by Method
1;
SIL+Meta-Rules-2: the 80 SIL meta-features plus meta-features generated by Method
2.

Next, we propose a novel meta-learner (ranker), specifically designed for the
meta-learning-based algorithm ranking problem.

4 Approximate Ranking Tree Forests for Meta-Learning

In preliminary experiments we found that the predictive performances of the predic-
tive clustering trees for ranking (PCTR) [40] and the label ranking trees (LRT) [11]
algorithms usually are worse than the optimised k-NN ranker for our meta-learning
problem, where the number of objects to rank is relatively large (20 algorithms). In-
spired by the bootstrap aggregating (bagging) [15, 9] strategy and the random forests
framework [10], we here propose a new ranker for the meta-learning problem, called
Approximate Ranking Tree Forests (ART Forests), which is a random forest ensem-
ble of approximate ranking trees. The motivations for proposing ART Forests include:

1. as more and more meta-features are being developed and added to the feature
space, we believe that a relatively fast algorithm (e.g., decision-tree-based learn-
ers) that has “built-in” feature selection capacity would be useful;

2. the meta-learner should not be constrained by the “number of training examples
must be much greater than the number of parameters to estimate” restriction,
because for the meta-learning problem the number of datasets is usually not very
large;

3. recent theoretical work [4] seems to suggest that irrelevant features do not sig-
nificantly decrease random forest’s predictive performance, so ideally the meta-
learner should be capable of using as many meta-features as possible;

4. ensemble algorithms usually outperform base algorithms. Statistics and models
aggregated from bootstrap samples are nonparametric estimates [15], so we do
not have to make parametric assumptions about the form of the underlying pop-
ulation, which provides an automatic approximation layer to our new algorithm.
In the literature, an empirical study by [24] has shown that boosting-based meta-
learner outperformed the k-NN based meta-learner in the pairwise binary classi-
fication setting (Section 2.2) for meta-learning.

4.1 Approximate Ranking Trees (ART)

In this section, we propose the ART algorithm which is used as the base learner for
ART Forests. The pseudocode is given in Algorithm 1. ART is a recursive partitioning
algorithm that splits data into smaller sub-partitions which are increasingly and rela-
tively more similar in terms of a homogeneous test statistic for examples in different
partitions.

Next, we introduce the rationale underlying ART. We first review some basic con-
cepts from permutation theory that will be used in this section, adopting the notation
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Algorithm 1 Approximate Ranking Trees (ART)
Input:
D (training data, a n×m data matrix);
u (number of features to use, default log2M+1, M is the number of features)
C (splitting and stopping criterions, details are given in Sec 4.2 and 4.3)

bestSplit ← Randomly choose u features and test them based on the splitting criterion C. Use the best
feature among the u features.
if stopping criterion (e.g., n(D) = 1 or R2(DbestSplit ) ≥ θ = 0.95) is met then

Return a leaf node with the corresponding leaf ranking when n(D) = 1 (or a ranking calculated from
the average rank vector when n(D) > 1).

else
leftSubtree← ART(D+

bestSplit , u, C)
rightSubtree← ART(D−bestSplit , u, C)
Return (bestSplit, leftSubtree, rightSubtree)

end if

of [30] for analysing rank data in the multi-target setting. The basic unit of analysis
consists of n datasets as judges to rank a set of m algorithms. This set of algorithms
can be denoted by O = {O1,O2, ...,Om}. For the meta-learning problem, we have
a complete ranking of algorithms for each dataset: there is a best algorithm, second
best,..., and finally a worst one, with ranks of 1,2, ...,m, respectively. We here use Sm
to denote the permutations of m ranks:

Sm ≡ {All permutations of the ranks {1,2, ...,m}}, (4)

so the multi-target part of our meta-dataset can be expressed as a sample of complete
ranking vectors:

y<1>, ...,y<n> ∈Sm. (5)

For example, the targets part of Figure 1, right-hand side table, consists of three
rankings: y<1> = [2,1,3]′,y<2> = [2,3,1]′,y<3> = [3,2,1]′.

4.2 ART’s Splitting Criterion

The splitting criterion is a measure that quantifies the quality of a given split point. In
general, a local model is fitted into different partitions. In regression trees, the local
model is usually the mean target value of the examples in a partition. This approach
is fast and relatively stable, especially when regression trees are used as base models
for a tree ensemble, since the mean is an optimal estimator for i.i.d. examples. The
analogy in ranking trees is that we need to define or estimate a central ranking ẑ to
be used as the local model so that ẑ minimizes a ranking-based dispersion measure,
such as the average distance corresponding to a distance function d(., .) of ranking
vectors:

d̄(z)≡ 1
n

n

∑
i=1

d(y<i>,z),z ∈Sm. (6)

When n is large, given a proper distance function, the sample central ranking could
be estimated using maximum-likelihood estimation (MLE) or Bayesian methods for
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certain ranking models, such as the Mallows models [30], but these methods are
usually computationally heavy, hence not suitable for ensembling. For ART, we use
the average ranking calculated from the average rank vector as an approximation to

the central ranking of rankings in a partition: ẑ = averageRanking(ȳ =
1
n

∑
n
i=1 y<i>),

in terms of the Spearman’s distance:

d(y∗,y) =
m

∑
i=1
|y∗i − yi|2. (7)

When d is the Spearman’s distance (Eq. 7), based on Theorem 2.2 of [30], the
average ranking averageRanking(ȳ) belongs to the set of the sample central rankings,
which provides a theoretical foundation for ART.

Alternative distance functions could also be used but we will show later (Eq. 11)
that the Spearman’s distance has some convenient mathematical properties. To get
a feeling about what an average ranking is in our meta-learning problem, Figure 4
shows an example of the average ranks of 20 algorithms over 466 datasets.

In the ART algorithm, we use the median value of a meta-feature’s range as the
binary split point to split the data D, the current partition, into two sub-partitions
D+ and D−. The best split point is determined to be the one that maximises the R2

statistic:

R2 = 1− ∑
L
l=1 ∑

n(l)
i=1 d(y(li), ẑ(l))

∑
L
l=1 ∑

n(l)
i=1 d(y(li), ẑ(D))

, (8)

where L is the number of partitions, and n(l) is the number of examples in partition
l. R2 is originally designed to measure the proportion of the spread explained by the
differences between the two partitions [30]. There are two special cases: if the sample
central rankings of different partitions are equal, such as

ẑ(1) = ...= ẑ(L), (9)

then R2 = 0 implies that partitioning is not necessary; if there is only one distinct
ranking within each partition, and they are not all the same between partitions, then
R2 = 1. Here we estimate R2 and employ it as a heuristic for ART induction. Next, we
will derive an “one-step” formula for calculating R2 without calculating the distance
between the central ranking and the other rankings in a partition.

At inner nodes, ART tests two partitions D+ and D− so we have L = 2, and we
can rewrite Eq. (8) to:

R2 = 1− ∑
n(D

+)

i=1 d(y(D
+i), ẑ(D

+))+∑
n(D
−)

i=1 d(y(D
−i), ẑ(D

−))

∑
n(D+)

i=1 d(y(D+i), ẑ(D))+∑
n(D−)
i=1 d(y(D−i), ẑ(D))

= 1−
n(D

+)d̄(D+)
Spearman +n(D

−)d̄(D−)
Spearman

n(D+)d̄(D)
Spearman +n(D−)d̄(D)

Spearman

,

(10)

where D = D+∪D−.
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For rank data the average distance is also a proper measure of spread α̂: α̂Spearman≡
d̄Spearman [30]. [2] and [30] present a convenient mathematical result for Spearman’
distance (a brief derivation is given in the Appendix):

α̂Spearman =
m(m+1)(2m+1)

3
−2||ȳ||2. (11)

Here we replace d̄Spearman with α̂Spearman, and rewrite Eq. (10) to:

R2 = 1−
n(D

+)α̂
(D+)
Spearman +n(D

−)α̂
(D−)
Spearman

n(D+)α̂
(D)
Spearman +n(D−)α̂(D)

Spearman

= 1−
n(D

+)α̂
(D+)
Spearman +n(D

−)α̂
(D−)
Spearman

n(D)α̂
(D)
Spearman

.

(12)

Combining everything together, we can compute R2 (Eq. 8) efficiently:

R2 = 1− n(D
+)(h−2||ȳ(D+)||2)+n(D

−)(h−2||ȳ(D−)||2)
n(D)(h−2||ȳ(D)||2)

, (13)

where h =
m(m+1)(2m+1)

3
.

4.3 ART’s Stopping Criterion

In order to prevent overfitting, a stopping criterion is usually used to determine if it is
worthwhile to split the current node. A natural stopping criterion can be introduced
by adding a regularization parameter θ , e.g., ART will stop growing the current node
if:

R2(bestSplit) ≥ θ ,θ ∈ (0,1], (14)

Another stopping criterion is the minimum number of examples at a leaf node, γ .
Setting γ to a small number usually outperform trees using larger γ values when the
tree algorithm is used as the base learner for random forests [10]. ART uses both of
these criterias to limit tree sizes.

4.4 ART Forests and Rank Aggregation

We use the random forests framework described in [10] for ART Forests induction.
Algorithm 2 shows the pseudocode. An ART forest is grown as follows:

1. The training set is a bootstrap sample from the original training set;
2. An integer u is set by the user. At each node, u features are selected at random

and the node is split on the best feature among the selected u;
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Algorithm 2 Approximate Ranking Tree Forests (ART Forests)
Input:
T (number of ART to use)
D (training data, a n×m data matrix);
u (number of features to use, default log2M+1, M is the total number of features)
C (splitting and stopping criterions, details are given in Sec 4.2 and 4.3)

ARTensemble ← /0
for i = 1 to T do

Di← getBootstrapSample(D)
ARTi← ART(Di, u, C)
ARTensemble← ARTensemble ∪ARTi

end for
Return ARTensemble

For prediction, when a test feature vector x is put down each tree, it is assigned
the average ranking of the rankings at the node it stops at. The average ranking of
these over all approximate ranking trees in the forest is the predicted ranking for
x. Alternative rank aggregation methods, such as other types of Borda count, graph
theory models, or binary linear programs, might perform better, at the expense of
higher computational cost, and will be investigated in future research.

5 Experiment Setup and Results

This experimental comparison investigates two related questions.

– The first question concerns the new meta-feature generation method: can it con-
sistently improve the performance of known meta-learners?

– The second question concerns the new algorithm: are ART Forests competitive
with current state-of-the-art rankers?

In this paper, we focus on the performance of meta-learning for algorithm rank-
ing on binary classification datasets only. Previous studies were limited by the small
number of available datasets, usually fewer than 100 datasets were used in reported
meta-learning experiments. To be able to draw statistically significant conclusions,
we chose to use as many datasets as possible from various public data sources, in-
cluding the UCI1, StatLib2, KDD3 and WEKA4 repositories. In total slightly more
than 1,000 classification and regression datasets were collected. However, due to the
varying quality of the public datasets, not all of them could be used directly. After
removing duplications and very small datasets (less than 10 instances), and convert-
ing multiple-class classification data – by keeping only the top two majority classes
– and regression data – by using the mean as a binary splitting point to transform the

1 http://archive.ics.uci.edu/ml/
2 http://lib.stat.cmu.edu/
3 http://kdd.ics.uci.edu/
4 http://www.cs.waikato.ac.nz/ml/weka/
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Fig. 4 Sorted average ranks of the 20 algorithms over 466 datasets based on PSO-optimised performances.
This list can be transformed to a ranking, e.g., (optimised) RandomForest is ranked 1, RotationForest 2,...,
ClassificationViaClustering 20. The ranking can be seen as a default ranker over the 466 datasets.

numeric target into a binary target –, a total of 466 datasets was obtained for experi-
mentation. Also, to speed up our experiments we capped the number of instances in
larger datasets to a maximum of 5,000 instances, using stratified random sampling.

5.1 EA-Based Performance Estimation

For simplicity and in order to speed up experiments, many previous meta-learning
experiments have estimated algorithm performance using some pre-specified default
parameter settings across all base-level learners. We claim that this approach is bound
to be suboptimal in practice because to be able to make useful predictions, most algo-
rithms have to be optimised separately for each specific dataset. Technically, predict-
ing the full combination of algorithm plus optimal parameter settings is not feasible.
We therefore propose an intermediate approach, where we assume that a procedure is
available for optimising each algorithm for each dataset, and then predict the ranking
of the optimised algorithms. Given a new dataset, the recommended ranking is based
on the assumption of using optimal parameter settings. These actual optimal param-
eter settings would have to be computed for each top-ranked algorithm through the
exact same optimisation process that was used for meta-learning.

The parameter optimisation procedure used here is based on evolutionary algo-
rithms. Grid-search would be an alternative, but based on recent research [33], EA-
based techniques seem more efficient. Specifically, we employ the particle swarm op-
timisation (PSO) based parameter selection technique described in [16, 39]. Although
EA-based performance estimation is more appropriate, it is time-consuming, espe-
cially for large datasets. Therefore, as mentioned above, large datasets were down-
sampled to 5,000 instances. In this paper, meta-learning is used to rank 20 supervised
machine learning algorithms, all of which are implemented in WEKA [19]. When
generating the meta-dataset from the 466 datasets, for each of the 20 algorithms, we
manually specify parameters and their respective value ranges for PSO to optimise.
Taking the support vector machine algorithm as an example, we set PSO to optimise
the kernel type, all relevant kernel parameters, and the complexity constant.
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Fig. 5 Percentage of improvement of the best AUC performance among 20 PSO-optimised algorithms for
each dataset over the same 20 algorithm using their default parameters. Sorted by percentage of improve-
ment over 466 datasets.

The class distributions of the 466 datasets vary a lot, with some of the datasets
being very skewed, which can cause high variance on zero-one loss estimation. Con-
sequently, we choose the area under the receiver operating characteristic curve (AUC)
metric as the main performance measure, as it is less affected by class skew. We run
the 20 algorithms, with PSO-based parameter optimisation, on the 466 binary classi-
fication datasets and use 10-fold cross-validation based AUC scores for ranking gen-
eration. Building up this meta-dataset is the most expensive part of our meta-learning
experiment: it took roughly three weeks, or about 6,000 single-core CPU hours, to
complete on two 2.8GHz 16G RAM PCs, with 6 threads running on each machine.
Figure 5 shows the percentage of improvement of the best AUC score among the 20
PSO-optimised algorithms for each dataset over the best AUC score of the same 20
algorithms using their default parameters. The result demonstrates the benefit of us-
ing the performances of optimised algorithms for generating algorithm rankings. We
claim this is a more appropriate experimental setting for meta-learning than simply
using a fixed set of parameters for every dataset.

5.2 Meta-Learners (Rankers) in Comparison

We test the new pairwise meta-rule based meta-features with different meta-learners.
In total 7 rankers are used for our experiments.

DefaultRanker—The default ranker follows a very simple yet powerful philoso-
phy: if an algorithm has worked well on previous datasets, then it is likely to be used
as the first algorithm to try on a new dataset. So, the default ranker used in our exper-
iments is simply using the average rank of each algorithm over all the training data.
Thus the ranking predicted by the default ranker is always the same for every test
dataset, which is the average ranking of the training examples. This ranker can also
be seen as a special case of an ART model with only one node. One distinguishing
feature of the algorithm ranking problem is that this average-ranking-based default
ranker is relatively strong compared to other common preference learning problems,
such as movie or book recommendation, or survey data involving human subjects.

k-NN—The k-NN ranker, as described in Section 2, uses standard Euclidean dis-
tance and we set k = 15 (we will show later that 15 is a relatively good value for our
problem).
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LRT—The label ranking trees ranker, we use the WEKA-LR5 implementation
with default parameters. LRT is based on the Mallows model for rank data.

RPC—The RPC ranker, which uses the ranking by pairwise comparison algo-
rithm proposed in [20]. We use the default setting of the RPC implementation in
WEKA-LR in which the logistic regression algorithm is used as the base learner.

PCTR—The PCTR ranker, which is the predictive clustering trees for ranking
(PCTR) ranker [40]. The minimum number of instances at a leaf node is set to 15.

AdaRank—The AdaRank ranker uses 100 PCTR rankers as its base models and
the minimum number of instances at a leaf node is set to 30 (to simulate a relatively
weak learner as in [43, 29]). Please note that boosting algorithms can stop early so
the final AdaRank ensemble might not have exactly 100 base models.

ARTForests—The ARTForests ranker, where we use 100 approximate ranking
trees for ART Forests, and the minimum number of instances γ at a leaf node is set
to 1 for each ART (using small γ such as 1 leads to a good bagging ensemble as
suggested in [10]); The “pruning” parameter θ is set to 0.95.

5.3 Evaluation of Ranking Accuracy

We assess ranking accuracy by comparing the rankings predicted by a ranker for
a given dataset with the corresponding target rankings. Given two sets of m-value
rankings: T = [T1,T2, ...,Tm−1,Tm] and P= [P1,P2, ...,Pm−1,Pm], which are targets and
predictions, respectively, and letting d2

i = (Ti−Pi)
2, the following ranking evaluation

metrics and functions are used in our experiments.
Spearman’s Rank Correlation Coefficient (SRCC)—SRCC is defined as:

ρSRCC = 1− 6∑
m
i=1 d2

i
m(m2−1)

, (15)

which assesses how well the relationship between the true and predicted rankings can
be described using a monotonic function [25].

Weighted Rank Correlation—WRC is defined as:

ρWRC = 1− 6∑
m
i=1 d2

i ((m−Ti +1)+(m−Pi +1))
m4 +m3−m2−m

. (16)

The WRC metric puts more weight on the top candidates. It has been used for meta-
learning in [37, 32].

Loose Accuracy—The loose accuracy (LA@X) measurement considers ranking
accuracy of the top X candidates only. LA@1 is also called the restricted accuracy
metric, returning a count of 1.0 if the top one prediction is correct, and otherwise
returning 0. Similarly, LA@3 returns a count of 1.0 if one of the predicted top three
candidates matched the true top one, and again returning 0 otherwise. LA has been
used for meta-learning in [23]. We report results for LA@1, LA@3 and LA@5.

Normalized Discounted Cumulative Gain—Discounted cumulative gain (DCG)
is a measure of effectiveness of a search engine algorithm or related applications by

5 http://www.uni-marburg.de/fb12/kebi/research/software/weka-lr-page/
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using a graded relevance scale of items in a result list [22]. The gain is accumulated
from the top of the list to the bottom with the gain of each result discounted at lower
ranks. The DCG@X is defined as: DCG@X = ∑

X
i=1

2gi−1
log2(i+1) , where gi is a grade

value. The Normalized DCG at position X is defined as:

NDCG@X = DCG@X× (IDCG@X)−1, (17)

here IDCG is the ideal DCG at X. We report results for NDCG@1, NDCG@3 and
NDCG@5.

The actual evaluation scores for the above ranking evaluation functions of each
ranker were estimated based on multiple runs of train/test split evaluations. We use the
average scores obtained from 10 runs of 90% vs. 10% train/test evaluation for result
visualization. For each run, 419 (90% of 466) datasets were randomly selected for
building a meta-learning system using the corresponding ranker, and the remaining
47 datasets were used for testing.

To avoid information leaking, we make sure that when meta-rule based meta-
features are used by a ranker, the rules are generated using only the corresponding
training meta-dataset of each run.

5.4 Experimental Results

We present and analyse two sets of experimental results. One is a comparison of
meta-feature sets based on k-NN performance curves; the other one is a comparison
of ranking performances of multiple rankers on two meta-feature sets.

Figure 6 shows the performances of the k-NN ranker using three meta-feature
sets under different numbers of nearest neighbors (k). The performance of the de-
fault ranker is also included. Overall, k values between 10 and 20 usually produce
relatively good performance across all eight ranking metrics. Regarding the choice of
meta-feature sets, we can see that k-NN using the SIL+Meta-rules-1 set outperforms
the SIL-only and the SIL+Meta-rules-2 meta-feature sets when appropriate k values
are chosen. Taking the LA@1 metric as an example, the best k-NN performance is
about 0.26, which means that on average, if an optimal k value is used, the probability
for the k-NN ranker to predict correctly the best algorithm to use from 20 algorithms
is 26%, where the default ranker achieves about 14%, and random guessing would
only result in 1/20 = 5%. The LA@3 and LA@5 metrics behave similarly. Regard-
ing the other five metrics, they all usually outperform the baseline, albeit to varying
degrees, always clearly depending on a proper choice of the value of k.

With the second set of results, we compare different rankers on two sets of meta-
features: the SIL-only set and the SIL+Meta-rules-1 set. For simplicity, we use SIL+Meta-
rules to refer the SIL+Meta-rules-1 set. Figure 7 shows the performances of the seven
rankers (with and without using the meta-rules) on the eight metrics. A “*” besides
a ranker’s name means the SIL+Meta-rules set is significantly better than the SIL-
only set (using a paired t-test significance level of 0.05). In total, the SIL+Meta-rules
set significantly wins 38 out of 48 (about 79.1%) comparison tests across all rankers
(please note that the default ranker is not counted since it does not use any meta-
features). Overall, we can see that the ART Forests ranker with the SIL+Meta-rules
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Fig. 6 Comparison of meta-feature sets by k-NN curves. Higher scores are better.

set consistently produces performance gains for all different metrics, and is placed as
the best ranker for 7 out of 8 metrics. Although increasing ART Forests’ ensemble
size may further improve its performance, using 100 as a default setting seems to
work well for our experiments.

Table 1 shows a summary of the top one ranker for each metric and how much per-
formance gain the respective ranker can achieve. We can see that all the best rankers
used the SIL+Meta-rules set. The greatest performance gain (93%) over the default
ranker is from the k-NN ranker on the LA@1 measurement. The “Gain §” values
show how much improvement the top rankers using the SIL+Meta-rules meta-feature
set can achieve over the default ranker; and the “Gain †” values show how much im-
provement the Meta-Rule method (Method 1) introduced in this paper can achieve
over the respective best rankers using the SIL-only meta-feature set.

In terms of runtime, the RIPPER-based pairwise meta-rules method on average
takes 30 seconds to generate rulesets for 190 algorithm pairs. Figure 8 shows the run-
time of different rankers. We can see that the ART Forests algorithm (with 100 ART
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Fig. 7 Comparison of meta-feature sets by ranker performances.

Fig. 8 Single-core runtime in seconds including both training and prediction stages.

models) is relatively efficient compared with other state-of-the-art rankers. When
rapid modeling is required for an application, the k-NN ranker is a reasonable al-
ternative because it is fast and relatively accurate.
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Table 1 Summary of the top one ranker performances under different ranking evaluation metrics and
functions. Used ‡: meta-rules (SIL+Meta-Rule set) is used, or not. Gain §: performance gain of the best
ranker over the default ranker. Gain †: performance gain of the best ranker using the SIL+Meta-Rule set
over the same ranker using the SIL-only set.

Evaluation Best Ranker Used ‡ Gain § Gain †

SRCC ART Forests Yes 32.41% 1.67%
WRC ART Forests Yes 32.83% 1.77%
LA@1 k-NN Yes 93.82% 31.1%
LA@3 ART Forests Yes 21.85% 2.00%
LA@5 ART Forests Yes 33.23% 7.94%
NDCG@1 ART Forests Yes 37.60% 5.97%
NDCG@3 ART Forests Yes 27.06% 3.16%
NDCG@5 ART Forests Yes 24.50% 2.84%

6 Discussions and Future Work

In this section, we discuss the limitations of the proposed techniques and future work
for extending and improving the system.

For the pairwise meta-rule method, although the RIPPER algorithm works well,
we believe that alternative rule learners are still worth investigating. An important
direction for future work is the design of an efficient rule learner for generating small
numbers of high quality pairwise meta-rules, as the number of pairwise rule models
required increases quadratically with the number of algorithms to rank. Therefore,
the training and the output complexity of the chosen rule learner is critical to the
scalability of the proposed method. If z is the average number of rules returned by
the rule learner for one pair of algorithms, then the total number of pairwise meta-
rule based meta-features generated for m algorithms is zm(m−1)

2 . Consequently, when
using the pairwise meta-rule method, the number of meta-features grows quadrati-
cally with the number of algorithms to rank. Some algorithms, like the novel ART
Forests algorithm proposed here, scale well with larger number of features, whereas
for some of the alternative rankers both runtime and ranking performance might suf-
fer from a larger number of features, especially if there are strong correlations present
among these features. To overcome this problem, in future work, we will investigate:
(1) rule pruning techniques for reducing the total number of pairwise meta-rules; (2)
rule set fusion techniques, such as group-wise meta-rules. Another interesting fu-
ture direction would be using the predicted rank differences, or at least the actual
posterior probabilities of the binary problem, instead of the purely boolean pairwise
meta-features, for improved ranking performance.

Regarding the details of the ART algorithm, in this paper we only considered and
evaluated using the median value of a meta-feature’s dynamic range as a binary split
point. A future work direction would be comparing this to both alternative split point
selection and to multi-way splitting strategies.

In this paper, we employed the EA-based parameter selection technique, which
is a relatively expensive approach for generating meta-dataset. In the literature, there
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are some attempts to use meta-learning itself for the task of parameter selection. [38]
and [1] have shown promising results using meta-learning for selecting the kernel
type and kernel parameters for support vector machines. There is also previous work
that proposed hybrid systems combining meta-learning and optimisation techniques
[33, 18, 14]. These systems could be used as alternative parameter selection proce-
dures for the meta-learning experiment setup proposed in the this paper. In Section
5.1, we mentioned that predicting the full combination of algorithm plus optimal pa-
rameter settings is not feasible. While this is technically true, [27, 28] has introduced
the active testing based meta-learning framework that is able to return good param-
eter setting together with the recommended algorithm. In their experiments, a set of
292 algorithm-parameter combinations was evaluated. The techniques described in
the current paper could probably also be applied to meta-learning for parameter rec-
ommendation of single learning algorithms, but this needs to be verified in a future
experimental study.

7 Conclusions

We have introduced a new approach for generating meta-features to meta learning.
The main difference between our method and stacking is given in Section 3. We have
introduced a specialised meta-learning algorithm, based on the random forests frame-
work [10], for predicting algorithm rankings, and provided both a theoretical and an
empirical analysis. Unlike previous work, experiments in this paper were based on a
much larger collection of publicly available datasets and a novel, more appropriate
meta-learning experiment configuration, which systematically explores the space of
parameter values of the algorithms to be ranked.

Our experimental results indicate that the pairwise meta-rule generation method
(Method 1) consistently improves the performances of different ranking approaches
to meta-learning. The new ART Forests ranker is always among the top rankers across
all ranking metrics and functions we have tested. The success of the proposed meth-
ods and algorithms on the meta-learning problem studied in this paper suggests the
applicability of the new techniques to a wider range of meta-learning problems. Ad-
ditional materials can be found at http://www.cs.waikato.ac.nz/~qs12/ml/
meta/.

Appendix: A brief derivation of Eq. 11

Here we give the core steps of the derivation. For a more detailed derivation of the
intermediate steps, we refer the reader to [2, 30].

Let Qm be the set of all m×m permutation matrices, where m is the number of
objects (e.g., algorithms) to rank. The sets Sm (in Eq. 4) and Qm are in one-to-one
correspondence:

Q(y)em = y,Q(y) ∈ Qm,y ∈Sm,

where e′m = [1,2,3, ...,m]. For example, Qi j = 1 iff yi = j.

http://www.cs.waikato.ac.nz/~qs12/ml/meta/
http://www.cs.waikato.ac.nz/~qs12/ml/meta/
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Let d be a Hoeffding distance of the form,

d(x,y) =
m

∑
i=1

a(xi,yi) = tr(Q(x)
∆Q(y)′).

For Spearman distance (which is a form of Hoeffding distance):

∆ = fm1′m +1m f ′m−2eme′m,

where f ′m = [1,22,32, ...,m2] and 1′m = [1,1,1, ...,1].
The spread in Eq. 11 is calculated as:

α̂Spearman =
∑

n
i=1 ∑

n
j=1 d(y(i),y( j))

n2 =
∑

n
i=1 ∑

n
j=1 tr(Qi∆Q′ j)

n2 = tr(M̂∆M̂′),

where M̂ is the marginal matrix ([30]) and M̂1m = M̂′1m = 1m. Since it is well know

that the sum of the squares of integers 12 +22 +32 + ...+m2 =
m(m+1)(2m+1)

6
,

therefore

α̂Spearman = 2(1′m fm)−2(M̂em)
′(M̂em) =

m(m+1)(2m+1)
3

−2||ȳ||2.
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