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We explain two puzzling aspects of Petschek’s model for fast reconnection. One is its failure to

occur in plasma simulations with uniform resistivity. The other is its inability to provide anything

more than an upper limit for the reconnection rate. We have found that previously published

analytical solutions based on Petschek’s model are structurally unstable if the electrical resistivity is

uniform. The structural instability is associated with the presence of an essential singularity at the

X-line that is unphysical. By requiring that such a singularity does not exist, we obtain a formula that

predicts a specific rate of reconnection. For uniform resistivity, reconnection can only occur at the

slow, Sweet-Parker rate. For nonuniform resistivity, reconnection can occur at a much faster rate

provided that the resistivity profile is not too flat near the X-line. If this condition is satisfied, then

the scale length of the nonuniformity determines the reconnection rate. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4804337]

I. INTRODUCTION

When Petschek’s model1 was first introduced it was

thought by many to provide a universal description of fast

reconnection in a highly conducting plasma. With the devel-

opment of computer simulations, it became apparent that

Petschek’s model only occurs in certain situations. For

example, it occurs when the electrical resistivity in the vicin-

ity of the X-line is locally enhanced.2–6 More recently, Baty

et al.7,8 have found that Petschek reconnection can also be

generated using a nonuniform viscosity profile8 or imposing

an asymmetric, nonuniform resistivity in the form of a sim-

ple step function.7 The possible conditions that can produce

Petschek reconnection are, therefore, more varied than is

commonly realized.

Another aspect of Petschek’s model that is often not

appreciated is that it does not predict a specific reconnection

rate but only a range of possible values. The lower value of

this range is the Sweet-Parker rate of MA ¼ R�1=2
m , where MA

is the inflow Alfv�en Mach number and Rm is the magnetic

Reynolds (or Lundquist) number. The upper value of the

range is the fast rate given by Petschek’s well-known

formula MA ¼ p=ð8 log RmÞ.1 The indeterminacy of the

reconnection rate in Petschek’s model means that some

additional assumption must be made to obtain a specific

value. Some authors simply assume that the rate will occur

at the fastest possible value,9 while others assume that the

rate is set by the inflow boundary conditions.10 The idea that

the reconnection will occur at the fastest possible rate pre-

supposes that a configuration with a slow rate is less stable

than one with a fast rate. However, numerical simulations

using a uniform resistivity show just the opposite behavior.

Even if one starts with a fast configuration, it rapidly evolves

to the slow Sweet-Parker configuration11 suggesting that it is

the fast-rate configuration that is unstable. The alternate idea

that the inflow boundary conditions set the rate is also

problematical. Petschek’s model assumes the reconnection

process to be undriven.12 If the reconnection is undriven,

then the inflow speed cannot be imposed, but must, instead,

be calculated self consistently from the equations.

Within the last 10 years, Malyshkin13,14 and Kulsrud15

have argued that the ambiguity of the reconnection rate in

Petschek’s model is due to the inconsistency of the model

with Faraday’s equation. They claim that if this inconsis-

tency is removed, then the reconnection rate is uniquely

determined to be the slow, Sweet-Parker rate in the case of

uniform resistivity. Their analysis, however, appears to

contradict earlier analyses by Vasyliunas,16 Somov,17,18 and

Titov,19,20 which do not show any inconsistency.

The previous analyses by Vasyliunas,16 Somov,17,18

and Titov,19,20 as well as the newer ones by Malyshkin and

Kulsrud,13–15 are based on the one-dimensional system of

equations obtained by averaging the steady-state, two-

dimensional resistive MHD equations over the thickness of

the reconnection current layer, including both the diffusion

and slow shock regions. The one-dimensional equations that

result provide a description of the average properties of the

plasma along the outflow direction. In the present paper, we

develop an analytical framework that allows us to compare

the earlier analyses with the newer ones by Malyshykin and

Kulsrud. We show that, although the older analyses are

consistent with Faraday’s equation, they generally imply

the existence of an unphysical singularity at the X-line.

Eliminating these singular solutions leads to a specific value

for the reconnection rate that is roughly similar to that pre-

dicted by Malyshykin and Kulsrud.

In order to obtain some physical insight into the nature

of the singularity at the X-line, we extend the previous analy-

ses by Vasyliunas and Somov to include time-dependence.

We find that the unphysicality of the singular solutions is
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closely related to the fact that they are structurally unstable

in time. (Solutions that are unstable in this way are also

called nonevolutionary.21) If the singular solutions are

smoothed, for example, by finite differencing, they no longer

correspond to steady-state solutions. Such smoothed solu-

tions will rapidly evolve to a nonsingular solution if one

exists. If a nonsingular solution does not exist, then the initial

configuration never reaches a steady state. The behavior of

our time-dependent system is remarkably similar to that

observed in the numerical simulations using the two-

dimensional resistive MHD equations with uniform and non-

uniform resistivity.

In Sec. II, we derive time-dependent versions of the

MHD equations previously obtained by Vasyliunas,16

Somov,18 and Titov.19 Then in Sec. III, we consider the

steady-state solutions to these equations and compare them

to those of Malyshykin and Kulsrud. In Sec. IV, we consider

the stability of the steady-state solutions by numerically

solving the time-dependent equations. In Sec. V, we develop

a more realistic treatment of the diffusion region that avoids

some of the simplifying assumptions made in the previous

analyses. Finally, in Sec. VI we discuss the physical implica-

tions of our analysis.

II. AVERAGED RESISTIVE MHD EQUATIONS

The idea of simplifying the reconnection problem by aver-

aging the MHD equations over the reconnection current layer

was first considered by Vasyliunas.16 He obtained an equation

for the average outflow velocity assuming incompressibility

and an approximately uniform external magnetic field. Ten

years later Somov and Titov carried out a similar averaging

procedure, but they allowed for compressibility.17–20 They also

included a nonuniform external field based on the model of

Green22 and Syrovatskii.23 (For a step-by-step derivation of the

Somov and Titov equations see Seaton and Forbes.24) The

equation obtained by Somov and Titov reduces to Vasyliunas’s

equation in the limit that the plasma b and the length of the

current layer both become infinite. Our analysis most closely

follows that of Somov and Titov and uses their notation and

coordinates. For simplicity, we only consider the incompressi-

ble limit, but, unlike Vasyliunas and Somov and Titov, we

include time-dependence. The equations we obtain for the

averaged quantities are closely related to the one-dimensional

MHD nozzle equations.25 These equations provide a simplified

description of the average plasma properties along the length

of the flow, and they are often used to model astrophysical

jets.26,27

To obtain the nozzle equations, we start with the time-

dependent, two-dimensional resistive MHD equations in the

incompressible limit:

Bt ¼ �Ey; (1)

bt ¼ Ex; (2)

E ¼ �Vbþ uBþ gðxÞðbx � ByÞ; (3)

Vx þ uy ¼ 0; (4)

Bx þ by ¼ 0; (5)

Vt þ VVx þ uVy ¼ �px � ðB2 þ b2Þx=2þ BBx þ bBy; (6)

ut þ Vux þ uuy ¼ �py � ðB2 þ b2Þy=2þ Bbx þ bby; (7)

where B and b are the x- and y-components of the magnetic

field, V and u are the x- and y-components of the bulk flow,

E is the magnitude of the electric field (in the z-direction),

gðxÞ is a spatially variable magnetic diffusivity, p is the

gas pressure, and the subscripts indicate partial derivates

with respect to t, x, and y. These equations have been

made dimensionless by normalizing B and b to B(0, a0), V
and u to VA ¼ Bð0; a0Þ=

ffiffiffiffiffiffiffiffi
4pq
p

; p to Bð0; a0Þ2=4pq; E to

VABð0; a0Þ=c, x and y to L, and t to L/VA. The parameter a0 is

the thickness of the current layer at x¼ 0, and L is the length

of the current layer including both the diffusion and slow

shock regions as shown in Figure 1. For simplicity we

assume that L is constant in time, but it can be allowed to

vary if necessary. The variable g(x) is the dimensionless

magnetic diffusivity defined by geðxÞc2=4pVAL where ge(x)

is the electrical resistivity. Here g(x) is assumed to be a given

function of x, as done in most numerical simulations of

Petschek reconnection.2,5,28 It can easily be generalized,

however, to be a function of the current density as well.13,14

The Lundquist number Lu is given simply by 1/g(0), the

inverse of the normalized diffusivity at x¼ 0.

Next, following standard procedure,6,29 we expand the

inflow quantities in powers of the inflow Alfv�en Mach num-

ber, MA¼ u(0, a0)¼E(0, a0). The perpendicular field and

flow components b and u are of first order in MA, while the

parallel field and flow components V and B are of zeroth

order. We also assume that variations in x are of order unity

(i.e., @/@x �1/L), while variations in y are of order 1/MA

(i.e., @/@y �1/a0). These approximations reduce (3), (6), and

(7) to

E ¼ �Vbþ uB� gðxÞBy; (8)

Vt þ VVx þ uVy ¼ �px þ bBy; (9)

ðpþ B2=2Þy ¼ 0: (10)

Following Vasyliunas,16 Somov,18 and Titov,19 we also

assume that the horizontal flow component at the edge of the

FIG. 1. Schematic diagram of the upper right quarter of the field and flow

configuration. B and b indicate the x- and y-components of the magnetic

field (dashed curves) and V and u the x- and y-components of the bulk flow

(hollow arrows). The shaded area indicates the expected current density dis-

tribution. The parameter a is the nominal length of the diffusion region

beyond which the current density is bifurcated into a pair of slow-mode

shocks. L is the total length of the current layer including both diffusion and

shock regions.
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layer is zero. This assumption is made in anticipation of

Sweet-Parker and Petschek-like solutions for which the hori-

zontal component of the velocity in the inflow region is of

second order in MA.30 Erkaev et al.6 have obtained numerical

solutions of the reduced, time-dependent system (1)–(10).

They found that this reduced system behaves in much the

same way as the full system of MHD equations, as long as

the flow remains laminar. In other words, Petschek-type sol-

utions only occur if the resistivity is nonuniform.

Next, we reduce the above two-dimensional, time de-

pendent system to a one-dimensional system by averaging

the variables and equations over the half-thickness of the

current layer. Upon averaging and application of the bound-

ary condition on V, we obtain to order MA

ðahBiÞt � Baat ¼ Eo � Ea; (11)

ðahbiÞt � baat ¼ ðahEiÞx � Eaax; (12)

ðahViÞt ¼ �ðahV2iÞx þ Babo � aBaBax þ ðahB2iÞx
� BaðahBiÞx; (13)

with

hEi ¼ –hVbi þ huBi � gBa=a; (14)

Ea ¼ Baua; (15)

ua ¼ �ðahViÞx; (16)

Va ¼ 0; (17)

ba ¼ bo þ Baax � ðahBiÞx; (18)

where

hVi ¼ ð1=aÞ
ða

0

Vðx; yÞ dy;

and the average is applied similarly to the other variables

and terms that are functions of y. Leibniz’s rule has been

used to express the averages of derivatives in terms of deriv-

atives of the averages. The subscripts with respect to x, y,

and t refer to partial derivatives, but the other subscripts do

not. The variable a(x) is the thickness of the current layer

including both the diffusion region and the slow shock

region as shown in Figure 1. Note that a(x, t) is defined as

occurring in the external region, immediately upstream of

the current layer. Variables with the subscripts o and a corre-

spond to quantities evaluated at y¼ 0 (center of the layer)

and y¼ a (edge of the layer), respectively. The field compo-

nent Ba(x) is determined using an external field model

(e.g., Petschek with Ba¼�1 or Green-Syrovatskii with

Ba ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

). For simplicity, the above equations also

assume that the external gas pressure is uniform so that

p(x, a)¼ pa is constant in both space and time to order MA.

To proceed further, additional assumptions need to be

made about how averages of products are related to products

of the averages and how center-line values at y¼ 0 are

related to the averaged quantities. Both Vasyliunas and

Somov and Titov assume that variations of hVi in y are of

order MA or smaller. They also make the assumption that hBi
is of order MA or smaller. While this latter assumption seems

reasonable for the slow-shock region, it is less appropriate

for the diffusion region where we expect hBi to be of zeroth

order near x¼ 0. In Sec. V, we develop a more realistic treat-

ment for the diffusion region that does not assume that hBi is

zero. As we will see in that section, the overall behavior of

the solutions is not radically altered.

The assumptions that B is negligible and V is uniform in

y inside the current layer lead to

hBi ¼ 0; ua ¼ �ðahV iÞx;
hV2i ¼ hVi2; ba ¼ hbi þ Baax;

hVbi ¼ hVi hbi; hui ¼ � hV ix a=2;

huBi ¼ 0; bo ¼ hbi:

Since B is negligible for y< a, we also have from Faraday’s

equation that @E/@y¼ 0, so E0 ¼ hEi. After substituting the

above relations into (11)–(18), we obtain

at ¼ �ðaVÞx þ Vb=Ba þ g=a; (19)

bt ¼ �ðbVÞx � ðBag=aÞx; (20)

ðaVÞt ¼ �ðaV2Þx þ Bab� aBaBax; (21)

where the angle brackets have been dropped since we no

longer need them to distinguish between averaged and

unaveraged variables. Although these equations are rela-

tively simple, they are still strongly nonlinear. The first term

on the right-hand side of (19) is just the inflow velocity ua at

the edge of the layer. Since this velocity is negative, it acts

to decrease the thickness a of the layer. By contrast the

second and third terms act to increase a. The second term

is due to upstream propagation of the current layer via the

agency of a slow-mode wave, while the third term corre-

sponds to upstream propagation of the current layer by

diffusion.

The two terms on the right-hand side of (20) control the

decay and growth of the normal magnetic field component,

b, which accelerates the flow. The first term causes decay by

advection of b out of the layer, while the second causes

growth by converting the tangential field Ba into b by means

of diffusion (i.e., reconnection). In their publications,

Malyshkin and Kulsrud place special emphasis on the impor-

tance of the latter term.14,15 As we will see in subsequent

sections, it does indeed play a pivotal role in the structure

and dynamics of the solutions.

The first term on the right-hand side of (21) is the accel-

eration of mass flux in the current layer. The second and third

terms are the two forces that cause this acceleration. The Bab
term is the Maxwell stress due to the j�B force within the

layer, while the aBaBax term is a force due to a gas pressure

gradient that occurs when the external magnetic field compo-

nent Ba varies in x. In the Green-Syrovatskii model, Ba varies

as �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

from x¼ 0 to x¼ 1. Consequently, the balance

of the total pressure across the layer leads to a decrease in the

gas pressure with increasing x. In other words, the enhanced

Ba at the center of the sheet squeezes plasma out of the sheet.
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If Ba is approximately uniform, as in the Petschek and

Vasyliunas models, then this term is negligible.

Before considering solutions to the time-dependent

system, we first consider steady-state solutions. These

steady-state solutions encompass those previously obtained

by Vasyliunas,16 Kulsrud,15 as well as the incompressible

limit of the solutions of Somov17,18 and Titov.19,20

III. STEADY-STATE SOLUTIONS

In a steady-state, (19)–(21) reduce to

ðaVÞx ¼ Vb=Ba þ g=a; (22)

ðbVÞx ¼ �ðBag=aÞx; (23)

ðaV2Þx ¼ Bab� aBaBax: (24)

These equations prescribe a, b, V as function of x given the

functions Ba(x) and g(x). For the Petschek model Ba¼�1 to

zeroth order in MA, while for the Green-Syrovatskii model

Ba ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

to zeroth order. For either model, Ba can be

iterated to obtain the first order correction once an initial

solution for b(x) is obtained.18 The first order correction is

needed in order to obtain Petschek’s result for the external

Alfv�en Mach number in the far upstream region. The correc-

tion procedure is briefly discussed in Appendix A. More

extensive discussions can be found in several previous

publications.1,6,18,30

Equations (22)–(24) correspond to a system of three first-

order ordinary differential equations (ODEs). For Ba¼�1,

integration of (23) immediately leads to the Ohm’s law

MA ¼ �bV þ g=a; (25)

where, MA, the reconnection rate, is a constant of integration.

Substitution of this result into (22) then yields

aV ¼ MAðx� xspÞ; (26)

where xsp is another constant of integration. The parameter

xsp is the location of the stagnation point where the flow V is

zero. For the symmetric configurations we consider here, xsp

is zero and co-located with the neutral line. However, in

asymmetric configurations this is no longer the case.31

Finally, setting xsp¼ 0 and using (25) and (26) to elimi-

nate a and b in (24) gives an ODE for the velocity

xVx þ V ¼ ð1=VÞ � ða=xÞðg=g0Þ; (27)

where a ¼ g0=M2
A ¼ a0=MA is the nominal length of the dif-

fusion region and g0¼ g(0) is the diffusivity at the neutral

line. In the region jxj< a the diffusive electric field, gj, dom-

inates, while in the region jxj> a the advective electric field,

Vb, dominates. Equation (27) is the same as the one obtained

by Vasyliunas for the Petschek model (Eq. (29) in Ref. 16).

It is also the same as the equation obtained by Somov and

Titov in the incompressible limit (plasma b!1) and in the

limit x � 1 (Eq. (3.4.11) in Ref. 18). Numerical solutions

of (27) are shown in Figure 2 for various values of the inte-

gration constant for the uniform diffusivity case, g¼ g0.

From this figure, we see that there is only one value of the

integration constant that gives a solution with V(0)¼ 0.

Thus, for symmetric solutions, there is only one constant of

integration, namely the reconnection rate MA, that remains

indeterminate.

So how is the constant of integration, MA, to be deter-

mined? Typically, a constant of integration in a steady-state

ODE is set by the boundary conditions, but, as we pointed

out in the introduction, Petschek reconnection is undriven.

Consequently, MA cannot be specified in this way. If MA is

not set by the boundary conditions, perhaps it is set by the

initial state of the time-dependent system. The different

steady-state solutions would then represent different choices

for the initial conditions. There is, however, a problem with

this interpretation. As we will discuss in Sec. IV, steady-

state solutions of the time dependent system (19)–(21) are

structurally unstable if both g and Ba are uniform. As shown

in Appendix B, these unstable solutions have an essential

singularity at x¼ 0. Stable, nonsingular solutions appear to

be possible only when either g or Ba is nonuniform.

We can distinguish between stable and unstable solu-

tions by considering a power series expansion of (27) around

the X-line. Let us consider the case where Ba is uniform and

equal to �1, but g is nonuniform, then

VðxÞ ¼ V1xþ V3x3 þ � � � ¼
X1
n¼0

V2nþ1x2nþ1; (28)

gðxÞ ¼ g0 þ g2x2 þ � � � ¼
X1
n¼0

g2nx2n: (29)

Upon substitution into (27), we obtain to lowest order

xð1� aV1Þ ¼ 0; (30)

and to higher orders

X1
n¼0

2
Xn

i¼0

ðiþ 1ÞV2iþ1V2ðn�iÞþ1

"

þ a
g0

Xnþ1

i¼0

g2iV2ðn�iÞþ3

�
x2nþ3 ¼ 0: (31)

FIG. 2. Outflow velocity V prescribed by (27) for different values of the

integration constant. Solutions are shown for g¼ g0 (uniform resistivity) and

a¼ 1 (Sweet-Parker reconnection). Only the solution passing through the or-

igin corresponds to a reconnection-type scenario.
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Equation (31) gives a recursive relation for the series

coefficients.

Generally, the power series (28) constitutes an asymp-

totic expansion that diverges for any x> 0 as n goes to 1
(see Appendix B). There are, however, special cases that

have the property that for a particular value of a (and, hence,

a particular value of MA) the series (28) appears to be con-

vergent, rather than divergent. Consider the specific case of

the diffusivity with the Gaussian profile

gðxÞ ¼ g0 expð�x2=l2gÞ ¼ g0ð1� x2=l2g þ x4=2l4g � � � �Þ;

that is often used in numerical simulations to obtain

Petschek-like solutions.2 Substituting into (31), we obtain for

the first four coefficients

V1 ¼ 1=a; V3 ¼ ð�2þ a2=l2gÞ=a3;

V5 ¼ ð24� 16a2=l2
g þ a4=l4gÞ=2a5;

V7 ¼ ð�672þ 552a2=l2g � 90a4=l4
g þ a6=l6

gÞ=6a7:

As n approaches 1, Vn approaches þ1 or �1 for all val-

ues of a except one. This unique value of a is determined by

the condition

lim
n!1
jV2nþ3ðaÞj ¼ 0;

which is a necessary (but not sufficient) condition for the

convergence of the power series (28). If the power series

converges, then the solution V(x) is analytic at x¼ 0. The

special value of a can be approximately determined by

setting anyone of the coefficients, Vn, to zero for n> 1.

Increasingly larger values of n give increasingly better

approximations.

The lowest order approximation is obtained by setting

V3¼ 0. This gives

a ¼
ffiffiffi
2
p

lg ¼ 1:41421 lg;

MA ¼
ffiffiffiffiffiffiffiffiffiffi
g0=a

p
¼ 2�1=4g1=2

0 l�1=2
g :

For the next order approximation, we set V5¼ 0. This gives

two positive roots, namely

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ð4 6

ffiffiffiffiffi
10
p
Þ

q
lg:

When there are multiple roots, the root with the smallest pos-

itive value yields an approximation for the a value of the

nonsingular solution. Table I show the values of a obtained

by setting the next three orders of Vn to zero. The table value

for V11¼ 0 agrees with the value from the numerical solution

of the time-dependent nozzle equations (last line in table) to

six significant figures. This good agreement, however, does

not mean that we have calculated the reconnection rate to a

high accuracy. The one-dimensional nozzle equations are

highly idealized, and they are unlikely to be accurate to more

than 10% to 20%.32

Whether or not a nonsingular solution exists depends on

the functional form of g(x). For the uniform case (lg¼1),

all solutions have an essential singularity at x¼ 0 (see

Appendix B for a formal proof). The choice gðxÞ ¼
g0 expð�x4=l4gÞ also fails to yield a nonsingular solution for

any finite value of a. Although this form is nonuniform and

highly localized, it has a very flat profile near x¼ 0, and it

fails to produce a steady-state when it is used in the time-

dependent system. In order for a nonsingular solution to exist

the Taylor expansion of g(x) around x¼ 0 must have a nega-

tive quadratic term. If g(x) has a variation that is purely

quadratic, i.e., gðxÞ ¼ g0ð1� x2=l2
gÞ, then (27) has the exact

solution, V ¼ x=a when a ¼
ffiffiffi
2
p

. This solution is the only

nonsingular solution. It corresponds to a current sheet which

has uniform thickness, a0, and a linear variation of the trans-

verse field b(x).

Figure 3 plots V(x), a(x), and b(x) for the nonsingular

solution for lg¼ 0.1 with g0¼ 10�4 (i.e., Lu¼ 104). The solu-

tion is Petschek-like with a short diffusion region (a¼ 0.129)

corresponding to a reconnection rate of MA¼ 0.0279. In the

downstream region V(x) ! 1, (the ambient Alfv�en speed),

a(x) ! MA x, and b(x) ! �MA as required for Petschek’s

model. It is difficult visually to distinguish a nonsingular

reconnection solution, such as that shown in Figure 3, from a

singular one, such as that shown in Figure 2 for the curve with

V(0)¼ 0. The only noticeable difference is that a nonsingular

solution appears somewhat smoother than a singular one. This

difference, however, is very subtle, because it depends on the

behavior of the higher order derivatives at x¼ 0.

In their two-dimensional MHD simulations Baty et al.28

found that simply localizing g(x) around x¼ 0 is not

TABLE I. Diffusion region length a for different levels of approximation.

Level of approximation

Analytical expression

for a/lg

Decimal value

for a/lg

V3¼ 0
ffiffiffi
2
p

1.41421

V5¼ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ð4�

ffiffiffiffiffi
10
p
Þ

q
1.29439

V7¼ 0 Solution of cubic 1.28709

V9¼ 0 Solution of quartic 1.28675

V11¼ 0 No exact form 1.28674

Numerical solution

of PDEs as t!1
Not applicable 1.28674

FIG. 3. The outflow velocity V, current layer thickness a, and transverse

field component b as functions of the distance, x, along the current layer.

The neutral line is at x¼ 0 and the tip of the current layer (including slow

shocks) is at x¼ 1. The vertical dashed line at x¼ a indicates the tip of the

diffusion region. This particular solution is the only nonsingular solution of

the nozzle Equation (27) when the magnetic diffusivity has a Gaussian

profile with scale length lg¼ 0.1.
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sufficient to guarantee a Petschek-like solution. It is also nec-

essary that the second derivative of g be negative at x¼ 0. A

g profile that is too flat or first increases before decreasing

leads to a configuration that never stabilizes in the two-

dimensional simulations. Our singularity analysis also pre-

dicts that a stable solution will not exist in such cases.

If the diffusivity is uniform or varies too slowly, then

the variation in the external field component Ba(x) becomes

an important factor in stabilizing the configuration. While

such variation is ignored in Vasyliunas’s analysis, it is

included in the Somov–Titov analysis. They use the Green-

Syrovatskii formula Ba ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

for an infinitely thin

current sheet of length one in our normalized units. This for-

mula for Ba does not hold all the way to x¼ 1 since the equa-

tions become singular there. The range of validity is

approximately |x|� 1�MA. When Ba ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

, Eq. (27)

is replaced by

sin�1x Vx þ V=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

þ x sin�1x
� �.

V–ðag=g0 sin�1xÞð1� x2Þ:

(32)

The above equation is the same as the equation obtained by

Somov and Titov for uniform resistivity in the limit that the

plasma b!1 (the incompressible limit). Expanding yields

V1 ¼ 1=a and V3 ¼ ð� 6þ 5a2Þ=3a3 for the first two terms.

As before, the series does not converge except for one partic-

ular value of a. Setting V3¼ 0 gives a rough estimate for this

value of a �
ffiffiffiffiffiffiffiffi
6=5

p
� 1:09. Setting V13¼ gives the more

precise value of 1.049092. The requirement that the solution

be nonsingular predicts that for uniform diffusivity the only

stable solution for the Green-Syrovatskii Ba profile is the

Sweet-Parker one which has a � 1.

For locally enhanced, nonuniform resistivity, setting

V3¼ 0 in the power series expansion of (32) yields the ap-

proximate formula a �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð5� 3g2=g0Þ

p
for the length of

the diffusion region. In the case of the Gaussian profile, this

corresponds to a reconnection rate of

MA � g1=2
0 ½ð5l2

g þ 3Þ=6l2g�
1=4: (33)

The Green-Syrovatskii result for uniform diffusivity is

recovered when lg!1, and the Ba¼�1 result for the

Gaussian profile is recovered when lg� 1 (top line, Table I).

The analysis of Malyshkin and Kulsrud is equivalent to

a first order expansion of (22)–(24) around x¼ 0. To first

order, these equations are

a0V1 ¼ g0=a0; (34)

b1V1x ¼ a2g0Ba0x=a2
0 � Ba0g

00
0 x=2a0 � B00a0g0 x=2a0; (35)

2a0V2
1x ¼ Ba0b1x � a0Ba0B00a0x; (36)

where

aðxÞ � a0 þ a2x2;

BaðxÞ � Ba0 þ B00a0x2=2;

gðxÞ � g0 þ g000x2=2:

These are the same equations used by Malyshkin and

Kulsrud except for the first term on the right-hand side of

(35) that contains the factor a2. Malyshkin and Kulsrud

assume that a(x) is uniform in the diffusion region, and,

consequently, their equation lacks this term. Since Ba0¼�1

and a0¼MAa, we can rewrite (34) and (36) as

V1 ¼ 1=a; (37)

b1 ¼ �MAð2=a � aB00a0Þ: (38)

Substituting these into (35) yields

M4
A ¼ 3g2

0B00a0=4 � g0g
00
0=4þ a2g0MA=2: (39)

Setting a2¼ 0 gives Malyshkin and Kulsrud’s formula for

the reconnection rate (Eq. (11) in Ref. 14). If we now use the

Green-Syrovatskii model to evaluate Ba, and assume that g is

uniform, then Ba0
00 ¼ 1, g0

00 ¼ 0, and

MA ¼ g1=2
0 ð3=4Þ1=4 � 0:93 Lu�1=2; (40)

which is the slow Sweet-Parker rate. This result is why

Malyshkin and Kulsrud conclude that a fast, Petschek-type

solution cannot occur if g is uniform. This conclusion, how-

ever, only follows if a2 is set to zero. In the analyses of

Vasyliunas and Somov and Titov, a2 is not set to zero.

Instead, its value is given by (39) as a function of an indeter-

minate MA.

Malyshkin and Kulsrud do not explain why they omit

the a2 term in (39), but a justification for doing so can be

found from the requirement that the solution should be non-

singular at x¼ 0. The second order term in the expansion for

a generates a first order term when it is substituted into the

right-hand side of (23). This property is closely related to the

presence of a singularity at x¼ 0. If one attempts to solve for

a2 by carrying out the expansion to the next order, then a4

appears, and so on for higher orders. In the singular solu-

tions, the terms containing the next higher order coefficients

can never be ignored. However, if the solution is analytic at

x¼ 0, then the terms containing the next higher order coeffi-

cients will become smaller as the order rank increases.

Setting a2¼ 0, as Malyshkin and Kulsrud do, or V3¼ 0 as in

Table I, provides a lowest order estimate for the reconnec-

tion rate of the nonsingular solution.

IV. TIME-DEPENDENT SOLUTIONS

The one-dimensional system is much simpler mathe-

matically than the two-dimensional, resistive MHD system

that it approximates. Much of the physical complexity of the

two-dimensional system has therefore been lost.

Nevertheless, the reduced system still retains some interest-

ing behavior that appears to be similar to that observed in

laminar two-dimensional, resistive MHD simulations carried

out at Lundquist numbers below 104. Although (19)–(21)

look relatively simple, they are highly nonlinear and mathe-

matically equivalent to a third order partial differential equa-
tion (PDE). Since they cannot be solved analytically except

for a few special cases, we use a numerical method. In order
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to solve the system, we first need to determine the number of

initial and boundary conditions that are required. As shown

in Appendix C, the system (19)–(21) is purely hyperbolic

with a single characteristic speed, namely the flow speed, V.

Consequently, the number of boundary conditions required

for a solution depends only upon the direction of the flow at

the outflow boundaries. For the numerical solutions we

locate our boundaries at x¼60.9, in order to avoid the null

regions at x¼61 for those cases that use the Green-

Syrovatskii model Ba ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

. At these locations the

flow is always outward, and information cannot propagate

from the outside region back into the numerical domain.

Therefore, no boundary conditions can be imposed at

x¼60.9 unless the flow there reverses direction. All that is

required to obtain a unique solution are initial conditions for

a, b, and V at t¼ 0. In the time-dependent system, MA, the

undetermined constant of integration in the steady-state solu-

tion becomes a function of time. Its initial value is deter-

mined by the choice of the initial state, so its value is no

longer indeterminate if the initial state of the system is

known.

To solve (19)–(21), we use the “method-of-lines” as

implemented in MATHEMATICA. Typically, we use an 8th order

difference scheme with grid resolutions in the range from 100

to 200 grid points. The “method-of-lines” has the advantage

of being a versatile solver for parabolic and hyperbolic PDEs.

However, it has the disadvantage of being prone to numerical

instability if steep gradients are present in the solution.

Therefore, to avoid the development of a numerical instabil-

ity we use initial conditions that are relatively smooth.

Figure 4 shows a numerical solution of the time depend-

ent equations for a case with g ¼ g0 expð�x2=l2gÞ, g0 ¼ 10�4,

and Ba¼�1. The initial conditions for this case are

a¼ 0.0046, V ¼ x=ð
ffiffiffi
2
p

lgÞ, and b ¼ �a0x=lg. These condi-

tions do not correspond to a steady state, so the initial state

immediately starts to evolve. After a few Alfv�en scale times,

the configuration settles into a steady-state that matches the

unique, nonsingular solution of the steady-state equation,

(27), to within an accuracy of six significant figures. All other

choices for the initial condition that we have tested give the

same result, including those based on the singular, steady-

state solutions of (27). Therefore, we infer that the nonsingu-

lar solution acts as an attractor of the dynamical system

towards which all solutions evolve.

Figure 5 shows the reconnection rate as a function of

time for two different initial conditions based on singular

steady-states. The curve labeled “too fast” corresponds to a

steady-state Petschek-like solution with an initial reconnec-

tion rate of MA¼ 0.05. This value is almost twice the final

steady-state rate of MA¼ 0.0279 which is reached by t¼ 1.5.

This final value is exactly the one corresponding to the non-

singular solution of the steady-state equation. The curve

labeled “too slow” corresponds to a steady-state Petschek-like

solution with an initial value of MA¼ 0.023. In both cases the

initial state is unstable, and it rapidly evolves towards the non-

singular steady-state solution with MA¼ 0.0279 (dashed line).

If both the diffusivity, g, and the external field, Ba, are

uniform, then all steady-state solutions are singular at x¼ 0.

These cases, which correspond to the original Petschek

model, have the behavior shown in Figure 6. As before, the

initial steady-state is unstable, but the configuration no lon-

ger rapidly evolves to a new stable configuration. Instead,

the reconnection rate, MA, continually decays towards zero,

and the length of the diffusion region increases linearly with

time. This long-term behavior corresponds to a self-similar

solution of (19)–(21). When g and Ba are both uniform these

equations no longer have an inherent scale length, so a self-

similar solution becomes possible. The self-similar variables

are a*¼ a t�1/2, b*¼ b t1/2, and n¼ x/t, which upon substitu-

tion in (19)–(21) yield the ODEs

1

2
a	 � n a	n ¼ �ða	VÞn � b	V þ g0=a	; (41)

� 1

2
b	 � n b	n ¼ �ðb	VÞn þ ðg0=a	Þn; (42)

1

2
a	V � n ða	VÞn ¼ �ða	V2Þn � b	: (43)

Expanding these equations around n¼ 0 yields the first order

solution

aðxÞ ¼ a	0 t1=2 ; bðxÞ ¼ b	1 x t�3=2 ; VðxÞ ¼ V1 x t�1

that describes the long-term evolution towards a simple,

uniform current layer with no transverse field or flow. As the

transverse field, b, declines with time, the flow, V, that it

accelerates also declines. All that remains at large times is a

uniform current layer widening at the diffusive rate of t1/2.

The nature of the instability manifest in Figure 6 is

closely linked to the presence of the essential singularity in

the initial states. The singularity cannot be precisely repre-

sented in any finite difference scheme because it would

FIG. 4. This figure shows the transition from a nonequilibrium initial state to the nonsingular steady state for a uniform external field (Ba¼�1) and a

Gaussian diffusivity profile with the scale length lg¼ 0.25 in normalized units. Panels (a), (b), and (c) show the layer thickness, a, the outflow velocity, V, and

the transverse magnetic field, b, respectively, as functions of the distance, x, and the time, t. By t¼ 5 the numerical solution matches the nonsingular steady-

state solution to an accuracy of 10�6.
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require an infinitely fine grid to do so. Since there are no

nonsingular equilibria for the uniform g and Ba case, the

smoothed initial state cannot be an exact, steady-state equi-

librium. Therefore, it must evolve, but there are two possibil-

ities. It evolves so as to become as close to the singular state

as the grid resolution will allow (as occurs when a compres-

sive wave steepens into shock), or it evolves away from the

singular state. Which outcome occurs depends on the last

term on the right-hand side of (20). This is the term that con-

tinually creates the transverse field, b, in the layer, and in a

true equilibrium it should exactly balance the first term on

the right-hand side of (20), which depletes the transverse

field by advecting it out of the layer.

The ability of the last term in (20) to balance advection

depends critically on the existence of the singularity at x¼ 0.

The link between this term and the singularity is apparent if

we expand the time-dependent (19)–(21) in powers of x. To

lowest order, this yields

a0t ¼ � a0V1 þ g=a0; (44)

b1t ¼ � 2b1V1 � 2g a2=a2
0; (45)

ða0V1Þt ¼ � 2a0V2
1 � b1; (46)

where a(x, t)¼ a0(t)þ a2(t)x
2þ � � �, b(x, t)¼ b1(t)x þ b3(t)x

3

þ � � �, V(x, t)¼V1(t) xþV3(t)x
3þ � � �. The last term in (45)

corresponds to the last term in (20). Note that it contains the

second order coefficient a2. Were it not for the presence of the

unknown a2, (44)–(46) would be a closed system, and a0, b1,

and V1 could be determined as functions of time. If we set

a2¼ 0 as Malyshkin and Kulsrud do, then (45) requires that the

magnitude of b1 decreases with time as shown in Figure 7. If

we go to the next higher order in the expansion, we can obtain

equations for a2, b3, and V3, but again the last term in (45) leads

to the introduction of a new unknown, namely a4. Higher

orders proceed in a similar fashion. If at any order n we throw

away the term with the unknown coefficient anþ 1 in the last

term of the equation for bnt, then the transverse field b will

decay. Decay can only be prevented by increasing the trunca-

tion order all the way to1. This behavior is linked to the pres-

ence of the essential singularity at x¼ 0. Truncation of the

infinite series eliminates the singularity and leads to the decay

of the transverse field needed to accelerate the flow. As the

flow declines, the thickness, a, of the layer becomes increas-

ingly uniform, diffusing outwards at a rate proportional to t1/2.

Figure 7 also shows the result obtained when a10 is set

to zero. The solution is obtained by numerically solving the

15 coupled equations obtained by expanding (19)–(21) to

order 8 and then dropping the term containing the a10 coeffi-

cient. The time for the decay to become manifest is approxi-

mately proportional to ln n, so increasing the truncation

order from 10 to 100 only increases this time by about a

factor of two. At very large times, the decay is given by the

self-similar solution following equation (43).

The existence of a singularity in the steady-state solu-

tions is related to the flow of information in the solutions. As

discussed in Appendix C, the averaged equations are purely

hyperbolic and have the single characteristic speed V.

Therefore, information about the initial conditions propagates

into the rest of the solution along the characteristic paths

defined by dx/dt¼V(x, t). For a steady state, V(x) � x/a near

the X-line, and the characteristics paths are approximately

x¼ xi exp(t/a) where xi is the initial location of a particular

FIG. 5. Evolution of the reconnection rate, MA, for two different singular,

steady-state solutions. For these solutions, the diffusivity is nonuniform and

has a Gaussian profile with a scale length lg¼ 0.1. The time t is normalized

to the Alfv�en scale time. Both solutions rapidly evolve towards the recon-

nection rate of MA¼ 0.0279 of the nonsingular steady-state solution (dashed

line). Here, g0¼ 10�4 and Ba¼�1.

FIG. 6. Evolution of the reconnection rate, MA, and the diffusion region

length, a, for a steady-state solution with a uniform diffusivity profile and a

uniform Ba. The unstable initial configuration does not reach a new equilib-

rium. Instead, it approaches the long-term decay behavior of the self-similar

solution (dashed lines). Here, g0¼ 10�4.

FIG. 7. These curves show the decay of the transverse magnetic field that

occurs when a singular, steady-state equilibrium with uniform resistivity is

smoothed. The parameter b1 is the spatial gradient of the transverse mag-

netic field at x¼ 0. The dashed curve labeled a2¼ 0 corresponds to the case

considered by Malyshkin and Kulsrud where the infinite series expansion for

the solution is truncated by assuming that @2a/@x2¼ 0 at x¼ 0. The solid

curve labeled a10¼ 0 shows the decay when the initial state is truncated at

the 10th order by setting @10a/@x10¼ 0 at x¼ 0. For both cases, g0¼ 10�4

and Ba¼�1.
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characteristic (see Figure 8). As t!1, only the straight line

characteristic at xi¼ 0 links the final state to the initial state.

All other information about the initial conditions has been

advected into the far downstream regions. Since both b(0, 0)

and V(0, 0) are zero at xi¼ 0, one might reasonably expect

that the solution at large times should be indistinguishable

from that of a simple current sheet with no flow, no transverse

field, and a uniform thickness that increases as
ffiffiffiffiffiffiffi
2g t
p

. This is,

in fact, the behavior observed for nonsingular initial condi-

tions. When the initial conditions contain an essential singu-

larity at x¼ 0, the situation changes. The singularity has an

infinitesimally small length scale associated with its infinite

order derivative, and this scale cannot be removed by advec-

tion. This property allows singular steady-state solutions to

retain MA as a free parameter.

In cases where either g or Ba is an imposed nonuniform

function of x, nonsingular solutions may exist. In such cases,

the variation of g or Ba acts a permanent source of transverse

field b that cannot be swept away by advection [cf. (20)].

The imposed variation must be such that it generates a trans-

verse field consistent with reconnection.

V. IMPROVED DIFFUSION REGION MODEL

Both Vasyliunas16 and Somov18 and Titov19 neglect the

parallel component of the magnetic field within current layer

by assuming that hBi is of order MA or smaller. They also

assume that the average of a product is equal to the product

of its averages. For example, that hV2i¼ hVi2. In the slow-

shock region of the original Petschek model hBi is zero and

V is uniform in y, so that both assumptions are reasonable.

Within the diffusion region, however, hBi is not negligible,

and V is not uniform in y. Since the properties of the diffu-

sion region play a significant role in the dynamics of the

current layer, it is important to assess the sensitivity of the

results obtained in Secs. II–IV to the assumption that hBi
is negligible. One way to do this, in the absence of a self-

consistent, two-dimensional solution, is to consider alterna-

tive assumptions about the structure of the interior of the

diffusion region and then determine how these alternative

assumptions affect the previous results.

Neither Somov and Titov nor Vasyliunas prescribes any

specific functional form for the interior field and flow. They

only prescribe the properties of the averaged quantities.

Nevertheless, it is convenient to think of their results as

corresponding to an interior model with B(x, y, t) � 0 and

V(x, y, t) � V(x, t). This model is consistent with their

assumptions, but there are many different choices one could

make that would lead to exactly the same equations for the

averaged quantities. Once B and V are given, then the func-

tional forms of b and u automatically follow from the

solenoidal conditions r�B¼ 0 and r�V¼ 0. The simplest

alternative to setting B to zero and V uniform in y is to

assume that B varies linearly and V varies quadratically as

B � � y=a; (47)

V � Vo ð1� y2=a2Þ; (48)

where Vo¼V(x, 0, t) and, for simplicity, we have used

Ba¼�1. Although these are still rudimentary approxima-

tions for B and V, they are not quite as rudimentary as simply

setting B to zero and V uniform. If B really were zero, then

there would be no current density and no j�B force to

accelerate the flow in the diffusion region. Having B vary

linearly with y does produce a current density, but one that is

uniform in y at x¼ 0. The actual current density, however,

must vary with y in order to be internally consistent with

Ohm’s law.

From (47) and (48), it follows that

b � bo � y2 ax=2a2;

u � �Vox yþ ½aVox � 2Vo ax� y3=3a3;

where bo¼ b(x, 0, t). Upon averaging, these expressions lead

to

hBi ¼ �1=2; hB2i ¼ 1=3;

hV2i ¼ ð6=5ÞhVi2; Vo ¼ ð3=2ÞhVi;
hVbi ¼ hVi hbi þ hViax = 15; ba ¼ hbi � ax=3;

huBi ¼ 2hVix a=5þ hViax=5; bo ¼ hbi þ ax=6

:

The above expressions provide a more plausible model for

the diffusion region, but a less plausible one for the slow-

shock region. From Faraday’s equation, the average electric

field is just

hEi ¼ Eo � at=6:

By using Faraday’s equation to calculate hEi, we ensure that

electric field is uniform in x in a steady-state. Substituting

these expressions into (11)–(18) yields the alternative time-

dependent equations

at=3 ¼ � 3 ðaVÞx=5 � 4Vax=15 � Vbþ g=a; (49)

bt ¼ ½�Vbþ 2ðaVÞx=5 � 4Vax=15þ g=a�x; (50)

ðaVÞt ¼ � 6 ðV2aÞx=5 � b � ax=3: (51)

The last term in (51) introduces a new physical effect that is

absent in the previous system of equations. This new term

decelerates the flow, while previously all the force terms

acted to accelerate it. Half of the new term is due to an

FIG. 8. Characteristic paths in the center of the diffusion region for uniform

g and Ba. Only the single characteristic at x¼ 0 connects the steady-state

solution at t¼1 with its initial conditions.
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adjustment in the strength of the j� b force, but the other

half is due to an inverse pressure gradient. The inverse pres-

sure gradient is caused by the decrease of the parallel field

component B with x. Total pressure balance across the cur-

rent layer means that the gas pressure must increase if the

magnetic pressure decreases. This average gas pressure force

is h@p/@xi¼�ax/(6a).

In a steady-state, (49)–(51) imply

xVx ½1 � 1=ð18V2Þ� þ V ¼ 4=ð9VÞ � 5ag=ð6xg0Þ: (52)

The factor of [1� 1/(18 V2)] in (52) is a consequence of the

new retarding force in (51). This factor leads to a critical

point in the solutions as shown in Figure 9. The critical point

occurs at xc ¼ 5a=ð7
ffiffiffi
2
p
Þ and Vc ¼ 1=ð3

ffiffiffi
2
p
Þ. Only the solu-

tion that passes through the critical point has both V(0)¼ 0

and a finite speed as x goes to infinity. The other solutions

either die away to zero or are unphysical because they are

double valued or do not have V(0)¼ 0. As x increases, the

solution passing through the critical point asymptotes to an

average velocity of 2/3 times the Alfv�en speed. This value

corresponds to a center line velocity, Vo¼V(x, 0), that is

equal to the Alfv�en speed since Vo¼ 3/2 hVi. The critical

point is analogous to the one that occurs in Parker’s solar

wind model, except that here it corresponds to a flow that

exceeds an escape velocity rather than a supersonic transi-

tion. The retarding effect of the pressure force near the tip of

the diffusion region plays a similar role to the retarding

effect of gravity in Parker’s solar wind solution.

For a nonuniform resistivity, stable solutions can be

found by using the same technique as before, namely deter-

mining the value of a that removes the essential singularity

at x¼ 0. The lowest order coefficient is now

V1 ¼ 3=ð5aÞ;

while the next order is

V3 ¼ � 27 ð36þ 25a2g2=g0Þ=ð875a3Þ:

Setting V3 to zero gives the lowest order approximation for

the reconnection rate of

a ¼ ð6=5Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� g0=g2

p
:

For the Gaussian profile g2 ¼ –g0=l2g, so the length of

the diffusion region is approximately a¼ 1.2 lg. A more

accurate approximation is a¼ 1.1109 lg, which is obtained

by setting V13¼ 0 in the expansion for V. For lg¼ 0.1 and

g0¼ 10�4, the corresponding value of MA is 0.0300.

Direct numerical solution of the time-dependent system

(49)–(51) gives exactly the same result. This value of

MA differs only by 7.1% from the simpler model in

Secs. II–IV.

VI. CONCLUSIONS

We have shown that the previous solutions of Petschek-

like reconnection obtained by Vasyliunas16 are structurally

unstable if the magnetic diffusivity is uniform. Related solu-

tions obtained by Somov17,18 and Titov19,20 that are based on

the configuration considered by Green22 and Syrovatskii23

are also structurally unstable, except for the special case of

Sweet-Parker reconnection. The structural instability is asso-

ciated with the presence of an essential singularity at the

X-line that is nonevolutionary,21 in other words, unphysical.

By requiring that such a singularity does not exist, we obtain

a formula (Eq. (33)) for the reconnection rate that is similar

to that previously obtained by Malyshkin13,14 and Kulsrud.15

However, unlike their formula, ours does not assume that the

diffusion region has a uniform thickness. Our formula also

predicts that simply localizing the region of high diffusivity

near the X-line is insufficient to ensure a stable, Petschek-

type solution. The diffusivity profile needs to decrease quad-

ratically with distance away from the X-line. Profiles that

are too flat near x¼ 0 [e.g., gðxÞ ¼ g0 expð�x4=l4gÞ] are also

unstable.

These results imply a Petschek-type solution can occur

only if there is some physical process that creates a diffusion

region with a scale length that is smaller than the global scale

length of the system. Imposing a spatially localized resistiv-

ity is just one of several possible ways a Petschek-type solu-

tion can be generated. Using a resistivity model that varies

with current density4 or an imposed, nonuniform viscosity

profile8 will also work. Yet another way is to use a nonlocal-

ized resistivity profile in the form of a step function.7 There

are likely to be even more ways that have yet to be discov-

ered. Whether any of these will be important for real plasmas

remains to be seen.
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APPENDIX A: ITERATION OF EXTERNAL FIELD

To first order, the parallel field component, B	a, just out-

side the current layer depends on both the transverse field b
and the current layer thickness, a. For the Green-Syrovatskii

model, B	a is

B	aðxÞ ¼ �
1

p

ffiffiffiffiffiffiffiffiffiffiffi
1þ x

1� x

r ð1
�1

baðsÞ þ s
s� x

ffiffiffiffiffiffiffiffiffiffiffi
1� s
1þ s

r
ds; (A1)

where z ¼ xþ iy and ba ¼ bþ Ba ðda=dxÞ.18 Equation (A1)

reduces to the zeroth order external field Ba ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

when ba is set to zero. Substitution of the numerical solution

shown in Figure 3 into (A1) yields the results shown in

Figure 10.

The iterated field B	a has a reduced magnitude, because

it includes the correction for the conversion of the parallel

component, Ba, into the transverse component, ba. If the iter-

ated field is subsequently used in Eqs. (22)–(24), we obtain

the iterated transverse field b	a shown by the solid curve at

the bottom edge of Figure 10. The difference between b	a and

ba is approximately of order M2
A, so it is a second order cor-

rection that can be neglected if MA is sufficiently small.

As Figure 10 shows, iteration alters the shape of Ba near

x¼ 0, even when MA is small. Before iteration, the second

derivative of Ba at x¼ 0 is 1.0, but after iteration it flips sign

to �1.2. Since formula (33) for the reconnection rate

depends on the second derivative of Ba at x¼ 0, the effect of

iteration could potentially be significant. To determine

whether it is a significant, or not, we write (33) as

M	 4
A ¼ g2

0 ½� 5Ba0B00a0=6 � B2
a0g
00
0=ð4g0Þ � 5B00a0dB	a0=6

� 5Ba0dB	00a0=6 � ðg000=2g0ÞBa0dB	a0�; (A2)

where M	A ¼ MA þ dM	A, B	a0 ¼ Ba0 þ dB	a0, and B	00a0 ¼ B00a0

þ dB	00a0. The double primes indicate second derivatives eval-

uated at x¼ 0, the asterisks (*) indicate iterated quantities,

and the d’s indicate the changes due to iteration. For the

Green-Syrovatskii model, Ba0 ¼ �1 and B00a0 ¼ 1. For a

Gaussian profile, g000 ¼ �2g0=l2
g.

To determine the dB	 correction terms, we use an analyt-

ical approximation for B	a developed by Somov and Titov.18

This analytical approximation is shown by the dotted curve in

Figure 10. It is obtained from (A1) by approximating ba as a

linear ramp of the form ba ¼ �2MAx=a from x¼ 0 to x¼ a,

and then setting ba ¼ �2MA from x¼ a to x¼ 1.

This yields

dB	aðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

�ð2MA=aÞ þ ð8MA=apÞ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aÞ=ð1� aÞ

ph i
�ð2xMA=apÞ ln a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p� �

þ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p �.

a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p� �

� x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p��� ����

þð2MA=pÞ ln
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2
p ����;���

where a ¼ g0=M2
A and MA is prescribed by (33). For small a,

dB	a0 and dB	00a0 are approximately

dB	a0 � ð4MA=pÞ ½1 � lnðlg=
ffiffiffi
2
p
Þ� and

dB	00a0 � � 2MA=ðpl2
g Þ;

where a �
ffiffiffi
2
p

lg. The dB	00a0 term in (A2) always remains

smaller by a factor of MA than the last term, so the formula for

MA is not sensitive to the change in the shape of Ba as long as

MA � 1. For the case shown in Figure 10, with g0 ¼ 10�4

and lg ¼ 0:1, the iterated M	A is 0.0246. This value is only

7.8% smaller than the original, uncorrected value of 0.0267.

By setting jdM	Aj � MA in (A2), we can determine an

upper limit for MA beyond which iteration is needed. For

small lg, all but the second and last terms of (A2) can be

neglected. Upon substitution of the approximate expressions

for dB	a0 and dB	00a0, we obtain the limiting condition

MA � ðp=16Þ =Wð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2e=128g0

p
Þ ;

where W is the product log function (also called the Lambert

W function or the omega function). For g0 ¼ 10�4,

MA � 0:07. The upper limit in this case is only 7 times

FIG. 10. Comparison of the iterated external fields B	a and b	a (solid curves)

with the initial Ba and the initial solution for ba (dashed curves). The dotted

curve shows Somov–Titov analytical approximation for B	a. The values of

g0, lg, and MA are the same as for Figure 3.
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greater than the corresponding Sweet-Parker value offfiffiffiffiffi
g0

p ¼ 0:01. For g0 ¼ 10�8, MA � 0:03. Here the upper

limit is 300 times greater than the Sweet-Parker value, but at

such a low value of g0 the flow might become turbulent.

APPENDIX B: PROOF OF ESSENTIAL SINGULARITY
AT X 5 0

In real analysis, the analyticity of a function is defined

in terms of the properties of its Taylor expansion. In order to

be analytic at a particular point, x0, the function must be

equal to its Taylor expansion at x0 within a finite, nonzero

range. If the function is nowhere equal to its Taylor expan-

sion except at x¼ x0, and if its value at x0 is finite, then the

function has an essential singularity at x0. We now prove

that for uniform g and Ba, the Taylor expansion of V(x)

diverges for any x> 0 by showing that the coefficients in the

power series expansion (28) have the property that

lim
n!1
jV2nþ3j ¼ 1: (B1)

Since a series cannot converge unless its infinite order term

goes to zero, the Taylor expansion will necessarily diverge

for any value of x> 0.

Let g be uniform and let x be normalized to the length a
instead of L. Equations (30) and (31) then simplify to

V1 ¼ 1; V2nþ3 ¼ �2
Xn

i¼0

ðiþ 1ÞV2iþ1V2ðn�iÞþ1;

where n ranges from 0 to1. For n¼ 0 through 3,

n¼ 0 : V3 ¼ –2ðV1V1Þ ¼ –2;
n¼ 1 : V5 ¼ –2ðV1V3þ 2V3V1Þ ¼ 12;
n¼ 2 : V7 ¼ –2ðV1V5þ 2V3V3þ 3V5V1Þ ¼ –112;
n¼ 3 : V9 ¼ –2ðV1V7þ 2V3V5þ 3V5V3þ 4V7V1Þ ¼ 1360:

Note that jVkj 
 1 for all k, and that all terms in the equation

for Vk have the same sign for a given value of n (all negative

for n odd, all positive for n even). For any given n, the term

with the largest absolute value is the last term of the series,

and the term with the next to largest value is the first term.

Thus, every coefficient V2nþ3 must be larger than the coeffi-

cient in the power series G(x)¼G1 xþG3 x3þ � � � whose

coefficients G2nþ3 consist of only the first and last terms of

the series that defines the V2nþ3 coefficients. In other words,

jV2nþ3j 
 jG2nþ3j where

G1 ¼ 1; G3 ¼ �2 G1G1;
G2nþ3 ¼ �2 ðnþ 2ÞG2nþ1G1; for n > 0:

(B2)

If the series for G(x) diverges, so must the series for V(x),

since every term of the V series is greater than or equal to the

corresponding term of the G series. The recursive formula

(B2) for G2nþ3 can be simplified to

jG2nþ3j ¼ ðnþ 2Þ! 2n for n 
 0:

Thus,

lim
n!1
jG2nþ3j ¼ 1;

which proves (B1). Since V(0) is finite (i.e., 0), the singular-

ity at x¼ 0 is an essential singularity.

APPENDIX C: DETERMINATION OF CHARACTERISTIC
SPEEDS

For Ba¼�1, (19)–(21) reduce to

at ¼ �ðaVÞx � bV þ g=a; (C1)

bt ¼ �ðbVÞx þ ðg=aÞx; (C2)

ðaVÞt ¼ �ðaV2Þx � b: (C3)

By rewriting (aV)t as Vatþ aVt and using (C1) to eliminate

at, we can rewrite (C3) as

Vt ¼ �VVx þ b ðV2 � 1Þ=a � Vg=a2: (C4)

The second term on the right-hand side of (C4) goes to zero

when V¼ 1 because the magnetic field cannot accelerate the

plasma beyond the Alfv�en speed (i.e., 1 in dimensionless

units). We can now rewrite (C1), (C2), and (C4) in matrix

form as

1 0 0

0 1 0

0 0 1

0
@

1
A a

b
V

0
@

1
A

t

þ
V 0 a

g=a2 V b
0 0 V

0
@

1
A a

b
V

0
@

1
A

x

¼
�bV þ g=a

gx=a
bðV2 � 1Þ=a� Vg=a2

0
@

1
A:

The characteristic speeds of the system are given by the

eigenvalues k, which are the roots of

V � k 0 a
g=a2 V � k b

0 0 V � k

������
������ ¼ 0;

or simply ðV � kÞ3 ¼ 0. The three eigenvalues are all real

and equal to V. Therefore, the system is hyperbolic for all x
and t. Also, since the eigenvalues are triply degenerate, all

information is carried at the advection speed, V.
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